--- license: mit --- --- library_name: peft --- ## Model info - Base model: Llama-3-8B - Training method: Instruction Fine-tuning + LoRA - Task: Sentiment Analysis ## Packages ``` python !pip install transformers==4.40.1 peft==0.4.0 !pip install sentencepiece !pip install accelerate !pip install torch !pip install peft !pip install datasets !pip install bitsandbytes ``` ## Inference: Try the model in Google Colab ``` python from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizerFast from peft import PeftModel # 0.5.0 import torch # Load Models base_model = "meta-llama/Meta-Llama-3-8B" peft_model = "FinGPT/fingpt-mt_llama3-8b_lora" tokenizer = LlamaTokenizerFast.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token model = LlamaForCausalLM.from_pretrained(base_model, trust_remote_code=True, device_map = "cuda:0") model = PeftModel.from_pretrained(model, peft_model) model = model.eval() # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) tokens = tokenizer(prompt, return_tensors='pt', padding=True, max_length=512).to(device) res = model.generate(**tokens, max_length=512) res_sentences = [tokenizer.decode(i) for i in res] out_text = [o.split("Answer: ")[1] for o in res_sentences] # Make prompts prompt = [ '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: FINANCING OF ASPOCOMP 'S GROWTH Aspocomp is aggressively pursuing its growth strategy by increasingly focusing on technologically more demanding HDI printed circuit boards PCBs . Answer: ''', '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing . Answer: ''' ] # Show results for sentiment in out_text: print(sentiment) ``` ## Training Script: [Our Code](https://github.com/AI4Finance-Foundation/FinGPT/blob/master/FinGPT_%20Training%20with%20LoRA%20and%20Meta-Llama-3-8B.ipynb) ``` ## Training Data: * https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train - PEFT 0.5.0