--- language: - en license: apache-2.0 base_model: openai/whisper-base.en tags: - whisper-event - generated_from_trainer datasets: - tericlabs metrics: - wer model-index: - name: Whisper base english results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Sunbird type: tericlabs metrics: - name: Wer type: wer value: 7.709497206703911 --- # Whisper base english This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the Sunbird dataset. It achieves the following results on the evaluation set: - Loss: 0.2710 - Wer: 7.7095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.395 | 3.33 | 1000 | 0.1988 | 7.4860 | | 0.0295 | 6.67 | 2000 | 0.2389 | 7.3743 | | 0.0026 | 10.0 | 3000 | 0.2645 | 7.5978 | | 0.0011 | 13.33 | 4000 | 0.2710 | 7.7095 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2