--- tags: - merge - mergekit - lazymergekit - timpal0l/Mistral-7B-v0.1-flashback-v2 - mlabonne/NeuralHermes-2.5-Mistral-7B - RJuro/munin-neuralbeagle-7b base_model: - timpal0l/Mistral-7B-v0.1-flashback-v2 - mlabonne/NeuralHermes-2.5-Mistral-7B - RJuro/munin-neuralbeagle-7b --- # MisTyr-ties MisTyr-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [timpal0l/Mistral-7B-v0.1-flashback-v2](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) * [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b) ## 🧩 Configuration ```yaml models: - model: AI-Sweden-Models/tyr # no parameters necessary for base model - model: timpal0l/Mistral-7B-v0.1-flashback-v2 parameters: density: 0.5 weight: 0.5 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.5 weight: 0.3 - model: RJuro/munin-neuralbeagle-7b parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient merge_method: ties base_model: AI-Sweden-Models/tyr parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "FredrikBL/MisTyr-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```