--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: EleutherAI/pythia-410m-deduped model-index: - name: taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-410m-deduped bf16: auto dataset_prepared_path: null datasets: - data_files: - 268406b2c8127f67_train_data.json ds_type: json format: custom path: 268406b2c8127f67_train_data.json type: field: null field_input: context field_instruction: instruction field_output: response field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' early_stopping_patience: null evals_per_epoch: 4 gradient_accumulation_steps: 1 group_by_length: false hub_model_id: FatCat87/taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 learning_rate: 1.0e-05 load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 16 lora_target_linear: null lora_target_modules: - query_key_value micro_batch_size: 4 num_epochs: 4 output_dir: ./outputs/lora-alpaca-pythia/taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 resume_from_checkpoint: null seed: 84664 sequence_len: 512 special_tokens: pad_token: <|endoftext|> tf32: true train_on_inputs: false val_set_size: 0.05 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 wandb_project: subnet56 wandb_runid: taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 wandb_watch: null weight_decay: 0.1 ```

[Visualize in Weights & Biases](https://wandb.ai/fatcat87-taopanda/subnet56/runs/0tu4r381) # taopanda-2_bcc7097d-6c73-48e3-aaee-f9f854afb9b4 This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 84664 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.7173 | 0.0006 | 1 | 2.8035 | | 2.3948 | 0.2505 | 414 | 2.5510 | | 2.6987 | 0.5009 | 828 | 2.4507 | | 2.2231 | 0.7514 | 1242 | 2.3969 | | 2.4612 | 1.0018 | 1656 | 2.3698 | | 2.9173 | 1.2523 | 2070 | 2.3450 | | 2.3121 | 1.5027 | 2484 | 2.3282 | | 2.8931 | 1.7532 | 2898 | 2.3154 | | 2.0185 | 2.0036 | 3312 | 2.3080 | | 2.2114 | 2.2541 | 3726 | 2.2980 | | 2.4148 | 2.5045 | 4140 | 2.2941 | | 2.2134 | 2.7550 | 4554 | 2.2887 | | 1.5517 | 3.0054 | 4968 | 2.2839 | | 2.2136 | 3.2559 | 5382 | 2.2811 | | 1.2004 | 3.5064 | 5796 | 2.2838 | | 2.374 | 3.7568 | 6210 | 2.2826 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1