File size: 92,202 Bytes
4008bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
# coding=utf-8
# Copyright 2023 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax whisper model."""

import random
from functools import partial
from typing import Dict, Optional, Tuple, Union

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.linen.partitioning import remat, scan_with_axes
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from transformers import WhisperConfig
from transformers.generation.flax_logits_process import (
    FlaxLogitsProcessor,
    FlaxLogitsProcessorList,
    FlaxWhisperTimeStampLogitsProcessor,
)
from transformers.modeling_flax_outputs import (
    FlaxBaseModelOutput,
    FlaxBaseModelOutputWithPastAndCrossAttentions,
    FlaxCausalLMOutputWithCrossAttentions,
    FlaxSeq2SeqLMOutput,
    FlaxSeq2SeqModelOutput,
)
from transformers.modeling_flax_utils import (
    ACT2FN,
    FlaxPreTrainedModel,
    append_call_sample_docstring,
    append_replace_return_docstrings,
    overwrite_call_docstring,
)
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from .layers import Conv, DenseGeneral, Embed, LayerNorm, with_sharding_constraint


logger = logging.get_logger(__name__)


_CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
_CONFIG_FOR_DOC = "WhisperConfig"


WHISPER_START_DOCSTRING = r"""
    This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.) This model is also a Flax Linen
    [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
    regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        config ([`WhisperConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
        dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
            The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
            `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision
            inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`.
            **Note that this only specifies the dtype of the computation and does not influence the dtype of model
            parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`]
            and [`~FlaxPreTrainedModel.to_bf16`].
"""

WHISPER_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a
            tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]
        attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
            is not used. By default the silence in the input log mel spectrogram are ignored.
        decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
            [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
            [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as
            the starting token for `decoder_input_ids` generation.
        decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1
            in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
        position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't
            use masking, but this argument is preserved for compatibility. By default the silence in the input log mel
            spectrogram are ignored.
        decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
            range `[0, config.max_position_embeddings - 1]`.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

WHISPER_ENCODE_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
            tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`].
        attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
            is not used. By default the silence in the input log mel spectrogram are ignored.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

WHISPER_DECODE_INPUTS_DOCSTRING = r"""
    Args:
        decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`):
            Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
            [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
            [What are decoder input IDs?](../glossary#decoder-input-ids)
        encoder_outputs (`tuple(tuple(numpy.ndarray)`):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
           Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
            but it is not used. By default the silence in the input log mel spectrogram are ignored.
        decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1
            in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
        decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
            range `[0, config.max_position_embeddings - 1]`.
        past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
            Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
            auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class FlaxStaticForceTokensLogitsProcessor(FlaxLogitsProcessor):
    r"""
    [`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to
    token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens
    to `-inf` so that they are sampled at their corresponding index. This is a static version of the `transformers` logit
    processor [`FlaxForceTokensLogitsProcessor`] that is compatible with sharded forced tokens.

    Args:
        force_token_map (`list`):
            Map giving token ids and indices where they will be forced to be sampled.
    """

    def __init__(self, force_token_map):
        # The generic `transformers` logit processor builds `force_token_array` as a dictionary - this is not a valid
        # JAX type, and so we switch to using a JAX array instead
        force_token_map = jnp.array(force_token_map)
        # Converts the array of format [[index, token]] containing the tokens to be forced to an array, where the
        # index of the array corresponds to the index of the token to be forced. For XLA compatibility,
        # indexes without forced tokens will have a negative value. Note that the last token we ever need to force in
        # Whisper is at position 3, so we only construct an array up to this index. The native version constructs a tensor
        # dynamically according to the length of the `force_token_map`. Array shapes need to be concrete for XLA compatibility,
        # so this is not permitted here.
        force_token_array = jnp.ones(3, dtype=jnp.int32) * -1
        for index, token in force_token_map:
            force_token_array = force_token_array.at[index].set(token)
        self.force_token_array = jnp.int32(force_token_array)

    def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
        def _force_token(generation_idx):
            batch_size = scores.shape[0]
            current_token = self.force_token_array[generation_idx]

            new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf")
            updates = jnp.zeros((batch_size, 1), dtype=scores.dtype)
            new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token))
            return new_scores

        scores = lax.cond(
            cur_len >= self.force_token_array.shape[0],
            # If the current length is geq than the length of force_token_array, the processor does nothing.
            lambda: scores,
            # Otherwise, it may force a certain token.
            lambda: lax.cond(
                self.force_token_array[cur_len] >= 0,
                # Only valid (positive) tokens are forced
                lambda: _force_token(cur_len),
                # Otherwise, the processor does nothing.
                lambda: scores,
            ),
        )
        return scores


class FlaxWhisperAttention(nn.Module):
    config: WhisperConfig
    embed_dim: int
    num_heads: int
    dropout: float = 0.0
    causal: bool = False
    bias: bool = True
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                "embed_dim must be divisible by num_heads (got `embed_dim`:"
                f" {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        dense = partial(
            DenseGeneral,
            self.embed_dim,
            axis=-1,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("embed", "joined_kv"),
        )

        self.q_proj = dense(use_bias=self.bias)
        self.k_proj = dense(use_bias=False)
        self.v_proj = dense(use_bias=self.bias)

        self.out_proj = DenseGeneral(
            self.embed_dim,
            axis=-1,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("joined_kv", "embed"),
            use_bias=self.bias,
        )

        if self.causal:
            self.causal_mask = make_causal_mask(
                jnp.ones((1, self.config.max_target_positions), dtype="bool"),
                dtype="bool",
            )

    def __call__(
        self,
        hidden_states: jnp.ndarray,
        key_value_states: Optional[jnp.ndarray] = None,
        attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray]:
        is_cross_attention = key_value_states is not None
        batch_size = hidden_states.shape[0]

        query_states = self.q_proj(hidden_states)

        if is_cross_attention:
            key_states = self.k_proj(key_value_states)
            value_states = self.v_proj(key_value_states)
        else:
            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)

        query_states = self._split_heads(query_states)
        key_states = self._split_heads(key_states)
        value_states = self._split_heads(value_states)

        query_states = with_sharding_constraint(query_states, ("batch", "length", "heads", "kv"))
        key_states = with_sharding_constraint(key_states, ("batch", "length", "heads", "kv"))
        value_states = with_sharding_constraint(value_states, ("batch", "length", "heads", "kv"))

        if self.causal:
            query_length, key_length = query_states.shape[1], key_states.shape[1]
            if self.has_variable("cache", "cached_key"):
                mask_shift = self.variables["cache"]["cache_index"]
                # max_length of cached_key is last dim
                max_decoder_length = self.variables["cache"]["cached_key"].shape[-1]
                causal_mask = lax.dynamic_slice(
                    self.causal_mask,
                    (0, 0, mask_shift, 0),
                    (1, 1, query_length, max_decoder_length),
                )
            else:
                causal_mask = self.causal_mask[:, :, :query_length, :key_length]
            causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

        # combine masks if needed
        if attention_mask is not None and self.causal:
            attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
            attention_mask = combine_masks(attention_mask, causal_mask)
        elif self.causal:
            attention_mask = causal_mask
        elif attention_mask is not None:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        # During fast autoregressive decoding, we feed one position at a time,
        # and cache the keys and values step by step.

        if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
            key_states, value_states, attention_mask = self._concatenate_to_cache(
                key_states, value_states, query_states, attention_mask
            )

        # Convert the boolean attention mask to an attention bias.
        if attention_mask is not None:
            # attention mask in the form of attention bias
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
            )
        else:
            attention_bias = None

        dropout_rng = None
        if not deterministic and self.dropout > 0.0:
            dropout_rng = self.make_rng("dropout")

        attn_weights = dot_product_attention_weights(
            query_states,
            key_states,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.dropout,
            broadcast_dropout=True,
            deterministic=deterministic,
            dtype=self.dtype,
            precision=None,
        )

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights

    def _split_heads(self, hidden_state) -> jnp.ndarray:
        return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim))

    def _merge_heads(self, hidden_state) -> jnp.ndarray:
        return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,))

    @nn.compact
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        # The following code is largely copied from: https://github.com/google-research/t5x/blob/63d9addf628c6d8c547a407a32095fcb527bb20b/t5x/examples/scalable_t5/layers.py#L280-L284
        is_initialized = self.has_variable("cache", "cached_key")

        # The key and value have dimension [batch_size, seq_length, num_heads, head_dim],
        # but we cache them as [batch_size, num_heads, head_dim, seq_length] as a TPU
        # fusion optimization. This also enables the "scatter via one-hot
        # broadcast" trick, which means we do a one-hot broadcast instead of a
        # scatter/gather operations, resulting in a 3-4x speedup in practice.
        def swap_dims(x):
            return x[:-3] + tuple(x[i] for i in [-2, -1, -3])

        cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            batch_size, num_heads, head_dim, seq_length = cached_key.value.shape
            # During fast autoregressive decoding, we feed one position at a time,
            # and cache the keys and values step by step.
            # Sanity shape check of cached key against input query.
            num_updated_cache_vectors = query.shape[1]
            expected_shape = (batch_size, 1, num_heads, head_dim)
            if num_updated_cache_vectors == 1 and expected_shape != query.shape:
                raise ValueError(
                    "Autoregressive cache shape error, expected query shape"
                    f" {expected_shape} instead got {query.shape}"
                )

            # Create a OHE of the current index. NOTE: the index is increased below.
            cur_index = cache_index.value

            # In order to update the key, value caches with the current key and
            # value, we move the seq_length axis to the back, similar to what we did for
            # the cached ones above.
            # Note these are currently the key and value of a single position, since
            # we feed one position at a time.
            one_token_key = jnp.moveaxis(key, -3, -1)
            one_token_value = jnp.moveaxis(value, -3, -1)

            # Update key, value caches with our new 1d spatial slices.
            # We implement an efficient scatter into the cache via one-hot
            # broadcast and addition.
            if num_updated_cache_vectors > 1:
                indices = jnp.eye(num_updated_cache_vectors, seq_length)[None, None]
                key = cached_key.value + jnp.matmul(one_token_key, indices)
                value = cached_value.value + jnp.matmul(one_token_value, indices)
            else:
                one_hot_indices = jax.nn.one_hot(cur_index, seq_length, dtype=key.dtype)
                key = cached_key.value + one_token_key * one_hot_indices
                value = cached_value.value + one_token_value * one_hot_indices

            cached_key.value = key
            cached_value.value = value
            cache_index.value = cache_index.value + num_updated_cache_vectors

            # Move the keys and values back to their original shapes.
            key = jnp.moveaxis(key, -1, -3)
            value = jnp.moveaxis(value, -1, -3)

            # causal mask for cached decoder self-attention: our single query position should only
            # attend to those key positions that have already been generated and cached, not the
            # remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(seq_length) < cur_index + num_updated_cache_vectors,
                (batch_size,) + (1, num_updated_cache_vectors, seq_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)

        return key, value, attention_mask


class FlaxWhisperEncoderLayer(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False

    def setup(self) -> None:
        self.embed_dim = self.config.d_model
        self.self_attn = FlaxWhisperAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.encoder_attention_heads,
            dropout=self.config.attention_dropout,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )
        self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)
        self.activation_fn = ACT2FN[self.config.activation_function]
        self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
        self.fc1 = DenseGeneral(
            self.config.encoder_ffn_dim,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("embed", "mlp"),
        )
        self.fc2 = DenseGeneral(
            self.embed_dim,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("mlp", "embed"),
        )
        self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)

    def __call__(
        self,
        hidden_states: jnp.ndarray,
        attention_mask: jnp.ndarray,
        output_attentions: bool = True,
        deterministic: bool = True,
        all_hidden_states=None,  # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer
    ) -> Tuple[jnp.ndarray]:
        if self.use_scan:
            hidden_states = hidden_states[0]

        hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))

        residual = hidden_states

        layernorm_output = self.self_attn_layer_norm(hidden_states)
        layernorm_output = with_sharding_constraint(layernorm_output, ("batch", "length", "embed"))

        attn_output, attn_weights = self.self_attn(hidden_states=layernorm_output, attention_mask=attention_mask)
        attn_output = self.dropout_layer(attn_output, deterministic=deterministic)
        attn_output = residual + attn_output
        attn_output = with_sharding_constraint(attn_output, ("batch", "length", "embed"))

        residual = attn_output

        post_layer_norm = self.final_layer_norm(attn_output)
        post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed"))

        fc1_output = self.activation_fn(self.fc1(post_layer_norm))
        fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic)
        fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp"))

        hidden_states = self.fc2(fc1_output)
        hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        if self.use_scan:
            if all_hidden_states is not None:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = (
                outputs,
                all_hidden_states,
            )

        return outputs


class FlaxWhisperEncoderLayerCollection(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    @nn.compact
    def __call__(
        self,
        hidden_states,
        attention_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        FlaxWhisperEncoderCheckpointLayer = (
            remat(
                FlaxWhisperEncoderLayer,
                static_argnums=(2, 3),
                prevent_cse=not self.use_scan,
            )
            if self.gradient_checkpointing
            else FlaxWhisperEncoderLayer
        )

        if self.use_scan:
            if output_attentions:
                raise ValueError("Cannot use `scan` with `output_attentions` set to True")

            # nicest behaviour for scan is to let the compiler figure out the correct shapes for the hidden states
            # so we'll just pass an empty tuple as the carry initializer and hold on to the first hidden states for later
            input_hidden_states = hidden_states
            hidden_states = (hidden_states,)

            hidden_states, all_hidden_states = scan_with_axes(
                FlaxWhisperEncoderCheckpointLayer,
                variable_axes={"params": 0, "cache": 0},
                split_rngs={"params": True, "dropout": True},
                in_axes=(
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                ),
                variable_carry="all_hidden_states",
                length=self.config.encoder_layers,
            )(
                self.config,
                dtype=self.dtype,
                params_dtype=self.params_dtype,
                use_scan=True,
                name="FlaxEncoderScanLayers",
            )(
                hidden_states,
                attention_mask,
                output_attentions,
                deterministic,
                all_hidden_states,  # tuple intializer (or None if not using output_hidden_states)
            )

            # remove the scan dimension
            hidden_states = hidden_states[0]

            if output_hidden_states:
                # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple
                all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]])

        else:
            for layer_idx in range(self.config.encoder_layers):
                if output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)
                # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
                dropout_probability = random.uniform(0, 1)
                if not deterministic and (dropout_probability < self.config.encoder_layerdrop):  # skip the layer
                    layer_outputs = (None, None)
                else:
                    layer_outputs = FlaxWhisperEncoderCheckpointLayer(
                        self.config,
                        dtype=self.dtype,
                        params_dtype=self.params_dtype,
                        name=str(layer_idx),
                    )(
                        hidden_states,
                        attention_mask,
                        output_attentions,
                        deterministic,
                    )
                hidden_states = layer_outputs[0]
                if output_attentions:
                    all_attentions = all_attentions + (layer_outputs[1],)

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

        outputs = (hidden_states, all_hidden_states, all_attentions)

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


class FlaxWhisperDecoderLayer(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False

    def setup(self) -> None:
        self.embed_dim = self.config.d_model
        self.self_attn = FlaxWhisperAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.decoder_attention_heads,
            dropout=self.config.attention_dropout,
            causal=True,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)
        self.activation_fn = ACT2FN[self.config.activation_function]
        self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)

        self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
        self.encoder_attn = FlaxWhisperAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.decoder_attention_heads,
            dropout=self.config.attention_dropout,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )
        self.encoder_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)
        self.fc1 = DenseGeneral(
            self.config.decoder_ffn_dim,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("embed", "mlp"),
        )
        self.fc2 = DenseGeneral(
            self.embed_dim,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("mlp", "embed"),
        )
        self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)

    def __call__(
        self,
        hidden_states: jnp.ndarray,
        attention_mask: jnp.ndarray,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        output_attentions: bool = True,
        deterministic: bool = True,
        all_hidden_states=None,  # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer
    ) -> Tuple[jnp.ndarray]:
        if self.use_scan:
            hidden_states = hidden_states[0]

        hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))

        residual = hidden_states

        layer_norm_output = self.self_attn_layer_norm(hidden_states)
        layer_norm_output = with_sharding_constraint(layer_norm_output, ("batch", "length", "embed"))

        # Self Attention
        self_attn_output, self_attn_weights = self.self_attn(
            hidden_states=layer_norm_output,
            attention_mask=attention_mask,
            init_cache=init_cache,
        )
        self_attn_output = self.dropout_layer(self_attn_output, deterministic=deterministic)
        self_attn_output = residual + self_attn_output
        self_attn_output = with_sharding_constraint(self_attn_output, ("batch", "length", "embed"))

        # Cross-Attention Block
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = self_attn_output

            encoder_layer_norm_output = self.encoder_attn_layer_norm(self_attn_output)
            encoder_layer_norm_output = with_sharding_constraint(
                encoder_layer_norm_output, ("batch", "length", "embed")
            )

            cross_attn_output, cross_attn_weights = self.encoder_attn(
                hidden_states=encoder_layer_norm_output,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
            )
            cross_attn_output = self.dropout_layer(cross_attn_output, deterministic=deterministic)
            cross_attn_output = residual + cross_attn_output
            cross_attn_output = with_sharding_constraint(cross_attn_output, ("batch", "length", "embed"))

        # Fully Connected
        residual = cross_attn_output

        post_layer_norm = self.final_layer_norm(cross_attn_output)
        post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed"))

        fc1_output = self.activation_fn(self.fc1(post_layer_norm))
        fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic)
        fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp"))

        hidden_states = self.fc2(fc1_output)
        hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
        hidden_states = residual + hidden_states
        hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if self.use_scan:
            if all_hidden_states is not None:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = (
                outputs,
                all_hidden_states,
            )

        return outputs


class FlaxWhisperDecoderLayerCollection(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    @nn.compact
    def __call__(
        self,
        hidden_states,
        attention_mask,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None

        FlaxWhisperDecoderCheckpointLayer = (
            remat(
                FlaxWhisperDecoderLayer,
                static_argnums=(4, 5, 6),
                prevent_cse=not self.use_scan,
            )
            if self.gradient_checkpointing
            else FlaxWhisperDecoderLayer
        )

        if self.use_scan:
            if output_attentions:
                raise ValueError("Cannot use `scan` with `output_attentions` set to True")

            input_hidden_states = hidden_states
            hidden_states = (hidden_states,)

            hidden_states, all_hidden_states = scan_with_axes(
                FlaxWhisperDecoderCheckpointLayer,
                variable_axes={"params": 0, "cache": 0},
                split_rngs={"params": True, "dropout": True},
                in_axes=(
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                    nn.broadcast,
                ),
                variable_carry="all_hidden_states",
                length=self.config.decoder_layers,
            )(
                self.config,
                dtype=self.dtype,
                params_dtype=self.params_dtype,
                use_scan=True,
                name="FlaxDecoderScanLayers",
            )(
                hidden_states,
                attention_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                init_cache,
                output_attentions,
                deterministic,
                all_hidden_states,
            )
            hidden_states = hidden_states[0]

            if output_hidden_states:
                # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple
                all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]])

        else:
            for layer_idx in range(self.config.decoder_layers):
                if output_hidden_states:
                    all_hidden_states += (hidden_states,)
                    # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
                dropout_probability = random.uniform(0, 1)
                if not deterministic and (dropout_probability < self.config.decoder_layerdrop):
                    layer_outputs = (None, None, None)
                else:
                    layer_outputs = FlaxWhisperDecoderCheckpointLayer(
                        self.config,
                        dtype=self.dtype,
                        params_dtype=self.params_dtype,
                        name=str(layer_idx),
                    )(
                        hidden_states,
                        attention_mask,
                        encoder_hidden_states,
                        encoder_attention_mask,
                        init_cache,
                        output_attentions,
                        deterministic,
                    )

                hidden_states = layer_outputs[0]
                if output_attentions:
                    all_self_attns += (layer_outputs[1],)

                    if encoder_hidden_states is not None:
                        all_cross_attentions += (layer_outputs[2],)

            # add hidden states from the last decoder layer
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

        outputs = [
            hidden_states,
            all_hidden_states,
            all_self_attns,
            all_cross_attentions,
        ]

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


class FlaxWhisperEncoder(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    def setup(self) -> None:
        self.conv1 = Conv(
            self.config.d_model,
            kernel_size=(3,),
            padding=1,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("channels", "num_mel", "embed"),
        )
        self.conv2 = Conv(
            self.config.d_model,
            kernel_size=(3,),
            strides=2,
            padding=1,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("channels", "embed", "num_mel"),
        )

        self.dropout_layer = nn.Dropout(rate=self.config.dropout)

        self.layers = FlaxWhisperEncoderLayerCollection(
            self.config,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.embed_positions = Embed(
            self.config.max_source_positions,
            self.config.d_model,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )

        self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype)

    def __call__(
        self,
        input_features: jnp.ndarray,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray]:
        if input_features.shape[1:] != (
            self.config.num_mel_bins,
            self.config.max_source_positions * 2,
        ):
            raise ValueError(
                "input_features.shape[1:], must be equal to (self.config.num_mel_bins,"
                " self.config.max_source_positions * 2) (got"
                f" {input_features.shape[1:]}, but should be"
                f" ({self.config.num_mel_bins},"
                f" {self.config.max_source_positions * 2}))"
            )

        input_features = input_features.transpose(0, 2, 1)
        hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False)
        hidden_states = with_sharding_constraint(hidden_states, ("batch", "embed", "num_mel"))
        hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False)
        hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed"))

        embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions))
        # sinusoidal positional embeddings should not be trained
        embed_positions = jax.lax.stop_gradient(embed_positions)
        hidden_states = hidden_states + embed_positions

        hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)

        outputs = self.layers(
            hidden_states,
            attention_mask=None,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_states = outputs[0]
        last_hidden_states = self.layer_norm(last_hidden_states)

        # update the last element in `hidden_states` after applying `layernorm` above
        hidden_states = None
        if output_hidden_states:
            hidden_states = outputs[1]
            if self.use_scan:
                hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]])
            else:
                hidden_states = hidden_states[:-1] + (last_hidden_states,)

        if not return_dict:
            outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=last_hidden_states,
            hidden_states=hidden_states,
            attentions=outputs.attentions,
        )


class FlaxWhisperDecoder(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    def setup(self) -> None:
        self.embed_tokens = Embed(
            self.config.vocab_size,
            self.config.d_model,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )
        self.embed_positions = Embed(
            self.config.max_target_positions,
            self.config.d_model,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
        )

        self.layers = FlaxWhisperDecoderLayerCollection(
            self.config,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )

        self.dropout_layer = nn.Dropout(rate=self.config.dropout)

        self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-5, params_dtype=self.params_dtype)

    def __call__(
        self,
        input_ids: jnp.ndarray,
        attention_mask: jnp.ndarray,
        position_ids: jnp.ndarray,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray]:
        input_embeds = self.embed_tokens(input_ids)
        position_embeds = self.embed_positions(position_ids)

        hidden_states = input_embeds + position_embeds
        hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)

        outputs = self.layers(
            hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_states = outputs[0]
        last_hidden_states = self.layer_norm(last_hidden_states)

        # update the last element in `hidden_states` after applying `layernorm` above
        hidden_states = None
        if output_hidden_states:
            hidden_states = outputs[1]
            if self.use_scan:
                hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]])
            else:
                hidden_states = hidden_states[:-1] + (last_hidden_states,)

        if not return_dict:
            outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=last_hidden_states,
            hidden_states=hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


class FlaxWhisperModule(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    def setup(self) -> None:
        self.encoder = FlaxWhisperEncoder(
            self.config,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.decoder = FlaxWhisperDecoder(
            self.config,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )

    def __call__(
        self,
        input_features: jnp.ndarray,
        decoder_input_ids: jnp.ndarray,
        decoder_attention_mask: jnp.ndarray,
        decoder_position_ids: jnp.ndarray,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        freeze_encoder: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ):
        encoder_outputs = self.encoder(
            input_features,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        encoder_hidden_states = encoder_outputs[0]

        if freeze_encoder:
            encoder_hidden_states = jax.lax.stop_gradient(encoder_hidden_states)

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            position_ids=decoder_position_ids,
            encoder_hidden_states=encoder_hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return FlaxSeq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def _get_encoder_module(self):
        return self.encoder

    def _get_decoder_module(self):
        return self.decoder


class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel):
    config_class = WhisperConfig
    base_model_prefix: str = "model"
    main_input_name = "input_features"
    module_class: nn.Module = None

    def __init__(
        self,
        config: WhisperConfig,
        input_shape: Tuple[int, int, int] = None,
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        params_dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        # Can only use_scan=True in init if loading scanned weights -> need to handle use_scan=True and unrolled weights
        use_scan: bool = False,
        gradient_checkpointing: bool = False,
        **kwargs,
    ):
        self.use_scan = use_scan
        self.gradient_checkpointing = gradient_checkpointing

        module = self.module_class(
            config=config,
            dtype=dtype,
            params_dtype=params_dtype,
            use_scan=use_scan,
            gradient_checkpointing=gradient_checkpointing,
            **kwargs,
        )

        if input_shape is None:
            input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions)

        super().__init__(
            config,
            module,
            input_shape=input_shape,
            seed=seed,
            dtype=dtype,
            _do_init=_do_init,
        )

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        # init input tensors
        input_features = jnp.zeros(input_shape, dtype="f4")
        input_features = input_features.at[(..., -1)].set(self.config.eos_token_id)

        decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4")
        decoder_attention_mask = jnp.ones_like(decoder_input_ids)

        batch_size, sequence_length = decoder_input_ids.shape
        decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        random_params = self.module.init(
            rngs,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            decoder_position_ids=decoder_position_ids,
        )["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True
        self._module = self.module_class(
            config=self.config,
            dtype=self.dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )

    def enable_scan(self):
        self.use_scan = True
        self._module = self.module_class(
            config=self.config,
            dtype=self.dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        init_fn = partial(self.init_weights, input_shape=self.input_shape)
        params_shape_tree = jax.eval_shape(init_fn, self.key)

        # get the shape of the parameters
        self._params_shape_tree = params_shape_tree

        # save required_params as set
        self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())

        # initialize the parameters
        if self._is_initialized:
            self.params = self.convert_unroll_to_scan(self.params)

    def disable_scan(self):
        self.use_scan = False
        self._module = self.module_class(
            config=self.config,
            dtype=self.dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        init_fn = partial(self.init_weights, input_shape=self.input_shape)
        params_shape_tree = jax.eval_shape(init_fn, self.key)

        # get the shape of the parameters
        self._params_shape_tree = params_shape_tree

        # save required_params as set
        self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())

        # initialize the parameters
        if self._is_initialized:
            self.params = self.convert_scan_to_unroll(self.params)

    def convert_unroll_to_scan(self, params: Union[Dict, FrozenDict]):
        r"""
        Convert a `PyTree` of unrolled model parameters to a scanned block of model parameters. This method can be used
        to explicitly convert the model parameters to scanned format. This returns a new `params` tree and does not
        convert the `params` in place.

        To illustrate the workings of this method, take the Flax BERT model. The unrolled structure for the query
        projection params is as follows:
            ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn',
            'q_proj') ... ('bert', 'encoder', 'layer', '23', 'self_attn', 'q_proj')
        This method takes each of the `q_proj` matrices for layers (0, ..., 23) and stacks them into a single 'super'
        matrix, giving a *single* block of weights for all 24 layers compatible with the scanned model:
            ('bert', 'encoder', 'layer', 'ScanLayers', 'self_attn', 'q_proj')

        When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With
        _do_init=False, it will have to be called explicitly (see example below).

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.

        Examples:

        ```python
        >>> from distil_whisper import FlaxWhisperForConditionalGeneration

        >>> # Download model and configuration from huggingface.co
        >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False)
        >>> # By default, the model params will be in unrolled format. To illustrate the use of this method,
        >>> # we'll first convert to scan format and then back to unrolled
        >>> model.enable_scan()
        >>> params = model.convert_unroll_to_scan(params)
        >>> # now convert back to unrolled
        >>> model.disable_scan()
        >>> params = model.convert_scan_to_unroll(params)
        ```"""
        if isinstance(params, FrozenDict):
            params = unfreeze(params)

        params = flatten_dict(params, sep="/")
        keys = list(params.keys())

        for k in keys:
            # Identify all "unrolled" layers formed as part of the FlaxBertLayerCollection
            # These params contain the identifier `layer` in their key
            if "layers/0" in k:
                if "decoder" in k:
                    block_prefix = "Decoder"
                    num_hidden_layers = self.config.decoder_layers
                else:
                    block_prefix = "Encoder"
                    num_hidden_layers = self.config.encoder_layers

                # Squash the keys for the N unrolled layers into one single key:
                # (layer/0, ..., layer/N) -> layer/FlaxScanLayers
                scan_key = k.replace("0", f"Flax{block_prefix}ScanLayers")
                stacked_params = []

                # Iterate over the unrolled layers (1,...,N)
                for i in range(num_hidden_layers):
                    # Stack the params for the N layers into one super block
                    # and remove the unrolled layer params on the fly
                    # -> no memory overhead for conversion!
                    unrolled_layer = params.pop(k.replace("0", str(i)))
                    stacked_params.append(unrolled_layer)

                params[scan_key] = jnp.stack(stacked_params)

        # Finally, unflatten the dict to restore the nested pytree structure
        params = unflatten_dict(params, sep="/")
        return params

    def convert_scan_to_unroll(self, params: Union[Dict, FrozenDict]):
        r"""
        Convert a `PyTree` of scanned model parameters to an unrolled stack of model parameters. This method can be
        used to explicitly convert the model parameters to unrolled format. This returns a new `params` tree and does
        not convert the `params` in place.

        To illustrate the workings of this method, take the Flax BERT model. The scanned structure for the query
        projection (`q_proj`) params is a single, stacked matrix of parameters over all N layers:
            ('bert', 'encoder', 'layer', 'FlaxScanLayers', 'self_attn', 'q_proj')

        This method slices each layer of the `q_proj` scanned matrix into single, standalone layers, and replaces the
        scanned matrix of parameteres on the fly:
            ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn',
            'q_proj') ... ('bert', 'encoder', 'layer', 'N', 'self_attn', 'q_proj')

        When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With
        _do_init=False, it will have to be called explicitly (see example below).

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.

        Examples:

        ```python
        >>> from distil_whisper import FlaxWhisperForConditionalGeneration

        >>> # Download model and configuration from huggingface.co
        >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False)
        >>> # By default, the model params will be in unrolled format. To illustrate the use of this method,
        >>> # we'll first convert to scan format and then back to unrolled
        >>> model.enable_scan()
        >>> params = model.convert_unroll_to_scan(params)
        >>> # now convert back to unrolled
        >>> model.disable_scan()
        >>> params = model.convert_scan_to_unroll(params)
        ```"""

        if isinstance(params, FrozenDict):
            params = unfreeze(params)

        params = flatten_dict(params, sep="/")
        keys = list(params.keys())

        for k in keys:
            # Identify all "scan" layers formed as part of the FlaxBertLayerCollection
            # These params contain the identifier `FlaxScanLayers` in their key
            if "FlaxEncoderScanLayers" in k:
                # Remove the scan layer from the PyTree of params
                scan_layer = params.pop(k)

                # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number
                # layer/FlaxScanLayers -> (layer/0, ..., layer/N)
                for i in range(self.config.encoder_layers):
                    # Unstack the params for the i-th scan layer to unrolled
                    # and remove corresponding scan params on the fly
                    # -> no memory overhead for conversion!
                    unrolled_key = k.replace("FlaxEncoderScanLayers", str(i))
                    params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:]

            elif "FlaxDecoderScanLayers" in k:
                # Remove the scan layer from the PyTree of params
                scan_layer = params.pop(k)

                # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number
                # layer/FlaxScanLayers -> (layer/0, ..., layer/N)
                for i in range(self.config.decoder_layers):
                    # Unstack the params for the i-th scan layer to unrolled
                    # and remove corresponding scan params on the fly
                    # -> no memory overhead for conversion!
                    unrolled_key = k.replace("FlaxDecoderScanLayers", str(i))
                    params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:]

        params = unflatten_dict(params, sep="/")
        return params

    # Copied from transformers.models.whisper.modeling_flax_whisper.FlaxWhisperPreTrainedModel.init_cache
    def init_cache(self, batch_size, max_length, encoder_outputs):
        r"""
        Args:
            batch_size (`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
            encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
                `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
                `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
                is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
                cross-attention of the decoder.
        """
        # init input variables to retrieve cache
        decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
        decoder_attention_mask = jnp.ones_like(decoder_input_ids)
        decoder_position_ids = jnp.broadcast_to(
            jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
            decoder_input_ids.shape,
        )

        def _decoder_forward(
            module,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            return decoder_module(
                decoder_input_ids,
                decoder_attention_mask,
                decoder_position_ids,
                **kwargs,
            )

        init_variables = self.module.init(
            jax.random.PRNGKey(0),
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            decoder_position_ids=decoder_position_ids,
            encoder_hidden_states=encoder_outputs[0],
            init_cache=True,
            method=_decoder_forward,  # we only need to call the decoder to init the cache
        )
        return unfreeze(init_variables["cache"])

    @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig)
    def encode(
        self,
        input_features: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
        **kwargs,
    ):
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
        >>> input_features = inputs.input_features
        >>> encoder_outputs = model.encode(input_features=input_features)
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        def _encoder_forward(module, input_features, **kwargs):
            encode_module = module._get_encoder_module()
            return encode_module(input_features, **kwargs)

        return self.module.apply(
            {"params": params or self.params},
            input_features=jnp.array(input_features, dtype="f4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            method=_encoder_forward,
        )

    @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING)
    @replace_return_docstrings(
        output_type=FlaxBaseModelOutputWithPastAndCrossAttentions,
        config_class=WhisperConfig,
    )
    def decode(
        self,
        decoder_input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
        >>> input_features = inputs.input_features
        >>> encoder_outputs = model.encode(input_features=input_features)
        >>> decoder_start_token_id = model.config.decoder_start_token_id

        >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

        >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
        >>> last_decoder_hidden_states = outputs.last_hidden_state
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        encoder_hidden_states = encoder_outputs[0]

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")

            if decoder_attention_mask is not None:
                decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
            else:
                decoder_position_ids = jnp.broadcast_to(
                    jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
                )

        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxWhisperAttention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(
            module,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            return decoder_module(
                input_ids=decoder_input_ids,
                attention_mask=decoder_attention_mask,
                position_ids=decoder_position_ids,
                **kwargs,
            )

        outputs = self.module.apply(
            inputs,
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
            encoder_hidden_states=encoder_hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past = outputs
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past = outputs
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
    def __call__(
        self,
        input_features: jnp.ndarray,
        decoder_input_ids: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        freeze_encoder: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        # prepare decoder inputs
        if decoder_position_ids is None:
            if decoder_attention_mask is not None:
                decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
            else:
                batch_size, sequence_length = decoder_input_ids.shape
                decoder_position_ids = jnp.broadcast_to(
                    jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
                )
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones_like(decoder_input_ids)

        # Handle any PRNG if needed
        rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

        return self.module.apply(
            {"params": params or self.params},
            input_features=jnp.array(input_features, dtype="f4"),
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            freeze_encoder=freeze_encoder,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
        )


@add_start_docstrings(
    ("The bare Whisper Model transformer outputting raw hidden-states without any specific head on top."),
    WHISPER_START_DOCSTRING,
)
class FlaxWhisperModel(FlaxWhisperPreTrainedModel):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    params_dtype: jnp.dtype = jnp.float32
    module_class = FlaxWhisperModule


append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)


class FlaxWhisperForConditionalGenerationModule(nn.Module):
    config: WhisperConfig
    dtype: jnp.dtype = jnp.float32
    params_dtype: jnp.dtype = jnp.float32
    use_scan: bool = False
    gradient_checkpointing: bool = False

    def setup(self) -> None:
        self.model = FlaxWhisperModule(
            config=self.config,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            use_scan=self.use_scan,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.lm_head = DenseGeneral(
            self.config.vocab_size,
            use_bias=False,
            dtype=self.dtype,
            params_dtype=self.params_dtype,
            kernel_axes=("embed", "vocab"),
        )

    def _get_encoder_module(self):
        return self.model.encoder

    def _get_decoder_module(self):
        return self.model.decoder

    def __call__(
        self,
        input_features,
        decoder_input_ids,
        decoder_attention_mask: jnp.ndarray = None,
        decoder_position_ids: jnp.ndarray = None,
        position_ids: jnp.ndarray = None,
        attention_mask: jnp.ndarray = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        freeze_encoder: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ):
        outputs = self.model(
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            decoder_position_ids=decoder_position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            freeze_encoder=freeze_encoder,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        hidden_states = outputs[0]

        if self.config.tie_word_embeddings:
            shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"]
            lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
        else:
            lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return output

        return FlaxSeq2SeqLMOutput(
            logits=lm_logits,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )


@add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING)
class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel):
    module_class = FlaxWhisperForConditionalGenerationModule

    @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig)
    def decode(
        self,
        decoder_input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
        >>> input_features = inputs.input_features
        >>> encoder_outputs = model.encode(input_features=input_features)
        >>> decoder_start_token_id = model.config.decoder_start_token_id

        >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

        >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
        >>> last_decoder_hidden_states = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        encoder_hidden_states = encoder_outputs[0]

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")

            if decoder_attention_mask is not None:
                decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
            else:
                decoder_position_ids = jnp.broadcast_to(
                    jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
                )
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4")

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxWhisperAttention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(
            module,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            outputs = decoder_module(
                input_ids=decoder_input_ids,
                attention_mask=decoder_attention_mask,
                position_ids=decoder_position_ids,
                **kwargs,
            )
            hidden_states = outputs[0]

            if self.config.tie_word_embeddings:
                shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"]
                lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
            else:
                lm_logits = module.lm_head(hidden_states)

            return lm_logits, outputs

        outputs = self.module.apply(
            inputs,
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
            encoder_hidden_states=encoder_hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        if past_key_values is None:
            lm_logits, decoder_outputs = outputs
        else:
            (lm_logits, decoder_outputs), past = outputs

        if return_dict:
            outputs = FlaxCausalLMOutputWithCrossAttentions(
                logits=lm_logits,
                hidden_states=decoder_outputs.hidden_states,
                attentions=decoder_outputs.attentions,
                cross_attentions=decoder_outputs.cross_attentions,
            )
        else:
            outputs = (lm_logits,) + decoder_outputs[1:]

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    def generate(
        self,
        input_features,
        generation_config=None,
        logits_processor=None,
        return_timestamps=None,
        task=None,
        language=None,
        is_multilingual=None,
        **kwargs,
    ):
        if generation_config is None:
            generation_config = self.generation_config

        if return_timestamps is not None:
            generation_config.return_timestamps = return_timestamps

        if task is not None:
            generation_config.task = task

        if is_multilingual is not None:
            generation_config.is_multilingual = is_multilingual

        if language is not None:
            generation_config.language = language

        if kwargs is not None and "decoder_input_ids" in kwargs:
            decoder_input_length = len(kwargs["decoder_input_ids"])
        else:
            decoder_input_length = 1

        forced_decoder_ids = []

        if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual:
            if hasattr(generation_config, "language"):
                forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language]))
            else:
                forced_decoder_ids.append((1, None))

            if hasattr(generation_config, "task"):
                forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task]))
            else:
                forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"]))

        if (
            hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps
        ) or return_timestamps:
            logits_processor = [
                FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length)
            ]
        else:
            if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id:
                idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
                forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))

        if len(forced_decoder_ids) > 0:
            generation_config.forced_decoder_ids = forced_decoder_ids

        return super().generate(
            input_features,
            generation_config,
            logits_processor=logits_processor,
            **kwargs,
        )

    def pipeline_generate(
        self,
        input_features,
        forced_decoder_ids,
        return_timestamps=False,
        generation_config=None,
        **kwargs,
    ):
        if generation_config is None:
            generation_config = self.generation_config

        # override the generation config forced decoder ids in preference of the ones we have set
        generation_config.forced_decoder_ids = None

        logits_processor = FlaxLogitsProcessorList()
        logits_processor.append(FlaxStaticForceTokensLogitsProcessor(forced_decoder_ids))

        if hasattr(generation_config, "return_timestamps") and return_timestamps:
            logits_processor.append(FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, 1))

        return super().generate(
            input_features,
            generation_config,
            logits_processor=logits_processor,
            **kwargs,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        max_length,
        attention_mask: Optional[jax.Array] = None,
        decoder_attention_mask: Optional[jax.Array] = None,
        encoder_outputs=None,
        **kwargs,
    ):
        # initializing the cache
        batch_size, seq_length = decoder_input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since the decoder uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if decoder_attention_mask is not None:
            position_ids = decoder_attention_mask.cumsum(-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "encoder_attention_mask": attention_mask,
            "decoder_attention_mask": extended_attention_mask,
            "decoder_position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
        return model_kwargs


FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r"""
    Returns:

    Transcription example:

    ```python
    >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
    >>> from datasets import load_dataset

    >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
    >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
    >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
    >>> input_features = inputs.input_features
    >>> generated_ids = model.generate(input_ids=input_features)
    >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    >>> transcription
    ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
    ```
"""

overwrite_call_docstring(
    FlaxWhisperForConditionalGeneration,
    WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING,
)
append_replace_return_docstrings(
    FlaxWhisperForConditionalGeneration,
    output_type=FlaxSeq2SeqLMOutput,
    config_class=_CONFIG_FOR_DOC,
)