Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.02 +/- 0.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b63e1077e284f68815963c3a9be2278a27df82f70e398cf7e07d66c28728eee7
|
3 |
+
size 108112
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-0.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d1ec83a60>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5d1ec80ec0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1400000,
|
45 |
+
"_total_timesteps": 1400000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679898087197475770,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA24uuvsbmpb4J54y/vvv4vhBsZj1+qAq/X1UPPGF3tj+XmKO/WV0fvynj0z/uBcQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]]",
|
60 |
+
"desired_goal": "[[-0.34091076 -0.3240263 -1.1008006 ]\n [-0.48629564 0.0562554 -0.5416335 ]\n [ 0.00874838 1.4255182 -1.2780942 ]\n [-0.6225181 1.6553699 0.38285774]]",
|
61 |
+
"observation": "[[ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGapSPRDj7r0isj0+d5GJPUf5+D3qKWs9UWp3vcJk/j20ogk+ec15PZOh+z3GNx4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.05143175 -0.11664402 0.18524984]\n [ 0.06717198 0.12156921 0.05741302]\n [-0.06040413 0.12421562 0.13440973]\n [ 0.06098697 0.12286677 0.15450963]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiCtn74wWB8CUhpRSlIwBbJRLMowBdJRHQLB8l5VwPy11fZQoaAZoCWgPQwj/QLlt30MDwJSGlFKUaBVLMmgWR0CwfGx9kSVXdX2UKGgGaAloD0MIQPflzHaF+L+UhpRSlGgVSzJoFkdAsHxBKSPluHV9lChoBmgJaA9DCHQK8rOR6w3AlIaUUpRoFUsyaBZHQLB8FoV2zOZ1fZQoaAZoCWgPQwifIoeIm5P+v5SGlFKUaBVLMmgWR0CwfV5MlC1JdX2UKGgGaAloD0MIZ55cUyAzAsCUhpRSlGgVSzJoFkdAsH0zeBQN1HV9lChoBmgJaA9DCOSECaNZWQPAlIaUUpRoFUsyaBZHQLB9CHDJlrd1fZQoaAZoCWgPQwgNG2X9ZsIDwJSGlFKUaBVLMmgWR0CwfN4FaB7NdX2UKGgGaAloD0MIkLxzKEOV+7+UhpRSlGgVSzJoFkdAsH4nzxwyZnV9lChoBmgJaA9DCOLnvwev3QTAlIaUUpRoFUsyaBZHQLB9/NKRMex1fZQoaAZoCWgPQwiOzY5U37kGwJSGlFKUaBVLMmgWR0CwfdHXEqDsdX2UKGgGaAloD0MIb7vQXKeR+7+UhpRSlGgVSzJoFkdAsH2ngQ6IWXV9lChoBmgJaA9DCIMY6NoXcAzAlIaUUpRoFUsyaBZHQLB+6gAZKnN1fZQoaAZoCWgPQwhG0JhJ1EsHwJSGlFKUaBVLMmgWR0Cwfr8guAZsdX2UKGgGaAloD0MIVvSHZp68DcCUhpRSlGgVSzJoFkdAsH6T2AXl83V9lChoBmgJaA9DCCapTDEHQQjAlIaUUpRoFUsyaBZHQLB+aUFB6a91fZQoaAZoCWgPQwhKfy+FBy0EwJSGlFKUaBVLMmgWR0Cwf7A9RrJsdX2UKGgGaAloD0MIhqxu9ZzUAMCUhpRSlGgVSzJoFkdAsH+FXT3IuHV9lChoBmgJaA9DCA7Xag97Yfu/lIaUUpRoFUsyaBZHQLB/Wg0CRwJ1fZQoaAZoCWgPQwhtNlZintX5v5SGlFKUaBVLMmgWR0Cwfy+RxLkCdX2UKGgGaAloD0MItWytLxLaCMCUhpRSlGgVSzJoFkdAsIBZXr+o+HV9lChoBmgJaA9DCOm4GtmVlgnAlIaUUpRoFUsyaBZHQLCALiM5wOx1fZQoaAZoCWgPQwhKfO4E+2/8v5SGlFKUaBVLMmgWR0CwgAKHbh3rdX2UKGgGaAloD0MIMq64OCpXAMCUhpRSlGgVSzJoFkdAsH/XpW3jMnV9lChoBmgJaA9DCBubHam+MwjAlIaUUpRoFUsyaBZHQLCA0rj5sTF1fZQoaAZoCWgPQwiTGW8rvfb+v5SGlFKUaBVLMmgWR0CwgKdjbzshdX2UKGgGaAloD0MIHjUmxFyS/b+UhpRSlGgVSzJoFkdAsIB7xFy7w3V9lChoBmgJaA9DCJ/leXB3VgDAlIaUUpRoFUsyaBZHQLCAUN7jT8Z1fZQoaAZoCWgPQwhUpwNZT00BwJSGlFKUaBVLMmgWR0CwgUoagmJFdX2UKGgGaAloD0MI9YO6SKGs9r+UhpRSlGgVSzJoFkdAsIEe/Efkm3V9lChoBmgJaA9DCPiJA+j3ff6/lIaUUpRoFUsyaBZHQLCA81gpjMF1fZQoaAZoCWgPQwhkH2RZMNECwJSGlFKUaBVLMmgWR0CwgMhoVVPvdX2UKGgGaAloD0MIl1XYDHDhBMCUhpRSlGgVSzJoFkdAsIHALYwqRXV9lChoBmgJaA9DCKDgYkUNpgfAlIaUUpRoFUsyaBZHQLCBlOSGJvZ1fZQoaAZoCWgPQwhNu5hmuncGwJSGlFKUaBVLMmgWR0CwgWlId2gWdX2UKGgGaAloD0MIPrK5ap7jCMCUhpRSlGgVSzJoFkdAsIE+YF7laXV9lChoBmgJaA9DCHqM8szLgQnAlIaUUpRoFUsyaBZHQLCCNtxdY4h1fZQoaAZoCWgPQwjohqbs9EMAwJSGlFKUaBVLMmgWR0CwgguueSSvdX2UKGgGaAloD0MIU69bBMYKEMCUhpRSlGgVSzJoFkdAsIHgJ6Y3N3V9lChoBmgJaA9DCJXXSuguaQvAlIaUUpRoFUsyaBZHQLCBtT6SDAd1fZQoaAZoCWgPQwiq04Gsp3YFwJSGlFKUaBVLMmgWR0Cwgq3dweeWdX2UKGgGaAloD0MIaLEUyVeCA8CUhpRSlGgVSzJoFkdAsIKCkoF3ZHV9lChoBmgJaA9DCLdDw2LUtfy/lIaUUpRoFUsyaBZHQLCCVvKEFnt1fZQoaAZoCWgPQwjpSZnU0OYHwJSGlFKUaBVLMmgWR0CwgiwIIF/ydX2UKGgGaAloD0MIglZgyOo2AMCUhpRSlGgVSzJoFkdAsIMqofjjrHV9lChoBmgJaA9DCM5SspyEUgbAlIaUUpRoFUsyaBZHQLCC/225QP91fZQoaAZoCWgPQwjoobYNo6AAwJSGlFKUaBVLMmgWR0CwgtPmHP/rdX2UKGgGaAloD0MI8Nx7uOR4+7+UhpRSlGgVSzJoFkdAsIKpFb3XZ3V9lChoBmgJaA9DCI6u0t119vi/lIaUUpRoFUsyaBZHQLCDo35eqrB1fZQoaAZoCWgPQwgGED6UaKkLwJSGlFKUaBVLMmgWR0Cwg3gkX1rZdX2UKGgGaAloD0MI9DP1ukVACMCUhpRSlGgVSzJoFkdAsINMgKWszXV9lChoBmgJaA9DCH2UEReARgHAlIaUUpRoFUsyaBZHQLCDIaQmu1Z1fZQoaAZoCWgPQwi1xqATQscCwJSGlFKUaBVLMmgWR0CwhBq11GLDdX2UKGgGaAloD0MIDk+vlGUICMCUhpRSlGgVSzJoFkdAsIPvVRUFS3V9lChoBmgJaA9DCLbaw14oIADAlIaUUpRoFUsyaBZHQLCDw9IPK+11fZQoaAZoCWgPQwinrnyW58ENwJSGlFKUaBVLMmgWR0Cwg5jkMkQgdX2UKGgGaAloD0MIYLAbti1qA8CUhpRSlGgVSzJoFkdAsISMPDpC8nV9lChoBmgJaA9DCPD6zFmfEgjAlIaUUpRoFUsyaBZHQLCEYOIZZSx1fZQoaAZoCWgPQwibdjHNdE8PwJSGlFKUaBVLMmgWR0CwhDU1EVnFdX2UKGgGaAloD0MIJSNnYU/bCcCUhpRSlGgVSzJoFkdAsIQKWjXWfHV9lChoBmgJaA9DCJvj3Cbca/+/lIaUUpRoFUsyaBZHQLCFBRIBikR1fZQoaAZoCWgPQwiTj90FSgoNwJSGlFKUaBVLMmgWR0CwhNneSB9UdX2UKGgGaAloD0MIVtY2xeNiAsCUhpRSlGgVSzJoFkdAsISuNo8IRnV9lChoBmgJaA9DCOId4EkLl/6/lIaUUpRoFUsyaBZHQLCEg0TURWd1fZQoaAZoCWgPQwg3GOqwwu0CwJSGlFKUaBVLMmgWR0CwhXkb961LdX2UKGgGaAloD0MIAkaXN4frBcCUhpRSlGgVSzJoFkdAsIVN7mdRSHV9lChoBmgJaA9DCM0d/S/XwgvAlIaUUpRoFUsyaBZHQLCFIkwvg3t1fZQoaAZoCWgPQwiB6EmZ1HADwJSGlFKUaBVLMmgWR0CwhPeJtSAIdX2UKGgGaAloD0MISpo/prUp/r+UhpRSlGgVSzJoFkdAsIXxE5Qxe3V9lChoBmgJaA9DCLu04bA0sPq/lIaUUpRoFUsyaBZHQLCFxe5nUUh1fZQoaAZoCWgPQwhdwwyNJwICwJSGlFKUaBVLMmgWR0CwhZpDNQj2dX2UKGgGaAloD0MI2WDhJM0/CMCUhpRSlGgVSzJoFkdAsIVvY5DJEHV9lChoBmgJaA9DCK+0jNR7CgDAlIaUUpRoFUsyaBZHQLCGZgqmTDB1fZQoaAZoCWgPQwgnwRvSqEAFwJSGlFKUaBVLMmgWR0CwhjqwMYuTdX2UKGgGaAloD0MIyjfb3Jh+CsCUhpRSlGgVSzJoFkdAsIYPEk0JnnV9lChoBmgJaA9DCD5BYrt7oAjAlIaUUpRoFUsyaBZHQLCF5Dg62fF1fZQoaAZoCWgPQwhJSKRt/KkLwJSGlFKUaBVLMmgWR0Cwhtm+sYEXdX2UKGgGaAloD0MIZf88DRjkBMCUhpRSlGgVSzJoFkdAsIauamXPaHV9lChoBmgJaA9DCC7L12X4TwLAlIaUUpRoFUsyaBZHQLCGgse4kNZ1fZQoaAZoCWgPQwh4YtaLodz2v5SGlFKUaBVLMmgWR0CwhlfX9R77dX2UKGgGaAloD0MIo5V7gVnh+r+UhpRSlGgVSzJoFkdAsIdPlDF6zHV9lChoBmgJaA9DCBo1XyUfuwTAlIaUUpRoFUsyaBZHQLCHJEUj9n91fZQoaAZoCWgPQwic/YFy254GwJSGlFKUaBVLMmgWR0Cwhvigbp/xdX2UKGgGaAloD0MIMh8Q6EwaAsCUhpRSlGgVSzJoFkdAsIbNw4sEq3V9lChoBmgJaA9DCB2qKck63ALAlIaUUpRoFUsyaBZHQLCHxiKziS91fZQoaAZoCWgPQwgbLQd6qC0CwJSGlFKUaBVLMmgWR0Cwh5q+8Gs4dX2UKGgGaAloD0MIOWHCaFZWDcCUhpRSlGgVSzJoFkdAsIdvGYKIBXV9lChoBmgJaA9DCBwMdVjhlhDAlIaUUpRoFUsyaBZHQLCHRDeTFER1fZQoaAZoCWgPQwjlt+hkqXX3v5SGlFKUaBVLMmgWR0CwiDmIXTEzdX2UKGgGaAloD0MIbt+j/nqlCsCUhpRSlGgVSzJoFkdAsIgOKgqVhXV9lChoBmgJaA9DCL6/QXv1cQzAlIaUUpRoFUsyaBZHQLCH4of0Vah1fZQoaAZoCWgPQwgJMgIqHIH+v5SGlFKUaBVLMmgWR0Cwh7eb3Gn5dX2UKGgGaAloD0MIVft0PGaADcCUhpRSlGgVSzJoFkdAsIi6UB4lhXV9lChoBmgJaA9DCGlU4GQbGADAlIaUUpRoFUsyaBZHQLCIjv6CUX51fZQoaAZoCWgPQwi6FcJqLCEEwJSGlFKUaBVLMmgWR0CwiGNb1RLsdX2UKGgGaAloD0MIEhH+RdCYAMCUhpRSlGgVSzJoFkdAsIg4g7o0RHV9lChoBmgJaA9DCJXwhF5/sgPAlIaUUpRoFUsyaBZHQLCJM0pmVZ91fZQoaAZoCWgPQwg5ChAFM2b8v5SGlFKUaBVLMmgWR0CwiQf4dp7DdX2UKGgGaAloD0MIYroQqz8iB8CUhpRSlGgVSzJoFkdAsIjcWl/H53V9lChoBmgJaA9DCEm6ZvLNNgTAlIaUUpRoFUsyaBZHQLCIsa6z3RJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 70000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215d24f4de2e25db531be555b80170bb944e1544baa4902ec559a2d34214c466
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a493a8481f28ad5be8a5da23eb57fd49f17515c76c1643c195e7bf943636bf4
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f52f409f700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f52f409dec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679854890651251942, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAucnjPjxWLL1oRQ4/ucnjPjxWLL1oRQ4/ucnjPjxWLL1oRQ4/ucnjPjxWLL1oRQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEwkIv9CiWz8elnk/uWa+P692NL974v+9MhSAvnq+pD+tZLy/4pJkv5uKTT6oTnG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC5yeM+PFYsvWhFDj/XWxc7EfQEvI+MMju5yeM+PFYsvWhFDj/XWxc7EfQEvI+MMju5yeM+PFYsvWhFDj/XWxc7EfQEvI+MMju5yeM+PFYsvWhFDj/XWxc7EfQEvI+MMjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4448984 -0.04207443 0.55574656]\n [ 0.4448984 -0.04207443 0.55574656]\n [ 0.4448984 -0.04207443 0.55574656]\n [ 0.4448984 -0.04207443 0.55574656]]", "desired_goal": "[[-0.53138846 0.8579531 0.97494686]\n [ 1.4875098 -0.70493597 -0.1249437 ]\n [-0.25015408 1.2870629 -1.4718224 ]\n [-0.89286625 0.20072405 -0.94260645]]", "observation": "[[ 0.4448984 -0.04207443 0.55574656 0.00230955 -0.00811483 0.00272444]\n [ 0.4448984 -0.04207443 0.55574656 0.00230955 -0.00811483 0.00272444]\n [ 0.4448984 -0.04207443 0.55574656 0.00230955 -0.00811483 0.00272444]\n [ 0.4448984 -0.04207443 0.55574656 0.00230955 -0.00811483 0.00272444]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVtCYPcAaF76I5NA9eqQovan+1b2nZG0+raXOvS4OFj5BxwM+0L2AvadSNT3zcEM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07461612 -0.14756298 0.10199839]\n [-0.04117248 -0.10448963 0.23182927]\n [-0.10090194 0.14653847 0.12868978]\n [-0.06286204 0.04426828 0.19086055]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY7SOqiYI/7+UhpRSlIwBbJRLMowBdJRHQKnCboNd7fJ1fZQoaAZoCWgPQwjtgVZgyKr3v5SGlFKUaBVLMmgWR0Cpwi+tbLU1dX2UKGgGaAloD0MIa0lHOZjNAsCUhpRSlGgVSzJoFkdAqcHtzhgmZ3V9lChoBmgJaA9DCNWXpZ2aywfAlIaUUpRoFUsyaBZHQKnBrzMibDx1fZQoaAZoCWgPQwgKL8GpD2QQwJSGlFKUaBVLMmgWR0Cpw5mCiAUddX2UKGgGaAloD0MIHm/yW3Qy+L+UhpRSlGgVSzJoFkdAqcNZ3JPqLXV9lChoBmgJaA9DCFj/5zBfHgDAlIaUUpRoFUsyaBZHQKnDF2X9itt1fZQoaAZoCWgPQwiveysSE3QCwJSGlFKUaBVLMmgWR0CpwtdpRGc4dX2UKGgGaAloD0MILsvXZfhvDcCUhpRSlGgVSzJoFkdAqcTCDEm6XnV9lChoBmgJaA9DCInTSba63APAlIaUUpRoFUsyaBZHQKnEgkvboKV1fZQoaAZoCWgPQwgYCW05l+ICwJSGlFKUaBVLMmgWR0CpxD/Vy3kQdX2UKGgGaAloD0MIPIVcqWdBB8CUhpRSlGgVSzJoFkdAqcP/4EfT1HV9lChoBmgJaA9DCNttF5rrdBDAlIaUUpRoFUsyaBZHQKnF6N3GGVR1fZQoaAZoCWgPQwiLw5lfzcEGwJSGlFKUaBVLMmgWR0CpxalIuoP1dX2UKGgGaAloD0MIxjNo6J9ABcCUhpRSlGgVSzJoFkdAqcVm3+dbxHV9lChoBmgJaA9DCAFPWrisogPAlIaUUpRoFUsyaBZHQKnFJsWweNl1fZQoaAZoCWgPQwifBDbn4NkGwJSGlFKUaBVLMmgWR0Cpxw57HAARdX2UKGgGaAloD0MI9dcrLLgfB8CUhpRSlGgVSzJoFkdAqcbO8PFvRHV9lChoBmgJaA9DCED8/PfgNQzAlIaUUpRoFUsyaBZHQKnGjHeaa1F1fZQoaAZoCWgPQwhffxKfO8H+v5SGlFKUaBVLMmgWR0Cpxkwzch1UdX2UKGgGaAloD0MI6lkQyvt4+r+UhpRSlGgVSzJoFkdAqcg8kWykbnV9lChoBmgJaA9DCLMngc05eBDAlIaUUpRoFUsyaBZHQKnH/OzposZ1fZQoaAZoCWgPQwjxf0dUqO71v5SGlFKUaBVLMmgWR0Cpx7pd8iOedX2UKGgGaAloD0MI++WTFcMVCMCUhpRSlGgVSzJoFkdAqcd6T2WY4XV9lChoBmgJaA9DCKzFpwAY7wfAlIaUUpRoFUsyaBZHQKnJW1ZTyax1fZQoaAZoCWgPQwi5qYHmcw4FwJSGlFKUaBVLMmgWR0CpyRuoHcDbdX2UKGgGaAloD0MI4xk09E+w9r+UhpRSlGgVSzJoFkdAqcjZL9MsYnV9lChoBmgJaA9DCG6mQjwSDwvAlIaUUpRoFUsyaBZHQKnImRDkU9J1fZQoaAZoCWgPQwhDrtSzINQNwJSGlFKUaBVLMmgWR0CpyoAgow23dX2UKGgGaAloD0MI2jhiLT6F97+UhpRSlGgVSzJoFkdAqcpAjQiRn3V9lChoBmgJaA9DCLpKd9fZUP6/lIaUUpRoFUsyaBZHQKnJ/fqHGjt1fZQoaAZoCWgPQwhLrfcb7Xj8v5SGlFKUaBVLMmgWR0Cpyb4eDFqBdX2UKGgGaAloD0MIHtydtdsOBMCUhpRSlGgVSzJoFkdAqcuZsKsuF3V9lChoBmgJaA9DCLEVNC2x8hXAlIaUUpRoFUsyaBZHQKnLWgdwNsp1fZQoaAZoCWgPQwg/G7luSpkAwJSGlFKUaBVLMmgWR0CpyxeZPVNIdX2UKGgGaAloD0MID9O+ub86BsCUhpRSlGgVSzJoFkdAqcrXovBacXV9lChoBmgJaA9DCNL7xteeuQXAlIaUUpRoFUsyaBZHQKnMu6unuRd1fZQoaAZoCWgPQwg0SMFTyDUCwJSGlFKUaBVLMmgWR0CpzHwkX1rZdX2UKGgGaAloD0MIUfUrnQ9PBcCUhpRSlGgVSzJoFkdAqcw5vm5lOHV9lChoBmgJaA9DCFVNEHUfgOy/lIaUUpRoFUsyaBZHQKnL+cJ+lTF1fZQoaAZoCWgPQwiAR1Sobu71v5SGlFKUaBVLMmgWR0CpzdXLvCuVdX2UKGgGaAloD0MI3IKluoDXC8CUhpRSlGgVSzJoFkdAqc2WHSF493V9lChoBmgJaA9DCLfsEP+wRQfAlIaUUpRoFUsyaBZHQKnNU6vq1PZ1fZQoaAZoCWgPQwjmriXkg54EwJSGlFKUaBVLMmgWR0CpzROZLIxQdX2UKGgGaAloD0MIJqlMMQcxFMCUhpRSlGgVSzJoFkdAqc77VlPJrHV9lChoBmgJaA9DCOJzJ9h/vQfAlIaUUpRoFUsyaBZHQKnOu6GQCCB1fZQoaAZoCWgPQwi6ERYVcToQwJSGlFKUaBVLMmgWR0Cpznk6T4cndX2UKGgGaAloD0MIAAFr1a7J/L+UhpRSlGgVSzJoFkdAqc45RVIZqHV9lChoBmgJaA9DCKfOo+L/bgXAlIaUUpRoFUsyaBZHQKnQGm65Gz91fZQoaAZoCWgPQwhDVyJQ/UP0v5SGlFKUaBVLMmgWR0Cpz9q/ub7TdX2UKGgGaAloD0MISMSUSKK3EMCUhpRSlGgVSzJoFkdAqc+YVh1DB3V9lChoBmgJaA9DCEGchxOYjvi/lIaUUpRoFUsyaBZHQKnPWFAVwgl1fZQoaAZoCWgPQwjiAzv+CyQKwJSGlFKUaBVLMmgWR0Cp0Y7hWHUMdX2UKGgGaAloD0MI3BDjNa8q8b+UhpRSlGgVSzJoFkdAqdFQAXEZSHV9lChoBmgJaA9DCOgyNQneEArAlIaUUpRoFUsyaBZHQKnRDouf29N1fZQoaAZoCWgPQwhaDYl7LF0MwJSGlFKUaBVLMmgWR0Cp0M9joZAIdX2UKGgGaAloD0MIzGJi83Et8L+UhpRSlGgVSzJoFkdAqdNofSx7iXV9lChoBmgJaA9DCO7tluSAHQjAlIaUUpRoFUsyaBZHQKnTKXD3ueB1fZQoaAZoCWgPQwiZuiu7YDAHwJSGlFKUaBVLMmgWR0Cp0ueoDPnkdX2UKGgGaAloD0MIbQA2IEIMEcCUhpRSlGgVSzJoFkdAqdKoiLVFyHV9lChoBmgJaA9DCBFWYwlrY/G/lIaUUpRoFUsyaBZHQKnVVsrNGEx1fZQoaAZoCWgPQwgnol9bPx0FwJSGlFKUaBVLMmgWR0Cp1RgFxGUfdX2UKGgGaAloD0MI1QYnol8rE8CUhpRSlGgVSzJoFkdAqdTWrn1WbXV9lChoBmgJaA9DCPnzbcFSXQPAlIaUUpRoFUsyaBZHQKnUl6MR6GB1fZQoaAZoCWgPQwgh5/1/nDDxv5SGlFKUaBVLMmgWR0Cp100ngHeKdX2UKGgGaAloD0MIoFIlyt4S/7+UhpRSlGgVSzJoFkdAqdcOXPZ7HHV9lChoBmgJaA9DCMl1U8prpfa/lIaUUpRoFUsyaBZHQKnWzO32EkB1fZQoaAZoCWgPQwi+2ebG9AQGwJSGlFKUaBVLMmgWR0Cp1o29tdiVdX2UKGgGaAloD0MIjZYDPdS2+7+UhpRSlGgVSzJoFkdAqdlGCkGiYnV9lChoBmgJaA9DCDgteNFXcArAlIaUUpRoFUsyaBZHQKnZB18LKFJ1fZQoaAZoCWgPQwhgcw6eCc30v5SGlFKUaBVLMmgWR0Cp2MXbEgnudX2UKGgGaAloD0MIByXMtP0r8b+UhpRSlGgVSzJoFkdAqdiHA9FF2HV9lChoBmgJaA9DCEOOrWcIxxXAlIaUUpRoFUsyaBZHQKnbVzlLeyl1fZQoaAZoCWgPQwh6ck2BzG4JwJSGlFKUaBVLMmgWR0Cp2xiQDFIedX2UKGgGaAloD0MI6Po+HCRECMCUhpRSlGgVSzJoFkdAqdrXPqs2enV9lChoBmgJaA9DCOm5ha5EQAbAlIaUUpRoFUsyaBZHQKnamEaESM91fZQoaAZoCWgPQwg8FAX6RN4FwJSGlFKUaBVLMmgWR0Cp3OtA9mpVdX2UKGgGaAloD0MIvJNPj21Z+b+UhpRSlGgVSzJoFkdAqdyrq2SdOXV9lChoBmgJaA9DCKzGEtbG2Oq/lIaUUpRoFUsyaBZHQKncaTTOPeZ1fZQoaAZoCWgPQwhNEHUfgFQBwJSGlFKUaBVLMmgWR0Cp3Cj6eoUBdX2UKGgGaAloD0MIWr3D7dCwAcCUhpRSlGgVSzJoFkdAqd4NB+nZTXV9lChoBmgJaA9DCFdgyOpWD/S/lIaUUpRoFUsyaBZHQKndzWy1NQF1fZQoaAZoCWgPQwjoFU890mAHwJSGlFKUaBVLMmgWR0Cp3YsM7U5NdX2UKGgGaAloD0MIFHr9SXxOA8CUhpRSlGgVSzJoFkdAqd1LHuJDV3V9lChoBmgJaA9DCNlD+1jB7+q/lIaUUpRoFUsyaBZHQKnfOuhbnox1fZQoaAZoCWgPQwhXBP9byY4OwJSGlFKUaBVLMmgWR0Cp3vsgdOqOdX2UKGgGaAloD0MIveR/8ndPBsCUhpRSlGgVSzJoFkdAqd64tapxWHV9lChoBmgJaA9DCGrC9pMxPgbAlIaUUpRoFUsyaBZHQKneeJemelN1fZQoaAZoCWgPQwjh0jHnGZsIwJSGlFKUaBVLMmgWR0Cp4FmwiaAndX2UKGgGaAloD0MIxTpVvmfk/L+UhpRSlGgVSzJoFkdAqeAaUiY9gXV9lChoBmgJaA9DCLx1/u2yX/+/lIaUUpRoFUsyaBZHQKnf1+3pfQd1fZQoaAZoCWgPQwg1RBX+DO8OwJSGlFKUaBVLMmgWR0Cp35fYSQHSdX2UKGgGaAloD0MIgPPixFd7/L+UhpRSlGgVSzJoFkdAqeF/xhDw6XV9lChoBmgJaA9DCMZQTrSrkAjAlIaUUpRoFUsyaBZHQKnhQCGvfTF1fZQoaAZoCWgPQwjYZI16iCYRwJSGlFKUaBVLMmgWR0Cp4P3C9AX3dX2UKGgGaAloD0MI9DehEAHH9L+UhpRSlGgVSzJoFkdAqeC9fb9IgHV9lChoBmgJaA9DCMdnsn+e1hHAlIaUUpRoFUsyaBZHQKniu7r9l3B1fZQoaAZoCWgPQwg8hVypZ8H4v5SGlFKUaBVLMmgWR0Cp4nxyn1nNdX2UKGgGaAloD0MIxmzJqghHEsCUhpRSlGgVSzJoFkdAqeI6VfNRnHV9lChoBmgJaA9DCPYKC+4HPO2/lIaUUpRoFUsyaBZHQKnh+mP5pJx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d1ec83a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5d1ec80ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1400000, "_total_timesteps": 1400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679898087197475770, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/xaT0Ph8f2rrXMQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA24uuvsbmpb4J54y/vvv4vhBsZj1+qAq/X1UPPGF3tj+XmKO/WV0fvynj0z/uBcQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArrFpPQ+Hx/autcxDj+kHea6sGHvujxSArqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]\n [ 0.4778196 -0.00166414 0.555448 ]]", "desired_goal": "[[-0.34091076 -0.3240263 -1.1008006 ]\n [-0.48629564 0.0562554 -0.5416335 ]\n [ 0.00874838 1.4255182 -1.2780942 ]\n [-0.6225181 1.6553699 0.38285774]]", "observation": "[[ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]\n [ 4.7781959e-01 -1.6641355e-03 5.5544800e-01 -1.7556441e-03\n -1.8263366e-03 -4.9713603e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGapSPRDj7r0isj0+d5GJPUf5+D3qKWs9UWp3vcJk/j20ogk+ec15PZOh+z3GNx4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05143175 -0.11664402 0.18524984]\n [ 0.06717198 0.12156921 0.05741302]\n [-0.06040413 0.12421562 0.13440973]\n [ 0.06098697 0.12286677 0.15450963]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiCtn74wWB8CUhpRSlIwBbJRLMowBdJRHQLB8l5VwPy11fZQoaAZoCWgPQwj/QLlt30MDwJSGlFKUaBVLMmgWR0CwfGx9kSVXdX2UKGgGaAloD0MIQPflzHaF+L+UhpRSlGgVSzJoFkdAsHxBKSPluHV9lChoBmgJaA9DCHQK8rOR6w3AlIaUUpRoFUsyaBZHQLB8FoV2zOZ1fZQoaAZoCWgPQwifIoeIm5P+v5SGlFKUaBVLMmgWR0CwfV5MlC1JdX2UKGgGaAloD0MIZ55cUyAzAsCUhpRSlGgVSzJoFkdAsH0zeBQN1HV9lChoBmgJaA9DCOSECaNZWQPAlIaUUpRoFUsyaBZHQLB9CHDJlrd1fZQoaAZoCWgPQwgNG2X9ZsIDwJSGlFKUaBVLMmgWR0CwfN4FaB7NdX2UKGgGaAloD0MIkLxzKEOV+7+UhpRSlGgVSzJoFkdAsH4nzxwyZnV9lChoBmgJaA9DCOLnvwev3QTAlIaUUpRoFUsyaBZHQLB9/NKRMex1fZQoaAZoCWgPQwiOzY5U37kGwJSGlFKUaBVLMmgWR0CwfdHXEqDsdX2UKGgGaAloD0MIb7vQXKeR+7+UhpRSlGgVSzJoFkdAsH2ngQ6IWXV9lChoBmgJaA9DCIMY6NoXcAzAlIaUUpRoFUsyaBZHQLB+6gAZKnN1fZQoaAZoCWgPQwhG0JhJ1EsHwJSGlFKUaBVLMmgWR0Cwfr8guAZsdX2UKGgGaAloD0MIVvSHZp68DcCUhpRSlGgVSzJoFkdAsH6T2AXl83V9lChoBmgJaA9DCCapTDEHQQjAlIaUUpRoFUsyaBZHQLB+aUFB6a91fZQoaAZoCWgPQwhKfy+FBy0EwJSGlFKUaBVLMmgWR0Cwf7A9RrJsdX2UKGgGaAloD0MIhqxu9ZzUAMCUhpRSlGgVSzJoFkdAsH+FXT3IuHV9lChoBmgJaA9DCA7Xag97Yfu/lIaUUpRoFUsyaBZHQLB/Wg0CRwJ1fZQoaAZoCWgPQwhtNlZintX5v5SGlFKUaBVLMmgWR0Cwfy+RxLkCdX2UKGgGaAloD0MItWytLxLaCMCUhpRSlGgVSzJoFkdAsIBZXr+o+HV9lChoBmgJaA9DCOm4GtmVlgnAlIaUUpRoFUsyaBZHQLCALiM5wOx1fZQoaAZoCWgPQwhKfO4E+2/8v5SGlFKUaBVLMmgWR0CwgAKHbh3rdX2UKGgGaAloD0MIMq64OCpXAMCUhpRSlGgVSzJoFkdAsH/XpW3jMnV9lChoBmgJaA9DCBubHam+MwjAlIaUUpRoFUsyaBZHQLCA0rj5sTF1fZQoaAZoCWgPQwiTGW8rvfb+v5SGlFKUaBVLMmgWR0CwgKdjbzshdX2UKGgGaAloD0MIHjUmxFyS/b+UhpRSlGgVSzJoFkdAsIB7xFy7w3V9lChoBmgJaA9DCJ/leXB3VgDAlIaUUpRoFUsyaBZHQLCAUN7jT8Z1fZQoaAZoCWgPQwhUpwNZT00BwJSGlFKUaBVLMmgWR0CwgUoagmJFdX2UKGgGaAloD0MI9YO6SKGs9r+UhpRSlGgVSzJoFkdAsIEe/Efkm3V9lChoBmgJaA9DCPiJA+j3ff6/lIaUUpRoFUsyaBZHQLCA81gpjMF1fZQoaAZoCWgPQwhkH2RZMNECwJSGlFKUaBVLMmgWR0CwgMhoVVPvdX2UKGgGaAloD0MIl1XYDHDhBMCUhpRSlGgVSzJoFkdAsIHALYwqRXV9lChoBmgJaA9DCKDgYkUNpgfAlIaUUpRoFUsyaBZHQLCBlOSGJvZ1fZQoaAZoCWgPQwhNu5hmuncGwJSGlFKUaBVLMmgWR0CwgWlId2gWdX2UKGgGaAloD0MIPrK5ap7jCMCUhpRSlGgVSzJoFkdAsIE+YF7laXV9lChoBmgJaA9DCHqM8szLgQnAlIaUUpRoFUsyaBZHQLCCNtxdY4h1fZQoaAZoCWgPQwjohqbs9EMAwJSGlFKUaBVLMmgWR0CwgguueSSvdX2UKGgGaAloD0MIU69bBMYKEMCUhpRSlGgVSzJoFkdAsIHgJ6Y3N3V9lChoBmgJaA9DCJXXSuguaQvAlIaUUpRoFUsyaBZHQLCBtT6SDAd1fZQoaAZoCWgPQwiq04Gsp3YFwJSGlFKUaBVLMmgWR0Cwgq3dweeWdX2UKGgGaAloD0MIaLEUyVeCA8CUhpRSlGgVSzJoFkdAsIKCkoF3ZHV9lChoBmgJaA9DCLdDw2LUtfy/lIaUUpRoFUsyaBZHQLCCVvKEFnt1fZQoaAZoCWgPQwjpSZnU0OYHwJSGlFKUaBVLMmgWR0CwgiwIIF/ydX2UKGgGaAloD0MIglZgyOo2AMCUhpRSlGgVSzJoFkdAsIMqofjjrHV9lChoBmgJaA9DCM5SspyEUgbAlIaUUpRoFUsyaBZHQLCC/225QP91fZQoaAZoCWgPQwjoobYNo6AAwJSGlFKUaBVLMmgWR0CwgtPmHP/rdX2UKGgGaAloD0MI8Nx7uOR4+7+UhpRSlGgVSzJoFkdAsIKpFb3XZ3V9lChoBmgJaA9DCI6u0t119vi/lIaUUpRoFUsyaBZHQLCDo35eqrB1fZQoaAZoCWgPQwgGED6UaKkLwJSGlFKUaBVLMmgWR0Cwg3gkX1rZdX2UKGgGaAloD0MI9DP1ukVACMCUhpRSlGgVSzJoFkdAsINMgKWszXV9lChoBmgJaA9DCH2UEReARgHAlIaUUpRoFUsyaBZHQLCDIaQmu1Z1fZQoaAZoCWgPQwi1xqATQscCwJSGlFKUaBVLMmgWR0CwhBq11GLDdX2UKGgGaAloD0MIDk+vlGUICMCUhpRSlGgVSzJoFkdAsIPvVRUFS3V9lChoBmgJaA9DCLbaw14oIADAlIaUUpRoFUsyaBZHQLCDw9IPK+11fZQoaAZoCWgPQwinrnyW58ENwJSGlFKUaBVLMmgWR0Cwg5jkMkQgdX2UKGgGaAloD0MIYLAbti1qA8CUhpRSlGgVSzJoFkdAsISMPDpC8nV9lChoBmgJaA9DCPD6zFmfEgjAlIaUUpRoFUsyaBZHQLCEYOIZZSx1fZQoaAZoCWgPQwibdjHNdE8PwJSGlFKUaBVLMmgWR0CwhDU1EVnFdX2UKGgGaAloD0MIJSNnYU/bCcCUhpRSlGgVSzJoFkdAsIQKWjXWfHV9lChoBmgJaA9DCJvj3Cbca/+/lIaUUpRoFUsyaBZHQLCFBRIBikR1fZQoaAZoCWgPQwiTj90FSgoNwJSGlFKUaBVLMmgWR0CwhNneSB9UdX2UKGgGaAloD0MIVtY2xeNiAsCUhpRSlGgVSzJoFkdAsISuNo8IRnV9lChoBmgJaA9DCOId4EkLl/6/lIaUUpRoFUsyaBZHQLCEg0TURWd1fZQoaAZoCWgPQwg3GOqwwu0CwJSGlFKUaBVLMmgWR0CwhXkb961LdX2UKGgGaAloD0MIAkaXN4frBcCUhpRSlGgVSzJoFkdAsIVN7mdRSHV9lChoBmgJaA9DCM0d/S/XwgvAlIaUUpRoFUsyaBZHQLCFIkwvg3t1fZQoaAZoCWgPQwiB6EmZ1HADwJSGlFKUaBVLMmgWR0CwhPeJtSAIdX2UKGgGaAloD0MISpo/prUp/r+UhpRSlGgVSzJoFkdAsIXxE5Qxe3V9lChoBmgJaA9DCLu04bA0sPq/lIaUUpRoFUsyaBZHQLCFxe5nUUh1fZQoaAZoCWgPQwhdwwyNJwICwJSGlFKUaBVLMmgWR0CwhZpDNQj2dX2UKGgGaAloD0MI2WDhJM0/CMCUhpRSlGgVSzJoFkdAsIVvY5DJEHV9lChoBmgJaA9DCK+0jNR7CgDAlIaUUpRoFUsyaBZHQLCGZgqmTDB1fZQoaAZoCWgPQwgnwRvSqEAFwJSGlFKUaBVLMmgWR0CwhjqwMYuTdX2UKGgGaAloD0MIyjfb3Jh+CsCUhpRSlGgVSzJoFkdAsIYPEk0JnnV9lChoBmgJaA9DCD5BYrt7oAjAlIaUUpRoFUsyaBZHQLCF5Dg62fF1fZQoaAZoCWgPQwhJSKRt/KkLwJSGlFKUaBVLMmgWR0Cwhtm+sYEXdX2UKGgGaAloD0MIZf88DRjkBMCUhpRSlGgVSzJoFkdAsIauamXPaHV9lChoBmgJaA9DCC7L12X4TwLAlIaUUpRoFUsyaBZHQLCGgse4kNZ1fZQoaAZoCWgPQwh4YtaLodz2v5SGlFKUaBVLMmgWR0CwhlfX9R77dX2UKGgGaAloD0MIo5V7gVnh+r+UhpRSlGgVSzJoFkdAsIdPlDF6zHV9lChoBmgJaA9DCBo1XyUfuwTAlIaUUpRoFUsyaBZHQLCHJEUj9n91fZQoaAZoCWgPQwic/YFy254GwJSGlFKUaBVLMmgWR0Cwhvigbp/xdX2UKGgGaAloD0MIMh8Q6EwaAsCUhpRSlGgVSzJoFkdAsIbNw4sEq3V9lChoBmgJaA9DCB2qKck63ALAlIaUUpRoFUsyaBZHQLCHxiKziS91fZQoaAZoCWgPQwgbLQd6qC0CwJSGlFKUaBVLMmgWR0Cwh5q+8Gs4dX2UKGgGaAloD0MIOWHCaFZWDcCUhpRSlGgVSzJoFkdAsIdvGYKIBXV9lChoBmgJaA9DCBwMdVjhlhDAlIaUUpRoFUsyaBZHQLCHRDeTFER1fZQoaAZoCWgPQwjlt+hkqXX3v5SGlFKUaBVLMmgWR0CwiDmIXTEzdX2UKGgGaAloD0MIbt+j/nqlCsCUhpRSlGgVSzJoFkdAsIgOKgqVhXV9lChoBmgJaA9DCL6/QXv1cQzAlIaUUpRoFUsyaBZHQLCH4of0Vah1fZQoaAZoCWgPQwgJMgIqHIH+v5SGlFKUaBVLMmgWR0Cwh7eb3Gn5dX2UKGgGaAloD0MIVft0PGaADcCUhpRSlGgVSzJoFkdAsIi6UB4lhXV9lChoBmgJaA9DCGlU4GQbGADAlIaUUpRoFUsyaBZHQLCIjv6CUX51fZQoaAZoCWgPQwi6FcJqLCEEwJSGlFKUaBVLMmgWR0CwiGNb1RLsdX2UKGgGaAloD0MIEhH+RdCYAMCUhpRSlGgVSzJoFkdAsIg4g7o0RHV9lChoBmgJaA9DCJXwhF5/sgPAlIaUUpRoFUsyaBZHQLCJM0pmVZ91fZQoaAZoCWgPQwg5ChAFM2b8v5SGlFKUaBVLMmgWR0CwiQf4dp7DdX2UKGgGaAloD0MIYroQqz8iB8CUhpRSlGgVSzJoFkdAsIjcWl/H53V9lChoBmgJaA9DCEm6ZvLNNgTAlIaUUpRoFUsyaBZHQLCIsa6z3RJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.0224450536072256, "std_reward": 0.6278827601495409, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T07:31:59.425050"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a4c411178a4135a1f0200ec754c132281de1d529f6d3f12fff2b6558fe04ec9
|
3 |
size 3212
|