Saving weights and logs of step 10000
Browse files- __pycache__/distributed_shampoo.cpython-38.pyc +0 -0
- distributed_shampoo.py +1611 -0
- flax_model.msgpack +1 -1
- run_clm_flax.py +32 -0
- runs/events.out.tfevents.1642099734.t1v-n-42145f73-w-0.2317757.0.v2 +0 -3
- runs/{events.out.tfevents.1642208918.t1v-n-42145f73-w-0.2567321.0.v2 → events.out.tfevents.1642236904.t1v-n-42145f73-w-0.2775834.0.v2} +2 -2
- start_train.sh +3 -6
__pycache__/distributed_shampoo.cpython-38.pyc
ADDED
Binary file (51.7 kB). View file
|
|
distributed_shampoo.py
ADDED
@@ -0,0 +1,1611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from https://github.com/google-research/google-research/blob/master/scalable_shampoo/optax/distributed_shampoo.py
|
2 |
+
|
3 |
+
# coding=utf-8
|
4 |
+
# Copyright 2021 The Google Research Authors.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
# An implementation of distributed Shampoo optimizer from:
|
19 |
+
#
|
20 |
+
# Scalable Second Order Optimization for Deep Learning
|
21 |
+
# Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
22 |
+
# Preprint Paper: https://arxiv.org/abs/2002.09018
|
23 |
+
#
|
24 |
+
# This implementation moves computation of inverse pth root back to the
|
25 |
+
# accelerator (if higher precision is available).
|
26 |
+
#
|
27 |
+
# Authors: Rohan Anil (rohananil at google dot com)
|
28 |
+
# & Vineet Gupta (vineet at google dot com)
|
29 |
+
#
|
30 |
+
|
31 |
+
"""Distributed Shampoo Implementation."""
|
32 |
+
|
33 |
+
import enum
|
34 |
+
import functools
|
35 |
+
import itertools
|
36 |
+
from typing import Any, List, NamedTuple
|
37 |
+
|
38 |
+
import chex
|
39 |
+
from flax import struct
|
40 |
+
import jax
|
41 |
+
from jax import lax
|
42 |
+
import jax.experimental.pjit as pjit
|
43 |
+
import jax.numpy as jnp
|
44 |
+
import numpy as np
|
45 |
+
import optax
|
46 |
+
|
47 |
+
|
48 |
+
# pylint:disable=no-value-for-parameter
|
49 |
+
@struct.dataclass
|
50 |
+
class QuantizedValue:
|
51 |
+
"""State associated with quantized value."""
|
52 |
+
quantized: chex.Array
|
53 |
+
diagonal: chex.Array # Diagonal (if extract_diagonal is set)
|
54 |
+
bucket_size: chex.Array
|
55 |
+
quantized_dtype: jnp.dtype = struct.field(
|
56 |
+
pytree_node=False) # Dtype for the quantized value.
|
57 |
+
extract_diagonal: bool = struct.field(
|
58 |
+
pytree_node=False) # In case its centered.
|
59 |
+
shape: Any = struct.field(pytree_node=False) # Shape of the tensor.
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
63 |
+
if isinstance(fvalue, list) and not fvalue:
|
64 |
+
return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, [])
|
65 |
+
quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize(
|
66 |
+
fvalue, quantized_dtype, extract_diagonal)
|
67 |
+
return QuantizedValue(quantized, diagonal_fvalue, bucket_size,
|
68 |
+
quantized_dtype, extract_diagonal,
|
69 |
+
list(quantized.shape))
|
70 |
+
|
71 |
+
# Quantization is from Lingvo JAX optimizers.
|
72 |
+
# We extend it for int16 quantization of PSD matrices.
|
73 |
+
@classmethod
|
74 |
+
def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
75 |
+
"""Returns quantized value and the bucket."""
|
76 |
+
if quantized_dtype == jnp.float32:
|
77 |
+
return fvalue, [], []
|
78 |
+
elif quantized_dtype == jnp.bfloat16:
|
79 |
+
return fvalue.astype(jnp.bfloat16), [], []
|
80 |
+
|
81 |
+
float_dtype = fvalue.dtype
|
82 |
+
if quantized_dtype == jnp.int8:
|
83 |
+
# value -128 is not used.
|
84 |
+
num_buckets = jnp.array(127.0, dtype=float_dtype)
|
85 |
+
elif quantized_dtype == jnp.int16:
|
86 |
+
# value -32768 is not used.
|
87 |
+
num_buckets = jnp.array(32767.0, dtype=float_dtype)
|
88 |
+
else:
|
89 |
+
raise ValueError(f'Quantized dtype {quantized_dtype} not supported.')
|
90 |
+
# max value is mapped to num_buckets
|
91 |
+
|
92 |
+
if extract_diagonal and fvalue.ndim != 2:
|
93 |
+
raise ValueError(
|
94 |
+
f'Input array {fvalue} must be 2D to work with extract_diagonal.')
|
95 |
+
|
96 |
+
diagonal_fvalue = []
|
97 |
+
if extract_diagonal:
|
98 |
+
diagonal_fvalue = jnp.diag(fvalue)
|
99 |
+
# Remove the diagonal entries.
|
100 |
+
fvalue = fvalue - jnp.diag(diagonal_fvalue)
|
101 |
+
|
102 |
+
# TODO(rohananil): Extend this by making use of information about the blocks
|
103 |
+
# SM3 style which will be useful for diagonal statistics
|
104 |
+
# We first decide the scale.
|
105 |
+
if fvalue.ndim < 1:
|
106 |
+
raise ValueError(
|
107 |
+
f'Input array {fvalue} must have a strictly positive number of '
|
108 |
+
'dimensions.')
|
109 |
+
|
110 |
+
max_abs = jnp.max(jnp.abs(fvalue), axis=0)
|
111 |
+
bucket_size = max_abs / num_buckets
|
112 |
+
bs_expanded = bucket_size[jnp.newaxis, Ellipsis]
|
113 |
+
# To avoid divide by 0.0
|
114 |
+
bs_nonzero = jnp.where(bs_expanded > 0.0, bs_expanded,
|
115 |
+
jnp.ones_like(bs_expanded))
|
116 |
+
ratio = fvalue / bs_nonzero
|
117 |
+
# We use rounding to remove bias.
|
118 |
+
quantized = jnp.round(ratio)
|
119 |
+
return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size
|
120 |
+
|
121 |
+
def to_float(self):
|
122 |
+
"""Returns the float value."""
|
123 |
+
if isinstance(self.quantized, list) and not self.quantized:
|
124 |
+
return self.quantized
|
125 |
+
|
126 |
+
if self.quantized_dtype == jnp.float32:
|
127 |
+
return self.quantized
|
128 |
+
|
129 |
+
if self.quantized_dtype == jnp.bfloat16:
|
130 |
+
return self.quantized.astype(jnp.float32)
|
131 |
+
|
132 |
+
float_dtype = self.bucket_size.dtype
|
133 |
+
bucket_size = self.bucket_size[jnp.newaxis, Ellipsis]
|
134 |
+
val = self.quantized.astype(float_dtype) * bucket_size
|
135 |
+
if self.extract_diagonal:
|
136 |
+
val += jnp.diag(self.diagonal)
|
137 |
+
return val
|
138 |
+
|
139 |
+
|
140 |
+
# Per parameter optimizer state used in data-parallel training.
|
141 |
+
class ParameterStats(NamedTuple):
|
142 |
+
"""State associated to each parameter of the model being trained."""
|
143 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
144 |
+
statistics: List[Any] # Statistics (QuantizedValue, chex.Array)
|
145 |
+
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
146 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
147 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
148 |
+
|
149 |
+
|
150 |
+
# For training extremely large model; We keep a global state with a concatenated
|
151 |
+
# statistics and preconditioner states for all vars. This is so that we can
|
152 |
+
# annotate the leading axis to be sharded to save memory at the cost of
|
153 |
+
# communication.
|
154 |
+
@struct.dataclass
|
155 |
+
class GlobalShardedParameterStats:
|
156 |
+
statistics: chex.Array # Statistics
|
157 |
+
preconditioners: chex.Array # Preconditioners
|
158 |
+
|
159 |
+
|
160 |
+
# These are per-parameter local states; All statistics here mirror the parameter
|
161 |
+
# Thus the sharding is copied over from the param specification.
|
162 |
+
@struct.dataclass
|
163 |
+
class LocalShardedParameterStats:
|
164 |
+
"""State associated to each parameter of the model being trained."""
|
165 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
166 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
167 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
168 |
+
index_start: np.int32 = struct.field(
|
169 |
+
pytree_node=False) # Index into global statistics array
|
170 |
+
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
171 |
+
|
172 |
+
|
173 |
+
class ShardedShampooStats(NamedTuple):
|
174 |
+
"""Shampoo state in sharded mode."""
|
175 |
+
global_stats: Any
|
176 |
+
local_stats: Any
|
177 |
+
|
178 |
+
|
179 |
+
class ShampooState(NamedTuple):
|
180 |
+
count: chex.Array
|
181 |
+
stats: Any
|
182 |
+
|
183 |
+
|
184 |
+
class GraftingType(enum.IntEnum):
|
185 |
+
SGD = 1
|
186 |
+
ADAGRAD = 2
|
187 |
+
RMSPROP = 3
|
188 |
+
RMSPROP_NORMALIZED = 4
|
189 |
+
|
190 |
+
|
191 |
+
def power_iteration(
|
192 |
+
matrix,
|
193 |
+
num_iters=100,
|
194 |
+
error_tolerance=1e-6,
|
195 |
+
precision=lax.Precision.HIGHEST):
|
196 |
+
r"""Power iteration algorithm.
|
197 |
+
|
198 |
+
The power iteration algorithm takes a symmetric PSD matrix `A`, and produces
|
199 |
+
a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue
|
200 |
+
of `A`, and a vector v, which is the corresponding eigenvector of `A`.
|
201 |
+
|
202 |
+
References:
|
203 |
+
[Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration)
|
204 |
+
|
205 |
+
Args:
|
206 |
+
matrix: the symmetric PSD matrix.
|
207 |
+
num_iters: Number of iterations.
|
208 |
+
error_tolerance: Iterative exit condition.
|
209 |
+
precision: precision XLA related flag, the available options are:
|
210 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
211 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
212 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
eigen vector, eigen value
|
216 |
+
"""
|
217 |
+
matrix_size = matrix.shape[-1]
|
218 |
+
def _iter_condition(state):
|
219 |
+
i, unused_v, unused_s, unused_s_v, run_step = state
|
220 |
+
return jnp.logical_and(i < num_iters, run_step)
|
221 |
+
|
222 |
+
def _iter_body(state):
|
223 |
+
"""One step of power iteration."""
|
224 |
+
i, new_v, s, s_v, unused_run_step = state
|
225 |
+
new_v = new_v / jnp.linalg.norm(new_v)
|
226 |
+
|
227 |
+
s_v = jnp.einsum('ij,j->i', matrix, new_v, precision=precision)
|
228 |
+
s_new = jnp.einsum('i,i->', new_v, s_v, precision=precision)
|
229 |
+
return (i + 1, s_v, s_new, s_v,
|
230 |
+
jnp.greater(jnp.abs(s_new - s), error_tolerance))
|
231 |
+
|
232 |
+
# Figure out how to use step as seed for random.
|
233 |
+
v_0 = np.random.RandomState(1729).uniform(-1.0, 1.0,
|
234 |
+
matrix_size).astype(matrix.dtype)
|
235 |
+
|
236 |
+
init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True])
|
237 |
+
_, v_out, s_out, _, _ = lax.while_loop(
|
238 |
+
_iter_condition, _iter_body, init_state)
|
239 |
+
v_out = v_out / jnp.linalg.norm(v_out)
|
240 |
+
return v_out, s_out
|
241 |
+
|
242 |
+
|
243 |
+
def matrix_inverse_pth_root(
|
244 |
+
matrix,
|
245 |
+
p,
|
246 |
+
num_iters=100,
|
247 |
+
ridge_epsilon=1e-6,
|
248 |
+
error_tolerance=1e-6,
|
249 |
+
precision=lax.Precision.HIGHEST):
|
250 |
+
"""Computes `matrix^(-1/p)`, where `p` is a positive integer.
|
251 |
+
|
252 |
+
This function uses the Coupled newton iterations algorithm for
|
253 |
+
the computation of a matrix's inverse pth root.
|
254 |
+
|
255 |
+
|
256 |
+
References:
|
257 |
+
[Functions of Matrices, Theory and Computation,
|
258 |
+
Nicholas J Higham, Pg 184, Eq 7.18](
|
259 |
+
https://epubs.siam.org/doi/book/10.1137/1.9780898717778)
|
260 |
+
|
261 |
+
Args:
|
262 |
+
matrix: the symmetric PSD matrix whose power it to be computed
|
263 |
+
p: exponent, for p a positive integer.
|
264 |
+
num_iters: Maximum number of iterations.
|
265 |
+
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
266 |
+
error_tolerance: Error indicator, useful for early termination.
|
267 |
+
precision: precision XLA related flag, the available options are:
|
268 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
269 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
270 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
matrix^(-1/p)
|
274 |
+
"""
|
275 |
+
|
276 |
+
# We use float32 for the matrix inverse pth root.
|
277 |
+
# Switch to f64 if you have hardware that supports it.
|
278 |
+
matrix_size = matrix.shape[0]
|
279 |
+
alpha = jnp.asarray(-1.0 / p, jnp.float32)
|
280 |
+
identity = jnp.eye(matrix_size, dtype=jnp.float32)
|
281 |
+
_, max_ev = power_iteration(
|
282 |
+
matrix=matrix, num_iters=100,
|
283 |
+
error_tolerance=1e-6, precision=precision)
|
284 |
+
ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-16)
|
285 |
+
|
286 |
+
def _unrolled_mat_pow_1(mat_m):
|
287 |
+
"""Computes mat_m^1."""
|
288 |
+
return mat_m
|
289 |
+
|
290 |
+
def _unrolled_mat_pow_2(mat_m):
|
291 |
+
"""Computes mat_m^2."""
|
292 |
+
return jnp.matmul(mat_m, mat_m, precision=precision)
|
293 |
+
|
294 |
+
def _unrolled_mat_pow_4(mat_m):
|
295 |
+
"""Computes mat_m^4."""
|
296 |
+
mat_pow_2 = _unrolled_mat_pow_2(mat_m)
|
297 |
+
return jnp.matmul(
|
298 |
+
mat_pow_2, mat_pow_2, precision=precision)
|
299 |
+
|
300 |
+
def _unrolled_mat_pow_8(mat_m):
|
301 |
+
"""Computes mat_m^4."""
|
302 |
+
mat_pow_4 = _unrolled_mat_pow_4(mat_m)
|
303 |
+
return jnp.matmul(
|
304 |
+
mat_pow_4, mat_pow_4, precision=precision)
|
305 |
+
|
306 |
+
def mat_power(mat_m, p):
|
307 |
+
"""Computes mat_m^p, for p == 1, 2, 4 or 8.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
mat_m: a square matrix
|
311 |
+
p: a positive integer
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
mat_m^p
|
315 |
+
"""
|
316 |
+
# We unrolled the loop for performance reasons.
|
317 |
+
exponent = jnp.round(jnp.log2(p))
|
318 |
+
return lax.switch(
|
319 |
+
jnp.asarray(exponent, jnp.int32), [
|
320 |
+
_unrolled_mat_pow_1,
|
321 |
+
_unrolled_mat_pow_2,
|
322 |
+
_unrolled_mat_pow_4,
|
323 |
+
_unrolled_mat_pow_8,
|
324 |
+
], (mat_m))
|
325 |
+
|
326 |
+
def _iter_condition(state):
|
327 |
+
(i, unused_mat_m, unused_mat_h, unused_old_mat_h, error,
|
328 |
+
run_step) = state
|
329 |
+
error_above_threshold = jnp.logical_and(
|
330 |
+
error > error_tolerance, run_step)
|
331 |
+
return jnp.logical_and(i < num_iters, error_above_threshold)
|
332 |
+
|
333 |
+
def _iter_body(state):
|
334 |
+
(i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state
|
335 |
+
mat_m_i = (1 - alpha) * identity + alpha * mat_m
|
336 |
+
new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision)
|
337 |
+
new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision)
|
338 |
+
new_error = jnp.max(jnp.abs(new_mat_m - identity))
|
339 |
+
# sometimes error increases after an iteration before decreasing and
|
340 |
+
# converging. 1.2 factor is used to bound the maximal allowed increase.
|
341 |
+
return (i + 1, new_mat_m, new_mat_h, mat_h, new_error,
|
342 |
+
new_error < error * 1.2)
|
343 |
+
|
344 |
+
if matrix_size == 1:
|
345 |
+
resultant_mat_h = (matrix + ridge_epsilon)**alpha
|
346 |
+
error = 0
|
347 |
+
else:
|
348 |
+
damped_matrix = matrix + ridge_epsilon * identity
|
349 |
+
|
350 |
+
z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix))
|
351 |
+
new_mat_m_0 = damped_matrix * z
|
352 |
+
new_error = jnp.max(jnp.abs(new_mat_m_0 - identity))
|
353 |
+
new_mat_h_0 = identity * jnp.power(z, 1.0 / p)
|
354 |
+
init_state = tuple(
|
355 |
+
[0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True])
|
356 |
+
_, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop(
|
357 |
+
_iter_condition, _iter_body, init_state)
|
358 |
+
error = jnp.max(jnp.abs(mat_m - identity))
|
359 |
+
is_converged = jnp.asarray(convergence, old_mat_h.dtype)
|
360 |
+
resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h
|
361 |
+
resultant_mat_h = jnp.asarray(resultant_mat_h, matrix.dtype)
|
362 |
+
return resultant_mat_h, error
|
363 |
+
|
364 |
+
|
365 |
+
def merge_small_dims(shape_to_merge, max_dim):
|
366 |
+
"""Merge small dimensions.
|
367 |
+
|
368 |
+
If there are some small dimensions, we collapse them:
|
369 |
+
e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
|
370 |
+
[1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
371 |
+
|
372 |
+
Args:
|
373 |
+
shape_to_merge: Shape to merge small dimensions.
|
374 |
+
max_dim: Maximal dimension of output shape used in merging.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
Merged shape.
|
378 |
+
"""
|
379 |
+
resulting_shape = []
|
380 |
+
product = 1
|
381 |
+
for d in shape_to_merge:
|
382 |
+
if product * d <= max_dim:
|
383 |
+
product *= d
|
384 |
+
else:
|
385 |
+
if product > 1:
|
386 |
+
resulting_shape.append(product)
|
387 |
+
product = d
|
388 |
+
if product > 1:
|
389 |
+
resulting_shape.append(product)
|
390 |
+
return resulting_shape
|
391 |
+
|
392 |
+
|
393 |
+
def pad_matrix(mat, max_size):
|
394 |
+
"""Pad a matrix to a max_size.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
mat: a matrix to pad.
|
398 |
+
max_size: matrix size requested.
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
Given M returns [[M, 0], [0, I]]
|
402 |
+
"""
|
403 |
+
size = mat.shape[0]
|
404 |
+
assert size <= max_size
|
405 |
+
if size == max_size:
|
406 |
+
return mat
|
407 |
+
pad_size = max_size - size
|
408 |
+
zs1 = jnp.zeros([size, pad_size], dtype=mat.dtype)
|
409 |
+
zs2 = jnp.zeros([pad_size, size], dtype=mat.dtype)
|
410 |
+
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
411 |
+
mat = jnp.concatenate([mat, zs1], 1)
|
412 |
+
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
413 |
+
return mat
|
414 |
+
|
415 |
+
|
416 |
+
def pad_vector(vec, max_size):
|
417 |
+
"""Pad a vector to a max_size.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
vec: a vector to pad.
|
421 |
+
max_size: matrix size requested.
|
422 |
+
|
423 |
+
Returns:
|
424 |
+
Given V returns [V, 0]
|
425 |
+
"""
|
426 |
+
size = vec.shape[0]
|
427 |
+
assert size <= max_size
|
428 |
+
if size == max_size:
|
429 |
+
return vec
|
430 |
+
pad_size = max_size - size
|
431 |
+
zs1 = jnp.zeros([pad_size], dtype=vec.dtype)
|
432 |
+
return jnp.concatenate([vec, zs1], 0)
|
433 |
+
|
434 |
+
|
435 |
+
def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs):
|
436 |
+
"""Avoids wasteful buffer allocation with XLA."""
|
437 |
+
|
438 |
+
def _iter_body(unused_state):
|
439 |
+
results = compute_fn(*args, **kwargs)
|
440 |
+
return tuple([False] + list(results))
|
441 |
+
|
442 |
+
def _iter_condition(state):
|
443 |
+
return state[0]
|
444 |
+
|
445 |
+
results = jax.lax.while_loop(_iter_condition, _iter_body,
|
446 |
+
tuple([predicate] + init_state))
|
447 |
+
return tuple(results[1:])
|
448 |
+
|
449 |
+
|
450 |
+
class BlockPartitioner:
|
451 |
+
"""Partitions a tensor into smaller tensors."""
|
452 |
+
|
453 |
+
def __init__(self, param, block_size):
|
454 |
+
self._shape = param.shape
|
455 |
+
self._splits = []
|
456 |
+
split_sizes = []
|
457 |
+
# We split params into smaller blocks. Here we store the metadata to make
|
458 |
+
# that split.
|
459 |
+
for i, d in enumerate(param.shape):
|
460 |
+
if 0 < block_size < d:
|
461 |
+
# d-1, otherwise split appends a 0-size array.
|
462 |
+
nsplit = (d - 1) // block_size
|
463 |
+
indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size
|
464 |
+
sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size
|
465 |
+
sizes[-1] = d - indices[-1]
|
466 |
+
self._splits.append((i, indices))
|
467 |
+
split_sizes.append(sizes)
|
468 |
+
else:
|
469 |
+
split_sizes.append(np.array([d], dtype=np.int32))
|
470 |
+
self._num_splits = len(split_sizes)
|
471 |
+
self._preconditioner_shapes = []
|
472 |
+
for t in itertools.product(*split_sizes):
|
473 |
+
self._preconditioner_shapes.extend([[d, d] for d in t])
|
474 |
+
|
475 |
+
def shapes_for_preconditioners(self):
|
476 |
+
return self._preconditioner_shapes
|
477 |
+
|
478 |
+
def num_splits(self):
|
479 |
+
return self._num_splits
|
480 |
+
|
481 |
+
def partition(self, tensor):
|
482 |
+
"""Partition tensor into blocks."""
|
483 |
+
|
484 |
+
assert tensor.shape == self._shape
|
485 |
+
tensors = [tensor]
|
486 |
+
for (i, indices) in self._splits:
|
487 |
+
tensors_local = []
|
488 |
+
for t in tensors:
|
489 |
+
tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i))
|
490 |
+
tensors = tensors_local
|
491 |
+
return tensors
|
492 |
+
|
493 |
+
def merge_partitions(self, partitions):
|
494 |
+
"""Merge partitions back to original shape."""
|
495 |
+
|
496 |
+
for (i, indices) in reversed(self._splits):
|
497 |
+
n = len(indices) + 1
|
498 |
+
partial_merged_tensors = []
|
499 |
+
ind = 0
|
500 |
+
while ind < len(partitions):
|
501 |
+
partial_merged_tensors.append(
|
502 |
+
jnp.concatenate(partitions[ind:ind + n], axis=i))
|
503 |
+
ind += n
|
504 |
+
partitions = partial_merged_tensors
|
505 |
+
assert len(partitions) == 1
|
506 |
+
return partitions[0]
|
507 |
+
|
508 |
+
|
509 |
+
class Preconditioner:
|
510 |
+
"""Compute statistics/shape from gradients for preconditioning."""
|
511 |
+
|
512 |
+
def __init__(self, param, block_size, best_effort_shape_interpretation):
|
513 |
+
self._original_shape = param.shape
|
514 |
+
self._transformed_shape = param.shape
|
515 |
+
if best_effort_shape_interpretation:
|
516 |
+
self._transformed_shape = merge_small_dims(self._original_shape,
|
517 |
+
block_size)
|
518 |
+
reshaped_param = jnp.reshape(param, self._transformed_shape)
|
519 |
+
self._partitioner = BlockPartitioner(reshaped_param, block_size)
|
520 |
+
|
521 |
+
def statistics_from_grad(self, grad):
|
522 |
+
"""Compute statistics from gradients.
|
523 |
+
|
524 |
+
Args:
|
525 |
+
grad: Gradient to compute statistics from.
|
526 |
+
|
527 |
+
Returns:
|
528 |
+
A list of gradient statistics for each partition.
|
529 |
+
"""
|
530 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
531 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
532 |
+
stats = []
|
533 |
+
for g in partitioned_grads:
|
534 |
+
g_stats = []
|
535 |
+
rank = len(g.shape)
|
536 |
+
for i in range(rank):
|
537 |
+
axes = list(range(i)) + list(range(i + 1, rank))
|
538 |
+
stat = jnp.tensordot(g, g, axes=(axes, axes))
|
539 |
+
g_stats.append(stat)
|
540 |
+
stats.extend(g_stats)
|
541 |
+
return stats
|
542 |
+
|
543 |
+
def shapes_for_preconditioners(self):
|
544 |
+
"""Returns shape from statistics."""
|
545 |
+
return self._partitioner.shapes_for_preconditioners()
|
546 |
+
|
547 |
+
def exponent_for_preconditioner(self):
|
548 |
+
"""Returns exponent to use for inverse-pth root M^{-1/p}."""
|
549 |
+
return 2 * len(self._transformed_shape)
|
550 |
+
|
551 |
+
def preconditioned_grad(self, grad, preconditioners):
|
552 |
+
"""Precondition the gradient.
|
553 |
+
|
554 |
+
Args:
|
555 |
+
grad: A gradient tensor to precondition.
|
556 |
+
preconditioners: A list of preconditioners to apply.
|
557 |
+
|
558 |
+
Returns:
|
559 |
+
A preconditioned gradient.
|
560 |
+
"""
|
561 |
+
|
562 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
563 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
564 |
+
preconditioned_partitioned_grads = []
|
565 |
+
num_splits = self._partitioner.num_splits()
|
566 |
+
for i, g in enumerate(partitioned_grads):
|
567 |
+
preconditioners_for_grad = preconditioners[i * num_splits:(i + 1) *
|
568 |
+
num_splits]
|
569 |
+
rank = len(g.shape)
|
570 |
+
precond_g = g
|
571 |
+
for j in range(rank):
|
572 |
+
precond_g = jnp.tensordot(
|
573 |
+
precond_g, preconditioners_for_grad[j], axes=[[0], [0]])
|
574 |
+
preconditioned_partitioned_grads.append(precond_g)
|
575 |
+
merged_grad = self._partitioner.merge_partitions(
|
576 |
+
preconditioned_partitioned_grads)
|
577 |
+
return jnp.reshape(merged_grad, self._original_shape)
|
578 |
+
|
579 |
+
|
580 |
+
def _convert_to_parameter_stats(global_stats, local_stat):
|
581 |
+
"""Creates parameter stats from sharded stats."""
|
582 |
+
index_start = int(local_stat.index_start)
|
583 |
+
index_end = int(len(local_stat.sizes)) + index_start
|
584 |
+
statistics = global_stats.statistics[index_start:index_end, :, :]
|
585 |
+
preconditioners = global_stats.preconditioners[index_start:index_end, :, :]
|
586 |
+
new_statistics = []
|
587 |
+
new_preconditioners = []
|
588 |
+
for i, size in enumerate(local_stat.sizes):
|
589 |
+
new_statistics.append(statistics[i][:size, :size])
|
590 |
+
new_preconditioners.append(preconditioners[i][:size, :size])
|
591 |
+
return ParameterStats(local_stat.diagonal_statistics, new_statistics,
|
592 |
+
new_preconditioners, local_stat.diagonal_momentum,
|
593 |
+
local_stat.momentum)
|
594 |
+
|
595 |
+
|
596 |
+
def _convert_from_parameter_stats(parameter_stats, local_stats):
|
597 |
+
"""Creates sharded stats from paramter stats."""
|
598 |
+
return LocalShardedParameterStats(parameter_stats.diagonal_statistics,
|
599 |
+
parameter_stats.diagonal_momentum,
|
600 |
+
parameter_stats.momentum,
|
601 |
+
local_stats.index_start, local_stats.sizes)
|
602 |
+
|
603 |
+
|
604 |
+
def batch(x, num_devices):
|
605 |
+
"""Batch `x` so that so that leading axis is num_devices."""
|
606 |
+
n = len(x)
|
607 |
+
b = int(n / num_devices)
|
608 |
+
return jnp.stack([jnp.stack(x[idx:idx + b]) for idx in range(0, n, b)])
|
609 |
+
|
610 |
+
|
611 |
+
def unbatch(batched_values):
|
612 |
+
"""Unbatch values across leading axis and return a list of elements."""
|
613 |
+
b1, b2 = batched_values.shape[0], batched_values.shape[1]
|
614 |
+
results = []
|
615 |
+
for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0):
|
616 |
+
v_array = jnp.squeeze(v_array)
|
617 |
+
# b2 = batches (number of preconditioner computation) per core.
|
618 |
+
if b2 > 1:
|
619 |
+
for v in jnp.split(v_array, indices_or_sections=b2, axis=0):
|
620 |
+
results.append(jnp.squeeze(v))
|
621 |
+
else:
|
622 |
+
results.append(v_array)
|
623 |
+
return results
|
624 |
+
|
625 |
+
|
626 |
+
def distributed_shampoo(
|
627 |
+
learning_rate,
|
628 |
+
block_size,
|
629 |
+
beta1=0.9,
|
630 |
+
beta2=0.999,
|
631 |
+
diagonal_epsilon=1e-10,
|
632 |
+
matrix_epsilon=1e-6,
|
633 |
+
weight_decay=0.0,
|
634 |
+
start_preconditioning_step=5,
|
635 |
+
preconditioning_compute_steps=1,
|
636 |
+
statistics_compute_steps=1,
|
637 |
+
best_effort_shape_interpretation=True,
|
638 |
+
graft_type=GraftingType.SGD,
|
639 |
+
nesterov=True,
|
640 |
+
exponent_override=0,
|
641 |
+
# Pass pmap 'batch axis name' in pmap mode.
|
642 |
+
batch_axis_name=None,
|
643 |
+
### Only set following 3 params in pjit/spmd mode.
|
644 |
+
### WARNING: Experimental
|
645 |
+
mesh_axis_names=None,
|
646 |
+
num_devices_for_pjit=None,
|
647 |
+
shard_optimizer_states=False,
|
648 |
+
###
|
649 |
+
### Experimental memory reduction mode
|
650 |
+
best_effort_memory_usage_reduction=False,
|
651 |
+
###
|
652 |
+
inverse_failure_threshold=0.1,
|
653 |
+
moving_average_for_momentum=False,
|
654 |
+
skip_preconditioning_dim_size_gt=4096,
|
655 |
+
clip_by_scaled_gradient_norm=None,
|
656 |
+
precision=lax.Precision.HIGHEST):
|
657 |
+
"""Distributed Shampoo optimizer.
|
658 |
+
|
659 |
+
Distributed Shampoo is a second-order preconditioned method (concretely, a
|
660 |
+
variant of full-matrix Adagrad), that provides significant convergence and
|
661 |
+
wall-clock time improvements compared to conventional first-order methods,
|
662 |
+
and that has been shown to scale to large state-of-the-art deep learning
|
663 |
+
models.
|
664 |
+
|
665 |
+
References:
|
666 |
+
Scalable Second Order Optimization for Deep Learning,
|
667 |
+
Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
668 |
+
|
669 |
+
Preprint: https://arxiv.org/abs/2002.09018
|
670 |
+
|
671 |
+
Args:
|
672 |
+
learning_rate: the step size used to update the parameters.
|
673 |
+
block_size: Block size for large layers (if > 0). Preconditioning compute
|
674 |
+
operation is cubic in the dimension of the tensor. Block size allows us to
|
675 |
+
chunk the layers into sub-layers of maximal dimension dictated by this
|
676 |
+
value. Use 128 as default (increase if you have compute budget).
|
677 |
+
beta1: momentum parameter.
|
678 |
+
beta2: second moment averaging parameter.
|
679 |
+
diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting
|
680 |
+
to AdaGrad is enabled).
|
681 |
+
matrix_epsilon: epsilon to add to statistics before computing inverse pth
|
682 |
+
root. If you are running in f32 precision for inverse pth root
|
683 |
+
(recommended today) this can go upto 1e-6. If you have latest hardware
|
684 |
+
with native f64 precision, set this upto 1e-12.
|
685 |
+
weight_decay: Weight decay for regularization.
|
686 |
+
start_preconditioning_step: When to start Shampoo update before which
|
687 |
+
diagonal update is used. This is because we dont have enough information
|
688 |
+
to do stable inverse.
|
689 |
+
preconditioning_compute_steps: How often to compute preconditioner.
|
690 |
+
Performance tuning params for controlling memory and compute requirements.
|
691 |
+
Ideally set this and statistics_compute_steps params to 1.
|
692 |
+
statistics_compute_steps: How often to compute statistics.
|
693 |
+
best_effort_shape_interpretation: If there are some small dimensions,
|
694 |
+
collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if
|
695 |
+
block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
696 |
+
graft_type: Grafting is a technique to fix the layerwise scale of Shampoo
|
697 |
+
optimizer. This allows us to plugin the Shampoo optimizer into settings
|
698 |
+
where SGD/AdaGrad is already well tuned. Available options are:
|
699 |
+
GraftingType.SGD and GraftingType.ADAGRAD.
|
700 |
+
nesterov: Nesterov momentum.
|
701 |
+
exponent_override: Override the exponent used in matrix inverse.
|
702 |
+
batch_axis_name: labeled axis over pmap for data-parallel training the
|
703 |
+
optimizer used for.
|
704 |
+
mesh_axis_names: Axis names for the mesh (used in pjit).
|
705 |
+
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
706 |
+
shard_optimizer_states: Shard optimizer states to save memory in model
|
707 |
+
parallel training.
|
708 |
+
best_effort_memory_usage_reduction: Best effort memory usage reduction.
|
709 |
+
diagonal_statistics -> jnp.bfloat16
|
710 |
+
momentum buffers (2x) -> jnp.int8
|
711 |
+
statistics, preconditioners -> jnp.int16 + diagonals
|
712 |
+
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
713 |
+
determine that using this threshold.
|
714 |
+
moving_average_for_momentum: Whether to use moving average for momentum
|
715 |
+
instead of exponential moving average.
|
716 |
+
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
717 |
+
greater than this value.
|
718 |
+
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful
|
719 |
+
when using RMSProp Grafting).
|
720 |
+
precision: precision XLA related flag, the available options are: a)
|
721 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
722 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
723 |
+
(best possible precision, slowest)
|
724 |
+
|
725 |
+
Returns:
|
726 |
+
a GradientTransformation.
|
727 |
+
"""
|
728 |
+
|
729 |
+
def quantized_dtype_for_momentum_buffers():
|
730 |
+
return jnp.int8 if best_effort_memory_usage_reduction else jnp.float32
|
731 |
+
|
732 |
+
# TODO(rohananil): Explore int8-16 quantization with non-linear bucket sizes.
|
733 |
+
def quantized_dtype_for_diagonal_statistics_buffers():
|
734 |
+
return jnp.bfloat16 if best_effort_memory_usage_reduction else jnp.float32
|
735 |
+
|
736 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
737 |
+
# We take out the diagonal to make quantization easier.
|
738 |
+
def quantized_dtype_for_second_moment_statistics_buffers():
|
739 |
+
return jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32
|
740 |
+
|
741 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
742 |
+
# We take out the diagonal to make quantization easier.
|
743 |
+
def quantized_dtype_for_second_moment_preconditioner_buffers():
|
744 |
+
return jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32
|
745 |
+
|
746 |
+
def _to_float(maybe_quantized):
|
747 |
+
if isinstance(maybe_quantized, QuantizedValue):
|
748 |
+
return maybe_quantized.to_float()
|
749 |
+
else:
|
750 |
+
return maybe_quantized
|
751 |
+
|
752 |
+
def _maybe_quantize_statistics(statistics_list):
|
753 |
+
return _maybe_quantize_matrices_with_dtype(
|
754 |
+
statistics_list, quantized_dtype_for_second_moment_statistics_buffers())
|
755 |
+
|
756 |
+
def _maybe_quantize_preconditioners(statistics_list):
|
757 |
+
return _maybe_quantize_matrices_with_dtype(
|
758 |
+
statistics_list,
|
759 |
+
quantized_dtype_for_second_moment_preconditioner_buffers())
|
760 |
+
|
761 |
+
def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
762 |
+
if quantized_dtype != jnp.float32:
|
763 |
+
return ([
|
764 |
+
QuantizedValue.from_float_value(
|
765 |
+
s, quantized_dtype, extract_diagonal=True)
|
766 |
+
for s in statistics_list
|
767 |
+
])
|
768 |
+
else:
|
769 |
+
return statistics_list
|
770 |
+
|
771 |
+
def _maybe_dequantize_preconditioners(preconditioner_list):
|
772 |
+
return _maybe_dequantize_matrices_with_dtype(
|
773 |
+
preconditioner_list,
|
774 |
+
quantized_dtype_for_second_moment_preconditioner_buffers())
|
775 |
+
|
776 |
+
def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
777 |
+
if quantized_dtype != jnp.float32:
|
778 |
+
return [s.to_float() for s in statistics_list]
|
779 |
+
else:
|
780 |
+
return statistics_list
|
781 |
+
|
782 |
+
def _quantize_diagonal_statistics(diagonal_statistics):
|
783 |
+
return QuantizedValue.from_float_value(
|
784 |
+
diagonal_statistics, quantized_dtype_for_diagonal_statistics_buffers())
|
785 |
+
|
786 |
+
def _quantize_momentum(momentum_statistics):
|
787 |
+
return QuantizedValue.from_float_value(
|
788 |
+
momentum_statistics, quantized_dtype_for_momentum_buffers())
|
789 |
+
|
790 |
+
def sharded_init_fn(params):
|
791 |
+
params_flat, treedef = jax.tree_flatten(params)
|
792 |
+
# Find max size to pad to.
|
793 |
+
max_size = 0
|
794 |
+
for param in params_flat:
|
795 |
+
preconditioner = Preconditioner(param, block_size,
|
796 |
+
best_effort_shape_interpretation)
|
797 |
+
if not _skip_preconditioning(param):
|
798 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
799 |
+
sizes = [s[0] for s in shapes]
|
800 |
+
max_size = max(max(sizes), max_size)
|
801 |
+
|
802 |
+
padded_statistics = []
|
803 |
+
padded_preconditioners = []
|
804 |
+
local_stats_flat = []
|
805 |
+
for param in params_flat:
|
806 |
+
preconditioner = Preconditioner(param, block_size,
|
807 |
+
best_effort_shape_interpretation)
|
808 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
809 |
+
sizes = []
|
810 |
+
|
811 |
+
statistics = []
|
812 |
+
preconditioners = []
|
813 |
+
index_start = len(padded_statistics)
|
814 |
+
if not _skip_preconditioning(param):
|
815 |
+
sizes = [s[0] for s in shapes]
|
816 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
817 |
+
statistics = [matrix_epsilon * jnp.eye(max_size) for s in shapes]
|
818 |
+
preconditioners = [jnp.eye(max_size) for s in shapes]
|
819 |
+
padded_statistics.extend(statistics)
|
820 |
+
padded_preconditioners.extend(preconditioners)
|
821 |
+
|
822 |
+
diagonal_statistics = []
|
823 |
+
if graft_type != GraftingType.SGD:
|
824 |
+
diagonal_statistics = jnp.zeros_like(param)
|
825 |
+
local_stats_flat.append(
|
826 |
+
LocalShardedParameterStats(
|
827 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
828 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
829 |
+
_quantize_momentum(jnp.zeros_like(param)), index_start, sizes))
|
830 |
+
|
831 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
832 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
833 |
+
# num devices.
|
834 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
835 |
+
# is split on.
|
836 |
+
to_pad = -len(padded_statistics) % num_devices_for_pjit
|
837 |
+
padded_statistics.extend([
|
838 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
839 |
+
for _ in range(to_pad)
|
840 |
+
])
|
841 |
+
padded_preconditioners.extend([
|
842 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
843 |
+
for _ in range(to_pad)
|
844 |
+
])
|
845 |
+
global_stats = GlobalShardedParameterStats(
|
846 |
+
jnp.stack(padded_statistics), jnp.stack(padded_preconditioners))
|
847 |
+
return ShampooState(
|
848 |
+
count=jnp.zeros([], jnp.int32),
|
849 |
+
stats=ShardedShampooStats(global_stats, local_stats))
|
850 |
+
|
851 |
+
def sharded_update_fn(grads, state, params):
|
852 |
+
"""Transform the input gradient and update all statistics in sharded mode.
|
853 |
+
|
854 |
+
Args:
|
855 |
+
grads: the gradient tensors for the parameters.
|
856 |
+
state: a named tuple containing the state of the optimizer
|
857 |
+
params: the parameters that should be updated.
|
858 |
+
|
859 |
+
Returns:
|
860 |
+
A tuple containing the new parameters and the new optimizer state.
|
861 |
+
"""
|
862 |
+
params_flat, treedef = jax.tree_flatten(params)
|
863 |
+
grads_flat = treedef.flatten_up_to(grads)
|
864 |
+
|
865 |
+
global_stats = state.stats.global_stats
|
866 |
+
local_stats_flat = treedef.flatten_up_to(state.stats.local_stats)
|
867 |
+
stats_flat = [
|
868 |
+
_convert_to_parameter_stats(global_stats, local_stat)
|
869 |
+
for local_stat in local_stats_flat
|
870 |
+
]
|
871 |
+
new_stats_flat = jax.tree_multimap(
|
872 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat,
|
873 |
+
stats_flat, params_flat)
|
874 |
+
|
875 |
+
exponents = []
|
876 |
+
for stat, param in zip(new_stats_flat, params_flat):
|
877 |
+
num_statistics = len(stat.statistics)
|
878 |
+
if num_statistics > 0:
|
879 |
+
preconditioner = Preconditioner(param, block_size,
|
880 |
+
best_effort_shape_interpretation)
|
881 |
+
exponent = (
|
882 |
+
preconditioner.exponent_for_preconditioner()
|
883 |
+
if exponent_override == 0 else exponent_override)
|
884 |
+
exponents.extend([exponent] * num_statistics)
|
885 |
+
|
886 |
+
outputs = jax.tree_multimap(
|
887 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat,
|
888 |
+
new_stats_flat, params_flat)
|
889 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
890 |
+
|
891 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
892 |
+
# Create new local_stats
|
893 |
+
new_local_stats_flat = [
|
894 |
+
_convert_from_parameter_stats(new_stat, local_stat)
|
895 |
+
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
896 |
+
]
|
897 |
+
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
898 |
+
|
899 |
+
max_size = global_stats.statistics.shape[1]
|
900 |
+
new_padded_statistics = []
|
901 |
+
for stat in new_stats_flat:
|
902 |
+
new_padded_statistics.extend(
|
903 |
+
[pad_matrix(stat, max_size) for stat in stat.statistics])
|
904 |
+
|
905 |
+
# Create global stats
|
906 |
+
# TODO(rohananil): Preconditioner is not updated every step, so cost of
|
907 |
+
# stack/pad can be obviated away.
|
908 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
909 |
+
# num devices.
|
910 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
911 |
+
# is split on.
|
912 |
+
to_pad = -len(new_padded_statistics) % num_devices_for_pjit
|
913 |
+
new_padded_statistics.extend([
|
914 |
+
jnp.eye(max_size, dtype=new_padded_statistics[0].dtype)
|
915 |
+
for _ in range(to_pad)
|
916 |
+
])
|
917 |
+
exponents.extend([1 for _ in range(to_pad)])
|
918 |
+
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
919 |
+
new_stacked_exponents = jnp.stack(exponents)
|
920 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
921 |
+
mi_pth_root = functools.partial(
|
922 |
+
matrix_inverse_pth_root,
|
923 |
+
ridge_epsilon=matrix_epsilon,
|
924 |
+
precision=precision)
|
925 |
+
preconditioners, errors = jax.vmap(mi_pth_root)(xs, ps)
|
926 |
+
return preconditioners, errors
|
927 |
+
|
928 |
+
def _internal_inverse_pth_root_all():
|
929 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
930 |
+
new_stacked_padded_statistics, new_stacked_exponents)
|
931 |
+
return preconditioners, errors
|
932 |
+
|
933 |
+
if preconditioning_compute_steps == 1:
|
934 |
+
new_preconditioners, errors = _internal_inverse_pth_root_all()
|
935 |
+
else:
|
936 |
+
# Passing statistics instead of preconditioners as they are similarly
|
937 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
938 |
+
# a large init value for error.
|
939 |
+
preconditioners_init = new_stacked_padded_statistics
|
940 |
+
errors_init = np.stack([inverse_failure_threshold] * len(exponents))
|
941 |
+
init_state = [preconditioners_init, errors_init]
|
942 |
+
perform_step = state.count % preconditioning_compute_steps == 0
|
943 |
+
new_preconditioners, errors = efficient_cond(
|
944 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
945 |
+
|
946 |
+
errors = errors.reshape((-1, 1, 1))
|
947 |
+
predicate = jnp.logical_or(
|
948 |
+
jnp.isnan(errors),
|
949 |
+
errors >= inverse_failure_threshold).astype(new_preconditioners.dtype)
|
950 |
+
# TODO(rohananil): Check for numerical instabilities.
|
951 |
+
new_conditional_preconditioners = (
|
952 |
+
predicate * global_stats.preconditioners +
|
953 |
+
(1.0 - predicate) * new_preconditioners)
|
954 |
+
new_global_stats = GlobalShardedParameterStats(
|
955 |
+
new_stacked_padded_statistics, new_conditional_preconditioners)
|
956 |
+
new_shampoo_state = ShampooState(
|
957 |
+
count=state.count + 1,
|
958 |
+
stats=ShardedShampooStats(new_global_stats, new_local_stats))
|
959 |
+
return updates, new_shampoo_state
|
960 |
+
|
961 |
+
def init_fn(params):
|
962 |
+
"""Initialise the optimiser's state."""
|
963 |
+
|
964 |
+
def _init(param):
|
965 |
+
preconditioner = Preconditioner(param, block_size,
|
966 |
+
best_effort_shape_interpretation)
|
967 |
+
statistics = []
|
968 |
+
preconditioners = []
|
969 |
+
if not _skip_preconditioning(param):
|
970 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
971 |
+
statistics = [matrix_epsilon * jnp.eye(s[0]) for s in shapes]
|
972 |
+
preconditioners = [jnp.eye(s[0]) for s in shapes]
|
973 |
+
|
974 |
+
diagonal_statistics = []
|
975 |
+
if graft_type != GraftingType.SGD:
|
976 |
+
diagonal_statistics = jnp.zeros_like(param)
|
977 |
+
return ParameterStats(
|
978 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
979 |
+
_maybe_quantize_statistics(statistics),
|
980 |
+
_maybe_quantize_preconditioners(preconditioners),
|
981 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
982 |
+
_quantize_momentum(jnp.zeros_like(param)))
|
983 |
+
return ShampooState(
|
984 |
+
count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params))
|
985 |
+
|
986 |
+
def _skip_preconditioning(param):
|
987 |
+
return len(param.shape) < 1 or any(
|
988 |
+
[s > skip_preconditioning_dim_size_gt for s in param.shape])
|
989 |
+
|
990 |
+
def _compute_stats(grad, state, param, step):
|
991 |
+
"""Compute per-parameter statistics."""
|
992 |
+
preconditioner = Preconditioner(param, block_size,
|
993 |
+
best_effort_shape_interpretation)
|
994 |
+
new_statistics = [[]] * len(state.statistics)
|
995 |
+
w1 = beta2
|
996 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
997 |
+
if not _skip_preconditioning(param):
|
998 |
+
|
999 |
+
def compute_updated_statistics():
|
1000 |
+
new_stats = preconditioner.statistics_from_grad(grad)
|
1001 |
+
new_stats_accumulators = []
|
1002 |
+
for stat, stat_accumulator in zip(new_stats, state.statistics):
|
1003 |
+
new_stats_accumulators.append(w1 * _to_float(stat_accumulator) +
|
1004 |
+
w2 * stat)
|
1005 |
+
return _maybe_quantize_statistics(new_stats_accumulators)
|
1006 |
+
|
1007 |
+
if statistics_compute_steps > 1:
|
1008 |
+
perform_step = step % statistics_compute_steps == 0
|
1009 |
+
init_state = state.statistics
|
1010 |
+
new_statistics = list(
|
1011 |
+
efficient_cond(perform_step, compute_updated_statistics,
|
1012 |
+
init_state))
|
1013 |
+
else:
|
1014 |
+
new_statistics = compute_updated_statistics()
|
1015 |
+
return ParameterStats(state.diagonal_statistics, new_statistics,
|
1016 |
+
state.preconditioners, state.diagonal_momentum,
|
1017 |
+
state.momentum)
|
1018 |
+
|
1019 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
1020 |
+
mi_pth_root = functools.partial(
|
1021 |
+
matrix_inverse_pth_root,
|
1022 |
+
ridge_epsilon=matrix_epsilon,
|
1023 |
+
precision=precision)
|
1024 |
+
return jax.vmap(mi_pth_root)(xs, ps)
|
1025 |
+
|
1026 |
+
def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps):
|
1027 |
+
|
1028 |
+
def _quantized_to_float(qx, qd, qb):
|
1029 |
+
qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape))
|
1030 |
+
return qv.to_float()
|
1031 |
+
|
1032 |
+
def matrix_inverse_pth_root_wrapper(qx, qd, qb, p):
|
1033 |
+
v = _quantized_to_float(qx, qd, qb)
|
1034 |
+
preconditioner, error = matrix_inverse_pth_root(
|
1035 |
+
v, p, ridge_epsilon=matrix_epsilon, precision=precision)
|
1036 |
+
qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True)
|
1037 |
+
return qp.quantized, qp.diagonal, qp.bucket_size, error
|
1038 |
+
|
1039 |
+
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
1040 |
+
|
1041 |
+
def _matrix_inverse_pth_root_pjit(xs, ps):
|
1042 |
+
mesh_axis_names_tuple = tuple(mesh_axis_names)
|
1043 |
+
# Partition the concatenated statistics matrix across all cores.
|
1044 |
+
partitioned_xs, partitioned_ps = pjit.pjit(
|
1045 |
+
lambda x, y: (x, y),
|
1046 |
+
in_axis_resources=None,
|
1047 |
+
out_axis_resources=pjit.PartitionSpec(mesh_axis_names_tuple,))(xs, ps)
|
1048 |
+
# Run matrix inverse pth root on each shard.
|
1049 |
+
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
1050 |
+
partitioned_xs, partitioned_ps)
|
1051 |
+
# Recombine the outputs at each core.
|
1052 |
+
preconditioners, errors = pjit.pjit(
|
1053 |
+
lambda x, y: (x, y),
|
1054 |
+
in_axis_resources=(pjit.PartitionSpec(mesh_axis_names_tuple,),
|
1055 |
+
pjit.PartitionSpec(mesh_axis_names_tuple,)),
|
1056 |
+
out_axis_resources=(None, None))(partitioned_preconditioners,
|
1057 |
+
partitioned_errors)
|
1058 |
+
return preconditioners, errors
|
1059 |
+
|
1060 |
+
def _pmap_compute_preconditioners(states, step, statistics,
|
1061 |
+
num_statistics_per_state, original_shapes,
|
1062 |
+
exponents, max_size, prev_preconditioners):
|
1063 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
1064 |
+
|
1065 |
+
Args:
|
1066 |
+
states: A list of optimizer states.
|
1067 |
+
step: Current step number
|
1068 |
+
statistics: A list of statistics for all variables (for every dim)
|
1069 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1070 |
+
output states.
|
1071 |
+
original_shapes: A list of shapes of the statistics.
|
1072 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1073 |
+
max_size: Maximum dim of the statistics to pad.
|
1074 |
+
prev_preconditioners: Previously available preconditioner.
|
1075 |
+
|
1076 |
+
Returns:
|
1077 |
+
New optimizer states after computing the preconditioner.
|
1078 |
+
"""
|
1079 |
+
num_devices = lax.psum(1, batch_axis_name)
|
1080 |
+
num_statistics = len(statistics)
|
1081 |
+
# Pad statistics and exponents to next multiple of num_devices.
|
1082 |
+
packed_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
1083 |
+
to_pad = -num_statistics % num_devices
|
1084 |
+
packed_statistics.extend([
|
1085 |
+
jnp.eye(max_size, dtype=packed_statistics[0].dtype)
|
1086 |
+
for _ in range(to_pad)
|
1087 |
+
])
|
1088 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1089 |
+
|
1090 |
+
if not packed_statistics:
|
1091 |
+
return states
|
1092 |
+
|
1093 |
+
all_statistics = batch(packed_statistics, num_devices)
|
1094 |
+
all_exponents = batch(exponents, num_devices)
|
1095 |
+
|
1096 |
+
def _internal_inverse_pth_root_all():
|
1097 |
+
current_replica = lax.axis_index(batch_axis_name)
|
1098 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
1099 |
+
all_statistics[current_replica], all_exponents[current_replica])
|
1100 |
+
preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name)
|
1101 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
1102 |
+
preconditioners_flat = unbatch(preconditioners)
|
1103 |
+
errors_flat = unbatch(errors)
|
1104 |
+
return preconditioners_flat, errors_flat
|
1105 |
+
|
1106 |
+
if preconditioning_compute_steps == 1:
|
1107 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
1108 |
+
else:
|
1109 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1110 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1111 |
+
# a large init value for error.
|
1112 |
+
preconditioners_init = packed_statistics
|
1113 |
+
errors_init = ([inverse_failure_threshold] * len(packed_statistics))
|
1114 |
+
init_state = [preconditioners_init, errors_init]
|
1115 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1116 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
1117 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
1118 |
+
|
1119 |
+
def _skip(error):
|
1120 |
+
condition = jnp.logical_or(
|
1121 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
1122 |
+
return condition.astype(error.dtype)
|
1123 |
+
|
1124 |
+
def _select_preconditioner(error, new_p, old_p):
|
1125 |
+
return lax.cond(
|
1126 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
1127 |
+
|
1128 |
+
new_preconditioners_flat = []
|
1129 |
+
for p, shape, prev_p, error in zip(preconditioners_flat, original_shapes,
|
1130 |
+
prev_preconditioners, errors_flat):
|
1131 |
+
new_preconditioners_flat.append(
|
1132 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]], prev_p))
|
1133 |
+
|
1134 |
+
assert len(states) == len(num_statistics_per_state)
|
1135 |
+
assert len(new_preconditioners_flat) == num_statistics
|
1136 |
+
|
1137 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1138 |
+
preconditioners_for_states = []
|
1139 |
+
idx = 0
|
1140 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1141 |
+
if num_statistics == 0:
|
1142 |
+
preconditioners_for_states.append([])
|
1143 |
+
else:
|
1144 |
+
preconditioners_for_state = new_preconditioners_flat[idx:idx +
|
1145 |
+
num_statistics]
|
1146 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
1147 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
1148 |
+
idx += num_statistics
|
1149 |
+
new_states = []
|
1150 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1151 |
+
new_states.append(
|
1152 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
1153 |
+
new_preconditioners, state.diagonal_momentum,
|
1154 |
+
state.momentum))
|
1155 |
+
|
1156 |
+
return new_states
|
1157 |
+
|
1158 |
+
def _pmap_quantized_compute_preconditioners(states, step, statistics,
|
1159 |
+
num_statistics_per_state,
|
1160 |
+
original_shapes, exponents,
|
1161 |
+
max_size, prev_preconditioners):
|
1162 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
1163 |
+
|
1164 |
+
For quantization, each statistic is represented by three values:
|
1165 |
+
quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots
|
1166 |
+
without ever recreating the original matrix in f32.
|
1167 |
+
|
1168 |
+
Args:
|
1169 |
+
states: A list of optimizer states.
|
1170 |
+
step: Current step number
|
1171 |
+
statistics: A list of statistics for all variables (for every dim)
|
1172 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1173 |
+
output states.
|
1174 |
+
original_shapes: A list of shapes of the statistics.
|
1175 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1176 |
+
max_size: Maximum dim of the statistics to pad.
|
1177 |
+
prev_preconditioners: Previously available preconditioner.
|
1178 |
+
|
1179 |
+
Returns:
|
1180 |
+
New optimizer states after computing the preconditioner.
|
1181 |
+
"""
|
1182 |
+
num_devices = lax.psum(1, batch_axis_name)
|
1183 |
+
num_statistics = len(statistics)
|
1184 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
1185 |
+
# Complexity here is around: shapes needing be statically shaped,
|
1186 |
+
# our custom quantization type requires a different type of packing.
|
1187 |
+
|
1188 |
+
# Parallel tensors:
|
1189 |
+
# quantized [dxd]
|
1190 |
+
# diagonals [d] f32
|
1191 |
+
# bucket_sizes [d] f32
|
1192 |
+
packed_quantized_statistics = [
|
1193 |
+
pad_matrix(stat.quantized, max_size) for stat in statistics
|
1194 |
+
]
|
1195 |
+
packed_quantized_diagonals = [
|
1196 |
+
pad_vector(stat.diagonal, max_size) for stat in statistics
|
1197 |
+
]
|
1198 |
+
packed_quantized_bucket_sizes = [
|
1199 |
+
pad_vector(stat.bucket_size, max_size) for stat in statistics
|
1200 |
+
]
|
1201 |
+
|
1202 |
+
to_pad = -num_statistics % num_devices
|
1203 |
+
padded_eye = jnp.eye(max_size, dtype=jnp.float32)
|
1204 |
+
quantized_eye = QuantizedValue.from_float_value(padded_eye, quantized_dtype,
|
1205 |
+
True)
|
1206 |
+
packed_quantized_statistics.extend(
|
1207 |
+
[quantized_eye.quantized for _ in range(to_pad)])
|
1208 |
+
packed_quantized_diagonals.extend(
|
1209 |
+
[quantized_eye.diagonal for _ in range(to_pad)])
|
1210 |
+
packed_quantized_bucket_sizes.extend(
|
1211 |
+
[quantized_eye.bucket_size for _ in range(to_pad)])
|
1212 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1213 |
+
|
1214 |
+
if not packed_quantized_statistics:
|
1215 |
+
return states
|
1216 |
+
|
1217 |
+
all_quantized_statistics = batch(packed_quantized_statistics, num_devices)
|
1218 |
+
all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices)
|
1219 |
+
all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes,
|
1220 |
+
num_devices)
|
1221 |
+
all_exponents = batch(exponents, num_devices)
|
1222 |
+
|
1223 |
+
def _internal_inverse_pth_root_all():
|
1224 |
+
current_replica = lax.axis_index(batch_axis_name)
|
1225 |
+
quantized_preconditioners, quantized_diagonals, quantized_bucket_sizes, errors = (
|
1226 |
+
_quantized_matrix_inverse_pth_root_vmap(
|
1227 |
+
all_quantized_statistics[current_replica],
|
1228 |
+
all_quantized_diagonals[current_replica],
|
1229 |
+
all_quantized_bucket_sizes[current_replica],
|
1230 |
+
all_exponents[current_replica]))
|
1231 |
+
quantized_preconditioners = jax.lax.all_gather(quantized_preconditioners,
|
1232 |
+
batch_axis_name)
|
1233 |
+
quantized_diagonals = jax.lax.all_gather(quantized_diagonals,
|
1234 |
+
batch_axis_name)
|
1235 |
+
quantized_bucket_sizes = jax.lax.all_gather(quantized_bucket_sizes,
|
1236 |
+
batch_axis_name)
|
1237 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
1238 |
+
quantized_preconditioners_flat = unbatch(quantized_preconditioners)
|
1239 |
+
quantized_diagonals_flat = unbatch(quantized_diagonals)
|
1240 |
+
quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes)
|
1241 |
+
errors_flat = unbatch(errors)
|
1242 |
+
return (quantized_preconditioners_flat, quantized_diagonals_flat,
|
1243 |
+
quantized_bucket_sizes_flat, errors_flat)
|
1244 |
+
|
1245 |
+
if preconditioning_compute_steps == 1:
|
1246 |
+
(quantized_preconditioners_flat, quantized_diagonals_flat,
|
1247 |
+
quantized_bucket_sizes_flat, errors_flat) = (
|
1248 |
+
_internal_inverse_pth_root_all())
|
1249 |
+
else:
|
1250 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1251 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1252 |
+
# a large init value for error.
|
1253 |
+
quantized_preconditioners_init = packed_quantized_statistics
|
1254 |
+
quantized_diagonals_init = packed_quantized_diagonals
|
1255 |
+
quantized_bucket_sizes_init = packed_quantized_bucket_sizes
|
1256 |
+
errors_init = ([inverse_failure_threshold] *
|
1257 |
+
len(quantized_preconditioners_init))
|
1258 |
+
init_state = [
|
1259 |
+
quantized_preconditioners_init, quantized_diagonals_init,
|
1260 |
+
quantized_bucket_sizes_init, errors_init
|
1261 |
+
]
|
1262 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1263 |
+
(quantized_preconditioners_flat, quantized_diagonals_flat,
|
1264 |
+
quantized_bucket_sizes_flat, errors_flat) = (
|
1265 |
+
efficient_cond(perform_step, _internal_inverse_pth_root_all,
|
1266 |
+
init_state))
|
1267 |
+
|
1268 |
+
def _skip(error):
|
1269 |
+
condition = jnp.logical_or(
|
1270 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
1271 |
+
return condition.astype(error.dtype)
|
1272 |
+
|
1273 |
+
def _select_preconditioner(error, new_p, old_p):
|
1274 |
+
return lax.cond(
|
1275 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
1276 |
+
|
1277 |
+
new_quantized_preconditioners_flat = []
|
1278 |
+
new_quantized_diagonals_flat = []
|
1279 |
+
new_quantized_bucket_sizes_flat = []
|
1280 |
+
for p, d, b, shape, prev_p, error in zip(quantized_preconditioners_flat,
|
1281 |
+
quantized_diagonals_flat,
|
1282 |
+
quantized_bucket_sizes_flat,
|
1283 |
+
original_shapes,
|
1284 |
+
prev_preconditioners, errors_flat):
|
1285 |
+
new_quantized_preconditioners_flat.append(
|
1286 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]],
|
1287 |
+
prev_p.quantized))
|
1288 |
+
new_quantized_diagonals_flat.append(
|
1289 |
+
_select_preconditioner(error, d[:shape[0]], prev_p.diagonal))
|
1290 |
+
new_quantized_bucket_sizes_flat.append(
|
1291 |
+
_select_preconditioner(error, b[:shape[0]], prev_p.bucket_size))
|
1292 |
+
|
1293 |
+
assert len(states) == len(num_statistics_per_state)
|
1294 |
+
assert len(new_quantized_preconditioners_flat) == num_statistics
|
1295 |
+
assert len(new_quantized_diagonals_flat) == num_statistics
|
1296 |
+
assert len(new_quantized_bucket_sizes_flat) == num_statistics
|
1297 |
+
|
1298 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1299 |
+
preconditioners_for_states = []
|
1300 |
+
idx = 0
|
1301 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1302 |
+
if num_statistics == 0:
|
1303 |
+
preconditioners_for_states.append([])
|
1304 |
+
else:
|
1305 |
+
quantized_preconditioners_for_state = new_quantized_preconditioners_flat[
|
1306 |
+
idx:idx + num_statistics]
|
1307 |
+
quantized_diagonals_for_state = new_quantized_diagonals_flat[
|
1308 |
+
idx:idx + num_statistics]
|
1309 |
+
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
1310 |
+
idx:idx + num_statistics]
|
1311 |
+
|
1312 |
+
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
1313 |
+
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
1314 |
+
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
1315 |
+
|
1316 |
+
quantized_preconditioners = []
|
1317 |
+
for qv, qd, qb in zip(quantized_preconditioners_for_state,
|
1318 |
+
quantized_diagonals_for_state,
|
1319 |
+
quantized_bucket_sizes_for_state):
|
1320 |
+
quantized_preconditioners.append(
|
1321 |
+
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape)))
|
1322 |
+
preconditioners_for_states.append(quantized_preconditioners)
|
1323 |
+
idx += num_statistics
|
1324 |
+
new_states = []
|
1325 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1326 |
+
new_states.append(
|
1327 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
1328 |
+
new_preconditioners, state.diagonal_momentum,
|
1329 |
+
state.momentum))
|
1330 |
+
|
1331 |
+
return new_states
|
1332 |
+
|
1333 |
+
def _pjit_compute_preconditioners(states, step, statistics,
|
1334 |
+
num_statistics_per_state, original_shapes,
|
1335 |
+
exponents, max_size, prev_preconditioners):
|
1336 |
+
"""Computes preconditioners for given statistics in states in PJIT mode.
|
1337 |
+
|
1338 |
+
Args:
|
1339 |
+
states: A list of optimizer states.
|
1340 |
+
step: Current step number
|
1341 |
+
statistics: A list of statistics for all variables (for every dim)
|
1342 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1343 |
+
output states.
|
1344 |
+
original_shapes: A list of shapes of the statistics.
|
1345 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1346 |
+
max_size: Maximum dim of the statistics to pad.
|
1347 |
+
prev_preconditioners: Previously available preconditioner.
|
1348 |
+
|
1349 |
+
Returns:
|
1350 |
+
New optimizer states after computing the preconditioner.
|
1351 |
+
"""
|
1352 |
+
num_statistics = len(statistics)
|
1353 |
+
to_pad = -num_statistics % num_devices_for_pjit
|
1354 |
+
padded_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
1355 |
+
padded_statistics.extend([
|
1356 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
1357 |
+
for _ in range(to_pad)
|
1358 |
+
])
|
1359 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1360 |
+
all_statistics = jnp.stack(padded_statistics)
|
1361 |
+
all_exponents = jnp.stack(exponents)
|
1362 |
+
|
1363 |
+
def _internal_inverse_pth_root_all():
|
1364 |
+
preconditioners, errors = _matrix_inverse_pth_root_pjit(
|
1365 |
+
all_statistics, all_exponents)
|
1366 |
+
b1 = preconditioners.shape[0]
|
1367 |
+
|
1368 |
+
def split(batched_values):
|
1369 |
+
return [
|
1370 |
+
jnp.squeeze(v)
|
1371 |
+
for v in jnp.split(batched_values, indices_or_sections=b1, axis=0)
|
1372 |
+
]
|
1373 |
+
|
1374 |
+
return split(preconditioners), split(errors)
|
1375 |
+
|
1376 |
+
if preconditioning_compute_steps == 1:
|
1377 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
1378 |
+
else:
|
1379 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1380 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1381 |
+
# a large init value for error.
|
1382 |
+
preconditioners_init = padded_statistics
|
1383 |
+
errors_init = [inverse_failure_threshold] * len(padded_statistics)
|
1384 |
+
init_state = [preconditioners_init, errors_init]
|
1385 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1386 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
1387 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
1388 |
+
|
1389 |
+
def _skip(error):
|
1390 |
+
condition = jnp.logical_or(
|
1391 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
1392 |
+
return condition.astype(error.dtype)
|
1393 |
+
|
1394 |
+
def _select_preconditioner(error, new_p, old_p):
|
1395 |
+
return lax.cond(
|
1396 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
1397 |
+
|
1398 |
+
new_preconditioners_flat = []
|
1399 |
+
for p, shape, prev_p, error in zip(preconditioners_flat, original_shapes,
|
1400 |
+
prev_preconditioners, errors_flat):
|
1401 |
+
new_preconditioners_flat.append(
|
1402 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]], prev_p))
|
1403 |
+
|
1404 |
+
assert len(states) == len(num_statistics_per_state)
|
1405 |
+
assert len(new_preconditioners_flat) == num_statistics
|
1406 |
+
|
1407 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1408 |
+
preconditioners_for_states = []
|
1409 |
+
idx = 0
|
1410 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1411 |
+
if num_statistics == 0:
|
1412 |
+
preconditioners_for_states.append([])
|
1413 |
+
else:
|
1414 |
+
preconditioners_for_state = new_preconditioners_flat[idx:idx +
|
1415 |
+
num_statistics]
|
1416 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
1417 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
1418 |
+
idx += num_statistics
|
1419 |
+
new_states = []
|
1420 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1421 |
+
new_states.append(
|
1422 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
1423 |
+
new_preconditioners, state.diagonal_momentum,
|
1424 |
+
state.momentum))
|
1425 |
+
|
1426 |
+
return new_states
|
1427 |
+
|
1428 |
+
def _compute_preconditioners(states, params, step):
|
1429 |
+
"""Computes preconditioners for given statistics in states.
|
1430 |
+
|
1431 |
+
Args:
|
1432 |
+
states: A list of optimizer states.
|
1433 |
+
params: A list of params.
|
1434 |
+
step: Current step number
|
1435 |
+
|
1436 |
+
Returns:
|
1437 |
+
New optimizer states after computing the preconditioner.
|
1438 |
+
"""
|
1439 |
+
statistics = []
|
1440 |
+
num_statistics_per_state = []
|
1441 |
+
original_shapes = []
|
1442 |
+
exponents = []
|
1443 |
+
max_size = 0
|
1444 |
+
prev_preconditioners = []
|
1445 |
+
|
1446 |
+
for state, param in zip(states, params):
|
1447 |
+
num_statistics = len(state.statistics)
|
1448 |
+
num_statistics_per_state.append(num_statistics)
|
1449 |
+
original_shapes_for_state = []
|
1450 |
+
if num_statistics > 0:
|
1451 |
+
preconditioner = Preconditioner(param, block_size,
|
1452 |
+
best_effort_shape_interpretation)
|
1453 |
+
for statistic in state.statistics:
|
1454 |
+
exponents.append(preconditioner.exponent_for_preconditioner(
|
1455 |
+
) if exponent_override == 0 else exponent_override)
|
1456 |
+
original_shapes_for_state.append(statistic.shape)
|
1457 |
+
max_size = max(max_size, statistic.shape[0])
|
1458 |
+
|
1459 |
+
statistics.extend(state.statistics)
|
1460 |
+
prev_preconditioners.extend(state.preconditioners)
|
1461 |
+
original_shapes.extend(original_shapes_for_state)
|
1462 |
+
|
1463 |
+
if batch_axis_name:
|
1464 |
+
# Quantization is only enabled if batch_axis_name is not set.
|
1465 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
1466 |
+
|
1467 |
+
if quantized_dtype == jnp.float32:
|
1468 |
+
return _pmap_compute_preconditioners(states, step, statistics,
|
1469 |
+
num_statistics_per_state,
|
1470 |
+
original_shapes, exponents,
|
1471 |
+
max_size, prev_preconditioners)
|
1472 |
+
else:
|
1473 |
+
return _pmap_quantized_compute_preconditioners(
|
1474 |
+
states, step, statistics, num_statistics_per_state, original_shapes,
|
1475 |
+
exponents, max_size, prev_preconditioners)
|
1476 |
+
|
1477 |
+
else:
|
1478 |
+
return _pjit_compute_preconditioners(states, step, statistics,
|
1479 |
+
num_statistics_per_state,
|
1480 |
+
original_shapes, exponents, max_size,
|
1481 |
+
prev_preconditioners)
|
1482 |
+
|
1483 |
+
def _transform_grad(grad, state, param, step):
|
1484 |
+
"""Transform per-parameter gradients."""
|
1485 |
+
preconditioner = Preconditioner(param, block_size,
|
1486 |
+
best_effort_shape_interpretation)
|
1487 |
+
sgd_update = grad
|
1488 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float()
|
1489 |
+
if graft_type == GraftingType.ADAGRAD:
|
1490 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float(
|
1491 |
+
) + jnp.square(grad)
|
1492 |
+
adagrad_update = grad / (
|
1493 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon)
|
1494 |
+
grafting_update = adagrad_update
|
1495 |
+
elif (graft_type == GraftingType.RMSPROP or
|
1496 |
+
graft_type == GraftingType.RMSPROP_NORMALIZED):
|
1497 |
+
|
1498 |
+
scaled_grad = grad
|
1499 |
+
if graft_type == GraftingType.RMSPROP_NORMALIZED:
|
1500 |
+
scaled_grad = grad / jnp.linalg.norm(grad)
|
1501 |
+
|
1502 |
+
w1 = beta2
|
1503 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
1504 |
+
|
1505 |
+
new_diagonal_statistics = (
|
1506 |
+
w1 * state.diagonal_statistics.to_float() +
|
1507 |
+
w2 * jnp.square(scaled_grad))
|
1508 |
+
rmsprop_update = scaled_grad / (
|
1509 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon)
|
1510 |
+
|
1511 |
+
if clip_by_scaled_gradient_norm:
|
1512 |
+
scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / (
|
1513 |
+
jnp.sqrt(float(rmsprop_update.size)))
|
1514 |
+
clipping_denom = jnp.maximum(
|
1515 |
+
1., scaled_grad_norm / clip_by_scaled_gradient_norm)
|
1516 |
+
rmsprop_update /= clipping_denom
|
1517 |
+
|
1518 |
+
grafting_update = rmsprop_update
|
1519 |
+
else:
|
1520 |
+
grafting_update = sgd_update
|
1521 |
+
|
1522 |
+
precond_grad = grad
|
1523 |
+
if not _skip_preconditioning(param):
|
1524 |
+
precond_grad = preconditioner.preconditioned_grad(
|
1525 |
+
precond_grad,
|
1526 |
+
_maybe_dequantize_preconditioners(state.preconditioners))
|
1527 |
+
else:
|
1528 |
+
precond_grad = grafting_update
|
1529 |
+
|
1530 |
+
grafting_update_norm = jnp.linalg.norm(grafting_update)
|
1531 |
+
precond_grad_norm = jnp.linalg.norm(precond_grad)
|
1532 |
+
|
1533 |
+
multiplier = (grafting_update_norm / (precond_grad_norm + 1e-16))
|
1534 |
+
shampoo_update = precond_grad * multiplier
|
1535 |
+
|
1536 |
+
shampoo_update_with_wd = shampoo_update
|
1537 |
+
grafting_update_with_wd = grafting_update
|
1538 |
+
if weight_decay != 0:
|
1539 |
+
shampoo_update_with_wd = shampoo_update + weight_decay * param
|
1540 |
+
grafting_update_with_wd = grafting_update + weight_decay * param
|
1541 |
+
|
1542 |
+
w = (1.0 - beta1) if moving_average_for_momentum else 1.0
|
1543 |
+
shampoo_update_with_wd_momentum = (
|
1544 |
+
state.momentum.to_float() * beta1 + w * shampoo_update_with_wd)
|
1545 |
+
grafting_update_with_wd_momentum = (
|
1546 |
+
state.diagonal_momentum.to_float() * beta1 +
|
1547 |
+
w * grafting_update_with_wd)
|
1548 |
+
|
1549 |
+
run_shampoo = (step >= start_preconditioning_step).astype(
|
1550 |
+
grafting_update_with_wd_momentum.dtype)
|
1551 |
+
|
1552 |
+
momentum_update = (
|
1553 |
+
run_shampoo * shampoo_update_with_wd_momentum +
|
1554 |
+
(1.0 - run_shampoo) * grafting_update_with_wd_momentum)
|
1555 |
+
|
1556 |
+
wd_update = (
|
1557 |
+
run_shampoo * shampoo_update_with_wd +
|
1558 |
+
(1.0 - run_shampoo) * grafting_update_with_wd)
|
1559 |
+
|
1560 |
+
if nesterov:
|
1561 |
+
momentum_update = w * wd_update + beta1 * momentum_update
|
1562 |
+
|
1563 |
+
lr = learning_rate
|
1564 |
+
if callable(learning_rate):
|
1565 |
+
lr = learning_rate(step)
|
1566 |
+
transformed_update = -1.0 * lr * momentum_update
|
1567 |
+
|
1568 |
+
param_stats = ParameterStats(
|
1569 |
+
_quantize_diagonal_statistics(new_diagonal_statistics),
|
1570 |
+
state.statistics, state.preconditioners,
|
1571 |
+
_quantize_momentum(grafting_update_with_wd_momentum),
|
1572 |
+
_quantize_momentum(shampoo_update_with_wd_momentum))
|
1573 |
+
return transformed_update, param_stats
|
1574 |
+
|
1575 |
+
def update_fn(grads, state, params):
|
1576 |
+
"""Transform the input gradient and update all statistics.
|
1577 |
+
|
1578 |
+
Args:
|
1579 |
+
grads: the gradient tensors for the parameters.
|
1580 |
+
state: a named tuple containing the state of the optimizer
|
1581 |
+
params: the parameters that should be updated.
|
1582 |
+
|
1583 |
+
Returns:
|
1584 |
+
A tuple containing the new parameters and the new optimizer state.
|
1585 |
+
"""
|
1586 |
+
params_flat, treedef = jax.tree_flatten(params)
|
1587 |
+
stats_flat = treedef.flatten_up_to(state.stats)
|
1588 |
+
grads_flat = treedef.flatten_up_to(grads)
|
1589 |
+
|
1590 |
+
new_stats_flat = jax.tree_multimap(
|
1591 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat,
|
1592 |
+
stats_flat, params_flat)
|
1593 |
+
new_stats_flat = _compute_preconditioners(new_stats_flat, params_flat,
|
1594 |
+
state.count)
|
1595 |
+
|
1596 |
+
outputs = jax.tree_multimap(
|
1597 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat,
|
1598 |
+
new_stats_flat, params_flat)
|
1599 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
1600 |
+
|
1601 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
1602 |
+
new_stats = jax.tree_unflatten(treedef, new_stats_flat)
|
1603 |
+
|
1604 |
+
new_state = ShampooState(
|
1605 |
+
count=state.count+1, stats=new_stats)
|
1606 |
+
return updates, new_state
|
1607 |
+
|
1608 |
+
if shard_optimizer_states:
|
1609 |
+
return optax.GradientTransformation(sharded_init_fn, sharded_update_fn)
|
1610 |
+
else:
|
1611 |
+
return optax.GradientTransformation(init_fn, update_fn)
|
flax_model.msgpack
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 497764120
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8785c0613f57cbd0fdb77c6d7cd033dcf7f09564f92d30a51b9adcf591da8ef6
|
3 |
size 497764120
|
run_clm_flax.py
CHANGED
@@ -61,6 +61,8 @@ from transformers import (
|
|
61 |
from transformers.file_utils import get_full_repo_name
|
62 |
from transformers.testing_utils import CaptureLogger
|
63 |
|
|
|
|
|
64 |
|
65 |
logger = logging.getLogger(__name__)
|
66 |
|
@@ -96,6 +98,9 @@ class TrainingArguments:
|
|
96 |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
97 |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
98 |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
|
|
|
|
|
|
99 |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
100 |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
101 |
warmup_ratio: float = field(default=0.0, metadata={"help": "Linear warmup ratio of total train steps."})
|
@@ -652,6 +657,33 @@ def main():
|
|
652 |
optimizer = optax.adafactor(
|
653 |
learning_rate=lr_schedule_fn,
|
654 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
else:
|
656 |
optimizer = optax.adamw(
|
657 |
learning_rate=lr_schedule_fn,
|
|
|
61 |
from transformers.file_utils import get_full_repo_name
|
62 |
from transformers.testing_utils import CaptureLogger
|
63 |
|
64 |
+
from distributed_shampoo import distributed_shampoo, GraftingType
|
65 |
+
|
66 |
|
67 |
logger = logging.getLogger(__name__)
|
68 |
|
|
|
98 |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
99 |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
100 |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
101 |
+
distributed_shampoo: bool = field(
|
102 |
+
default=False, metadata={"help": "Use Distributed Shampoo optimizer instead of AdamW."},
|
103 |
+
)
|
104 |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
105 |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
106 |
warmup_ratio: float = field(default=0.0, metadata={"help": "Linear warmup ratio of total train steps."})
|
|
|
657 |
optimizer = optax.adafactor(
|
658 |
learning_rate=lr_schedule_fn,
|
659 |
)
|
660 |
+
|
661 |
+
elif training_args.distributed_shampoo:
|
662 |
+
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
|
663 |
+
# Notes:
|
664 |
+
# - mask for weight decay is not implemented but we don't use it anyway
|
665 |
+
optimizer = distributed_shampoo(
|
666 |
+
lr_schedule_fn,
|
667 |
+
block_size=1024, # recommended default for large LM is 1536
|
668 |
+
beta1=0.9,
|
669 |
+
beta2=0.999,
|
670 |
+
diagonal_epsilon=1e-10,
|
671 |
+
matrix_epsilon=1e-8,
|
672 |
+
weight_decay=0.0,
|
673 |
+
start_preconditioning_step=1001,
|
674 |
+
preconditioning_compute_steps=10,
|
675 |
+
statistics_compute_steps=1,
|
676 |
+
best_effort_shape_interpretation=True,
|
677 |
+
graft_type=GraftingType.RMSPROP_NORMALIZED,
|
678 |
+
nesterov=False,
|
679 |
+
exponent_override=0,
|
680 |
+
batch_axis_name="batch",
|
681 |
+
inverse_failure_threshold=0.1,
|
682 |
+
moving_average_for_momentum=True,
|
683 |
+
skip_preconditioning_dim_size_gt=4096,
|
684 |
+
clip_by_scaled_gradient_norm=None,
|
685 |
+
precision=jax.lax.Precision.HIGHEST,
|
686 |
+
)
|
687 |
else:
|
688 |
optimizer = optax.adamw(
|
689 |
learning_rate=lr_schedule_fn,
|
runs/events.out.tfevents.1642099734.t1v-n-42145f73-w-0.2317757.0.v2
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dbbf5988858cf76da919fb1758c11b0ecc821048cb24a60adc8a53b7f332f86b
|
3 |
-
size 15255487
|
|
|
|
|
|
|
|
runs/{events.out.tfevents.1642208918.t1v-n-42145f73-w-0.2567321.0.v2 → events.out.tfevents.1642236904.t1v-n-42145f73-w-0.2775834.0.v2}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3e58f1ebeab5e80fee00375c5559d4f2276213fa5a9e715e12a9a59a491f1e0
|
3 |
+
size 1471449
|
start_train.sh
CHANGED
@@ -13,13 +13,10 @@ python3 run_clm_flax.py \
|
|
13 |
--per_device_train_batch_size="32" \
|
14 |
--per_device_eval_batch_size="32" \
|
15 |
--preprocessing_num_workers="1" \
|
16 |
-
--
|
17 |
-
--
|
|
|
18 |
--cosine_decay \
|
19 |
-
--adam_beta1="0.9" \
|
20 |
-
--adam_beta2="0.98" \
|
21 |
-
--adam_epsilon="1e-8" \
|
22 |
-
--weight_decay="0.01" \
|
23 |
--overwrite_output_dir \
|
24 |
--logging_steps="500" \
|
25 |
--eval_steps="10000" \
|
|
|
13 |
--per_device_train_batch_size="32" \
|
14 |
--per_device_eval_batch_size="32" \
|
15 |
--preprocessing_num_workers="1" \
|
16 |
+
--distributed_shampoo \
|
17 |
+
--learning_rate="1e-4" \
|
18 |
+
--warmup_steps="4000" \
|
19 |
--cosine_decay \
|
|
|
|
|
|
|
|
|
20 |
--overwrite_output_dir \
|
21 |
--logging_steps="500" \
|
22 |
--eval_steps="10000" \
|