Safetensors
qwen2
Wanfq commited on
Commit
b7bc3ed
·
verified ·
1 Parent(s): a10d4b0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -37
README.md CHANGED
@@ -14,12 +14,12 @@ FuseO1-Preview: System-II Reasoning Fusion of LLMs
14
 
15
  <!-- **Authors:** -->
16
 
17
- _Fanqi Wan, Longguang Zhong, Ziyi Yang_
18
 
19
 
20
  <!-- **Affiliations:** -->
21
 
22
- _Sun Yat-sen University_
23
 
24
  </div>
25
 
@@ -30,18 +30,23 @@ _Sun Yat-sen University_
30
 
31
  ## Overview
32
 
33
- [FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains.
 
 
 
 
34
 
35
  To achieve this, we conduct two types of model merging:
36
 
37
- - **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview) achieves an accuracy of **60.00 on AIME24**, demonstrating significant performance improvements compared to the o1-preview model (44.60) and approaching the performance of the o1-mini model (63.60).
38
- - **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks.
39
 
40
  | Model | Merge Type | Source Models | HF Link |
41
  |:----- | ---- | ---- | ---- |
42
- | FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview) |
43
- | FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview) |
44
- | FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview) |
 
45
 
46
 
47
  ## Long-Long Reasoning Merging
@@ -52,35 +57,35 @@ We conduct experiments on these folloing long-cot LLMs.
52
  - [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
53
  - [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview)
54
 
55
- To reproduce the merged [FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview) model, using the script below.
56
 
57
  ```sh
58
  cd FuseAI/FuseO1-Preview/mergekit
59
  pip3 install -e .
60
  model_save_dir=xx # your path to save the merged models
61
- mergekit-yaml fuseo1_configs/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview --cudas
62
  ```
63
 
64
- To reproduce the merged [FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview) model, using the script below.
65
 
66
  ```sh
67
  cd FuseAI/FuseO1-Preview/mergekit
68
  pip3 install -e .
69
  model_save_dir=xxx # your path to save the merged models
70
- mergekit-yaml fuseo1_configs/FuseO1-DeekSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeekSeekR1-QwQ-32B-Preview --cuda
71
  ```
72
 
73
- We provide the example code to use FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview.
74
 
75
  ```python3
76
  from vllm import LLM, SamplingParams
77
 
78
- llm = LLM(model="FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
79
- sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|end▁of▁sentence|>", "<|User|>"], stop_token_ids=[151643, 151644])
80
 
81
  conversations = [
82
  [
83
- {"role": "system", "content": "You are a helpful and harmless assistant. You should think step-by-step."},
84
  {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
85
  ],
86
  ]
@@ -97,27 +102,37 @@ We conduct experiments on these folloing long-cot and short-cot LLMs.
97
 
98
  - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
99
  - [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)
 
 
 
 
 
 
 
 
 
 
100
 
101
- To reproduce the merged [FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview) model, using the script below.
102
 
103
  ```sh
104
  cd FuseAI/FuseO1-Preview/mergekit
105
  pip3 install -e .
106
  model_save_dir=xxx # your path to save the merged models
107
- mergekit-yaml fuseo1_configs/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeekSeekR1-Qwen2. 5-Instruct-32B-Preview --cuda
108
  ```
109
 
110
- We provide the code to use FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview.
111
 
112
  ```python3
113
  from vllm import LLM, SamplingParams
114
 
115
- llm = LLM(model="FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
116
- sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|end▁of▁sentence|>", "<|User|>"], stop_token_ids=[151643, 151644])
117
 
118
  conversations = [
119
  [
120
- {"role": "system", "content": "You are a helpful and harmless assistant. You should think step-by-step."},
121
  {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
122
  ],
123
  ]
@@ -135,17 +150,50 @@ We test the resulted models on three kinds of benchmarks, including **Math Reaso
135
  Math Reasoning
136
  - AIME24
137
  - MATH500
138
- - GSM8K
139
 
140
  Scientific Reasoning
141
  - GPQA-Diamond
142
- - ARC-Challenge
143
  - MMLU-Pro
144
  - MMLU
145
 
146
 
147
  Code Reasoning
148
- - LiveCodeBench
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  The evaluation code is modified from [SkyThought](https://github.com/NovaSky-AI/SkyThought). In our evaluation, we set the temperature to 0.7 and the max_tokens to 32768. We provide the example to reproduce our results in [evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/evaluation).
151
 
@@ -155,21 +203,50 @@ The system prompt for evaluation is set to:
155
  You are a helpful and harmless assistant. You should think step-by-step.
156
  ```
157
 
158
- We are currently attempting to reproduce the results reported in the DeepSeek-R1 paper by experimenting with different system prompts. We will update our findings once we have acquired the original system prompt used in their study.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  The evaluation results are shown in the table below:
161
 
162
- | Models | AIME24 | MATH500 | GSM8K | GPQA-Diamond | ARC-Challenge | MMLU-Pro | MMLU | LiveCodeBench |
163
- |:-| ------ | ------- | ----- | ------------ | ------------- | -------- | ---- | ------------- |
164
- | o1-preview | 44.60 | 85.50 | - | 73.30 | - | - | 90.80 | 44.60 |
165
- | o1-mini | 63.60 | 90.00 | - | 60.00 | - | 80.30 | 85.20| 53.80 |
166
- | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 46.67 | 88.20 | 93.71 | 57.58 | 95.90 | 68.70 | 82.17 | 59.69 |
167
- | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) |43.33 | 87.80 | 95.45 | 49.49 | 95.73 | 63.49 | 85.19 | 51.86 |
168
- | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 43.33 | 86.80 | 95.15 | 50.51 | 95.56 | 65.80 | 82.71 | 51.66 |
169
- | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 20.00 | 81.60 | 93.63 | 46.46 | 95.22 | 56.27 | 79.63 | 48.53 |
170
- | [FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-Qwen2.5-Instruct-32B-Preview) | 46.67 | 87.20 | 93.33 | 55.05 | 96.33 | 68.61 | 82.03 | 60.67 |
171
- | [FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-32B-Preview) | 56.67 | 85.60 | 93.78 | 62.12 | 96.08 | 68.85 | 82.65 | 59.49 |
172
- | [FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview) | 60.00 | 90.00 | 93.33 | 62.12 | 95.90 | 70.79 | 83.56 | 58.90 |
173
 
174
  ## Future Works
175
 
 
14
 
15
  <!-- **Authors:** -->
16
 
17
+ _Fanqi Wan, Longguang Zhong, Ziyi Yang, Weizhou Shen, Xinting Huang_
18
 
19
 
20
  <!-- **Affiliations:** -->
21
 
22
+ _FuseAI Team_
23
 
24
  </div>
25
 
 
30
 
31
  ## Overview
32
 
33
+ [FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing our advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains.
34
+
35
+ <p align="center">
36
+ <img src="./assets/sce.jpg" width="70%"> <br>
37
+ </p>
38
 
39
  To achieve this, we conduct two types of model merging:
40
 
41
+ - **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) achieves a Pass@1 accuracy of **74.0 on AIME24**, demonstrating significant performance improvements compared to the OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching OpenAI o1 (79.2).
42
+ - **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks.
43
 
44
  | Model | Merge Type | Source Models | HF Link |
45
  |:----- | ---- | ---- | ---- |
46
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview), [GGUF](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview-GGUF) |
47
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) |
48
+ | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) |
49
+ | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) |
50
 
51
 
52
  ## Long-Long Reasoning Merging
 
57
  - [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
58
  - [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview)
59
 
60
+ To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) model, using the script below.
61
 
62
  ```sh
63
  cd FuseAI/FuseO1-Preview/mergekit
64
  pip3 install -e .
65
  model_save_dir=xx # your path to save the merged models
66
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
67
  ```
68
 
69
+ To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) model, using the script below.
70
 
71
  ```sh
72
  cd FuseAI/FuseO1-Preview/mergekit
73
  pip3 install -e .
74
  model_save_dir=xxx # your path to save the merged models
75
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
76
  ```
77
 
78
+ We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.
79
 
80
  ```python3
81
  from vllm import LLM, SamplingParams
82
 
83
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
84
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
85
 
86
  conversations = [
87
  [
88
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
89
  {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
90
  ],
91
  ]
 
102
 
103
  - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
104
  - [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)
105
+ - [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder)
106
+
107
+ To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) model, using the script below.
108
+
109
+ ```sh
110
+ cd FuseAI/FuseO1-Preview/mergekit
111
+ pip3 install -e .
112
+ model_save_dir=xxx # your path to save the merged models
113
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
114
+ ```
115
 
116
+ To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) model, using the script below.
117
 
118
  ```sh
119
  cd FuseAI/FuseO1-Preview/mergekit
120
  pip3 install -e .
121
  model_save_dir=xxx # your path to save the merged models
122
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
123
  ```
124
 
125
+ We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.
126
 
127
  ```python3
128
  from vllm import LLM, SamplingParams
129
 
130
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
131
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
132
 
133
  conversations = [
134
  [
135
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
136
  {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
137
  ],
138
  ]
 
150
  Math Reasoning
151
  - AIME24
152
  - MATH500
153
+ - OlympiadBench
154
 
155
  Scientific Reasoning
156
  - GPQA-Diamond
 
157
  - MMLU-Pro
158
  - MMLU
159
 
160
 
161
  Code Reasoning
162
+ - LiveCodeBench (2408-2502)
163
+
164
+ > Important Note: We manully set `"add_bos_token": false` in `tokenizer_config.json` for all the evaluated LLMs to prevent the bos_token to be added twice for each prompt. Please download and modify to ensure consistency.
165
+
166
+ ### Math Reasoning
167
+
168
+ The evaluation code is modified from [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [math_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/math_evaluation).
169
+
170
+ The system prompt for evaluation is set to:
171
+
172
+ ```sh
173
+ Please reason step by step, and put your final answer within \\boxed{{}}.
174
+ ```
175
+
176
+ The evaluation results are shown in the table below:
177
+
178
+ In our evaluation of AIME24, we follow the method from DeepSeek-R1, wherein Pass@1 is computed by averaging the results across 32 sampled responses per prompt, while Cons@32 is determined through self-consistency analysis of the same 32 sampled responses for each prompt. For other benchmarks, we only sample 1 response and report the Pass@1.
179
+
180
+ | Models | AIME24 Pass@1 | AIME24 Cons@32 | MATH500 | OlympiadBench |
181
+ |:------ | --------------| ------------------- | ------------ | -------------- |
182
+ | OpenAI o1 | 79.2 | - | 96.4 | - |
183
+ | OpenAI o1-preview | 44.6 | - | 85.5 | - |
184
+ | OpenAI o1-mini | 63.6 | - | 90.0 | - |
185
+ | DeepSeek R1 | 79.8 | - | 97.3 | - |
186
+ | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 69.2 | 83.3 | 93.6 | 64.3 |
187
+ | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 43.8 | 56.7 | 88.4 | 60.3 |
188
+ | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 37.7 | 50.0 | 88.0 | 55.1 |
189
+ | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 17.0 | 20.0 | 81.8 | 48.1 |
190
+ | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 68.6 | 83.3 | 94.6 | 64.9 |
191
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 69.7 | 83.3 | 94.6 | 64.0 |
192
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 74.0 | 86.7 | 94.8 | 65.0 |
193
+
194
+ We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on math reasoning. Specifically, our model achieves an accuracy of **74.0 Pass@1 and 86.7 Cons@32 on AIME24**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (69.2 Pass@1 and 83.3 Cons@32), OpenAI o1-preview (44.6 Pass@1) and OpenAI o1-mini (63.4 Pass@1), even approaching OpenAI o1 (79.2 Pass@1).
195
+
196
+ ### Scientific Reasoning
197
 
198
  The evaluation code is modified from [SkyThought](https://github.com/NovaSky-AI/SkyThought). In our evaluation, we set the temperature to 0.7 and the max_tokens to 32768. We provide the example to reproduce our results in [evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/evaluation).
199
 
 
203
  You are a helpful and harmless assistant. You should think step-by-step.
204
  ```
205
 
206
+ The evaluation results are shown in the table below:
207
+
208
+ | Models | GPQA-Diamond| MMLU-Pro | MMLU |
209
+ |:------ | --------------| ------------ | -------------- |
210
+ | OpenAI o1 | 75.7 | - | 91.8 |
211
+ | OpenAI o1-preview | 73.3 | - | 90.8 |
212
+ | OpenAI o1-mini | 60.0 | 80.3 | 85.2 |
213
+ | DeepSeek R1 | 71.5 | 84.0 | 90.8 |
214
+ | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 57.6 | 68.7 | 82.2 |
215
+ | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 49.5 | 63.5 | 85.2 |
216
+ | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 50.5 | 65.8 | 82.7 |
217
+ | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 46.5 | 56.3 | 79.6 |
218
+ | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 55.1 | 68.6 | 82.0 |
219
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 62.1 | 68.9 | 82.7 |
220
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 62.1 | 70.8 | 83.6 |
221
+
222
+ We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **62.1 on GPQA-Diamond and 70.8 on MMLU-Pro**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (57.6 on GPQA-Diamond and 68.7 on MMLU-Pro).
223
+
224
+
225
+ ## Code Reasoning
226
+
227
+ The evaluation code is modified from [Qwen2.5-Coder](https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder-eval/reasoning/livecode_bench_cot). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [code_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/code_evaluation).
228
+
229
+ The system prompt for evaluation is set to:
230
+
231
+ ```sh
232
+ A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.
233
+ ```
234
+
235
+ In our evaluation of LiveCodeBench, we follow the method from DeepSeek-R1 and make a slight modification. The Pass@1 is computed by averaging the results across 16 sampled responses per prompt.
236
 
237
  The evaluation results are shown in the table below:
238
 
239
+ | Models | LiveCodeBench | LiveCodeBench-Easy | LiveCodeBench-Medium | LiveCodeBench-Hard |
240
+ |:------ | --------------| ------------------- | ------------ | -------------- |
241
+ | OpenAI o1 | 63.4 | 98.5 | 80.9 | 31.7 |
242
+ | OpenAI o1-preview | 42.7 | 97.0 | 47.2 | 9.8 |
243
+ | OpenAI o1-mini | 52.00 | 91.0 | 67.4 | 19.5 |
244
+ | DeepSeek R1 | 62.8 | 98.4 | 78.3 | 32.2 |
245
+ | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 56.1 | 93.6 | 73.1 | 23.4 |
246
+ | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 44.4 | 94.9 | 53.8 | 10.0 |
247
+ | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 57.9 | 93.6 | 76.0 | 25.5 |
248
+
249
+ We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **57.9 on LiveCodeBench and 25.5 on LiveCodeBench-Hard**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (56.1 on LiveCodeBench and 23.4 on LiveCodeBench-Hard), OpenAI o1-preview (42.7 on LiveCodeBench and 9.8 on LiveCodeBench-Hard) and OpenAI o1-mini (52.0 on LiveCodeBench and 19.5 on LiveCodeBench-Hard Pass@1).
250
 
251
  ## Future Works
252