FollishBoi's picture
Model is served
d0f7f50
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
"__module__": "stable_baselines3.dqn.policies",
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function DQNPolicy.__init__ at 0x7f01ed44ac20>",
"_build": "<function DQNPolicy._build at 0x7f01ed44acb0>",
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f01ed44ad40>",
"forward": "<function DQNPolicy.forward at 0x7f01ed44add0>",
"_predict": "<function DQNPolicy._predict at 0x7f01ed44ae60>",
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f01ed44aef0>",
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f01ed44af80>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f01ed4b95d0>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
256,
256
]
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1.2 -0.07]",
"high": "[0.6 0.07]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAZu+HBhgQuVhxkraTNwlKMEYdynXNfuv4kZjNrAZLj9QU3dA1XSJnEW9AObP4Wv6w5AAodDuBPSTeGKmlPfx5r4XzpMjfM/pQXHof+dotrVQmc8KihU6NBM3HW+qUiRIB2W+VV4oCIUMOmQVW6796vJuhgDVzDoy4H6uPcudblJlQ+9ckKpW6w3ct53kjBw7bicKGjsU74J0u+8aYtFix4so6/aTkFYE6cElqiE/BMrG/prw6QhBBGIv97lVa3jeRrp0b42HA0TooiCbw1Oe9LTCy/W5yvjPZ38JLguG+tpe32tKbrkz5WBykTpGIPQOyVgR7VEBe4UFOpRBEKYnbGTidm8wXFAre0qrMKXN0GteoEnbBSzT2OGWOyIcFgJFJPzPxGZwi4zagFKQjfOoXtNCSe+G5mn6erpb6suI6+pZj6zo6+Ko5aPPw1ZyZLqFVYQOL9Tvhu0EGnbnvw6J81akTei6SpbeaXr1wU6NvAi5ail4nj2R+7k7ECi951A74GPswhPIxbf7nHkXbMc54sk0m+sD0jRiYcERulXiaTRRp82j4KqeQXXc6OLXKv2EKM26mT45ih6AMmT2QTroDHFB9ai5HTP3avjHXq3tyaIzMTubDFlCVO9VQdIsLZOsiNCfB/0rQ/g9R8bbGNLbN/CX8rUeS94SFPzfUyzeoGvIRkL8d8GmBBDVYhx5amuHwM2y7x3NP3Qdq83x/1aO9tKSeZpS/h+Bm6hZEriR+fWXZIGwCViLfLXw8ozdUY7+EwLZI7CsgiYJiLcRZnKSDkAb1FhAmj/W2JMtUQt4RjxTFThaeM7ad4iPYFX/xaz1prO4HsyjMXxBhYSBamRawCOwyOh2oqTlL8zcycMuwjY695f8awvmC1GXndhHlubtgflGyNnaX3BpeowoyUM2EIYTEq3jnKCQlVKG31SyDjrknzRyyruxc492lJEkf/g6Hk1GZHYF0x5rV6BZc6YsnVM/nKPQF18hpvaQs8E0o/P7lzgswvoSJgmwirVD8Slo3Aup+sz/CdpphdmyjEn+46n+/jdqGEoMSEsAD2pdr1oZely16TxM51maIN9b7SK9leUNg/HJ8jPf6BWKDTFsoqSWa39YYA0TNJgvsQ9UxhsfOBYgSqlKuzZr+t2Ob5uGLNz9NW0iPouTYzmChpJsINVHGdq6RqaoErIjGY7t4XCUhsryqkFJQvI50Mxy1cAN12YVoSh1xebWH1X9/z3BOwnmnSp0SYlkDi7RVHHnXQz07qW4vqYS38G6U0SRIzhfI0U7axnn9Z7KXkPKuPTE6LDXPQ8CnwZkKK/6spQvm8a3Xq+W4Gt9mDvi/yxGXWlDpFDyPvU+nYKpE5qmlB4pHtVByPNabgcNUaZ1ofHPTyehVgUhqUqDFDNoMdwcIKBQCegrRoPf9vQhAhAFeX2p8yz6HTTQAHBg/tgZ2v/Pw3i2wDEaYoBMneJJwqNslXVveGdmF+M12uEQ0lkxbc3O/lSzC2ZPv6KGe2DArHkUdBJy/KwO6gaoz3BQuGD0HsYJiRgP82SQI0dEyX2yf0H/9v4zeF9cQKMM3AwEFPGAcMjfgmWXJKm9dlaLPqbh4jzAFWPPdiQWFuGCW3Do8qyaElZTncMdiNvf8pcUMn8GYHfAcKfio8kZp+lHwQMzkwHX/Rq9x394W9U/5T6dbV2Po7P9976OPKyFUVaFzpWluFLWWq8bLosh0Ge6b2+y/L3Bo+HmMjFTVbcfVP7yj0TQdkRSSYdhogHspYb0RleZOoL0lR/EuMA9ozqarPxzOaXsn8KafUT5EHEH0SjxSJ73RqL7HGpDCbWGV4sJXDhHRmJiwLML+8DGDWzoeS97dfh8eXi/+oIqG+I6VcFw+5yojzxrxQMThNqvce/u4qz6G1tXvt8sRVIxQGqly5dq5PgWLWRcIdqk13X6Q8a4kxoNVhh6MlZXWPbS28S0wcJDZMEZaJr9oj1U+p+W7wxesAqmDA1E8h491PFBHhB9BmmXqMXYMtzrQYCiaxOcgLyMJmTWHF/jpn15L3H03qOr7UwEsmOiMve5oRsWFll/aOLal6+jYe0AVH3xb2qchQcEORCrmkp1n88RrpNDlMUoK5bVvWnAkN834wrC+8zmf7qyKc4VlDmxLdezxNL4hV9zEEJHZq04hkJYNmZVMzZXs2eBMM5fKodVcDwmt0qlrnNF6UbxKXx2aiivVVNVQzT4jX7koz9gg5NOQu3QmwXZ/uT2qd3lr23CPyLcGVCQvV7+X3yRgOzyt7e6+A/FOcHeZFgwKro7l+rChCmpOAF2D65eTeUOqzIQh0abppTMGe0SbkOIEVH9DPUjpCtyGztx0s9YxlSZVRKqpIZGuBUKHZ5ZpBeC28B2i6EdPfbb14hWWhj3y1tsLEkdsI7tIOh7cg+xgZggS6IEN5271SWiOxX36p37TvEXVdcCmy6sJo37y68PCjrWxALqMGYsUSIlILnTBJw2BtKjfsNQbJ/8oEArzEO+7UDP5I05E3FKzP42YMisPpeOCg8n3oB91qLZ+zf75MTiJbVpZHPSi+mDmJrFUeAEnzJZTwyg4lD4CY/W7S17Tl4Av6BlZ3BJiXBFyARV/sOds9+nkaETdEveZBTLhkec9RfaSUG8UTBcT8OeovlYxC1MDR+O0dE+6+ZmUC9BJNSo952Cy6s3DVo3QNwodSwPKyslQNY+rX8pZTFZ0TzUDkeUqO4+waXlmKBaCWw+4u4NZMKKQr0G80JBZZ41Y21tz6rlYfwpkFFNHPRqHRcRxIPe7l5DDNJu0PMA9MORhFUTld6suzITcIBNJF9IWV0SJjqvoUlPXPVoXdO5YheRfdQze2MXUyCbVVj4uRJVKsrdIYLPeSh0GbESTS9gAupxbdnUNE5/oeWDdw2+46k39mAwzdvPqdNR8UPTuRKJsIP9vo6Y48f/CVD5fUngDd1akt2dPyOfxrcUNlAA0ITvrnCUk2OfEAFouLlBwcQTuB4qrrHffLAxXBjPNMGLomRbj+6PsmZV2zNYdB3aI7nqP3G2R/emw0YUaMaa5y8i0BKWV/5+Qv6OD/brmB3OlzlHvm0VW/6wqlAVLtplf9y7m4dUBjwuENDg1Gz1551Voe+8kaG1VRy15aueXrNWkLbPixqbn8qvgcYc3ov401cJyAdqzv4CGNvj+sZ2QQiGk9EJECvSA+Fo7QHFg8sw8ps0JoJDaNNFZeqfKLel3HsfEAAwxFc/tbZ2tVqmBGhwJF352fBU8iQ5IgBJASSQtHurOcNlZBOk5z+XGCSvlRJq762OCfYST6koot4qfd7/g6MIY8kQbdHOCNw3ph2d0lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNTQJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
"n": 3,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 8,
"num_timesteps": 1200000,
"_total_timesteps": 1200000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652615602.8517034,
"learning_rate": 0.004,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAKqDC76oZiO9Ty76PBfIzjwkAbe+ocMWPd2ZL77PBvI8keHmvmGd8jn0Z1G/0GABPYVfTb+w5Oo81FaOv2y0rTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAABUxb1lfRW94ZitO09C4zyY2cm+nqMaPbbaTb5kcgE9OB7nvgAAAAABflm/c8XxPKu2VL9xxOI8pQ2RvzLnmTyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLAoaUjAFDlHSUUpQu"
},
"_episode_num": 8585,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGdAAAAAAACMAWyUS7qMAXSUR0B3RlXIU8FIdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0B3Rt5v99+gdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3Rso/iYLLdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3R4qbz9S/dX2UKGgGR8BkQAAAAAAAaAdLomgIR0B3SES5AhStdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B3SUxvegtfdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3SWFCb+cZdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3SXF5v99/dX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3SgywfQrudX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Si0KJEYwdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Sy8kD6nBdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3S1z6rNnodX2UKGgGR8BagAAAAAAAaAdLamgIR0B3THfvWpZPdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0B3TOHzpX6qdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3TX1tfoicdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3TcBo24usdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B3TiqZML4OdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B3TkYIjW07dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3T3ollbu/dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B3UBacI7eVdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3UeDFqBVddX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3UfjNpudgdX2UKGgGR8BigAAAAAAAaAdLlGgIR0B3UhMPBi1BdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3UiS/0ulHdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3UqCaqjrSdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3UqG21D0EdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3VINmUW2xdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3VUzSCvovdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3VdaNdZ7pdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3VfL6k691dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3Vd2V3Ux3dX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3Vm21D0DmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3VuRRuTA4dX2UKGgGR8BhgAAAAAAAaAdLjGgIR0B3V6gGr0aqdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B3WNkwvg3tdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3Whu5z5oHdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3WzRnezlcdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3W8soUi6hdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3W9UlzEJjdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3W+k30f5ldX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B3XGeWfK6ndX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3XOxTsIE9dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3XjLxI8QqdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B3XwMVk+X7dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3X3OmixmkdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3YAWJrLyMdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3YAvkBCD3dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3YCs/6frbdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B3YKvECNjtdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3YTbAUL2IdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B3Yn7di2DydX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B3Y2Jj2BatdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3Y9pItlI3dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0B3Y9OKwY+CdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Y9NKyv9tdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZINx2jfvdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3ZS40/GEPdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ZSpKjBVNdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0B3ZdtO2y9mdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0B3ZyW+oLofdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3Z9nAZbY9dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3Z+BEroW6dX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B3aHHAAQxvdX2UKGgGR8BegAAAAAAAaAdLemgIR0B3aIIToMa1dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3aaoDPnjidX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3aZ0JWvKVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3ajxri2lVdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3a4i9qUNbdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3bC1rqMWHdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bLerMkhSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3bbPfKp1idX2UKGgGR8BiYAAAAAAAaAdLk2gIR0B3bc8B+4LDdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3bdrCWNWEdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3bdTZQHiWdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B3cBcTrVvudX2UKGgGR8BewAAAAAAAaAdLe2gIR0B3cZEd/8VIdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3cbRmbsnidX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3cbI3irDJdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3cgXCTEBKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3cinCO3lTdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3ciFZgXuWdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B3chXnyNGWdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3dB97WuoxdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B3dgSpR4yHdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3dgovzvqkdX2UKGgGR8BawAAAAAAAaAdLa2gIR0B3dhOoHcDbdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3djBWPtD2dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3dhZGKAJ+dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0B3d0kC3gDSdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B3d36xgRbsdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eH8k2P1ddX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B3eltDUmUodX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B3exD9fkWAdX2UKGgGR8BhAAAAAAAAaAdLiGgIR0B3e5C5VfeDdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B3fItthuwYdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B3fLqjafz0dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B3fKXTmW+odX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B3fUEIPbwjdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0B3fVcOby6MdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B3f0NZvDP4dWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 74944,
"buffer_size": 10000,
"batch_size": 128,
"learning_starts": 1000,
"tau": 1.0,
"gamma": 0.98,
"gradient_steps": 8,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f01ed49e7a0>",
"add": "<function ReplayBuffer.add at 0x7f01ed49e830>",
"sample": "<function ReplayBuffer.sample at 0x7f01ed49e8c0>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f01ed49e950>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f01ed4944b0>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"actor": null,
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.07,
"exploration_fraction": 0.2,
"target_update_interval": 75,
"_n_calls": 150000,
"max_grad_norm": 10,
"exploration_rate": 0.07,
"exploration_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
}
}