File size: 1,490 Bytes
1207089
 
84c77b0
457de14
1207089
 
 
ad2aba4
1207089
 
 
 
 
 
 
 
 
457de14
1207089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457de14
 
1207089
 
 
 
457de14
1207089
 
 
 
 
457de14
 
 
1207089
 
 
 
457de14
1207089
 
 
457de14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
library_name: transformers
base_model: nsi319/legal-led-base-16384
model-index:
- name: results
  results: []
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [nsi319/legal-led-base-16384](https://huggingface.co/nsi319/legal-led-base-16384) on the joelniklaus/legal_case_document_summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7401

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2           | 1.0   | 1924 | 2.8550          |
| 3.6193        | 2.0   | 3848 | 2.7593          |
| 2.7776        | 3.0   | 5772 | 2.7401          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0