--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: codellama/CodeLlama-13b-Instruct-hf model-index: - name: stg-cli13b-t6-cdp-ca.mt.him.cln.inter-b4s1e1-20231220-1052 results: [] --- # stg-cli13b-t6-cdp-ca.mt.him.cln.inter-b4s1e1-20231220-1052 This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3435 | 0.03 | 100 | 0.0703 | | 0.0654 | 0.07 | 200 | 0.0586 | | 0.0579 | 0.1 | 300 | 0.0563 | | 0.0567 | 0.14 | 400 | 0.0562 | | 0.0551 | 0.17 | 500 | 0.0547 | | 0.0547 | 0.21 | 600 | 0.0526 | | 0.0532 | 0.24 | 700 | 0.0516 | | 0.0534 | 0.28 | 800 | 0.0515 | | 0.0521 | 0.31 | 900 | 0.0520 | | 0.0522 | 0.35 | 1000 | 0.0517 | | 0.0518 | 0.38 | 1100 | 0.0511 | | 0.051 | 0.42 | 1200 | 0.0502 | | 0.0517 | 0.45 | 1300 | 0.0494 | | 0.0506 | 0.49 | 1400 | 0.0499 | | 0.0511 | 0.52 | 1500 | 0.0496 | | 0.05 | 0.56 | 1600 | 0.0493 | | 0.05 | 0.59 | 1700 | 0.0497 | | 0.049 | 0.63 | 1800 | 0.0485 | | 0.0487 | 0.66 | 1900 | 0.0484 | | 0.0492 | 0.7 | 2000 | 0.0483 | | 0.0493 | 0.73 | 2100 | 0.0481 | | 0.0483 | 0.77 | 2200 | 0.0478 | | 0.048 | 0.8 | 2300 | 0.0478 | | 0.048 | 0.83 | 2400 | 0.0476 | | 0.0476 | 0.87 | 2500 | 0.0474 | | 0.0471 | 0.9 | 2600 | 0.0473 | | 0.0472 | 0.94 | 2700 | 0.0472 | | 0.0469 | 0.97 | 2800 | 0.0472 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2