idlebg commited on
Commit
e9027a2
1 Parent(s): 4479d6a

Upload di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md

Browse files
di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ ---
4
+
5
+
6
+
7
+
8
+
9
+
10
+ # Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
11
+
12
+ <!-- Provide a quick summary of what the model is/does. [Optional] -->
13
+ di.FFUSION.ai-tXe-FXAA
14
+ Trained on &#34;121361&#34; images.
15
+
16
+
17
+ Enhance your model&#39;s quality and sharpness using your own pre-trained Unet.
18
+
19
+ The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
20
+
21
+ Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {&#39;conv_dim&#39;: &#39;256&#39;, &#39;conv_alpha&#39;: &#39;256&#39;, &#39;algo&#39;: &#39;loha&#39;}
22
+
23
+ Large size due to Lyco CONV 256
24
+
25
+ This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
26
+
27
+ Note: This is not the text encoder used in the official FFUSION AI model.
28
+
29
+
30
+
31
+
32
+ # Table of Contents
33
+
34
+ - [Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS](#model-card-for--model_id-)
35
+ - [Table of Contents](#table-of-contents)
36
+ - [Table of Contents](#table-of-contents-1)
37
+ - [Model Details](#model-details)
38
+ - [Model Description](#model-description)
39
+ - [Uses](#uses)
40
+ - [Direct Use](#direct-use)
41
+ - [Downstream Use [Optional]](#downstream-use-optional)
42
+ - [Out-of-Scope Use](#out-of-scope-use)
43
+ - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
44
+ - [Recommendations](#recommendations)
45
+ - [Training Details](#training-details)
46
+ - [Training Data](#training-data)
47
+ - [Training Procedure](#training-procedure)
48
+ - [Preprocessing](#preprocessing)
49
+ - [Speeds, Sizes, Times](#speeds-sizes-times)
50
+ - [Evaluation](#evaluation)
51
+ - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
52
+ - [Testing Data](#testing-data)
53
+ - [Factors](#factors)
54
+ - [Metrics](#metrics)
55
+ - [Results](#results)
56
+ - [Model Examination](#model-examination)
57
+ - [Environmental Impact](#environmental-impact)
58
+ - [Technical Specifications [optional]](#technical-specifications-optional)
59
+ - [Model Architecture and Objective](#model-architecture-and-objective)
60
+ - [Compute Infrastructure](#compute-infrastructure)
61
+ - [Hardware](#hardware)
62
+ - [Software](#software)
63
+ - [Citation](#citation)
64
+ - [Glossary [optional]](#glossary-optional)
65
+ - [More Information [optional]](#more-information-optional)
66
+ - [Model Card Authors [optional]](#model-card-authors-optional)
67
+ - [Model Card Contact](#model-card-contact)
68
+ - [How to Get Started with the Model](#how-to-get-started-with-the-model)
69
+
70
+
71
+ # Model Details
72
+
73
+ ## Model Description
74
+
75
+ <!-- Provide a longer summary of what this model is/does. -->
76
+ di.FFUSION.ai-tXe-FXAA
77
+ Trained on &#34;121361&#34; images.
78
+
79
+
80
+ Enhance your model&#39;s quality and sharpness using your own pre-trained Unet.
81
+
82
+ The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
83
+
84
+ Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {&#39;conv_dim&#39;: &#39;256&#39;, &#39;conv_alpha&#39;: &#39;256&#39;, &#39;algo&#39;: &#39;loha&#39;}
85
+
86
+ Large size due to Lyco CONV 256
87
+
88
+ This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
89
+
90
+ Note: This is not the text encoder used in the official FFUSION AI model.
91
+
92
+ - **Developed by:** F, F, u, s, i, o, n, ., a, i
93
+ - **Shared by [Optional]:** i, d, l, e, , s, t, o, e, v
94
+ - **Model type:** Language model
95
+ - **Language(s) (NLP):** en
96
+ - **License:** creativeml-openrail-m
97
+ - **Parent Model:** More information needed
98
+ - **Resources for more information:** More information needed
99
+
100
+
101
+
102
+ # Uses
103
+
104
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
105
+
106
+ ## Direct Use
107
+
108
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
109
+ <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
110
+
111
+ The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
112
+
113
+ Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {&#39;conv_dim&#39;: &#39;256&#39;, &#39;conv_alpha&#39;: &#39;256&#39;, &#39;algo&#39;: &#39;loha&#39;}
114
+
115
+ Large size due to Lyco CONV 256
116
+
117
+
118
+ ## Downstream Use [Optional]
119
+
120
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
121
+ <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
122
+
123
+
124
+
125
+
126
+ ## Out-of-Scope Use
127
+
128
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
129
+ <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
130
+
131
+
132
+
133
+
134
+ # Bias, Risks, and Limitations
135
+
136
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
137
+
138
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
139
+
140
+
141
+ ## Recommendations
142
+
143
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
144
+
145
+
146
+
147
+
148
+
149
+ # Training Details
150
+
151
+ ## Training Data
152
+
153
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
154
+
155
+ Trained on &#34;121361&#34; images.
156
+
157
+ ss_caption_tag_dropout_rate: &#34;0.0&#34;,
158
+ ss_multires_noise_discount: &#34;0.3&#34;,
159
+ ss_mixed_precision: &#34;bf16&#34;,
160
+ ss_text_encoder_lr: &#34;1e-07&#34;,
161
+ ss_keep_tokens: &#34;3&#34;,
162
+ ss_network_args: &#34;{&#34;conv_dim&#34;: &#34;256&#34;, &#34;conv_alpha&#34;: &#34;256&#34;, &#34;algo&#34;: &#34;loha&#34;}&#34;,
163
+ ss_caption_dropout_rate: &#34;0.02&#34;,
164
+ ss_flip_aug: &#34;False&#34;,
165
+ ss_learning_rate: &#34;2e-07&#34;,
166
+ ss_sd_model_name: &#34;stabilityai/stable-diffusion-2-1-base&#34;,
167
+ ss_max_grad_norm: &#34;1.0&#34;,
168
+ ss_num_epochs: &#34;2&#34;,
169
+ ss_gradient_checkpointing: &#34;False&#34;,
170
+ ss_face_crop_aug_range: &#34;None&#34;,
171
+ ss_epoch: &#34;2&#34;,
172
+ ss_num_train_images: &#34;121361&#34;,
173
+ ss_color_aug: &#34;False&#34;,
174
+ ss_gradient_accumulation_steps: &#34;1&#34;,
175
+ ss_total_batch_size: &#34;100&#34;,
176
+ ss_prior_loss_weight: &#34;1.0&#34;,
177
+ ss_training_comment: &#34;None&#34;,
178
+ ss_network_dim: &#34;768&#34;,
179
+ ss_output_name: &#34;FusionaMEGA1tX&#34;,
180
+ ss_max_bucket_reso: &#34;1024&#34;,
181
+ ss_network_alpha: &#34;768.0&#34;,
182
+ ss_steps: &#34;2444&#34;,
183
+ ss_shuffle_caption: &#34;True&#34;,
184
+ ss_training_finished_at: &#34;1684158038.0763328&#34;,
185
+ ss_min_bucket_reso: &#34;256&#34;,
186
+ ss_noise_offset: &#34;0.09&#34;,
187
+ ss_enable_bucket: &#34;True&#34;,
188
+ ss_batch_size_per_device: &#34;20&#34;,
189
+ ss_max_train_steps: &#34;2444&#34;,
190
+ ss_network_module: &#34;lycoris.kohya&#34;,
191
+
192
+
193
+ ## Training Procedure
194
+
195
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
196
+
197
+ ### Preprocessing
198
+
199
+ &#34;{&#34;buckets&#34;: {&#34;0&#34;: {&#34;resolution&#34;: [192, 256], &#34;count&#34;: 1}, &#34;1&#34;: {&#34;resolution&#34;: [192, 320], &#34;count&#34;: 1}, &#34;2&#34;: {&#34;resolution&#34;: [256, 384], &#34;count&#34;: 1}, &#34;3&#34;: {&#34;resolution&#34;: [256, 512], &#34;count&#34;: 1}, &#34;4&#34;: {&#34;resolution&#34;: [384, 576], &#34;count&#34;: 2}, &#34;5&#34;: {&#34;resolution&#34;: [384, 640], &#34;count&#34;: 2}, &#34;6&#34;: {&#34;resolution&#34;: [384, 704], &#34;count&#34;: 1}, &#34;7&#34;: {&#34;resolution&#34;: [384, 1088], &#34;count&#34;: 15}, &#34;8&#34;: {&#34;resolution&#34;: [448, 448], &#34;count&#34;: 5}, &#34;9&#34;: {&#34;resolution&#34;: [448, 576], &#34;count&#34;: 1}, &#34;10&#34;: {&#34;resolution&#34;: [448, 640], &#34;count&#34;: 1}, &#34;11&#34;: {&#34;resolution&#34;: [448, 768], &#34;count&#34;: 1}, &#34;12&#34;: {&#34;resolution&#34;: [448, 832], &#34;count&#34;: 1}, &#34;13&#34;: {&#34;resolution&#34;: [448, 1088], &#34;count&#34;: 25}, &#34;14&#34;: {&#34;resolution&#34;: [448, 1216], &#34;count&#34;: 1}, &#34;15&#34;: {&#34;resolution&#34;: [512, 640], &#34;count&#34;: 2}, &#34;16&#34;: {&#34;resolution&#34;: [512, 768], &#34;count&#34;: 10}, &#34;17&#34;: {&#34;resolution&#34;: [512, 832], &#34;count&#34;: 3}, &#34;18&#34;: {&#34;resolution&#34;: [512, 896], &#34;count&#34;: 1525}, &#34;19&#34;: {&#34;resolution&#34;: [512, 960], &#34;count&#34;: 2}, &#34;20&#34;: {&#34;resolution&#34;: [512, 1024], &#34;count&#34;: 665}, &#34;21&#34;: {&#34;resolution&#34;: [512, 1088], &#34;count&#34;: 8}, &#34;22&#34;: {&#34;resolution&#34;: [576, 576], &#34;count&#34;: 5}, &#34;23&#34;: {&#34;resolution&#34;: [576, 768], &#34;count&#34;: 1}, &#34;24&#34;: {&#34;resolution&#34;: [576, 832], &#34;count&#34;: 667}, &#34;25&#34;: {&#34;resolution&#34;: [576, 896], &#34;count&#34;: 9601}, &#34;26&#34;: {&#34;resolution&#34;: [576, 960], &#34;count&#34;: 872}, &#34;27&#34;: {&#34;resolution&#34;: [576, 1024], &#34;count&#34;: 17}, &#34;28&#34;: {&#34;resolution&#34;: [640, 640], &#34;count&#34;: 3}, &#34;29&#34;: {&#34;resolution&#34;: [640, 768], &#34;count&#34;: 7}, &#34;30&#34;: {&#34;resolution&#34;: [640, 832], &#34;count&#34;: 608}, &#34;31&#34;: {&#34;resolution&#34;: [640, 896], &#34;count&#34;: 90}, &#34;32&#34;: {&#34;resolution&#34;: [704, 640], &#34;count&#34;: 1}, &#34;33&#34;: {&#34;resolution&#34;: [704, 704], &#34;count&#34;: 11}, &#34;34&#34;: {&#34;resolution&#34;: [704, 768], &#34;count&#34;: 1}, &#34;35&#34;: {&#34;resolution&#34;: [704, 832], &#34;count&#34;: 1}, &#34;36&#34;: {&#34;resolution&#34;: [768, 640], &#34;count&#34;: 225}, &#34;37&#34;: {&#34;resolution&#34;: [768, 704], &#34;count&#34;: 6}, &#34;38&#34;: {&#34;resolution&#34;: [768, 768], &#34;count&#34;: 74442}, &#34;39&#34;: {&#34;resolution&#34;: [832, 576], &#34;count&#34;: 23784}, &#34;40&#34;: {&#34;resolution&#34;: [832, 640], &#34;count&#34;: 554}, &#34;41&#34;: {&#34;resolution&#34;: [896, 512], &#34;count&#34;: 1235}, &#34;42&#34;: {&#34;resolution&#34;: [896, 576], &#34;count&#34;: 50}, &#34;43&#34;: {&#34;resolution&#34;: [896, 640], &#34;count&#34;: 88}, &#34;44&#34;: {&#34;resolution&#34;: [960, 512], &#34;count&#34;: 165}, &#34;45&#34;: {&#34;resolution&#34;: [960, 576], &#34;count&#34;: 5246}, &#34;46&#34;: {&#34;resolution&#34;: [1024, 448], &#34;count&#34;: 5}, &#34;47&#34;: {&#34;resolution&#34;: [1024, 512], &#34;count&#34;: 1187}, &#34;48&#34;: {&#34;resolution&#34;: [1024, 576], &#34;count&#34;: 40}, &#34;49&#34;: {&#34;resolution&#34;: [1088, 384], &#34;count&#34;: 70}, &#34;50&#34;: {&#34;resolution&#34;: [1088, 448], &#34;count&#34;: 36}, &#34;51&#34;: {&#34;resolution&#34;: [1088, 512], &#34;count&#34;: 3}, &#34;52&#34;: {&#34;resolution&#34;: [1216, 448], &#34;count&#34;: 36}, &#34;53&#34;: {&#34;resolution&#34;: [1344, 320], &#34;count&#34;: 29}, &#34;54&#34;: {&#34;resolution&#34;: [1536, 384], &#34;count&#34;: 1}}, &#34;mean_img_ar_error&#34;: 0.01693107810697896}&#34;,
200
+
201
+ ### Speeds, Sizes, Times
202
+
203
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
204
+
205
+ ss_resolution: &#34;(768, 768)&#34;,
206
+ ss_v2: &#34;True&#34;,
207
+ ss_cache_latents: &#34;False&#34;,
208
+ ss_unet_lr: &#34;2e-07&#34;,
209
+ ss_num_reg_images: &#34;0&#34;,
210
+ ss_max_token_length: &#34;225&#34;,
211
+ ss_lr_scheduler: &#34;linear&#34;,
212
+ ss_reg_dataset_dirs: &#34;{}&#34;,
213
+ ss_lr_warmup_steps: &#34;303&#34;,
214
+ ss_num_batches_per_epoch: &#34;1222&#34;,
215
+ ss_lowram: &#34;False&#34;,
216
+ ss_multires_noise_iterations: &#34;None&#34;,
217
+ ss_optimizer: &#34;torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))&#34;,
218
+
219
+ # Evaluation
220
+
221
+ <!-- This section describes the evaluation protocols and provides the results. -->
222
+
223
+ ## Testing Data, Factors & Metrics
224
+
225
+ ### Testing Data
226
+
227
+ <!-- This should link to a Data Card if possible. -->
228
+
229
+ More information needed
230
+
231
+
232
+ ### Factors
233
+
234
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
235
+
236
+ More information needed
237
+
238
+ ### Metrics
239
+
240
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
241
+
242
+ More information needed
243
+
244
+ ## Results
245
+
246
+ More information needed
247
+
248
+ # Model Examination
249
+
250
+ More information needed
251
+
252
+ # Environmental Impact
253
+
254
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
255
+
256
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
257
+
258
+ - **Hardware Type:** 8xA100
259
+ - **Hours used:** 64
260
+ - **Cloud Provider:** CoreWeave
261
+ - **Compute Region:** US Main
262
+ - **Carbon Emitted:** 6.72
263
+
264
+ # Technical Specifications [optional]
265
+
266
+ ## Model Architecture and Objective
267
+
268
+ Enhance your model&#39;s quality and sharpness using your own pre-trained Unet.
269
+
270
+
271
+ ## Compute Infrastructure
272
+
273
+ More information needed
274
+
275
+ ### Hardware
276
+
277
+ 8xA100
278
+
279
+ ### Software
280
+
281
+ Fully trained only with Kohya S &amp; Shih-Ying Yeh (Kohaku-BlueLeaf)
282
+ https://arxiv.org/abs/2108.06098
283
+
284
+ # Citation
285
+
286
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
287
+
288
+ **BibTeX:**
289
+
290
+ More information needed
291
+
292
+ **APA:**
293
+
294
+ @misc{LyCORIS,
295
+ author = &#34;Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao&#34;,
296
+ title = &#34;LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion&#34;,
297
+ howpublished = &#34;\url{https://github.com/KohakuBlueleaf/LyCORIS}&#34;,
298
+ month = &#34;March&#34;,
299
+ year = &#34;2023&#34;
300
+ }
301
+
302
+ # Glossary [optional]
303
+
304
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
305
+
306
+ More information needed
307
+
308
+ # More Information [optional]
309
+
310
+ More information needed
311
+
312
+ # Model Card Authors [optional]
313
+
314
+ <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
315
+
316
+ i, d, l, e, , s, t, o, e, v
317
+
318
+ # Model Card Contact
319
+
320
+ d, i, @, f, f, u, s, i, o, n, ., a, i
321
+
322
+ # How to Get Started with the Model
323
+
324
+ Use the code below to get started with the model.
325
+
326
+ <details>
327
+ <summary> Click to expand </summary>
328
+
329
+ More information needed
330
+
331
+ </details>