Ferocious0xide's picture
Learning Deep RL
fead571 verified
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fac885e0160>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac885e01f0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac885e0280>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac885e0310>",
"_build": "<function ActorCriticPolicy._build at 0x7fac885e03a0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fac885e0430>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac885e04c0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac885e0550>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fac885e05e0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac885e0670>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac885e0700>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac885e0790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fac885dc500>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1019776,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1714583678166637421,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3USLyLfnM/RgwdvceZO782nNW9oWLHvQAAAAAAAAAAACpAvR1/uD8zAWi+FLxOvlNdzbz2S8m7AAAAAAAAAAAaQ4U9s3mfPpg15Lxdcx+/H0i8PUZblb0AAAAAAAAAADoUgr5P2Go/9sGcvp4GCr9ZXdS+4xgFvgAAAAAAAAAAM6GhvM0NyT6kiRc+SpXavgzSGz32rkS8AAAAAAAAAACzvTg9FPyAuvGaJzWjM7AwTTMrOI3cW7QAAIA/AACAP1pltD29vC48UBnDvpy4E75/PRa+c39iPwAAgD8AAAAAzVQRO3s0qT06aMo8McaVvpWP2ToqNlQ6AAAAAAAAAAA6dTM+03cCP8anAb4Q2hi/OJh4PpU22L0AAAAAAAAAAM2CWT5IRuC80Y07utlNwzj/xkq+JoR8OQAAgD8AAIA/zQelvBstkj1QDqo+L7FdvuIkRT57f9s9AAAAAAAAAACaXXU8NDiwP9sgAD/Ufwi/1vtbvNZpm70AAAAAAAAAAECVaz6NVJE/IlSzPpcUIL9AALc+MjppPQAAAAAAAAAAc2anva65sbp1Z4y6ji6BtYG0lTkra6A5AAAAAAAAAAAN6HO+82jlPiVUfD4OcB2/7KOAvpdZKj4AAAAAAAAAADPzJr0p2GQ9UzMVPpx+pb5iap09bmDPvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.019776000000000016,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgYdlum7+MAWyUS86MAXSUR0DMl614FA3UdX2UKGgGR8BV0C4vvjOtaAdNKwFoCEdAzJe18vVVgnV9lChoBkdAcZHwtJ4B3mgHS+FoCEdAzJfI9AX2unV9lChoBkdAcEcbFCLMtGgHS7xoCEdAzJfnFTefqXV9lChoBkdAbfADkELYw2gHTSIBaAhHQMyX6VjZtel1fZQoaAZHQHMOhvitJWhoB00WAWgIR0DMmAaa3I+4dX2UKGgGR0Bx6XTPSlWPaAdLsmgIR0DMmA9t65XmdX2UKGgGR0Bv7WaBqbjMaAdL/GgIR0DMmBvJvHcUdX2UKGgGR0ByjXr6ciGGaAdNXwFoCEdAzJgl+aScLHV9lChoBkdAcNeIg/1QImgHTQgBaAhHQMyYKMN+b3J1fZQoaAZHQG7hpWFN+LFoB0u4aAhHQMyYKyEL6UJ1fZQoaAZHQHJj6DXe3x5oB01FAWgIR0DMmDMahpQDdX2UKGgGR0Bw6Z7D2rXEaAdL9mgIR0DMmDYsGxD9dX2UKGgGR0ByPckLQXyiaAdNEwFoCEdAzJg+5jpcHHV9lChoBkdAccY4XoC+12gHTQQBaAhHQMyYQhUBGQV1fZQoaAZHQHLALGvOhTRoB0vMaAhHQMyYRMyzoll1fZQoaAZHQHIcRZlnRLNoB0vPaAhHQMyYULeZXuF1fZQoaAZHQHGsGSIP9UFoB0vRaAhHQMyYZBg3Lmp1fZQoaAZHQHFHXrMTviNoB00EAWgIR0DMmGx1q33IdX2UKGgGR0BxEPN9ph4MaAdLuGgIR0DMmG4cBEKFdX2UKGgGR0BDc+yAxzq9aAdLXWgIR0DMmICg2606dX2UKGgGR0Bw4b3QD3dsaAdLzGgIR0DMmJWs3hn8dX2UKGgGR0ByQ/IRywOfaAdLx2gIR0DMmKVl9SdfdX2UKGgGR0Bw0P06HTJAaAdL0GgIR0DMmLXT1CgLdX2UKGgGR0BzB42YOUdJaAdLxGgIR0DMmL3EQ5FPdX2UKGgGR0BzlKKvV3EAaAdL82gIR0DMmL2aDwpfdX2UKGgGR0A4PpI+W4ViaAdLgWgIR0DMmMzoQnQZdX2UKGgGR0Bw636VMVUNaAdLyWgIR0DMmM8lgMMJdX2UKGgGR0BuQPAwfyPNaAdL9mgIR0DMmNYqbz9TdX2UKGgGR0ByKj7wazeGaAdLxmgIR0DMmN5GOMl1dX2UKGgGR0BzHKtozvZzaAdNTwFoCEdAzJjfHjp9qnV9lChoBkdActtlqagElmgHTREBaAhHQMyY6isny/d1fZQoaAZHQHNg0gbIcR1oB00YAWgIR0DMmQD6guh9dX2UKGgGR0BB/oAfdRBNaAdLcGgIR0DMmQXbItDldX2UKGgGR0Bw8olnh86WaAdLwWgIR0DMmQufqX4TdX2UKGgGR0BzEpHRTjvNaAdNEgFoCEdAzJkxMxGlRHV9lChoBkdAQEiMglnh9GgHS35oCEdAzJk4EAYHgXV9lChoBkdAcl7Prv9cbGgHS+VoCEdAzJk/BpHqeXV9lChoBkdARXYHcDbJwWgHS6FoCEdAzJlDWXkYGnV9lChoBkdAcF3ajvd/KGgHS6xoCEdAzJlJUgjhUHV9lChoBkdAcngy/bj942gHS8ZoCEdAzJlNGQ0XQHV9lChoBkdAcrEfwI+nqGgHTUYBaAhHQMyZUOJcgQp1fZQoaAZHQHETF2/zreJoB0vPaAhHQMyZVTF+/g11fZQoaAZHQG8n50Syt3hoB0uzaAhHQMyZd3974SJ1fZQoaAZHQHNDgfIS13NoB03hAWgIR0DMmaGPYFq0dX2UKGgGR0BxLb/VAiV0aAdL/mgIR0DMmbMKqn3tdX2UKGgGR0ByHXq1PWQPaAdNSQFoCEdAzJm0Hu7YkHV9lChoBkdAcwxOlfqoqGgHS71oCEdAzJm2NT987nV9lChoBkdAcwQASnLq2WgHTQ0BaAhHQMyZt1zZHut1fZQoaAZHQHIofMB6rvNoB0vNaAhHQMyZvXSBshx1fZQoaAZHQFMoDjzZpSJoB0uaaAhHQMyZ4IYFaB91fZQoaAZHQG+EycslLOBoB0u6aAhHQMyZ8oznA7B1fZQoaAZHQG8NRFZxJd1oB0vJaAhHQMyZ+nEVFhJ1fZQoaAZHQHEEnHaN+9doB0vIaAhHQMyaIg7o0Q91fZQoaAZHQERnoSL61stoB0txaAhHQMyaJ1fVqet1fZQoaAZHQHB+I5PuXu5oB0vgaAhHQMyaNGahHsl1fZQoaAZHQHJe2O+7Dl5oB01jAWgIR0DMmli5VfeDdX2UKGgGR0BvTCGBWgezaAdL3WgIR0DMmmHmDDjzdX2UKGgGR0BwpcfNiYsvaAdLxmgIR0DMmm78DSw4dX2UKGgGR0By40G9pRGdaAdL8WgIR0DMmqSGetjkdX2UKGgGR0Byheujh1klaAdL/mgIR0DMmq5jriVCdX2UKGgGR0BxZ6gJ1JUYaAdNXwFoCEdAzJqu44p+dHV9lChoBkdAcRiDhcZ9/mgHS85oCEdAzJq9GyX2NHV9lChoBkdAciwfUF0PpmgHS+hoCEdAzJra1gpjMHV9lChoBkdAcvONATqSo2gHTTwBaAhHQMya5sV1wHZ1fZQoaAZHQHI0qQzUI9loB0uqaAhHQMya6mBOHnF1fZQoaAZHQHLhdj0+TvBoB00UAWgIR0DMmusMNMGpdX2UKGgGR0BycswoLG70aAdNQgFoCEdAzJrxzfaYeHV9lChoBkdAcODOqNp/PWgHS+poCEdAzJr9lA/s3XV9lChoBkdAc0IIwudwvWgHTQMBaAhHQMybDmhEjPh1fZQoaAZHQHHXwIUrTYxoB03qAWgIR0DMmxVNUOurdX2UKGgGR0Bw3aGlANXpaAdL6mgIR0DMmydZRsMzdX2UKGgGR0BwlMkPczqKaAdL2mgIR0DMmyffEXLvdX2UKGgGR0ByaRXFLnLaaAdNHwFoCEdAzJswZdfLLnV9lChoBkdAcKSIatLcsWgHS8loCEdAzJtS2jO9nXV9lChoBkdAckFSApazNWgHS8BoCEdAzJtzumaYu3V9lChoBkdAckKxhDw6Q2gHS+doCEdAzJt4UMXrMXV9lChoBkdAc3Dsq8UVSGgHTRUBaAhHQMybhm8mKIl1fZQoaAZHQHM/T3225QRoB00KAWgIR0DMm4biwSrYdX2UKGgGR0BwjQHVwxWUaAdLzGgIR0DMm4uXZ5AydX2UKGgGR0Bw/8Rg7YChaAdLymgIR0DMm4qWNWELdX2UKGgGR0Bxpk5dWyTqaAdLyGgIR0DMm475j6N3dX2UKGgGR0BykJ69kBjnaAdL2WgIR0DMm5GGfwqidX2UKGgGR0BzyL6j3225aAdLx2gIR0DMm6ufRNRFdX2UKGgGR0BwHu++M6zWaAdLvmgIR0DMm7YljVhDdX2UKGgGR0BwyK0a6z3RaAdL5WgIR0DMm7utbLU1dX2UKGgGR0ByYwq7ROUMaAdNFAFoCEdAzJvP5tWMj3V9lChoBkdAcLdVRUFSsWgHS8doCEdAzJwQ/zreInV9lChoBkdAcJKBtUGVzWgHS7BoCEdAzJwSCoS+QHV9lChoBkdASKO8h9srNGgHS4BoCEdAzJwR3pwCKnV9lChoBkdAOqzsMRYigWgHS3BoCEdAzJwW2l2vCHV9lChoBkdAcaU9d/rjYWgHS+NoCEdAzJw/uQZGa3V9lChoBkdAciaVTJhfB2gHS+9oCEdAzJxF3QD3d3V9lChoBkdAc+ASofjjrGgHTQwBaAhHQMycS1YISlF1fZQoaAZHQHGm+/Dcdo5oB0vlaAhHQMycSx9G7SR1fZQoaAZHQHPN2M0gr6NoB00RAWgIR0DMnGSAYpDvdX2UKGgGR0ByMHRc/t6YaAdNWAFoCEdAzJxpMSsbN3V9lChoBkdAbo6+sYEW7GgHTRQBaAhHQMycb+TNdJJ1fZQoaAZHQHDsvhAGB4FoB0vIaAhHQMyce6d+Xqt1fZQoaAZHQHDM6YeDFqBoB02uAWgIR0DMnInnnuAqdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 620,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2056,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 20,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}