Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 3,244 Bytes
646ac2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# This script converts the standrd LLaMA PyTorch checkpoint released by Meta
# to the EasyLM checkpoint format. The converted checkpoint can then be loaded
# by EasyLM for fine-tuning or inference.

# This script is largely borrow from https://github.com/Sea-Snell/JAX_llama

from pathlib import Path
import json
import numpy as np
import torch
import flax
import mlxu

from EasyLM.checkpoint import StreamingCheckpointer


FLAGS, FLAGS_DEF = mlxu.define_flags_with_default(
    checkpoint_dir='',
    output_file='',
    streaming=True,
)


def main(argv):
    ckpt_paths = sorted(Path(FLAGS.checkpoint_dir).glob("*.pth"))
    ckpts = {}
    for i, ckpt_path in enumerate(ckpt_paths):
        checkpoint = torch.load(ckpt_path, map_location="cpu")
        ckpts[int(ckpt_path.name.split('.', maxsplit=2)[1])] = checkpoint
    ckpts = [ckpts[i] for i in sorted(list(ckpts.keys()))]
    with open(Path(FLAGS.checkpoint_dir) / "params.json", "r") as f:
        params = json.loads(f.read())

    jax_weights = {
        'transformer': {
            'wte': {'embedding': np.concatenate([ckpt['tok_embeddings.weight'].numpy() for ckpt in ckpts], axis=1)},
            'ln_f': {'kernel': ckpts[0]['norm.weight'].numpy()},
            'h': {
                '%d' % (layer): {
                    'attention': {
                        'wq': {'kernel': np.concatenate([ckpt['layers.%d.attention.wq.weight' % (layer)].numpy() for ckpt in ckpts], axis=0).transpose()},
                        'wk': {'kernel': np.concatenate([ckpt['layers.%d.attention.wk.weight' % (layer)].numpy() for ckpt in ckpts], axis=0).transpose()},
                        'wv': {'kernel': np.concatenate([ckpt['layers.%d.attention.wv.weight' % (layer)].numpy() for ckpt in ckpts], axis=0).transpose()},
                        'wo': {'kernel': np.concatenate([ckpt['layers.%d.attention.wo.weight' % (layer)].numpy() for ckpt in ckpts], axis=1).transpose()},
                    },
                    'feed_forward': {
                        'w1': {'kernel': np.concatenate([ckpt['layers.%d.feed_forward.w1.weight' % (layer)].numpy() for ckpt in ckpts], axis=0).transpose()},
                        'w2': {'kernel': np.concatenate([ckpt['layers.%d.feed_forward.w2.weight' % (layer)].numpy() for ckpt in ckpts], axis=1).transpose()},
                        'w3': {'kernel': np.concatenate([ckpt['layers.%d.feed_forward.w3.weight' % (layer)].numpy() for ckpt in ckpts], axis=0).transpose()},
                    },
                    'attention_norm': {'kernel': ckpts[0]['layers.%d.attention_norm.weight' % (layer)].numpy()},
                    'ffn_norm': {'kernel': ckpts[0]['layers.%d.ffn_norm.weight' % (layer)].numpy()},
                }
            for layer in range(params['n_layers'])},
        },
        'lm_head': {'kernel': np.concatenate([ckpt['output.weight'].numpy() for ckpt in ckpts], axis=0).transpose()},
    }
    if FLAGS.streaming:
        StreamingCheckpointer.save_train_state_to_file(
            jax_weights, FLAGS.output_file
        )
    else:
        with mlxu.open_file(FLAGS.output_file, 'wb') as fout:
            fout.write(flax.serialization.msgpack_serialize(jax_weights, in_place=True))


if __name__ == '__main__':
    mlxu.run(main)