Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 6,030 Bytes
440e354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
Usage:
python convert_hf_to_easylm.py  \
       --checkpoint_dir     /path/hf_format_dir/    \
       --output_file /path/easylm_format.stream   \
       --model_size 7b \
       --streaming
"""
import time
from pathlib import Path
import argparse

import mlxu
import torch
import flax

from EasyLM.checkpoint import StreamingCheckpointer

LLAMA_STANDARD_CONFIGS = {
    '1b': {
        'dim': 2048,
        'intermediate_size': 5504,
        'n_layers': 22,
        'n_heads': 16,
        'norm_eps': 1e-6,
    },
    '3b': {
        'dim': 3200,
        'intermediate_size': 8640,
        'n_layers': 26,
        'n_heads': 32,
        'norm_eps': 1e-6,
    },
    "7b": {
        "dim": 4096,
        "intermediate_size": 11008,
        "n_layers": 32,
        "n_heads": 32,
        "norm_eps": 1e-6,
    },
    "13b": {
        "dim": 5120,
        "intermediate_size": 13824,
        "n_layers": 40,
        "n_heads": 40,
        "norm_eps": 1e-6,
    },
    "30b": {
        "dim": 6656,
        "intermediate_size": 17920,
        "n_layers": 60,
        "n_heads": 52,
        "norm_eps": 1e-6,
    },
    "65b": {
        "dim": 8192,
        "intermediate_size": 22016,
        "n_layers": 80,
        "n_heads": 64,
        "norm_eps": 1e-5,
    },
}


def inverse_permute(params, w):
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    dim = params["dim"]
    reshaped_w = w.reshape(n_heads, 2, dim // n_heads // 2, dim)
    transposed_w = reshaped_w.transpose(0, 2, 1, 3)
    inverted_w = transposed_w.reshape(dim, dim)
    return inverted_w


def main(args):
    start = time.time()
    params = LLAMA_STANDARD_CONFIGS[args.model_size]

    ckpt_paths = sorted(Path(args.checkpoint_dir).glob("*.bin"))
    ckpt = {}
    for i, ckpt_path in enumerate(ckpt_paths):
        checkpoint = torch.load(ckpt_path, map_location="cpu")
        for k, v in checkpoint.items():
            if k.startswith("model."):
                k = k[6:]
            ckpt[k] = v
    print(f"Start convert weight to easylm format...")
    jax_weights = {
        "transformer": {
            "wte": {"embedding": ckpt["embed_tokens.weight"].numpy()},
            "ln_f": {"kernel": ckpt["norm.weight"].numpy()},
            "h": {
                "%d"
                % (layer): {
                    "attention": {
                        "wq": {
                            "kernel": inverse_permute(
                                params,
                                ckpt[f"layers.{layer}.self_attn.q_proj.weight"].numpy(),
                            ).transpose()
                        },
                        "wk": {
                            "kernel": inverse_permute(
                                params,
                                ckpt[f"layers.{layer}.self_attn.k_proj.weight"].numpy(),
                            ).transpose()
                        },
                        "wv": {
                            "kernel": ckpt[f"layers.{layer}.self_attn.v_proj.weight"]
                            .numpy()
                            .transpose()
                        },
                        "wo": {
                            "kernel": ckpt[f"layers.{layer}.self_attn.o_proj.weight"]
                            .numpy()
                            .transpose()
                        },
                    },
                    "feed_forward": {
                        "w1": {
                            "kernel": ckpt[f"layers.{layer}.mlp.gate_proj.weight"]
                            .numpy()
                            .transpose()
                        },
                        "w2": {
                            "kernel": ckpt[f"layers.{layer}.mlp.down_proj.weight"]
                            .numpy()
                            .transpose()
                        },
                        "w3": {
                            "kernel": ckpt[f"layers.{layer}.mlp.up_proj.weight"]
                            .numpy()
                            .transpose()
                        },
                    },
                    "attention_norm": {
                        "kernel": ckpt[f"layers.{layer}.input_layernorm.weight"].numpy()
                    },
                    "ffn_norm": {
                        "kernel": ckpt[
                            f"layers.{layer}.post_attention_layernorm.weight"
                        ].numpy()
                    },
                }
                for layer in range(params["n_layers"])
            },
        },
        "lm_head": {"kernel": ckpt["lm_head.weight"].numpy().transpose()},
    }
    print(f"Convert weight to easylm format finished...")
    print(f"Start to save...")

    if args.streaming:
        StreamingCheckpointer.save_train_state_to_file(jax_weights, args.output_file)
    else:
        with mlxu.open_file(args.output_file, "wb") as fout:
            fout.write(flax.serialization.msgpack_serialize(jax_weights, in_place=True))

    print(
        f"Save finished!!! take time: {time.time() - start} save path: {args.output_file}"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="hf to easylm format script")

    parser.add_argument(
        "--checkpoint_dir",
        type=str,
        help="Need to be converted model weight dir. it is a dir",
    )
    parser.add_argument(
        "--output_file", type=str, help="Save model weight file path, it is a file."
    )
    parser.add_argument(
        "--model_size",
        type=str,
        default="7b",
        choices=["7b", "13b", "30b", "65b"],
        help="model size",
    )
    parser.add_argument(
        "--streaming",
        action="store_true",
        default=True,
        help="whether is model weight saved stream format",
    )

    args = parser.parse_args()

    print(f"checkpoint_dir: {args.checkpoint_dir}")
    print(f"output_file: {args.output_file}")
    print(f"model_size: {args.model_size}")
    print(f"streaming: {args.streaming}")

    main(args)