File size: 1,945 Bytes
6f49091
 
 
 
 
 
 
 
 
 
 
 
c0b8022
6f49091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- merge
- mergekit
- lazymergekit
- timpal0l/Mistral-7B-v0.1-flashback-v2
- abacusai/Slerp-CM-mist-dpo
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
base_model:
- timpal0l/Mistral-7B-v0.1-flashback-v2
- abacusai/Slerp-CM-mist-dpo
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
license: apache-2.0
---

# test-dare

test-dare is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [timpal0l/Mistral-7B-v0.1-flashback-v2](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2)
* [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo)
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2)

## 🧩 Configuration

```yaml
models:
  - model: mistralai/Mistral-7B-v0.1
    # No parameters necessary for base model
  - model: timpal0l/Mistral-7B-v0.1-flashback-v2
    parameters:
      density: 0.53
      weight: 0.4
  - model: abacusai/Slerp-CM-mist-dpo
    parameters:
      density: 0.53
      weight: 0.3
  - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "FredrikBL/test-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```