--- license: mit library_name: peft tags: - axolotl - generated_from_trainer base_model: unsloth/Phi-3-mini-4k-instruct model-index: - name: 31813020-2e0e-42ee-b232-f5fa4e28a89f results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: auto datasets: - data_files: - c5ccc15ac08967d9_train_data.json ds_type: json format: custom path: c5ccc15ac08967d9_train_data.json type: field: null field_input: null field_instruction: instruction field_output: positive_sample field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_sample_packing: false eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: FatCat87/31813020-2e0e-42ee-b232-f5fa4e28a89f learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: ./outputs/out pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 seed: 701 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.1 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: 31813020-2e0e-42ee-b232-f5fa4e28a89f wandb_project: subnet56 wandb_runid: 31813020-2e0e-42ee-b232-f5fa4e28a89f wandb_watch: null warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ```

[Visualize in Weights & Biases](https://wandb.ai/fatcat87-taopanda/subnet56/runs/7w4rbqlp) # 31813020-2e0e-42ee-b232-f5fa4e28a89f This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 701 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1696 | 0.2222 | 1 | 2.2843 | | 2.1709 | 0.4444 | 2 | 2.2461 | | 2.2248 | 0.6667 | 3 | 2.2188 | | 2.1473 | 0.8889 | 4 | 2.2099 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1