Reinforcement_Learning / config.json
Fetanos's picture
Uploading trained agent of LunarLander-v2
76cc999 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d950f03b0a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d950f03b130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d950f03b1c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d950f03b250>", "_build": "<function ActorCriticPolicy._build at 0x7d950f03b2e0>", "forward": "<function ActorCriticPolicy.forward at 0x7d950f03b370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d950f03b400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d950f03b490>", "_predict": "<function ActorCriticPolicy._predict at 0x7d950f03b520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d950f03b5b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d950f03b640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d950f03b6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d950f1d3640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714741920138520109, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0VGT3p+0c92pxZvl7bMb56Bfi84FSUuwAAAAAAAAAAmrFqva4NkbqeRKc6szqaNUvzYTphBMK5AACAPwAAgD+aerS9MYazPlhGHT7isI2+Pv0gO5rUCD4AAAAAAAAAAGb0o7wUjIe6bXj4NWvl6zAkNWA62mojtQAAgD8AAIA/c4Mpvq6iljuAWYo6DPcBuPgLLL1fgqW5AACAPwAAgD/zbpo9ooG/P+rxHz+xRi0+wjiFvYoSkr0AAAAAAAAAACaRBr6kcEy76nGjOYGcBjdu9o88aGnNuAAAgD8AAIA/JgGJvVxLKrrutqm7WkARtrLP3TqQ28k6AACAPwAAgD/aHlK+IeD0vJ5XJzqeerg4B5liPljnabkAAIA/AACAP2b4tzzXDVC70QfAPD8oP74O5m08HbRoPQAAAAAAAIA/83+gvezJ5rleT4w7kkRkOCNhQrugXiC5AACAPwAAgD/NBZ+9e8aIulq2WLmtvkq0wjPguloJfDgAAIA/AACAP81XhbwhWBg/qvbgPc4+y75AZRI9/BwAvQAAAAAAAAAAzUyjvSm8Cboodmo5ZmKCtkssgTtMb4u4AACAPwAAgD8AMMy8SKOYuuEHwrda5a+yy9kSOtN04DYAAIA/AACAPzM74Dv2tjA9eERdvk1qFb5qOJC98MqUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSU+HJtBOaMAWyUTegDjAF0lEdAkvpwK8cuJ3V9lChoBkdAZ716yjYZmGgHTegDaAhHQJL/qcbzbvh1fZQoaAZHQGS31IiC8OFoB03oA2gIR0CTBSR6Ww/xdX2UKGgGR0BkfyhBZ6ldaAdN6ANoCEdAkwafpljEvXV9lChoBkdAZa+sSTQmeGgHTegDaAhHQJMJqFwkxAV1fZQoaAZHQGP0v6KtPpJoB03oA2gIR0CTDXtMfzSUdX2UKGgGR0BoLrKV6eGxaAdN6ANoCEdAkxD3Rb8m8nV9lChoBke/sDUVi4J/omgHS+BoCEdAkxGyJ9AoonV9lChoBkdAYyIVXV9WqGgHTegDaAhHQJMYWs3hn8N1fZQoaAZHQF/wqNIbwSdoB03oA2gIR0CTGaK8L8aXdX2UKGgGR0Bj/ZnnMdLhaAdN6ANoCEdAkxopZGKAKHV9lChoBkdAY1xInSfDk2gHTegDaAhHQJMyfnEETxp1fZQoaAZHQGMzG+K0lZ5oB03oA2gIR0CTOPf/m1YydX2UKGgGR0BgNWxUvPC3aAdN6ANoCEdAkz7SFbmlqXV9lChoBkdAY3uKx9oexWgHTegDaAhHQJNEeixmkFh1fZQoaAZHQGWnpDeCTU1oB03oA2gIR0CTRRvTPSlWdX2UKGgGR0BkoI/iYLLIaAdN6ANoCEdAk0V1f/m1Y3V9lChoBkdAYhgS7oSteWgHTegDaAhHQJNHkDNhVlx1fZQoaAZHQGj4UJ4SpR5oB03oA2gIR0CTS2XpGFzudX2UKGgGR0BoA79jwx33aAdN6ANoCEdAk1Hx6jWTYHV9lChoBkdAXcfayrxRVWgHTegDaAhHQJNUvH/95yF1fZQoaAZHQGRPCyY5T61oB03oA2gIR0CTWQyVObiIdX2UKGgGR0BpFZeVs1sMaAdN6ANoCEdAk115xeb/fnV9lChoBkdAY6sxiXpnpWgHTegDaAhHQJNeWe+VTrF1fZQoaAZHQGBGNbTtsvZoB03oA2gIR0CTZRBQvYe1dX2UKGgGR0BkU2y9mHxjaAdN6ANoCEdAk2YQCSzPbHV9lChoBkdAZM4hUR3/xWgHTegDaAhHQJNmiaTfR/p1fZQoaAZHQGj+vXTVlPJoB03oA2gIR0CTafkc0cfedX2UKGgGR0BkwcPH1e0HaAdN6ANoCEdAk4LbKNhmXnV9lChoBkdAZUtL9uP3jGgHTegDaAhHQJOJEb+98JF1fZQoaAZHQGgKcfms/6hoB03oA2gIR0CTkXz1K5CodX2UKGgGR0BiwStHQQcxaAdN6ANoCEdAk5JKF7D2rXV9lChoBkdAYSs+QlruY2gHTegDaAhHQJOSyc9W6sh1fZQoaAZHQGUOvzvqkdpoB03oA2gIR0CTlVXVLBbfdX2UKGgGR0Bkj6Pn0TURaAdN6ANoCEdAk5nCmVJL/XV9lChoBkdAZOJpeNT99GgHTegDaAhHQJOgbAaef7J1fZQoaAZHQGLfrDhtLthoB03oA2gIR0CTo5BxPwd9dX2UKGgGR0Bdx/PgNwzdaAdN6ANoCEdAk6dHhn8KonV9lChoBkdAZ1pA/LTx5WgHTegDaAhHQJOqSAf+0gN1fZQoaAZHQGJVPttygf5oB03oA2gIR0CTqwQyyleodX2UKGgGR0BgyIhje9BbaAdN6ANoCEdAk7DjZpSJj3V9lChoBkdAYzW6unuRcWgHTegDaAhHQJOx4ka/ATJ1fZQoaAZHQGEdGoJiRW9oB03oA2gIR0CTsliuMdcTdX2UKGgGR0Bnr09ECvHMaAdN6ANoCEdAk7XRQemvXHV9lChoBkdAcf8OT7l7t2gHTQYDaAhHQJPPyCqZML51fZQoaAZHQGbT/h/Aj6hoB03oA2gIR0CT0Ow97ngYdX2UKGgGR0BxSgkHD766aAdNQANoCEdAk9I7FXJYDHV9lChoBkdAYdc7FsHjZWgHTegDaAhHQJPV/yiEg4h1fZQoaAZHQFzdBa9sabZoB03oA2gIR0CT3BIv8IiUdX2UKGgGR0Bx/pPnB+F2aAdNvwFoCEdAk9zhNVR1o3V9lChoBkdAaOdAJswcpGgHTegDaAhHQJPeg3Ns3yZ1fZQoaAZHQEvI4d6sySFoB0u4aAhHQJPf5v73wkR1fZQoaAZHQGC7ggPmPo5oB03oA2gIR0CT4qRk3CKrdX2UKGgGR0BVfPVI7NjcaAdLuWgIR0CT5p27Wd3CdX2UKGgGR0By8MwmE5AAaAdNIQNoCEdAk+i3e7+T/3V9lChoBkdAZsJ90ihWYGgHTegDaAhHQJPpYTURWcV1fZQoaAZHQGIOxNyo4uNoB03oA2gIR0CT7O4H5aePdX2UKGgGR0BijRZW7voeaAdN6ANoCEdAk/HLzPKMenV9lChoBkdAZkORvFWGRGgHTegDaAhHQJP2lVPva111fZQoaAZHQGXPRtP557hoB03oA2gIR0CT/lTrmhdudX2UKGgGR0BlUKGgzxgBaAdN6ANoCEdAk/76XfIjnnV9lChoBkdAY2HODaoMrmgHTegDaAhHQJQCyoDPnjh1fZQoaAZHQGMYo1k1/DtoB03oA2gIR0CUGsETxoZidX2UKGgGR0BmdvSSeRPoaAdN6ANoCEdAlBv2FnIyTXV9lChoBkdAZ4hNmlImPmgHTegDaAhHQJQdyeUY8+11fZQoaAZHQHA1/mcOLBNoB021AmgIR0CUJqUbDMvAdX2UKGgGR0BygJLrX18LaAdNoQJoCEdAlCiEkSmIkHV9lChoBkdAZC/C3w1BMWgHTegDaAhHQJQpwNRWLgp1fZQoaAZHQGatYXwb2lFoB03oA2gIR0CUK/tK7I1cdX2UKGgGR0Bj0E+/xlQNaAdN6ANoCEdAlC1UZm7J4nV9lChoBkdAcMoCJXQtz2gHTe8BaAhHQJQuf1xsEaF1fZQoaAZHQF/f+evpyIZoB03oA2gIR0CUL/i6g/TtdX2UKGgGR0BjYFGRV6u5aAdN6ANoCEdAlDPCJXQtz3V9lChoBkdAYwLM5fdAPmgHTegDaAhHQJQ1mYQarFR1fZQoaAZHQHMRTHn2ZiNoB02hA2gIR0CUOS47A+INdX2UKGgGR0BlTBuGbkOqaAdN6ANoCEdAlEHsolUp/nV9lChoBkdAcez3ta6jFmgHTZgCaAhHQJRDk4Nqgyx1fZQoaAZHQHBzZ6lchTxoB00IA2gIR0CUSKAT7EYPdX2UKGgGR0BxWSt8uzyCaAdN8QFoCEdAlEjk0zj3mHV9lChoBkdAXdQ85jpcHGgHTegDaAhHQJRKF29tdiV1fZQoaAZHQGI8Vd5Y5ktoB03oA2gIR0CUTwEovzvrdX2UKGgGR0BoLIiNbTttaAdN6ANoCEdAlGkXPeHi33V9lChoBkdAcPgW8h9srWgHTQsDaAhHQJRvWEvkBCF1fZQoaAZHQGX+tfw7T2FoB03oA2gIR0CUc9T3IuGsdX2UKGgGR0Bet/qC6H0saAdN6ANoCEdAlHYmtlqagHV9lChoBkdAaD4eDnNgSmgHTegDaAhHQJR3XsdDIBB1fZQoaAZHQHEUeXE61b9oB00uA2gIR0CUeB/DtPYWdX2UKGgGR0Bli7FId2gWaAdN6ANoCEdAlHnx+WnjyXV9lChoBkdAT6wIjW07bWgHS8NoCEdAlHsqUu+RHXV9lChoBkdAZhyfVZs9CGgHTegDaAhHQJR+Lc+JP691fZQoaAZHQGcUFwT/Q0JoB03oA2gIR0CUhcJOnEVGdX2UKGgGR0BmeW4oZydXaAdN6ANoCEdAlIoP0qYqonV9lChoBkdAYNOXSBshxGgHTegDaAhHQJSSvc0tRN11fZQoaAZHQGQCkaESM99oB03oA2gIR0CUlDotthuwdX2UKGgGR0Bjw8snRb8naAdN6ANoCEdAlJjy2Yv38HV9lChoBkdAY1pYNAkcCGgHTegDaAhHQJSZMfkmx+t1fZQoaAZHQGFbhHCoCMhoB03oA2gIR0CUmko3aSLZdX2UKGgGR0BvhZy8zyjIaAdNbQJoCEdAlJ3YdyT6i3V9lChoBkdAXrv3N9ph4WgHTegDaAhHQJSd77wazeJ1fZQoaAZHQGSNfKp1ifBoB03oA2gIR0CUoo0lZ5iWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}