--- language: - eng license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Gabi00/english-mistakes metrics: - wer model-index: - name: Whisper Small Eng - Gabriel Mora results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: English-mistakes type: Gabi00/english-mistakes config: default split: validation args: 'config: eng, split: test' metrics: - name: Wer type: wer value: 13.110781686527167 --- # Whisper Small Eng - Gabriel Mora This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the English-mistakes dataset. It achieves the following results on the evaluation set: - Loss: 0.3784 - Wer: 13.1108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 28 - eval_batch_size: 28 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6399 | 0.4444 | 500 | 0.4393 | 13.1649 | | 0.526 | 0.8889 | 1000 | 0.4070 | 14.4792 | | 0.4598 | 1.3333 | 1500 | 0.3948 | 14.2654 | | 0.4094 | 1.7778 | 2000 | 0.3806 | 14.4050 | | 0.3556 | 2.2222 | 2500 | 0.3816 | 13.2305 | | 0.3304 | 2.6667 | 3000 | 0.3784 | 13.1108 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1