Modificación de parámetros
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.87 +/- 0.22
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:885fb64ad315a6c3c43d3d0f59bd01c85e74875a87bc8c055e1a8998783a7874
|
3 |
+
size 109537
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,24 +43,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8584e0a1f0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8584e09440>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 1500000,
|
47 |
+
"_total_timesteps": 1500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1679936892551532993,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYC7dPnsorbss6go/YC7dPnsorbss6go/YC7dPnsorbss6go/YC7dPnsorbss6go/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsXlcPLjZir3yzYg9DtuDvppRWr2hIZQ/dIxSP473zD9br6G+i6WCv3z88r6XAtE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABgLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]]",
|
62 |
+
"desired_goal": "[[ 0.01345675 -0.06779808 0.06679906]\n [-0.25753063 -0.05330048 1.1572763 ]\n [ 0.82245564 1.6013048 -0.31579098]\n [-1.020677 -0.47458255 1.6328915 ]]",
|
63 |
+
"observation": "[[ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApO7svaQLEjvuOIw+zknUPcT2/j100Yo+1q6wPaum2D01OS8+A7MZO2DZAr18niw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.11568955 0.00222848 0.27387184]\n [ 0.1036564 0.12449411 0.27112925]\n [ 0.08627097 0.10578664 0.17111667]\n [ 0.00234526 -0.03194559 0.16857332]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4j5ya9Jt87+UhpRSlIwBbJRLMowBdJRHQLFs8VuaWop1fZQoaAZoCWgPQwhTILOz6B3gv5SGlFKUaBVLMmgWR0CxbNJ3X7LudX2UKGgGaAloD0MId6G5TiNt8b+UhpRSlGgVSzJoFkdAsWyzBJqZdHV9lChoBmgJaA9DCGXG20qvzfW/lIaUUpRoFUsyaBZHQLFskyN4qw11fZQoaAZoCWgPQwhAbOnRVE/ov5SGlFKUaBVLMmgWR0CxbW7vCuU2dX2UKGgGaAloD0MIOL72zJKA8b+UhpRSlGgVSzJoFkdAsW1QGu9vj3V9lChoBmgJaA9DCMPYQpCDEuC/lIaUUpRoFUsyaBZHQLFtMKlHjId1fZQoaAZoCWgPQwhtV+iDZWzmv5SGlFKUaBVLMmgWR0CxbRDVtoBadX2UKGgGaAloD0MIeJs3Tgqz/b+UhpRSlGgVSzJoFkdAsW3q/i5uqHV9lChoBmgJaA9DCCUhkbbxJ+e/lIaUUpRoFUsyaBZHQLFtzC9AX2x1fZQoaAZoCWgPQwjx8QnZeZvxv5SGlFKUaBVLMmgWR0CxbayoXKr8dX2UKGgGaAloD0MILgPOUrKc4r+UhpRSlGgVSzJoFkdAsW2M2LpA2XV9lChoBmgJaA9DCLGoiNNJtvC/lIaUUpRoFUsyaBZHQLFua1CgK4R1fZQoaAZoCWgPQwiiREseT0v2v5SGlFKUaBVLMmgWR0CxbkxwMpgDdX2UKGgGaAloD0MIb9dLUwR48L+UhpRSlGgVSzJoFkdAsW4tAv+OwXV9lChoBmgJaA9DCA1VMZV+wsW/lIaUUpRoFUsyaBZHQLFuDTHsC1Z1fZQoaAZoCWgPQwgCLPLrh9jvv5SGlFKUaBVLMmgWR0Cxbu0UO/cndX2UKGgGaAloD0MI1jpxOV4B4L+UhpRSlGgVSzJoFkdAsW7OPPszEnV9lChoBmgJaA9DCHQprir7rue/lIaUUpRoFUsyaBZHQLFurt3wCr91fZQoaAZoCWgPQwijdyrgnmfpv5SGlFKUaBVLMmgWR0Cxbo8S9M9KdX2UKGgGaAloD0MIVtehmpKs4b+UhpRSlGgVSzJoFkdAsW9+qU/wAnV9lChoBmgJaA9DCKnBNAwfkfK/lIaUUpRoFUsyaBZHQLFvX+NtIkJ1fZQoaAZoCWgPQwh8tg4O9ibov5SGlFKUaBVLMmgWR0Cxb0B/3FkydX2UKGgGaAloD0MIK78MxohE7r+UhpRSlGgVSzJoFkdAsW8hKh+OO3V9lChoBmgJaA9DCGyYofFEkOy/lIaUUpRoFUsyaBZHQLFv/xXnyNJ1fZQoaAZoCWgPQwg6zQLtDinvv5SGlFKUaBVLMmgWR0Cxb+AztTkydX2UKGgGaAloD0MISKmEJ/T66b+UhpRSlGgVSzJoFkdAsW/A7xNIsnV9lChoBmgJaA9DCNgN2xZldve/lIaUUpRoFUsyaBZHQLFvoR+z+m51fZQoaAZoCWgPQwhrEVFM3gDYv5SGlFKUaBVLMmgWR0CxcIlHz6JqdX2UKGgGaAloD0MIUAEwnkHD7b+UhpRSlGgVSzJoFkdAsXBqahHsknV9lChoBmgJaA9DCPAV3XpND+K/lIaUUpRoFUsyaBZHQLFwSw+t8u11fZQoaAZoCWgPQwjiIvd0dcfrv5SGlFKUaBVLMmgWR0CxcCs9nscAdX2UKGgGaAloD0MIPlxy3Cmd7L+UhpRSlGgVSzJoFkdAsXGZijL0SXV9lChoBmgJaA9DCGR0QBL27ey/lIaUUpRoFUsyaBZHQLFxe065oXd1fZQoaAZoCWgPQwi8QEmBBXDyv5SGlFKUaBVLMmgWR0CxcV0uUUwjdX2UKGgGaAloD0MIN/3ZjxRR8b+UhpRSlGgVSzJoFkdAsXE+3uuzQnV9lChoBmgJaA9DCHhHxmrzf+W/lIaUUpRoFUsyaBZHQLFydPgvUSZ1fZQoaAZoCWgPQwjiytk7o63rv5SGlFKUaBVLMmgWR0CxclaA8SwodX2UKGgGaAloD0MIu9Vz0vvG57+UhpRSlGgVSzJoFkdAsXI3i++M63V9lChoBmgJaA9DCEflJmppbvK/lIaUUpRoFUsyaBZHQLFyGBaLXMB1fZQoaAZoCWgPQwgPRuwTQHH1v5SGlFKUaBVLMmgWR0Cxc1CjUNKAdX2UKGgGaAloD0MIfCb752lA5L+UhpRSlGgVSzJoFkdAsXMyLbYbsHV9lChoBmgJaA9DCO3WMhmOZ+m/lIaUUpRoFUsyaBZHQLFzEzhP0qZ1fZQoaAZoCWgPQwh+HM2Rld/yv5SGlFKUaBVLMmgWR0CxcvPV/c33dX2UKGgGaAloD0MIjC5vDtfq9b+UhpRSlGgVSzJoFkdAsXQ2EZiuuHV9lChoBmgJaA9DCC4DzlKynNW/lIaUUpRoFUsyaBZHQLF0F6yjYZl1fZQoaAZoCWgPQwgq4Qm9/iT0v5SGlFKUaBVLMmgWR0Cxc/izLOiWdX2UKGgGaAloD0MIjsni/iOT87+UhpRSlGgVSzJoFkdAsXPZMyrPt3V9lChoBmgJaA9DCEcE4+DSMeq/lIaUUpRoFUsyaBZHQLF1Dk9lmOF1fZQoaAZoCWgPQwhN9WT+0bf0v5SGlFKUaBVLMmgWR0CxdO/FaSs9dX2UKGgGaAloD0MIvth78UX78L+UhpRSlGgVSzJoFkdAsXTQq8UVSHV9lChoBmgJaA9DCN3PKcjPxvG/lIaUUpRoFUsyaBZHQLF0sSNOuaF1fZQoaAZoCWgPQwja4a/JGvXyv5SGlFKUaBVLMmgWR0Cxdb8Sf16FdX2UKGgGaAloD0MIrW2Kx0V18b+UhpRSlGgVSzJoFkdAsXWgRVZLZnV9lChoBmgJaA9DCLmnqzsW2+W/lIaUUpRoFUsyaBZHQLF1gOinHed1fZQoaAZoCWgPQwijk6XW+43wv5SGlFKUaBVLMmgWR0CxdWEfs/pudX2UKGgGaAloD0MI1AyponiV7b+UhpRSlGgVSzJoFkdAsXZC2DxsmHV9lChoBmgJaA9DCDQSoRFsXO2/lIaUUpRoFUsyaBZHQLF2JAdXDFZ1fZQoaAZoCWgPQwgraFpiZTTdv5SGlFKUaBVLMmgWR0CxdgSZBsyjdX2UKGgGaAloD0MIbTmX4qqy3r+UhpRSlGgVSzJoFkdAsXXlSDRMOHV9lChoBmgJaA9DCA9FgT6Rp+y/lIaUUpRoFUsyaBZHQLF2wzkZJkJ1fZQoaAZoCWgPQwiTqBd8mpPNv5SGlFKUaBVLMmgWR0CxdqRjz7MxdX2UKGgGaAloD0MIpIgMq3gj2b+UhpRSlGgVSzJoFkdAsXaE6xPfsXV9lChoBmgJaA9DCDc2O1J95++/lIaUUpRoFUsyaBZHQLF2ZRqXWvt1fZQoaAZoCWgPQwibOo+K/zviv5SGlFKUaBVLMmgWR0Cxd0NU4rBkdX2UKGgGaAloD0MIOpD11Oor57+UhpRSlGgVSzJoFkdAsXckhOgxrXV9lChoBmgJaA9DCEbsE0AxMuq/lIaUUpRoFUsyaBZHQLF3BRaX8fp1fZQoaAZoCWgPQwiAgosVNZjpv5SGlFKUaBVLMmgWR0CxduU0WM0hdX2UKGgGaAloD0MILIGU2LU97r+UhpRSlGgVSzJoFkdAsXfXikwevXV9lChoBmgJaA9DCOLMr+YAAfG/lIaUUpRoFUsyaBZHQLF3uLq2SdR1fZQoaAZoCWgPQwjF4jeFlYrvv5SGlFKUaBVLMmgWR0Cxd5lZxJd0dX2UKGgGaAloD0MIrb8lAP+U9b+UhpRSlGgVSzJoFkdAsXd5hb4agnV9lChoBmgJaA9DCA6D+StkLvG/lIaUUpRoFUsyaBZHQLF4VcFQl8h1fZQoaAZoCWgPQwjm54am7HTnv5SGlFKUaBVLMmgWR0CxeDcdDIBBdX2UKGgGaAloD0MIfotOllrv37+UhpRSlGgVSzJoFkdAsXgX80k4WHV9lChoBmgJaA9DCNDtJY3ROuK/lIaUUpRoFUsyaBZHQLF3+GGmDUV1fZQoaAZoCWgPQwgU56ij4+rmv5SGlFKUaBVLMmgWR0CxeN5dKNADdX2UKGgGaAloD0MITRB1H4BU7b+UhpRSlGgVSzJoFkdAsXi/gqEvkHV9lChoBmgJaA9DCHGrIAa6tvS/lIaUUpRoFUsyaBZHQLF4oA6uGK11fZQoaAZoCWgPQwgQBp57D9fxv5SGlFKUaBVLMmgWR0CxeIBLPD51dX2UKGgGaAloD0MIa9JtiVxw2L+UhpRSlGgVSzJoFkdAsXlhgMMI/3V9lChoBmgJaA9DCEsBaf8DLO6/lIaUUpRoFUsyaBZHQLF5QsBhhH91fZQoaAZoCWgPQwjshm2LMpvpv5SGlFKUaBVLMmgWR0CxeSM94eLfdX2UKGgGaAloD0MIZ3+g3Lbv7L+UhpRSlGgVSzJoFkdAsXkDbVSXMXV9lChoBmgJaA9DCOutga0SLPC/lIaUUpRoFUsyaBZHQLF54gflp491fZQoaAZoCWgPQwiCyCJNvIP0v5SGlFKUaBVLMmgWR0CxecMlPacqdX2UKGgGaAloD0MIar3faMeN8L+UhpRSlGgVSzJoFkdAsXmjtShrWXV9lChoBmgJaA9DCBnlmZfD7s2/lIaUUpRoFUsyaBZHQLF5g/VAiV11fZQoaAZoCWgPQwiFz9bBwZ7wv5SGlFKUaBVLMmgWR0CxemZU5uIidX2UKGgGaAloD0MIJA7ZQLpY8b+UhpRSlGgVSzJoFkdAsXpHnMdLhHV9lChoBmgJaA9DCDP5Zpsb09y/lIaUUpRoFUsyaBZHQLF6KD8tPHl1fZQoaAZoCWgPQwhE96xrtJzkv5SGlFKUaBVLMmgWR0Cxegh6a9bpdX2UKGgGaAloD0MIFcRA176A2r+UhpRSlGgVSzJoFkdAsXrqBlMAWHV9lChoBmgJaA9DCPKZ7J+nAdy/lIaUUpRoFUsyaBZHQLF6yzZpSJl1fZQoaAZoCWgPQwhfQC/cuTDkv5SGlFKUaBVLMmgWR0Cxequ9FnZkdX2UKGgGaAloD0MITkF+NnLd07+UhpRSlGgVSzJoFkdAsXqL+ERJ3HV9lChoBmgJaA9DCGqIKvwZ3sy/lIaUUpRoFUsyaBZHQLF7dbNKRMh1fZQoaAZoCWgPQwiJX7GGi5zwv5SGlFKUaBVLMmgWR0Cxe1baM72ddX2UKGgGaAloD0MImaCGb2Fd4L+UhpRSlGgVSzJoFkdAsXs3iS7oS3V9lChoBmgJaA9DCBaGyOnr+eu/lIaUUpRoFUsyaBZHQLF7F7Jnxrl1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 46875,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc7649837ed507677e0979782df848b97b5a3c02fb66cb0a085e6dd7b22b1aa1
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2a45b82a560d95a15cf801d3f48489258068bf0158d7c775119a8541f2e3080
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d1ec83a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5d1ec80ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 848000, "_total_timesteps": 848000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679903117489870967, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5IfePlSbEjs8Lh8/5IfePlSbEjs8Lh8/5IfePlSbEjs8Lh8/5IfePlSbEjs8Lh8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtfmMP3+dBz/lUN0/PQM2v+ZftL/Sg5m/cveEPlUFBb5qGKO/EzfovhQAE78Gkl2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADkh94+VJsSOzwuHz8r8fU5jPRbu7+nmzrkh94+VJsSOzwuHz8r8fU5jPRbu7+nmzrkh94+VJsSOzwuHz8r8fU5jPRbu7+nmzrkh94+VJsSOzwuHz8r8fU5jPRbu7+nmzqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4346305 0.00223704 0.62179923]\n [0.4346305 0.00223704 0.62179923]\n [0.4346305 0.00223704 0.62179923]\n [0.4346305 0.00223704 0.62179923]]", "desired_goal": "[[ 1.1013705 0.52974695 1.7290312 ]\n [-0.7109869 -1.4091766 -1.1993353 ]\n [ 0.25970036 -0.12990315 -1.2741826 ]\n [-0.45354518 -0.57421994 -0.21637735]]", "observation": "[[ 4.3463051e-01 2.2370415e-03 6.2179923e-01 4.6909726e-04\n -3.3562509e-03 1.1875554e-03]\n [ 4.3463051e-01 2.2370415e-03 6.2179923e-01 4.6909726e-04\n -3.3562509e-03 1.1875554e-03]\n [ 4.3463051e-01 2.2370415e-03 6.2179923e-01 4.6909726e-04\n -3.3562509e-03 1.1875554e-03]\n [ 4.3463051e-01 2.2370415e-03 6.2179923e-01 4.6909726e-04\n -3.3562509e-03 1.1875554e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+VhdvT70JT1QipQ+lUv9vU8a1bsX+JQ9p5K4vZGJDr4ZMJg+dWedPWkFzDvkDms+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05403993 0.04051613 0.29011774]\n [-0.12367932 -0.00650338 0.07273882]\n [-0.09012347 -0.13919665 0.29724196]\n [ 0.07685748 0.00622623 0.22954899]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhbNby2QYAcCUhpRSlIwBbJRLMowBdJRHQKP8dxn3+Mt1fZQoaAZoCWgPQwgTRUjdzn4JwJSGlFKUaBVLMmgWR0Cj/DXpfQa8dX2UKGgGaAloD0MIu0VgrG9ADsCUhpRSlGgVSzJoFkdAo/vw6CDmKnV9lChoBmgJaA9DCNLkYgysQwnAlIaUUpRoFUsyaBZHQKP7rTQ3PzF1fZQoaAZoCWgPQwjN6h1uh0YNwJSGlFKUaBVLMmgWR0Cj/YUs4DLbdX2UKGgGaAloD0MIibFMv0Q8EsCUhpRSlGgVSzJoFkdAo/1EYyfthXV9lChoBmgJaA9DCHHoLR7egxfAlIaUUpRoFUsyaBZHQKP8/4DcM3J1fZQoaAZoCWgPQwiGHFvPEF4UwJSGlFKUaBVLMmgWR0Cj/Lu/DcdpdX2UKGgGaAloD0MIgjl6/N7GAMCUhpRSlGgVSzJoFkdAo/6NlVcUunV9lChoBmgJaA9DCLoyqDY4URPAlIaUUpRoFUsyaBZHQKP+TMcIZ651fZQoaAZoCWgPQwgVGR2QhE0VwJSGlFKUaBVLMmgWR0Cj/gftY0VKdX2UKGgGaAloD0MIfEeNCTF3BsCUhpRSlGgVSzJoFkdAo/3EHfMwDnV9lChoBmgJaA9DCLLWUGovovy/lIaUUpRoFUsyaBZHQKP/mhnJ1aJ1fZQoaAZoCWgPQwiWJTrLLMIOwJSGlFKUaBVLMmgWR0Cj/1lL39JjdX2UKGgGaAloD0MIDafMzTciD8CUhpRSlGgVSzJoFkdAo/8UjVx0dXV9lChoBmgJaA9DCM41zNB4AgPAlIaUUpRoFUsyaBZHQKP+0M4LkS51fZQoaAZoCWgPQwiHokCfyNMEwJSGlFKUaBVLMmgWR0CkAJ1H4GlidX2UKGgGaAloD0MIWW3+X3VkD8CUhpRSlGgVSzJoFkdApABcXrMTvnV9lChoBmgJaA9DCFw65jxjnwPAlIaUUpRoFUsyaBZHQKQAF1M/QjV1fZQoaAZoCWgPQwgT7wBPWtgSwJSGlFKUaBVLMmgWR0Cj/9NzCDVZdX2UKGgGaAloD0MIc2VQbXAyEcCUhpRSlGgVSzJoFkdApAGnf0mMO3V9lChoBmgJaA9DCMnIWdjTTgXAlIaUUpRoFUsyaBZHQKQBZxRVIZt1fZQoaAZoCWgPQwjElEiil9H+v5SGlFKUaBVLMmgWR0CkASKB/ZuidX2UKGgGaAloD0MIv2N47GfRC8CUhpRSlGgVSzJoFkdApADeiaiKznV9lChoBmgJaA9DCNUjDW5ruxPAlIaUUpRoFUsyaBZHQKQCqVTJhfB1fZQoaAZoCWgPQwgJUFPL1hoEwJSGlFKUaBVLMmgWR0CkAmhcJMQFdX2UKGgGaAloD0MI8RExJZJIDcCUhpRSlGgVSzJoFkdApAIjhFVktnV9lChoBmgJaA9DCPt0PGagsgHAlIaUUpRoFUsyaBZHQKQB39srNGF1fZQoaAZoCWgPQwgN/RNcrKj+v5SGlFKUaBVLMmgWR0CkA6WnjyWidX2UKGgGaAloD0MInYTSF0LuA8CUhpRSlGgVSzJoFkdApANkhJRO13V9lChoBmgJaA9DCHe7XpoigAPAlIaUUpRoFUsyaBZHQKQDH7PY4AF1fZQoaAZoCWgPQwgYWwhyUBIQwJSGlFKUaBVLMmgWR0CkAtumrKeTdX2UKGgGaAloD0MIev1JfO7EBsCUhpRSlGgVSzJoFkdApASQgs9SuXV9lChoBmgJaA9DCE/KpIY2YALAlIaUUpRoFUsyaBZHQKQET4XXRPZ1fZQoaAZoCWgPQwij5xa6EmEJwJSGlFKUaBVLMmgWR0CkBApgssg/dX2UKGgGaAloD0MIcO1ESUjkCMCUhpRSlGgVSzJoFkdApAPGjRD1G3V9lChoBmgJaA9DCJRt4A7UyQjAlIaUUpRoFUsyaBZHQKQFgufVZs91fZQoaAZoCWgPQwhmpN5TOe0EwJSGlFKUaBVLMmgWR0CkBUHOB19wdX2UKGgGaAloD0MINdJSeTvCBsCUhpRSlGgVSzJoFkdApAT8qOLiuXV9lChoBmgJaA9DCDHvcaYJ+wTAlIaUUpRoFUsyaBZHQKQEuJ0nw5N1fZQoaAZoCWgPQwiwdhTnqIMPwJSGlFKUaBVLMmgWR0CkBm9nTRYzdX2UKGgGaAloD0MIVTGVfsJZBcCUhpRSlGgVSzJoFkdApAYuavzOHHV9lChoBmgJaA9DCGEcXDrmHATAlIaUUpRoFUsyaBZHQKQF6Vt4zJp1fZQoaAZoCWgPQwjElbN3RpsFwJSGlFKUaBVLMmgWR0CkBaV2zOX3dX2UKGgGaAloD0MIYaQXtfv1AcCUhpRSlGgVSzJoFkdApAdxQ53kgnV9lChoBmgJaA9DCLAfYoOF8wTAlIaUUpRoFUsyaBZHQKQHMEbo8p11fZQoaAZoCWgPQwiEns2qz/UEwJSGlFKUaBVLMmgWR0CkButW2gFpdX2UKGgGaAloD0MInDHMCdqk/7+UhpRSlGgVSzJoFkdApAankYGdJHV9lChoBmgJaA9DCPBOPj22RRDAlIaUUpRoFUsyaBZHQKQIjHktEoh1fZQoaAZoCWgPQwjJIk28AxwBwJSGlFKUaBVLMmgWR0CkCEulGgBcdX2UKGgGaAloD0MIJ/p8lBH3EsCUhpRSlGgVSzJoFkdApAgG3jMmnnV9lChoBmgJaA9DCKeTbHU5JRXAlIaUUpRoFUsyaBZHQKQHwy8jAzp1fZQoaAZoCWgPQwiJ78SsF0MOwJSGlFKUaBVLMmgWR0CkCbCILw4LdX2UKGgGaAloD0MIRKLQsu5/BsCUhpRSlGgVSzJoFkdApAlvvhIe5nV9lChoBmgJaA9DCHSYLy/AXhPAlIaUUpRoFUsyaBZHQKQJKuPFNtZ1fZQoaAZoCWgPQwh9XBsqxtkBwJSGlFKUaBVLMmgWR0CkCObyxzJZdX2UKGgGaAloD0MIJEVkWMV7CMCUhpRSlGgVSzJoFkdApArBeokzGnV9lChoBmgJaA9DCEImGTkLOw3AlIaUUpRoFUsyaBZHQKQKgINVinZ1fZQoaAZoCWgPQwhntcAeE4kGwJSGlFKUaBVLMmgWR0CkCjuxjawmdX2UKGgGaAloD0MIdXXHYpvU/b+UhpRSlGgVSzJoFkdApAn39WIXTHV9lChoBmgJaA9DCAPso1NXXhXAlIaUUpRoFUsyaBZHQKQMAhWYF7l1fZQoaAZoCWgPQwho6nWLwDgTwJSGlFKUaBVLMmgWR0CkC8GoR7JGdX2UKGgGaAloD0MIdk8eFmoNDsCUhpRSlGgVSzJoFkdApAt9QwblzXV9lChoBmgJaA9DCIAPXru0IQbAlIaUUpRoFUsyaBZHQKQLOjkdWAB1fZQoaAZoCWgPQwgjFcYWgvwFwJSGlFKUaBVLMmgWR0CkDbZhBqsVdX2UKGgGaAloD0MI9Ik8Sbr2EMCUhpRSlGgVSzJoFkdApA12dI5HVnV9lChoBmgJaA9DCOl/uRYtABDAlIaUUpRoFUsyaBZHQKQNMgB91EF1fZQoaAZoCWgPQwhfm42VmAcRwJSGlFKUaBVLMmgWR0CkDO557gKndX2UKGgGaAloD0MIOlrVko6yCMCUhpRSlGgVSzJoFkdApA9vRJEpiXV9lChoBmgJaA9DCGqhZHJqhwTAlIaUUpRoFUsyaBZHQKQPL1vES/V1fZQoaAZoCWgPQwgE54wo7b0RwJSGlFKUaBVLMmgWR0CkDusK9f1IdX2UKGgGaAloD0MIJGHfTiKCF8CUhpRSlGgVSzJoFkdApA6n+MqBmXV9lChoBmgJaA9DCEgWMIFb1xLAlIaUUpRoFUsyaBZHQKQRSBwuM/B1fZQoaAZoCWgPQwgf+BisONURwJSGlFKUaBVLMmgWR0CkEQfKyOaOdX2UKGgGaAloD0MI9YWQ8/7/BsCUhpRSlGgVSzJoFkdApBDDmdRR/HV9lChoBmgJaA9DCC4gtB6+jA7AlIaUUpRoFUsyaBZHQKQQgNMoMKF1fZQoaAZoCWgPQwhSmWIOgi4CwJSGlFKUaBVLMmgWR0CkEzlvIfbLdX2UKGgGaAloD0MIQbgCCvWUEMCUhpRSlGgVSzJoFkdApBL5frrxAnV9lChoBmgJaA9DCMXIkjmWVwrAlIaUUpRoFUsyaBZHQKQStXyRSxZ1fZQoaAZoCWgPQwhN2lTdIzsGwJSGlFKUaBVLMmgWR0CkEnJ9y926dX2UKGgGaAloD0MI5YBdTZ7SBMCUhpRSlGgVSzJoFkdApBT2KdhAnnV9lChoBmgJaA9DCKq4cYv5KRHAlIaUUpRoFUsyaBZHQKQUtUc4o7V1fZQoaAZoCWgPQwjL+PcZF24XwJSGlFKUaBVLMmgWR0CkFHCOvMbFdX2UKGgGaAloD0MIGeYEbXKYDsCUhpRSlGgVSzJoFkdApBQsqhDgInV9lChoBmgJaA9DCDuPiv87wg3AlIaUUpRoFUsyaBZHQKQWDwm3OOd1fZQoaAZoCWgPQwhhURGnkywawJSGlFKUaBVLMmgWR0CkFc4QSSNgdX2UKGgGaAloD0MIuyU5YFdzC8CUhpRSlGgVSzJoFkdApBWJCOWBz3V9lChoBmgJaA9DCOHTnLzIBAfAlIaUUpRoFUsyaBZHQKQVRUSZjQR1fZQoaAZoCWgPQwiuSExQw+cRwJSGlFKUaBVLMmgWR0CkFyHZCfHxdX2UKGgGaAloD0MIeSPzyB/sBcCUhpRSlGgVSzJoFkdApBbg8B+4LHV9lChoBmgJaA9DCJTai2g75hjAlIaUUpRoFUsyaBZHQKQWnAj6eoV1fZQoaAZoCWgPQwgUsYhhh0ESwJSGlFKUaBVLMmgWR0CkFlgcT8HfdX2UKGgGaAloD0MIjniymxm9CcCUhpRSlGgVSzJoFkdApBg9wR5C4XV9lChoBmgJaA9DCNvC81KxEQfAlIaUUpRoFUsyaBZHQKQX/RHf/FR1fZQoaAZoCWgPQwj/69y0GecGwJSGlFKUaBVLMmgWR0CkF7gvUSZjdX2UKGgGaAloD0MI4e6s3XYh/L+UhpRSlGgVSzJoFkdApBd0M7U5MnV9lChoBmgJaA9DCEwceSCyyAvAlIaUUpRoFUsyaBZHQKQZUCWeHzp1fZQoaAZoCWgPQwi2os1xbtMMwJSGlFKUaBVLMmgWR0CkGQ9FF2FGdX2UKGgGaAloD0MI8+fbgqXaCcCUhpRSlGgVSzJoFkdApBjKS/0ulHV9lChoBmgJaA9DCJaTUPpCqArAlIaUUpRoFUsyaBZHQKQYhuk1uR91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 42400, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8584e0a1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8584e09440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679936892551532993, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYC7dPnsorbss6go/YC7dPnsorbss6go/YC7dPnsorbss6go/YC7dPnsorbss6go/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsXlcPLjZir3yzYg9DtuDvppRWr2hIZQ/dIxSP473zD9br6G+i6WCv3z88r6XAtE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABgLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj1gLt0+eyituyzqCj9/Yak9Sr4zu7qugj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]\n [ 0.43199444 -0.00528437 0.5426357 ]]", "desired_goal": "[[ 0.01345675 -0.06779808 0.06679906]\n [-0.25753063 -0.05330048 1.1572763 ]\n [ 0.82245564 1.6013048 -0.31579098]\n [-1.020677 -0.47458255 1.6328915 ]]", "observation": "[[ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]\n [ 0.43199444 -0.00528437 0.5426357 0.08270549 -0.00274267 0.06380983]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApO7svaQLEjvuOIw+zknUPcT2/j100Yo+1q6wPaum2D01OS8+A7MZO2DZAr18niw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11568955 0.00222848 0.27387184]\n [ 0.1036564 0.12449411 0.27112925]\n [ 0.08627097 0.10578664 0.17111667]\n [ 0.00234526 -0.03194559 0.16857332]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4j5ya9Jt87+UhpRSlIwBbJRLMowBdJRHQLFs8VuaWop1fZQoaAZoCWgPQwhTILOz6B3gv5SGlFKUaBVLMmgWR0CxbNJ3X7LudX2UKGgGaAloD0MId6G5TiNt8b+UhpRSlGgVSzJoFkdAsWyzBJqZdHV9lChoBmgJaA9DCGXG20qvzfW/lIaUUpRoFUsyaBZHQLFskyN4qw11fZQoaAZoCWgPQwhAbOnRVE/ov5SGlFKUaBVLMmgWR0CxbW7vCuU2dX2UKGgGaAloD0MIOL72zJKA8b+UhpRSlGgVSzJoFkdAsW1QGu9vj3V9lChoBmgJaA9DCMPYQpCDEuC/lIaUUpRoFUsyaBZHQLFtMKlHjId1fZQoaAZoCWgPQwhtV+iDZWzmv5SGlFKUaBVLMmgWR0CxbRDVtoBadX2UKGgGaAloD0MIeJs3Tgqz/b+UhpRSlGgVSzJoFkdAsW3q/i5uqHV9lChoBmgJaA9DCCUhkbbxJ+e/lIaUUpRoFUsyaBZHQLFtzC9AX2x1fZQoaAZoCWgPQwjx8QnZeZvxv5SGlFKUaBVLMmgWR0CxbayoXKr8dX2UKGgGaAloD0MILgPOUrKc4r+UhpRSlGgVSzJoFkdAsW2M2LpA2XV9lChoBmgJaA9DCLGoiNNJtvC/lIaUUpRoFUsyaBZHQLFua1CgK4R1fZQoaAZoCWgPQwiiREseT0v2v5SGlFKUaBVLMmgWR0CxbkxwMpgDdX2UKGgGaAloD0MIb9dLUwR48L+UhpRSlGgVSzJoFkdAsW4tAv+OwXV9lChoBmgJaA9DCA1VMZV+wsW/lIaUUpRoFUsyaBZHQLFuDTHsC1Z1fZQoaAZoCWgPQwgCLPLrh9jvv5SGlFKUaBVLMmgWR0Cxbu0UO/cndX2UKGgGaAloD0MI1jpxOV4B4L+UhpRSlGgVSzJoFkdAsW7OPPszEnV9lChoBmgJaA9DCHQprir7rue/lIaUUpRoFUsyaBZHQLFurt3wCr91fZQoaAZoCWgPQwijdyrgnmfpv5SGlFKUaBVLMmgWR0Cxbo8S9M9KdX2UKGgGaAloD0MIVtehmpKs4b+UhpRSlGgVSzJoFkdAsW9+qU/wAnV9lChoBmgJaA9DCKnBNAwfkfK/lIaUUpRoFUsyaBZHQLFvX+NtIkJ1fZQoaAZoCWgPQwh8tg4O9ibov5SGlFKUaBVLMmgWR0Cxb0B/3FkydX2UKGgGaAloD0MIK78MxohE7r+UhpRSlGgVSzJoFkdAsW8hKh+OO3V9lChoBmgJaA9DCGyYofFEkOy/lIaUUpRoFUsyaBZHQLFv/xXnyNJ1fZQoaAZoCWgPQwg6zQLtDinvv5SGlFKUaBVLMmgWR0Cxb+AztTkydX2UKGgGaAloD0MISKmEJ/T66b+UhpRSlGgVSzJoFkdAsW/A7xNIsnV9lChoBmgJaA9DCNgN2xZldve/lIaUUpRoFUsyaBZHQLFvoR+z+m51fZQoaAZoCWgPQwhrEVFM3gDYv5SGlFKUaBVLMmgWR0CxcIlHz6JqdX2UKGgGaAloD0MIUAEwnkHD7b+UhpRSlGgVSzJoFkdAsXBqahHsknV9lChoBmgJaA9DCPAV3XpND+K/lIaUUpRoFUsyaBZHQLFwSw+t8u11fZQoaAZoCWgPQwjiIvd0dcfrv5SGlFKUaBVLMmgWR0CxcCs9nscAdX2UKGgGaAloD0MIPlxy3Cmd7L+UhpRSlGgVSzJoFkdAsXGZijL0SXV9lChoBmgJaA9DCGR0QBL27ey/lIaUUpRoFUsyaBZHQLFxe065oXd1fZQoaAZoCWgPQwi8QEmBBXDyv5SGlFKUaBVLMmgWR0CxcV0uUUwjdX2UKGgGaAloD0MIN/3ZjxRR8b+UhpRSlGgVSzJoFkdAsXE+3uuzQnV9lChoBmgJaA9DCHhHxmrzf+W/lIaUUpRoFUsyaBZHQLFydPgvUSZ1fZQoaAZoCWgPQwjiytk7o63rv5SGlFKUaBVLMmgWR0CxclaA8SwodX2UKGgGaAloD0MIu9Vz0vvG57+UhpRSlGgVSzJoFkdAsXI3i++M63V9lChoBmgJaA9DCEflJmppbvK/lIaUUpRoFUsyaBZHQLFyGBaLXMB1fZQoaAZoCWgPQwgPRuwTQHH1v5SGlFKUaBVLMmgWR0Cxc1CjUNKAdX2UKGgGaAloD0MIfCb752lA5L+UhpRSlGgVSzJoFkdAsXMyLbYbsHV9lChoBmgJaA9DCO3WMhmOZ+m/lIaUUpRoFUsyaBZHQLFzEzhP0qZ1fZQoaAZoCWgPQwh+HM2Rld/yv5SGlFKUaBVLMmgWR0CxcvPV/c33dX2UKGgGaAloD0MIjC5vDtfq9b+UhpRSlGgVSzJoFkdAsXQ2EZiuuHV9lChoBmgJaA9DCC4DzlKynNW/lIaUUpRoFUsyaBZHQLF0F6yjYZl1fZQoaAZoCWgPQwgq4Qm9/iT0v5SGlFKUaBVLMmgWR0Cxc/izLOiWdX2UKGgGaAloD0MIjsni/iOT87+UhpRSlGgVSzJoFkdAsXPZMyrPt3V9lChoBmgJaA9DCEcE4+DSMeq/lIaUUpRoFUsyaBZHQLF1Dk9lmOF1fZQoaAZoCWgPQwhN9WT+0bf0v5SGlFKUaBVLMmgWR0CxdO/FaSs9dX2UKGgGaAloD0MIvth78UX78L+UhpRSlGgVSzJoFkdAsXTQq8UVSHV9lChoBmgJaA9DCN3PKcjPxvG/lIaUUpRoFUsyaBZHQLF0sSNOuaF1fZQoaAZoCWgPQwja4a/JGvXyv5SGlFKUaBVLMmgWR0Cxdb8Sf16FdX2UKGgGaAloD0MIrW2Kx0V18b+UhpRSlGgVSzJoFkdAsXWgRVZLZnV9lChoBmgJaA9DCLmnqzsW2+W/lIaUUpRoFUsyaBZHQLF1gOinHed1fZQoaAZoCWgPQwijk6XW+43wv5SGlFKUaBVLMmgWR0CxdWEfs/pudX2UKGgGaAloD0MI1AyponiV7b+UhpRSlGgVSzJoFkdAsXZC2DxsmHV9lChoBmgJaA9DCDQSoRFsXO2/lIaUUpRoFUsyaBZHQLF2JAdXDFZ1fZQoaAZoCWgPQwgraFpiZTTdv5SGlFKUaBVLMmgWR0CxdgSZBsyjdX2UKGgGaAloD0MIbTmX4qqy3r+UhpRSlGgVSzJoFkdAsXXlSDRMOHV9lChoBmgJaA9DCA9FgT6Rp+y/lIaUUpRoFUsyaBZHQLF2wzkZJkJ1fZQoaAZoCWgPQwiTqBd8mpPNv5SGlFKUaBVLMmgWR0CxdqRjz7MxdX2UKGgGaAloD0MIpIgMq3gj2b+UhpRSlGgVSzJoFkdAsXaE6xPfsXV9lChoBmgJaA9DCDc2O1J95++/lIaUUpRoFUsyaBZHQLF2ZRqXWvt1fZQoaAZoCWgPQwibOo+K/zviv5SGlFKUaBVLMmgWR0Cxd0NU4rBkdX2UKGgGaAloD0MIOpD11Oor57+UhpRSlGgVSzJoFkdAsXckhOgxrXV9lChoBmgJaA9DCEbsE0AxMuq/lIaUUpRoFUsyaBZHQLF3BRaX8fp1fZQoaAZoCWgPQwiAgosVNZjpv5SGlFKUaBVLMmgWR0CxduU0WM0hdX2UKGgGaAloD0MILIGU2LU97r+UhpRSlGgVSzJoFkdAsXfXikwevXV9lChoBmgJaA9DCOLMr+YAAfG/lIaUUpRoFUsyaBZHQLF3uLq2SdR1fZQoaAZoCWgPQwjF4jeFlYrvv5SGlFKUaBVLMmgWR0Cxd5lZxJd0dX2UKGgGaAloD0MIrb8lAP+U9b+UhpRSlGgVSzJoFkdAsXd5hb4agnV9lChoBmgJaA9DCA6D+StkLvG/lIaUUpRoFUsyaBZHQLF4VcFQl8h1fZQoaAZoCWgPQwjm54am7HTnv5SGlFKUaBVLMmgWR0CxeDcdDIBBdX2UKGgGaAloD0MIfotOllrv37+UhpRSlGgVSzJoFkdAsXgX80k4WHV9lChoBmgJaA9DCNDtJY3ROuK/lIaUUpRoFUsyaBZHQLF3+GGmDUV1fZQoaAZoCWgPQwgU56ij4+rmv5SGlFKUaBVLMmgWR0CxeN5dKNADdX2UKGgGaAloD0MITRB1H4BU7b+UhpRSlGgVSzJoFkdAsXi/gqEvkHV9lChoBmgJaA9DCHGrIAa6tvS/lIaUUpRoFUsyaBZHQLF4oA6uGK11fZQoaAZoCWgPQwgQBp57D9fxv5SGlFKUaBVLMmgWR0CxeIBLPD51dX2UKGgGaAloD0MIa9JtiVxw2L+UhpRSlGgVSzJoFkdAsXlhgMMI/3V9lChoBmgJaA9DCEsBaf8DLO6/lIaUUpRoFUsyaBZHQLF5QsBhhH91fZQoaAZoCWgPQwjshm2LMpvpv5SGlFKUaBVLMmgWR0CxeSM94eLfdX2UKGgGaAloD0MIZ3+g3Lbv7L+UhpRSlGgVSzJoFkdAsXkDbVSXMXV9lChoBmgJaA9DCOutga0SLPC/lIaUUpRoFUsyaBZHQLF54gflp491fZQoaAZoCWgPQwiCyCJNvIP0v5SGlFKUaBVLMmgWR0CxecMlPacqdX2UKGgGaAloD0MIar3faMeN8L+UhpRSlGgVSzJoFkdAsXmjtShrWXV9lChoBmgJaA9DCBnlmZfD7s2/lIaUUpRoFUsyaBZHQLF5g/VAiV11fZQoaAZoCWgPQwiFz9bBwZ7wv5SGlFKUaBVLMmgWR0CxemZU5uIidX2UKGgGaAloD0MIJA7ZQLpY8b+UhpRSlGgVSzJoFkdAsXpHnMdLhHV9lChoBmgJaA9DCDP5Zpsb09y/lIaUUpRoFUsyaBZHQLF6KD8tPHl1fZQoaAZoCWgPQwhE96xrtJzkv5SGlFKUaBVLMmgWR0Cxegh6a9bpdX2UKGgGaAloD0MIFcRA176A2r+UhpRSlGgVSzJoFkdAsXrqBlMAWHV9lChoBmgJaA9DCPKZ7J+nAdy/lIaUUpRoFUsyaBZHQLF6yzZpSJl1fZQoaAZoCWgPQwhfQC/cuTDkv5SGlFKUaBVLMmgWR0Cxequ9FnZkdX2UKGgGaAloD0MITkF+NnLd07+UhpRSlGgVSzJoFkdAsXqL+ERJ3HV9lChoBmgJaA9DCGqIKvwZ3sy/lIaUUpRoFUsyaBZHQLF7dbNKRMh1fZQoaAZoCWgPQwiJX7GGi5zwv5SGlFKUaBVLMmgWR0Cxe1baM72ddX2UKGgGaAloD0MImaCGb2Fd4L+UhpRSlGgVSzJoFkdAsXs3iS7oS3V9lChoBmgJaA9DCBaGyOnr+eu/lIaUUpRoFUsyaBZHQLF7F7Jnxrl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8693940508179366, "std_reward": 0.22424276671316734, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T18:22:46.447195"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f88741208e7d334c2f88878682da88becb68d8e4a2027a385ff18bf6dc77a434
|
3 |
size 3212
|