|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import json |
|
import math |
|
import os |
|
import shutil |
|
|
|
import numpy as np |
|
import mlxu |
|
import jax |
|
import jax.numpy as jnp |
|
import flax |
|
from flax.traverse_util import flatten_dict |
|
import torch |
|
from transformers import LlamaConfig, LlamaForCausalLM |
|
|
|
from EasyLM.checkpoint import StreamingCheckpointer |
|
from EasyLM.jax_utils import float_tensor_to_dtype |
|
|
|
|
|
FLAGS, FLAGS_DEF = mlxu.define_flags_with_default( |
|
load_checkpoint='', |
|
tokenizer_path='', |
|
model_size='13b', |
|
output_dir='', |
|
) |
|
|
|
|
|
LLAMA_STANDARD_CONFIGS = { |
|
'small': { |
|
'vocab_size': 64256, |
|
'dim': 768, |
|
'intermediate_size': 3072, |
|
'n_layers': 12, |
|
'n_heads': 12, |
|
'norm_eps': 1e-6, |
|
}, |
|
'medium': { |
|
'vocab_size': 64256, |
|
'dim': 1024, |
|
'intermediate_size': 4096, |
|
'n_layers': 24, |
|
'n_heads': 16, |
|
'norm_eps': 1e-6, |
|
}, |
|
'large': { |
|
'vocab_size': 64256, |
|
'dim': 1536, |
|
'intermediate_size': 6144, |
|
'n_layers': 24, |
|
'n_heads': 16, |
|
'norm_eps': 1e-6, |
|
}, |
|
'xlarge': { |
|
'vocab_size': 64256, |
|
'dim': 2048, |
|
'intermediate_size': 8192, |
|
'n_layers': 24, |
|
'n_heads': 32, |
|
'norm_eps': 1e-6, |
|
}, |
|
'1b': { |
|
'vocab_size': 64256, |
|
'dim': 2048, |
|
'intermediate_size': 5504, |
|
'n_layers': 22, |
|
'n_heads': 16, |
|
'norm_eps': 1e-6, |
|
}, |
|
'3b': { |
|
'vocab_size': 64256, |
|
'dim': 3200, |
|
'intermediate_size': 8640, |
|
'n_layers': 26, |
|
'n_heads': 32, |
|
'norm_eps': 1e-6, |
|
}, |
|
'7b': { |
|
'vocab_size': 64256, |
|
'dim': 4096, |
|
'intermediate_size': 11008, |
|
'n_layers': 32, |
|
'n_heads': 32, |
|
'norm_eps': 1e-6, |
|
}, |
|
'13b': { |
|
'vocab_size': 64256, |
|
'dim': 5120, |
|
'intermediate_size': 13824, |
|
'n_layers': 40, |
|
'n_heads': 40, |
|
'norm_eps': 1e-6, |
|
}, |
|
'30b': { |
|
'vocab_size': 64256, |
|
'dim': 6656, |
|
'intermediate_size': 17920, |
|
'n_layers': 60, |
|
'n_heads': 52, |
|
'norm_eps': 1e-6, |
|
}, |
|
'65b': { |
|
'vocab_size': 64256, |
|
'dim': 8192, |
|
'intermediate_size': 22016, |
|
'n_layers': 80, |
|
'n_heads': 64, |
|
'norm_eps': 1e-5, |
|
}, |
|
} |
|
|
|
|
|
def match_keywords(string, positives, negatives): |
|
for positive in positives: |
|
if positive not in string: |
|
return False |
|
for negative in negatives: |
|
if negative in string: |
|
return False |
|
return True |
|
|
|
|
|
def load_and_convert_checkpoint(path): |
|
_, flax_params = StreamingCheckpointer.load_trainstate_checkpoint(path) |
|
flax_params = flatten_dict(flax_params['params'], sep='.') |
|
torch_params = {} |
|
for key, tensor in flax_params.items(): |
|
if match_keywords(key, ["kernel"], ["norm", 'ln_f']): |
|
tensor = tensor.T |
|
torch_params[key] = torch.tensor( |
|
float_tensor_to_dtype(tensor, 'fp32'), dtype=torch.float16 |
|
) |
|
return torch_params |
|
|
|
|
|
def read_json(path): |
|
with open(path, "r") as f: |
|
return json.load(f) |
|
|
|
|
|
def write_json(text, path): |
|
with open(path, "w") as f: |
|
json.dump(text, f) |
|
|
|
|
|
def write_model(loaded, model_path, model_size): |
|
os.makedirs(model_path, exist_ok=True) |
|
tmp_model_path = os.path.join(model_path, "tmp") |
|
os.makedirs(tmp_model_path, exist_ok=True) |
|
|
|
params = LLAMA_STANDARD_CONFIGS[model_size] |
|
|
|
n_layers = params["n_layers"] |
|
n_heads = params["n_heads"] |
|
dim = params["dim"] |
|
dims_per_head = dim // n_heads |
|
base = 10000.0 |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) |
|
|
|
|
|
def permute(w): |
|
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) |
|
|
|
|
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
for layer_i in range(n_layers): |
|
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" |
|
state_dict = { |
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( |
|
loaded[f"transformer.h.{layer_i}.attention.wq.kernel"] |
|
), |
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( |
|
loaded[f"transformer.h.{layer_i}.attention.wk.kernel"] |
|
), |
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"transformer.h.{layer_i}.attention.wv.kernel"], |
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"transformer.h.{layer_i}.attention.wo.kernel"], |
|
|
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"transformer.h.{layer_i}.feed_forward.w1.kernel"], |
|
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"transformer.h.{layer_i}.feed_forward.w2.kernel"], |
|
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"transformer.h.{layer_i}.feed_forward.w3.kernel"], |
|
|
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"transformer.h.{layer_i}.attention_norm.kernel"], |
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"transformer.h.{layer_i}.ffn_norm.kernel"], |
|
|
|
} |
|
|
|
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq |
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
|
|
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" |
|
|
|
state_dict = { |
|
"model.embed_tokens.weight": loaded["transformer.wte.embedding"], |
|
"model.norm.weight": loaded["transformer.ln_f.kernel"], |
|
"lm_head.weight": loaded["lm_head.kernel"], |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
|
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) |
|
|
|
config = LlamaConfig( |
|
hidden_size=dim, |
|
intermediate_size=params["intermediate_size"], |
|
num_attention_heads=params["n_heads"], |
|
num_hidden_layers=params["n_layers"], |
|
rms_norm_eps=params["norm_eps"], |
|
) |
|
config.save_pretrained(tmp_model_path) |
|
|
|
|
|
del state_dict |
|
del loaded |
|
gc.collect() |
|
|
|
print("Loading the checkpoint in a Llama model.") |
|
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16) |
|
|
|
print("Model parameter count", model.num_parameters()) |
|
del model.config._name_or_path |
|
|
|
print("Saving in the Transformers format.") |
|
model.save_pretrained(model_path) |
|
model.save_pretrained(model_path, safe_serialization=True) |
|
shutil.rmtree(tmp_model_path) |
|
|
|
|
|
def write_tokenizer(tokenizer_path, input_tokenizer_path): |
|
print(f"Fetching the tokenizer from {input_tokenizer_path}.") |
|
os.makedirs(tokenizer_path, exist_ok=True) |
|
write_json( |
|
{ |
|
"bos_token": { |
|
"content": "<s>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
"eos_token": { |
|
"content": "</s>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
"unk_token": { |
|
"content": "<unk>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
}, |
|
os.path.join(tokenizer_path, "special_tokens_map.json") |
|
) |
|
write_json( |
|
{ |
|
"add_bos_token": True, |
|
"add_eos_token": False, |
|
"model_max_length": 2048, |
|
"pad_token": None, |
|
"sp_model_kwargs": {}, |
|
"tokenizer_class": "LlamaTokenizer", |
|
"clean_up_tokenization_spaces": False, |
|
"bos_token": { |
|
"__type": "AddedToken", |
|
"content": "<s>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
"eos_token": { |
|
"__type": "AddedToken", |
|
"content": "</s>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
"unk_token": { |
|
"__type": "AddedToken", |
|
"content": "<unk>", |
|
"lstrip": False, |
|
"normalized": True, |
|
"rstrip": False, |
|
"single_word": False |
|
}, |
|
}, |
|
os.path.join(tokenizer_path, "tokenizer_config.json"), |
|
) |
|
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model")) |
|
|
|
|
|
def main(argv): |
|
assert FLAGS.load_checkpoint != "" and FLAGS.output_dir != "" |
|
assert FLAGS.model_size in LLAMA_STANDARD_CONFIGS |
|
|
|
|
|
|
|
|
|
write_model( |
|
load_and_convert_checkpoint(FLAGS.load_checkpoint), |
|
model_path=FLAGS.output_dir, |
|
model_size=FLAGS.model_size, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
mlxu.run(main) |