FollishBoi
commited on
Commit
·
eac5ae9
1
Parent(s):
ef2f10b
Model is served
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- dqn-MountainCar-v0-try1.zip +3 -0
- dqn-MountainCar-v0-try1/_stable_baselines3_version +1 -0
- dqn-MountainCar-v0-try1/data +120 -0
- dqn-MountainCar-v0-try1/policy.optimizer.pth +3 -0
- dqn-MountainCar-v0-try1/policy.pth +3 -0
- dqn-MountainCar-v0-try1/pytorch_variables.pth +3 -0
- dqn-MountainCar-v0-try1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -102.50 +/- 5.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f01ed44ac20>", "_build": "<function DQNPolicy._build at 0x7f01ed44acb0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f01ed44ad40>", "forward": "<function DQNPolicy.forward at 0x7f01ed44add0>", "_predict": "<function DQNPolicy._predict at 0x7f01ed44ae60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f01ed44aef0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f01ed44af80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f01ed4b95d0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAZu+HBhgQuVhxkraTNwlKMEYdynXNfuv4kZjNrAZLj9QU3dA1XSJnEW9AObP4Wv6w5AAodDuBPSTeGKmlPfx5r4XzpMjfM/pQXHof+dotrVQmc8KihU6NBM3HW+qUiRIB2W+VV4oCIUMOmQVW6796vJuhgDVzDoy4H6uPcudblJlQ+9ckKpW6w3ct53kjBw7bicKGjsU74J0u+8aYtFix4so6/aTkFYE6cElqiE/BMrG/prw6QhBBGIv97lVa3jeRrp0b42HA0TooiCbw1Oe9LTCy/W5yvjPZ38JLguG+tpe32tKbrkz5WBykTpGIPQOyVgR7VEBe4UFOpRBEKYnbGTidm8wXFAre0qrMKXN0GteoEnbBSzT2OGWOyIcFgJFJPzPxGZwi4zagFKQjfOoXtNCSe+G5mn6erpb6suI6+pZj6zo6+Ko5aPPw1ZyZLqFVYQOL9Tvhu0EGnbnvw6J81akTei6SpbeaXr1wU6NvAi5ail4nj2R+7k7ECi951A74GPswhPIxbf7nHkXbMc54sk0m+sD0jRiYcERulXiaTRRp82j4KqeQXXc6OLXKv2EKM26mT45ih6AMmT2QTroDHFB9ai5HTP3avjHXq3tyaIzMTubDFlCVO9VQdIsLZOsiNCfB/0rQ/g9R8bbGNLbN/CX8rUeS94SFPzfUyzeoGvIRkL8d8GmBBDVYhx5amuHwM2y7x3NP3Qdq83x/1aO9tKSeZpS/h+Bm6hZEriR+fWXZIGwCViLfLXw8ozdUY7+EwLZI7CsgiYJiLcRZnKSDkAb1FhAmj/W2JMtUQt4RjxTFThaeM7ad4iPYFX/xaz1prO4HsyjMXxBhYSBamRawCOwyOh2oqTlL8zcycMuwjY695f8awvmC1GXndhHlubtgflGyNnaX3BpeowoyUM2EIYTEq3jnKCQlVKG31SyDjrknzRyyruxc492lJEkf/g6Hk1GZHYF0x5rV6BZc6YsnVM/nKPQF18hpvaQs8E0o/P7lzgswvoSJgmwirVD8Slo3Aup+sz/CdpphdmyjEn+46n+/jdqGEoMSEsAD2pdr1oZely16TxM51maIN9b7SK9leUNg/HJ8jPf6BWKDTFsoqSWa39YYA0TNJgvsQ9UxhsfOBYgSqlKuzZr+t2Ob5uGLNz9NW0iPouTYzmChpJsINVHGdq6RqaoErIjGY7t4XCUhsryqkFJQvI50Mxy1cAN12YVoSh1xebWH1X9/z3BOwnmnSp0SYlkDi7RVHHnXQz07qW4vqYS38G6U0SRIzhfI0U7axnn9Z7KXkPKuPTE6LDXPQ8CnwZkKK/6spQvm8a3Xq+W4Gt9mDvi/yxGXWlDpFDyPvU+nYKpE5qmlB4pHtVByPNabgcNUaZ1ofHPTyehVgUhqUqDFDNoMdwcIKBQCegrRoPf9vQhAhAFeX2p8yz6HTTQAHBg/tgZ2v/Pw3i2wDEaYoBMneJJwqNslXVveGdmF+M12uEQ0lkxbc3O/lSzC2ZPv6KGe2DArHkUdBJy/KwO6gaoz3BQuGD0HsYJiRgP82SQI0dEyX2yf0H/9v4zeF9cQKMM3AwEFPGAcMjfgmWXJKm9dlaLPqbh4jzAFWPPdiQWFuGCW3Do8qyaElZTncMdiNvf8pcUMn8GYHfAcKfio8kZp+lHwQMzkwHX/Rq9x394W9U/5T6dbV2Po7P9976OPKyFUVaFzpWluFLWWq8bLosh0Ge6b2+y/L3Bo+HmMjFTVbcfVP7yj0TQdkRSSYdhogHspYb0RleZOoL0lR/EuMA9ozqarPxzOaXsn8KafUT5EHEH0SjxSJ73RqL7HGpDCbWGV4sJXDhHRmJiwLML+8DGDWzoeS97dfh8eXi/+oIqG+I6VcFw+5yojzxrxQMThNqvce/u4qz6G1tXvt8sRVIxQGqly5dq5PgWLWRcIdqk13X6Q8a4kxoNVhh6MlZXWPbS28S0wcJDZMEZaJr9oj1U+p+W7wxesAqmDA1E8h491PFBHhB9BmmXqMXYMtzrQYCiaxOcgLyMJmTWHF/jpn15L3H03qOr7UwEsmOiMve5oRsWFll/aOLal6+jYe0AVH3xb2qchQcEORCrmkp1n88RrpNDlMUoK5bVvWnAkN834wrC+8zmf7qyKc4VlDmxLdezxNL4hV9zEEJHZq04hkJYNmZVMzZXs2eBMM5fKodVcDwmt0qlrnNF6UbxKXx2aiivVVNVQzT4jX7koz9gg5NOQu3QmwXZ/uT2qd3lr23CPyLcGVCQvV7+X3yRgOzyt7e6+A/FOcHeZFgwKro7l+rChCmpOAF2D65eTeUOqzIQh0abppTMGe0SbkOIEVH9DPUjpCtyGztx0s9YxlSZVRKqpIZGuBUKHZ5ZpBeC28B2i6EdPfbb14hWWhj3y1tsLEkdsI7tIOh7cg+xgZggS6IEN5271SWiOxX36p37TvEXVdcCmy6sJo37y68PCjrWxALqMGYsUSIlILnTBJw2BtKjfsNQbJ/8oEArzEO+7UDP5I05E3FKzP42YMisPpeOCg8n3oB91qLZ+zf75MTiJbVpZHPSi+mDmJrFUeAEnzJZTwyg4lD4CY/W7S17Tl4Av6BlZ3BJiXBFyARV/sOds9+nkaETdEveZBTLhkec9RfaSUG8UTBcT8OeovlYxC1MDR+O0dE+6+ZmUC9BJNSo952Cy6s3DVo3QNwodSwPKyslQNY+rX8pZTFZ0TzUDkeUqO4+waXlmKBaCWw+4u4NZMKKQr0G80JBZZ41Y21tz6rlYfwpkFFNHPRqHRcRxIPe7l5DDNJu0PMA9MORhFUTld6suzITcIBNJF9IWV0SJjqvoUlPXPVoXdO5YheRfdQze2MXUyCbVVj4uRJVKsrdIYLPeSh0GbESTS9gAupxbdnUNE5/oeWDdw2+46k39mAwzdvPqdNR8UPTuRKJsIP9vo6Y48f/CVD5fUngDd1akt2dPyOfxrcUNlAA0ITvrnCUk2OfEAFouLlBwcQTuB4qrrHffLAxXBjPNMGLomRbj+6PsmZV2zNYdB3aI7nqP3G2R/emw0YUaMaa5y8i0BKWV/5+Qv6OD/brmB3OlzlHvm0VW/6wqlAVLtplf9y7m4dUBjwuENDg1Gz1551Voe+8kaG1VRy15aueXrNWkLbPixqbn8qvgcYc3ov401cJyAdqzv4CGNvj+sZ2QQiGk9EJECvSA+Fo7QHFg8sw8ps0JoJDaNNFZeqfKLel3HsfEAAwxFc/tbZ2tVqmBGhwJF352fBU8iQ5IgBJASSQtHurOcNlZBOk5z+XGCSvlRJq762OCfYST6koot4qfd7/g6MIY8kQbdHOCNw3ph2d0lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNTQJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 8, "num_timesteps": 1200000, "_total_timesteps": 1200000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652615602.8517034, "learning_rate": 0.004, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAKqDC76oZiO9Ty76PBfIzjwkAbe+ocMWPd2ZL77PBvI8keHmvmGd8jn0Z1G/0GABPYVfTb+w5Oo81FaOv2y0rTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAABUxb1lfRW94ZitO09C4zyY2cm+nqMaPbbaTb5kcgE9OB7nvgAAAAABflm/c8XxPKu2VL9xxOI8pQ2RvzLnmTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"}, "_episode_num": 8585, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGdAAAAAAACMAWyUS7qMAXSUR0B3RlXIU8FIdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0B3Rt5v99+gdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3Rso/iYLLdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3R4qbz9S/dX2UKGgGR8BkQAAAAAAAaAdLomgIR0B3SES5AhStdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B3SUxvegtfdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3SWFCb+cZdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3SXF5v99/dX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3SgywfQrudX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Si0KJEYwdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Sy8kD6nBdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3S1z6rNnodX2UKGgGR8BagAAAAAAAaAdLamgIR0B3THfvWpZPdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0B3TOHzpX6qdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3TX1tfoicdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3TcBo24usdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B3TiqZML4OdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B3TkYIjW07dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3T3ollbu/dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B3UBacI7eVdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3UeDFqBVddX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3UfjNpudgdX2UKGgGR8BigAAAAAAAaAdLlGgIR0B3UhMPBi1BdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3UiS/0ulHdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3UqCaqjrSdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3UqG21D0EdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3VINmUW2xdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3VUzSCvovdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3VdaNdZ7pdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3VfL6k691dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3Vd2V3Ux3dX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Vm21D0DmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3VuRRuTA4dX2UKGgGR8BhgAAAAAAAaAdLjGgIR0B3V6gGr0aqdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B3WNkwvg3tdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3Whu5z5oHdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3WzRnezlcdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3W8soUi6hdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3W9UlzEJjdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3W+k30f5ldX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B3XGeWfK6ndX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3XOxTsIE9dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3XjLxI8QqdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B3XwMVk+X7dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3X3OmixmkdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3YAWJrLyMdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3YAvkBCD3dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3YCs/6frbdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3YKvECNjtdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3YTbAUL2IdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B3Yn7di2DydX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3Y2Jj2BatdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3Y9pItlI3dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3Y9OKwY+CdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Y9NKyv9tdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZINx2jfvdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3ZS40/GEPdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZSpKjBVNdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3ZdtO2y9mdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0B3ZyW+oLofdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Z9nAZbY9dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Z+BEroW6dX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3aHHAAQxvdX2UKGgGR8BegAAAAAAAaAdLemgIR0B3aIIToMa1dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3aaoDPnjidX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3aZ0JWvKVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ajxri2lVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3a4i9qUNbdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3bC1rqMWHdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bLerMkhSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3bbPfKp1idX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3bc8B+4LDdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3bdrCWNWEdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bdTZQHiWdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3cBcTrVvudX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3cZEd/8VIdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3cbRmbsnidX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3cbI3irDJdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3cgXCTEBKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3cinCO3lTdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3ciFZgXuWdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3chXnyNGWdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3dB97WuoxdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B3dgSpR4yHdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3dgovzvqkdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3dhOoHcDbdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3djBWPtD2dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3dhZGKAJ+dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0B3d0kC3gDSdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3d36xgRbsdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eH8k2P1ddX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eltDUmUodX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3exD9fkWAdX2UKGgGR8BhAAAAAAAAaAdLiGgIR0B3e5C5VfeDdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B3fItthuwYdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B3fLqjafz0dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3fKXTmW+odX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B3fUEIPbwjdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3fVcOby6MdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3f0NZvDP4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 74944, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f01ed49e7a0>", "add": "<function ReplayBuffer.add at 0x7f01ed49e830>", "sample": "<function ReplayBuffer.sample at 0x7f01ed49e8c0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f01ed49e950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f01ed4944b0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 75, "_n_calls": 150000, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
dqn-MountainCar-v0-try1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af71d5fc1efbba0f8864e5c06f97bdcca856312036d05be22bf7df1db46a5b48
|
3 |
+
size 1103175
|
dqn-MountainCar-v0-try1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
dqn-MountainCar-v0-try1/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f01ed44ac20>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f01ed44acb0>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f01ed44ad40>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f01ed44add0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f01ed44ae60>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f01ed44aef0>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f01ed44af80>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f01ed4b95d0>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
"net_arch": [
|
20 |
+
256,
|
21 |
+
256
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"low": "[-1.2 -0.07]",
|
32 |
+
"high": "[0.6 0.07]",
|
33 |
+
"bounded_below": "[ True True]",
|
34 |
+
"bounded_above": "[ True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAZu+HBhgQuVhxkraTNwlKMEYdynXNfuv4kZjNrAZLj9QU3dA1XSJnEW9AObP4Wv6w5AAodDuBPSTeGKmlPfx5r4XzpMjfM/pQXHof+dotrVQmc8KihU6NBM3HW+qUiRIB2W+VV4oCIUMOmQVW6796vJuhgDVzDoy4H6uPcudblJlQ+9ckKpW6w3ct53kjBw7bicKGjsU74J0u+8aYtFix4so6/aTkFYE6cElqiE/BMrG/prw6QhBBGIv97lVa3jeRrp0b42HA0TooiCbw1Oe9LTCy/W5yvjPZ38JLguG+tpe32tKbrkz5WBykTpGIPQOyVgR7VEBe4UFOpRBEKYnbGTidm8wXFAre0qrMKXN0GteoEnbBSzT2OGWOyIcFgJFJPzPxGZwi4zagFKQjfOoXtNCSe+G5mn6erpb6suI6+pZj6zo6+Ko5aPPw1ZyZLqFVYQOL9Tvhu0EGnbnvw6J81akTei6SpbeaXr1wU6NvAi5ail4nj2R+7k7ECi951A74GPswhPIxbf7nHkXbMc54sk0m+sD0jRiYcERulXiaTRRp82j4KqeQXXc6OLXKv2EKM26mT45ih6AMmT2QTroDHFB9ai5HTP3avjHXq3tyaIzMTubDFlCVO9VQdIsLZOsiNCfB/0rQ/g9R8bbGNLbN/CX8rUeS94SFPzfUyzeoGvIRkL8d8GmBBDVYhx5amuHwM2y7x3NP3Qdq83x/1aO9tKSeZpS/h+Bm6hZEriR+fWXZIGwCViLfLXw8ozdUY7+EwLZI7CsgiYJiLcRZnKSDkAb1FhAmj/W2JMtUQt4RjxTFThaeM7ad4iPYFX/xaz1prO4HsyjMXxBhYSBamRawCOwyOh2oqTlL8zcycMuwjY695f8awvmC1GXndhHlubtgflGyNnaX3BpeowoyUM2EIYTEq3jnKCQlVKG31SyDjrknzRyyruxc492lJEkf/g6Hk1GZHYF0x5rV6BZc6YsnVM/nKPQF18hpvaQs8E0o/P7lzgswvoSJgmwirVD8Slo3Aup+sz/CdpphdmyjEn+46n+/jdqGEoMSEsAD2pdr1oZely16TxM51maIN9b7SK9leUNg/HJ8jPf6BWKDTFsoqSWa39YYA0TNJgvsQ9UxhsfOBYgSqlKuzZr+t2Ob5uGLNz9NW0iPouTYzmChpJsINVHGdq6RqaoErIjGY7t4XCUhsryqkFJQvI50Mxy1cAN12YVoSh1xebWH1X9/z3BOwnmnSp0SYlkDi7RVHHnXQz07qW4vqYS38G6U0SRIzhfI0U7axnn9Z7KXkPKuPTE6LDXPQ8CnwZkKK/6spQvm8a3Xq+W4Gt9mDvi/yxGXWlDpFDyPvU+nYKpE5qmlB4pHtVByPNabgcNUaZ1ofHPTyehVgUhqUqDFDNoMdwcIKBQCegrRoPf9vQhAhAFeX2p8yz6HTTQAHBg/tgZ2v/Pw3i2wDEaYoBMneJJwqNslXVveGdmF+M12uEQ0lkxbc3O/lSzC2ZPv6KGe2DArHkUdBJy/KwO6gaoz3BQuGD0HsYJiRgP82SQI0dEyX2yf0H/9v4zeF9cQKMM3AwEFPGAcMjfgmWXJKm9dlaLPqbh4jzAFWPPdiQWFuGCW3Do8qyaElZTncMdiNvf8pcUMn8GYHfAcKfio8kZp+lHwQMzkwHX/Rq9x394W9U/5T6dbV2Po7P9976OPKyFUVaFzpWluFLWWq8bLosh0Ge6b2+y/L3Bo+HmMjFTVbcfVP7yj0TQdkRSSYdhogHspYb0RleZOoL0lR/EuMA9ozqarPxzOaXsn8KafUT5EHEH0SjxSJ73RqL7HGpDCbWGV4sJXDhHRmJiwLML+8DGDWzoeS97dfh8eXi/+oIqG+I6VcFw+5yojzxrxQMThNqvce/u4qz6G1tXvt8sRVIxQGqly5dq5PgWLWRcIdqk13X6Q8a4kxoNVhh6MlZXWPbS28S0wcJDZMEZaJr9oj1U+p+W7wxesAqmDA1E8h491PFBHhB9BmmXqMXYMtzrQYCiaxOcgLyMJmTWHF/jpn15L3H03qOr7UwEsmOiMve5oRsWFll/aOLal6+jYe0AVH3xb2qchQcEORCrmkp1n88RrpNDlMUoK5bVvWnAkN834wrC+8zmf7qyKc4VlDmxLdezxNL4hV9zEEJHZq04hkJYNmZVMzZXs2eBMM5fKodVcDwmt0qlrnNF6UbxKXx2aiivVVNVQzT4jX7koz9gg5NOQu3QmwXZ/uT2qd3lr23CPyLcGVCQvV7+X3yRgOzyt7e6+A/FOcHeZFgwKro7l+rChCmpOAF2D65eTeUOqzIQh0abppTMGe0SbkOIEVH9DPUjpCtyGztx0s9YxlSZVRKqpIZGuBUKHZ5ZpBeC28B2i6EdPfbb14hWWhj3y1tsLEkdsI7tIOh7cg+xgZggS6IEN5271SWiOxX36p37TvEXVdcCmy6sJo37y68PCjrWxALqMGYsUSIlILnTBJw2BtKjfsNQbJ/8oEArzEO+7UDP5I05E3FKzP42YMisPpeOCg8n3oB91qLZ+zf75MTiJbVpZHPSi+mDmJrFUeAEnzJZTwyg4lD4CY/W7S17Tl4Av6BlZ3BJiXBFyARV/sOds9+nkaETdEveZBTLhkec9RfaSUG8UTBcT8OeovlYxC1MDR+O0dE+6+ZmUC9BJNSo952Cy6s3DVo3QNwodSwPKyslQNY+rX8pZTFZ0TzUDkeUqO4+waXlmKBaCWw+4u4NZMKKQr0G80JBZZ41Y21tz6rlYfwpkFFNHPRqHRcRxIPe7l5DDNJu0PMA9MORhFUTld6suzITcIBNJF9IWV0SJjqvoUlPXPVoXdO5YheRfdQze2MXUyCbVVj4uRJVKsrdIYLPeSh0GbESTS9gAupxbdnUNE5/oeWDdw2+46k39mAwzdvPqdNR8UPTuRKJsIP9vo6Y48f/CVD5fUngDd1akt2dPyOfxrcUNlAA0ITvrnCUk2OfEAFouLlBwcQTuB4qrrHffLAxXBjPNMGLomRbj+6PsmZV2zNYdB3aI7nqP3G2R/emw0YUaMaa5y8i0BKWV/5+Qv6OD/brmB3OlzlHvm0VW/6wqlAVLtplf9y7m4dUBjwuENDg1Gz1551Voe+8kaG1VRy15aueXrNWkLbPixqbn8qvgcYc3ov401cJyAdqzv4CGNvj+sZ2QQiGk9EJECvSA+Fo7QHFg8sw8ps0JoJDaNNFZeqfKLel3HsfEAAwxFc/tbZ2tVqmBGhwJF352fBU8iQ5IgBJASSQtHurOcNlZBOk5z+XGCSvlRJq762OCfYST6koot4qfd7/g6MIY8kQbdHOCNw3ph2d0lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNTQJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
+
"n": 3,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 8,
|
46 |
+
"num_timesteps": 1200000,
|
47 |
+
"_total_timesteps": 1200000.0,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1652615602.8517034,
|
52 |
+
"learning_rate": 0.004,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAKqDC76oZiO9Ty76PBfIzjwkAbe+ocMWPd2ZL77PBvI8keHmvmGd8jn0Z1G/0GABPYVfTb+w5Oo81FaOv2y0rTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAABUxb1lfRW94ZitO09C4zyY2cm+nqMaPbbaTb5kcgE9OB7nvgAAAAABflm/c8XxPKu2VL9xxOI8pQ2RvzLnmTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"
|
69 |
+
},
|
70 |
+
"_episode_num": 8585,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": 0.0,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGdAAAAAAACMAWyUS7qMAXSUR0B3RlXIU8FIdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0B3Rt5v99+gdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3Rso/iYLLdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3R4qbz9S/dX2UKGgGR8BkQAAAAAAAaAdLomgIR0B3SES5AhStdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B3SUxvegtfdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3SWFCb+cZdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3SXF5v99/dX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3SgywfQrudX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Si0KJEYwdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Sy8kD6nBdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3S1z6rNnodX2UKGgGR8BagAAAAAAAaAdLamgIR0B3THfvWpZPdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0B3TOHzpX6qdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3TX1tfoicdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3TcBo24usdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B3TiqZML4OdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B3TkYIjW07dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3T3ollbu/dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B3UBacI7eVdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3UeDFqBVddX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3UfjNpudgdX2UKGgGR8BigAAAAAAAaAdLlGgIR0B3UhMPBi1BdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3UiS/0ulHdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3UqCaqjrSdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3UqG21D0EdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3VINmUW2xdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3VUzSCvovdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3VdaNdZ7pdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3VfL6k691dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3Vd2V3Ux3dX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Vm21D0DmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3VuRRuTA4dX2UKGgGR8BhgAAAAAAAaAdLjGgIR0B3V6gGr0aqdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B3WNkwvg3tdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3Whu5z5oHdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3WzRnezlcdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3W8soUi6hdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3W9UlzEJjdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3W+k30f5ldX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B3XGeWfK6ndX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3XOxTsIE9dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3XjLxI8QqdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B3XwMVk+X7dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3X3OmixmkdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3YAWJrLyMdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3YAvkBCD3dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3YCs/6frbdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3YKvECNjtdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3YTbAUL2IdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B3Yn7di2DydX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3Y2Jj2BatdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3Y9pItlI3dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3Y9OKwY+CdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Y9NKyv9tdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZINx2jfvdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3ZS40/GEPdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZSpKjBVNdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3ZdtO2y9mdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0B3ZyW+oLofdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Z9nAZbY9dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Z+BEroW6dX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3aHHAAQxvdX2UKGgGR8BegAAAAAAAaAdLemgIR0B3aIIToMa1dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3aaoDPnjidX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3aZ0JWvKVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ajxri2lVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3a4i9qUNbdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3bC1rqMWHdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bLerMkhSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3bbPfKp1idX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3bc8B+4LDdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3bdrCWNWEdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bdTZQHiWdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3cBcTrVvudX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3cZEd/8VIdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3cbRmbsnidX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3cbI3irDJdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3cgXCTEBKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3cinCO3lTdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3ciFZgXuWdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3chXnyNGWdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3dB97WuoxdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B3dgSpR4yHdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3dgovzvqkdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3dhOoHcDbdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3djBWPtD2dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3dhZGKAJ+dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0B3d0kC3gDSdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3d36xgRbsdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eH8k2P1ddX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eltDUmUodX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3exD9fkWAdX2UKGgGR8BhAAAAAAAAaAdLiGgIR0B3e5C5VfeDdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B3fItthuwYdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B3fLqjafz0dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3fKXTmW+odX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B3fUEIPbwjdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3fVcOby6MdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3f0NZvDP4dWUu"
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 74944,
|
83 |
+
"buffer_size": 10000,
|
84 |
+
"batch_size": 128,
|
85 |
+
"learning_starts": 1000,
|
86 |
+
"tau": 1.0,
|
87 |
+
"gamma": 0.98,
|
88 |
+
"gradient_steps": 8,
|
89 |
+
"optimize_memory_usage": false,
|
90 |
+
"replay_buffer_class": {
|
91 |
+
":type:": "<class 'abc.ABCMeta'>",
|
92 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
93 |
+
"__module__": "stable_baselines3.common.buffers",
|
94 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
95 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f01ed49e7a0>",
|
96 |
+
"add": "<function ReplayBuffer.add at 0x7f01ed49e830>",
|
97 |
+
"sample": "<function ReplayBuffer.sample at 0x7f01ed49e8c0>",
|
98 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f01ed49e950>",
|
99 |
+
"__abstractmethods__": "frozenset()",
|
100 |
+
"_abc_impl": "<_abc_data object at 0x7f01ed4944b0>"
|
101 |
+
},
|
102 |
+
"replay_buffer_kwargs": {},
|
103 |
+
"train_freq": {
|
104 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
105 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
106 |
+
},
|
107 |
+
"actor": null,
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.07,
|
111 |
+
"exploration_fraction": 0.2,
|
112 |
+
"target_update_interval": 75,
|
113 |
+
"_n_calls": 150000,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.07,
|
116 |
+
"exploration_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
119 |
+
}
|
120 |
+
}
|
dqn-MountainCar-v0-try1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e70a5fbdf3e2a99e1ecc83817bfc40912662817afdf91f202bca6006fe5f9dfd
|
3 |
+
size 542017
|
dqn-MountainCar-v0-try1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cec65d927baa3e22e1f3b561d6bdb80275acc9d2296bf57a4967166e5275bde9
|
3 |
+
size 542721
|
dqn-MountainCar-v0-try1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-MountainCar-v0-try1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:358fcbca5af3bb738cc4c31590f2ed0ab57e7d5219f8c30af7973aaa8258acba
|
3 |
+
size 254688
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -102.5, "std_reward": 5.73149195236284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T11:59:53.204407"}
|