--- license: mit --- --- library_name: peft --- # FinGPT_v3.3 for sentiment analysis ## Model info - Base model: Llama2-13B - Training method: Instruction Fine-tuning + LoRA - Task: Sentiment Analysis ## Packages ``` python !pip install transformers==4.32.0 peft==0.5.0 !pip install sentencepiece !pip install accelerate !pip install torch !pip install peft !pip install datasets !pip install bitsandbytes ``` ## Inference: Try the model in Google Colab ``` python from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizerFast from peft import PeftModel # 0.5.0 # Load Models base_model = "NousResearch/Llama-2-13b-hf" peft_model = "FinGPT/fingpt-sentiment_llama2-13b_lora" tokenizer = LlamaTokenizerFast.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token model = LlamaForCausalLM.from_pretrained(base_model, trust_remote_code=True, device_map = "cuda:0", load_in_8bit = True,) model = PeftModel.from_pretrained(model, peft_model) model = model.eval() # Make prompts prompt = [ '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: FINANCING OF ASPOCOMP 'S GROWTH Aspocomp is aggressively pursuing its growth strategy by increasingly focusing on technologically more demanding HDI printed circuit boards PCBs . Answer: ''', '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing . Answer: ''', '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: A tinyurl link takes users to a scamming site promising that users can earn thousands of dollars by becoming a Google ( NASDAQ : GOOG ) Cash advertiser . Answer: ''', ] # Generate results tokens = tokenizer(prompt, return_tensors='pt', padding=True, max_length=512) res = model.generate(**tokens, max_length=512) res_sentences = [tokenizer.decode(i) for i in res] out_text = [o.split("Answer: ")[1] for o in res_sentences] # show results for sentiment in out_text: print(sentiment) # Output: # positive # neutral # negative ``` ## Training Script: [Our Code](https://github.com/AI4Finance-Foundation/FinGPT/tree/master/fingpt/FinGPT_Benchmark) ``` #llama2-13b-nr deepspeed -i "localhost:2" train_lora.py \ --run_name sentiment-llama2-13b-20epoch-64batch \ --base_model llama2-13b-nr \ --dataset sentiment-train \ --max_length 512 \ --batch_size 64 \ --learning_rate 1e-4 \ --num_epochs 20 \ --from_remote True \ >train.log 2>&1 & ``` ## Training Data: * https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train - PEFT 0.5.0