diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..731157c2b478663d8a5ce7d9f9024dee70efa425 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +core filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..fff96000043b28d1317880a291a5463e49b9b720 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +wandb diff --git a/Makefile b/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..035241e681719b7e11f943545d578ec317462af1 --- /dev/null +++ b/Makefile @@ -0,0 +1,9 @@ +check_dirs := . + +quality: + black --check $(check_dirs) + ruff $(check_dirs) + +style: + black $(check_dirs) + ruff $(check_dirs) --fix diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..36fdc9624da823d04e82c3d3e2d4cd800d1e4df4 --- /dev/null +++ b/README.md @@ -0,0 +1,638 @@ +## Training Distil-Whisper + +This sub-folder contains all the scripts required to train a Distil-Whisper model in your choice of language. They are +slightly modified from the original scripts used to distill Whisper for English ASR (as-per the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). +The main difference is that these scripts are written in [PyTorch](https://pytorch.org), whereas the original scripts +are in [JAX](https://jax.readthedocs.io/en/latest/#)/[Flax](https://flax.readthedocs.io/en/latest/). These scripts are +also made to be easier to run end-to-end, whereas the original scripts require more steps and are somewhat hard-coded +for English ASR. Both sets of scripts achieve equivalent downstream results when the hyper-parameters are set equal. + +If you are interested in reproducing the original Distil-Whisper checkpoints, we refer you to the sub-folder [Flax Training](./flax/README.md). +Otherwise, if you wish to distill Whisper on your own language/dataset, we recommend you use these scripts for ease of use +and the configurability they provide. + +Reproducing the Distil-Whisper project requires four stages to be completed in successive order: + +1. [Pseudo-labelling](#1-pseudo-labelling) +2. [Initialisation](#2-initialisation) +3. [Training](#3-training) +4. [Evaluation](#4-evaluation) + +This README is partitioned according to the four stages. Each section provides a minimal example for running the +scripts used in the project. We will use a running example of distilling the Whisper model for Hindi speech recognition +on the Common Voice dataset. Note that this dataset only contains ~20 hours of audio data. Thus, it can be run extremely +quickly, but does not provide sufficient data to achieve optimal performance. We recommend training on upwards of 1000 +hours of data should you want to match the performance of Whisper on high-resource languages. + +## Requirements + +The Distil-Whisper training code is written in [PyTorch](https://pytorch.org) and [Accelerate](https://huggingface.co/docs/accelerate/index). +It heavily leverages the Whisper implementation in [🤗 Transformers](https://github.com/huggingface/transformers) for both +training and inference. + +The instructions for installing the package are as follows: +1. Install PyTorch from the [official instructions](https://pytorch.org/get-started/locally/), ensuring you install the correct version for your hardware and CUDA version. +2. Fork the `distil-whisper` repository by clicking on the [fork](https://github.com/huggingface/distil-whisper/fork) button on the reopsitory's page +3. Clone the `distil-whisper` repository and add the base repository as a remote. This will allow you to "pull" any upstream changes that are made to the base repository: + +```bash +git clone https://github.com//distil-whisper.git +cd distil-whisper +git remote add upstream https://github.com/huggingface/distil-whisper.git +``` +4. pip install the required packages from the [setup.py](./setup.py) file: +```bash +cd training +pip install -e . +cd ../.. +``` + +5. Configure Accelerate by running the following command. Note that you should set the number of GPUs you wish to use for distillation, and also the data type (dtype) to your preferred dtype for training/inference (e.g. `bfloat16` on A100 GPUs, `float16` on V100 GPUs, etc.): + +```bash +accelerate config +``` + +6. The last thing we need to do is link our Hugging Face account so that we can pull/push model repositories on the Hub. This will allow us to save our final distilled weights on the Hub so that we can share them with the community. Run the command: + +```bash +git config --global credential.helper store +huggingface-cli login +``` +And then enter an authentication token from https://huggingface.co/settings/tokens. Create a new token if you do not have one already. You should make sure that this token has "write" privileges. + +To confirm that you have a working environment, first accept the terms of use of the Common Voice 16.1 dataset on the Hub: https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1 + +You can run the following code cell to stream one sample of data from the Common Voice dataset, and check that you can +perform inference using the "tiny" Whisper model: + +```python +from transformers import WhisperProcessor, WhisperForConditionalGeneration +from datasets import load_dataset, Audio + +model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", low_cpu_mem_usage=True) +processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") + +model.to("cuda") + +common_voice = load_dataset("mozilla-foundation/common_voice_16_1", "en", split="validation", streaming=True) +common_voice = common_voice.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate)) + +inputs = processor(next(iter(common_voice))["audio"]["array"], sampling_rate=16000, return_tensors="pt") +input_features = inputs.input_features + +generated_ids = model.generate(input_features.to("cuda"), max_new_tokens=128) +pred_text = processor.decode(generated_ids[0], skip_special_tokens=True) + +print("Pred text:", pred_text) +print("Environment set up successful?", generated_ids.shape[-1] == 20) +``` + +## 1. Pseudo-Labelling + +The python script [`run_pseudo_labelling.py`](run_pseudo_labelling.py) is a flexible inference script that can be used +to generate pseudo-labels under a range of settings, including using both greedy and beam-search. It is also compatible +with [🤗 Datasets](https://github.com/huggingface/datasets) *streaming mode*, allowing users to load massive audio +datasets with **no disk space requirements**. For more information on streaming mode, the reader is referred to the +blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). + +> As of the latest Distil-Whisper release, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3), this +pseudo-labelling script also performs the added operation of concatenating (or packing) the audio inputs to 30-seconds. +Not only does this lead to a WER improvement when using sequential long-form decoding algorithm, but concatenating audios +to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. + +The following script demonstrates how to pseudo-label the Hindi split of the Common Voice 16.1 dataset with greedy sampling: + +```bash +#!/usr/bin/env bash + +accelerate launch run_pseudo_labelling.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --dataset_name "mozilla-foundation/common_voice_16_1" \ + --dataset_config_name "hi" \ + --dataset_split_name "train+validation+test" \ + --text_column_name "sentence" \ + --id_column_name "path" \ + --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + --wandb_project "distil-whisper-labelling" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --attn_implementation "sdpa" \ + --logging_steps 500 \ + --max_label_length 256 \ + --concatenate_audio \ + --preprocessing_batch_size 500 \ + --preprocessing_num_workers 8 \ + --dataloader_num_workers 8 \ + --report_to "wandb" \ + --language "hi" \ + --task "transcribe" \ + --return_timestamps \ + --streaming False \ + --generation_num_beams 1 \ + --push_to_hub +``` + +On an 80 GB A100 GPU, the following script takes approximately 5 minutes to concatenate and pre-process the 20 hours of +audio data, and a further 10 minutes to transcribe the pseudo-labels. The pseudo-labelled dataset corresponding to this +script is available on the Hugging Face Hub under [sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled](https://huggingface.co/datasets/sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled). +The WER of the pre-trained Whisper large-v3 model is 17.2% on the test split. We will compare the performance of our distilled model against this number. + +There are two noteworthy arguments that configure the dataset concatenation (or packing) process: +1. `concatenate_audio`: whether or not to concatenate (or pack) the audios to 30-second chunks. The latest Distil-Whisper model, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3#differences-with-distil-large-v2), highlights the WER improvements obtained using the sequential long-form decoding algorithm when concatenated audios are used. Concatenating audios to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. Hence, it is highly recommended to set `--concatenate_audio=True`. +2. `preprocessing_batch_size`: the batch size to use when concatenating (or packing) the audios. Using a larger batch size results in a greater portion of audio samples being packed to 30-seconds, at the expense of higher memory consumption. If you exceed your system's RAM when performing the concatenation operation, reduce the `preprocessing_batch_size` by a factor of 2 to 250 or even 125. +3. `preprocessing_num_workers`: the number of multiprocessing workers to use when concatenating the audios. Using more workers will result in faster pre-processing, at the expense of higher memory consumption. Ensure you do not exceed the maximum number of CPUs on your device. + +In addition, the following arguments configure the inference of the Whisper model: +1. `language`: explicitly setting the language token during inference substantially improves the generation performance of the Whisper model, since the model is forced always to predict in the given language. We recommend you set the language to the language you wish to distil the Whisper model on. The only exception is when distilling an English-only model (i.e. where the model id is appended with an `.en`, e.g. `small.en`), the language argument should be set to None, since there is no language token used during training/inference. +2. `return_timestamps`: whether or not to predict timestamps in the pseudo-labels. Timestamp prediction is required should you want your distilled model to be able to predict timestamps at inference time (e.g. for the original OpenAI long-form transcription algorithm). However, the pseudo-labels are marginally less accurate than not using timestamps. We recommend pseudo-labelling **with** timestamps to ensure the distilled model is as general as possible. +3. `attn_implementation`: which attention implementation to use for inference. Set to `sdpa` for [PyTorch SDPA](https://huggingface.co/docs/transformers/v4.35.2/en/perf_infer_gpu_one#bettertransformer), or `flash_attn_2` if your hardware supports Flash Attention 2 and you have the [package installed](https://github.com/Dao-AILab/flash-attention). +4. `streaming`: whether or not to use Datasets' streaming mode. If enabled, the audio data will be streamed from the Hugging Face Hub with no disk space requirements. However, the user is then responsible for adding the pseudo-labels to the dataset script in a follow-up step (see [Using Streaming Mode](#TODO)). If set to `False`, the audio data will be downloaded and pre-processed offline. At the end of pseudo-labelling, the pseudo-labels will be automatically appended to the original dataset, meaning the dataset is ready to be used for the subsequent training step without any additional steps. +5. `generation_num_beams`: how many beams to use while decoding. In practice, we found the distilled model to perform comparably when the data was pseudo-labelled with `generation_num_beams=1` (greedy) or `generation_num_beams>1` (beam). This is likely because the WER filter compensates for the lower quality pseudo-labels obtained using greedy search. However, using `generation_num_beams=1` gives substantially faster inference time for the pseudo-labelling step, and so we recommend this configuration. + +Should you have your own audio dataset, you can first [convert it](https://huggingface.co/docs/datasets/audio_dataset) to +Hugging Face Datasets format and push it to the Hugging Face Hub. You can then pseudo-label it using the script above, +replacing the `--dataset_name` with the name of your dataset on the Hub. + +Otherwise, you may wish to use an open-source dataset already available on the Hugging Face Hub. We provide a summary of +the three most popular multilingual datasets in the table below. For more details, refer to the blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#multilingual-speech-recognition). + +| Dataset | Languages | Domain | Speaking Style | License | Text Column | ID Column | +|-----------------------------------------------------------------------------------------------|-----------|---------------------------------------|----------------|-----------|---------------------|--------------| +| [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech) | 6 | Audiobooks | Narrated | CC-BY-4.0 | `"text"` | `"id"` | +| [Common Voice 16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) | 120 | Wikipedia text & crowd-sourced speech | Narrated | CC0-1.0 | `"sentence"` | `"path"` | +| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 15 | European Parliament recordings | Spontaneous | CC0 | `"normalized_text"` | `"audio_id"` | + +To achieve *robustness* to different distributions of audio data, it is recommended to train on multiple datasets where possible. +For example, the above three datasets all have splits for the German language. Thus, if distilling a Whisper model for German, +it would be wise to use a combination of the three datasets during training, in order to cover at least three distinct domains +(audiobooks, crowd-sourced speech, parliament recordings). You may wish to use a combination of open-source datasets, or +a combination of open-source and individually owned datasets to cover multiple distributions and domains. Moreover, if you were to train on low-resource datasets (<500 hours), you could experiment with [language mixing](#3-language-mixing) to improve robustness. + +## 2. Initialisation + +The script [`create_student_model.py`](create_student_model.py) can be used to initialise a small student model +from a large teacher model. When initialising a student model with fewer layers than the teacher model, the student is +initialised by copying maximally spaced layers from the teacher, as per the [DistilBart](https://arxiv.org/abs/2010.13002) +recommendations. + +First, we need to create a model repository on the Hugging Face Hub. This repository will contain all the required files +to reproduce the training run, alongside model weights, training logs and a README.md card. You can either create a model +repository directly on the Hugging Face Hub using the link: https://huggingface.co/new. Or, via the CLI, as we'll show here. + +Let's pick a name for our distilled model: `distil-whisper-large-v3-hi`. We can run the following command to create a repository under this name: + +```bash +huggingface-cli repo create distil-whisper-large-v3-hi +``` + +We can now see the model on the Hub, e.g. under https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi + +Let's clone the repository so that we can place our training script and model weights inside: + +```bash +git lfs install +git clone https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi +``` + +Be sure to change the repo address to `https://huggingface.co//` + +We can now copy the relevant training scrips to the repository: +```bash +cd distil-whisper-large-v3-hi + +cp ../distil-whisper/training/create_student_model.py . +cp ../distil-whisper/training/run_distillation.py . +``` + +The following command demonstrates how to initialise a student model from the Whisper [large-v3](https://huggingface.co/openai/whisper-large-v3) +checkpoint, with all 32 encoder layer and 2 decoder layers. The 2 student decoder layers are copied from teacher layers +1 and 32 respectively, as the maximally spaced layers: + +```bash +#!/usr/bin/env bash + +python create_student_model.py \ + --teacher_checkpoint "openai/whisper-large-v3" \ + --encoder_layers 32 \ + --decoder_layers 2 \ + --save_dir "./distil-large-v3-init" +``` + +The initialised model will be saved to the sub-directory `distil-large-v3-init` in our model repository. + + +**Note:** You can leverage language transfer by setting `--teacher_checkpoint` to "distil-whisper/distil-large-v3", see [language transfer](#22-language-transfer) for more details. + +## 3. Training + +The script [`run_distillation.py`](run_distillation.py) is an end-to-end script for loading multiple +datasets, a student model, a teacher model, and performing teacher-student distillation. It uses the loss formulation +from the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), which is a weighted sum of the cross-entropy and +KL-divergence loss terms. + +The following command takes the Common Voice dataset that was pseudo-labelled in the first stage and trains the +2-layer decoder model intialised in the previous step. We pass the local path to the pseudo-labelled Common Voice dataset +(`../common_voice_16_1_hi_pseudo_labelled`), which you can change to the path where your local pseudo-labelled dataset is +saved. + +In this example, we will combine the train and validation splits to give our training set, and evaluate on the test split +only. This is purely to demonstrate how to combine multiple pseudo-labelled datasets for training, rather than recommended +advice for defining train/validation splits. We advise that you train on the train splits of your dataset, evaluate and +tune hyper-parameters on the validation split, and only test the final checkpoint on the test split. Note how multiple +training datasets and splits can be loaded by separating the dataset arguments by `+` symbols. Thus, the script generalises +to any number of training datasets. + +```bash +#!/usr/bin/env bash + +accelerate launch run_distillation.py \ + --model_name_or_path "./distil-large-v3-init" \ + --teacher_model_name_or_path "openai/whisper-large-v3" \ + --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ + --train_split_name "train+validation" \ + --text_column_name "sentence+sentence" \ + --train_dataset_samples "7+4" \ + --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ + --eval_split_name "test" \ + --eval_text_column_name "sentence" \ + --eval_steps 1000 \ + --save_steps 1000 \ + --warmup_steps 50 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "constant_with_warmup" \ + --timestamp_probability 0.2 \ + --condition_on_prev_probability 0.2 \ + --language "hi" \ + --task "transcribe" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 5000 \ + --wer_threshold 20 \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 32 \ + --dataloader_num_workers 8 \ + --preprocessing_num_workers 8 \ + --ddp_timeout 7200 \ + --dtype "bfloat16" \ + --attn_implementation "sdpa" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --freeze_embed_positions \ + --streaming False \ + --push_to_hub + +``` + +The above training script will take approximately 3 hours to complete on an 80 GB A100 GPU and yield a final WER of 76%. +While the generations are starting to take form, there is still a 59% WER gap to the teacher model. This is hardly +surprising give we only have 15 hours of un-filtered data, and closer to just 1.5 hours with data filtering. +As mentioned above, using upwards of 1000 hours of data and training for 10k steps will likely yield +more competitive performance. For the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), we trained on 21k hours +of audio data for 80k steps. We found that upwards of 13k hours of audio data was required to reach convergence on English +ASR (see Section 9.2 of the [paper](https://arxiv.org/abs/2311.00430)), so the more data you have, the better! + +Scaling to multiple GPUs using [distributed data parallelism (DDP)](https://pytorch.org/tutorials/beginner/ddp_series_theory.html) +is trivial: simply run `accelerate config` and select the multi-GPU option, specifying the IDs of the GPUs you wish to use. The +above script can then be run using DDP with no code changes. + +Training logs will be reported to TensorBoard and WandB, provided the relevant packages are available. An example of a +saved checkpoint pushed to the Hugging Face Hub can be found here: [sanchit-gandhi/distil-whisper-large-v3-hi](https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi). + +There are a few noteworthy data arguments: +1. `train_dataset_samples`: defines the number of training samples in each dataset. Used to calculate the sampling probabilities in the dataloader. A good starting point is setting the samples to the number of hours of audio data in each split. A more refined strategy is setting it to the number of training samples in each split, however this might require downloading the dataset offline to compute these statistics. +2. `wer_threshold`: sets the WER threshold between the normalised pseudo-labels and normalised ground truth labels. Any samples with WER > `wer_threshold` are discarded from the training data. This is beneficial to avoid training the student model on pseudo-labels where Whisper hallucinated or got the predictions grossly wrong. In our English distillation experiments, we found a WER threshold of 10% provides the optimal trade-off between ensuring high-quality transcriptions, and not filtering unnecessary amounts of training data. For multilingual distillation, the threshold should be set in accordance with the WER achieved by the pre-trained model on the test set. +3. `streaming`: whether or not to use Datasets' streaming mode. Recommended for large datasets, where the audio data can be streamed from the Hugging Face Hub with no disk space requirements. +4. `timestamp_probability`: the per-sample probability for retaining timestamp tokens in the labels (should they contain them). Retaining some portion of timestamp tokens in the training data is required to ensure the distilled model can predict timestamps at inference time. In our experiments, we found that training on timestamps with high-probability hurts the distilled model's transcription performance. Thus, we recommend setting this to a value below 0.5. Typically, a value of 0.2 works well, giving good transcription and timestamp performance. +5. `condition_on_prev_probability`: the per-sample probability for conditioning on previous labels. Conditioning on previous tokens is required to ensure the distilled model can be used with the "sequential" long-form transcription algorithm at inference time. We did not experiment with this parameter, but found values around 0.2 to provide adequate performance. OpenAI pre-trained Whisper on with a 50% probability for conditioning on previous tokens. Thus, you might wish to try higher values. + +As well as a few noteworthy model arguments that can be configured to give optimal training performance: +1. `freeze_encoder`: whether to freeze the entire encoder of the student model during training. Beneficial when the student encoder is copied exactly from the teacher encoder. In this case, the encoder hidden-states from the teacher model are re-used for the student model. Stopping the gradient computation through the encoder and sharing the encoder hidden-states provides a significant memory saving, and can enable up to 2x batch sizes. +2. `freeze_embed_positions`: whether to freeze the student model's decoder positional embeddings. Using the same embed positions as the teacher model, which is designed to handle context lengths up to 448 tokens, helps the student model retain its input id representation up to the full max input length. +3. `dtype`: data type (dtype) in which the model computation should be performed. Note that this only controls the dtype of the computations (forward and backward pass), and not the dtype of the parameters or optimiser states. +4. `freeze_decoder`: whether to freeze the student model's decoder. Note that the input tokens embeddings and language modelling head will remain trainable. + +And finally, a few noteworthy training arguments: +1. `max_steps`: defines the total number of optimisation steps (forward + backward pass) during training. To reach convergence, you should use a dataset of at least 1k hours and train for a minimum of 50k steps. +2. `lr_scheduler_stype`: defines the learning rate schedule, one of `constant_with_warmup` or `linear`. When experimenting with a training set-up or training for very few steps (< 5k), using `constant_with_warmup` is typically beneficial, since the learning rate remains high over the short training run. When performing long training runs (> 5k), using a `linear` schedule generally results in superior downstream performance of the distilled model. + +TODO: +- [ ] Template for model cards + +## 4. Evaluation + +There are four types of evaluation performed in Distil-Whisper: +1. Short form: evaluation on audio samples less than 30s in duration. Examples include typical ASR test sets, such as the LibriSpeech validation set. +2. Sequential long form: evaluation on audio samples longer than 30s in duration using the original "sequential" long-form algorithm. Examples include entire TED talks or earnings calls. +3. Chunked long form: evaluation on audio samples longer than 30s in duration using the Transformers "chunked" long-form algorithm. +4. Speculative decoding: evaluation on audio samples less than 30s in duration, where a faster, distilled model is used as the assistant to a slower, teacher model. + +All four forms of evaluation are performed using the script [`run_eval.py`](run_eval.py). Unlike the pseudo-labelling +and training scripts, the evaluation script assumes that only one GPU accelerator is used. We can copy the corresponding +evaluation script to the model repository using the following command: + +```bash +cp ../distil-whisper/training/run_eval.py . +``` + +Models are assessed jointly using: +1. The *word-error rate (WER)* metric: measures the number of substitution, deletion and insertion errors relative to the total number of words. A lower WER indicates a more accurate model. +2. The *inverse real-time factor (RTFx)* metric: measures the ratio of `audio input time : model compute time`. A higher RTFx indicates a faster model. Note that this metric is WER-dependent, meaning that it makes sense to compare two models' *RTFx* only at fixed *WER* performances. Indeed, deletions could lead to early stopping of token generation, resulting in higher *WER* and lower *RTFx*. +3. Token generation speed: This refers to the number of tokens generated per second. As with *RTFx*, this metric is dependent on the *WER* since token generation time is not linear. By default, this metric is calculated by averaging the total number of `generated tokens : generation time` (full forward pass of the model) when evaluating on the given test set. However, using the `--precise_tok_generation` flag will compute this metric separately for a fixed number of tokens. + +In all cases, it is particularly important to evaluate the final model on data that is *out-of-distribution (OOD)* with +the training data. Evaluating on OOD data provides insight as to how well the distilled model is likely to generalise to +different audio distributions at inference time. In our example, the Common Voice test set is *in-distribution (ID)* +with our training data, since it is taken from the same distribution as the Common Voice training set. Whereas the FLEURS +test set is OOD, since it is not used as part of the training set. See [Datasets](#1-datasets) section for recommendations. + +### Short Form + +The script [`run_eval.py`](run_eval.py) can be used to evaluate a trained student model over multiple short-form +validation sets. The following example demonstrates how to evaluate the student model trained in the previous step on +the Common Voice `test` set (ID) and also the FLEURS `test` set (OOD). Again, it leverages streaming mode to bypass +the need to download the data offline: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "./" \ + --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ + --dataset_config_name "default+hi_in" \ + --dataset_split_name "test+test" \ + --text_column_name "sentence+transcription" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "hi" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +The student model achieves an average WER of TODO% with an RTFx of TODO for a batch size of 16. We can easily adapt the above +script to evaluate the teacher model, simply by switching the `model_name_or_path` to `openai/whisper-large-v3`, which +achieves an average WER of TODO% with an RTFx of TODO. Therefore, for a batch size of 16, the student model is a factor of TODO +times faster than the teacher. The WER gap can be closed by training on more data (at least 1k hours) for more training +steps (at least 50k). + +### Sequential Long Form + +The original Whisper paper presents a long-form transcription algorithm that sequentially transcribes 30-second segments +of audio and shifts the sliding window according to the timestamps predicted by the model. This style of sequential +inference is performed directly using the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) +method in Transformers. + +The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of +long-form evaluation sets using the sequential algorithm. Since we don't have a long-form validation set for Hindi to hand, +in this example we'll evaluate the official Distil-Whisper model [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3) +on the TED-LIUM validation set: + +```bash +#!/usr/bin/env bash + +accelerate launch run_eval.py \ + --model_name_or_path "distil-whisper/distil-large-v3" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "default" \ + --dataset_split_name "validation" \ + --text_column_name "text" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "en" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +### Chunked Long Form + +Chunked long form evaluation runs on the premise that a single long audio file can be *chunked* into smaller segments and +inferred in parallel. The resulting transcriptions are then joined at the boundaries to give the final text prediction. +A small overlap (or *stride*) is used between adjacent segments to ensure a continuous transcription across chunks. + +This style of chunked inference is performed using the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines) +class, which provides a wrapper around the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) +function for long-form inference. + +The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of +long-form evaluation sets using the pipeline class. Again, in this example we'll evaluate distil-large-v3 on the +TED-LIUM validation set: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "default" \ + --dataset_split_name "validation" \ + --text_column_name "text" \ + --use_pipeline \ + --chunk_length_s 25.0 \ + --language "en" \ + --return_timestamps \ + --dtype "bfloat16" \ + --streaming + +``` + +The argument `chunk_length_s` controls the length of the chunked audio samples. It should be set to match the typical +length of audio the student model was trained on. If unsure about what value of `chunk_length_s` is optimal for your case, +it is recommended to run a *sweep* over all possible values. A template script for running a [WandB sweep](https://docs.wandb.ai/guides/sweeps) +can be found under [`run_chunk_length_s_sweep.yaml`](flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml). + +### Speculative Decoding + +Speculative decoding, or assisted generation, relies on the premise that a faster, assistant model can be used to speed-up +the generation of a slower, assistant model. Speculative decoding mathematically ensures that exactly the same outputs as +Whisper are obtained, while being ~2 times faster. This makes it the perfect drop-in replacement for existing Whisper +pipelines, since exactly the same outputs are guaranteed. + +Distil-Whisper checkpoints can be designed to be efficient assistant models to Whisper for speculative decoding. More precisely, +by freezing the encoder during training, the distilled model can share the same encoder weights as Whisper during inference, since +the encoder weights are un-changed. In doing so, only the distilled 2-layer decoder has to be loaded in addition to the +original Whisper model, which is approximately an 8% increase to the total parameter count, with up to 2x faster inference +for low batch sizes. For more details on speculative decoding, the reader is advised to refer to the following blog post: +[Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co/blog/whisper-speculative-decoding). + +In the example below, we use our distilled model as an assistant to the large-v3 teacher model during inference: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --assistant_model_name_or_path "./" \ + --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ + --dataset_config_name "default+hi_in" \ + --dataset_split_name "test+test" \ + --text_column_name "sentence+transcription" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "hi" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +We see that we achieve a WER of TODO%, the same as what we obtained with the large-v3 model, but with an RTFx of TODO, +a factor of TODO faster than using the large-v3 model alone. The RTFx value can be improved by training the student on +more data and for more training steps, since this will improve the number of predicted tokens that match the teacher +predictions. + +## Recommendations and guidelines + +### 1. Datasets + +As explained, ideally, you should aim for ~1000 hours of audio data for training a distilled model via KD. Moreover, you should evaluate your model on out-of-distribution test sets to assess generalization capacities. With at least 1500 hours of audio data for German, Dutch, French and Spanish, 600 hours for Italian, and 300 hours for Portuguese and Polish (which can be supplemented with your own datasets), a good setup to start with is: +- **Training datasets:** [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) and [Multilingual Librispeech](https://huggingface.co/datasets/facebook/multilingual_librispeech). Use the `train` split for training, and the `validation` and `test` splits for in-distribution testing. +- **Test datasets:** [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) and [Fleurs](https://huggingface.co/datasets/google/fleurs). Use the `validation` and `test` splits for out-of-distribution testing. + +### 2. Student model's decoder +#### 2.1 Number of Decoder Layers + +We recommend using a 2-layers decoder (see language transfer below). However, you can adjust the number of decoder layers when initializing the student model to balance between inference speed and accuracy. Experimentation has revealed that the Pareto optimal points are with 2, 3, and 4-layers decoders. For indicative results, after 10,000 training steps and inference on an 80GB Nvidia H100 with a batch size of 16 and 20 tokens generation, compared to [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3) baseline: + +
+ +| | rel. token gen. speed | ΔWER(%) | +|----------|:-------------:|------:| +| 2 layers | $3.66$ | $-3.5$ | +| 3 layers | $3.35$ | $-2.3$ | +| 4 layers | $3.11$ | $-1.8$ | + +
+ + +#### 2.2 Language Transfer + +If you opt for a 2-layers decoder, consider leveraging language transfer by initializing the student model from the [distil-large-v3 English distilled model](https://huggingface.co/distil-whisper/distil-large-v3). For French, this method has shown performance improvements of ΔWER=-1.9% (compared to a 2-layers decoder initialized from [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3)) after 10,000 training steps. + +```diff +- --teacher_checkpoint "openai/whisper-large-v3" \ ++ --teacher_checkpoint "distil-whisper/distil-large-v3" \ +``` + +### 3. Language mixing + +If you're working with low-resource languages (<500 hours of audio data), consider mixing your training data with a closely related language (for example, mix French and Spanish) to leverage knowledge transfer between languages. Experiments showed that mixing ~400 hours of French (which resulted in a model with poor generalization capacities) with ~500 hours of Spanish improved the model's out-of-distribution performance on French by ΔWER=-7.5%. + +To do this: +1. Run [pseudo labeling](#1-pseudo-labelling) for each training dataset, setting the `--language` flag to the language of the respective dataset. In the example of mixing French and Spanish, simply modify the given [pseudo labeling](#1-pseudo-labelling) command with: + * pseudo labelling the French dataset + ```diff + - --dataset_config_name "hi" \ + - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + - --language "hi" \ + + --dataset_config_name "fr" \ + + --output_dir "./common_voice_16_1_fr_pseudo_labelled" \ + + --language "fr" \ + ``` + * pseudo labelling the Spanish dataset + ```diff + - --dataset_config_name "hi" \ + - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + - --language "hi" \ + + --dataset_config_name "es" \ + + --output_dir "./common_voice_16_1_es_pseudo_labelled" \ + + --language "es" \ + ``` + +2. Conduct [training](#3-training) on these pseudo-labeled datasets, using the `--language` flag set to your targeted language. Note that this flag is only used for evaluation purposes, so you set it to the targeted language. The language token used for forwarding the teacher and student model decoders is the one used and saved in pseudo labels during pseudo-labeling, ensuring it's the correct one for the considered sample. In the example of mixing French and Spanish, simply modify the given [training](#1-pseudo-labelling) command with: + ```diff + - --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ + - --train_split_name "train+validation" \ + - --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ + - --eval_split_name "test" \ + + --train_dataset_name "../common_voice_17_0_fr_pseudo_labelled+../common_voice_17_0_es_pseudo_labelled" \ + + --train_split_name "train+train" \ + + --eval_dataset_name "../common_voice_16_1_fr_pseudo_labelled" \ + + --eval_split_name "validation" \ + ``` + +## Overview of Training Methods + +### 1. Fine-Tuning + +For fine-tuning, we take the original Whisper checkpoint and train it on one or more datasets using the standard +cross-entropy loss. As such, there is no involvement from the teacher checkpoint during training, and so the fine-tuned +model is permitted to *overfit* to the distribution of the training data we provide. This makes it appealing for "low-resource" +languages where the original Whisper model performs poorly, since we can boost the performance of the model on a single +language by *overfitting* to that distribution of data. Note that this means the fine-tuned model is prone to loosing +its robustness to different audio distributions, which is the trade-off with improving performance on a specified dataset. + +As a rule of thumb, fine-tuning is appropriate for languages where the original Whisper model performs > 20% WER, and we +have a relatively small quantity of training data available (< 1000 hours). With fine-tuning, we require as little as **10 hours** +of training data to significantly boost the performance of the Whisper model. For an in-depth guide to fine-tuning Whisper, +the reader is advised to refer to the blog post: [Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper). + +### 2. Shrink and Fine-Tune + +Shrink and fine-tune (SFT) is a knowledge distillation (KD) technique in which we first *shrink* the teacher model to a +smaller student model by copying maximally spaced layers, and then *fine-tune* the student model on the cross-entropy loss +as described above. Typically, we retain the full encoder from the Whisper model and only shrink the decoder. Retaining +the entire encoder helps significantly with maintaining Whisper's robustness to different audio distributions (_c.f._ +Section 9.3 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). + +We can either train the student model on a dataset of (audio, text) pairs as above. Or, we can use the pre-trained +Whisper model to generate *pseudo-labels* for our audio data, and train on the (audio, pseudo-label) pairs. + +Pseudo-labels can be used when either: +1. The original text transcriptions are normalised (lower-cased or no punctuation): the Whisper generated pseudo-labels contain both punctuation and casing, and so can be used as a substitute for the normalised transcriptions +2. The pre-trained Whisper model achieves < 20% WER on the languages: we then know the majority of the pseudo-labels will be accurate enough for us to train on. + +They are not recommended when both of the following are true: +1. The original text is punctuated and cased +2. The pre-trained Whisper model achieves > 20% WER on the languages: in this case, we want to overfit to the particular distribution of the language, and so train directly on the original text data + +To discard inaccurate pseudo-labels during training, we employ a simple WER heuristic to filter our pseudo-labelled +training data. We first normalise the original text and the pseudo-labelled text using the Whisper normaliser. If the +WER between the normalised text exceeds a 10% WER threshold, we discard the training sample. Else, we retain it for training. +Section 9.1 of the Distil-Whisper [paper](https://arxiv.org/abs/2311.00430) demonstrates the importance of using this +threshold for training. + +### 3. KL Divergence + +In the KL Divergence setting, the student model is initialised by shrinking the teacher as before, and then trained to +match the predictions of the teacher during training. + +### Summary of Methods + +The following table summarises the two training paradigms: fine-tuning and knowledge distillation (KD). It suggests +minimum values for the pre-trained WER / training data to achieve reasonable performance: + +| Method | Pre-Trained WER / % | Training Data / h | +|-------------|---------------------|-------------------| +| Fine-tuning | > 20 | < 1000 | +| KD | < 20 | > 1000 | + +## Acknowledgements + +* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3) and [original codebase](https://github.com/openai/whisper) +* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the Whisper model implementation +* Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) program for Cloud TPU v4s used to train the official Distil-Whisper models +* The Hugging Face 🤗 cluster for enabling experimentation with the PyTorch scripts + +## Citation + +If you use this code-base, please consider citing the Distil-Whisper paper: + +``` +@misc{gandhi2023distilwhisper, + title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, + author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush}, + year={2023}, + eprint={2311.00430}, + archivePrefix={arXiv}, + primaryClass={cs.CL} +} +``` diff --git a/added_tokens.json b/added_tokens.json new file mode 100644 index 0000000000000000000000000000000000000000..1b33526d33aaa60d79f78ae8651dae50b730185a --- /dev/null +++ b/added_tokens.json @@ -0,0 +1,1611 @@ +{ + "<|0.00|>": 50365, + "<|0.02|>": 50366, + "<|0.04|>": 50367, + "<|0.06|>": 50368, + "<|0.08|>": 50369, + "<|0.10|>": 50370, + "<|0.12|>": 50371, + "<|0.14|>": 50372, + "<|0.16|>": 50373, + "<|0.18|>": 50374, + "<|0.20|>": 50375, + "<|0.22|>": 50376, + "<|0.24|>": 50377, + "<|0.26|>": 50378, + "<|0.28|>": 50379, + "<|0.30|>": 50380, + "<|0.32|>": 50381, + "<|0.34|>": 50382, + "<|0.36|>": 50383, + "<|0.38|>": 50384, + "<|0.40|>": 50385, + "<|0.42|>": 50386, + "<|0.44|>": 50387, + "<|0.46|>": 50388, + "<|0.48|>": 50389, + "<|0.50|>": 50390, + "<|0.52|>": 50391, + "<|0.54|>": 50392, + "<|0.56|>": 50393, + "<|0.58|>": 50394, + "<|0.60|>": 50395, + "<|0.62|>": 50396, + "<|0.64|>": 50397, + "<|0.66|>": 50398, + "<|0.68|>": 50399, + "<|0.70|>": 50400, + "<|0.72|>": 50401, + "<|0.74|>": 50402, + "<|0.76|>": 50403, + "<|0.78|>": 50404, + "<|0.80|>": 50405, + "<|0.82|>": 50406, + "<|0.84|>": 50407, + "<|0.86|>": 50408, + "<|0.88|>": 50409, + "<|0.90|>": 50410, + "<|0.92|>": 50411, + "<|0.94|>": 50412, + "<|0.96|>": 50413, + "<|0.98|>": 50414, + "<|1.00|>": 50415, + "<|1.02|>": 50416, + "<|1.04|>": 50417, + "<|1.06|>": 50418, + "<|1.08|>": 50419, + "<|1.10|>": 50420, + "<|1.12|>": 50421, + "<|1.14|>": 50422, + "<|1.16|>": 50423, + "<|1.18|>": 50424, + "<|1.20|>": 50425, + "<|1.22|>": 50426, + "<|1.24|>": 50427, + "<|1.26|>": 50428, + "<|1.28|>": 50429, + "<|1.30|>": 50430, + "<|1.32|>": 50431, + "<|1.34|>": 50432, + "<|1.36|>": 50433, + "<|1.38|>": 50434, + "<|1.40|>": 50435, + "<|1.42|>": 50436, + "<|1.44|>": 50437, + "<|1.46|>": 50438, + "<|1.48|>": 50439, + "<|1.50|>": 50440, + "<|1.52|>": 50441, + "<|1.54|>": 50442, + "<|1.56|>": 50443, + "<|1.58|>": 50444, + "<|1.60|>": 50445, + "<|1.62|>": 50446, + "<|1.64|>": 50447, + "<|1.66|>": 50448, + "<|1.68|>": 50449, + "<|1.70|>": 50450, + "<|1.72|>": 50451, + "<|1.74|>": 50452, + "<|1.76|>": 50453, + "<|1.78|>": 50454, + "<|1.80|>": 50455, + "<|1.82|>": 50456, + "<|1.84|>": 50457, + "<|1.86|>": 50458, + "<|1.88|>": 50459, + "<|1.90|>": 50460, + "<|1.92|>": 50461, + "<|1.94|>": 50462, + "<|1.96|>": 50463, + "<|1.98|>": 50464, + "<|10.00|>": 50865, + "<|10.02|>": 50866, + "<|10.04|>": 50867, + "<|10.06|>": 50868, + "<|10.08|>": 50869, + "<|10.10|>": 50870, + "<|10.12|>": 50871, + "<|10.14|>": 50872, + "<|10.16|>": 50873, + "<|10.18|>": 50874, + "<|10.20|>": 50875, + "<|10.22|>": 50876, + "<|10.24|>": 50877, + "<|10.26|>": 50878, + "<|10.28|>": 50879, + "<|10.30|>": 50880, + "<|10.32|>": 50881, + "<|10.34|>": 50882, + "<|10.36|>": 50883, + "<|10.38|>": 50884, + "<|10.40|>": 50885, + "<|10.42|>": 50886, + "<|10.44|>": 50887, + "<|10.46|>": 50888, + "<|10.48|>": 50889, + "<|10.50|>": 50890, + "<|10.52|>": 50891, + "<|10.54|>": 50892, + "<|10.56|>": 50893, + "<|10.58|>": 50894, + "<|10.60|>": 50895, + "<|10.62|>": 50896, + "<|10.64|>": 50897, + "<|10.66|>": 50898, + "<|10.68|>": 50899, + "<|10.70|>": 50900, + "<|10.72|>": 50901, + "<|10.74|>": 50902, + "<|10.76|>": 50903, + "<|10.78|>": 50904, + "<|10.80|>": 50905, + "<|10.82|>": 50906, + "<|10.84|>": 50907, + "<|10.86|>": 50908, + "<|10.88|>": 50909, + "<|10.90|>": 50910, + "<|10.92|>": 50911, + "<|10.94|>": 50912, + "<|10.96|>": 50913, + "<|10.98|>": 50914, + "<|11.00|>": 50915, + "<|11.02|>": 50916, + "<|11.04|>": 50917, + "<|11.06|>": 50918, + "<|11.08|>": 50919, + "<|11.10|>": 50920, + "<|11.12|>": 50921, + "<|11.14|>": 50922, + "<|11.16|>": 50923, + "<|11.18|>": 50924, + "<|11.20|>": 50925, + "<|11.22|>": 50926, + "<|11.24|>": 50927, + "<|11.26|>": 50928, + "<|11.28|>": 50929, + "<|11.30|>": 50930, + "<|11.32|>": 50931, + "<|11.34|>": 50932, + "<|11.36|>": 50933, + "<|11.38|>": 50934, + "<|11.40|>": 50935, + "<|11.42|>": 50936, + "<|11.44|>": 50937, + "<|11.46|>": 50938, + "<|11.48|>": 50939, + "<|11.50|>": 50940, + "<|11.52|>": 50941, + "<|11.54|>": 50942, + "<|11.56|>": 50943, + "<|11.58|>": 50944, + "<|11.60|>": 50945, + "<|11.62|>": 50946, + "<|11.64|>": 50947, + "<|11.66|>": 50948, + "<|11.68|>": 50949, + "<|11.70|>": 50950, + "<|11.72|>": 50951, + "<|11.74|>": 50952, + "<|11.76|>": 50953, + "<|11.78|>": 50954, + "<|11.80|>": 50955, + "<|11.82|>": 50956, + "<|11.84|>": 50957, + "<|11.86|>": 50958, + "<|11.88|>": 50959, + "<|11.90|>": 50960, + "<|11.92|>": 50961, + "<|11.94|>": 50962, + "<|11.96|>": 50963, + "<|11.98|>": 50964, + "<|12.00|>": 50965, + "<|12.02|>": 50966, + "<|12.04|>": 50967, + "<|12.06|>": 50968, + "<|12.08|>": 50969, + "<|12.10|>": 50970, + "<|12.12|>": 50971, + "<|12.14|>": 50972, + "<|12.16|>": 50973, + "<|12.18|>": 50974, + "<|12.20|>": 50975, + "<|12.22|>": 50976, + "<|12.24|>": 50977, + "<|12.26|>": 50978, + "<|12.28|>": 50979, + "<|12.30|>": 50980, + "<|12.32|>": 50981, + "<|12.34|>": 50982, + "<|12.36|>": 50983, + "<|12.38|>": 50984, + "<|12.40|>": 50985, + "<|12.42|>": 50986, + "<|12.44|>": 50987, + "<|12.46|>": 50988, + "<|12.48|>": 50989, + "<|12.50|>": 50990, + "<|12.52|>": 50991, + "<|12.54|>": 50992, + "<|12.56|>": 50993, + "<|12.58|>": 50994, + "<|12.60|>": 50995, + "<|12.62|>": 50996, + "<|12.64|>": 50997, + "<|12.66|>": 50998, + "<|12.68|>": 50999, + "<|12.70|>": 51000, + "<|12.72|>": 51001, + "<|12.74|>": 51002, + "<|12.76|>": 51003, + "<|12.78|>": 51004, + "<|12.80|>": 51005, + "<|12.82|>": 51006, + "<|12.84|>": 51007, + "<|12.86|>": 51008, + "<|12.88|>": 51009, + "<|12.90|>": 51010, + "<|12.92|>": 51011, + "<|12.94|>": 51012, + "<|12.96|>": 51013, + "<|12.98|>": 51014, + "<|13.00|>": 51015, + "<|13.02|>": 51016, + "<|13.04|>": 51017, + "<|13.06|>": 51018, + "<|13.08|>": 51019, + "<|13.10|>": 51020, + "<|13.12|>": 51021, + "<|13.14|>": 51022, + "<|13.16|>": 51023, + "<|13.18|>": 51024, + "<|13.20|>": 51025, + "<|13.22|>": 51026, + "<|13.24|>": 51027, + "<|13.26|>": 51028, + "<|13.28|>": 51029, + "<|13.30|>": 51030, + "<|13.32|>": 51031, + "<|13.34|>": 51032, + "<|13.36|>": 51033, + "<|13.38|>": 51034, + "<|13.40|>": 51035, + "<|13.42|>": 51036, + "<|13.44|>": 51037, + "<|13.46|>": 51038, + "<|13.48|>": 51039, + "<|13.50|>": 51040, + "<|13.52|>": 51041, + "<|13.54|>": 51042, + "<|13.56|>": 51043, + "<|13.58|>": 51044, + "<|13.60|>": 51045, + "<|13.62|>": 51046, + "<|13.64|>": 51047, + "<|13.66|>": 51048, + "<|13.68|>": 51049, + "<|13.70|>": 51050, + "<|13.72|>": 51051, + "<|13.74|>": 51052, + "<|13.76|>": 51053, + "<|13.78|>": 51054, + "<|13.80|>": 51055, + "<|13.82|>": 51056, + "<|13.84|>": 51057, + "<|13.86|>": 51058, + "<|13.88|>": 51059, + "<|13.90|>": 51060, + "<|13.92|>": 51061, + "<|13.94|>": 51062, + "<|13.96|>": 51063, + "<|13.98|>": 51064, + "<|14.00|>": 51065, + "<|14.02|>": 51066, + "<|14.04|>": 51067, + "<|14.06|>": 51068, + "<|14.08|>": 51069, + "<|14.10|>": 51070, + "<|14.12|>": 51071, + "<|14.14|>": 51072, + "<|14.16|>": 51073, + "<|14.18|>": 51074, + "<|14.20|>": 51075, + "<|14.22|>": 51076, + "<|14.24|>": 51077, + "<|14.26|>": 51078, + "<|14.28|>": 51079, + "<|14.30|>": 51080, + "<|14.32|>": 51081, + "<|14.34|>": 51082, + "<|14.36|>": 51083, + "<|14.38|>": 51084, + "<|14.40|>": 51085, + "<|14.42|>": 51086, + "<|14.44|>": 51087, + "<|14.46|>": 51088, + "<|14.48|>": 51089, + "<|14.50|>": 51090, + "<|14.52|>": 51091, + "<|14.54|>": 51092, + "<|14.56|>": 51093, + "<|14.58|>": 51094, + "<|14.60|>": 51095, + "<|14.62|>": 51096, + "<|14.64|>": 51097, + "<|14.66|>": 51098, + "<|14.68|>": 51099, + "<|14.70|>": 51100, + "<|14.72|>": 51101, + "<|14.74|>": 51102, + "<|14.76|>": 51103, + "<|14.78|>": 51104, + "<|14.80|>": 51105, + "<|14.82|>": 51106, + "<|14.84|>": 51107, + "<|14.86|>": 51108, + "<|14.88|>": 51109, + "<|14.90|>": 51110, + "<|14.92|>": 51111, + "<|14.94|>": 51112, + "<|14.96|>": 51113, + "<|14.98|>": 51114, + "<|15.00|>": 51115, + "<|15.02|>": 51116, + "<|15.04|>": 51117, + "<|15.06|>": 51118, + "<|15.08|>": 51119, + "<|15.10|>": 51120, + "<|15.12|>": 51121, + "<|15.14|>": 51122, + "<|15.16|>": 51123, + "<|15.18|>": 51124, + "<|15.20|>": 51125, + "<|15.22|>": 51126, + "<|15.24|>": 51127, + "<|15.26|>": 51128, + "<|15.28|>": 51129, + "<|15.30|>": 51130, + "<|15.32|>": 51131, + "<|15.34|>": 51132, + "<|15.36|>": 51133, + "<|15.38|>": 51134, + "<|15.40|>": 51135, + "<|15.42|>": 51136, + "<|15.44|>": 51137, + "<|15.46|>": 51138, + "<|15.48|>": 51139, + "<|15.50|>": 51140, + "<|15.52|>": 51141, + "<|15.54|>": 51142, + "<|15.56|>": 51143, + "<|15.58|>": 51144, + "<|15.60|>": 51145, + "<|15.62|>": 51146, + "<|15.64|>": 51147, + "<|15.66|>": 51148, + "<|15.68|>": 51149, + "<|15.70|>": 51150, + "<|15.72|>": 51151, + "<|15.74|>": 51152, + "<|15.76|>": 51153, + "<|15.78|>": 51154, + "<|15.80|>": 51155, + "<|15.82|>": 51156, + "<|15.84|>": 51157, + "<|15.86|>": 51158, + "<|15.88|>": 51159, + "<|15.90|>": 51160, + "<|15.92|>": 51161, + "<|15.94|>": 51162, + "<|15.96|>": 51163, + "<|15.98|>": 51164, + "<|16.00|>": 51165, + "<|16.02|>": 51166, + "<|16.04|>": 51167, + "<|16.06|>": 51168, + "<|16.08|>": 51169, + "<|16.10|>": 51170, + "<|16.12|>": 51171, + "<|16.14|>": 51172, + "<|16.16|>": 51173, + "<|16.18|>": 51174, + "<|16.20|>": 51175, + "<|16.22|>": 51176, + "<|16.24|>": 51177, + "<|16.26|>": 51178, + "<|16.28|>": 51179, + "<|16.30|>": 51180, + "<|16.32|>": 51181, + "<|16.34|>": 51182, + "<|16.36|>": 51183, + "<|16.38|>": 51184, + "<|16.40|>": 51185, + "<|16.42|>": 51186, + "<|16.44|>": 51187, + "<|16.46|>": 51188, + "<|16.48|>": 51189, + "<|16.50|>": 51190, + "<|16.52|>": 51191, + "<|16.54|>": 51192, + "<|16.56|>": 51193, + "<|16.58|>": 51194, + "<|16.60|>": 51195, + "<|16.62|>": 51196, + "<|16.64|>": 51197, + "<|16.66|>": 51198, + "<|16.68|>": 51199, + "<|16.70|>": 51200, + "<|16.72|>": 51201, + "<|16.74|>": 51202, + "<|16.76|>": 51203, + "<|16.78|>": 51204, + "<|16.80|>": 51205, + "<|16.82|>": 51206, + "<|16.84|>": 51207, + "<|16.86|>": 51208, + "<|16.88|>": 51209, + "<|16.90|>": 51210, + "<|16.92|>": 51211, + "<|16.94|>": 51212, + "<|16.96|>": 51213, + "<|16.98|>": 51214, + "<|17.00|>": 51215, + "<|17.02|>": 51216, + "<|17.04|>": 51217, + "<|17.06|>": 51218, + "<|17.08|>": 51219, + "<|17.10|>": 51220, + "<|17.12|>": 51221, + "<|17.14|>": 51222, + "<|17.16|>": 51223, + "<|17.18|>": 51224, + "<|17.20|>": 51225, + "<|17.22|>": 51226, + "<|17.24|>": 51227, + "<|17.26|>": 51228, + "<|17.28|>": 51229, + "<|17.30|>": 51230, + "<|17.32|>": 51231, + "<|17.34|>": 51232, + "<|17.36|>": 51233, + "<|17.38|>": 51234, + "<|17.40|>": 51235, + "<|17.42|>": 51236, + "<|17.44|>": 51237, + "<|17.46|>": 51238, + "<|17.48|>": 51239, + "<|17.50|>": 51240, + "<|17.52|>": 51241, + "<|17.54|>": 51242, + "<|17.56|>": 51243, + "<|17.58|>": 51244, + "<|17.60|>": 51245, + "<|17.62|>": 51246, + "<|17.64|>": 51247, + "<|17.66|>": 51248, + "<|17.68|>": 51249, + "<|17.70|>": 51250, + "<|17.72|>": 51251, + "<|17.74|>": 51252, + "<|17.76|>": 51253, + "<|17.78|>": 51254, + "<|17.80|>": 51255, + "<|17.82|>": 51256, + "<|17.84|>": 51257, + "<|17.86|>": 51258, + "<|17.88|>": 51259, + "<|17.90|>": 51260, + "<|17.92|>": 51261, + "<|17.94|>": 51262, + "<|17.96|>": 51263, + "<|17.98|>": 51264, + "<|18.00|>": 51265, + "<|18.02|>": 51266, + "<|18.04|>": 51267, + "<|18.06|>": 51268, + "<|18.08|>": 51269, + "<|18.10|>": 51270, + "<|18.12|>": 51271, + "<|18.14|>": 51272, + "<|18.16|>": 51273, + "<|18.18|>": 51274, + "<|18.20|>": 51275, + "<|18.22|>": 51276, + "<|18.24|>": 51277, + "<|18.26|>": 51278, + "<|18.28|>": 51279, + "<|18.30|>": 51280, + "<|18.32|>": 51281, + "<|18.34|>": 51282, + "<|18.36|>": 51283, + "<|18.38|>": 51284, + "<|18.40|>": 51285, + "<|18.42|>": 51286, + "<|18.44|>": 51287, + "<|18.46|>": 51288, + "<|18.48|>": 51289, + "<|18.50|>": 51290, + "<|18.52|>": 51291, + "<|18.54|>": 51292, + "<|18.56|>": 51293, + "<|18.58|>": 51294, + "<|18.60|>": 51295, + "<|18.62|>": 51296, + "<|18.64|>": 51297, + "<|18.66|>": 51298, + "<|18.68|>": 51299, + "<|18.70|>": 51300, + "<|18.72|>": 51301, + "<|18.74|>": 51302, + "<|18.76|>": 51303, + "<|18.78|>": 51304, + "<|18.80|>": 51305, + "<|18.82|>": 51306, + "<|18.84|>": 51307, + "<|18.86|>": 51308, + "<|18.88|>": 51309, + "<|18.90|>": 51310, + "<|18.92|>": 51311, + "<|18.94|>": 51312, + "<|18.96|>": 51313, + "<|18.98|>": 51314, + "<|19.00|>": 51315, + "<|19.02|>": 51316, + "<|19.04|>": 51317, + "<|19.06|>": 51318, + "<|19.08|>": 51319, + "<|19.10|>": 51320, + "<|19.12|>": 51321, + "<|19.14|>": 51322, + "<|19.16|>": 51323, + "<|19.18|>": 51324, + "<|19.20|>": 51325, + "<|19.22|>": 51326, + "<|19.24|>": 51327, + "<|19.26|>": 51328, + "<|19.28|>": 51329, + "<|19.30|>": 51330, + "<|19.32|>": 51331, + "<|19.34|>": 51332, + "<|19.36|>": 51333, + "<|19.38|>": 51334, + "<|19.40|>": 51335, + "<|19.42|>": 51336, + "<|19.44|>": 51337, + "<|19.46|>": 51338, + "<|19.48|>": 51339, + "<|19.50|>": 51340, + "<|19.52|>": 51341, + "<|19.54|>": 51342, + "<|19.56|>": 51343, + "<|19.58|>": 51344, + "<|19.60|>": 51345, + "<|19.62|>": 51346, + "<|19.64|>": 51347, + "<|19.66|>": 51348, + "<|19.68|>": 51349, + "<|19.70|>": 51350, + "<|19.72|>": 51351, + "<|19.74|>": 51352, + "<|19.76|>": 51353, + "<|19.78|>": 51354, + "<|19.80|>": 51355, + "<|19.82|>": 51356, + "<|19.84|>": 51357, + "<|19.86|>": 51358, + "<|19.88|>": 51359, + "<|19.90|>": 51360, + "<|19.92|>": 51361, + "<|19.94|>": 51362, + "<|19.96|>": 51363, + "<|19.98|>": 51364, + "<|2.00|>": 50465, + "<|2.02|>": 50466, + "<|2.04|>": 50467, + "<|2.06|>": 50468, + "<|2.08|>": 50469, + "<|2.10|>": 50470, + "<|2.12|>": 50471, + "<|2.14|>": 50472, + "<|2.16|>": 50473, + "<|2.18|>": 50474, + "<|2.20|>": 50475, + "<|2.22|>": 50476, + "<|2.24|>": 50477, + "<|2.26|>": 50478, + "<|2.28|>": 50479, + "<|2.30|>": 50480, + "<|2.32|>": 50481, + "<|2.34|>": 50482, + "<|2.36|>": 50483, + "<|2.38|>": 50484, + "<|2.40|>": 50485, + "<|2.42|>": 50486, + "<|2.44|>": 50487, + "<|2.46|>": 50488, + "<|2.48|>": 50489, + "<|2.50|>": 50490, + "<|2.52|>": 50491, + "<|2.54|>": 50492, + "<|2.56|>": 50493, + "<|2.58|>": 50494, + "<|2.60|>": 50495, + "<|2.62|>": 50496, + "<|2.64|>": 50497, + "<|2.66|>": 50498, + "<|2.68|>": 50499, + "<|2.70|>": 50500, + "<|2.72|>": 50501, + "<|2.74|>": 50502, + "<|2.76|>": 50503, + "<|2.78|>": 50504, + "<|2.80|>": 50505, + "<|2.82|>": 50506, + "<|2.84|>": 50507, + "<|2.86|>": 50508, + "<|2.88|>": 50509, + "<|2.90|>": 50510, + "<|2.92|>": 50511, + "<|2.94|>": 50512, + "<|2.96|>": 50513, + "<|2.98|>": 50514, + "<|20.00|>": 51365, + "<|20.02|>": 51366, + "<|20.04|>": 51367, + "<|20.06|>": 51368, + "<|20.08|>": 51369, + "<|20.10|>": 51370, + "<|20.12|>": 51371, + "<|20.14|>": 51372, + "<|20.16|>": 51373, + "<|20.18|>": 51374, + "<|20.20|>": 51375, + "<|20.22|>": 51376, + "<|20.24|>": 51377, + "<|20.26|>": 51378, + "<|20.28|>": 51379, + "<|20.30|>": 51380, + "<|20.32|>": 51381, + "<|20.34|>": 51382, + "<|20.36|>": 51383, + "<|20.38|>": 51384, + "<|20.40|>": 51385, + "<|20.42|>": 51386, + "<|20.44|>": 51387, + "<|20.46|>": 51388, + "<|20.48|>": 51389, + "<|20.50|>": 51390, + "<|20.52|>": 51391, + "<|20.54|>": 51392, + "<|20.56|>": 51393, + "<|20.58|>": 51394, + "<|20.60|>": 51395, + "<|20.62|>": 51396, + "<|20.64|>": 51397, + "<|20.66|>": 51398, + "<|20.68|>": 51399, + "<|20.70|>": 51400, + "<|20.72|>": 51401, + "<|20.74|>": 51402, + "<|20.76|>": 51403, + "<|20.78|>": 51404, + "<|20.80|>": 51405, + "<|20.82|>": 51406, + "<|20.84|>": 51407, + "<|20.86|>": 51408, + "<|20.88|>": 51409, + "<|20.90|>": 51410, + "<|20.92|>": 51411, + "<|20.94|>": 51412, + "<|20.96|>": 51413, + "<|20.98|>": 51414, + "<|21.00|>": 51415, + "<|21.02|>": 51416, + "<|21.04|>": 51417, + "<|21.06|>": 51418, + "<|21.08|>": 51419, + "<|21.10|>": 51420, + "<|21.12|>": 51421, + "<|21.14|>": 51422, + "<|21.16|>": 51423, + "<|21.18|>": 51424, + "<|21.20|>": 51425, + "<|21.22|>": 51426, + "<|21.24|>": 51427, + "<|21.26|>": 51428, + "<|21.28|>": 51429, + "<|21.30|>": 51430, + "<|21.32|>": 51431, + "<|21.34|>": 51432, + "<|21.36|>": 51433, + "<|21.38|>": 51434, + "<|21.40|>": 51435, + "<|21.42|>": 51436, + "<|21.44|>": 51437, + "<|21.46|>": 51438, + "<|21.48|>": 51439, + "<|21.50|>": 51440, + "<|21.52|>": 51441, + "<|21.54|>": 51442, + "<|21.56|>": 51443, + "<|21.58|>": 51444, + "<|21.60|>": 51445, + "<|21.62|>": 51446, + "<|21.64|>": 51447, + "<|21.66|>": 51448, + "<|21.68|>": 51449, + "<|21.70|>": 51450, + "<|21.72|>": 51451, + "<|21.74|>": 51452, + "<|21.76|>": 51453, + "<|21.78|>": 51454, + "<|21.80|>": 51455, + "<|21.82|>": 51456, + "<|21.84|>": 51457, + "<|21.86|>": 51458, + "<|21.88|>": 51459, + "<|21.90|>": 51460, + "<|21.92|>": 51461, + "<|21.94|>": 51462, + "<|21.96|>": 51463, + "<|21.98|>": 51464, + "<|22.00|>": 51465, + "<|22.02|>": 51466, + "<|22.04|>": 51467, + "<|22.06|>": 51468, + "<|22.08|>": 51469, + "<|22.10|>": 51470, + "<|22.12|>": 51471, + "<|22.14|>": 51472, + "<|22.16|>": 51473, + "<|22.18|>": 51474, + "<|22.20|>": 51475, + "<|22.22|>": 51476, + "<|22.24|>": 51477, + "<|22.26|>": 51478, + "<|22.28|>": 51479, + "<|22.30|>": 51480, + "<|22.32|>": 51481, + "<|22.34|>": 51482, + "<|22.36|>": 51483, + "<|22.38|>": 51484, + "<|22.40|>": 51485, + "<|22.42|>": 51486, + "<|22.44|>": 51487, + "<|22.46|>": 51488, + "<|22.48|>": 51489, + "<|22.50|>": 51490, + "<|22.52|>": 51491, + "<|22.54|>": 51492, + "<|22.56|>": 51493, + "<|22.58|>": 51494, + "<|22.60|>": 51495, + "<|22.62|>": 51496, + "<|22.64|>": 51497, + "<|22.66|>": 51498, + "<|22.68|>": 51499, + "<|22.70|>": 51500, + "<|22.72|>": 51501, + "<|22.74|>": 51502, + "<|22.76|>": 51503, + "<|22.78|>": 51504, + "<|22.80|>": 51505, + "<|22.82|>": 51506, + "<|22.84|>": 51507, + "<|22.86|>": 51508, + "<|22.88|>": 51509, + "<|22.90|>": 51510, + "<|22.92|>": 51511, + "<|22.94|>": 51512, + "<|22.96|>": 51513, + "<|22.98|>": 51514, + "<|23.00|>": 51515, + "<|23.02|>": 51516, + "<|23.04|>": 51517, + "<|23.06|>": 51518, + "<|23.08|>": 51519, + "<|23.10|>": 51520, + "<|23.12|>": 51521, + "<|23.14|>": 51522, + "<|23.16|>": 51523, + "<|23.18|>": 51524, + "<|23.20|>": 51525, + "<|23.22|>": 51526, + "<|23.24|>": 51527, + "<|23.26|>": 51528, + "<|23.28|>": 51529, + "<|23.30|>": 51530, + "<|23.32|>": 51531, + "<|23.34|>": 51532, + "<|23.36|>": 51533, + "<|23.38|>": 51534, + "<|23.40|>": 51535, + "<|23.42|>": 51536, + "<|23.44|>": 51537, + "<|23.46|>": 51538, + "<|23.48|>": 51539, + "<|23.50|>": 51540, + "<|23.52|>": 51541, + "<|23.54|>": 51542, + "<|23.56|>": 51543, + "<|23.58|>": 51544, + "<|23.60|>": 51545, + "<|23.62|>": 51546, + "<|23.64|>": 51547, + "<|23.66|>": 51548, + "<|23.68|>": 51549, + "<|23.70|>": 51550, + "<|23.72|>": 51551, + "<|23.74|>": 51552, + "<|23.76|>": 51553, + "<|23.78|>": 51554, + "<|23.80|>": 51555, + "<|23.82|>": 51556, + "<|23.84|>": 51557, + "<|23.86|>": 51558, + "<|23.88|>": 51559, + "<|23.90|>": 51560, + "<|23.92|>": 51561, + "<|23.94|>": 51562, + "<|23.96|>": 51563, + "<|23.98|>": 51564, + "<|24.00|>": 51565, + "<|24.02|>": 51566, + "<|24.04|>": 51567, + "<|24.06|>": 51568, + "<|24.08|>": 51569, + "<|24.10|>": 51570, + "<|24.12|>": 51571, + "<|24.14|>": 51572, + "<|24.16|>": 51573, + "<|24.18|>": 51574, + "<|24.20|>": 51575, + "<|24.22|>": 51576, + "<|24.24|>": 51577, + "<|24.26|>": 51578, + "<|24.28|>": 51579, + "<|24.30|>": 51580, + "<|24.32|>": 51581, + "<|24.34|>": 51582, + "<|24.36|>": 51583, + "<|24.38|>": 51584, + "<|24.40|>": 51585, + "<|24.42|>": 51586, + "<|24.44|>": 51587, + "<|24.46|>": 51588, + "<|24.48|>": 51589, + "<|24.50|>": 51590, + "<|24.52|>": 51591, + "<|24.54|>": 51592, + "<|24.56|>": 51593, + "<|24.58|>": 51594, + "<|24.60|>": 51595, + "<|24.62|>": 51596, + "<|24.64|>": 51597, + "<|24.66|>": 51598, + "<|24.68|>": 51599, + "<|24.70|>": 51600, + "<|24.72|>": 51601, + "<|24.74|>": 51602, + "<|24.76|>": 51603, + "<|24.78|>": 51604, + "<|24.80|>": 51605, + "<|24.82|>": 51606, + "<|24.84|>": 51607, + "<|24.86|>": 51608, + "<|24.88|>": 51609, + "<|24.90|>": 51610, + "<|24.92|>": 51611, + "<|24.94|>": 51612, + "<|24.96|>": 51613, + "<|24.98|>": 51614, + "<|25.00|>": 51615, + "<|25.02|>": 51616, + "<|25.04|>": 51617, + "<|25.06|>": 51618, + "<|25.08|>": 51619, + "<|25.10|>": 51620, + "<|25.12|>": 51621, + "<|25.14|>": 51622, + "<|25.16|>": 51623, + "<|25.18|>": 51624, + "<|25.20|>": 51625, + "<|25.22|>": 51626, + "<|25.24|>": 51627, + "<|25.26|>": 51628, + "<|25.28|>": 51629, + "<|25.30|>": 51630, + "<|25.32|>": 51631, + "<|25.34|>": 51632, + "<|25.36|>": 51633, + "<|25.38|>": 51634, + "<|25.40|>": 51635, + "<|25.42|>": 51636, + "<|25.44|>": 51637, + "<|25.46|>": 51638, + "<|25.48|>": 51639, + "<|25.50|>": 51640, + "<|25.52|>": 51641, + "<|25.54|>": 51642, + "<|25.56|>": 51643, + "<|25.58|>": 51644, + "<|25.60|>": 51645, + "<|25.62|>": 51646, + "<|25.64|>": 51647, + "<|25.66|>": 51648, + "<|25.68|>": 51649, + "<|25.70|>": 51650, + "<|25.72|>": 51651, + "<|25.74|>": 51652, + "<|25.76|>": 51653, + "<|25.78|>": 51654, + "<|25.80|>": 51655, + "<|25.82|>": 51656, + "<|25.84|>": 51657, + "<|25.86|>": 51658, + "<|25.88|>": 51659, + "<|25.90|>": 51660, + "<|25.92|>": 51661, + "<|25.94|>": 51662, + "<|25.96|>": 51663, + "<|25.98|>": 51664, + "<|26.00|>": 51665, + "<|26.02|>": 51666, + "<|26.04|>": 51667, + "<|26.06|>": 51668, + "<|26.08|>": 51669, + "<|26.10|>": 51670, + "<|26.12|>": 51671, + "<|26.14|>": 51672, + "<|26.16|>": 51673, + "<|26.18|>": 51674, + "<|26.20|>": 51675, + "<|26.22|>": 51676, + "<|26.24|>": 51677, + "<|26.26|>": 51678, + "<|26.28|>": 51679, + "<|26.30|>": 51680, + "<|26.32|>": 51681, + "<|26.34|>": 51682, + "<|26.36|>": 51683, + "<|26.38|>": 51684, + "<|26.40|>": 51685, + "<|26.42|>": 51686, + "<|26.44|>": 51687, + "<|26.46|>": 51688, + "<|26.48|>": 51689, + "<|26.50|>": 51690, + "<|26.52|>": 51691, + "<|26.54|>": 51692, + "<|26.56|>": 51693, + "<|26.58|>": 51694, + "<|26.60|>": 51695, + "<|26.62|>": 51696, + "<|26.64|>": 51697, + "<|26.66|>": 51698, + "<|26.68|>": 51699, + "<|26.70|>": 51700, + "<|26.72|>": 51701, + "<|26.74|>": 51702, + "<|26.76|>": 51703, + "<|26.78|>": 51704, + "<|26.80|>": 51705, + "<|26.82|>": 51706, + "<|26.84|>": 51707, + "<|26.86|>": 51708, + "<|26.88|>": 51709, + "<|26.90|>": 51710, + "<|26.92|>": 51711, + "<|26.94|>": 51712, + "<|26.96|>": 51713, + "<|26.98|>": 51714, + "<|27.00|>": 51715, + "<|27.02|>": 51716, + "<|27.04|>": 51717, + "<|27.06|>": 51718, + "<|27.08|>": 51719, + "<|27.10|>": 51720, + "<|27.12|>": 51721, + "<|27.14|>": 51722, + "<|27.16|>": 51723, + "<|27.18|>": 51724, + "<|27.20|>": 51725, + "<|27.22|>": 51726, + "<|27.24|>": 51727, + "<|27.26|>": 51728, + "<|27.28|>": 51729, + "<|27.30|>": 51730, + "<|27.32|>": 51731, + "<|27.34|>": 51732, + "<|27.36|>": 51733, + "<|27.38|>": 51734, + "<|27.40|>": 51735, + "<|27.42|>": 51736, + "<|27.44|>": 51737, + "<|27.46|>": 51738, + "<|27.48|>": 51739, + "<|27.50|>": 51740, + "<|27.52|>": 51741, + "<|27.54|>": 51742, + "<|27.56|>": 51743, + "<|27.58|>": 51744, + "<|27.60|>": 51745, + "<|27.62|>": 51746, + "<|27.64|>": 51747, + "<|27.66|>": 51748, + "<|27.68|>": 51749, + "<|27.70|>": 51750, + "<|27.72|>": 51751, + "<|27.74|>": 51752, + "<|27.76|>": 51753, + "<|27.78|>": 51754, + "<|27.80|>": 51755, + "<|27.82|>": 51756, + "<|27.84|>": 51757, + "<|27.86|>": 51758, + "<|27.88|>": 51759, + "<|27.90|>": 51760, + "<|27.92|>": 51761, + "<|27.94|>": 51762, + "<|27.96|>": 51763, + "<|27.98|>": 51764, + "<|28.00|>": 51765, + "<|28.02|>": 51766, + "<|28.04|>": 51767, + "<|28.06|>": 51768, + "<|28.08|>": 51769, + "<|28.10|>": 51770, + "<|28.12|>": 51771, + "<|28.14|>": 51772, + "<|28.16|>": 51773, + "<|28.18|>": 51774, + "<|28.20|>": 51775, + "<|28.22|>": 51776, + "<|28.24|>": 51777, + "<|28.26|>": 51778, + "<|28.28|>": 51779, + "<|28.30|>": 51780, + "<|28.32|>": 51781, + "<|28.34|>": 51782, + "<|28.36|>": 51783, + "<|28.38|>": 51784, + "<|28.40|>": 51785, + "<|28.42|>": 51786, + "<|28.44|>": 51787, + "<|28.46|>": 51788, + "<|28.48|>": 51789, + "<|28.50|>": 51790, + "<|28.52|>": 51791, + "<|28.54|>": 51792, + "<|28.56|>": 51793, + "<|28.58|>": 51794, + "<|28.60|>": 51795, + "<|28.62|>": 51796, + "<|28.64|>": 51797, + "<|28.66|>": 51798, + "<|28.68|>": 51799, + "<|28.70|>": 51800, + "<|28.72|>": 51801, + "<|28.74|>": 51802, + "<|28.76|>": 51803, + "<|28.78|>": 51804, + "<|28.80|>": 51805, + "<|28.82|>": 51806, + "<|28.84|>": 51807, + "<|28.86|>": 51808, + "<|28.88|>": 51809, + "<|28.90|>": 51810, + "<|28.92|>": 51811, + "<|28.94|>": 51812, + "<|28.96|>": 51813, + "<|28.98|>": 51814, + "<|29.00|>": 51815, + "<|29.02|>": 51816, + "<|29.04|>": 51817, + "<|29.06|>": 51818, + "<|29.08|>": 51819, + "<|29.10|>": 51820, + "<|29.12|>": 51821, + "<|29.14|>": 51822, + "<|29.16|>": 51823, + "<|29.18|>": 51824, + "<|29.20|>": 51825, + "<|29.22|>": 51826, + "<|29.24|>": 51827, + "<|29.26|>": 51828, + "<|29.28|>": 51829, + "<|29.30|>": 51830, + "<|29.32|>": 51831, + "<|29.34|>": 51832, + "<|29.36|>": 51833, + "<|29.38|>": 51834, + "<|29.40|>": 51835, + "<|29.42|>": 51836, + "<|29.44|>": 51837, + "<|29.46|>": 51838, + "<|29.48|>": 51839, + "<|29.50|>": 51840, + "<|29.52|>": 51841, + "<|29.54|>": 51842, + "<|29.56|>": 51843, + "<|29.58|>": 51844, + "<|29.60|>": 51845, + "<|29.62|>": 51846, + "<|29.64|>": 51847, + "<|29.66|>": 51848, + "<|29.68|>": 51849, + "<|29.70|>": 51850, + "<|29.72|>": 51851, + "<|29.74|>": 51852, + "<|29.76|>": 51853, + "<|29.78|>": 51854, + "<|29.80|>": 51855, + "<|29.82|>": 51856, + "<|29.84|>": 51857, + "<|29.86|>": 51858, + "<|29.88|>": 51859, + "<|29.90|>": 51860, + "<|29.92|>": 51861, + "<|29.94|>": 51862, + "<|29.96|>": 51863, + "<|29.98|>": 51864, + "<|3.00|>": 50515, + "<|3.02|>": 50516, + "<|3.04|>": 50517, + "<|3.06|>": 50518, + "<|3.08|>": 50519, + "<|3.10|>": 50520, + "<|3.12|>": 50521, + "<|3.14|>": 50522, + "<|3.16|>": 50523, + "<|3.18|>": 50524, + "<|3.20|>": 50525, + "<|3.22|>": 50526, + "<|3.24|>": 50527, + "<|3.26|>": 50528, + "<|3.28|>": 50529, + "<|3.30|>": 50530, + "<|3.32|>": 50531, + "<|3.34|>": 50532, + "<|3.36|>": 50533, + "<|3.38|>": 50534, + "<|3.40|>": 50535, + "<|3.42|>": 50536, + "<|3.44|>": 50537, + "<|3.46|>": 50538, + "<|3.48|>": 50539, + "<|3.50|>": 50540, + "<|3.52|>": 50541, + "<|3.54|>": 50542, + "<|3.56|>": 50543, + "<|3.58|>": 50544, + "<|3.60|>": 50545, + "<|3.62|>": 50546, + "<|3.64|>": 50547, + "<|3.66|>": 50548, + "<|3.68|>": 50549, + "<|3.70|>": 50550, + "<|3.72|>": 50551, + "<|3.74|>": 50552, + "<|3.76|>": 50553, + "<|3.78|>": 50554, + "<|3.80|>": 50555, + "<|3.82|>": 50556, + "<|3.84|>": 50557, + "<|3.86|>": 50558, + "<|3.88|>": 50559, + "<|3.90|>": 50560, + "<|3.92|>": 50561, + "<|3.94|>": 50562, + "<|3.96|>": 50563, + "<|3.98|>": 50564, + "<|30.00|>": 51865, + "<|4.00|>": 50565, + "<|4.02|>": 50566, + "<|4.04|>": 50567, + "<|4.06|>": 50568, + "<|4.08|>": 50569, + "<|4.10|>": 50570, + "<|4.12|>": 50571, + "<|4.14|>": 50572, + "<|4.16|>": 50573, + "<|4.18|>": 50574, + "<|4.20|>": 50575, + "<|4.22|>": 50576, + "<|4.24|>": 50577, + "<|4.26|>": 50578, + "<|4.28|>": 50579, + "<|4.30|>": 50580, + "<|4.32|>": 50581, + "<|4.34|>": 50582, + "<|4.36|>": 50583, + "<|4.38|>": 50584, + "<|4.40|>": 50585, + "<|4.42|>": 50586, + "<|4.44|>": 50587, + "<|4.46|>": 50588, + "<|4.48|>": 50589, + "<|4.50|>": 50590, + "<|4.52|>": 50591, + "<|4.54|>": 50592, + "<|4.56|>": 50593, + "<|4.58|>": 50594, + "<|4.60|>": 50595, + "<|4.62|>": 50596, + "<|4.64|>": 50597, + "<|4.66|>": 50598, + "<|4.68|>": 50599, + "<|4.70|>": 50600, + "<|4.72|>": 50601, + "<|4.74|>": 50602, + "<|4.76|>": 50603, + "<|4.78|>": 50604, + "<|4.80|>": 50605, + "<|4.82|>": 50606, + "<|4.84|>": 50607, + "<|4.86|>": 50608, + "<|4.88|>": 50609, + "<|4.90|>": 50610, + "<|4.92|>": 50611, + "<|4.94|>": 50612, + "<|4.96|>": 50613, + "<|4.98|>": 50614, + "<|5.00|>": 50615, + "<|5.02|>": 50616, + "<|5.04|>": 50617, + "<|5.06|>": 50618, + "<|5.08|>": 50619, + "<|5.10|>": 50620, + "<|5.12|>": 50621, + "<|5.14|>": 50622, + "<|5.16|>": 50623, + "<|5.18|>": 50624, + "<|5.20|>": 50625, + "<|5.22|>": 50626, + "<|5.24|>": 50627, + "<|5.26|>": 50628, + "<|5.28|>": 50629, + "<|5.30|>": 50630, + "<|5.32|>": 50631, + "<|5.34|>": 50632, + "<|5.36|>": 50633, + "<|5.38|>": 50634, + "<|5.40|>": 50635, + "<|5.42|>": 50636, + "<|5.44|>": 50637, + "<|5.46|>": 50638, + "<|5.48|>": 50639, + "<|5.50|>": 50640, + "<|5.52|>": 50641, + "<|5.54|>": 50642, + "<|5.56|>": 50643, + "<|5.58|>": 50644, + "<|5.60|>": 50645, + "<|5.62|>": 50646, + "<|5.64|>": 50647, + "<|5.66|>": 50648, + "<|5.68|>": 50649, + "<|5.70|>": 50650, + "<|5.72|>": 50651, + "<|5.74|>": 50652, + "<|5.76|>": 50653, + "<|5.78|>": 50654, + "<|5.80|>": 50655, + "<|5.82|>": 50656, + "<|5.84|>": 50657, + "<|5.86|>": 50658, + "<|5.88|>": 50659, + "<|5.90|>": 50660, + "<|5.92|>": 50661, + "<|5.94|>": 50662, + "<|5.96|>": 50663, + "<|5.98|>": 50664, + "<|6.00|>": 50665, + "<|6.02|>": 50666, + "<|6.04|>": 50667, + "<|6.06|>": 50668, + "<|6.08|>": 50669, + "<|6.10|>": 50670, + "<|6.12|>": 50671, + "<|6.14|>": 50672, + "<|6.16|>": 50673, + "<|6.18|>": 50674, + "<|6.20|>": 50675, + "<|6.22|>": 50676, + "<|6.24|>": 50677, + "<|6.26|>": 50678, + "<|6.28|>": 50679, + "<|6.30|>": 50680, + "<|6.32|>": 50681, + "<|6.34|>": 50682, + "<|6.36|>": 50683, + "<|6.38|>": 50684, + "<|6.40|>": 50685, + "<|6.42|>": 50686, + "<|6.44|>": 50687, + "<|6.46|>": 50688, + "<|6.48|>": 50689, + "<|6.50|>": 50690, + "<|6.52|>": 50691, + "<|6.54|>": 50692, + "<|6.56|>": 50693, + "<|6.58|>": 50694, + "<|6.60|>": 50695, + "<|6.62|>": 50696, + "<|6.64|>": 50697, + "<|6.66|>": 50698, + "<|6.68|>": 50699, + "<|6.70|>": 50700, + "<|6.72|>": 50701, + "<|6.74|>": 50702, + "<|6.76|>": 50703, + "<|6.78|>": 50704, + "<|6.80|>": 50705, + "<|6.82|>": 50706, + "<|6.84|>": 50707, + "<|6.86|>": 50708, + "<|6.88|>": 50709, + "<|6.90|>": 50710, + "<|6.92|>": 50711, + "<|6.94|>": 50712, + "<|6.96|>": 50713, + "<|6.98|>": 50714, + "<|7.00|>": 50715, + "<|7.02|>": 50716, + "<|7.04|>": 50717, + "<|7.06|>": 50718, + "<|7.08|>": 50719, + "<|7.10|>": 50720, + "<|7.12|>": 50721, + "<|7.14|>": 50722, + "<|7.16|>": 50723, + "<|7.18|>": 50724, + "<|7.20|>": 50725, + "<|7.22|>": 50726, + "<|7.24|>": 50727, + "<|7.26|>": 50728, + "<|7.28|>": 50729, + "<|7.30|>": 50730, + "<|7.32|>": 50731, + "<|7.34|>": 50732, + "<|7.36|>": 50733, + "<|7.38|>": 50734, + "<|7.40|>": 50735, + "<|7.42|>": 50736, + "<|7.44|>": 50737, + "<|7.46|>": 50738, + "<|7.48|>": 50739, + "<|7.50|>": 50740, + "<|7.52|>": 50741, + "<|7.54|>": 50742, + "<|7.56|>": 50743, + "<|7.58|>": 50744, + "<|7.60|>": 50745, + "<|7.62|>": 50746, + "<|7.64|>": 50747, + "<|7.66|>": 50748, + "<|7.68|>": 50749, + "<|7.70|>": 50750, + "<|7.72|>": 50751, + "<|7.74|>": 50752, + "<|7.76|>": 50753, + "<|7.78|>": 50754, + "<|7.80|>": 50755, + "<|7.82|>": 50756, + "<|7.84|>": 50757, + "<|7.86|>": 50758, + "<|7.88|>": 50759, + "<|7.90|>": 50760, + "<|7.92|>": 50761, + "<|7.94|>": 50762, + "<|7.96|>": 50763, + "<|7.98|>": 50764, + "<|8.00|>": 50765, + "<|8.02|>": 50766, + "<|8.04|>": 50767, + "<|8.06|>": 50768, + "<|8.08|>": 50769, + "<|8.10|>": 50770, + "<|8.12|>": 50771, + "<|8.14|>": 50772, + "<|8.16|>": 50773, + "<|8.18|>": 50774, + "<|8.20|>": 50775, + "<|8.22|>": 50776, + "<|8.24|>": 50777, + "<|8.26|>": 50778, + "<|8.28|>": 50779, + "<|8.30|>": 50780, + "<|8.32|>": 50781, + "<|8.34|>": 50782, + "<|8.36|>": 50783, + "<|8.38|>": 50784, + "<|8.40|>": 50785, + "<|8.42|>": 50786, + "<|8.44|>": 50787, + "<|8.46|>": 50788, + "<|8.48|>": 50789, + "<|8.50|>": 50790, + "<|8.52|>": 50791, + "<|8.54|>": 50792, + "<|8.56|>": 50793, + "<|8.58|>": 50794, + "<|8.60|>": 50795, + "<|8.62|>": 50796, + "<|8.64|>": 50797, + "<|8.66|>": 50798, + "<|8.68|>": 50799, + "<|8.70|>": 50800, + "<|8.72|>": 50801, + "<|8.74|>": 50802, + "<|8.76|>": 50803, + "<|8.78|>": 50804, + "<|8.80|>": 50805, + "<|8.82|>": 50806, + "<|8.84|>": 50807, + "<|8.86|>": 50808, + "<|8.88|>": 50809, + "<|8.90|>": 50810, + "<|8.92|>": 50811, + "<|8.94|>": 50812, + "<|8.96|>": 50813, + "<|8.98|>": 50814, + "<|9.00|>": 50815, + "<|9.02|>": 50816, + "<|9.04|>": 50817, + "<|9.06|>": 50818, + "<|9.08|>": 50819, + "<|9.10|>": 50820, + "<|9.12|>": 50821, + "<|9.14|>": 50822, + "<|9.16|>": 50823, + "<|9.18|>": 50824, + "<|9.20|>": 50825, + "<|9.22|>": 50826, + "<|9.24|>": 50827, + "<|9.26|>": 50828, + "<|9.28|>": 50829, + "<|9.30|>": 50830, + "<|9.32|>": 50831, + "<|9.34|>": 50832, + "<|9.36|>": 50833, + "<|9.38|>": 50834, + "<|9.40|>": 50835, + "<|9.42|>": 50836, + "<|9.44|>": 50837, + "<|9.46|>": 50838, + "<|9.48|>": 50839, + "<|9.50|>": 50840, + "<|9.52|>": 50841, + "<|9.54|>": 50842, + "<|9.56|>": 50843, + "<|9.58|>": 50844, + "<|9.60|>": 50845, + "<|9.62|>": 50846, + "<|9.64|>": 50847, + "<|9.66|>": 50848, + "<|9.68|>": 50849, + "<|9.70|>": 50850, + "<|9.72|>": 50851, + "<|9.74|>": 50852, + "<|9.76|>": 50853, + "<|9.78|>": 50854, + "<|9.80|>": 50855, + "<|9.82|>": 50856, + "<|9.84|>": 50857, + "<|9.86|>": 50858, + "<|9.88|>": 50859, + "<|9.90|>": 50860, + "<|9.92|>": 50861, + "<|9.94|>": 50862, + "<|9.96|>": 50863, + "<|9.98|>": 50864, + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|endoftext|>": 50257, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|nospeech|>": 50363, + "<|notimestamps|>": 50364, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|startoflm|>": 50361, + "<|startofprev|>": 50362, + "<|startoftranscript|>": 50258, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|transcribe|>": 50360, + "<|translate|>": 50359, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 +} diff --git a/checkpoint-5000-epoch-0/model.safetensors b/checkpoint-5000-epoch-0/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c66d58fbcf69444ceefb0997d1bc9a94bc14de71 --- /dev/null +++ b/checkpoint-5000-epoch-0/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:df305b3f7009eab623e7fecd9ce8e65b95fc4a2e34b3175d7ae6b0441fc8ea0f +size 3025686376 diff --git a/checkpoint-5000-epoch-0/model_1.safetensors b/checkpoint-5000-epoch-0/model_1.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5346a4e7421f490b5a377a74d43f5850878a6b67 --- /dev/null +++ b/checkpoint-5000-epoch-0/model_1.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e39aef3bbaf23383a1b2b68ca0e62361f1499dcfae56a696dbe942557f54e9e1 +size 4361070048 diff --git a/checkpoint-5000-epoch-0/optimizer.bin b/checkpoint-5000-epoch-0/optimizer.bin new file mode 100644 index 0000000000000000000000000000000000000000..f2cc54dedd13385ea8c8a2f96a236f69ce3f1c18 --- /dev/null +++ b/checkpoint-5000-epoch-0/optimizer.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:beba5fa101effd6ef750b055ff05941f381beb7237601eef8ed9ce5d38068f57 +size 955539578 diff --git a/checkpoint-5000-epoch-0/random_states_0.pkl b/checkpoint-5000-epoch-0/random_states_0.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0c33c3c88296f5a9821985480f52ff54b455837c --- /dev/null +++ b/checkpoint-5000-epoch-0/random_states_0.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63ea449c3ffff0f8fd79b27243bc394123729a01294a9f217d4048bd8a330d73 +size 14604 diff --git a/checkpoint-5000-epoch-0/random_states_1.pkl b/checkpoint-5000-epoch-0/random_states_1.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3430ad4247b73cc8b7a46b5bccffb4dee5484846 --- /dev/null +++ b/checkpoint-5000-epoch-0/random_states_1.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:761015fa832e44df5631ee8ab425a10288697c42533512b467f11930c6b5effe +size 14604 diff --git a/checkpoint-5000-epoch-0/scheduler.bin b/checkpoint-5000-epoch-0/scheduler.bin new file mode 100644 index 0000000000000000000000000000000000000000..6e4438e920a510f25e65b6fd266edd0cd2fef1bc --- /dev/null +++ b/checkpoint-5000-epoch-0/scheduler.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:155f9eb76013e7e018690f6bb69927b931a2be52f0f4eedf79eb9dfeecc9f35d +size 1064 diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..c805476141e577b2bc63717ae71d412d19877be3 --- /dev/null +++ b/config.json @@ -0,0 +1,50 @@ +{ + "_name_or_path": "GalaktischeGurke/swhisper_large_8552", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 1280, + "decoder_attention_heads": 20, + "decoder_ffn_dim": 5120, + "decoder_layerdrop": 0.0, + "decoder_layers": 2, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 20, + "encoder_ffn_dim": 5120, + "encoder_layerdrop": 0.0, + "encoder_layers": 32, + "eos_token_id": 50257, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 32, + "num_mel_bins": 128, + "pad_token_id": 50256, + "scale_embedding": false, + "torch_dtype": "float32", + "transformers_version": "4.41.2", + "use_cache": true, + "use_weighted_layer_sum": false, + "vocab_size": 51866 +} diff --git a/core b/core new file mode 100644 index 0000000000000000000000000000000000000000..bb7e4c3adf47655f42e3b3f6e358e0f95e60b714 --- /dev/null +++ b/core @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2542a5c60b340914a9a695344dc58cca5a8ed2ca317dcac77bcc49bda0fc93b2 +size 4742078464 diff --git a/create_student_model.py b/create_student_model.py new file mode 100644 index 0000000000000000000000000000000000000000..f10b1bce8c1408c9e291cfc12e3a1e9d7a26dc48 --- /dev/null +++ b/create_student_model.py @@ -0,0 +1,231 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Initialise a student Whisper model from a pre-trained teacher model for +teacher-student distillation. +""" + +import argparse +import copy +import logging + +import numpy as np +import torch +from transformers import GenerationConfig, WhisperForConditionalGeneration, WhisperProcessor + + +logger = logging.getLogger(__name__) + + +def parse_args(): + parser = argparse.ArgumentParser( + description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary." + ) + parser.add_argument( + "--teacher_checkpoint", + type=str, + required=True, + help="The HF Hub ID of the teacher checkpoint.", + ) + parser.add_argument( + "--subfolder", + type=str, + default="", + help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you " + "can specify the folder name here.", + ) + parser.add_argument( + "--encoder_layers", + type=int, + default=None, + help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.", + ) + parser.add_argument( + "--decoder_layers", + type=int, + default=2, + help="Number of decoder layers to use in the student model. Defaults to 2 layers.", + ) + parser.add_argument( + "--decoder_layers_numbers", + type=int, + nargs="*", + help="Layers numbers of the decoder teacher to use in the student model. Defaults to None, equivalent to taking first and last layer (and equivalent to `--decoder_layers_numbers 0 -1`).", + ) + parser.add_argument( + "--save_dir", + type=str, + required=True, + help="Where to save the student weights and processor.", + ) + parser.add_argument( + "--push_to_hub", + type=bool, + required=False, + default=False, + help="Whether to push the student weights and processor to the Hub.", + ) + parser.add_argument( + "--cache_dir", + type=str, + default=None, + help="Where to store the pretrained models downloaded from huggingface.co", + ) + + args = parser.parse_args() + return args + + +def init_student_model_from_teacher( + teacher_checkpoint, + encoder_layers=None, + decoder_layers=2, + decoder_layers_numbers=None, + save_dir=None, + push_to_hub=None, + cache_dir=None, + subfolder="", +): + if decoder_layers_numbers is not None and len(decoder_layers_numbers) != decoder_layers: + raise ValueError( + f"Got {len(decoder_layers_numbers)} layers number for {decoder_layers} decoder layers." + ) + + teacher_model = WhisperForConditionalGeneration.from_pretrained( + teacher_checkpoint, + cache_dir=cache_dir, + subfolder=subfolder, + low_cpu_mem_usage=True, + ) + processor = WhisperProcessor.from_pretrained(teacher_checkpoint) + generation_config = GenerationConfig.from_pretrained(teacher_checkpoint) + generation_config.forced_decoder_ids = None + + teacher_config = teacher_model.config + teacher_encoder_layers = teacher_config.encoder_layers + teacher_decoder_layers = teacher_config.decoder_layers + + student_config = copy.deepcopy(teacher_config) + student_config.update( + { + "encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers, + "decoder_layers": decoder_layers, + } + ) + + encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int) + encoder_mapping[-1] = teacher_encoder_layers - 1 + + encoder_map = {} + for student_layer, teacher_layer in enumerate(encoder_mapping): + encoder_map[teacher_layer] = student_layer + + if decoder_layers_numbers is None: + decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int) + decoder_mapping[-1] = teacher_decoder_layers - 1 + else: + decoder_mapping = decoder_layers_numbers + + decoder_map = {} + for student_layer, teacher_layer in enumerate(decoder_mapping): + decoder_map[teacher_layer] = student_layer + + # init the student params from the teacher model + student_model = WhisperForConditionalGeneration(student_config) + missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False) + if len(missing_keys) > 0: + raise RuntimeError( + "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n" + f"Missing key(s) in state_dict: {missing_keys}" + ) + if decoder_layers == teacher_decoder_layers: + decoder_keys = [key for key in unexpected_keys if "model.decoder.layers" in key] + if len(decoder_keys) > 0: + raise RuntimeError( + "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n" + f"Unexpected key(s) in state_dict: {decoder_keys}" + ) + if encoder_layers == teacher_encoder_layers: + encoder_keys = [key for key in unexpected_keys if "model.encoder.layers" in key] + if len(encoder_keys) > 0: + raise RuntimeError( + "Error(s) in loading state_dict for WhisperForConditionalGeneration. \n" + f"Unexpected key(s) in state_dict: {encoder_keys}" + ) + + for layer in range(teacher_decoder_layers): + if layer in decoder_map: + # re-introduce pre-defined layers from the teacher + student_model.model.decoder.layers[decoder_map[layer]].load_state_dict( + teacher_model.model.decoder.layers[layer].state_dict() + ) + + if encoder_layers is not None: + for layer in range(teacher_encoder_layers): + if layer in encoder_map: + # re-introduce pre-defined layers from the teacher + student_model.model.encoder.layers[encoder_map[layer]].load_state_dict( + teacher_model.model.encoder.layers[layer].state_dict() + ) + + # remove the teacher params and model + del teacher_model + + # save the converted weights and model + if save_dir is not None: + student_model.save_pretrained(save_dir) + # we also need to correctly save the processor and generation config + processor.save_pretrained(save_dir) + generation_config.save_pretrained(save_dir) + + # check we can do a forward pass with the saved model - first load the weights and processor + logger.info("Checking we can load the saved model...") + student_model = WhisperForConditionalGeneration.from_pretrained( + save_dir, + low_cpu_mem_usage=True, + ) + processor = WhisperProcessor.from_pretrained(save_dir) + + # define some random inputs + input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="pt").input_features + decoder_start_token_id = student_model.config.decoder_start_token_id + decoder_input_ids = torch.ones((input_features.shape[0], 1), dtype=torch.long) * decoder_start_token_id + + # do a forward pass - outputs will be gibberish for the initialised model so we can't check them + # but we make can sure the model runs as expected + logger.info("Checking we can run the converted model forward...") + _ = student_model(input_features, decoder_input_ids=decoder_input_ids).logits + logger.info("Conversion successful!") + + if push_to_hub: + student_model.push_to_hub(save_dir) + processor.push_to_hub(save_dir) + generation_config.push_to_hub(save_dir) + + +if __name__ == "__main__": + args = parse_args() + + init_student_model_from_teacher( + teacher_checkpoint=args.teacher_checkpoint, + encoder_layers=args.encoder_layers, + decoder_layers=args.decoder_layers, + decoder_layers_numbers=args.decoder_layers_numbers, + save_dir=args.save_dir, + push_to_hub=args.push_to_hub, + cache_dir=args.cache_dir, + subfolder=args.subfolder, + ) diff --git a/distil-large-v3-init/added_tokens.json b/distil-large-v3-init/added_tokens.json new file mode 100644 index 0000000000000000000000000000000000000000..1b33526d33aaa60d79f78ae8651dae50b730185a --- /dev/null +++ b/distil-large-v3-init/added_tokens.json @@ -0,0 +1,1611 @@ +{ + "<|0.00|>": 50365, + "<|0.02|>": 50366, + "<|0.04|>": 50367, + "<|0.06|>": 50368, + "<|0.08|>": 50369, + "<|0.10|>": 50370, + "<|0.12|>": 50371, + "<|0.14|>": 50372, + "<|0.16|>": 50373, + "<|0.18|>": 50374, + "<|0.20|>": 50375, + "<|0.22|>": 50376, + "<|0.24|>": 50377, + "<|0.26|>": 50378, + "<|0.28|>": 50379, + "<|0.30|>": 50380, + "<|0.32|>": 50381, + "<|0.34|>": 50382, + "<|0.36|>": 50383, + "<|0.38|>": 50384, + "<|0.40|>": 50385, + "<|0.42|>": 50386, + "<|0.44|>": 50387, + "<|0.46|>": 50388, + "<|0.48|>": 50389, + "<|0.50|>": 50390, + "<|0.52|>": 50391, + "<|0.54|>": 50392, + "<|0.56|>": 50393, + "<|0.58|>": 50394, + "<|0.60|>": 50395, + "<|0.62|>": 50396, + "<|0.64|>": 50397, + "<|0.66|>": 50398, + "<|0.68|>": 50399, + "<|0.70|>": 50400, + "<|0.72|>": 50401, + "<|0.74|>": 50402, + "<|0.76|>": 50403, + "<|0.78|>": 50404, + "<|0.80|>": 50405, + "<|0.82|>": 50406, + "<|0.84|>": 50407, + "<|0.86|>": 50408, + "<|0.88|>": 50409, + "<|0.90|>": 50410, + "<|0.92|>": 50411, + "<|0.94|>": 50412, + "<|0.96|>": 50413, + "<|0.98|>": 50414, + "<|1.00|>": 50415, + "<|1.02|>": 50416, + "<|1.04|>": 50417, + "<|1.06|>": 50418, + "<|1.08|>": 50419, + "<|1.10|>": 50420, + "<|1.12|>": 50421, + "<|1.14|>": 50422, + "<|1.16|>": 50423, + "<|1.18|>": 50424, + "<|1.20|>": 50425, + "<|1.22|>": 50426, + "<|1.24|>": 50427, + "<|1.26|>": 50428, + "<|1.28|>": 50429, + "<|1.30|>": 50430, + "<|1.32|>": 50431, + "<|1.34|>": 50432, + "<|1.36|>": 50433, + "<|1.38|>": 50434, + "<|1.40|>": 50435, + "<|1.42|>": 50436, + "<|1.44|>": 50437, + "<|1.46|>": 50438, + "<|1.48|>": 50439, + "<|1.50|>": 50440, + "<|1.52|>": 50441, + "<|1.54|>": 50442, + "<|1.56|>": 50443, + "<|1.58|>": 50444, + "<|1.60|>": 50445, + "<|1.62|>": 50446, + "<|1.64|>": 50447, + "<|1.66|>": 50448, + "<|1.68|>": 50449, + "<|1.70|>": 50450, + "<|1.72|>": 50451, + "<|1.74|>": 50452, + "<|1.76|>": 50453, + "<|1.78|>": 50454, + "<|1.80|>": 50455, + "<|1.82|>": 50456, + "<|1.84|>": 50457, + "<|1.86|>": 50458, + "<|1.88|>": 50459, + "<|1.90|>": 50460, + "<|1.92|>": 50461, + "<|1.94|>": 50462, + "<|1.96|>": 50463, + "<|1.98|>": 50464, + "<|10.00|>": 50865, + "<|10.02|>": 50866, + "<|10.04|>": 50867, + "<|10.06|>": 50868, + "<|10.08|>": 50869, + "<|10.10|>": 50870, + "<|10.12|>": 50871, + "<|10.14|>": 50872, + "<|10.16|>": 50873, + "<|10.18|>": 50874, + "<|10.20|>": 50875, + "<|10.22|>": 50876, + "<|10.24|>": 50877, + "<|10.26|>": 50878, + "<|10.28|>": 50879, + "<|10.30|>": 50880, + "<|10.32|>": 50881, + "<|10.34|>": 50882, + "<|10.36|>": 50883, + "<|10.38|>": 50884, + "<|10.40|>": 50885, + "<|10.42|>": 50886, + "<|10.44|>": 50887, + "<|10.46|>": 50888, + "<|10.48|>": 50889, + "<|10.50|>": 50890, + "<|10.52|>": 50891, + "<|10.54|>": 50892, + "<|10.56|>": 50893, + "<|10.58|>": 50894, + "<|10.60|>": 50895, + "<|10.62|>": 50896, + "<|10.64|>": 50897, + "<|10.66|>": 50898, + "<|10.68|>": 50899, + "<|10.70|>": 50900, + "<|10.72|>": 50901, + "<|10.74|>": 50902, + "<|10.76|>": 50903, + "<|10.78|>": 50904, + "<|10.80|>": 50905, + "<|10.82|>": 50906, + "<|10.84|>": 50907, + "<|10.86|>": 50908, + "<|10.88|>": 50909, + "<|10.90|>": 50910, + "<|10.92|>": 50911, + "<|10.94|>": 50912, + "<|10.96|>": 50913, + "<|10.98|>": 50914, + "<|11.00|>": 50915, + "<|11.02|>": 50916, + "<|11.04|>": 50917, + "<|11.06|>": 50918, + "<|11.08|>": 50919, + "<|11.10|>": 50920, + "<|11.12|>": 50921, + "<|11.14|>": 50922, + "<|11.16|>": 50923, + "<|11.18|>": 50924, + "<|11.20|>": 50925, + "<|11.22|>": 50926, + "<|11.24|>": 50927, + "<|11.26|>": 50928, + "<|11.28|>": 50929, + "<|11.30|>": 50930, + "<|11.32|>": 50931, + "<|11.34|>": 50932, + "<|11.36|>": 50933, + "<|11.38|>": 50934, + "<|11.40|>": 50935, + "<|11.42|>": 50936, + "<|11.44|>": 50937, + "<|11.46|>": 50938, + "<|11.48|>": 50939, + "<|11.50|>": 50940, + "<|11.52|>": 50941, + "<|11.54|>": 50942, + "<|11.56|>": 50943, + "<|11.58|>": 50944, + "<|11.60|>": 50945, + "<|11.62|>": 50946, + "<|11.64|>": 50947, + "<|11.66|>": 50948, + "<|11.68|>": 50949, + "<|11.70|>": 50950, + "<|11.72|>": 50951, + "<|11.74|>": 50952, + "<|11.76|>": 50953, + "<|11.78|>": 50954, + "<|11.80|>": 50955, + "<|11.82|>": 50956, + "<|11.84|>": 50957, + "<|11.86|>": 50958, + "<|11.88|>": 50959, + "<|11.90|>": 50960, + "<|11.92|>": 50961, + "<|11.94|>": 50962, + "<|11.96|>": 50963, + "<|11.98|>": 50964, + "<|12.00|>": 50965, + "<|12.02|>": 50966, + "<|12.04|>": 50967, + "<|12.06|>": 50968, + "<|12.08|>": 50969, + "<|12.10|>": 50970, + "<|12.12|>": 50971, + "<|12.14|>": 50972, + "<|12.16|>": 50973, + "<|12.18|>": 50974, + "<|12.20|>": 50975, + "<|12.22|>": 50976, + "<|12.24|>": 50977, + "<|12.26|>": 50978, + "<|12.28|>": 50979, + "<|12.30|>": 50980, + "<|12.32|>": 50981, + "<|12.34|>": 50982, + "<|12.36|>": 50983, + "<|12.38|>": 50984, + "<|12.40|>": 50985, + "<|12.42|>": 50986, + "<|12.44|>": 50987, + "<|12.46|>": 50988, + "<|12.48|>": 50989, + "<|12.50|>": 50990, + "<|12.52|>": 50991, + "<|12.54|>": 50992, + "<|12.56|>": 50993, + "<|12.58|>": 50994, + "<|12.60|>": 50995, + "<|12.62|>": 50996, + "<|12.64|>": 50997, + "<|12.66|>": 50998, + "<|12.68|>": 50999, + "<|12.70|>": 51000, + "<|12.72|>": 51001, + "<|12.74|>": 51002, + "<|12.76|>": 51003, + "<|12.78|>": 51004, + "<|12.80|>": 51005, + "<|12.82|>": 51006, + "<|12.84|>": 51007, + "<|12.86|>": 51008, + "<|12.88|>": 51009, + "<|12.90|>": 51010, + "<|12.92|>": 51011, + "<|12.94|>": 51012, + "<|12.96|>": 51013, + "<|12.98|>": 51014, + "<|13.00|>": 51015, + "<|13.02|>": 51016, + "<|13.04|>": 51017, + "<|13.06|>": 51018, + "<|13.08|>": 51019, + "<|13.10|>": 51020, + "<|13.12|>": 51021, + "<|13.14|>": 51022, + "<|13.16|>": 51023, + "<|13.18|>": 51024, + "<|13.20|>": 51025, + "<|13.22|>": 51026, + "<|13.24|>": 51027, + "<|13.26|>": 51028, + "<|13.28|>": 51029, + "<|13.30|>": 51030, + "<|13.32|>": 51031, + "<|13.34|>": 51032, + "<|13.36|>": 51033, + "<|13.38|>": 51034, + "<|13.40|>": 51035, + "<|13.42|>": 51036, + "<|13.44|>": 51037, + "<|13.46|>": 51038, + "<|13.48|>": 51039, + "<|13.50|>": 51040, + "<|13.52|>": 51041, + "<|13.54|>": 51042, + "<|13.56|>": 51043, + "<|13.58|>": 51044, + "<|13.60|>": 51045, + "<|13.62|>": 51046, + "<|13.64|>": 51047, + "<|13.66|>": 51048, + "<|13.68|>": 51049, + "<|13.70|>": 51050, + "<|13.72|>": 51051, + "<|13.74|>": 51052, + "<|13.76|>": 51053, + "<|13.78|>": 51054, + "<|13.80|>": 51055, + "<|13.82|>": 51056, + "<|13.84|>": 51057, + "<|13.86|>": 51058, + "<|13.88|>": 51059, + "<|13.90|>": 51060, + "<|13.92|>": 51061, + "<|13.94|>": 51062, + "<|13.96|>": 51063, + "<|13.98|>": 51064, + "<|14.00|>": 51065, + "<|14.02|>": 51066, + "<|14.04|>": 51067, + "<|14.06|>": 51068, + "<|14.08|>": 51069, + "<|14.10|>": 51070, + "<|14.12|>": 51071, + "<|14.14|>": 51072, + "<|14.16|>": 51073, + "<|14.18|>": 51074, + "<|14.20|>": 51075, + "<|14.22|>": 51076, + "<|14.24|>": 51077, + "<|14.26|>": 51078, + "<|14.28|>": 51079, + "<|14.30|>": 51080, + "<|14.32|>": 51081, + "<|14.34|>": 51082, + "<|14.36|>": 51083, + "<|14.38|>": 51084, + "<|14.40|>": 51085, + "<|14.42|>": 51086, + "<|14.44|>": 51087, + "<|14.46|>": 51088, + "<|14.48|>": 51089, + "<|14.50|>": 51090, + "<|14.52|>": 51091, + "<|14.54|>": 51092, + "<|14.56|>": 51093, + "<|14.58|>": 51094, + "<|14.60|>": 51095, + "<|14.62|>": 51096, + "<|14.64|>": 51097, + "<|14.66|>": 51098, + "<|14.68|>": 51099, + "<|14.70|>": 51100, + "<|14.72|>": 51101, + "<|14.74|>": 51102, + "<|14.76|>": 51103, + "<|14.78|>": 51104, + "<|14.80|>": 51105, + "<|14.82|>": 51106, + "<|14.84|>": 51107, + "<|14.86|>": 51108, + "<|14.88|>": 51109, + "<|14.90|>": 51110, + "<|14.92|>": 51111, + "<|14.94|>": 51112, + "<|14.96|>": 51113, + "<|14.98|>": 51114, + "<|15.00|>": 51115, + "<|15.02|>": 51116, + "<|15.04|>": 51117, + "<|15.06|>": 51118, + "<|15.08|>": 51119, + "<|15.10|>": 51120, + "<|15.12|>": 51121, + "<|15.14|>": 51122, + "<|15.16|>": 51123, + "<|15.18|>": 51124, + "<|15.20|>": 51125, + "<|15.22|>": 51126, + "<|15.24|>": 51127, + "<|15.26|>": 51128, + "<|15.28|>": 51129, + "<|15.30|>": 51130, + "<|15.32|>": 51131, + "<|15.34|>": 51132, + "<|15.36|>": 51133, + "<|15.38|>": 51134, + "<|15.40|>": 51135, + "<|15.42|>": 51136, + "<|15.44|>": 51137, + "<|15.46|>": 51138, + "<|15.48|>": 51139, + "<|15.50|>": 51140, + "<|15.52|>": 51141, + "<|15.54|>": 51142, + "<|15.56|>": 51143, + "<|15.58|>": 51144, + "<|15.60|>": 51145, + "<|15.62|>": 51146, + "<|15.64|>": 51147, + "<|15.66|>": 51148, + "<|15.68|>": 51149, + "<|15.70|>": 51150, + "<|15.72|>": 51151, + "<|15.74|>": 51152, + "<|15.76|>": 51153, + "<|15.78|>": 51154, + "<|15.80|>": 51155, + "<|15.82|>": 51156, + "<|15.84|>": 51157, + "<|15.86|>": 51158, + "<|15.88|>": 51159, + "<|15.90|>": 51160, + "<|15.92|>": 51161, + "<|15.94|>": 51162, + "<|15.96|>": 51163, + "<|15.98|>": 51164, + "<|16.00|>": 51165, + "<|16.02|>": 51166, + "<|16.04|>": 51167, + "<|16.06|>": 51168, + "<|16.08|>": 51169, + "<|16.10|>": 51170, + "<|16.12|>": 51171, + "<|16.14|>": 51172, + "<|16.16|>": 51173, + "<|16.18|>": 51174, + "<|16.20|>": 51175, + "<|16.22|>": 51176, + "<|16.24|>": 51177, + "<|16.26|>": 51178, + "<|16.28|>": 51179, + "<|16.30|>": 51180, + "<|16.32|>": 51181, + "<|16.34|>": 51182, + "<|16.36|>": 51183, + "<|16.38|>": 51184, + "<|16.40|>": 51185, + "<|16.42|>": 51186, + "<|16.44|>": 51187, + "<|16.46|>": 51188, + "<|16.48|>": 51189, + "<|16.50|>": 51190, + "<|16.52|>": 51191, + "<|16.54|>": 51192, + "<|16.56|>": 51193, + "<|16.58|>": 51194, + "<|16.60|>": 51195, + "<|16.62|>": 51196, + "<|16.64|>": 51197, + "<|16.66|>": 51198, + "<|16.68|>": 51199, + "<|16.70|>": 51200, + "<|16.72|>": 51201, + "<|16.74|>": 51202, + "<|16.76|>": 51203, + "<|16.78|>": 51204, + "<|16.80|>": 51205, + "<|16.82|>": 51206, + "<|16.84|>": 51207, + "<|16.86|>": 51208, + "<|16.88|>": 51209, + "<|16.90|>": 51210, + "<|16.92|>": 51211, + "<|16.94|>": 51212, + "<|16.96|>": 51213, + "<|16.98|>": 51214, + "<|17.00|>": 51215, + "<|17.02|>": 51216, + "<|17.04|>": 51217, + "<|17.06|>": 51218, + "<|17.08|>": 51219, + "<|17.10|>": 51220, + "<|17.12|>": 51221, + "<|17.14|>": 51222, + "<|17.16|>": 51223, + "<|17.18|>": 51224, + "<|17.20|>": 51225, + "<|17.22|>": 51226, + "<|17.24|>": 51227, + "<|17.26|>": 51228, + "<|17.28|>": 51229, + "<|17.30|>": 51230, + "<|17.32|>": 51231, + "<|17.34|>": 51232, + "<|17.36|>": 51233, + "<|17.38|>": 51234, + "<|17.40|>": 51235, + "<|17.42|>": 51236, + "<|17.44|>": 51237, + "<|17.46|>": 51238, + "<|17.48|>": 51239, + "<|17.50|>": 51240, + "<|17.52|>": 51241, + "<|17.54|>": 51242, + "<|17.56|>": 51243, + "<|17.58|>": 51244, + "<|17.60|>": 51245, + "<|17.62|>": 51246, + "<|17.64|>": 51247, + "<|17.66|>": 51248, + "<|17.68|>": 51249, + "<|17.70|>": 51250, + "<|17.72|>": 51251, + "<|17.74|>": 51252, + "<|17.76|>": 51253, + "<|17.78|>": 51254, + "<|17.80|>": 51255, + "<|17.82|>": 51256, + "<|17.84|>": 51257, + "<|17.86|>": 51258, + "<|17.88|>": 51259, + "<|17.90|>": 51260, + "<|17.92|>": 51261, + "<|17.94|>": 51262, + "<|17.96|>": 51263, + "<|17.98|>": 51264, + "<|18.00|>": 51265, + "<|18.02|>": 51266, + "<|18.04|>": 51267, + "<|18.06|>": 51268, + "<|18.08|>": 51269, + "<|18.10|>": 51270, + "<|18.12|>": 51271, + "<|18.14|>": 51272, + "<|18.16|>": 51273, + "<|18.18|>": 51274, + "<|18.20|>": 51275, + "<|18.22|>": 51276, + "<|18.24|>": 51277, + "<|18.26|>": 51278, + "<|18.28|>": 51279, + "<|18.30|>": 51280, + "<|18.32|>": 51281, + "<|18.34|>": 51282, + "<|18.36|>": 51283, + "<|18.38|>": 51284, + "<|18.40|>": 51285, + "<|18.42|>": 51286, + "<|18.44|>": 51287, + "<|18.46|>": 51288, + "<|18.48|>": 51289, + "<|18.50|>": 51290, + "<|18.52|>": 51291, + "<|18.54|>": 51292, + "<|18.56|>": 51293, + "<|18.58|>": 51294, + "<|18.60|>": 51295, + "<|18.62|>": 51296, + "<|18.64|>": 51297, + "<|18.66|>": 51298, + "<|18.68|>": 51299, + "<|18.70|>": 51300, + "<|18.72|>": 51301, + "<|18.74|>": 51302, + "<|18.76|>": 51303, + "<|18.78|>": 51304, + "<|18.80|>": 51305, + "<|18.82|>": 51306, + "<|18.84|>": 51307, + "<|18.86|>": 51308, + "<|18.88|>": 51309, + "<|18.90|>": 51310, + "<|18.92|>": 51311, + "<|18.94|>": 51312, + "<|18.96|>": 51313, + "<|18.98|>": 51314, + "<|19.00|>": 51315, + "<|19.02|>": 51316, + "<|19.04|>": 51317, + "<|19.06|>": 51318, + "<|19.08|>": 51319, + "<|19.10|>": 51320, + "<|19.12|>": 51321, + "<|19.14|>": 51322, + "<|19.16|>": 51323, + "<|19.18|>": 51324, + "<|19.20|>": 51325, + "<|19.22|>": 51326, + "<|19.24|>": 51327, + "<|19.26|>": 51328, + "<|19.28|>": 51329, + "<|19.30|>": 51330, + "<|19.32|>": 51331, + "<|19.34|>": 51332, + "<|19.36|>": 51333, + "<|19.38|>": 51334, + "<|19.40|>": 51335, + "<|19.42|>": 51336, + "<|19.44|>": 51337, + "<|19.46|>": 51338, + "<|19.48|>": 51339, + "<|19.50|>": 51340, + "<|19.52|>": 51341, + "<|19.54|>": 51342, + "<|19.56|>": 51343, + "<|19.58|>": 51344, + "<|19.60|>": 51345, + "<|19.62|>": 51346, + "<|19.64|>": 51347, + "<|19.66|>": 51348, + "<|19.68|>": 51349, + "<|19.70|>": 51350, + "<|19.72|>": 51351, + "<|19.74|>": 51352, + "<|19.76|>": 51353, + "<|19.78|>": 51354, + "<|19.80|>": 51355, + "<|19.82|>": 51356, + "<|19.84|>": 51357, + "<|19.86|>": 51358, + "<|19.88|>": 51359, + "<|19.90|>": 51360, + "<|19.92|>": 51361, + "<|19.94|>": 51362, + "<|19.96|>": 51363, + "<|19.98|>": 51364, + "<|2.00|>": 50465, + "<|2.02|>": 50466, + "<|2.04|>": 50467, + "<|2.06|>": 50468, + "<|2.08|>": 50469, + "<|2.10|>": 50470, + "<|2.12|>": 50471, + "<|2.14|>": 50472, + "<|2.16|>": 50473, + "<|2.18|>": 50474, + "<|2.20|>": 50475, + "<|2.22|>": 50476, + "<|2.24|>": 50477, + "<|2.26|>": 50478, + "<|2.28|>": 50479, + "<|2.30|>": 50480, + "<|2.32|>": 50481, + "<|2.34|>": 50482, + "<|2.36|>": 50483, + "<|2.38|>": 50484, + "<|2.40|>": 50485, + "<|2.42|>": 50486, + "<|2.44|>": 50487, + "<|2.46|>": 50488, + "<|2.48|>": 50489, + "<|2.50|>": 50490, + "<|2.52|>": 50491, + "<|2.54|>": 50492, + "<|2.56|>": 50493, + "<|2.58|>": 50494, + "<|2.60|>": 50495, + "<|2.62|>": 50496, + "<|2.64|>": 50497, + "<|2.66|>": 50498, + "<|2.68|>": 50499, + "<|2.70|>": 50500, + "<|2.72|>": 50501, + "<|2.74|>": 50502, + "<|2.76|>": 50503, + "<|2.78|>": 50504, + "<|2.80|>": 50505, + "<|2.82|>": 50506, + "<|2.84|>": 50507, + "<|2.86|>": 50508, + "<|2.88|>": 50509, + "<|2.90|>": 50510, + "<|2.92|>": 50511, + "<|2.94|>": 50512, + "<|2.96|>": 50513, + "<|2.98|>": 50514, + "<|20.00|>": 51365, + "<|20.02|>": 51366, + "<|20.04|>": 51367, + "<|20.06|>": 51368, + "<|20.08|>": 51369, + "<|20.10|>": 51370, + "<|20.12|>": 51371, + "<|20.14|>": 51372, + "<|20.16|>": 51373, + "<|20.18|>": 51374, + "<|20.20|>": 51375, + "<|20.22|>": 51376, + "<|20.24|>": 51377, + "<|20.26|>": 51378, + "<|20.28|>": 51379, + "<|20.30|>": 51380, + "<|20.32|>": 51381, + "<|20.34|>": 51382, + "<|20.36|>": 51383, + "<|20.38|>": 51384, + "<|20.40|>": 51385, + "<|20.42|>": 51386, + "<|20.44|>": 51387, + "<|20.46|>": 51388, + "<|20.48|>": 51389, + "<|20.50|>": 51390, + "<|20.52|>": 51391, + "<|20.54|>": 51392, + "<|20.56|>": 51393, + "<|20.58|>": 51394, + "<|20.60|>": 51395, + "<|20.62|>": 51396, + "<|20.64|>": 51397, + "<|20.66|>": 51398, + "<|20.68|>": 51399, + "<|20.70|>": 51400, + "<|20.72|>": 51401, + "<|20.74|>": 51402, + "<|20.76|>": 51403, + "<|20.78|>": 51404, + "<|20.80|>": 51405, + "<|20.82|>": 51406, + "<|20.84|>": 51407, + "<|20.86|>": 51408, + "<|20.88|>": 51409, + "<|20.90|>": 51410, + "<|20.92|>": 51411, + "<|20.94|>": 51412, + "<|20.96|>": 51413, + "<|20.98|>": 51414, + "<|21.00|>": 51415, + "<|21.02|>": 51416, + "<|21.04|>": 51417, + "<|21.06|>": 51418, + "<|21.08|>": 51419, + "<|21.10|>": 51420, + "<|21.12|>": 51421, + "<|21.14|>": 51422, + "<|21.16|>": 51423, + "<|21.18|>": 51424, + "<|21.20|>": 51425, + "<|21.22|>": 51426, + "<|21.24|>": 51427, + "<|21.26|>": 51428, + "<|21.28|>": 51429, + "<|21.30|>": 51430, + "<|21.32|>": 51431, + "<|21.34|>": 51432, + "<|21.36|>": 51433, + "<|21.38|>": 51434, + "<|21.40|>": 51435, + "<|21.42|>": 51436, + "<|21.44|>": 51437, + "<|21.46|>": 51438, + "<|21.48|>": 51439, + "<|21.50|>": 51440, + "<|21.52|>": 51441, + "<|21.54|>": 51442, + "<|21.56|>": 51443, + "<|21.58|>": 51444, + "<|21.60|>": 51445, + "<|21.62|>": 51446, + "<|21.64|>": 51447, + "<|21.66|>": 51448, + "<|21.68|>": 51449, + "<|21.70|>": 51450, + "<|21.72|>": 51451, + "<|21.74|>": 51452, + "<|21.76|>": 51453, + "<|21.78|>": 51454, + "<|21.80|>": 51455, + "<|21.82|>": 51456, + "<|21.84|>": 51457, + "<|21.86|>": 51458, + "<|21.88|>": 51459, + "<|21.90|>": 51460, + "<|21.92|>": 51461, + "<|21.94|>": 51462, + "<|21.96|>": 51463, + "<|21.98|>": 51464, + "<|22.00|>": 51465, + "<|22.02|>": 51466, + "<|22.04|>": 51467, + "<|22.06|>": 51468, + "<|22.08|>": 51469, + "<|22.10|>": 51470, + "<|22.12|>": 51471, + "<|22.14|>": 51472, + "<|22.16|>": 51473, + "<|22.18|>": 51474, + "<|22.20|>": 51475, + "<|22.22|>": 51476, + "<|22.24|>": 51477, + "<|22.26|>": 51478, + "<|22.28|>": 51479, + "<|22.30|>": 51480, + "<|22.32|>": 51481, + "<|22.34|>": 51482, + "<|22.36|>": 51483, + "<|22.38|>": 51484, + "<|22.40|>": 51485, + "<|22.42|>": 51486, + "<|22.44|>": 51487, + "<|22.46|>": 51488, + "<|22.48|>": 51489, + "<|22.50|>": 51490, + "<|22.52|>": 51491, + "<|22.54|>": 51492, + "<|22.56|>": 51493, + "<|22.58|>": 51494, + "<|22.60|>": 51495, + "<|22.62|>": 51496, + "<|22.64|>": 51497, + "<|22.66|>": 51498, + "<|22.68|>": 51499, + "<|22.70|>": 51500, + "<|22.72|>": 51501, + "<|22.74|>": 51502, + "<|22.76|>": 51503, + "<|22.78|>": 51504, + "<|22.80|>": 51505, + "<|22.82|>": 51506, + "<|22.84|>": 51507, + "<|22.86|>": 51508, + "<|22.88|>": 51509, + "<|22.90|>": 51510, + "<|22.92|>": 51511, + "<|22.94|>": 51512, + "<|22.96|>": 51513, + "<|22.98|>": 51514, + "<|23.00|>": 51515, + "<|23.02|>": 51516, + "<|23.04|>": 51517, + "<|23.06|>": 51518, + "<|23.08|>": 51519, + "<|23.10|>": 51520, + "<|23.12|>": 51521, + "<|23.14|>": 51522, + "<|23.16|>": 51523, + "<|23.18|>": 51524, + "<|23.20|>": 51525, + "<|23.22|>": 51526, + "<|23.24|>": 51527, + "<|23.26|>": 51528, + "<|23.28|>": 51529, + "<|23.30|>": 51530, + "<|23.32|>": 51531, + "<|23.34|>": 51532, + "<|23.36|>": 51533, + "<|23.38|>": 51534, + "<|23.40|>": 51535, + "<|23.42|>": 51536, + "<|23.44|>": 51537, + "<|23.46|>": 51538, + "<|23.48|>": 51539, + "<|23.50|>": 51540, + "<|23.52|>": 51541, + "<|23.54|>": 51542, + "<|23.56|>": 51543, + "<|23.58|>": 51544, + "<|23.60|>": 51545, + "<|23.62|>": 51546, + "<|23.64|>": 51547, + "<|23.66|>": 51548, + "<|23.68|>": 51549, + "<|23.70|>": 51550, + "<|23.72|>": 51551, + "<|23.74|>": 51552, + "<|23.76|>": 51553, + "<|23.78|>": 51554, + "<|23.80|>": 51555, + "<|23.82|>": 51556, + "<|23.84|>": 51557, + "<|23.86|>": 51558, + "<|23.88|>": 51559, + "<|23.90|>": 51560, + "<|23.92|>": 51561, + "<|23.94|>": 51562, + "<|23.96|>": 51563, + "<|23.98|>": 51564, + "<|24.00|>": 51565, + "<|24.02|>": 51566, + "<|24.04|>": 51567, + "<|24.06|>": 51568, + "<|24.08|>": 51569, + "<|24.10|>": 51570, + "<|24.12|>": 51571, + "<|24.14|>": 51572, + "<|24.16|>": 51573, + "<|24.18|>": 51574, + "<|24.20|>": 51575, + "<|24.22|>": 51576, + "<|24.24|>": 51577, + "<|24.26|>": 51578, + "<|24.28|>": 51579, + "<|24.30|>": 51580, + "<|24.32|>": 51581, + "<|24.34|>": 51582, + "<|24.36|>": 51583, + "<|24.38|>": 51584, + "<|24.40|>": 51585, + "<|24.42|>": 51586, + "<|24.44|>": 51587, + "<|24.46|>": 51588, + "<|24.48|>": 51589, + "<|24.50|>": 51590, + "<|24.52|>": 51591, + "<|24.54|>": 51592, + "<|24.56|>": 51593, + "<|24.58|>": 51594, + "<|24.60|>": 51595, + "<|24.62|>": 51596, + "<|24.64|>": 51597, + "<|24.66|>": 51598, + "<|24.68|>": 51599, + "<|24.70|>": 51600, + "<|24.72|>": 51601, + "<|24.74|>": 51602, + "<|24.76|>": 51603, + "<|24.78|>": 51604, + "<|24.80|>": 51605, + "<|24.82|>": 51606, + "<|24.84|>": 51607, + "<|24.86|>": 51608, + "<|24.88|>": 51609, + "<|24.90|>": 51610, + "<|24.92|>": 51611, + "<|24.94|>": 51612, + "<|24.96|>": 51613, + "<|24.98|>": 51614, + "<|25.00|>": 51615, + "<|25.02|>": 51616, + "<|25.04|>": 51617, + "<|25.06|>": 51618, + "<|25.08|>": 51619, + "<|25.10|>": 51620, + "<|25.12|>": 51621, + "<|25.14|>": 51622, + "<|25.16|>": 51623, + "<|25.18|>": 51624, + "<|25.20|>": 51625, + "<|25.22|>": 51626, + "<|25.24|>": 51627, + "<|25.26|>": 51628, + "<|25.28|>": 51629, + "<|25.30|>": 51630, + "<|25.32|>": 51631, + "<|25.34|>": 51632, + "<|25.36|>": 51633, + "<|25.38|>": 51634, + "<|25.40|>": 51635, + "<|25.42|>": 51636, + "<|25.44|>": 51637, + "<|25.46|>": 51638, + "<|25.48|>": 51639, + "<|25.50|>": 51640, + "<|25.52|>": 51641, + "<|25.54|>": 51642, + "<|25.56|>": 51643, + "<|25.58|>": 51644, + "<|25.60|>": 51645, + "<|25.62|>": 51646, + "<|25.64|>": 51647, + "<|25.66|>": 51648, + "<|25.68|>": 51649, + "<|25.70|>": 51650, + "<|25.72|>": 51651, + "<|25.74|>": 51652, + "<|25.76|>": 51653, + "<|25.78|>": 51654, + "<|25.80|>": 51655, + "<|25.82|>": 51656, + "<|25.84|>": 51657, + "<|25.86|>": 51658, + "<|25.88|>": 51659, + "<|25.90|>": 51660, + "<|25.92|>": 51661, + "<|25.94|>": 51662, + "<|25.96|>": 51663, + "<|25.98|>": 51664, + "<|26.00|>": 51665, + "<|26.02|>": 51666, + "<|26.04|>": 51667, + "<|26.06|>": 51668, + "<|26.08|>": 51669, + "<|26.10|>": 51670, + "<|26.12|>": 51671, + "<|26.14|>": 51672, + "<|26.16|>": 51673, + "<|26.18|>": 51674, + "<|26.20|>": 51675, + "<|26.22|>": 51676, + "<|26.24|>": 51677, + "<|26.26|>": 51678, + "<|26.28|>": 51679, + "<|26.30|>": 51680, + "<|26.32|>": 51681, + "<|26.34|>": 51682, + "<|26.36|>": 51683, + "<|26.38|>": 51684, + "<|26.40|>": 51685, + "<|26.42|>": 51686, + "<|26.44|>": 51687, + "<|26.46|>": 51688, + "<|26.48|>": 51689, + "<|26.50|>": 51690, + "<|26.52|>": 51691, + "<|26.54|>": 51692, + "<|26.56|>": 51693, + "<|26.58|>": 51694, + "<|26.60|>": 51695, + "<|26.62|>": 51696, + "<|26.64|>": 51697, + "<|26.66|>": 51698, + "<|26.68|>": 51699, + "<|26.70|>": 51700, + "<|26.72|>": 51701, + "<|26.74|>": 51702, + "<|26.76|>": 51703, + "<|26.78|>": 51704, + "<|26.80|>": 51705, + "<|26.82|>": 51706, + "<|26.84|>": 51707, + "<|26.86|>": 51708, + "<|26.88|>": 51709, + "<|26.90|>": 51710, + "<|26.92|>": 51711, + "<|26.94|>": 51712, + "<|26.96|>": 51713, + "<|26.98|>": 51714, + "<|27.00|>": 51715, + "<|27.02|>": 51716, + "<|27.04|>": 51717, + "<|27.06|>": 51718, + "<|27.08|>": 51719, + "<|27.10|>": 51720, + "<|27.12|>": 51721, + "<|27.14|>": 51722, + "<|27.16|>": 51723, + "<|27.18|>": 51724, + "<|27.20|>": 51725, + "<|27.22|>": 51726, + "<|27.24|>": 51727, + "<|27.26|>": 51728, + "<|27.28|>": 51729, + "<|27.30|>": 51730, + "<|27.32|>": 51731, + "<|27.34|>": 51732, + "<|27.36|>": 51733, + "<|27.38|>": 51734, + "<|27.40|>": 51735, + "<|27.42|>": 51736, + "<|27.44|>": 51737, + "<|27.46|>": 51738, + "<|27.48|>": 51739, + "<|27.50|>": 51740, + "<|27.52|>": 51741, + "<|27.54|>": 51742, + "<|27.56|>": 51743, + "<|27.58|>": 51744, + "<|27.60|>": 51745, + "<|27.62|>": 51746, + "<|27.64|>": 51747, + "<|27.66|>": 51748, + "<|27.68|>": 51749, + "<|27.70|>": 51750, + "<|27.72|>": 51751, + "<|27.74|>": 51752, + "<|27.76|>": 51753, + "<|27.78|>": 51754, + "<|27.80|>": 51755, + "<|27.82|>": 51756, + "<|27.84|>": 51757, + "<|27.86|>": 51758, + "<|27.88|>": 51759, + "<|27.90|>": 51760, + "<|27.92|>": 51761, + "<|27.94|>": 51762, + "<|27.96|>": 51763, + "<|27.98|>": 51764, + "<|28.00|>": 51765, + "<|28.02|>": 51766, + "<|28.04|>": 51767, + "<|28.06|>": 51768, + "<|28.08|>": 51769, + "<|28.10|>": 51770, + "<|28.12|>": 51771, + "<|28.14|>": 51772, + "<|28.16|>": 51773, + "<|28.18|>": 51774, + "<|28.20|>": 51775, + "<|28.22|>": 51776, + "<|28.24|>": 51777, + "<|28.26|>": 51778, + "<|28.28|>": 51779, + "<|28.30|>": 51780, + "<|28.32|>": 51781, + "<|28.34|>": 51782, + "<|28.36|>": 51783, + "<|28.38|>": 51784, + "<|28.40|>": 51785, + "<|28.42|>": 51786, + "<|28.44|>": 51787, + "<|28.46|>": 51788, + "<|28.48|>": 51789, + "<|28.50|>": 51790, + "<|28.52|>": 51791, + "<|28.54|>": 51792, + "<|28.56|>": 51793, + "<|28.58|>": 51794, + "<|28.60|>": 51795, + "<|28.62|>": 51796, + "<|28.64|>": 51797, + "<|28.66|>": 51798, + "<|28.68|>": 51799, + "<|28.70|>": 51800, + "<|28.72|>": 51801, + "<|28.74|>": 51802, + "<|28.76|>": 51803, + "<|28.78|>": 51804, + "<|28.80|>": 51805, + "<|28.82|>": 51806, + "<|28.84|>": 51807, + "<|28.86|>": 51808, + "<|28.88|>": 51809, + "<|28.90|>": 51810, + "<|28.92|>": 51811, + "<|28.94|>": 51812, + "<|28.96|>": 51813, + "<|28.98|>": 51814, + "<|29.00|>": 51815, + "<|29.02|>": 51816, + "<|29.04|>": 51817, + "<|29.06|>": 51818, + "<|29.08|>": 51819, + "<|29.10|>": 51820, + "<|29.12|>": 51821, + "<|29.14|>": 51822, + "<|29.16|>": 51823, + "<|29.18|>": 51824, + "<|29.20|>": 51825, + "<|29.22|>": 51826, + "<|29.24|>": 51827, + "<|29.26|>": 51828, + "<|29.28|>": 51829, + "<|29.30|>": 51830, + "<|29.32|>": 51831, + "<|29.34|>": 51832, + "<|29.36|>": 51833, + "<|29.38|>": 51834, + "<|29.40|>": 51835, + "<|29.42|>": 51836, + "<|29.44|>": 51837, + "<|29.46|>": 51838, + "<|29.48|>": 51839, + "<|29.50|>": 51840, + "<|29.52|>": 51841, + "<|29.54|>": 51842, + "<|29.56|>": 51843, + "<|29.58|>": 51844, + "<|29.60|>": 51845, + "<|29.62|>": 51846, + "<|29.64|>": 51847, + "<|29.66|>": 51848, + "<|29.68|>": 51849, + "<|29.70|>": 51850, + "<|29.72|>": 51851, + "<|29.74|>": 51852, + "<|29.76|>": 51853, + "<|29.78|>": 51854, + "<|29.80|>": 51855, + "<|29.82|>": 51856, + "<|29.84|>": 51857, + "<|29.86|>": 51858, + "<|29.88|>": 51859, + "<|29.90|>": 51860, + "<|29.92|>": 51861, + "<|29.94|>": 51862, + "<|29.96|>": 51863, + "<|29.98|>": 51864, + "<|3.00|>": 50515, + "<|3.02|>": 50516, + "<|3.04|>": 50517, + "<|3.06|>": 50518, + "<|3.08|>": 50519, + "<|3.10|>": 50520, + "<|3.12|>": 50521, + "<|3.14|>": 50522, + "<|3.16|>": 50523, + "<|3.18|>": 50524, + "<|3.20|>": 50525, + "<|3.22|>": 50526, + "<|3.24|>": 50527, + "<|3.26|>": 50528, + "<|3.28|>": 50529, + "<|3.30|>": 50530, + "<|3.32|>": 50531, + "<|3.34|>": 50532, + "<|3.36|>": 50533, + "<|3.38|>": 50534, + "<|3.40|>": 50535, + "<|3.42|>": 50536, + "<|3.44|>": 50537, + "<|3.46|>": 50538, + "<|3.48|>": 50539, + "<|3.50|>": 50540, + "<|3.52|>": 50541, + "<|3.54|>": 50542, + "<|3.56|>": 50543, + "<|3.58|>": 50544, + "<|3.60|>": 50545, + "<|3.62|>": 50546, + "<|3.64|>": 50547, + "<|3.66|>": 50548, + "<|3.68|>": 50549, + "<|3.70|>": 50550, + "<|3.72|>": 50551, + "<|3.74|>": 50552, + "<|3.76|>": 50553, + "<|3.78|>": 50554, + "<|3.80|>": 50555, + "<|3.82|>": 50556, + "<|3.84|>": 50557, + "<|3.86|>": 50558, + "<|3.88|>": 50559, + "<|3.90|>": 50560, + "<|3.92|>": 50561, + "<|3.94|>": 50562, + "<|3.96|>": 50563, + "<|3.98|>": 50564, + "<|30.00|>": 51865, + "<|4.00|>": 50565, + "<|4.02|>": 50566, + "<|4.04|>": 50567, + "<|4.06|>": 50568, + "<|4.08|>": 50569, + "<|4.10|>": 50570, + "<|4.12|>": 50571, + "<|4.14|>": 50572, + "<|4.16|>": 50573, + "<|4.18|>": 50574, + "<|4.20|>": 50575, + "<|4.22|>": 50576, + "<|4.24|>": 50577, + "<|4.26|>": 50578, + "<|4.28|>": 50579, + "<|4.30|>": 50580, + "<|4.32|>": 50581, + "<|4.34|>": 50582, + "<|4.36|>": 50583, + "<|4.38|>": 50584, + "<|4.40|>": 50585, + "<|4.42|>": 50586, + "<|4.44|>": 50587, + "<|4.46|>": 50588, + "<|4.48|>": 50589, + "<|4.50|>": 50590, + "<|4.52|>": 50591, + "<|4.54|>": 50592, + "<|4.56|>": 50593, + "<|4.58|>": 50594, + "<|4.60|>": 50595, + "<|4.62|>": 50596, + "<|4.64|>": 50597, + "<|4.66|>": 50598, + "<|4.68|>": 50599, + "<|4.70|>": 50600, + "<|4.72|>": 50601, + "<|4.74|>": 50602, + "<|4.76|>": 50603, + "<|4.78|>": 50604, + "<|4.80|>": 50605, + "<|4.82|>": 50606, + "<|4.84|>": 50607, + "<|4.86|>": 50608, + "<|4.88|>": 50609, + "<|4.90|>": 50610, + "<|4.92|>": 50611, + "<|4.94|>": 50612, + "<|4.96|>": 50613, + "<|4.98|>": 50614, + "<|5.00|>": 50615, + "<|5.02|>": 50616, + "<|5.04|>": 50617, + "<|5.06|>": 50618, + "<|5.08|>": 50619, + "<|5.10|>": 50620, + "<|5.12|>": 50621, + "<|5.14|>": 50622, + "<|5.16|>": 50623, + "<|5.18|>": 50624, + "<|5.20|>": 50625, + "<|5.22|>": 50626, + "<|5.24|>": 50627, + "<|5.26|>": 50628, + "<|5.28|>": 50629, + "<|5.30|>": 50630, + "<|5.32|>": 50631, + "<|5.34|>": 50632, + "<|5.36|>": 50633, + "<|5.38|>": 50634, + "<|5.40|>": 50635, + "<|5.42|>": 50636, + "<|5.44|>": 50637, + "<|5.46|>": 50638, + "<|5.48|>": 50639, + "<|5.50|>": 50640, + "<|5.52|>": 50641, + "<|5.54|>": 50642, + "<|5.56|>": 50643, + "<|5.58|>": 50644, + "<|5.60|>": 50645, + "<|5.62|>": 50646, + "<|5.64|>": 50647, + "<|5.66|>": 50648, + "<|5.68|>": 50649, + "<|5.70|>": 50650, + "<|5.72|>": 50651, + "<|5.74|>": 50652, + "<|5.76|>": 50653, + "<|5.78|>": 50654, + "<|5.80|>": 50655, + "<|5.82|>": 50656, + "<|5.84|>": 50657, + "<|5.86|>": 50658, + "<|5.88|>": 50659, + "<|5.90|>": 50660, + "<|5.92|>": 50661, + "<|5.94|>": 50662, + "<|5.96|>": 50663, + "<|5.98|>": 50664, + "<|6.00|>": 50665, + "<|6.02|>": 50666, + "<|6.04|>": 50667, + "<|6.06|>": 50668, + "<|6.08|>": 50669, + "<|6.10|>": 50670, + "<|6.12|>": 50671, + "<|6.14|>": 50672, + "<|6.16|>": 50673, + "<|6.18|>": 50674, + "<|6.20|>": 50675, + "<|6.22|>": 50676, + "<|6.24|>": 50677, + "<|6.26|>": 50678, + "<|6.28|>": 50679, + "<|6.30|>": 50680, + "<|6.32|>": 50681, + "<|6.34|>": 50682, + "<|6.36|>": 50683, + "<|6.38|>": 50684, + "<|6.40|>": 50685, + "<|6.42|>": 50686, + "<|6.44|>": 50687, + "<|6.46|>": 50688, + "<|6.48|>": 50689, + "<|6.50|>": 50690, + "<|6.52|>": 50691, + "<|6.54|>": 50692, + "<|6.56|>": 50693, + "<|6.58|>": 50694, + "<|6.60|>": 50695, + "<|6.62|>": 50696, + "<|6.64|>": 50697, + "<|6.66|>": 50698, + "<|6.68|>": 50699, + "<|6.70|>": 50700, + "<|6.72|>": 50701, + "<|6.74|>": 50702, + "<|6.76|>": 50703, + "<|6.78|>": 50704, + "<|6.80|>": 50705, + "<|6.82|>": 50706, + "<|6.84|>": 50707, + "<|6.86|>": 50708, + "<|6.88|>": 50709, + "<|6.90|>": 50710, + "<|6.92|>": 50711, + "<|6.94|>": 50712, + "<|6.96|>": 50713, + "<|6.98|>": 50714, + "<|7.00|>": 50715, + "<|7.02|>": 50716, + "<|7.04|>": 50717, + "<|7.06|>": 50718, + "<|7.08|>": 50719, + "<|7.10|>": 50720, + "<|7.12|>": 50721, + "<|7.14|>": 50722, + "<|7.16|>": 50723, + "<|7.18|>": 50724, + "<|7.20|>": 50725, + "<|7.22|>": 50726, + "<|7.24|>": 50727, + "<|7.26|>": 50728, + "<|7.28|>": 50729, + "<|7.30|>": 50730, + "<|7.32|>": 50731, + "<|7.34|>": 50732, + "<|7.36|>": 50733, + "<|7.38|>": 50734, + "<|7.40|>": 50735, + "<|7.42|>": 50736, + "<|7.44|>": 50737, + "<|7.46|>": 50738, + "<|7.48|>": 50739, + "<|7.50|>": 50740, + "<|7.52|>": 50741, + "<|7.54|>": 50742, + "<|7.56|>": 50743, + "<|7.58|>": 50744, + "<|7.60|>": 50745, + "<|7.62|>": 50746, + "<|7.64|>": 50747, + "<|7.66|>": 50748, + "<|7.68|>": 50749, + "<|7.70|>": 50750, + "<|7.72|>": 50751, + "<|7.74|>": 50752, + "<|7.76|>": 50753, + "<|7.78|>": 50754, + "<|7.80|>": 50755, + "<|7.82|>": 50756, + "<|7.84|>": 50757, + "<|7.86|>": 50758, + "<|7.88|>": 50759, + "<|7.90|>": 50760, + "<|7.92|>": 50761, + "<|7.94|>": 50762, + "<|7.96|>": 50763, + "<|7.98|>": 50764, + "<|8.00|>": 50765, + "<|8.02|>": 50766, + "<|8.04|>": 50767, + "<|8.06|>": 50768, + "<|8.08|>": 50769, + "<|8.10|>": 50770, + "<|8.12|>": 50771, + "<|8.14|>": 50772, + "<|8.16|>": 50773, + "<|8.18|>": 50774, + "<|8.20|>": 50775, + "<|8.22|>": 50776, + "<|8.24|>": 50777, + "<|8.26|>": 50778, + "<|8.28|>": 50779, + "<|8.30|>": 50780, + "<|8.32|>": 50781, + "<|8.34|>": 50782, + "<|8.36|>": 50783, + "<|8.38|>": 50784, + "<|8.40|>": 50785, + "<|8.42|>": 50786, + "<|8.44|>": 50787, + "<|8.46|>": 50788, + "<|8.48|>": 50789, + "<|8.50|>": 50790, + "<|8.52|>": 50791, + "<|8.54|>": 50792, + "<|8.56|>": 50793, + "<|8.58|>": 50794, + "<|8.60|>": 50795, + "<|8.62|>": 50796, + "<|8.64|>": 50797, + "<|8.66|>": 50798, + "<|8.68|>": 50799, + "<|8.70|>": 50800, + "<|8.72|>": 50801, + "<|8.74|>": 50802, + "<|8.76|>": 50803, + "<|8.78|>": 50804, + "<|8.80|>": 50805, + "<|8.82|>": 50806, + "<|8.84|>": 50807, + "<|8.86|>": 50808, + "<|8.88|>": 50809, + "<|8.90|>": 50810, + "<|8.92|>": 50811, + "<|8.94|>": 50812, + "<|8.96|>": 50813, + "<|8.98|>": 50814, + "<|9.00|>": 50815, + "<|9.02|>": 50816, + "<|9.04|>": 50817, + "<|9.06|>": 50818, + "<|9.08|>": 50819, + "<|9.10|>": 50820, + "<|9.12|>": 50821, + "<|9.14|>": 50822, + "<|9.16|>": 50823, + "<|9.18|>": 50824, + "<|9.20|>": 50825, + "<|9.22|>": 50826, + "<|9.24|>": 50827, + "<|9.26|>": 50828, + "<|9.28|>": 50829, + "<|9.30|>": 50830, + "<|9.32|>": 50831, + "<|9.34|>": 50832, + "<|9.36|>": 50833, + "<|9.38|>": 50834, + "<|9.40|>": 50835, + "<|9.42|>": 50836, + "<|9.44|>": 50837, + "<|9.46|>": 50838, + "<|9.48|>": 50839, + "<|9.50|>": 50840, + "<|9.52|>": 50841, + "<|9.54|>": 50842, + "<|9.56|>": 50843, + "<|9.58|>": 50844, + "<|9.60|>": 50845, + "<|9.62|>": 50846, + "<|9.64|>": 50847, + "<|9.66|>": 50848, + "<|9.68|>": 50849, + "<|9.70|>": 50850, + "<|9.72|>": 50851, + "<|9.74|>": 50852, + "<|9.76|>": 50853, + "<|9.78|>": 50854, + "<|9.80|>": 50855, + "<|9.82|>": 50856, + "<|9.84|>": 50857, + "<|9.86|>": 50858, + "<|9.88|>": 50859, + "<|9.90|>": 50860, + "<|9.92|>": 50861, + "<|9.94|>": 50862, + "<|9.96|>": 50863, + "<|9.98|>": 50864, + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|endoftext|>": 50257, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|nospeech|>": 50363, + "<|notimestamps|>": 50364, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|startoflm|>": 50361, + "<|startofprev|>": 50362, + "<|startoftranscript|>": 50258, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|transcribe|>": 50360, + "<|translate|>": 50359, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 +} diff --git a/distil-large-v3-init/config.json b/distil-large-v3-init/config.json new file mode 100644 index 0000000000000000000000000000000000000000..c805476141e577b2bc63717ae71d412d19877be3 --- /dev/null +++ b/distil-large-v3-init/config.json @@ -0,0 +1,50 @@ +{ + "_name_or_path": "GalaktischeGurke/swhisper_large_8552", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 1280, + "decoder_attention_heads": 20, + "decoder_ffn_dim": 5120, + "decoder_layerdrop": 0.0, + "decoder_layers": 2, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 20, + "encoder_ffn_dim": 5120, + "encoder_layerdrop": 0.0, + "encoder_layers": 32, + "eos_token_id": 50257, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 32, + "num_mel_bins": 128, + "pad_token_id": 50256, + "scale_embedding": false, + "torch_dtype": "float32", + "transformers_version": "4.41.2", + "use_cache": true, + "use_weighted_layer_sum": false, + "vocab_size": 51866 +} diff --git a/distil-large-v3-init/generation_config.json b/distil-large-v3-init/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..9f4dced2a5a6e8902cd9e1d0f695f6217e02debd --- /dev/null +++ b/distil-large-v3-init/generation_config.json @@ -0,0 +1,255 @@ +{ + "alignment_heads": [ + [ + 7, + 0 + ], + [ + 10, + 17 + ], + [ + 12, + 18 + ], + [ + 13, + 12 + ], + [ + 16, + 1 + ], + [ + 17, + 14 + ], + [ + 19, + 11 + ], + [ + 21, + 4 + ], + [ + 24, + 1 + ], + [ + 25, + 6 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 + }, + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50364, + "pad_token_id": 50257, + "prev_sot_token_id": 50362, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50359, + 50360, + 50361, + 50362, + 50363 + ], + "task_to_id": { + "transcribe": 50360, + "translate": 50359 + }, + "transformers_version": "4.41.2" +} diff --git a/distil-large-v3-init/merges.txt b/distil-large-v3-init/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..6038932a2a1f09a66991b1c2adae0d14066fa29e --- /dev/null +++ b/distil-large-v3-init/merges.txt @@ -0,0 +1,50001 @@ +#version: 0.2 +Ġ t +Ġ a +Ġt h +i n +e r +Ġ w +Ġ s +o u +Ġth e +r e +o n +a t +e n +Ġ c +i t +i s +Ġ b +n d +Ġ d +Ġ m +Ġ h +Ġ o +in g +e s +Ġ p +Ġt o +a n +Ġ f +o r +l l +Ġ I +Ġ l +Ġ y +a r +Ġ g +Ġy ou +e d +Ġa nd +Ġ in +Ġo f +a s +Ġ n +o m +i c +Ġth at +u s +e t +v e +a l +o w +l e +Ġ is +Ġ e +Ġ it +o t +' s +Ġb e +i on +Ġ T +Ġw h +Ġ A +en t +Ġ S +Ġ re +a y +Ġw e +Ġ on +er e +Ġh a +u t +a c +i d +i g +o s +k e +v er +i m +Ġ Ð +ĠT h +a m +a ll +Ġf or +e l +c h +r o +Ġth is +Ġs t +Ġ W +Ġ u +a d +ou t +i r +l d +c t +Ġ k +i f +Ġg o +. . +Ð ¾ +it h +l y +h t +q u +Ġ - +Ġd o +Ġ j +Ġha ve +Ġ B +Ġa n +Ġw ith +Ġa re +Ġ r +Ġd e +Ġs e +Ġs o +Ġ v +s t +i ll +u r +Ġl i +Ġ M +es t +o d +all y +' t +us t +Ġa s +Ġ C +c e +Ġm e +Ð ° +Ð µ +i l +Ġ H +Ġw as +t er +t h +Ġc an +an t +Ġc om +ou r +ig ht +Ġ Y +at ion +ĠA nd +o l +Ġs h +Ñ Ĥ +o p +s e +Ġn ot +ĠS o +Ġn e +u n +Ġa b +Ġli ke +Ġa t +Ġ D +i e +Ġh e +Ġc on +Ġc h +o re +Ġa l +Ġo r +Ġ qu +Ġ O +om e +r a +u l +Ġ N +p p +Ġyou r +ou ld +Ġ P +Ġf r +g e +er s +' re +Ð ¸ +Ġthe y +Ġwh at +us e +Ġa ll +ĠTh e +Ġ L +es s +e m +Ġk n +Ġj ust +ar t +Ġp ro +ver y +u m +Ġl o +Ġ ì +Ġm y +o k +Ġe x +a b +Ġth ere +Ġb ut +Ġkn ow +Ġs u +Ġ G +Ñ ģ +Ġ E +Ġm a +о Ð +Ġ en +Ġab out +ĠI t +is t +Ġw or +r i +in d +Ġon e +at e +a nd +in k +Ġl e +or t +' m +Ġ F +ic h +Ñ Ģ +id e +Ġg et +Ġ out +.. . +Ġw ill +ã ģ +i ve +Ð ½ +Ġfr om +a in +ĠW e +Ġu p +p e +re s +c a +Ġ R +Ġ if +Ġp l +Ġd on +ac k +Ġ 1 +Ġ " +Ġt r +Ġ us +ĠW h +it y +Ġ J +ĠY ou +Ġh ere +h er +Ġs ome +ou g +a k +ar d +Ġgo ing +Ġu n +m ent +Ġth ink +Ġp e +en d +Ġ ( +ca use +Ġt im +as t +à © +Ġ our +Ġw ant +am e +i es +Ġ ë +u d +in e +Ġre ally +Ġt e +Ġse e +c i +Ġb y +s o +u re +os e +Ġ [ +a re +Ġm ore +a h +on e +c k +op le +а Ð +Ġthe n +Ġth ing +Ġthe m +v en +ou nd +os t +on g +e ct +Ġr ight +a g +Ġin t +Ġpe ople +Ġwh en +ou s +p l +Ġtim e +Ġ im +Ġwh o +Ġ 2 +a p +Ġbe cause +h ing +Ġn o +ic e +Ġlo ok +Ġh as +Ġw ould +Ġh ow +ac t +Ġf e +n t +oug h +Ġp r +ĠB ut +Ġs ay +Ñ ĥ +Ġn ow +Ġm an +Ġ very +Ġwor k +i z +Ġ K +i v +it t +Ġa r +e p +Ġc l +Ġwh ich +Ġc o +an s +' ve +Ġs a +f f +' ll +Ġan y +Ġa ct +Ġy e +b er +ac h +a ge +p er +Ġal so +f er +Ġthe se +Ġa d +е Ð +th er +ac e +ic k +a ke +re at +i re +u e +Ġa g +Ġ U +u ch +ion s +r y +0 0 +n a +Ġd id +Ġqu e +Ġha d +Ġe very +ĠH e +Ġl a +Ġw ay +Ġs p +b le +ĠTh is +as s +Ġthe ir +it e +Ġne ed +Ġp art +Ġw ere +Ġb ack +i p +ow n +om et +b e +as e +Ġma ke +ir st +i a +en ce +an g +an k +Ġg ot +Ġp re +Ġcon t +Ġo ther +p t +ĠTh at +o g +Ġgo od +Ġint o +al k +Ġbe en +Ġa m +Ġo ver +u ally +Ġ â +ì Ŀ +Ġu nd +h e +w ay +Ġg r +Ñ Į +Ġd if +Ġp er +Ñ ı +ĠI n +Ġt w +on d +ar s +in t +or m +Ġl ot +Ġwh ere +Ġ à +Ġ V +Ġs omet +Ð » +en s +Ġg u +Ġa c +u g +Ñ ĭ +Ä ± +Ġf irst +re e +Ġh is +itt le +Ġim p +Ġm o +a v +Ġl ittle +ĠWh at +Ġm uch +Ġ z +Ġ ê +ab le +ĠÐ ¿ +Ġp o +Ġcom p +n e +Ġd is +Ġl et +an ce +Ġh er +Ġthing s +Ġst art +ul t +Ġa pp +Ġre s +Ġf o +Ġc ould +Ġin ter +Ġth ose +Ġd es +Ġwe ll +Ġtw o +Ġk ind +x t +res s +el y +à ¤ +Ġb r +Ġth r +ĠÐ ² +Ġ i +is h +Ġdif fer +Ġ ro +ĠS t +Ġsomet hing +Ġt ake +Ġb o +y s +Ġsh e +Ġt alk +l o +Ñ ĩ +Ġe ven +Ð º +ã Ģ +ĠÐ ½ +Ġb u +ĠI f +Ġd own +ĠC h +ad e +ation s +Ġ use +or d +Ġof f +Ġact ually +Ġs pe +d u +at ed +at er +os s +n ing +à ¼ +Ġdo es +Ġ Ñģ +Ġne w +Ġb et +ve l +c ess +p le +Ġha pp +t ing +on na +Ġ es +Ġd ay +Ġon ly +ig n +k ay +s el +ent s +ou nt +i ld +i le +Ġs c +Ġh im +Ġag ain +v ing +Ġg onna +Ġcom m +Ġh el +ot her +Ġ ke +ic al +Ġ 3 +Ġe l +Ġthr ough +Ġcom e +ar k +d ay +i er +à ³ +Ġth an +ĠThe y +Ġm ay +Ġs er +í ķ +Ġc all +Ġdiffer ent +Ġsh ould +ĠTh ere +ar y +ĠN ow +ã Ĥ +th ing +w e +or y +f ter +Ġp ut +or s +i al +ë ĭ +Ġund er +Ġin c +ĠY e +u b +f orm +Ġv ide +à ¸ +ver s +Ġfe el +à ¡ +od y +f t +f ore +Ġe m +g et +Ġsa id +it ion +Ġre c +i ous +at ch +Ġtr y +Ġhel p +Ġsh ow +Ð ´ +Ġb it +u ll +Ð ² +ÑĤ о +g r +Ġpl ay +if e +a il +ĠYe ah +Ġqu est +Ġman y +Ġp ers +Ġg reat +Ã Ń +Ġ est +n g +Ġâ Ļ +t y +l a +ĠO h +Ġ × +à ® +ĠB e +ad y +Ġm ost +ct ion +ĠN o +Ġdo ing +Ġbe ing +Ġto o +c es +Ġb l +. " +Ġre m +is s +on s +> > +r u +w n +on t +i b +e ll +Ġs m +ot h +u al +Ġ >> +Ġp h +l es +o c +f ul +Ġse c +is e +Ġad d +ig h +er t +Ġs ame +â Ģ +Ġme an +Ġf ind +e k +Ġen d +- - +Ð ¼ +Ġst ill +a z +Ġ ' +Ġm in +Ġye ars +ur n +Ġar ound +sel f +Ġw r +b s +oug ht +ĠâĻ ª +Ġf l +an ge +Ġa fter +Ġpo int +m er +v ed +Ġl ong +o y +ä ¸ +Ġc r +way s +Ġs y +Ġt ra +Ġ2 0 +a ve +Ġch e +Ġ ent +Ġbe fore +p h +Ġat t +i an +i ly +Ġpers on +Ġb ig +Ġs ch +Ġre al +Ġne xt +Ġlo ve +Ġvide o +ĠL et +Ġf in +Ġma k +i ble +Ġto day +er m +ĠA l +ow er +an n +i x +Ġp ar +Ġst ud +à ¶ +Ġimp ort +t e +Ġg ive +v es +Ġd ie +Ġde c +Ġte ll +ĠÐ º +Ñģ ÑĤ +Ġwh y +ic ally +ic t +re d +Ġb as +Ġsu re +Ġbe l +at ing +Ġt ak +Ġs et +Ġl ife +Ġdid n +Ø § +o b +u nd +at h +Ġo p +ĠÐ ¾ +a it +Ġwor ld +Ġsu pp +i o +Ġc our +ĠÐ ¸ +w ard +е н +Ġal ways +u p +Ġha nd +ĠH ow +ci al +Ġcon s +Ġ Ñ +Ġin d +Ġ 4 +ĠA s +Ġf un +j ect +Ġimport ant +Ġs ur +e w +at es +Ġ 5 +Ġd i +Ġm ade +Ġin s +Ġas k +Ġ et +Ġn um +Ġc ar +ĠO kay +Ġs im +i k +Ġl ast +ĠG o +Ġm us +Ġre l +ul ar +´ ì +ĠWe ll +pe ct +ĠTh ank +Ġth ree +à £ +ã ĥ +Ġin v +Ġg en +l ic +Ġhapp en +ë Ĭ +i en +e ver +оР² +Ġst r +ĠA ll +Ġin st +Ġâ Ģ +Ġde f +Ġs l +Ġm ight +un g +Ġye ar +Ġo wn +Ġke ep +b ody +d er +Ġ ÑĤ +ĠÐ ´ +Ġan other +Ġm od +Ġe v +Ġgu ys +Ġab le +ã o +qu e +id ent +ĠY es +Ġit s +Ġpl ace +Ġpro du +ar n +ĠÐ ¼ +Ġre p +Ġex per +Ġf am +it ies +if ic +Ġh igh +i ed +o ol +ie w +е ÑĤ +re n +Ġdon e +Ġ ... +ëĬ Ķ +st em +ĠS e +Ġbet ter +c ome +Ġd el +Ġt y +Ġu m +Ġh o +ĠA n +Ġm on +ing s +Ġs k +Ġo b +c om +ble m +op e +st and +' d +ment s +Ġe le +ĠI s +Ġd a +Ġre g +le ase +i ke +al s +iz e +ê ° +Ġc are +Ġne ver +ìĿ ´ +es e +Ġm et +ol og +ĠWh en +u ck +е ÑĢ +Ġ é +Ġd at +à § +Ġex am +il ity +Ġd et +c ri +Ġus ed +ĠD o +Ġtr ans +e g +t en +Ñ İ +c us +Ġsec ond +Ġb est +Ġh ard +Ġ ide +Ġpro blem +ê ³ +ĠU n +Ñ ħ +Ġ Î +Ġw atch +ĠS h +at ter +Ġpre t +Ġd er +Ġcour se +Å Ł +at ive +ic s +Ġquest ion +ut e +ì Ĺ +ĠF or +at her +Ġc ol +i end +Ġ í +Ġ Z +Ġdoes n +ar ch +Ġinter est +Ġp ol +Ġc or +i ence +Ġp res +Ġe ach +Ġsy stem +Ġf act +i el +ab ly +Ġ er +Ġr un +Ġì Ŀ +Ġto p +n er +Ġth ought +Ġe as +i ent +Ġc re +Ñ Ī +Ġcomm un +y e +re ady +ll ow +Ġevery thing +om m +Ġm ed +ļ Ķ +Ġc ount +it s +Ġcom pl +h ip +Ù Ħ +o ok +Ġto get +Ġtoget her +am p +Ġg ame +Ġal ready +аР» +Ġcall ed +al e +Å Ĥ +ĠM y +Ġunder stand +Ġd r +Ġm om +it ed +оР» +Ġus ing +z y +Ġnum ber +ãĢ ģ +c ed +Ġc le +н о +ëĭ ¤ +in ce +Ġlook ing +Ġpret ty +Ġpro b +ĠS he +Ġ ve +Ġget ting +Ġwe ek +Ġe ff +u ff +a ir +u es +er n +Ġ Q +ou p +ent ion +Ġs ide +оР¼ +Ġfor m +Ġb us +Ġas s +Ġ ed +as on +we en +âĢ ¦ +Ġt urn +Ġc ur +Ġco ll +Ġd ire +ĠG od +Ġ1 0 +Ġe qu +ĠÐ ± +Ġop en +Ġsu ch +ir d +аРº +Ġe ar +Ä Ļ +g an +Ġpart ic +Ġfr iend +Ġex p +Ġex t +Ġh ome +Ġw ater +ĠO n +ÑĤ ÑĮ +or k +Ġп ÑĢ +Ġmo ve +n ess +en se +h o +Ġch ar +c o +in s +Ġb oth +Ġ1 9 +Ġg ra +Ġbet ween +á » +Ġì ķ +as h +ĠR e +a i +al th +u res +em ber +Ġa v +Ġ ver +à ª +one y +Ġth ank +Ġmay be +u c +im e +ê³ ł +Ġa way +Ġn ame +ou se +Ġac c +Ġmus ic +Ġch ange +Ġp ass +g er +Ġbu ild +Ġv al +in ess +an y +Ġfe w +´ ë +t a +Ġl ist +à ¥ +Ġo ld +Ġì ŀ +Ġs ort +Ġme m +Ġc a +ce pt +Ġgen er +Ġye ah +Ġwh ile +Ġany thing +r ic +gr am +Ġe in +c y +ur ing +ĠD e +Ġp ower +Ġcom ing +Ġwor d +Ġ- - +Ġbel ie +Ġf ound +t o +Ð ¿ +Ġme ans +Ġin form +Ġ Ø +Ġ Ñĩ +Ġsm all +00 0 +Ġc ame +Ġ íķ +w h +Ġwork ing +Ġexam ple +Ġp os +Ġde p +ê ² +ä º +ot e +Ġde m +ì § +t s +Ġv ar +a ut +Ġt ri +ch n +Ġhe ad +Ġwho le +× Ļ +z e +Ġtry ing +Ġt em +Ġc ou +et s +Ġ 6 +Ġf il +vel op +Ġc ase +à ¯ +Ġprob ably +Ġo kay +Ġpl an +Ġs it +Ġsch ool +ĠTh en +¸ ë +m e +Ġpro cess +Ġf ar +Ġre ad +Ġp oss +Ġb re +Ġso l +ic ht +Ġsupp ort +ĠT o +ert ain +Ġstart ed +Ġc ap +Ġle ft +Ġdat a +Ġtim es +еР» +Ġwant ed +а н +Ġtalk ing +Ġis t +Ġha ving +um p +Ġcont in +Ġsu b +ĠÐ · +p r +ëĭ Ī +in a +Å ¼ +Ġc reat +od e +× ķ +æ ĺ +! ! +Ġt erm +is m +оР´ +ĠBe cause +Ġw ent +id er +Ġpro v +Ġch ild +Ġd en +Ġl ight +b r +³ о +o h +Ġbo ok +Ġ Ù +ut ion +ĠJ ust +en e +Ġf our +Ġv is +ê° Ģ +Ġh ope +Ġmak ing +ĠL e +ì ķ +Ġo pp +a u +Ġm oney +Ġpro gram +à ¨ +Ġst and +I N +Ġs ign +Ġle arn +à ł +ĠD on +Ġte am +Ġн а +l ud +Ġre st +ic es +æ ľ +Ġ ÑĢ +Ġa ut +Ġle ad +ation al +d e +g y +Ġn ice +Ġd as +Ġd ist +Ġh um +ĠO ne +æ Ī +Ġcom es +Ġj o +Ġc ent +Ġex pl +Ġm ark +re en +l ed +g in +ì ļĶ +Ġle vel +Ġcon f +us h +Ġde velop +Ġt est +en g +v ious +at ure +еР¼ +re t +Ġj e +Ġst uff +Ġcl ass +ow s +Ġê · +Ġs i +Ġl es +ro p +ç ļ +Ġp or +Ġw ar +ìĹ IJ +Ġevery one +Ġg e +Ġche ck +ot t +Ġs ing +Ġar t +Ġfo llow +Ġ20 1 +ĠF r +a is +ì ĸ +Î ± +å ° +Ġà ł +im es +Ġre t +Ġch ang +Ġp ub +Ġin f +Ġte chn +ad a +iv es +Ġbe h +æĺ ¯ +Ġlook s +ãĢ Ĥ +Ð · +ĠWh y +çļ Ħ +Ġen ough +Ġb ra +it ch +ä » +Ġad v +Ð ± +Ġwith out +w er +mer ic +d en +Ġcompl et +Ġide a +ter s +o ck +Ġdef in +Ġe ver +Ġg l +Ġon ce +Ġbr ing +Ġsay ing +Ġan s +Ġhe ar +n ect +Ġl ess +g o +re am +ad o +ì ŀ +Ġm ind +ent e +Ġf ull +Ġb ad +Ġw om +Ġsome one +Ġd u +Ġw on +Ġcont ro +ort un +Ġhe alth +Ġch o +ĠA r +Ġcon c +Ġinform ation +Ġst op +at t +at ely +ä ½ +Ġgr oup +Ġ Ñĥ +Ġqu ite +Ġres p +E R +ug ht +ê ¸ +m an +iz ed +ĠB r +Ġrem ember +Ġfam ily +Ġbus iness +a w +Ġspe c +Ġa u +ĠO r +Ä ħ +Ġse en +Ġl ar +Ġ 7 +g g +b ers +Ġd ra +Ġmon th +Ġsay s +Ġis s +Ġli ve +Ġl ine +Ġmom ent +Ġex c +el s +Ġs ound +Ġco ol +Ġlo c +Ġc ertain +Ġd ri +о ÑĤ +am es +Ġm ust +n y +и ÑĤ +Ġk id +Ġinc lud +ìĿ Ħ +at or +Ä Ł +h a +are d +Ġse em +Ð ¹ +ì Ħ +Ġel se +Ġì ł +ir l +Ġ 8 +Ġv o +Ġquest ions +in es +e e +æĪ ij +ü r +ĠA meric +Ġst ory +Ġser v +ver n +ag es +l and +ĠâĢ ĵ +er a +ĠC an +Ġp op +et her +Ġn a +Ġor der +Ġmak es +Ġs ince +c on +ct or +Ġth ough +Ġprodu ct +л и +Ġle g +Ġme et +al f +Ñģ Ñı +un ch +it er +o ve +×ķ × +i et +аР¼ +it al +Ġsu per +l ing +Ġp ay +Ġpar a +Ġj ob +ĠH ere +Ġs w +k s +pt ion +m a +Ġbelie ve +¬ ë +Ġw ait +оР¹ +Ġun t +Ġqu ick +h r +ĠÑ į +ĠP ro +Ġm en +à ¹ +Ġday s +Ġgo es +Ġspe ak +ĠA t +em ent +Ġm iss +Ġa w +Ġdes ign +Ġpro ject +о ÑĢ +i j +ant s +at s +ĠCh r +Ġ 9 +Ġc ut +Ġre qu +Ġн е +ĠN ot +as ter +Ġm ill +Ġpartic ular +Ġp ie +Ġstud ents +Ġf ive +ou n +ĠN e +Ġg i +Ġp as +Ġf ree +ĠS p +l ich +Ġpro f +Ġen g +Ġpr ot +ĠL ike +os ed +Ġcon nect +a pp +Ġë § +it ing +Ġb lo +Ġl os +ist s +Ġexper ience +re nt +Ġst ay +Ġfo od +t on +ru ct +Ġh ist +v iew +in ing +m ost +i vers +b o +ãģ Ħ +ĠT r +g en +Ġp lease +Ġcommun ity +Ġc e +A N +n o +Ġb ody +Ġh our +Ġ vers +á º +c er +Ġê ° +Ġre ason +ĠR ight +Ġl ater +Ï Ħ +Ġh ouse +Ġ X +оР½ +Ġst ate +f ic +å ¤ +Å Ľ +iel d +Ġp ri +Ġp ast +Ġw alk +olog y +er ing +an na +Ġt er +Ġho ld +Ġor gan +b en +Î ¿ +ó n +Ġeff ect +Ġyour self +Ġpl us +a j +and o +ur al +Ġro om +le ct +ê² Į +? " +s ide +Ġbe come +Ñ Ĩ +Ġ  +o od +Ġcon st +Ġn ight +ut es +Ð ¶ +Ġbre ak +Ġp ain +Ġst ep +ire d +Ġnot hing +Ġunt il +Ñ ĸ +аР² +Ù Ĭ +Ġd uring +ì§ Ģ +l ess +o ll +н Ñĭ +Î ¹ +f ect +i ver +ı Ħ +ith er +y ing +Ġbe gin +×Ļ × +iv id +Ġà § +Ġs al +Ġt a +Ġp ot +Ġ $ +Ġm ar +Ġcle ar +Ġf ace +Ġgr ow +Ġ * +Ġins ide +Ġfriend s +Ġle ave +en n +Ġeas y +Ġare a +al ity +ou d +Ġe at +Ù Ĩ +Ġp ur +or n +Ġsa w +Ġans wer +Ġfr ont +Ġbe aut +¼ ë +Ġm atter +Ġs on +ĠN ew +Ġres ult +id es +ch e +Ġf ut +p s +Ġfo cus +Ġinterest ing +å ¥ +Ġa p +" . +Ġcre ate +о Ñģ +Ġp ress +r oss +Ġp ick +l ine +Ġto ok +ĠM ay +r ow +Ġ ich +ĺ ë +Ġre f +Ġm or +r act +are nt +A R +Ġex act +Ġsp ace +w ork +н и +Ġb ir +Ġde v +Ð ³ +Ġto ld +Ġpub lic +ci ally +Ġv iew +ĠHe y +m ed +ll o +c c +Ġf ac +Ġcou ple +Ġhe art +l er +Ġre ady +Ġal most +ar ing +Ġh alf +ĠM e +av or +i que +Ġchar ac +Ġpr act +O N +an e +Ġ il +н а +Ġv i +l ish +he ad +Ġle ast +Ġbas ically +as ed +r ight +Ġy et +Ġtak ing +Ġcount ry +Ġw in +Ġis n +Ġposs ible +Ġc am +Ġinc re +Ġp at +Ġw anna +Ġcons ider +Ġab s +Ġwith in +Ġhum an +Ġthink ing +Ġo h +¡ ľ +Ġqu i +as es +Ġ 0 +it ely +ä¸ į +Ġk ill +Ġm il +Ġinv est +is ter +Ġsu c +ion al +el f +Ġwh ether +Ġcontro l +Ġagain st +ot s +ëĭĪ ëĭ¤ +i or +Ġpres ent +Ġ ا +Ġwatch ing +u be +er v +Ġn icht +Ġgo vern +ĠTh ese +Ġ : +u it +ug h +Ġwork s +o o +Ġw ir +Ġa ir +ĠT e +аР· +is ion +wh ere +Ġto t +j oy +ì ĭ +Ġv ol +ĠÐ µ +Ġcl ose +ĠA d +Ñ ī +in ed +Ġun a +Ġê· ¸ë +° ë +or ry +Ġb ro +Ġfil m +if t +2 0 +Ġty pe +Ġhappen ed +ĠA m +Ġg irl +ĠA re +ward s +Ġp our +Ġcol or +el t +а Ñģ +Ġs ense +le x +ĠW ith +us s +ri b +Ġre se +Ġn orm +Ġfut ure +Ġde al +end ing +e y +Ġ x +er o +ĠC l +u k +Ġwhat ever +sel ves +Ġyou ng +ì Ĭ +ĠM ar +ĠChr ist +Ġgu ess +Ġper form +Ġen er +r on +Ġh it +Ġw ond +Ġdire ct +ĠE very +Ġof ten +Ġf a +Ġal ong +Ġcl ick +ĠL ook +Ġsit u +Ġhapp y +e ad +Ġag o +Ġen c +Ġmy self +Ġco ver +оР± +Ġm id +Ġc ost +Ġt en +ĠS ch +Ġex pect +Ġwas n +Ġstr ong +if ul +Ġopp ortun +in al +y le +Ġsh are +Ġtr ue +Ġapp ro +Ġch all +Ġmin utes +Ġch ann +Ġë Ĥ +Î µ +l i +Ġm ess +or ies +pe cially +Ġwr ong +Ġy es +Ġì Ĺ +ir on +Ġall ow +Ġsu bs +Ġf ore +Ġf ight +Ġso cial +Ġc ra +an a +Ġa ff +Ġ ess +Ġway s +Ġsh ort +Ġf all +Ġla w +ĠWh o +Ġen joy +Ġc al +Ġac cess +f e +Ġn on +Ġac ross +er y +vious ly +ĠE x +id ed +Ġl ink +ĠP r +Ġterm s +ac es +Ġl and +az ing +Ġ1 5 +Ġm ult +Ġspe cial +å Ģ +iv ing +ìĿ Ģ +Ġty p +Ġst e +Ġ Ä +Ġfor ward +å ı +Ġf re +å¥ ½ +Ġrese arch +௠į +а ÑĤ +Ġma in +Ġrec ord +Ġh u +Ġdefin itely +Ġe ither +Ġlist en +Ġke y +Ġmark et +ĠÑĩ ÑĤо +iz ation +Ġvide os +Ġgu y +Ġf ig +Ġst ra +ĠP l +ull y +am os +Ġm ention +Ġs ong +Ġinter n +r al +ur s +Ġh on +Ġval ue +Ġb ar +c le +оР¶ +Ä ĩ +ľ ë +Ġz u +и м +ä½ ł +Ġsing le +Ġa uch +cus s +Ġget s +Ġsomet imes +å ¾ +am b +m m +c ing +Ġper fect +ĠB l +out h +ì ł +Ġs ci +p ar +Ġre d +Ġp ost +Ġm ot +Ġele ct +ĠE u +it ive +ĠS ome +Ġdes cri +Ġcur rent +é s +Ġt re +ĠE n +Ġm it +E N +Ī ë +i um +Ġhe ard +Ġsim ple +l ar +Ġevery body +il ar +Ġneed s +Ġdif fic +ĠGo od +um ent +c ent +Ġo per +а ÑĤÑĮ +et y +Ġbl ack +Ġgi ven +on es +Ġwe l +é Ģ +Ġìķ Ħ +Ġ3 0 +A T +Ġst at +ou ch +ĠM r +а ÑĢ +Ġsh o +Ġcon d +× Ķ +m y +Ġchild ren +Ġe u +еР´ +ìķ Ħ +ter n +Ġu h +Ġh ar +Ġpr om +Ġp ull +re w +Ġcomp any +Ġbeaut iful +ust om +íķ ĺ +к и +Ġst re +Ġam azing +ri es +Ġsuc cess +Ġm ach +n ot +Ġdis cuss +Ġn at +¦ ¬ +Ġun e +Ġdiffic ult +Ġr is +Î ½ +Ġc amp +Ġbu y +ä¸ Ģ +Ġma g +p o +ĠY our +Ġbeh ind +ic a +ı n +ĠO K +Ġl ang +Ġwom en +Ġen v +Ġre ce +Ġchann el +i ally +u le +Ġ1 2 +th ers +Ġb ott +Ġrep ort +ent ly +f ully +T he +Ġs ent +Ġev ent +Ġener gy +l t +Ġword s +ar r +d le +Ġa head +ard s +Ø ± +äº Ĩ +Ġto ol +con om +е Ñģ +Ġexact ly +Ġf avor +Ġl ow +Ġpro per +Ġìŀ Ī +Ġ ! +Ġrel ations +Ġm as +Ġkid s +Ġent ire +ud e +Ù ħ +ĠWh ere +Ġon es +Ġc ity +ol ut +Ġs ix +ab ility +ö r +il i +ĠE s +Ġhapp ens +ain s +Ġmod el +Ġp ict +Ġes pecially +Ġ1 00 +k t +Ġso on +b y +ro du +Ġan n +Ġsubs cri +ĠQ u +Ġav ail +im ent +Ġv oc +k a +Ġ2 00 +ap er +ĠI nd +Ġì § +h or +į ° +j or +и л +Ġs qu +A U +ar ning +ĠÐ ³ +I S +ĠÐ » +еР¹ +y es +å ħ +ĠÐ Ĵ +Ġor ig +оР³Ð¾ +Ġask ed +il t +оР³ +Ġcontin ue +Ġì ĺ +r am +Ġo thers +E S +oh n +Ġl ay +Ġbas ed +Ġp u +Ġapp e +Ġl im +Ġpro p +Ģ ë +m in +Ġh ot +ĠL a +Ġf ast +Ġprot ect +Ġam ount +Ġa qu +Ġf und +Ġc ustom +Ġc ult +Ġhand s +Ġha ven +Ġa ud +Ġout side +ĠA fter +ap s +Ġan im +pl oy +Ġh at +ĠF irst +Ġt reat +Ġe p +Ġm ater +Ġbuild ing +Ġë ° +å IJ +ìĦ ľ +z a +ught er +ĠP e +ne y +et er +at ic +Ġed uc +ê¸ ° +Ġmo v +ĵ ¤ +am a +r ation +Ġs n +Ù Ī +Ġs um +Ġph ot +ĠÐ Ŀ +Ġ . +æľ ī +Ġfin ish +itt ing +å ® +Ġlar ge +Ġì ĸ +Ġwh ite +ar a +Ġma is +ĠH i +Ġd am +Ġا ÙĦ +Ġbo x +ĠHe llo +Ġs le +Ġo pt +ri ed +¥ ¼ +Ġact iv +Ġn ão +ĠC om +Ġplay ing +T h +Ġavail able +Ġp ort +å Ī +ĠA h +Ġl as +Ġear ly +Ġwond er +± ° +Ġ1 8 +c ul +Ġfun ction +Ġmor ning +ll e +i ents +u x +Ġc ir +it ions +Ġde ep +Ġpol it +y or +m p +ak ing +Į ë +ĠM an +Ġmill ion +Ġ / +Ġind ivid +Ġp an +Ġgovern ment +Ġwr ite +ĠT od +am ent +Ġ Ï +Ġw ind +ĠE ng +ch en +W h +ì ľ +Ġ ident +ãģ § +v ent +ur ch +Ġh y +Ġy a +Ġtr ad +Ġrelations hip +à º +Ġd ou +O R +Ġs we +Ġne g +in ation +Ġte xt +i pp +Ġf ine +á s +ĠD r +ĠC ome +Ġmonth s +, " +ен и +Ġhour s +Ġp od +ir t +Ġinv ol +Ġcoll ect +Ġau f +Ġp a +Ġhist ory +m b +if y +Ġ ? +Ġbel ow +as ure +ab y +Ġlang u +Ġan t +Ġcom b +at o +Ġex ist +Ġë ĭ +Ġtak es +Ġcharac ter +a ff +Ġf ield +Ġe conom +ie f +Ġpie ce +å ľ +Ġre ach +Ġê ² +on y +Ġmater ial +Ġd ig +Ġph ys +Ġimp ro +Ġsim ilar +I C +Ġn et +y n +Ġpos ition +à Ł +Ġb ene +re ad +Ġle arning +um e +Ġcle an +ÑĤо ÑĢ +Ġco ok +Ġseem s +Ġo l +ĠU S +ĠJ es +Ġ à® +ent ial +ivers ity +ac y +Ġ Ñı +olut ely +re ct +ĠP lease +Ġrep res +Ġt ouch +m en +ĠÐ ° +i ón +ĠThank s +Ġan g +Ġma jor +Ġit self +ill s +" , +i ans +Ġsc reen +Ġh or +Ġknow n +Ġenv iron +Ġfin al +Ġfig ure +ĠT w +Ġe yes +Ġim ag +Ġsee ing +Ġha ir +re m +Ġapp lic +end s +p ut +Ġnew s +Ġcomplet ely +ugh s +Ġkn ew +if ied +ĠJ e +ĠD id +Ġsitu ation +Ġf lo +m s +Ġph one +Ġb all +d o +Ġp arent +Ġs orry +ur y +и н +ip s +аР´ +Ġinst ead +Ġhu ge +Ġt u +Ġ ãģ +ĠG r +Ġdet ail +ĠÐ Ł +Ġindivid ual +Ġf ire +Ġcl os +Ġw er +un e +Ġrun ning +Ġcon vers +Ġrec omm +Ġcom o +Ġsome body +ĠJ ohn +ĠìĿ ´ +ĠO ur +pl es +ĠP h +Ġan al +Ġ5 0 +Ġof fer +Ġ < +ition al +g est +Ġv ous +l et +ic y +Ġfeel ing +L E +r os +Ġth ird +оРº +Ġser ies +ĠAn y +is ed +o ld +Ġdra w +Ġserv ice +Ġcan not +b al +ãģ Ĩ +Ġli ving +ı m +Ġdiffer ence +Ġopportun ity +Ġne ar +or th +k en +Ġloc al +Ø ª +ĠC on +Ġob ject +Ġd ass +ãģ Ļ +IJ × +Ġquick ly +ra ph +Ġiss ues +éĢ Ļ +ĠAmeric an +Ġpre p +en ces +Ġprof ess +ll ing +o f +Ġfo ot +b re +Ġus ually +Ġgener al +d a +an ces +Ġd est +Ġo cc +Ġmem bers +Ġd ans +Ġequ al +z t +Ġbe com +Ġmo ving +Ġspec ific +ÃŃ a +Ġf ur +Ġne cess +Ġcomm on +Ġatt ack +ĠÑį ÑĤо +ĠTod ay +Ġun s +ĠG u +i od +Ġacc ount +Ġgra nd +Ġs elf +ĠE l +Ġt ast +Ġcont ent +Ġc u +Ħ ë +ĠMay be +ĠJes us +ore s +p ort +© ´ +Ġg ives +Ġnorm al +ÑĢ Ñĥ +Ġimp act +ä r +Ġd ies +Ġl ab +s h +i os +ĠP res +ĠU nd +ĠO f +Ġfin ally +Ġdo ll +Ġvoc ê +p ly +ĠA g +Ġtak en +Ġgr ound +f ort +Ġg ave +ĠIn st +Ġl ost +Ġwork ed +Ġl iter +Ġiss ue +Ġind ust +Ġret urn +Ġhappen ing +Ġwant s +и в +Ġproblem s +ĠC ar +Ŀ ¼ +ĠAl so +Ġs ize +Ġob viously +ĠS u +ĠS c +Ġrecomm end +our ces +ast ic +.. .. +Ġm i +l ier +ĠE ven +ci a +Ġh ur +v a +Ġm ass +Ġwould n +un t +ck s +Ġf elt +os p +l ight +ол ÑĮ +n ie +Ġbott om +Ġб Ñĭ +ore d +is on +Ġgr ad +Ġum a +Ġv a +Ġì Ĥ +ress ion +ul ation +I D +id ence +Ġb ur +Ġg one +l u +ìĸ ´ì +Ġre du +Ġj a +ìĿ ĺ +it a +Ġso ft +Ġç a +ic o +er al +à ± +a f +Ġpoint s +g u +Ġd é +ap t +a x +ĠAl right +Ġcam era +Ġa ch +Ġп о +Ġse ver +5 0 +Ġs ie +Ï ģ +Ġm al +Ġcomp ut +Ġmid dle +Ġcould n +m ing +Ġì ĭ +ĠH is +Ġg ames +Ġint rodu +Ġc ell +p or +Ġsle ep +Ġë ³ +id ing +Ġ ou +Ġde g +Ġdr ink +Ġenviron ment +ĠUn ited +Ġtalk ed +Ġcho ose +Ġj our +e ge +ĠM in +Ġint e +Ġr ather +Ġoff ic +к а +ac hing +Ġmention ed +Ġf ill +Ġtr ack +Ġn ie +Ġ ut +Ġв Ñĭ +ib ility +Ġv ac +Ġr ad +Ġp ack +Ġs end +ĠD as +ĠA b +Ġeng ine +ãģ Ĺ +Ġcomp et +à ´ +Ġв Ñģ +Ġdo or +Ġlong er +å° į +Ġlangu age +Ġext ra +pl ay +Ġwe bs +um b +ro om +ç ľ +Ġbegin ning +Ġre fer +A M +n en +ig her +f ace +er c +Ġfor get +Ġcom ment +еРº +л Ñı +r or +ż e +ĠG e +Ġd ark +Ġany one +ant e +g es +ìĬ µ +Ñ ij +b ed +j e +ruct ure +Ġpr im +id a +è ¦ +ãģ ¾ +Ġm ix +Ġstart ing +ĠìĿ ´ë +Ġprov ide +act ion +Ġm other +Ġper iod +Ġst ick +ĠYou T +Ġtechn ology +ê ¹ +Ġb ed +Ġg iving +Ġexpl ain +z en +im ate +Ġrepres ent +lo ad +ĠHow ever +Ġli ves +ut h +ir it +og n +Ġli k +Ġresp ons +Ġpri v +Ġto m +ç ão +i am +Ġexc ited +Ġc ard +gr ound +Ġ× Ķ +Ġs ens +Ġte ach +id o +h od +Ġep is +Ġwel come +Ġw all +ä ¹ +Ġch ance +h en +ĠÐ ¡ +ĠÄ ij +Ġsim ply +ĠÑĤ ак +r ing +j a +b ook +Ġsever al +st e +Ġcreat ed +Ġо ÑĤ +Ġp ush += = +Ġh igher +u f +our ce +o ke +Ġon line +Ġre le +Ġt on +ens ive +Ġfavor ite +Ñĥ д +Ġlook ed +Ġv on +âĢ Ķ +Ġf ür +Ġbut ton +Ġb ill +Ġchang es +! " +Ġsl ow +ab les +Ġde ath +and s +ate g +Ġthem selves +ãģ £ +Ġc op +ãģ ® +Ġperson al +ug hing +Ġ1 1 +g ar +ad es +Ġneed ed +Ġstud y +ag ed +ÑģÑĤ в +in o +Ġdis c +k i +Ġadd ress +× ¨ +itt en +es ome +ĠÐ ¶ +¤ ë +ur a +Ġm u +Ġcontin u +f or +Ġm atch +ãģ ¦ +Ġstra ight +IJ ë +n ers +Ġdo g +Ġde b +ĠC O +Ġo s +g ed +c ame +Ġcor rect +et te +ĠSe e +Ġinclud ing +ĠEu ro +est er +Ġj ump +ĠWh ich +Ġк ак +s on +y a +IN G +Ġe ine +os h +en cy +Ġmed ia +Ġsubscri be +é Ĥ +Ġpr in +Ġha b +ĠP er +ĠW as +Ġp age +it or +Ġto wards +Ġtri ed +en ge +art ment +Ġvar i +Ġp aper +Ġpict ure +Ġvers ion +Ġbr ought +w are +ĠSt ates +Ġs ich +led ge +Ġper cent +Ġgo d +e c +ĠC omm +Ġdec ided +Ġse lect +íķ ľ +) . +ur ity +Ġfur ther +Ġcom ments +le ment +Ġd ream +Ġcent er +m i +Ġc as +Ġwom an +Ġro ad +Ġf ail +Ġbe came +l us +il ities +ãģ ¯ +ĠC o +Ġman age +Ġrec ogn +Ġact ion +Ġbene f +Ġear lier +× ľ +Ġspe ed +Ġm ent +Ġso ci +Ġsho ot +u i +Ġà ¤ +Ġapp ly +v o +x im +Ġca use +Ġsur pr +Ġha ben +D I +Ġf ather +ĠNe xt +ĠYouT ube +Ġc ode +Ġro le +g ress +Ġg reen +et t +Ġbu ilt +Ġfl ow +Ġb ase +Ġtra ining +Ġr ound +ĠW ill +Ġp ath +ĠR o +Ġinterest ed +ìĸ ´ +Ġres pect +Ġchang ed +iss ion +Ġstud ent +og raph +Ġappro ach +Ġshow s +å° ± +Ġt ar +Ġcr it +Ġg lo +ìĬµ ëĭĪëĭ¤ +Ġde ad +ĠPres ident +Ġth ous +Ġb al +st er +e x +Ġabs olutely +Ġm ic +Ġpract ice +Ġqu ality +Ġl ower +og le +Ġse par +b all +med i +Ġre view +ĠA pp +Ġo k +âĢ ĭ +Ġexper ien +Ġconc ern +ent ially +m ore +ĠJ o +ap an +ĠI ch +ist ic +Ġf air +Ġwebs ite +i res +ĠB y +Ġtra vel +Ġris k +Ġm ir +Ġbo ard +Ġs en +Ġparent s +ĠW ow +Ġfe ed +Ġsa ve +Ġser ious +Ġin it +E L +und red +A S +Ġv an +or row +Ġwor th +Ġse arch +Ġ1 6 +Ġpart s +ÑģÑĤ ÑĮ +Ġcomp an +Ġmov ie +Ġmet hod +Ġ ill +Ġw ish +d y +Ġit em +Ġmin us +ang er +Ġvo ice +Ġsk in +Ġare as +Ġe ight +Ġo bs +Ġ , +аР¹ +Ġo il +Ġc y +Ġb aby +s y +Ġem ploy +ĠK e +Ġpl aces +Ġf ix +Ġest á +ãģ ¨ +iv ed +Ġlot s +Ġse ason +un k +al t +Ġt able +ĠÐ ¢ +à ¢ +Ġatt ention +ãģ ª +ĠH er +Ġa ge +Ġp ra +b ack +c il +Ġnet work +r it +Ġdo c +Ġare n +ig en +Ġë Ħ +Ø ¯ +end er +Ġtot al +Ġpr ice +Ġcra zy +ì ļ +i qu +th ough +Y ou +Ù ĩ +ãĤ ĵ +Ï ħ +Ġs at +Ġb i +ĠD ie +Ġsh a +Ġthank s +u h +Ġst age +аР¶ +ĠF l +Ġle av +Ġbo y +Ġa f +ö n +ĠG et +Ġac cept +Ġent er +Ġt ur +Ġsi ÄĻ +Ġhon est +ãĢ Į +Ġs am +Ġre pl +g ing +Ġdevelop ment +ĠA ct +or a +ãĢ į +ä ¾ +Ġknow s +Ġim age +ĠL ord +и ÑĤÑĮ +Ġweek s +Ġse x +Ķ ë +Ġh undred +Ġsound s +Ġlearn ed +Ġb ud +ĠÑģ ÑĤ +Ġinc red +â Ļ +Ġn os +Ġd rop +Ġb en +ĠÐ ĺ +Ġsa fe +at a +Ġf uck +so ci +Ġd an +Ġcr oss +1 0 +m o +ver t +Ġ1 7 +z ie +å ķ +Ġd om +ĠB o +Ġset ting +Ġinvol ved +ar ily +Ġs ind +Ġs us +Ġwor ry +et h +ê¹ Į +Ġs un +Ġh ier +Ġcertain ly +ou l +ort s +ĠE r +ĠU m +Ġca us +Ġnat ural +Ġà ¼ +Ġc ry +ĠSe c +Ġs om +æ ² +Ġeduc ation +а еÑĤ +Ġmult ip +Ġal one +Ġe ye +Ġr ate +ĠEuro pe +è ¿ +m on +Ġf it +iz ing +pp ed +Ġpress ure +th e +и Ñģ +it es +ĠA f +re ci +att le +Ġserv ices +ĠGo ogle +é ģ +Ġc ases +Ġdri ve +Ġchall eng +u z +ĠM o +ìľ ¼ë +v al +åĢ ĭ +Ġf ol +Ġì ¢ +ff ic +Ġr a +Ġs in +Ġbl ue +Ġaff ect +Ġm is +Ġsh ot +Ġо б +as ing +Ġsign ific +ĠC he +Ġê ³ +Ġpos itive +ì £ +Ġw ie +Ġ4 0 +ord ing +ĠFr om +ê µ +Ġbra nd +Ġtr ust +Ġp le +Ġcommun ic +Ġwe ight +Ġask ing +Ġta x +ĠJ apan +ãģ Ł +Ġíķ ĺ +op s +Ï Ĥ +Ġput ting +Ġro ll +ĠAmeric a +re g +ŀ × +at ures +ens ion +ĠS omet +Ġorig inal +p ing +Ġ ÅŁ +Ġproduct s +ãĥ ¼ +Ġcont act +ol ution +Ġgo al +Ġp ow +Ġperform ance +Ġblo od +at ors +ĠM ich +Ġtem per +ĠD an +Ġsu gg +ÑĤ и +Ġim m +Ġoff ice +Ġar ri +Ġcom fort +ĠÐ Ķ +Ġsugg est +Ġpl at +Ĥ ĺ +1 9 +Ġo m +Ġse ven +ĠC ent +ill e +Ġcon cept +Ġb ag +ü n +ive ly +Ġd iv +m os +æ ī +Ġfeel s +Ġ ir +ak es +le y +Ġpartic ip +ĠÐ ļ +f l +j ust +Ġs il +ĠP a +A L +Ġgot ta +Ġf an +Ġchall enge +Ġcompan ies +ĠPe ople +< / +оР· +Ġp en +is ing +Ġa us +em ic +am ente +Ġmeet ing +Ġvis it +Ġsupp osed +ĠOn ce +д а +or ld +3 0 +U S +Ġvi ol +Ġnot ice +ĠÐ IJ +h an +p ed +ì ĺ +h h +Ġtr ou +Ġmin ute +ĠP ar +r ay +Ġt it +Ġup d +Ġblo ck +Ġd ue +a ur +Ġfor ce +Ġcou n +ĠâĢ Ķ +Ġtyp es +ë § +Ġl ate +Ġimpro ve +Ġì Ī +Ġa ve +ul es +c l +am ed +Ġaw esome +ĠO k +Ġv ot +Ġmach ine +Ġfollow ing +Ġme asure +ac ión +u el +ch an +Ġab ility +Ġt out +Ġide as +Ġincre ase +Ġen s +ĠÑ ħ +Ġë ª +Ġj est +ĠÐ ľ +Ġtr uth +h y +Ġsp end +Ġsci ence +et e +Ġ1 4 +Ġepis ode +Ġal g +end ed +ãģ ĵ +ar i +ll a +Ġf ish +Ġthr ow +m it +å ¹ +Ġcir c +ĠC al +Ġt our +Ġdire ction +Ġno ch +еР² +é n +Ġcount ries +Ġindust ry +in y +ic le +Ġfe et +I t +Ġlead ers +et zt +Ġst aff +ç Ķ +Ġpur p +it o +? ! +ĠJ a +Ġst ore +et ic +ĠCh ina +Ġë IJ +ĠUn iversity +Ġ # +Ġdec ision +Ġach ie +Ġact ual +u ly +Ġse ction +Ġresult s +Ġst ar +Ġm ist +ib ly +Ġd ad +Ġnum bers +om b +è ª +ĠS pe +Ġm er +Ġ2 5 +Ġaut om +Ġco ld +Ø ¨ +Ħ ľ +ag er +ĠT V +ĠS ie +ĠH ave +Ġ że +ug g +ain ed +Ġup on +Ġlo g +Ġcomplet e +Ġbra in +ag ing +ĠM us +o ver +Ġeas ier +Ġinte gr +Ġm ás +Ġturn ed +Ġst ri +iv al +Ġhe av +ĠT H +Ġwr iting +ÑĢ а +åľ ¨ +å¤ § +Ġcl a +d ing +Ġtell ing +и д +ic ated +ä» ¥ +ac ht +ãģ Ĥ +h aps +ĠSt e +Ġres ources +Ġd ann +Ġpart y +Ġ ÏĦ +Ġsa f +is es +t re +o int +Ġknow ledge +Ġany more +Ġf ly +Ġma int +и к +å ij +Ġse ll +la ughs +ĠY ork +Ġb ien +Ġo d +Ġeas ily +Ġr ange +Ġo ption +Ø ¹ +Ġapp reci +oc r +Ġdet erm +Ñ Ħ +Ġmean ing +Ġs ite +Ġdis co +ver age +Ġl ose +Ġinst all +Ġem ot +ant ly +ä t +Ġt amb +ĠW ar +ĠH o +ĠG en +em y +еР· +ĠP ol +Ġmess age +Ġnot e +Į Ģ +Ġh et +Ġim medi +Ġav o +Ġbook s +Ġbecom es +res h +è s +as ons +Ġhim self +ut s +Ġj u +Ġaw are +Ġrequ ire +Ġsystem s +ĠH ar +Ġam ong +Ġh om +Ġb reat +Ġwe ird +Ġë ¶ +Î » +Ø © +if f +or ing +Ġplat form +ĠT ake +Ġhelp s +ut ions +Ġfor g +Ġl uck +ĠEng lish +Ġwe b +Ġneg ative +Ġt ut +Ġab ove +ng th +Ġê ±° +Ġst ories +Ġlo ad +Ġback ground +Ġsw itch +g a +Ġprin ci +Ġfin an +Ġvar ious +Ġl Ãł +Ġkind s +ain ing +Ġn ature +ĠÐ ŀ +c z +Ġpr ay +Ġg ar +ir m +Ġ & +Ġì ĥ +n s +ĠR ep +ĠF e +Ġre v +ra nd +Ġlike ly +Ġunderstand ing +ı r +ãģ ĭ +Ġf al +Ġ1 3 +ÑĨ и +Ġsu d +Ġbr other +Ġpl ant +Ġthrough out +w ise +p re +Ġcult ure +ĠÙ ħ +Ġwonder ful +Ġa h +pp er +Ġso ld +Ġstart s +Ġwr itten +Î ¯ +n i +Ġ×Ķ × +ĠD av +Ġu lt +Ġar m +Ġro ck +Ġwe ar +ë į° +an o +ra g +Ġsqu are +ан и +c ast +le br +Ġliter ally +Ġplay ed +Ġhe at +on se +r ict +Ġins p +id s +Ġpop ular +ë ıĦ +Ġc atch +Ġm ount +Ġj ud +Wh at +еР± +R A +a ud +к о +Ġsur face +Ġcon v +Ġpie ces +O h +æ Ģ +Ġst yle +pp ing +Ġread ing +Ġconvers ation +оР¿ +ä¾ Ĩ +ĠAg ain +Ġb ank +t ime +Ñĥ ÑĤ +er ve +ĠG reat +Ġcap t +аР± +ay s +ĠF in +ific ation +Ġä r +а Ñİ +Ġe gg +ĠW el +Ġtar get +ul a +ch es +an i +O O +ic ious +n ow +Ï ĥ +bo ard +Ġg ente +Ġd ro +ĠE t +Ġd in +Ġc os +Ġaut hor +Ø ³ +Ġo ch +Ġem ail +Ġsp irit +Ġs itting +m as +Ġstre ngth +Ġbig ger +ĠW ait +Ġm at +Ġpol ice +ress ed +Ġwait ing +is hing +Ġdoll ars +ho od +s s +Ġimag ine +in i +Ġm es +Ġdis e +id ge +ab or +Ġp et +Ġh op +ĠK ing +Ġcomput er +Ġgo ld +Ġn u +Ġf ing +) , +Ġsec urity +ru ction +Ġsol ution +e xt +Ġp atter +ick en +ure d +Ġstand ard +ìĭ ľ +Ġdou ble +Î · +Ġw ife +is a +Ġdirect ly +ac ed +Ġb unch +Ġ ¿ +ал ÑĮ +Ġreg ard +Ġswe et +Ġun ique +ĠâĻ « +Ġtra in +ĠG erm +Î ¬ +R E +Ġbeh av +Ġpre d +ì ĥ +s et +Ġdescri ption +é e +Ġc at +å ĵ +Ġcoll ege +ì Ľ +Ġapplic ation +ĠS en +as k +Ġc red +ub lic +Ġmultip le +Ġn i +Ġpres ident +Ġadd ed +Ġro b +Ġaqu i +Ġh osp +Ġtool s +Ġg un +Ġbas ic +Ġl ines +Ġst ructure +ĠR uss +Ġtot ally +Ġbig gest +Ġe en +Ġar g +Ġ× ľ +Ġp ark +ĠD es +Ġce lebr +Ġf ait +ен ÑĮ +Ġsu ff +Ġreg ular +¨ ë +Ġm ine +ĠK ore +Ġpre vious +Ġp i +Ġse g +Ġpol icy +Ġк о +ĠTr ump +Ġvac c +ó w +ĠS y +и Ñĩ +it ter +Ġpolit ical +r as +Ġal s +ел ÑĮ +Ġsha pe +an z +Ġon to +Ġar ch +Ġam b +ag ram +ĠS m +ct ions +Ġjo in +b or +å Ľ +Ġfr ame +ł ĩ +Ġcho ice +௠ģ +Ñĥ Ñİ +ĠC or +ĠS w +I T +Ġt end +ĠE ar +Ġto r +Ġev ents +Ġcla im +ĠD a +ĠM ark +Ġgroup s +Ġe ating +ĠW orld +Ġrec ently +Ġtast e +Ġsur v +à ¤ +Ġsk ills +Ġи з +itt ed +Ġsh op +ìĿ ´ì +Ġest ab +ĠëĤ ĺ +Ġsecond s +ĠTh ose +ĠE nt +Ġì Ħ +ers on +Ġto wn +Ġc and +Ġopt ions +Ġ ing +V ID +Ġenc our +Ġr é +âĻ ª +Ġent re +Ġmove ment +ĠB en +Ġbir th +Ġwh e +Ġh ang +ĠE m +ig e +ro ll +Ġun f +ì Ĥ +Ġr id +Ġsp read +Ġh ost +al d +ĠE d +Ġcons um +U N +Ġop in +it ar +ĠM ed +Ġsub ject +Ġp al +Ġcar ry +Ġag ree +ĠWh ile +Ġcare er +Ġsci ent +Ġsud den +Ġf ile +z i +Ġex cept +é º +Ġpot ential +ĠAn other +Ġcomp lex +ĠS im +end o +Ġr ais +Ġphys ical +Ġd ate +ak er +ĠC ol +Ġpower ful +Ġmem ber +ra p +Ġsp ot +Ġs ource +Ġf em +é m +Ġem p +j i +iet y +Ġinf lu +Ġd ry +Ġlo ck +Ġz ero +ĠU h +Ġr out +Ġpor que +Ġ2 4 +Ġt al +Ġfol ks +Ġla unch +Ġcomp on +ĠWel come +Ġk ann +ä n +ĠÑį ÑĤ +e es +ĠÙ Ī +Ġany way +Ġaud ience +äº º +Ġsl ight +on a +Ġu r +Ġrel ig +Ġext rem +ı z +ĠM a +Î ¼ +Ġà ¶ +Ġall ows +Ġf at +ĠF ace +Ġn ational +Ġinter view +ĠM c +é t +Ġc ute +el a +Ġsec ret +ĠW est +ĠD ep +Ġex erc +Ġhist or +Ġpri or +Ġ6 0 +av a +ac her +y ond +ĠH a +Ġest e +in ary +ĠN orth +on st +Ġsm art +am s +ал и +Ġd ar +er ed +Ġfun ny +ĠO b +ĠBl ack +Ġrel ated +ĠB u +Ġsome where +ĠR em +n es +ment e +ĠRe ally +Ġcreat ing +Ġfam il +Ġsoci ety +Ġg el +Ġtrans form +Ä ĥ +Ġinclud e +Ġh ol +l ike +k o +air s +Ġп од +Ġpers pect +Ġb es +Ġparticular ly +Ġshow ing +ĠP art +Ġqu al +lo ck +Ġreal ity +ho ld +ict ion +o on +Ġv ir +ãģ « +it ary +Ġdr ug +Ġfe ature +Ġre asons +Ġ× © +Ġwr ote +Ġf ant +Ġb and +Ù ĥ +en a +ke y +Ġear th +d om +Ġfe atures +Ġflo or +Ġspeak ing +Ġt ip +ĠA ust +Ġst ock +Ġch urch +Ġr ac +ìľ¼ë ¡ľ +ภĻ +ãĤ Į +k y +Ġresp onse +Û Į +ul ations +Ġsl ide +Ġgrad u +ci ous +Ġme ant +Ġ == +Ġ× IJ× +ã ħ +Ġkind a +Ġsc ene +Ġm uit +Ġê° Ģ +r ast +re st +Ġplay ers +w a +Ġbro ad +Ġtom orrow +oc ol +ĠÑģ в +ĠB ar +ı k +Ġse a +Ġrem ove +Ġrem ind +ом Ñĥ +ĠS ince +Ġave c +ce ll +и Ñħ +Ġdoc ument +Ġê·¸ë Ł +Ġne igh +be at +Ġp Ã¥ +Ġas pect +Ġd ed +lish ed +il s +Ġour selves +u ce +Ġhe y +ĠпÑĢ о +ent y +Ġas soci +ad os +um ber +Ġ ] +éĤ £ +no v +Ġì Ļ +Ñĥ Ñĩ +Ġcond ition +ëĬĶ ëį° +Ġval ues +Ġsc en +min ist +Ġc ast +Ġgrow ing +Ġus er +Ġresp ond +l im +é r +y m +çľ ĭ +os es +sy ch +ĠÑĢ аз +Ġappe ar +Ġpro gress +eng th +Ġj ak +ĠD is +Ġpat ients +ĠS er +Ġg as +è re +ìĸ´ì ļĶ +Ġre ci +ìĿ ¸ +Ġs ca +ep end +Ñģ к +аР¿ +Ġb atter +Ġve h +ð Ł +Ġac com +Ġbe at +Ġpain t +Ġcont rib +Ġs ad +Æ ° +al es +Ġt ree +b a +Ġb orn +ic ed +à® ķ +b and +Ġme chan +ĠD et +Ġcap ital +Ġdel iver +Ġfe ar +ŀ ĺ +ĠS outh +Ġb ought +Ġst ress +Ġv or +? ? +i h +ìķ ¼ +Ġer a +ìĿ´ ë +а Ñı +is ions +iv ity +Ġhelp ed +Ġass ist +Ġplay er +r an +Ġimmedi ately +Ġmo ved +c ie +ê ± +Ġann oun +å ¿ +ìŀ IJ +Ġprodu ction +Ġsum mer +Ġt un +Ġprogram s +G H +al ing +ir a +el ess +. ) +Ġa verage +è¦ ģ +Ġgl ass +om an +if ically +Ġëĭ ¤ +ĠC ong +ĠV er +Ġtr ick +Ġbe gan +Ġv ill +ê ±° +h ow +æ Ń +Ġt ill +Ġ9 0 +ber t +Ġê ¸ +Ġtemper ature +à ² +๠Ī +Ġgra ph +Ġê· ¸ +Ġr ot +Ġmo b +A Y +a el +Ġre pe +Ġdev ice +Ġ19 9 +Ġte le +Ġke pt +p a +æ ĸ +ver se +Ġst ream +е Ñĩ +ess ion +Ġstr ugg +z z +Ġdeg ree +Ġhelp ing +Ġsm ell +Ġper haps +p ro +Ġcont ext +Ġi k +Ġп еÑĢ +Ġcal cul +éº ¼ +b ing +Ġreal ize +l am +ĠCh ar +y t +ĠìĿ ´ì +Ġd anger +ĠI m +a a +Ġlo ved +Ġpurp ose +Ġfinish ed +Ġpe ace +Ġo t +Ġglo bal +Ï Ģ +Ġab er +ĸ Ī +Ġcharac ters +Ġn ur +Ġdam age +Ġem er +Ġpre c +ĠW ir +Ġinst it +ij × +Ġallow ed +b on +Ġto d +еР³Ð¾ +Ġj etzt +Ġmed ic +Ġsmall er +ce ed +Ġlevel s +Ġint ell +W e +Ġse m +Ġcurrent ly +Ġmod ern +Ġcont ract +Ġdetail s +ortun ately +O S +Ġst ates +Ġad just +ant age +e z +ĠV ery +Ġsc ale +Ġre lease +Ġf az +Ġ ic +it ude +A C +ĠP at +id en +Ń IJ +Ġpre fer +olog ical +ĠFace book +Ġê° Ļ +Ġ .. +ĠM ake +Ġко ÑĤоÑĢ +ĠDav id +ĠAf ric +Ġmod e +ĠC ity +Ġsh all +ĠÑ Ħ +im in +Ġз а +r om +u a +Ġbe yond +Ġdist rib +к Ñĥ +ĠDo es +Ġv ict +r ate +Ġv ai +Ġsuccess ful +Ġh ous +ah a +est s +ĠE st +Ġdisco ver +Ġthere fore +ch a +Ġc up +Ġpop ulation +ĠI l +s c +Ġsp ent +re l +Ġuse ful +Ġt ab +æ Ŀ +Ġ Å +Ġìł ľ +Ġcon se +Ġqu ant +ay a +Ġb on +åı ¯ +ĠCh in +Ġê² ĥ +ound s +е ÑĪ +ell e +Ġ ice +2 1 +Ġk ick +ä¸ ĭ +Ġstep s +Ġton ight +нÑĭ й +ren ch +. ' +Ġgra b +Ġimp lement +ĠìĪ ĺ +Ġmiss ion +Ġclear ly +Ġappreci ate +è Ģ +Ġf resh +ar m +ĠTw o +Ġex ec +Ġproject s +Ġcommun ities +ri ble +Ġreg ion +Ġfre qu +ro y +Ġhow ever +Ġpart ners +an c +Ġmin im +Ġl at +Ġfamil ies +Ġev idence +Ġp un +ra ft +Ġl oss +Ġma p +Ġany body +Ġchang ing +Ġr ules +Ġorgan ization +Ġess entially +ĠR ed +Ġele ment +æ Ĺ +Ġv irt +r at +Ġpr int +and er +are n +em os +ο Ïħ +Ġcond itions +ab e +Ġd ance +и ÑĢ +Ġd os +о Ñĩ +ĠQ ue +Ġwalk ing +Ġt ro +Ġ id +Ġadd itional +Ġfull y +Ġf ans +Ġadd ition +Ġlik ed +Ġü ber +Ġb ow +d i +Ġm aster +o ff +) : +m ber +Ġë ¬ +å ¯ +åĪ ° +la use +Ġo der +Ġsaf ety +Ġre act +à® ¿ +b t +Ġdis app +Ġgirl s +S t +ĠA ng +Ġfa ith +Ġturn s +Ġt ight +Ġm outh +am i +z er +Ġwe ap +Ġб Ñĥд +Ġhosp ital +ra id +Ġmic ro +ĠSt ate +ĠM ost +ag n +Ġdec ide +Ġpat ient +Ġcor ner +Ġdi ed +N o +ĠSt ud +re nd +em pt +Ġli e +Ġl if +ĠBe fore +t ó +ĠSu per +Ġbe ll +6 0 +Ġpriv ate +ĠPa ul +Ġg ib +Ġag re +´ì Ħľ +Ġs ig +Ġinvest ig +Ñı ÑĤ +en ing +Ġdist ance +Ġwar m +Ġdig ital +å¾ Ī +in er +Ġp and +ĠCO VID +Ð ³Ð¾ +g n +Ġr ace +Ġpr oud +Ġte aching +Ġ ÑĤо +ìŀ ¥ +ĠAll ah +I n +Ġw ood +Ġcol ors +Ġw ird +u j +id ad +Ġcustom ers +Ġconnect ed +Ġlay er +Ġachie ve +Ġperspect ive +ĠC oll +Ù Ĥ +Ġcl oud +!! ! +Ġend ed +łĩ ê²Į +Ġmanage ment +Ġr ich +Ġsub st +Ġrem o +Ġser ve +Ġres ist +Ġthought s +Ġgrow th +ili ar +Ġright s +Ġchar ge +Ġcons ist +Ġwer den +Ġem b +and om +Ġhur t +Ġk an +i as +л о +Ġsh it +Ġbe g +Ġrece ived +it ation +Ġme at +Ġis so +ff ee +Ġfam ous +Ġcomfort able +I L +ĠB ye +èª ª +åĢ ij +oth es +Ġmed ical +Ġenjoy ed +Ġhealth y +Ġw y +c ies +Ġeff ort +Ġdo ctor +Ġmil itary +L AU +Ġg ro +Ġb attle +Ġf ed +Ġcap ac +Ġaf raid +iv il +ĠвÑģ е +Ġl ength +ys is +Ġbe i +¤ í +Ġorgan iz +or g +in c +Ġinter act +ĠChin ese +Ġacc ording +Ġincred ible +Ġkill ed +Ġda ughter +ĠÏ Ģ +Ñĭ в +Ġschool s +Ġ « +ll er +Ġshould n +n al +Ġcr is +Ġch icken +Ġf aster +Ġextrem ely +Ġopp os +Ġn ous +Ġ + +ri a +Ġfinan cial +Ġexc iting +Ġjour ney +×Ļ× Ŀ +ł ë +Ġdis play +Ġmem ory +Ġheav y +н е +Ġpass ed +ÑĢ и +il es +Ġp sych +Ġspec ifically +Ġeng age +Ġl ed +or ge +ĠD em +ord er +Ġ8 0 +Ġcre am +ester day +Ġed ge +Ġп ол +Ġbu ll +Ġind ic +Ġk tó +Ġhope fully +um ents +ag en +н ого +Ġh ate +ch t +8 0 +Ġeff ic +Ġì§ Ģ +Ġintern et +Ġbud get +Ġproper ty +id ay +Ġì ļ +Ġм ож +ol a +Ġshow ed +ĠM on +Ġthous and +A P +Ġpo or +us ed +ĠJ ack +Ġs Ã¥ +ĥ ½ +Ġes c +Ġsoft ware +Ġqu ar +ĠØ ¨ +Ġnecess arily +om en +i y +Ġevent ually +ish ed +Ġbr ight +E D +Ġs pl +Ġdem and +Ġth reat +Ġs ir +Ġrele ased +ck et +ĠâĢ « +Ġrequ ired +Ġv ote +ì ¹ +à® ¤ +Ġdevelop ed +ĠìĤ ¬ +at ory +Ġd ir +ca pe +Ġslight ly +à ¬ +๠ī +re et +Ġdise ase +Ġcour t +Ġitem s +ĠEar th +ÑģÑĤ и +ж е +ì ² +Ġchalleng es +ĠBr it +Ġdesign ed +1 2 +Ġhear ing +Ġlisten ing +z o +ĠÑģ л +ãģ§ ãģĻ +Ġper o +Ġwe aring +pl ic +Ġch em +Ġbal ance +Ġb a +Ġrece ive +im a +Ġsignific ant +Ġм Ñĭ +an ch +ĠC r +ĠC oun +ê¸ Ī +Ġjo bs +Ġoffic ial +Ġper m +om s +Ġopportun ities +Ġover all +Ġh us +od es +Ġn ation +ĠR eg +Ġor d +Ġrest aur +Ġì Ĩ +Ġm el +v in +Ġw enn +Ġk ön +æ ĥ +Ġopin ion +ãĤ Ĥ +è ¬ +ĠSomet imes +ç Ĥ +Ñī е +as c +O U +Ġ20 20 +Ġdel icious +ig er +Ġìķ Ī +o le +Ġhand le +Ġc it +Ġíķ ľ +Ġf ör +o oth +Ġnecess ary +Ġind epend +æ Ħ +ist en +h am +Ġé t +ãĥ ³ +Ġmult i +Ï Į +? ) +Ġcamp us +Ġtop ic +Ġr ain +Ġpan el +ĠS am +Ġlar ger +aud ience +Ġpa id +Ġeconom ic +ol t +Ġstre et +ĠC ont +Ġdri ving +Ġìł Ģ +Ġh ay +Ġprofess ional +ĠIn tern +å ¸ +Ġin put +Ġc ateg +Ġc ro +Ġ ll +E T +Ñĭ й +* * +ĠZ e +B LE +Ġì ¤ +re es +ĠÐ ¯ +ed e +ier t +Ġfo ld +Ġd ur +ĠN ational +Ġìĸ ´ë +an ced +Ġfa ire +ut ed +Ġk ing +Ġw ild +o i +up beat +Ġpre vent +i us +Ġà ¨ +Ġw ide +Ġr ing +Ġtit le +Ġstand ing +Ġal though +Ġh i +Ġsa uce +Ġs ides +Ġanim als +il ing +at ives +ìĹIJ ìĦľ +ĠO ver +Ġdes p +Ġconsider ed +ar ies +i ers +Ġein en +Ġs ister +Ġë ķ +ĠS ure +ãĤ ĭ +ri end +a ign +Ġsh own +Ġs ac +Ġs ont +Ġcent ury +Ġt ien +ĠÎ º +ĠS T +åķ Ĭ +Ġold er +ie m +Ġtr uly +ĠS i +Ġwind ow +iqu es +ar io +æ² Ĵ +Ġloc ation +Î º +Ġì ľ +v i +ag ue +ĠS orry +Ġdis p +Ġhe ll +Ġà ī +Ġtr ade +Ġcrit ical +Ġê ± +Ġn amed +Ġprep ared +ĠH ouse +al u +Ġt ough +Ġtri p +Ġs and +c el +ü z +ĠP ut +Ġap art +is f +v is +Ġli br +a ven +Ġv ie +Ġeffect ive +ภ² +Ġmag n +Ġmuit o +Ġê µ +h al +Ġlim it +Ġn ine +Ġwill ing +ı ÅŁ +s p +еР³ +h i +Ġal t +ĠJ an +Ġorig in +ĠU s +Ġele ments +Ġus es +Ġhelp ful +Ġfl at +Ġfam iliar +ĠP ark +Ġc ore +Ġclos er +Ġact ive +Ġad minist +C E +нÑĭ е +ç Ħ +Ġrel ative +Ġment al +Ġr andom +Ġpart ner +Ġut il +ph one +Ġr ule +w w +Ġìł ķ +Ġsch on +Ġco ffee +H A +Ġconnect ion +Ġun it +la ughing +l og +Ġapp l +л а +us ic +ĠB ra +Ġany where +AU DI +Ġsepar ate +bo x +Ġd ivid +Ġtest ing +Ġs ick +Ġwer en +ä» ĸ +Ġ׾ × +Ġadv antage +Ġtrans fer +' . +Ġë ¹ +Ġfind ing +н ой +Ġì¢ ĭ +Ġfor t +Ġeconom y +Ġl ack +Ġleav ing +Ġd im +å İ +ĠR es +Ø Ń +Ġdiscuss ion +еР¿ +Ġg es +du ct +Ġch ain +Ġus ers +e ch +ÅĤ a +Ġdis h +Ġcare ful +Ġte acher +Ġopt im +Ġfl u +at ically +Ġref lect +Ġtreat ment +e ed +i ÄĻ +à ¹ +à® ¾ +Ġequ ip +Ġplan ning +Ġsol ve +ãģ Ŀ +ĠT om +Ġavo id +Ġp ou +Ġgreat er +l in +O L +ĠL u +ĠM ore +Ġatt ract +ê n +un a +Ġphot o +er ation +Ġplan et +Ġcop y +Ġvis ual +ir ing +Ġintern ational +Ġla ughing +Ġth ick +Ġhold ing +Ġbring ing +Ġlet ter +Ġb urn +Ġeffect s +it é +our s +O T +ê me +ĠSch ool +×ķ× ª +rop ri +l ig +α ι +Ġad ult +Ġsu gar +Ġr ide +Ġhigh light +Ġno body +Ġ2 1 +Ġch at +ĠпÑĢ и +Ġin nov +ung en +Ġatt ach +ed om +å Ĭ +y l +Ġleg al +Ġr ice +Ġcoll abor +k ing +d own +æ Ļ +ãĤ Ĭ +Ġi h +ĠA c +ous ly +Ġr ap +Ġsol id +Ġgener ally +Ġpatter n +al i +à¸ Ń +Ġtrans l +in ter +a ult +Ġë ¨ +Ġexp ress +Ġexam ples +Ġch ose +Ġtell s +ÃŃ s +ain t +ĠT ell +ĠMich ael +æ ¨ +ĠN umber +Ġt ap +Ġexper iment +Ġbenef it +Ġì ° +Ġse qu +Ġexp ensive +Ġgener ation +ĠM any +Ġadd ing +Ġk il +Ġcamp aign +ĠA nt +ra w +omm en +Ġs oul +j o +ĠAct ually +am m +ê² ł +Ġma xim +Ġsal t +Ġc ru +Ġcall ing +ãģ Į +Ġbas is +b an +Ġkeep ing +ĠM or +ed s +ì Ĩ +Ġto do +ам и +н Ñı +Ġli ved +ĠD u +ãĤ ī +å® ¶ +for ce +å¹ ´ +fer ence +al a +Ġocc ur +s k +Ġrec ent +Ġc ars +Ġtrad itional +ent le +² Ī +Ġhel d +Ġn ach +ĠCent er +er en +Ġb in +Ù ģ +Ġcomm e +Ġre ve +Ġìĺ ¤ +Ġexpect ed +ab il +Ġfocus ed +o v +Ġi P +or ial +i ro +Ġet c +am ing +ĠS on +Ġy esterday +Ġstr ate +ĠÑ Ĩ +Ġë ı +p es +Ġactiv ity +Ġadv ice +Ġopen ing +f in +Ġre la +é ĸ +Ġinst ance +ĠEvery one +b l +p en +Ġvis ion +ĠA lex +if orn +Ġt ick +H e +Ġstrate gy +Ġk om +P E +ĠG l +Ġelect ric +1 5 +Ġda ily +Ġhus band +Ġst ation +Ġanal ysis +yn am +Ġatt empt +Ġbill ion +v ant +Ġfor th +Ġm ath +al y +Ġbehav ior +ĠM as +k an +ĠD ay +Ġbl ess +Ġg ut +ĠH igh +o x +Ġd ress +Ġj ed +è ¯ +å ĸ +Ġexperien ces +ist a +Ġfight ing +å · +ĠÑģ к +Ġmost ly +a use +Ġpict ures +ен ÑĤ +Ġm ad +Ġmod els +ÑĪ е +ĠC ount +Å Ħ +ÅĤ o +ep t +O M +ĠA N +Ġtrou ble +4 0 +Ġb ird +ul ate +Ġm ur +Ġprodu ce +Ġmar ried +b it +Ġthe ory +í ĺ +Ġlead er +ĠL ast +A A +è µ +Ġim ages +Ġexp and +ĠP or +Ġpur ch +ĠS an +ĠChrist mas +ĠAust ral +Ġw id +ĠM iss +Ġknow ing +Ġz e +s hip +k u +Ñħ од +ĠInst agram +ĠInd ia +Ġest a +ĠCal iforn +Ġ7 0 +Ġdra g +Ġbr ush +Ġn ames +A nd +Ġy o +ill a +Ġsch ed +Ġdest roy +ye ar +Ġv amos +Ġ ÙĦ +ç a +Ġforg ot +и е +Ġra ise +re me +íķ ´ +ĠG ive +Ġcont ain +ra b +Ġg ift +ĠÑģ п +Ġrequ est +Ġsh ut +Ġdeg rees +Ġbenef its +Ñĭ е +Ġstud ies +Ġend s +Ġevery where +Ġher o +op h +er ry +Ġmaterial s +en ed +N A +å į +Ġmu y +Ġwor se +ä» Ģ +ĠM ad +Ġdec isions +ion e +Ġfore ign +la ughter +i ber +ени Ñı +ãħ ĭ +Ġreal ized +Ġ ign +Ġwe ak +ĠÎ ¼ +Ġsca red +Ġass um +A K +ï ¿ +ï¿ ½ +Ġcover ed +ĠS at +Ġо н +Ġindividual s +Ġcomp ared +1 1 +ĠAd d +ic les +Ġc ert +r ar +Ġbr ief +Ġactiv ities +Ġf ab +b ar +Ġa st +ĠO ther +Ġclass es +Ġo g +Ġmiss ing +ãģ ł +é Ŀ +w ers +× © +Ġintrodu ce +Ġequ ation +ãģ¾ ãģĻ +Ġn om +Ġpain ting +us hing +ĠA P +Ġencour age +Ġsh ip +itt ee +iver se +ot a +n am +ãĥ » +Ġexerc ise +ĠÐ Ń +Ġn as +Ġthous ands +ĠCaliforn ia +Ġs es +Ġr ow +ŀ Ī +Ġpand emic +Ġsk ill +b el +Ġdire ctor +Ġmil k +Ġn ut +Ġmot ion +Ġcl osed +è ¨ +Ġcred it +ah r +Ġche ese +Ġal tern +im ately +Ġs ust +ĠT ra +Ġgl ad +Ġhigh ly +Ġw a +Ġredu ce +Ġb le +ad or +in ated +ion es +ci ent +Ġdep ending +Ġsh aring +Ġca ught +ra el +Ġme hr +Ġpass ion +ç Ľ +Ġr u +Ġfar m +T I +av es +ĠR ob +ĠB ro +Ġmot iv +ret ch +ru pt +ĠB ig +Ġall e +Ġet t +ub s +ĠJapan ese +ĠH all +и ли +AUDI BLE +ç ¬ +Ġcell s +ik a +el ine +il er +Ġì £ +Ġsk y +IN AUDIBLE +end e +ap ter +Ġp in +Ġg ather +h ol +le ction +Ġsy n +Ġpl ug +r ound +Ġun iversity +h ib +Ġfant astic +k n +Ġho le +ĠRem ember +in ct +ak s +C H +Ġbro ken +Ġstr ateg +Ġal ive +Ġt ank +Ġc art +r ated +r ie +ĠSt ep +ĠEvery thing +Ġb ound +Ġso bre +Ġcustom er +¡ Į +ur g +ĠB ill +L a +wh at +Ġre action +Ġs ession +Ġpl ans +ĠìĿ´ë łĩê²Į +Ġdown load +ì Ļ +u er +Ġc ab +Ġinst r +if ying +ĠN ice +Ġteam s +ı l +Ġgo als +is ch +Ġtrans port +Ġanim al +Ġcost s +Ġcall s +Ġse hr +ì Ī +ri an +Ġd ial +Ġwe ather +๠Ģ +Ġв оÑĤ +ĠPl ay +Ġsh ared +Ġsm ooth +ab a +Ġleav es +à® © +Ġconc ent +Ġsh ift +ĠëIJ ĺ +ĠGo vern +Ġdem onst +Ġbut ter +ĠìĹ ¬ +Ġsat isf +Īë ¬ +Ġrecogn ize +ĠF rench +Ġvol ume +ä nd +Ñĥ м +Ġì§ Ħ +ĠKe ep +ow a +ipp ed +ÑģÑĤ ÑĢ +Ġdet ect +ĠÏ ĥ +Ġl ift +Ġcl othes +ĠSt op +à µ +m et +Ġcl in +Ġar r +f riend +Ġst uck +Y e +h and +um a +Ġsc ri +Ġfuck ing +ct ors +× ª +Ġjo ining +Ġc ette +ĠØ £ +ĠWh ite +Ġi hr +Î Ń +ãģ Ń +Ġinclud ed +ess o +Ġac ad +b um +Ġs ab +Ġд лÑı +è¿ Ļ +uf act +ĠRep ublic +r im +Ġye llow +Ġlim ited +T ER +ĠT y +Ġnot es +v est +и з +al ed +Ġph ase +and a +ĠM om +R I +Ġim mer +m al +Ġin j +Ġy ang +ud ible +аР³ +Ġset t +Ġmag ic +Ġens ure +Ġsp ring +Ġsh ock +Ġwhe el +ог да +ãĤ Ī +Ġcan cer +Ġro ot +Ð IJ +gen cy +Ġë į +i i +Ġout put +Ġcomm it +Ġwork ers +ìķĦ ìļĶ +ĠÑģ ам +ve y +Ġpe u +Ġc ivil +is c +Ġbr ings +ÑĢ ав +an ia +Ä ģ +c raft +mb ol +Ġintell ig +b i +ac ing +y ou +Ġbecom ing +ĠD er +em a +å°± æĺ¯ +Ġing red +Ġcomm and +Ġupd ate +Ġpre m +Ġopen ed +Ħ ¤ +ени е +Ġg ard +Ġstat ement +Ġsc rew +Ġpr ote +Ġc ards +Ġt ask +Ġeven ing +Ġst itch +in en +ĠB er +m ark +ĠD ad +Ġе ÑģÑĤÑĮ +Ġ× ŀ× +ìĹ Ī +Ġb an +Ġcl im +Ġfre edom +Ġnorm ally +еÑģ ÑĮ +å ¦ +Ġprov ided +Ġìŀ IJ +ĠìķĦ ëĭĪ +ĠK im +ied er +ìĿ Į +Ġcit iz +Ġb ike +Ġb ak +Ġno ise +Ġcl imate +iz es +å¾ Į +Ġincre asing +ĠTH E +Ġli qu +Ġperson ally +e f +res p +Ġleg s +ind er +Ġp ed +Ġë§ İ +Ġdep end +Ġvar iety +ĠIs rael +Ġwas h +å Ĩ +Ġqu iet +ĠJ ames +ĠJ ew +Ġfore ver +ĠI nt +Ġcoun ter +ur ance +ĠAny way +ca re +ĠOn ly +ci ón +ad i +ĠE v +ëĭĪ ê¹Į +ĠÎ ± +Ġslow ly +Ġо д +Ġnot iced +ier en +Ġfe ll +ĠÐ ij +Ġm ême +Ġwhen ever +! ) +ĠH y +å ¼ +ord s +us ion +ĠSt ar +Ġí ĺ +ĠM ac +ä¸ Ĭ +i ven +Ġìĭ ľ +ĠìĹ Ĩ +ĠT ur +Ġg er +r is +Ġve z +Ġл Ñİ +Ġvers us +ا Ø +ocol ate +Ġplan e +Ġz o +Ġsu it +Th is +Ġn erv +ĠA cc +Ñĥ ж +ìĤ ¬ +n h +em e +Ġa uss +Ġme as +Ġtr ès +Ï ī +Ñģ ли +ĠAr t +ĠSec ond +олÑĮ ко +ch o +it ect +е ÑģÑĤ +Ġb oss +Ġinc ome +ł ¤ +Ġsh ad +Ġapp ropri +ĠM al +op t +Ġart ist +Ġplay s +oth ers +ĠIn ter +Ġvir us +Ġh ung +Ġconst ant +Ġscri pt +Ġsn ow +ul f +k et +Ġdev ices +Ġmet al +ight s +ìĦ ¸ +Ġsal es +Ġve get +Ġcollect ion +Ġv ia +k er +Ġgot ten +O W +i én +Ġacc ur +Ġw ave +ult y +ĠA ir +Ġlead ing +ic ing +Ġcent ral +ĠChrist ian +f r +ĠAl though +Ġsong s +Ġf if +нÑĭ Ñħ +Ġbel ong +oss ible +ì ° +Ġphot os +is l +Ġrela x +s a +US IC +ê · +Ġman ufact +ĠTw itter +Ġdanger ous +Ġhy d +le ar +i ant +ĠâĢ ¦ +Ġsudden ly +Ġla ugh +Ġang le +ĠG ot +Ġwor ried +о е +Ġp ap +ĠM art +en o +Ġbatter y +Ġп оÑģ +Ġlight s +Ġar ms +ĠA bs +m es +âĢ ĵ +use um +Ġte a +ĠM ic +Ġfor mer +ograph y +Ġapplic ations +ĠD ire +çĦ ¶ +Ġfeed back +itch en +yor um +u ed +ig t +Æ° á» +os ition +ĠD el +Ġíķ ĺë +ĠB ack +ad s +Ġpr ime +ì£ ¼ +ì£ ł +× ij +Ġm ut +] . +ĠÐ Ĺ +lo c +k in +Ġexper t +Ġal right +ung s +Ġsupp ly +Ġleaders hip +ĠF ra +Ġtyp ically +Ġs el +Ġtre es +Ġ2 2 +h ar +Ġwor st +Ġbus y +ant o +ĠU p +ĠB as +Ġpresent ation +Ġstr ange +Ġth in +ÑĤ е +Ġveh icle +Ġд о +cell ent +7 0 +Ġt ired +Ġcris is +Ġt iny +as y +Ġr an +é ĩ +Ġfor ces +Ġо Ñĩ +Ġident ify +Ġass ess +иÑĤ е +S E +Ġcreat ive +ç Ł +Ġdep artment +Ġinit ial +æĪij åĢij +ĠD am +ak t +v ere +Ġinf ect +Ġp ump +Ạ¡ +Ġv iel +Ġr are +Ġd ot +ash ion +em pl +Ġf lex +Ġk on +Ġtr uck +Ġle ct +Ġpl astic +la w +Ġlik es +Ġr ough +ĠM AT +í ŀĪ +Ġcomm er +Ġas se +Ġc ake +Ġact ions +Ġad m +Ġother wise +ĠHe alth +Ġcoll e +à¹Ģ ภ+Ġr ub +å¾ Ĺ +æ Ķ +Ġsc r +Ġz um +ĠH im +Ġch amp +Ġconcern ed +Ġ5 00 +Ġpl ate +ĠO ut +Ġdon c +Ġequip ment +Ġta ught +ll ed +Ġí Ļ +iv a +Ġmot or + » +Ġgu ide +å ī +Ġstop ped +Ġr at +Ġlab or +Ġa im +Ġprep are +ĠÑ Ī +Ġshoot ing +ann ed +cri pt +Ġen emy +Ġdep ends +Ġn av +Ġb er +Ġland s +Ġun ivers +i u +Ġfact or +ok ing +Ġcar bon +b ut +ĠL ove +el d +ĠÎ µ +Ġg a +Ġé s +Ġbre ad +Ġvol t +í Ĭ +Ġwas te +Ġkeep s +æī Ģ +Ġst or +Ġhon or +Ġun less +Ġcol um +Ġë ĮĢ +Ġpl ants +Ye ah +Ġinclud es +ä¸ Ń +Ġo x +Ġpe ut +ë§ Į +ìĥ ģ +ist ry +ภ± +ĠDep artment +ant a +Ġfing er +Ġst retch +Ġsy mbol +Ġneigh bor +æ ¬ +ê° Ħ +~ ~ +ĠÑĤ Ñĭ +ĠA ber +k es +Ġmass ive +ĠC H +ĠS al +× ł +ãĤ Ĵ +Ġd ynam +ach e +ĠP re +Ġmon itor +ent ed +E O +Ġrais ed +ist ics +Ú © +Ġv ou +it en +¡ ° +Ġbusiness es +Ġe arn +Ġmob ile +id ade +Ġha be +y r +l ict +Ġcon duct +Ġfed eral +Ġw o +b u +Ġn one +Ġteach ers +ĠاÙĦ Ø +éģ ĵ +id ents +ا ÙĦ +Ġtre nd +еР¶ +Ġal bum +Ġm ich +b ased +ภµ +Ġtrans ition +Ġн о +õ es +h ost +ed y +ĠPro f +p an +ij n +Ġcapac ity +und o +Ġ× ij× +Ġbreat h +Ġм ен +Ġm ü +í Ļ +ĠA ut +hing ton +Ġn or +Ġg ain +po int +Y es +ĠØ ª +ĠN a +Ã¥ r +Ġi ç +ĠM ary +Ġsp in +Ġant i +åIJ § +Ġsome how +Ġlaw s +Ġmom ents +Ġg re +Ġmo ves +ĠW ould +Ġpred ict +Ġv ra +Ġ201 9 +¶ Ħ +Ġfund ament +2 5 +Ġp ure +Ġw ow +Ġis land +Ġinvest ment +Ġb ath +ĠY a +Ġhard er +Ġt ips +å Ĺ +Ġelect ron +ĠB ob +Ġb ond +od ies +ĠA ug +Ġgib t +Ġch air +Ġtw ice +w ood +Ġcl ar +Ġmas k +Ġhonest ly +Ġ201 8 +t ies +' , +Ġp ens +Ġsurpr ised +Ġcommunic ation +ãģ£ ãģ¦ +Ġsp r +Ġwh ose +Ġst ars +× IJ× +ĠâĢ ĭ +Ġproper ly +Ġg rew +os ing +Ġdi vers +A D +Ġem pt +Ġexp ression +Ạ¿ +ĠP al +ãģ Ĭ +Ġjust ice +Ġp air +w o +Ġse at +or ter +Ġlink s +ĠM er +Ġre nd +но е +up id +ĠH el +ĠM arch +ĠL o +Ñģ ÑĮ +Ġhas n +Ġev alu +ãģ ı +å¤ © +il os +Ġfund ing +Ġv en +u an +ĠM aster +ĠO l +ĠF re +Ġy ap +ĠS ir +s ch +Ġmist ake +am an +Ġdin ner +ĠWas hington +Ġorganiz ations +Ġж е +av ing +Ġv ÃŃ +Ġbirth day +Ġbe ar +ĠÙ ģ +Ġaff ord +Ġre ven +Ġrelationship s +r ough +ĠT ime +Ġt ag +ĠS un +u ary +ĠP o +c ar +ab ilities +Ġpr ison +Ġl ic +ìł ķ +id den +Ġspec ies +é » +Ġf irm +Ġsc ore +Ġd it +Ġspe ct +Ġp el +Ġcompl icated +æ¨ £ +Ġr ank +Ġoppos ite +Ġpick ed +Ġк он +el er +Ġm ig +ĠS l +ĠN et +Ġne ck +ĠFr ance +Ġtechn ical +ภ¡ +Ġmil es +Ġprim ary +Ġse in +s es +Ġla ughs +b ra +ÅĽ ci +ri age +Ġn ic +et ers +Ġà ª +olog ies +ĠI S +r ad +ud o +ı nd +m ar +Ġex ch +Ġcompet ition +Ġauss i +ĠS erv +Ġre nt +Ġch ocolate +Ġw ieder +Ġnear ly +Ġspe ech +Ġun c +Ġpar am +ĠBrit ish +Ġrem ain +ภģ +ur t +ĠØ ¹ +Ġcr ack +ail s +Ġprom ise +Ġpay ing +i ÃŁ +Ġad apt +ал а +Ġmov ies +Ġw ire +Ł ¬ +æľ ĥ +Ġter rible +Ġs ó +Ġperfect ly +åij ¢ +ord in +Ġj á +Ġimp ossible +ĠTh ree +Ġn h +Ġtur ning +r um +ĠB el +ig g +Ġrespons ible +и й +Ġincred ibly +w i +ian o +Ġhum ans +Ġà ĩ +Ġsetting s +Ġj oy +o ot +Ġdeal ing +ill ed +Ġsur round +Ġfollow ed +Ġposs ibly +Ġinit i +st en +Ġpr os +Ġcand id +Ġass ign +Ġviol ence +W ell +Ġr ise +P S +Ġtamb ém +Ġë ĵ¤ +i ance +y an +Ġaud io +ĠB et +ĠAmeric ans +ĠAs s +is chen +ìŀ ħ +Ġult imately +Ġpol ic +Ġmajor ity +éĢĻ åĢĭ +ĠFin ally +er ap +Ġgu ard +ĠMAT T +Ġbr own +м и +Ġch a +ĠHo ly +Ġnerv ous +ipp ing +ÄĻ d +ĠS a +ĵ ľë +¶ Ģ +l ie +çľ Ł +Ġn uc +ĠA pr +é Ľ +ĠKore a +eg o +ĠCan ada +Ġkön nen +Ġcomp ar +Ġg anz +ĠM ais +Ġthem e +Ġk i +Ġdraw ing +az on +ĠO ff +t t +ĠW ind +Ġtod os +Ġob vious +на Ñı +I M +ĠÐ ł +we ll +Ġbl ow +Ġho ok +Ġcir cle +Ġë³ ´ +Ġarch itect +ĠK r +Ġc ó +Ġprotect ion +eg a +å ĩ +Ġwatch ed +Ġans wers +Ġdi et +iv o +Ġpow der +Ġyour s +Ġhigh est +çĤ º +F F +å º +Ġbo ys +ö yle +Ġl unch +è¬ Ŀ +ĠI I +Ġset s +Ġmo le +Û ģ +Ġwin ter +Ġluck y +Ġrespons ibility +Ġsign al +Ġwond ering +Ġa x +Ġcook ing +ов оÑĢ +le g +Ġп оÑĤ +Ġsurpr ise +Ġdem ocr +Ġlo op +Ġj ag +Ġcur ious +Ġmarket ing +Ð Ŀ +ar on +ĠApp le +Ġvirt ual +Ġ19 8 +no on +ĠM et +оÑģ ÑĤо +об Ñĭ +it u +ĠA w +Ġbu ying +Ġrestaur ant +ĠB ud +Ġdou bt +Ġgr ant +Ġver d +Ġc ash +Ġfac ulty +Th at +ĠE in +å¤ ļ +Ġw ed +it ness +ĠM ag +n el +Ġn arr +Ġacc ident +Ġmed ium +em ents +Ġcr ow +n ight +ìĿ ¼ +ä¹ Ł +Ġlibr ary +аÑİ ÑĤ +Ġtamb ién +Ġrefer ence +Ġfour th +h ouse +v ention +Ġfill ed +ĠC our +ib r +Ġn g +Ġdevelop ing +Ġprov ides +Ġpo ll +Ġtra ffic +arent ly +à® Ł +Ġform s +Ġcl ient +Ġg entle +Ġmus s +ĠCong ress +ĠInd ian +ce an +Ġp il +Ġc zy +st ood +ut y +Ġn ä +Ġsp ending +Ġconst ruction +ina udible +Ġë§ Ī +Īë¬ ´ +Ġìĥ Ŀ +om a +os en +ag o +Ġlar gest +ãħĭ ãħĭ +Ġun iverse +b es +os a +Ġе го +Ġd ude +ĠM AR +Ġind eed +ε ι +Ġman aged +ĠSh ould +S o +Ġappl ied +Ġfair ly +ĠD en +Ġanal y +Ġconst antly +Ñģ п +H ow +ĠS ay +en cies +ĠP C +Ġegg s +à® ° +Ġet h +ĠEnt ão +in ar +i ot +Ġc z +ĠEurope an +ãģ Ī +ĠA M +Ġc á +Ġrad io +§ Į +Ġh ide +ä» Ĭ +ĠSt art +Ġcl ub +ĠH ope +Ġeff orts +lus ion +Ġc ities +h one +Ġreach ed +Ġgu id +ro id +Ġhar m +Ġcut ting +Ġb ul +1 8 +i est +ĠMe x +Ġ iron +çŁ ¥ +Ġafter noon +Ġha ll +Ġpr zy +Ġg osh +Ġinflu ence +Ġв ид +Ġincre ased +ĠMin ister +Ġdis ci +ĠP eter +Ġver t +Ġmen u +Ġse lling +ur ally +Ġqu ote +Ġ ¡ +Ġcontin ues +mp re +ĠÅŁ ey +it ution +Ġна Ñģ +c les +ĠGerm an +c zy +ĠÐ £ +B e +Ġk itchen +ĠT ry +i pe +Ġic on +ar p +Ġprov iding +ĠTr ans +Ġtechn ique +Ġh är +Ġinf rast +Ġsus p +ü ck +ic ip +ĠÐ ķ +Ġc in +ìĸ ´ë +Ġpr z +Ġcompon ent +Ġby e +ĠB ible +iz er +C h +Ġsol utions +Ġaccom pl +Ġ201 6 +I E +ĠT a +Ġass ume +Ġliqu id +Ġë¨ ¹ +Ġquar ter +Ġfem ale +ĠTh ink +Ġstat us +it ute +Ġco ach +Ġre in +Ġcomb ination +è · +ĠT er +Ġobject s +Ġdist rict +Ġmake up +Ġmur der +w as +f en +Ġbow l +Ġpub lished +Ġsp orts +ãģ ¡ +Ġident ity +Ġseem ed +Ġact ing +л Ñİ +ri x +Ġup load +Ġh ast +Ġbo at +ĠM od +ri o +Ġ = +Ġcy cle +¯ ¸ +Ġl oud +ust ed +com ing +Ġ201 7 +Ġon t +Ġleg isl +Ġst ruct +ĠSomet hing +Ġconf lict +Ġu pper +Ġman ager +Ġm ort +Ġf ra +ĠÄ ° +ĠM ike +ĠW ork +Ġn ó +ph ere +ĠìĤ ¬ë +ĠL and +Ġfil ter +Ġprom ot +æ ° +æĻ Ĥ +ķ ¼ +Ġrecord ing +× Ŀ +Ġassoci ated +Ġf uel +und er +Ġele ction +Ġemploy ees +ĠCom p +ÑĢÑĥ г +ĠW o +ro l +Ġsa ved +ĠH on +ĠV i +åĪ Ĩ +ac a +p ret +Ġw et +Ġst upid +Ġl ad +Ġf est +Ġw ake +Ġи н +Ġgreat est +ĠJ im +Ġserious ly +Ġì ¹ +Ġfeel ings +Ġ3 00 +i ation +Ġbeaut y +Ġìŀ ĺ +Ġs an +ĵ ł +Ġ- ( +Ġcons cious +Ġд ел +b ye +ç Ļ +M an +Ġlet s +Ġsho es +y d +ä¹ Ī +Ġdisapp e +ĠCount y +ĠSc ott +Ġbut t +Ġaqu ÃŃ +Ġconf ig +resp ond +LAU GH +© ëĭĪëĭ¤ +Ġdivid ed +Ġac qu +Ġz one +Ġk omm +a ção +ì§ ľ +c ut +Ġ2 3 +Ġmaxim um +ro g +Ġrun s +Ġcompon ents +Ġarri ved +Ġconf ident +ÑĢ ов +Ġhe ight +Ġpro ced +E M +ĠÐŃ ÑĤо +ĠM en +Ġtalk s +Ġconf idence +ĠChr is +Ġlead s +Ġn ose +f all +b b +ĠNot hing +is er +Ġindepend ent +Ġmin or +Ġsy m +l en +ci ence +Ġf ashion +Ġsex ual +Ġb un +h ere +Ġso il +Ġdies e +Ġsh ap +Ġempt y +Ġjour nal +ag on +ĠThe ir +Ġweek end +ÃŃ t +Ġer ror +Ġn ar +à ¸ +è © +an cy +Ġìķ Ĭ +Ġfore st +Ġha cer +Ġmiss ed +ãģ ķ +åı¯ 以 +Ġev il +Ġstor age +Ġsing ing +in ha +Ġkn ock +Ġimp ress +ĠоÑĩ енÑĮ +ĠGo ld +ĠS ur +ĠP ort +åİ » +ĠL ond +Ġfaz er +ot y +ot o +Ġan x +ĠWill iam +Ġexist ing +pl ace +ĠC D +Î ³ +ĠColl ege +l or +ĠE ast +s en +f ach +o ft +Ġexperien ced +Ġlo ves +im m +Ġpo ly +Ġes se +ì ¤ +ĠG rand +è § +ch er +Ġvict im +ĠG es +л ÑĮ +v ision +Ġt all +Ġl ens +Ġз на +ĠB oth +Ġì ² +Ġsust ain +Ġarg ument +Ġfact ors +Ġautom atically +Ġfr uit +Ġli ber +Ġa le +ĠP ress +ĠB a +ĠÐ ³Ð¾ +Ġhundred s +th at +ĠR ich +Ġreci pe +ĠI T +è ĩ +Ạ¥ +Ġdescri be +Ġdri ver +ĠO ct +ĠM at +д е +Ġme al +Ġlat est +Ġth erap +Ġcomp are +ĠAm azon +Ġì¢ Ģ +ĠRuss ia +Ġstr ing +Ġk a +ĠComm un +Ġd ia +I s +Ġmill ions +Ġcor por +Ġcor respond +Ġfix ed +ĠJo e +Ù İ +Ġview s +Ġr iver +Ġstud io +ig ger +Ġfl avor +Ġpres ence +Ġun its +Ġsa ving +av our +Ġp esso +or ith +Ġh ers +ĠN at +as ion +ĠFr ank +о ÑĪ +ÅĤ y +í Ħ +Ġein em +Ġfun ctions +um an +Ġn orth +Ġìł Ħ +Ġhor se +v id +Ġple asure +а ÑĪ +é es +ind a +Ġt ail +Ġexpl ore +S T +Ġcommer cial +ĠD uring +ar l +] : +f it +Ġr ates +æ ³ +M USIC +Ġhous ing +Ġein er +Ġsitu ations +æ ĭ +Ġdec re +Ġappropri ate +ен но +% . +Ġb ac +Ġw at +ens ity +ä h +kn own +it z +Ġemot ional +erv ation +Ġbl ind +1 6 +í ĥ +大 家 +Ġjo ined +Ġloc ated +ĠÑģ м +ad as +ber g +Ġd ess +Ġde ar +ed en +c os +Ġad opt +1 00 +ow e +ĠChe ck +ism o +Ġsim pl +Ġang ry +Ġмен Ñı +ĠC am +Ġp ad +Ġatt end +Ġsam ple +æĹ ¥ +Ġì Ľ +ĠI N +ul ous +ĠS ar +ĠSh ow +Ġinfrast ructure +ĠAug ust +Ġless on +Ġn iet +æ İ +Ġfo i +Ġbro ke +t r +ç ķ +Ġ4 5 +Ġg ew +Ñĥ п +at i +Ġmaint ain +Ġart ists +ing er +æĿ ¥ +er ved +I A +Ġequ als +Ġoper ation +ill y +ĠëĤ ´ +Ġcrow d +Ġintern al +Ġtest s +ĠR ock +ĠC ons +ĠëĦ Ī무 +w ar +Ġs ou +Ġch art +ĠJ une +ĠApr il +g ent +Ġv ent +Ġqu and +ĠKore an +im o +ç ī +id ers +Ġmount ain +ÑģÑĤ ав +æľ Ī +ij k +Ġdiscover ed +ĠS und +ĠS il +Ġso lo + ´ +Ġsch ol +ĠE ach +ç µ +Ġb are +Ġí Į +ĠvÃŃ de +Ġingred ients +ĠIt s +Ŀ¼ ê³ł +Ġì Ĭ +Ï į +ĠLe e +Ġsc ary +Ġprinci p +Ġspirit ual +ì ħ +ĠH old +æ²Ĵ æľī +Ġdef ine +ĠL es +ĠN or +ĠE nd +Ġbl og +ĠG reen +аеÑĤ ÑģÑı +p art +el es +äº ĭ +ĠUnd er +Ġpart e +Ġ3 5 +Ġse ctor +ĠS ept +Ġaut h +à® ® +om in +Ġcl ients +Ġc i +ĠFr iday +er as +Ġtw e +ul ated +Ġcult ural +ĠÑģв о +Ġëį Ķ +Ġà º +Ġpar ce +à® ² +Ġtrad ition +Ġjud ge +ĠGen eral +Ġdeterm ine +ĠIs n +ĠP L +ne ath +Ġmatter s +íķ ´ì +! ] +а Ñħ +Ġpo ol +Ġvari able +Ġvacc ine +Ġcaus ed +Ġw est +ĠY ep +f ast +Ġph ilos +hor a +Ġcontinu ed +Ġunf ortunately +ãģ į +æ ķ +Ġfl ight +Ġw rap +Ġhu h +ĠAbs olutely +Ġp ink +Ġrem ains +Ġn é +Ġf le +ĠS ol +Ġlos ing +Ġalg orith +Ġrequ ires +Ġfound ation +ĠB ur +Ġprofess ion +ĠM id +Ġë ŃIJ +c an +ĠM il +Ġyoung er +Ġappe ars +ter m +íķĺ ê³ł +ac le +ĠLond on +Ġengine ering +ภ¢ +Ġadv ent +ìĦ¸ ìļĶ +Ġê¸ ° +ĠM aj +ÑĢ ем +ing u +ĠU K +u ro +s pe +Ġt ent +Ġreport ed +ĠA L +H ey +Ġë§ IJ +Ġd ent +ĠAustral ia +ĠJan uary +³ ´ +ag ues +ars h +r ig +Ġtien e +ภ£ +Î ® +Ġmach en +un te +Ñĥ Ñģ +Ġelect r +Ġtut orial +Ġpl aced +ĠìĿ´ ê±° +ĠCoun cil +í ĸĪ +°ë ¦¬ +ah ren +Ġê·¸ë ŀĺ +Ġpro ve +f ol +Ġqu er +Ġche ap +ĠF ather +ĠP ower +ĵ ľ +Ġpur s +Ġes p +ĠB re +ê¸ °ë +om as +æĥ ³ +ил ÑĮ +Ġge ht +os ter +ê³ ¼ +Ġfil es +ĠÐ § +be ll +Ġwh om +Ġë ĺ +Ġex cellent +Ġdat ab +Ġg ö +Ġì§Ħ ì§ľ +Ġbelie f +j et +Ġj ack +Ġsw im +ri al +um in +a uc +Ġso ll +Ġess ential +íķĺ ëĬĶ +Ġev ol +cha ft +ain e +th let +Ġinc or +Ġreport s +Ġdefin ition +ke l +Ġcirc um +Ġprodu ced +Ġ× Ľ +ant ic +n et +Ġa ward +Ġd urch +Ġtrans p +Ġm ale +¦ ¬ë +Ġmo on +ĠGe orge +Ġfly ing +i ó +Ġs ources +Ġpl enty +ĠDem ocr +R O +Ġ 00 +Ġsec ure +ĠB ir +ra in +Ġz ur +Ġeffic ient +Ġrepe at +Ġmethod s +Ġcal m +Ġdiscuss ed +ĠìŀĪ ëĬĶ +Ġser ver +an ie +ĠInst ead +Ġide al +Ġcon ven +Ġhop ing +ĠT or +Ġdep th +Ġhe aven +EN CE +Ġhab it +gr ad +Ġfl ag +Ġin e +Ġk h +ĠL I +Ġfac ing +ĠA U +ĠT im +Ġg em +ĠJ ul +Ġel a +iz za +Ġfe llow +Ġqu el +Ġsp oke +Ġcitiz ens +u ge +é ĥ½ +Ġp ages +Ġf asc +Ġrelig ious +at en +Ġch apter +ĠV al +Ġcons ult +ĠM ill +g l +op er +Ġinf in +Ġmar riage +Ġmedic ine +Ġд в +Ġdog s +Ġinstr ument +ĠEx act +á n +Ġ20 21 +Ġf er +Ġwe alth +Ġgr ade +Ñĭ Ñħ +Ġcr ime +Ġth read +Ġess a +Ġw ine +co hol +ph a +ภĩ +og ue +Ġins urance +arr ator +ĠSept ember +Ġv id +ĠSp irit +Ġg est +ĠRuss ian +Ġproper ties +Ġart icle +Ġunder neath +y er +Ġjo int +Ġrelative ly +Ġin ch +Ġdesp ite +ĠG ree +Ġclass ic +Ġsupport ing +Ġinst ruct +lus ive +Ġdi agn +æ Ĭ +Ġadminist ration +аб оÑĤ +ĠO pen +æīĢ 以 +Ġп ок +Ġdoll ar +Ġconse qu +o ber +ĠGerm any +Ġter r +ĠQ U +ĠÐ ĵ +ç ¾ +Ġstrong er +É Ļ +ĠÙ Ĭ +ĠiP hone +Ġfab ric +ü h +Ġen em +æ ¯ +Ġsub t +E E +ond e +Ġcre w +Ġremo ved +Ġl ady +Ġpot entially +ĠÐĿ о +y al +Ġsym pt +Ġar my +Ġintrodu ced +t es +Ġaspect s +1 4 +ĠL ou +Ġ ) +Ġde ploy +p et +Ġh an +ĠW atch +Ġweap ons +Ġph en +Ġreg ister +Ġein fach +Ġsp ort +Ġbr idge +Ġin ner +Ġminim um +Ġw itness +Ġes o +Ġvill age +Ġown er +¦¬ ê³ł +Ġsc ream +il ed +Ġp itch +b ru +Ġadv ance +ä¸į æĺ¯ +Ġsupp ose +ĠAt t +еÑĤ ÑģÑı +Ġdiffer ences +ak ed +Ġinter pret +à ¦ +iend o +Ġabs ol +ĠбÑĥд еÑĤ +Ġë ² +Ġtri al +Ġthink s +ly ing +cept ion +ĠAfric an +Ġchem ical +Ġta pe +Ġconvers ations +Ġdistrib ution +t i +ĠA I +Ġfl ash +Ġunder stood +ĠGovern ment +å° ı +! ? +ĠS k +ê± °ë +ri er +T S +ĠAcc ording +Ñİ ÑĤ +Ġsp ons +ÑĤ обÑĭ +Ġval u +ere m +icht ig +Ġresist ance +ĠG al +ger y +Ġbeg ins +Ġadv anced +Ġrele vant +Ġpolit ics +ĠF am +Ġç ok +ĠN ever +ill ing +Ġfoot ball +и и +ĠI D +ĠAfric a +Ġfing ers +Ġб олÑĮ +Ġà ¡ +Ġcl ip +ĠL at +ãĤ Ħ +Ġì§Ģ ê¸Ī +es se +Ġvo or +Ġas ide +æ ŀ +Ġto ward +Ġb at +Ġval id +ĠM ens +Ġcomplet ed +ı ÄŁ +Ġpod cast +ĠB on +Û Ĵ +ĠJ uly +il a +Ġpack age +Ġpull ed +ch ar +ĠM el +o is +Ġs outh +Ġë Ķ +Ġimport ance +Ġp ushing +Ġis ol +Ġstand s +c ill +ä ¼ +Ġ ðŁ +or i +ê° ģ +Ġhom es +Ġconcern s +Ġb iz +å ½ +b ie +Ġb is +Ġge ar +ĠM S +Ġh un +ĠM att +Ạ£ +se y +ĠSec ret +Ġod d +ĠM ax +oll y +f ord +ĠS H +Ġrepl ace +Ġnav ig +Ġin i +и Ñı +Ġgi ant +Ġma nd +ĠH app +TI ON +g un +iam o +ìŀħ ëĭĪëĭ¤ +Ġg ap +Ġê tre +Ġclass room +Ġhy p +ak i +è ® +is ters +ack s +ĠÑģ о +Ġb ug +Ġgra v +am in +Ġevery day +Ġì ¡° +Ġgard en +ce mber +Ġest o +åĹ İ +Ø ¬ +Ł ° +å ģ +Ġr om +Ġìłľ ê°Ģ +Ġfall ing +Ġfa ult +ell y +Ġch est +Ġл и +Ġpot ato +Ġbuild ings +Ġoper ating +Ġp are +w r +D on +ĠF our +Ġv ul +Ġl á +Ġfr ust +ĠD ann +ol es +ny a +Ġì ¶ +ĠÑĢ аÑģ +× Ľ +Ġa ÃŃ +w ord +Ġweap on +Ġob t +ĠF all +ĠSte ve +Ġmix ed +Ġp ode +ĠA S +ĠL eg +Ġdes c +Ġspl it +Ġemer gency +ĠS ing +Ġprof it +Ġtyp ical +ĠDon c +Ġannoun ce +ĠTe x +Ġsac r +tern al +Ġcomm ittee +ig o +Ġdi am +ph as +Ġdef e +ĠProf ess +Ġdec l +Ñĥ ÑĢ +2 2 +ol f +ĠM ond +u y +Ġa y +Ġl em +Ġlove ly +ĠC ould +Ġgu ar +H H +Ġcare fully +ĠL isten +Ġк ÑĢ +Ġyou th +ĠThere fore +Ġdream s +ĠJe ff +? ] +Ġë Ī +D A +Ġb odies +au x +Ġtechn iques +Ġmechan ism +× ĵ +Ġо ни +Ġdes ire +à ® +ĠV o +qu es +ĠÑĥ же +ĠWho a +ĠG ame +Ġh al +an ish +Ġpract ices +5 00 +Ġsort s +up s +ate ful +Ġhers elf +Ġgu itar +Ġprop os +Ġsit es +Ġbe ach +Ġ× ¢ +ç¬ ¬ +н Ñĥ +Ġdr am +ĠNo ve +V E +r ant +Ġpl ot +ĠìŬ 기 +ĠC a +Ġestab lished +Ġ201 5 +Ġinsp ired +Ġannoun ced +ä¸ ª +ĠÑĤ ÑĢ +Ġ2 6 +Ġv oy +Ġte ch +ìł ģ +Ġprocess es +ont o +ĠP an +Ġrap id +ist an +Ġ19 7 +Ġrelig ion +Ġ2 8 +Ġsm ile +Ġb ab +Ġ Ú© +ĠV ir +Ġsched ule +Ġexec ut +Ġpr on +Ñ į +ĠÐĿ Ñĥ +m usic +ìĽ IJ +Ġg an +ìĭ ł +Ġdef ault +Ġbe m +Ù ī +Ġfor ced +ĠOb viously +Ġst one +Ġt ie +Ġdrink ing +Ġser ved +C ause +Ġcon ference +ĠExact ly +ãĥ Ī +ł ľ +ìĻ Ģ +ĠR a +Ġf ake +Ġdif f +ãģ © +Ġchalleng ing +Ġì¤ ij +Ï ĩ +ä»Ģ 麼 +Ġintellig ence +re te +Ġstud ying +Ġapp oint +Ġt an +Ġи м +Ġcur ve +ĠTe am +ĠA z +Ġз д +ĠMus ic +f ield +ir ation +Ġfail ed +Ġno vel +Ġdifferent ly +Ġes cape +ĠY o +ĠOct ober +ı yor +Ġdescri bed +Ġcon vert +ac ement +Ġhot el +is ation +Ġsu is +ãģ ij +å ŃIJ +æĢ İ +Ġwalk ed +2 00 +Ġneighbor hood +is p +ĠL os +Ġh idden +Ġ2 7 +л е +Ġph r +ĠIs land +ĠSt reet +end a +hip s +os ure +Ġdefin ed +ภ§ +Ġv ida +Ġlab el +ĠEvery body +Ġjo ke +ia o +ا ÙĨ +Ġa thlet +... " +ĠF ire +D o +Ġdef ense +Ġent ertain +á t +Ġpolic ies +Ġal cohol +ĠEng ine +Ġg al +ĠJ ud +Ġvol unte +ick s +et a +ag t +Ġ× ķ +Ġm ö +1 3 +Ġenc oun +Ġe h +Ġor ange +Ġabs or +Ġsp aces +ĠNove mber +êµ ¬ +i at +Ġt am +ck now +Ġst orm +ĠDire ctor +Ġpre gn +ĠìĿ ¼ +Ġо п +Ġres ource +Ġb ard +ne w +ĠDe cember +u its +Ġwe il +Ġconst ruct +s i +n ic +Ġfl our +Ġrest rict +ü t +Ġentire ly +Ġbreak ing +ent lich +Ġtw enty +Ġcaus es +Ġele v +ĠS pr +ĠIntern et +Ġk iss +Ġoper ations +s zy +Ġë Ĭ +Ġscient ists +Ġgr own +Ġown ers +out s +Ġcour ses +Ġus ual +Ġin n +Ġtrans m +ñ o +Ġnu est +к ов +Ġcateg ory +ĠL ife +ĠPl us +Ġat mos +wh ile +Ġrecord s +Ġde ÄŁ +ëĭ¤ ê³ł +ĠìĤ¬ë ŀ +Ġrequire ments +in n +Ġimm ig +Ġdeep er +ç ´ +Ġapp s +Ġcolle agues +ż y +Ġoff ers +Ġt á +Ġcolum n +la ud +I R +ĠM s +Ġexch ange +l as +ĠL aw +ĠJ on +is se +ro gen +Ġmo i +× Ĺ +Ġs ending +Ġhe llo +е е +ÅĽ Äĩ +Ġsuc ceed +Ġsuff ering +Ġad vert +Ġì£ ¼ +çŁ¥ éģĵ +Ġrec o +ın ı +Ġк ом +all ey +Ġfail ure +ie j +Ġëķ Į +Ġdrug s +Ġcu ando +Ġìĸ´ë ĸ +ĠAb out +Ġqu ando +9 0 +ĠF ed +1 7 +S h +in ho +ĠSund ay +ĠPh il +Ġacad emic +ĠIn c +Ġmaint en +åĩ º +Ġre ward +er d +Ġcomm itted +ìĬ ¤ +г ÑĢ +Ġstand ards +Ġk al +Ġint ention +ĠZ h +Ġa cknow +ä ¿ +Ġ== = +og y +å § +Ġfilm s +is k +Ġte eth +Ġstrugg le +r d +u en +Ġdis s +ĠD ar +am y +Ġenem ies +Ġve loc +ĠC all +um bs +иÑĤ елÑĮ +Ġo cean +é d +ìļ ° +Ġtre m +ient o +еÑĪ ÑĮ +ffic ient +Ġbott le +Ġinstit ution +est y +ĠH an +h ab +ëĬ ĺ +Ġar rest +éĤ Ħ +Ġlet ters +oun ce +í Į +A n +Ġcreat es +Ġcl ock +Ġdeb t +Ġan cient +ific ations +g i +B ut +ĠT u +k l +Ġb order +Ġo ok +ĠB ay +est a +Ġë³ ´ì +Ġw ra +pre ne +Ġê² Į +ang le +Ġbelie ved +ien cy +ak a +Ġcrit ic +Ġb omb +Ġha m +ĠÐ Ľ +êµ Ń +ĠGu ys +ros oft +Ġcr im +et ch +AR R +Ġs ight +и на +Ġa in +á» ij +is che +Ġau x +Ġnum er +Ġsurv ive +A ll +B C +Ġs z +Ł ¬ë +Ġj am +ĠCour t +Ġall es +Ġtr igger +Ð ŀ +Ġform at +Ġdec ades +Ġc es +Ġsign s +Ġrob ot +ĠCh urch +Ġa z +Ġs oup +ĠTex as +ut en +ĠÑĩ ÑĤобÑĭ +Ġneigh b +ĸ ×Ķ +Ġcommunic ate +Å ¡ +Ġel imin +Ġfrequ ency +her n +id os +Ġem phas +Ġmess ages +Ġg ender +ĠW enn +Ġв о +Ġpr ices +ol o +Ġп он +w ing +ĠF il +а ем +ĠC ur +Ġfal se +Ġfield s +Ġs é +2 4 +Ġm ac +u ÅŁ +Ġlay ers +Ġadv oc +w an +Ġk ar +ĠÅ ŀ +Ġdec or +Ġwall s +o e +iss ions +Ġres ol +× ¢ +ĠCar ol +ĠV ide +le ep +ĠY OU +Ġfl ip +Ġsur gery +Ġch op +U R +. , +Ġag ency +Ġwant ing +Ġsol ar +Ġhor iz +ĠAd am +Ġstay ing +ol ic +Ġgr ateful +Ġrem ark +Ġtechn ologies +Ġprote in +å¿ ĥ +д ел +ĠM ont +Ġshould er +Ġz a +re y +ĠO oh +Ġst y +ic ar +оÑĤ ÑĢ +Ġrout e +ĠT urn +Ġb om +Ġdeb ate +Ġposs ibility +Ġíķ ´ì +ap a +Ġinv ent +ür lich +Ġprof ile +Ġsen ior +pp y +v as +Ġm undo +ate ver +Ġapp arently +en er +× IJ +ç Ń +Ġprec is +Ġal ign +Ġkn ife +ĠRo bert +å ĭ +Ġfo ol +Ġinv ite +us ing +Ġcircum st +Ġcapt ure +Ġd ough +ĠS and +Ġse u +ĠNew s +Ġb ite +Ġne ut +w ide +Ġlect ure +Ġëĺ IJ +Ġorigin ally +Ġcho ices +ĠG ar +Ġver se +Ġl it +Ġ19 6 +íķ ł +Ġmeas ures +ç ões +w ater +ri ve +Ġz ijn +í ģ +ĠB us +Ġhe b +е Ñħ +ĠK ar +ĠN ão +Ġkill ing +à® ª +Ġmir ror +m od +Ġm ol +Ġcre ation +Ġest im +Ġatmos phere +Ġg am +Ġt ables +is i +ĠL ittle +Ġt as +ĠE le +é l +Ġscen es +Ġt one +Ġaffect ed +ĠAU DI +ĠBr own +I f +ĠÙ ĩ +ĠDan iel +羣 çļĦ +qu er +ch i +íķ ĺë +Ġmist akes +Ġs la +ãĤ ¤ +Ġent r +Ġе Ñģли +Ġsh out +Ġport ion +Ñ Ĺ +Ġpre viously +á» Ļ +ĠпÑĢ ед +оÑģ ÑĮ +Ġhead s +ç İ +å Ń +åľ ĭ +Ġgr ass +ภ° +cri be +Ġqu é +ĠSp anish +Ġoffer ed +ĠбÑĭ ло +ĠCl oud +Ġve ctor +ĠH uh +Ġk ad +if ts +ĠÎ ½ +Ġhung ry +Ð ¡ +Ġpar all +AN D +ĠvÃŃde o +iz z +Ġocc up +Ġí Ķ +Ġsee k +h es +Ġdo ors +Ġhous es +Ġconsider ing +Ġgradu ate +Ġf ulf +è ¡Į +è £ +Ġext reme +Ġflow ers +it ate +ĠP ri +Ġfundament al +Ñĩ аÑģ +è¯ ´ +Ġtext ure +į ĺ +ĠAN D +à® ± +ĠT em +Ġn ada +ì§ Ħ +Ġcelebr ate +um s +Ġp ill +Ġи ли +go ing +Ġh ip +Ġsupport ed +Ġper man +Ġagre ement +Ġty m +Ġë ij +ĵ¤ ìĿ´ +Ġpurch ase +í Ķ +ĠPl an +eg en +Ġrec over +P U +ĠMic rosoft +du c +Ġhol es +Ġdro pped +Ġp ig +Ġend ing +Ġattack s +be c +Ġre n +Ġr app +Ġìļ °ë¦¬ +Ġter ror +Ġ× Ļ +Ġed it +Ġa o +. +Ġhero es +ĠB oston +Ġdepend ent +Ġmotiv ation +fl ix +Ġse am +ки е +Ġdra in +od ed +Ġgu ilty +ĠJ enn +ing en +Ġgrant ed +ĠK elly +ĠS av +ĠUn cle +ĠHon estly +EL I +Ġnavig ate +Ġbless ed +c ore +Ġear ning +Ġsign als +Ġdis k +ial s +Ġag es +æ ħ +Ġpartic le +ĠÑĩ еÑĢ +Ġcan n +Ġt ier +Ġstat ements +ê³ł ìļĶ +ĠëķĮ문 ìĹIJ +ĠCh o +Ġpol ar +an ç +ĠK enn +ĠN i +ĠF ight +or gan +é ķ +ĠCh a +ĠS ÃŃ +ãĥ ª +Ġs lic +Ġcert ific +Ġtempl ate +ĠFed eral +Ġconsider ation +Ġexpl o +ĠM ain +ĠN E +Ġalong side +Ġd ressed +ĠP oint +Ġenviron ments +Ġpró xim +Ġda ar +Ġprom pt +Ġpurs ue +Ġentertain ment +Ġth roat +Ġproblem a +Ġm art +ì ¼ +Ġprov ider +Ø Į +Ġ× Ĺ +int e +m aking +Ġstro ke +Ġtiss ue +U n +Ġpre cious +ĠAr ts +ink ing +ĠÐŀ н +Ġи Ñģ +n ah +ĠÐķ Ñģли +Ġcor ners +Ġtrick y +in ch +l ijk +Ġpress ing +le vel +AN G +Ġrad iation +ìĦ ł +Ġconf ront +Ġv et +Ġrepresent ative +Ġprop ag +Ġcra p +ĠDe c +Ġr amp +еп еÑĢÑĮ +u és +ess en +cri ption +Ġb ills +ĠMatth ew +Ġan ime +ấ t +Ġlow est +h as +sc reen +og rap +ал о +int on +ĠJ ah +èĢ ħ +it Ãł +Ġk ay +Ġrot ation +ĠW ere +abe i +Ġtri als +Ġle ver +ight y +Ġsp oon +Ġh unt +c ling +Ġdis m +ĠболÑĮ ÑĪ +Ġass ault +Ġíĺ ķ +Ġweek ly +Ġm ismo +Ġgen etic +ul pt +ĠStud ent +Ġreal istic +Ġauthent ic +æī ĵ +ast a +Ġarrest ed +Ġguid elines +Ġ×ľ× IJ +Ġд ав +ĠCom ing +f ür +Ġrequ ests +ĥ IJ +Ġanaly ze +Ġinter ess +Ġh alt +ĠO per +on om +Ġd uck +Ġwith d +s er +ĠÏ Į +ĠHist ory +Ġyout ube +ãĤ į +Ġsab er +w alk +f ont +Ġover view +3 9 +ü y +ett i +Ġfro zen +Ġf lesh +ÄŁ i +ĠP M +ĠìĻ Ģ +é ¢ +ÑĨи и +Ġê¸ °ë +íģ ¬ +Ġpr ose +oo oo +r ates +W S +Ġautom atic +Ġcollect ing +Å ij +Ġneighb ors +» . +ĠEx pl +Ġcir cul +co ver +we g +Ġstick s +Ġe ller +Ġw ww +Ġd orm +ĠEx per +Ġstat istics +Ġemail s +Ġgra ve +im iz +H S +Ġu it +, ' +Ġlas er +è ī +ĠÑĤ ем +Ñĭ ÑĪ +Ñī Ñij +Ġgen au +Ġtien en +Ġmed itation +ĠOr gan +Ġest imate +Ġë¬ ´ì +l ets +Ġn Ãły +Ġmind set +Ġres on +Ġm és +Ġnumer ous +Ġvie lleicht +ĠTh ird +u ous +ĠDe ad +ан д +H N +Ġrac ing +Ġag ents +ĠU t +Ġte ar +ĠH P +Ġchem istry +Ġsurv ival +æĸ ° +Ġconvin ced +Ġ ; +Ġreg ulations +ĠE S +åĴ Į +3 00 +Ġen se +Ġì µ +Ġd ict +G A +Ġah ÃŃ +åĭ ķ +Ġte j +Ġо ÑģÑĤ +ĠE lect +Ġintellect ual +Ġbi as +Ġbur den +çĤ ¹ +Ġìĸ´ëĸ » +Ġche er +Ġso ph +Ġportfol io +ub a +Ġest os +T V +F or +Ġas h +Ġkom mer +Ġcollect ive +Ġw rest +ĠJ etzt +ĠW at +re ich +Ġprim er +act ive +Ġm ie +ick ed +Ġhun ting +Ġtest im +Ġcompass ion +ĠØ ± +Ġbr ut +Ġsal ad +об Ñīе +Ġsol ving +Ġflo ating +ç · +Ġattract ive +ÙĪ ÙĦ +Ġper d +if fer +Ġsc ulpt +hh h +ĠWe ek +Ġent hus +Ġn ad +Ġmer ch +ĠíĻ ķ +Ġm ile +好 äºĨ +ĠÎ ¸ +ĠëĤ ĺë +éĩ į +3 8 +Ġch ains +ĠAl most +Ġtick ets +r in +ĠC C +Ġdistrib uted +abet es +Ġtemper atures +Ġg ained +Ġflex ibility +Ġscream ing +Ġab road +un o +Ġentreprene urs +ĠNet work +ĠCanad ian +Ġpre v +Ġs ö +ĠÑĤеб Ñı +ĠP oke +ĠP od +ĠTur key +çı¾ åľ¨ +Ġabst ract +Ġsn ake +ĠAm y +ĠëĬIJëĤ Į +Ġbra ve +ĠìŀĪ ìĸ´ìļĶ +ĠK al +Ġ200 7 +á rio +Ġmark ed +gin es +Ġall oc +ON G +Ġscient ist +Ġes ca +Ġrac ism +× ij× +ĠS ams +ĠP enn +Ġload s +Ġà® ¨ +ü ber +M e +ix ò +Ġper ò +an ne +Ġexp ressed +м еÑĢ +Ġmo et +Ġret urning +n ia +Ġexp on +P ro +Ġlo yal +M L +Ġl amp +Ġsh y +Ġcomp osition +ĠL y +Ġmagn etic +Ġprem ier +Ġmeasure d +Ġsumm ary +Ġattack ed +Ġfin ishing +Ð Ĺ +ç ¥ +Ġs its +Ġhyd rogen +Ġma i +ĠDeuts ch +as ı +Ġobt ain +v ie +Ġso it +Ġë° Ķ +Ġl ane +Ġconse gu +в о +Ġe ase +ak in +ĠF a +Ġunt uk +Ġbur st +Ġc um +al ım +ú blic +id i +ĠRoy al +ĠK on +Ġcommon ly +Ġremo ving +Ġj ur +il ib +Ġan ch +íĸ ī +Æ°á» £ +ĠÐľ Ñĭ +ĠAn th +ĠS Ã¥ +Ġinter rupt +Ġst ere +ĠO S +ony m +ter y +ĠMar ia +ê² ĥ +Ġexpl oring +Ġtransp arent +Ġf ate +ĠJ ung +Ġgr up +Ġdark er +ĠD oug +Ġman e +æĶ ¾ +ạ i +d ri +lo ok +ĠDes ign +Ġtut aj +Ġhorizont al +re on +ort e +ĠCor rect +ĠSte ven +Ġv ine +0 2 +i Äĩ +Ġsie mpre +ĠK ey +åĥ ı +ĠG ames +Ġna ar +Ġshock ed +el ve +ĠR ose +ìĭ ¬ +Ġstop ping +oh l +ĠM ix +Ġsuff ered +Ġsig ma +Ġweak ness +ĠO w +ี à¹Ī +I F +Ġà® ħ +ad ed +ĠNet flix +an es +Ġrem ained +ir y +Ġr ip +ell t +Ġsil ent +Ġpro ven +Ġtox ic +Ġal umin +Ġmulti pl +al and +Ġ3 4 +0 6 +ĠB ru +Ġìłķ ë§IJ +J ust +b oy +Ġsho e +Ġcreat ure +Ġhead ed +ĠоÑĤ к +æ ± +Ġess ence +Ġremark able +Ġnú mer +Ġd rew +Ġpu zzle +ĠLibr ary +ĠF u +ash es +k k +ĠI st +¦ ° +ĠB ry +Ġc eremony +Ġà® İ +Ġc ri +e qu +ãĤ ¢ +Ġpri ze +Ġdim ensions +og ram +Ġle ather +Ġpop ulations +u um +Ġve gan +Ñı д +Ġcó mo +å Ħ +Ġstri p +å £ +Ġvac ation +ħ ķ +Ġme als +ili pp +Ġ ents +ar am +ric ht +Ġgra in +ĠSp ain +Ġche ek +ĠA ff +I ON +ĠBr ing +Ġ3 8 +iel en +ul u +ĠболÑĮ ÑĪе +Ġannounce ment +ĠÑĤ ÑĥÑĤ +ĠPro phet +ard o +3 7 +Ġw oke +Ġtransl ation +ĠN OT +ĠC L +Ġd Ã¼ÅŁ +ÑĨ Ñĸ +ac er +ĠL oc +Ġper ception +N O +Ġdies en +L ook +he art +av ed +Ġbound ary +Ġfl ows +Ñij м +Ġarg uments +Ġelect ions +ı s +Ġhe ck +Ġsuit able +Ġf iber +ĠSt ra +x y +ĠH um +Ġmonth ly +u per +Ġgol f +Ġl ately +ĠG ard +ĠR en +ĠA st +ĠF ant +аÑģ Ñģ +Ġobs er +ë ¡ľ +Ġeas iest +į Ķë +Ġwebs ites +p ol +Ġco con +Ġà® ĩ +ĠV eg +Ġwalk s +Ġint ro +Ġdirect ed +ĠAn na +Ġëĵ¤ ìĸ´ +ĠEaster n +ĠS aint +ĠB ow +Ġro ast +ĠU RL +Ġjed en +ur as +aj a +Ġse mi +Ġrapid ly +Ġtarget s +ĠCont rol +Ġb ah +Ġref lection +Ġcreat ivity +hold ers +Ġìĺ ¬ë +Ġamong st +Ġfeed ing +ÑįÑĤ омÑĥ +Ġвид е +Ġë§Įë ĵ¤ +ĠSm art +Ġrel iable +Ġvez es +Ġ× ¨ +ch uckles +az ione +ĠWilliam s +Ġa ç +Ġsle e +е Ñī +Ġtim eline +Ġthor ough +á» į +ĠO t +ạ n +Ġimag ination +Ġmechan ics +r ist +Ġclaim ed +ÏĦ η +ê te +ĠHur ry +ĠiP ad +Ġconst ru +ĠC la +ĠAl s +ä¼ ļ +ut z +Ġcult ures +Ġìĸ´ëĸ» ê²Į +Ġbelong s +Ġy er +ĠDoes n +Ġge omet +Ġb id +Ġfo am +Ġh ob +ĠBrit ain +Ġsubst ance +Ġann iversary +ĠëĦ Ī +Ġnot ed +Ġgovern or +Ġstock s +3 1 +Ġdi ye +ìĬ ¤ë +Ġre b +z el +Ġmultip ly +Ġoper ator +Ħ¤ ìļĶ +Ġwat ers +Ġd är +Ġuns er +ĠEliz abeth +é« ĺ +Ġincreasing ly +ĠG ro +Ġen gines +ir s +Ø « +Ġtre asure +P C +in ction +ir i +Ġacc um +Ġvari ation +Ġp om +Ġtit les +ĠF est +ó s +Ġeld er +ny m +r un +Ñı в +Ġinnov ative +Ġnom bre +Ġco inc +Ġfr anch +Ġent onces +Ġnicht s +Ġexc lusive +ĠChe ers +ĠB i +u je +æŃ ¡ +Ġp ok +ĠP rem +Ġrock et +ELI PE +Ġhosp itals +ri um +Ġjust e +Ġham mer +Ġquant um +Ġrespons es +ll y +end i +Ġact ively +Ġfr idge +i ate +l ong +Ġqu em +Ġdeath s +Ġsuper ior +ck en +ìĿ´ì ĹIJ +kt op +Ġgather ed +£ ¨ +Ġd azu +Ġreci pes +Ġbu zz +c en +Ġany time +ons ense +Ġcirc les +Ġsol ved +Ġìĭ ł +Ġcoron avirus +ĠLu ke +Ġbu bb +Ġcont empor +r zy +ĠJ ane +Ġд ом +Ġscrew s +Ġhy brid +Ġcas ual +Ġsel bst +be ing +ĠÄ IJ +ĠCol umb +ĠÑħ оÑĩ +Ġbu cket +Ġevalu ate +Ġid ol +Ġrep utation +ĠìĨ Įë +ÙĪ ر +Ġhe cho +Ġpo em +Ġsubject s +pl ant +ĠBe h +ĠSpe aking +Ġbatter ies +Ġfollow ers +ö l +Ġg ently +Ġsi xt +Ġparam eter +Ġik ke +ĠT our +ĠD J +ot te +ĠJ ahren +Ġprepar ation +Ġд Ñĥм +Ġ8 00 +c op +ik ing +Ġë¬ ¸ +Ġн Ñĥ +Ġл еÑĤ +åIJ Į +ĠI de +Ġì¡° ê¸Ī +Ġla ughter +Ġmole cules +ĠR est +Ġobs erved +d zie +Ġadvert ising +ert o +Ġmo ins +ĠM IT +Ġexc it +Ġt um +Ġty l +Ġinvest ed +Ġph arm +Ġunex pected +Ġph i +oty pe +we ise +Ġge ç +jour d +Ġhors es +n Äħ += " +ĠS M +Ġf ib +Ġcl ips +çķ ¶ +å¦Ĥ æŀľ +Ġreg ime +Ġrot ate +r ou +n ik +Ġarm or +ðŁ ĺ +еÑĢ а +åº ¦ +ĠO ch +Ġr ichtig +üz el +ane ously +m ek +éĮ ¯ +ĠX iao +Ġexist ed +w orth +ãģ£ ãģ¨ +Ġna ught +Ġhe iÃŁt +ĠB al +Ġres id +iv ot +om atic +Ġh ired +Ġgrad ually +Ġon ions +Ġcomp at +Ġint im +Ġj ew +Ġcontrib ution +ĠI re +ac ji +Ġsl ice +Ġimm un +ĠR us +Ġgr ows +ĠSimilar ly +Ġhard est +Ġst ruck +Ġmeasure ment +... ] +th ey +Ġìł Ģë +Ġsne ak +Ġappl ies +Ġн ем +æ ĵ +×ij ר +ĠЧ ÑĤо +Ġout ro +Ġinnoc ent +Ġm og +ĠSams ung +Ġmer cy +Ġhand ling +Ġinter vention +id ays +g ot +Ġcur ric +Ġbound aries +Ġconf using +Ŀ¼ ëĬĶ +æ ĩ +Ġstitch es +ÃŃ vel +Ġtun nel +it ä +Ġg ost +im y +Ġcz as +Ġm é +Ġcat al +ĠSim on +ĠLI AM +m ic +ĠÐ ¤ +Ġey el +is as +ĠC PU +ĠD ou +Ġnä ch +Ġinfin ity +Ġr if +ĠPe ace +ĠC u +Ġminim al +Ġlisten ed +Ġpo le +hal b +Ġload ed +Ġste ady +ĠBes ides +ê m +Ġl ap +Ġco op +Ġfriends hip +w orld +Ġge h +Ġtyl ko +ĠLa ura +Ġsurround ed +ĠE vent +Ġch ap +ĠW onder +bre ak +Ġdro ve +Ġbroad er +Ġch i +F i +Ġge hen +Ġwest ern +Ġintellig ent +Ġpers ist +Ġfound ed +ãģĵ ãģ¨ +Ġhistor ic +Ġfr Ã¥ +cks Ã¥ +Ġhand y +Ġsy mp +Ġr ows +Ġnut ri +b ur +ĠLe on +Ġsist ema +Ġext ensive +ĠÑĥ в +í ı +Ġnight s +Ġcá c +Ġcount ing +ĠM ust +all ow +еÑģ Ñģ +M om +Ġнад о +Ġbar rel +ãĥ ŀ +AR D +Ġinstall ation +Ġin sect +Ġëħ ¸ë +uj Äħ +ĠÄij i +Ġpack ed +Ġf iction +N ow +ĠY ay +Ġper t +r ons +und e +ach es +Ġsty les +Ġapr ès +ok u +ĠV ice +ın ız +com m +Ġassign ed +Ġinteract ions +Ġac ab +F ELIPE +Ġresc ue +Ġindust ries +ĠAnd y +Ġpra ise +Ġfl ame +Ġsn ack +í Ĥ +ç ģ +Ġsw o +rend er +Ġbo ards +ĠÑĤ ом +en ne +Ġpast a +Ġdev il +ĠF el +Ġhat te +Ġcoll eg +e h +ì » +ãģĵ ãģ® +Ġproduct ive +for ward +и п +Ġsmart phone +Ġinv is +Ġb um +Ġwho a +ìŀ Ħ +Ġo cksÃ¥ +ĠL ang +ĠSy ria +Ġses i +ί α +Ġappro val +4 8 +Ġод ин +Ġë ĸ +ĠH arr +ĠAd minist +Ġ× ¤ +ĠDe an +f i +Ġcitiz en +Ġsh ark +0 5 +Ġbo il +Ġindic ate +å ¡ +A re +Ġlay out +Ġref r +ĠPac ific +AA AA +ĠAustral ian +g ression +V oice +ал ÑģÑı +Ġshel ter +T o +au pt +Ġevalu ation +ap or +Ġcur rency +Ġм ного +ig os +ãģ ° +Ġo ct +Ġro yal +è ³ +as il +ĠChild ren +Ġr ien +Ġë ĵľë +Ġbar rier +Ġej emplo +Ġe k +N D +es p +ен а +Ġp ic +Ġkill er +Ġintegr ate +Ġfew er +Ġdis abilities +Ġ .... +Ġtri angle +Ġfe es +Ġwid ely +em i +Ġoverwhel ming +Ġz omb +Ġb ere +Ġho od +ĠA ye +ĠHar vard +e v +ĠÏĦ οÏħ +Ġcup s +ĠA uch +z ona +Ġ199 0 +Ġwe iÃŁ +Ġcr unch +æ ¥ +Ġз ав +Ġmeas uring +Ġst ations +ĠStep hen +Ġshort ly +Ġsig ning +Ġcom edy +om o +Ġsuggest ions +Ġsign ature +ĠпÑĢ ив +Ġdis order +as ka +Ġworld s +Ġprecis ely +n orm +ra v +ĠC ivil +In ter +ĠC ertain +Ġinj ured +Ġsuggest s +ĠGold en +Ġcy ber +ĠØ ´ +Ġtempor ary +Ġco oper +Ġvot ed +Ġ ought +ấ y +x ual +Ġpan els +Ġ9 5 +Ġhands ome +ĠпÑĢ ов +Ġper mit +Ġke in +Ġbad ly +Ġnot ifications +iz a +ĠNot ice +Ġinc lusive +Ġanswer ing +Ġí Ĺ +u ld +íħ Į +Ġnow adays +Ġ3 7 +Ġb olt +Ġstat ic +ĠH op +Ġav ant +aj o +Ġ맼 ìŀĪ +Ġfif ty +ĠF inal +Ġsc ores +ĠT ap +Ġcy l +Ġconv ince +Ġany ways +od a +Ġìķ ¼ +Ġser ves +ĠÑĤак ой +ĠZo om +Ġsaving s +ul o +Ġs outhern +view er +Ġho je +Ġse ja +Ġrepresent ing +Īë įĺ +l ik +ĠSome body +Ġbe ast +Ġstick ing +Ġins ist +Ġtal ented +Ġexplain ing +Ġatt orney +éĥ ¨ +Ġst airs +ĠD og +í ĭ +Ġc ig +Ġshap ed +Ġs ons +Ïģ ι +ut t +Ġì Ķ +Ġpar ad +ìĿ¸ë į° +Ġh orn +ĠJ our +ann o +Ġworld wide +åĬ Ľ +Ġparticip ation +¦ Ħ +Ġm ów +Ġburn ed +Ġwrit ers +all ah +ĠF und +Ġcle ver +ĠLe ute +b in +Ġbe ating +f oot +ĠìĽ IJ +ĠStud io +Ġv ag +be y +r ze +Ġoppos ition +Ġж из +w ho +Ġê± ´ +Ġtr ace +Ġд енÑĮ +Ġep id +Ġges ch +ĠN ar +ĠB E +Ñĥ й +ĠS ign +ed ly +Ġcl ay +Ġinst antly +Ġgather ing +ĠGal axy +Ġb ored +ĠBudd h +c é +Ġm am +Ġsl ope +Ġëĭ¤ ìĿĮ +Ġsch ön +Ġp ir +ge f +am er +Ġh ö +Ġcolle ague +Ġpres ents +ad ium +Ġà® µ +Ġfal ar +be ep +Ġdri ed +ism s +Ġro pe +Ġworks hop +Ġest ud +Ġb ands +Ġthem es +åħ ¬ +ÙĬ ر +åIJ İ +Ġremind er +ÑĤ Ñĥ +ĠB h +Ġcocon ut +ĠÑģ ÑĤо +ĠCh annel +Ġimmig ration +ä s +.. ... +ä¸ » +çĻ ½ +st op +Ġк аÑĢ +Ġco ins +ĠÑĩ аÑģ +Ġdest ruction +l ined +Ġbar riers +ant ine +Ġprint ed +Ġcongrat ulations +ĠHe art +Ġin qu +th a +Ġhard ly +ĠA ven +Ġt inha +ĠS ony +ĠN F +Ġgradu ates +Ġsque eze +ere my +ÏĦ ι +Ġep ic +ĠJ u +Ġol m +ĠLa ughter +Ġbelief s +ĠC ru +ĠTr ue +ĠS oul +owe en +Ġrom antic +Ġз в +Ġan os +ĠY up +éĺ ¿ +d im +Ġin fer +Ġз ам +Ġso c +uk a +Ġprec ise +Ġdro pping +Ġcl ue +Ġer rors +char ge +ĠP u +omet er +Ġlamb da +ac ional +ĠD ong +Ġcham ber +Ġthank ful +ĠN u +ĠHaw ai +Ġinf o +Ġactiv ate +ĠQ ual +Ġqu ed +Ñĥ лÑĮ +Ġcl oth +åĸ ľ +Ġw ichtig +5 5 +Ġot ra +ograp her +Ġcur ios +Ġ19 80 +Ġemp res +d ess +e ur +Ġcl uster +ar ter +ob ile +ĠY an +ĠAd v +Ġdiscipl ine +Ġìłķ ëıĦ +ĠPl ace +ĠSe lect +T E +ĠбÑĭ ла +Ġwh is +Ġb ay +ĠD or +en cing +Ġrep et +Ġf icar +p ad +Ġf og +u yor +Ġsn ap +ib t +Ġso bie +Ġappoint ment +ĠR y +Ġce iling +our se +Ġwr ites +ĠAfghan istan +Ġm os +az e +Ġpen al +Ġcry stal +IC E +ê° IJ +é Ł +ĠTes la +Ġthe ories +Ġappe al +Ġnewsp aper +Ġcook ies +æ © +ĠاÙĦ ÙĦ +Ġma j +ĠGet ting +k ommen +ĠHe aven +ell s +Ġdiv ine +Ä « +Ġa kt +Ġhop es +ĠCh en +we gen +** * +ĠFra ge +Ġн и +ภ¹ +min ister +nes ota +wh ich +Ġexpl icit +Ġverd ad +Ġgradu ated +ĠPh ilipp +Q L +ĠM I +Ġdev ot +Ġc ure +Ġclos est +Ġà Ħ +Ġsex y +ãģ Ľ +ĠDe ath +ok o +ug u +ĠAn ne +itar ian +es a +ег од +ĠD ur +Ġ 000 +ze it +Ġtour nament +Ġmel hor +ภª +Ġin du +Ġf law +Ġw ars +ĠM ind +ĠI ron +ÑĤ ак +ĠV R +Ġs iz +ĠS outhern +Ġê·¸ëŁ ¬ë +Ġaw ak +Ġìķ ŀ +Ġc ube +believ able +if all +d is +Ġabandon ed +m ind +Ġpar l +Ġclass ical +è ĭ +á»Ļ t +ĠAut o +ĠB or +ç © +4 00 +ĠSoci ety +Ġsubt le +Ġmiss ions +Ġremember ed +ĠE ither +Ġda für +OR D +Ġint ensity +ES IN +ĠC up +Ġrare ly +Ġto ys +ĠChar lie +á» Ł +Ġgla ube +Ġround s +T IN +Ġcap ability +Ġderiv ative +Ġrefer ring +Ġd Ã¥ +ĠT ALI +Ġcott on +Ġcon fer +Ġcolum ns +Ġliber al +Ġnun ca +Ġμ ε +Ġind o +ib en +ĠBe ispiel +Ġê·¸ë łĩ +ĠÑĥ Ñĩ +Ġh oy +Ġfr y +ĠScott ish +è Ĭ +Ġc iv +Ġconserv ative +Ġair pl +Ġs ar +r us +Ġinvest ments +Ġinfin ite +Ġà® ķ +ĠTALI ESIN +ĠG ary +ue ll +Ġа к +ĠC ir +Ġrit ual +Ġ>> > +Ġtem pt +ĠTe ch +ĠPoke mon +Ġimprove ments +Ġsp are +Ġtransl ate +Ġson ra +ĠFil m +w ort +Ġм и +Ġperiod s +Ġje alous +ãģĦ ãģĦ +Ġt ir +M I +Ġconduct ed +ĠìķĪë ħķ +0 9 +ĠPol it +ĠWhere as +Ġmoist ure +Ġs ins +Ġk ap +ĠÑį к +Ġben im +Ġelimin ate +Ġathlet es +ĠMan ager +Ġfeature d +ap ore +äº Ľ +Ġë° ľ +Ġper f +ĠTh us +Ġdeb ut +об ÑĢ +Ġse ñ +Ġmyster ious +w ords +Ķ ê°Ģ +Ġcheck s +Ġvolunte er +Ġwas hing +ĠMar vel +ĠA B +iss ors +! ' +ĠF ull +ye on +Ġwe igh +ĠJO HN +Ġv os +Ġproced ures +Ġaddress ed +ĠBer lin +put er +ĠB an +Ġmedic ation +Ġdr one +ĠÑĥ б +ĠJe an +Ġcap s +Ġdisappoint ed +Ġw ore +Ġêµ Ń +Ġorgan ize +ĠHall oween +Ġfant asy +y ard +Ġnos otros +Ġjump ed +Ġphot ography +ĠN ame +re c +A B +Ġbless ing +ĠSh ut +Ġbit ter +p op +ãģĿ ãĤĮ +Ġde i +Ġfulf ill +çIJ Ĩ +Ġden gan +Ġbe lo +ĠMean while +Ġdep ois +Ġdi abetes +Ġbu nd +ĠZe aland +Ġdig est +Ġt ires +Ġdo d +ag ne +ế t +Ġpe el +Ġз аб +Ġn odes +Ġtrend s +ĠSw itch +ĠA ward +ĠOr ig +ĠH al +Ġest as +Ġ3 60 +Ġsim ult +Ġcom ic +Ġm Ãł +Ġbal anced +ĠPrin cess +Ġkilomet ers +á» © +Ġpart ir +ì¤ ij +so ft +ĠV iew +Ġbi ological +in st +4 4 +Ġman era +Ġcompreh ensive +ĠS ab +Ġcr imes +y ers +ĠComp any +ĠPh ot +Ġpou co +i ac +Ġbe im +in ate +Ġsub sequ +ĠMay or +Ġcent uries +è res +ìŀĸ ìķĦìļĶ +Ġê·¸ëŁ ¼ +ĠFra u +ĠO H +Ġëģ Ŀ +ĠN ah +ĠSer ies +Ġover night +íĴ Ī +ĠâĢ ¢ +Ġtra ve +atter ed +Ġwar ri +ĠGru nd +ĠInd ones +Ġsc ra +ob y +ĠBro ok +Ġcur s +Ġë ¸ +Ġexpl ains +ram atic +Ġparticip ating +Ġmin ut +Ġcontract s +Ġg egen +Ġdisappe ared +ĠS N +Ġrob ust +ap h +Ġsh rim +Ġdev ast +c ope +Ġme ets +Ġpeace ful +m ate +Ġwe ld +Ġ× ª +d on +Ñĥ ÑĤÑĮ +Ġregister ed +ĠN ik +j in +Ġc av +Ġe cht +io x +Ġflow ing +но ÑģÑĤи +Ġto e +Ġent ity +ов а +f its +ĠPat rick +ÑĤ ÑĢ +Ġle verage +Ġcor rel +i ah +Ġstr ings +ist inct +Ġg ue +arch y +Ġteng o +ım ız +Ġor bit +ä¸ º +Ġе ÑīÑij +ca ke +Ġ׾ ×Ķ +ĠMin nesota +Ġbra ke +ow ie +Ġcra w +ê¸°ë ¥¼ +Ġprogram me +ĠÑģл ÑĥÑĩ +åı ª +ien ces +ĠO ui +ĠP ers +im iento +ĠIn vest +Ġsl ower +æĻĤ åĢĻ +ĠB eth +Ġnur se +ĠSpr ing +S p +Ġun employ +д и +Ġgen ius +ĠA aron +Ġê·¸ëŁ ¬ +Ġe i +ãģĹ ãĤĩ +Ġtank s +Ġau jourd +Ġcomplex ity +ĠÑĢ еÑĪ +Ġold est +Ġlet z +åħ ¥ +Ġphenomen on +pr int +ĠBund es +it at +ê» ĺ +Ġ4 2 +ĠW i +Ġinc om +Ġg ek +Ġembr ace +Ġt ies +out e +Ġd ose +ĠF riends +Ñĭ ÑĤ +егод нÑı +Ġor g +Ħë ¡ľ +ó g +Ġex ceed +Ġgod s +Ġê±° ìĺĪìļĶ +Ġsoci et +ĠUn ivers +it ät +Ġword en +Ġsm oking +Ġint ens +ab ul +em ia +è ij +4 7 +f ly +Ġ200 6 +ĠSer iously +Ġprze z +æ ¼ +c re +Ġn an +Ġmod es +ов аÑĤÑĮ +ĠH ang +em en +Ġbenefic ial +Ġvot ers +ĠBro ad +Ġb ent +W ow +Ġm ul +åĵ ¥ +ĠU C +Ġdam aged +ĠUk raine +Ġw ipe +Ġst ones +Ġman agers +Ġr ab +ÑģÑĤÑĢ о +l at +Ġde ce +Ġgraph ic +Ġf oss +Ġdisag ree +ĠAm en +Ġsec rets +ho le +ink le +Ġfortun ate +Ġì ± +ìľ Ħ +èIJ ¬ +Ġhab its +Ġbur ied +Ġh in +Ġvirt ually +ol as +ĠR P +ĠT ab +l ow +Ġsacr ific +Ġestim ated +ol n +Ù ĭ +c ur +ĠFe el +Ġcast le +Ġus eless +Ġdis g +ĠJac ob +Ġga an +Ġup side +Ġpare ce +ãĥ³ ãĥ +Ġsh ipping +ĠC R +Ġdis rupt +ac ter +UN D +f u +å® Į +ĠP ick +ĠChar l +ĠB ull +Ġenter prise +Ġpunish ment +ack ing +Ġfr action +Ġtab let +Ġch ord +Ġsimilar ly +åħ¶ 實 +ĠTor onto +Ġcour ts +ÄŁ l +esz cze +Ġpron oun +ĠS ister +ĠM P +Ġgreat ly +ĠD ank +ic op +Ġgar bage +Ġresol ve +ĠS af +ĠG un +Ġcomp ound +Ġë° ° +ĠMus ik +âĻ « +Ġcha os +ĠWhen ever +Ġe uros +Ġor chest +Ġrefr iger +al an +ภ· +ĠAm azing +Ġp ud +ag an +Ġj eszcze +is y +Ġaccur acy +ĠA ma +is ode +ë ĮĢ +Ġinterpret ation +ĠL iber +æ · +c am +Ġevol ved +ĠK ay +ÑĨ Ñĭ +Ġcreat or +it as +Ġal arm +Ġcelebr ation +z ent +Ġfun cion +Ġo v +umb ling +Ġ % +ภĪ +Ġrestrict ions +Ġн ав +ĠK inder +Ġban ana +ÑĮ Ñı +Ġdiam eter +Ġnor thern +ur ers +ĠP as +æĪij çļĦ +Ġwork force +Ġj ung +Ġguar ante +Ġequ ilib +Ġsu ite +Ġeu ro +Ġdel iber +S te +Ġdownt own +Ġch in +Ġc odes +ed ia +Ġshe ep +res hold +wn ie +ó b +Ġunder lying +l ia +j er +ÏĢ ÏĮ +ç Ŀ +th rop +Ġz ap +Ġvac uum +ĠH ab +Ġwra pped +ì ¢ +Ġinvent ory +м а +Ġco ord +Ġpl ates +Ġsy mm +T e +ĠwÅĤa ÅĽnie +Ġreach es +Ġlon ely +S cript +le e +ess er +Ġê± ¸ +ĠGes ch +ĠMo ving +Ġré p +ĠV ill +åIJ Ī +ĠR achel +Ġtem os +ON E +Ġstra in +Ġang el +Ġf Ã¥ +T r +Ġach o +Ġhighlight s +ĠW er +ĠCar l +Ġbl ur +Ġreg ards + · +ил ÑģÑı +Ġrec re +ĠY ani +U CK +ł ¸ +Ġelectr ons +ĠSp iel +Ġv ed +Ú ¾ +Ġbe am +Ġid iot +ë ĵ¤ +на Ñĩ +id d +Ġsk i +it ative +Ġhyp othes +ãģ§ãģĻ ãģŃ +ent er +ĠìķĦëĭĪ ë +Ġih re +Ġpre view +ang el +Ġdem on +Ġd us +Ġd ic +ĠK om +LE Y +... ! +Ġsie ht +ĠSon ic +Ġten ho +an as +Ġdig it +ĠMa ar +Ġunder grad +oun cer +uff y +Ġconvers ion +Ġdis connect +Ġe cho +om er +Ġcurric ulum +Ġper ché +Ġw and +.. ? +Ġroll ed +Ġentreprene ur +Ġtheore t +ĠÑī о +Ġins ights +Ġzus ammen +o in +ret t +p rodu +Ġvisit ors +e ous +Ġgrand mother +Ġhum or +Ġн иÑħ +zen ia +ins on +Ġres et +Ġbase ball +Ġmatch ing +ëĭ¤ ê°Ģ +Ġpun to +ì ¡ +Ġre de +Ġaddress ing +Ġfore cast +ĠB ol +Ġcol ored +Ġdocument ation +Ġexpect ation +ĠNor thern +Ġcre o +Ġà® ļ +f on +Ġuns ere +U M +Ġcop ies +Ġexpand ed +Ġveter ans +ĠAl m +Ġво обÑīе +Ġpsych ological +Ġnos so +Ġpay ments +im eters +Ġ-- > +ĠJenn ifer +Ġvolunte ers +os se +or ious +ĠбÑĭ ли +è Ĥ +ĠEs s +w s +ĠB C +ĠI C +W oman +Ġv ont +Ġeth nic +EN N +им о +Ġlo b +Ġou i +c s +Ġre he +Ġìł ģ +Ġch ick +ús ica +Ġk ont +ĠDist rict +Ġp ile +Ġа в +ей ÑģÑĤв +Ġ £ +Ġiss ued +Ġком п +Ġpros per +Ġprof ound +ĠDe ar +Ġãģ ĵ +Ġfund ed +Ġb isa +ŀ ĺë +× Ł +ĠìĿ ĺ +Ġtw elve +ĠChamp ions +éĿŀ 常 +Ñģ л +Ġ200 5 +p m +Ġon de +Ġdiff é +ĠCh all +Ġdifficult ies +Ġgar age +Ġd á +ün k +Ġë¬ ¼ +Ġtr an +Ġsubm itted +z w +ÙĪ ا +Ġar k +ĠìĦ ± +Ġgrocer y +он а +i ere +Ġa est +Ġexhib ition +Ġr és +Ġconsist ency +Ġcook ie +н ей +Ġrepl acement +æ² ¹ +ĠS em +ĠìĤ¬ ìļ© +8 00 +Ġgen es +Ġtrans action +ĠE L +Ġdur ante +ib les +ĠE at +t ail +iss ance +Ġto ss +Ġsurv ived +Ġoff ices +Ġsupport ive +Wh ere +Ġtout es +Ġë§ ī +Ġj okes +ier on +ap ers +Ġm ature +ĠM arsh +Ġs ido +k ind +Ġreal mente +ĠChe f +Ġquel que +Ġjud ges +e ft +ER S +Ġj et +Ġpers ons +è » +iz ations +ri k +Ġsh ops +ĠW y +Ġele g +qu è +qu oi +Ġjug a +Ġíķľë ²Ī +ĠQuest ion +ĠGlo bal +Ġìķ½ ê°Ħ +ĠSt ation +æİ ¥ +ĠOh io +Ġstick y +Ġst ressed +Ġg ün +Ġí Ŀ +ÑģÑĤ Ñĥп +é ¡Į +ĠPh D +im mer +Ġment or +Ġinv ented +Ġre un +Ġine vit +Ġpol ÃŃt +Ġexec ute +ĠSt ory +Ġout standing +Ġgu er +ĠR ain +Ġch oses +ĠT it +ĠÑģ еÑĢ +ĠSing apore +ĠN one +Ġch ronic +°ë į° +Ġe go +æł · +ES T +ãģĤ ãĤĬ +ĠW ang +ĠN AT +Ġa ug +Ġdes ktop +Ġetern al +ĠìĤ¬ ìĭ¤ +ĠConst itution +ìĤ ¬ë +×Ļ× ľ +p res +ĠТ Ñĭ +Ġinter f +Ġlist s +Ġfight s +ft en +ĠI owa +Ġmotiv ated +ĠH osp +Ġelse where +Ġpath s +Ġinst ances +B l +r ange +á» ± +ĠS it +man a +Ġìĭľ ìŀij +Ġm ình +ans as +Ġs na +Ġphilos oph +Ġpas se +Æ°á» Ŀi +ak h +ent al +Ġih n +ru ctor +Ġв аÑĪ +Ġgener ous +Ġp ivot +п ол +Ġjam ais +Ġcom ent +ĠL ew +od zi +ĠX box +Ġв од +Ġcons ent +ī ìŀ¥ +Ġdis par +l ass +ĠGovern or +Be ifall +Ġê° ľ +Ġbelo ved +׳ ×ķ +se ll +Ġhon ored +le h +Ġw äre +un ting +Ġfra ud +ĠR AM +ê± ¸ +Ġkill s +Ġeconom ics +0 4 +п еÑĢ +Ġco isas +Ġи гÑĢ +ÃŃ m +Ġmö chte +Ġìµ ľ +Ġstim ul +Ġfast est +l v +Ġg én +ĠS ounds +Ġ19 70 +Ġhome work +spe aking +Ġencour aging +Ġqu ery +Ġre vers +pro fit +Ġd y +Ġìŀ ij +ëĬĶëį° ìļĶ +Ġso ap +ĠG all +ĠC N +ĠAn s +Ġf ic +ank s +Ġdess ert +ĠìłĢ íĿ¬ +ĠM aking +Ġcome ç +ê³ Ħ +Ġassoci ation +D ad +he e +Ġh ogy +Ġap ro +Ġinvis ible +Americ an +í İ +Ġvi be +Ġem issions +Ġadvoc ate +Ġkick ed +Ġ vel +Ġsum mar +Ġfre aking +ch ron +Ġpin ch +Ġwszyst k +isc al +Ġpro ved +Ġmind ful +Ġt ä +Ġno ises +Ġisol ated +Ġcross ed +Ġê° ķ +Ġvo ilÃł +Ġch ore +ĠR A +C om +Ġrelax ed +at ro +Ġpre vention +Voice over +O D +ĠCo vid +Ġsepar ation +Ġ- [ +иÑĩ его +çĻ ¼ +ĠS D +ble ep +Ġindepend ence +Ġpart ial +Ġalgorith ms +ĠAny one +Ġassoci ate +h um +ic ular +Ġb ạn +Ġbatt les +G ood +App lause +Ġbast ante +Ġadv ant +ĠS weet +Ġref used +ãĤ ¸ +ĠÑĤеб е +pl et +Ġencour aged +åĵ ¦ +Ġmir acle +ĠB un +ĠV ar +rim ination +e lect +ĠM ult +Ġdeliver ing +e ing +Ġc m +ne hmen +ĠL ine +Ġë§ Į +en ced +ĠS ound +ĠCont in +ij d +UN G +k le +Ġth reshold +Ġcomp act +ad t +Ġto es +ĠP ur +own ed +ment ed +Ġdes igning +Ġvacc inated +Ġexha ust +Ġbas ics +Ġcons ists +ĠGu y +ac zy +Ġm ÃŃ +w on +å® ³ +Ġ8 5 +æ Ĥ +Ġm um +Ġign or +Ġprint ing +ac ular +p ow +Ġexpand ing +Ġg ir +ĠC ab +íĺ ¸ +ÑĤÑĮ ÑģÑı +ĠìĹ¬ëŁ¬ë ¶Ħ +Ġang les +Ġterm inal +ĠW on +ĠInter esting +Ġcross ing +Ġbond s +Ġpu eden +Ġor b +lar ın +Ġcreep y +Ġnutr ition +Ġall ies +Ġwire less +Ġdes ired +Ġcomp ute +ĠAri zona +ĠBeaut iful +Ġprodu ces +Ġnuest ro +t ed +Ġel igible +ĠÑģ оз +ic ial +ĠH ero +Ġcons ume +Ġrob ots +Ġpurch ased +c ción +Ġ iz +ượ c +ίν αι +ĠØ£ ÙĨ +Ġshad ows +ĠMed ia +Ġprin cess +Ġk lar +Ġwood en +Ġus ar +Ġg üzel +Ġsl ot +r ade +Ġë Ĵ +Ġhar mon +Ġingred ient +ors hip +ek i +Ġgrand father +Ġexcit ement +Ġpolit icians +.. ! +Ġout s +Ġsepar ately +ĠÑı к +ĠW elt +ĠP ow +j an +Ġorient ation +åı ĭ +L C +age m +ÛĮ Úº +åIJ Ĺ +Ġbran ches +ad en +rent e +ĠI hr +as m +Ġest ão +ĠN ic +Ġsla ve +Ġcomp ress +c rowd +Ġclim bing +ĠMan agement +ĠB ah +Ġpan ic +Ġk or +Ġcool ing +Ġb ind +Ġз ад +Ġr ack +Ġent it +Ġs ends +Ġyour selves +d es +ĠMuslim s +Ġí ļ +ism a +cy cle +un kt +ĠC ore +Ġinj uries +Ġident ical +ка Ñı +ĠDeutsch land +Ġе е +is an +Ġtr uc +let on +Ġback up +Ġult ra +Ġab und +ille urs +Ġby ÅĤo +åħ ĥ +ort ed +Ġearth qu +Ġк л +Ġobs ervation +Ġmainten ant +el en +Ġsett led +Ġp ela +ĠE conom +Ġ Õ +Ġste ering +ĠAL L +ĠC her +Ġpat ience +ĠS now +Ġb or +Ġworth y +Ġcá i +Ġ× § +Ġκ α +d og +ĠK aren +ill es +Î ² +Ġagric ulture +×ķ× Ł +ĠSe an +Ġsens ors +íķ ´ë +ag h +Ġpublic ly +Ġpe ux +ĠAlex ander +Ġprior it +Ġla zy +ard on +atter ing +Ġcost ume +س ت +è¿ ĺ +Ġun w +Ð Ľ +Ġthick ness +qu ito +g unt +ist as +ne ys +ĠëIJĺ ê²Į +ĠBr asil +Ġto ken +Ġaff ili +l on +Ġf Ã¥r +ĠBe ach +Ġw itch +ĠSe ven +Ġp ant +λ λ +Ġcapt ain +å Ŀ +Ġve ut +Ġpou voir +ac z +ĠBar b +Ġut ility +Ġcontempor ary +Ġobt ained +Ġpainting s +e ar +Ġpe an +ĠO g +Ġc ust +л ем +Ĥ ĺë +ĠIs so +Ġac onte +ĠTe le +ĠAss istant +à ī +íĸĪ ìĬµëĭĪëĭ¤ +Ġcount s +Ġbu ck +ĠDe ep +Ġtack le +Ġh arsh +Ġdec ides +éĹ ľ +. âĢĭ +éĤ Ĭ +ĠAng el +Ġlay ing +Ġcal ories +Ġcontro lling +Ġadvant ages +ĠÑįÑĤ ой +Ġappro aching +Ġthreat s +ak an +em atic +m ann +ê³ µ +m umbles +ac ió +Ġmaint aining +Ġfound er +l ah +f ight +Ġadm itted +âĢ¦ . +ķ Į +ab ol +Ġus age +Ġn onsense +ĠPal est +Ġcont re +ĠDemocr atic +ĠE R +j ekt +Ġar bit +Ġг ол +ĠMich elle +ich er +es h +ĠP ho +к ом +4 9 +ĠEner gy +ο Ïį +Ġc ents +Ġref ers +Ġg ospel +ĠSh a +ĠSh are +×Ļ× ł +Ġclin ic +ĠëĦ £ +Ġequ ality +ug s +Ġsh ed +Ġplan es +Ġtout e +re ck +Ġstra nd +Ġbi ology +Ġle ague +ĠP ok +Ġnúmer o +ĠCo ast +Ġconsist ently +Ġnuc le +OO OO +Ġob jet +Ġch or +Ġg inger +Ġd abei +Ġcoop eration +à¯į . +nt en +ç ¤ +l Ãł +ìĸ ij +r ado +Ġpass ive +Ġglo ves +Ġunder ground +Ġlog ical +Ġk et +Ġfunction ality +¸ë ¦¬ +Ġport al +ell er +×Ļ× ¨ +ĠT ed +ĠG re +IJ ľ +Ġperson nel +Ġemer ging +ĠF ür +Ġmeant ime +usal em +ĠC lear +Ġtra pped +Ġìļ ° +Ġdis pl +Ġmet tre +Ġmun icip +Ġwithd raw +Ġsp at +un es +Ġaccess ibility +æĪij 们 +Ġap are +Ġpros pect +Ġн аз +Ġcop per +ĠP RO +Ïħ ÏĦ +Ġattack ing +ĠV in +ĠSt one +Ġinvestig ate +st yle +ĠÎ » +ë ¡Ŀ +ë§ Ī +Ġins pect +Ġli ver +ал иÑģÑĮ +Ġser a +hal ten +em an +Ġmin istry +' ' +Ġd ots +ãħĭãħĭ ãħĭãħĭ +Ñĥ ÑģÑĤ +ĠJ ak +AK E +Ġg aps +uck er +ĠинÑĤеÑĢ еÑģ +ĠEm ily +Ġinter val +Ġt ender +ĠTechn ology +g ame +Ġtri b +ÙĦ ا +ĠDevelop ment +Ùħ ا +Ġwr ist +Ġf ires +Ġtarget ed +ìł IJ +Ġso d +íļ Į +Ġoldu ÄŁ +Ġse asons +vent ions +Ġн его +Ġsomet ime +ли в +n é +Ġt ú +ĠDe us +Ġexec ution +á p +ĠCh ange +ĠInd eed +Ġreg ulation +ĠH ung +é is +Ġwish es +Ġj azz +Ġstruct ural +Ġblow ing +Ġby Äĩ +Ġtherm al +ph ant +ÑĢÑĥ з +ан ÑĤ +ĠP ull +Ġconf usion +нÑĭ ми +Ġscen arios +ìłģ ìľ¼ë¡ľ +Ġд еÑĤ +Ġtatto o +Ġaut re +Ġhe ating +Ġtreat ing +Ġпон им +Ġexc lus +ĠL OL +we ar +ag le +Ġzur ück +Ġr ational +s u +Ġdet er +ĠN ative +à®ķ ள +ach ed +Ġ ãĥ +ĠEnt onces +Ġhor a +ìĿ´ìĹIJ ìļĶ +Ġl ite +à « +Ġsix th +Ġбол ее +act or +Ġpsych ology +çĽ ¸ +Ġdem ands +Ġpe er +Ġnew ly +ĠWW E +Don ald +ĠBo x +Ġp ine +Ġload ing +ĠN ico +Ġs ÅĤ +omm e +AR T +Ġrecru it +Ġbug s +arent s +ĠпÑĢ об +ĠIn side +ipp er +d ramatic +Ġplan ets +ord e +Ġy oga +ch ild +ĠMar ie +Ġãģ Ĥ +ĠB L +Ġfil med +Ġref resh +Ġtomato es +Ġf et +Qu é +Ġ !! +ĠëĤ ´ë +r ine +Ġinteract ive +s al +ann ah +pe z +ç¶ ĵ +Ġunderstand s +ĠTok yo +Ġlibr aries +Ġread er +ij IJ +o z +ĠEnd e +ĠF lo +Ġm ild +Ġpo etry +Ġж ив +æĦ Ľ +Ġbeh ave +Ġdo en +ĠSus an +p age +ra ham +Ġcommunic ations +Ġtun ing +Ġp ac +Ġanx ious +I O +M ark +Ġhi ç +book s +Ġp iss +Ġen abled +achel or +ĠF OR +Ġé c +ĠT R +il st +h at +ĠìĿ Į +Ġty ch +Ġj ar +Ġbuild s +ĠAr gent +Ġinter medi +Ġl ou +Ġa ra +Ġassign ment +Ġcabin et +Ġretire ment +ãģ » +Ġdis abled +ric a +Ġa wards +Ġbo ots +Ġacknow led +Ġth y +Ġêµ ¬ +Ġsy nd +ни й +il ton +Ġprob l +ĠF al +Ġverd ade +Ġ7 00 +ĠLe arning +oc us +Ġpal ace +N ot +t ain +c m +Ġmagn et +inc oln +Ġfig uring +ĠL yn +ĠB oss +ĠV O +Ġdiagn osis +Ġequ ipped +w atch +in os +ad ers +Ġsh elf +Ġorgan is +Ġn od +Ġk ız +pp ers +Ġrest ore +Ġart ic +ĠVo ice +ı yorum +ê² © +Ġspread ing +Ġh ips +Ġw ard +ure au +Ġinter section +6 6 +Ġ3 9 +ç ³ +Ġwait ed +ì ´ +hh hh +Ġd ys +ĠE N +Ġb atch +Ġca f +Ġmark er +大家 好 +or able +ó ria +Ġste pped +Ġcelebr ating +ан а +Ġwor n +ĠF ol +Ġpl a +Ġattempt s +Ġtwe et +Ġr ust +g ence +í Ĩµ +Ġre vel +Ġre cept +en ess +Ġ( ( +ãĥ¼ ãĥ +! âĢĭ +ĠìĨ IJ +Ġinfluen ced +и ж +Ġкон еÑĩно +Ġcolleg es +ion i +Ġs ag +An n +ol ar +Ġexpress ions +Ġsu its +Ġowners hip +el and +pie ce +æĢİ ä¹Ī +Ġdesp ués +Ġt el +Ġins ult +Ġêµ īìŀ¥ +ĠSm all +ĠF R +ok a +ber ries +ĠAnt on +ел Ñı +Ñı Ñģ +Ġval ve +act s +Ġwood s +à® £ +Ġcult iv +Ġf á +ãģ¨ ãģĦãģĨ +Ġche ers +Ġassum ption +Ġfit ness +ÃŃ cul +Ġpod r +Ġwe it +ĠH ind +Ġd ign +Ġз н +Ġsqu ad +Ġdest ro +c ere +sh irt +imm t +eng ers +Ġs ä +k ÅĤad +Ġ ÈĻ +Ġocc as +Ġì¤ Ħ +Ġprocess or +ĠD M +ĠDad dy +Ġsoon er +Ġstraight forward +Ġdepart ments +ĠChr ome +Ġwork place +ĠPy thon +Ġm eng +ĠD AN +ĠI ce +ĠëĪ Ī +ĠG i +Ġh iring +Ġland ed +Ġdemocr atic +ied z +ãģĺ ãĤĥ +Ġse v +ic ia +Ġespe cial +ĠN ous +Ġh ät +Ġb ou +per t +ies z +åij Ģ +Ġv il +ÅĽ li +Ġî n +Ġloss es +éķ · +Ġto ast +Ġreal m +ĠAust in +ĠIn formation +Ġres ume +Ġch ase +Ġsal ary +Ġë¶ Ħ +ли Ñĩ +ĠÑģл ед +ĠFur ther +Ġcar ing +Ġv ig +Ġval or +è¿Ļ 个 +ĠÑĩ а +Ġanalyt ics +Ġglo be +ĠM AN +Ġn el +ìĿ´ì ķ¼ +Ł ¼ +Ġo y +íķĺ ìĦ¸ìļĶ +j en +Ġtrou bles +ah aha +Ġchurch es +u et +Ġmeasure ments +b il +ì ½ +if ully +ин Ñĥ +ĠWil son +¦ ´ +ĠíĮ Į +Ġì° ¨ +Ġp úblic +ĠJer usalem +Ġn ails +Ġsp ine +Ġhe mos +Ġz n +qu is +ĠLe ben +Ġrefer ences +IT H +i per +ĠÑģеб Ñı +ì ģ +ĠW a +st ate +§ Ŀ +åħ ± +ĠGen er +Ġact ress +ĠEn joy +๠ĥ +Ġ× Ĵ +Ġinfect ed +Ġsh aking +Ġn ick +ภ¸ +Ġf ot +Ġaccompl ished +u ke +Ġshe ets +Ġf ence +Ġnurs ing +Ġintrodu cing +Ġfe at +O ne +T O +Ġcl ubs +ĠBru ce +on ge +ch ange +ĠBat man +åı ° +ĠOffic er +Ġhyd ro +Ġsupp lement +Ġc ela +Ġlong est +Ġcompet ing +Ġcon he +g iving +Ġbra ins +Ġlo ans +Ġw age +ĠCl inton +Ġs Äĥ +ane ous +Ġl ord +ÑĢÑĥ ж +Ġqu iz +Ġst iff +ĠL GB +s z +M E +m are +th ere +Ġn är +ĠM and +l ast +Ġd ag +Ġhalf way +ĠB and +Ġëĭ¤ ìĭľ +ĠA ren +Ġi le +P N +ent o +Ġalg um +Ġsoc cer +Ġblock ed +ĠJon athan +Ġse w +ĠTest ament +Ġv ale +Ġbehav i +å§ ĭ +Ġcon na +IC H +Ġaud iences +m l +amm ad +ĠìĤ ´ì +I GH +Ġr aces +em ed +Ġm á»Ļt +à ¯ +Ġover s +Ġdecl ared +Ġs ana +ĠU na +ĠÑĢ е +uck s +Ġp airs +Ġan ge +N e +Ġup s +av y +ø r +ree k +Ġbehav iors +Ġreflect ed +Ġprior ities +Ġcon du +Ġret reat +Ġexp enses +Ġë´ IJ +Ġtri ple +Ġêµīìŀ¥ íŀĪ +ä lt +Ġind igenous +Ġmin ing +Ġaccept able +Ġru in +C A +u ine +Ġpip eline +ct ic +ê t +ĠвÑģ его +Ġb oun +ĠDig ital +ĠBo om +ÑĨ е +Ġл ÑĥÑĩ +Ġas c +ĮĢë ¡ľ +ĠGood bye +Ġrend er +ene z +ar re +ĠTH AT +b our +ic ión +ãĤ Ń +E very +Ġw ires +ĠPar liament +n ung +ate ur +ĠS ave +ĠPh ys +Ġam or +ĠE ve +Ġfr ight +Ġgam ma +Ġmic ros +m itt +ĠC ode +ĠBe y +pl ed +ĠиÑģп олÑĮз +ç Ĺ +ìĥ ī +å¥ ¹ +Ġmon et +ĠJah re +Ġlux ury +Ġde af +Ġbet ray +Ġê² ° +и ки +Ġdefe ated +Ġunder t +Ġwe g +Ġcool er +ãģķ ãĤĵ +iam i +éĤĦ æľī +ĠJess ica +ĠJ oy +Ġsoph istic +ени и +ðĿ ĺ +Ġch ili +ĠTy pe +Ġprote ins +Ġpresent ing +al ia +ìļ ¸ +ĠMaj or +Ġmolec ule +um er +Ġcoll apse +ĠAny ways +ĠMount ain +ant ed +ãĢ IJ +Ġвиде о +æ° ´ +A ud +Ġcon qu +Ġvo ll +Ġkn it +Ġmem br +ĠMark et +Ġd ari +Ġcalcul ated +г и +Ġshrim p +ĠM u +ĠпÑĢ оÑĤ +Ġìĺģ ìĥģ +Ġproduct ivity +Ġcogn itive +ĠHe b +ict ions +ê² ½ +Ġcr é +f ör +Ġpray ing +ash i +ĠT ik +ó r +w en +ÑĮ Ñİ +ix o +Ġ( " +ĠÑĤ ел +Ġìĸ´ëĸ ¤ +ĠпеÑĢ ед +ĠD rive +ãĢ ij +ĠE qu +Ġequilib rium +Ġdescri bes +не е +4 2 +ĠCur rent +y y +Ġabsor b +Ġsold ier +d ers +Ġtestim ony +Ġdec line +ľë ¡ľ +g age +Ġinsp ire +la pping +Ġspin ning +Ġsla very +Ġfac ial +Ġtrad itions +ári os +ĠHosp ital +Ġn est +ĠëĪ Ħ +Ġto i +Ġfe ars +ìħ ¨ +ĠM uh +Ġgradu ation +Ġimpact ed +Ġa unt +ĠLet s +Ġalumin um +Ġdomin ant +ĠDav is +ĠNav y +Ġcom pt +op les +Ġest ava +è ¥ +Ġsc al +Ġpres erve +ĠO pp +Ġpract ically +Ġmagn itude +Ġf itting +Ġcoordin ate +Ġfurn iture +ĠFam il +Ġexplos ion +Ġdocument ary +ĠS cript +Ġport ray +m at +Ġschedul ed +Ġdynam ics +ph y +ak y +ĠU I +C he +Ġcontinu ously +ĠPro v +å° ij +Ñĥ з +ra h +Ġger ne +pro of +Ġsecret ary +ĠPat reon +sc ream +ĠK ids +á»ĵ i +Ġk g +Ġuncertain ty +Ġк ажд +Ġmit ig +Ġread s +å· ² +ĠR u +Ġpri est +Ġн ед +Ġlimit ations +Ġflo at +6 00 +ĠT oy +ĠJim my +Ġoff ensive +en i +ĠX i +Ġeye br +ĠTur k +Ġaccident ally +Ġoh ne +ĠS aud +9 5 +ĠD utch +ан Ñģ +ĠSe attle +Ġëĵ ± +che ck +k ÄĻ +Ġcontrib utions +Ġbes ide +Ġqu indi +Ġfle w +æĹ ¶ +Ø° ا +ĠL O +Ġwa ist +ĠE V +Ġhol idays +j on +Ġmis under +Ñı н +Ġb out +Ġd imin +Ạ½ +ó l +ĠGr ace +Ġinput s +Ġden y +Ġform ing +ĠB ild +Ġad equ +Ġfol k +Ġreject ed +se mb +Ġfrust rated +op en +ĠBet ter +il on +Ġtow el +Ġdifferent ial +Ġsac red +Ġsa il +éĩ Į +ent imes +Ġgentle man +Ġicon ic +Ġcomp aring +Ġs agt +Ġtext s +Ġgrand ma +Ġroll s +Ġcont ents +ä¸į 好 +оÑģ Ñģ +Ġsusp ension +ro it +¦ ¼ +Ġasse z +Ġd ort +ĠM ath +ĠVict or +ĠJava Script +ä¸į å°į +Ġen han +Å Ļ +ĠB ush +Ġpromot ion +Ġk in +Ġmon sters +ĠColor ado +ĠÎ ² +íķ´ì ļĶ +æŃ £ +iffer ent +Ġn aked +Ġpro d +et ics +ĠW oman +Ġtreat ments +Ġest oy +v é +Ġlif ting +Ġy apt +ĠRo ber +Ġì¹ ľ +Ġsubst itute +ak u +r idge +Ġê± °ë +Ġrespond ed +Ġb é +ĠEngine er +Ġtransfer red +ë ² +Ġha ber +o op +ĠW E +Ġv est +Ġfor ty +ĠD S +Ġ200 4 +Ġco aching +n om +ĠB ab +Ġn ossa +ĠJ ake +Ġg y +Ġde leg +Ġìŀ ł +ĠкÑĢ аÑģ +Ġstand point +Ġdis ad +Ġart work +A d +ill o +ĠÄij ược +ĠPr om +ĠL ib +Ġcritic ism +Ġcontact s +ÑĢ ам +Ġachieve ment +ÐĶ а +Ġdiss ol +ĠVeg as +Ġstream s +ĠK ent +ĠعÙĦ Ùī +Ġrad ius +Ġsu cks +ĠA ch +Ġf i +ou st +ĠлÑİд и +Ġpal ette +ĠH az +ĠAnth ony +Ġtem a +ĠC os +Ġsa fer +α ÏĤ +Ġcont rad +Ġma ior +Ġinfl ation +ĠSil ver +Ġatt ending +íķľ íħĮ +art o +Ġapplaud ing +Ġcomput ing +ĠH at +æ » +k now +mak ers +Ġcon oc +Ġeduc ated +Ġmod ified +Ġinc lusion +ment al +ŀ IJ +is ia +ĠÏĢ οÏħ +Ġa un +ĠIre land +Ġk ö +Ġcompl iance +Ġinsp iring +иÑĤелÑĮ но +Ġdisp os +ì° ¨ +Ġw ip +r ical +raw d +Ġt res +Ġmob il +olut ions +B O +Ġb ounce +Ġassum ed +ĠMed ical +Ġf iscal +Ġng Æ°á»Ŀi +ition ally +Ġst olen +ĠB M +Ġmechanism s +ε ί +Ġqual ified +Ġìŀ IJë +ught ers +ĠH IV +ĠL ots +Ġser vers +Ġcar r +ĠT ogether +Ġattract ed +Ġk r +æĪij æĺ¯ +th ur +in in +ĠH alf +È Ľ +ĠP ap +Ġremind ed +AL L +Ġhel met +Ġbott les +Ġprofess ors +Ġse ine +ÅĤ Äħ +ãĥ ı +Ġê±° ìķ¼ +Ġ×¢ ׾ +f un +ĠB ird +Ġfight er +ĠëĶ °ë +ĠT ool +Ġt in +ino is +ë ¶Ħ +×Ļ× Ł +ĠC AR +åIJ į +irst y +Ġout door +ĠN S +ãħ İ +ff en +Ġl ud +H ello +Ġroll er +ie le +ĠPol and +Ġap a +ex p +Ġcertific ate +ĠT own +аÑİÑĤ ÑģÑı +ild e +Ġdeterm in +P R +Ġfree ze +Ġmain stream +Ġobject ives +b lo +Ġtak ie +åĵĪ åĵĪ +Ġë°Ķë ¡ľ +el et +ĠI V +ĠF ast +Ġd ere +em p +ĠD ra +ĠìŀĪ ìĹĪ +Ġdisc rimination +Ġε ίναι +ne cess +æ ® +ıģ ı +Ġpost ing +wi ÅĽcie +Ġl ub +Ġol ive +Ġr im +Ġmodel ing +Ġa ño +ĠPak istan +Ġover l +Ġinf lam +N E +ìĹIJ ê²Į +Ġatt ended +Ġdeal t +ĠAl t +ĠL incoln +Ġaw ake +Ġfil ters +ĠWith in +czy wiÅĽcie +Ġs û +ĠJohn ny +Ġintegr ity +Ġisol ation +ĠE asy +ĠпÑĢ ин +ĠAl ice +Ġsm iling +en ix +, ... +Î ¶ +Ġbeg un +Ġjew el +Ġconvention al +Ġstat ist +Ġhand ed +Ġir re +Ġpro hib +Ġsatell ite +é¦ Ļ +ĠInd ust +Ġtra ged +Ġtra va +Ġih m +Ġcru el +ĠAg ora +ĠD oc +Ġz ones +Ġm all +Ġtr ay +×ķ× ł +Ġir rit +Ġk ans +ĠBe at +ud ge +ie lle +Ġtrust ed +Ġb ikes +ĠÑĥ п +ĠM ember +w ick +Ġcreat ors +Ġher itage +ind istinct +Ġres ur +enn en +C ome +Ġf iring +ĠBu eno +ĠТ о +ik an +ett es +Ġk es +Ġtri ps +Ġdivor ce +ĠK l +Ġcons ol +ke ep +기 ê°Ģ +ĠRep ort +Ġhost ing +Ġdiam ond +Ġcompl ic +Ġhel icop +Ġdep uis +d s +ĠCh an +Ñı л +Ġsc issors +il ation +Ġprop ortion +ER E +ĠÙĪ اÙĦ +int a +Ġmuch as +u ation +it is +æĬ Ĭ +Ñı Ñī +Ġni in +Ġemphas ize +uel a +Ġprodu cers +Ġr ze +änd er +ET H +æ º +Ġconst itu +åĽ ½ +Ġperform ances +ist le +go v +ĠL iter +Ġincorpor ate +Ġeduc ate +ĠN in +ì ª½ +Ùĩ Ùħ +el eration +×ķ× ij +Ġya ÅŁ +or ous +ĠC as +Ġgr ants +ëĬ ¥ +am el +Ġê·¸ë łĩê²Į +ĠE ste +Ñħод иÑĤ +ĠпоÑģ ле +Ġg ent +Ġfocus es +al ities +ĠR h +ë ³´ +æ° ij +ĠD ance +r r +Ġam er +Ġutil ize +Ġl ÃŃ +ĠAm ong +Ġpregn ancy +Ġlo ops +ал оÑģÑĮ +ĠM oh +Ġcatch ing +Ġglo b +Ġa jud +Ġ[ ? +ĠAn al +lo oking +Ġsurf aces +Ġprogress ive +Ġvir al +0 8 +Î ¾ +K A +Ġ ży +Ġpick s +ann on +Ġbul k +ĠR oss +Ġdescri bing +ĠG el +Ġloc ally +Ġend less +Ġmass age +Ġclean ed +Ġtravel ed +ен Ñĭ +Ġsent iment +ig ma +ĠN as +Ġchemical s +Ġright eous +ĠMag ic +Ġrel ates +Ġtruck s +Ġ19 60 +åĪ ¥ +Ġapp et +Ġsn acks +ĠSum mer +Ġy üz +Ġpr is +ĠMex ican +Ġtransp aren +Ġminor ity +Ġver te +Ġl assen +4 6 +л ек +é p +ĠÑĦ илÑĮ +Ġi yi +Ġsp an +íķĺ ì§Ģ +Ġind icated +qu ar +Ġscholars hip +ĠLGB T +Ġhistor ically +ó ÅĤ +Ġmin ist +Ġpen et +ĠR ap +Ġcons ervation +çĽ ´ +ĠH oney +ĠBe i +id el +Ġrespons ibilities +Ġmess y +ĠEx cept +OR E +Ġiniti atives +Ġjun ior +Ġdesign ers +Ġexpl oration +Ġspons or +Ġmob ility +Ġint eg +land o +Ġb ark +Ġindic ates +à ¶ +Ġemploy er +å® ī +Ġcous in +Ġbo iling +Ġch rom +Ġç al +Ġper pet +Ġcont ained +Ġpark s +Ð « +ĠEngine ering +P lease +ĠStart ing +her o +Ġlaw yers +è¥ ¿ +Ġz d +Ġfranch ise +ra ge +Ġint uit +ĠG L +re ach +ĠE lle +Ġnh Æ° +ĠN ord +Ġbe an +0 7 +Ġple asant +å½ ĵ +v iron +Ġgrad ient +z us +ĠE M +Ġess ay +ìĹIJ ìļĶ +ế n +n u +á» « +ĠÃī s +Ġden omin +ĠGirl s +Ġperson nes +ĠاÙĦØ £ +b ild +ĠSt at +Ġcompl iment +ĠK ate +Ġoptim al +Ġh id +د ÙĬ +Ġquick er +w all +E n +IN E +?? ? +ì² ´ +ĠA ction +å Ł +Ġpenal ty +ĠK az +' ? +Ġc ried +Ġcan vas +ft e +Ġexc lud +¸ë ¡ľ +Ġemphas is +Ġen zy +ĠH ou +Ġoverse as +ÃŃ amos +å¸ « +ö glich +Ġhead phones +c n +ĠA ge +Ġa kan +Ġcharacter istic +íķĺë ©´ +get s +Ġë¶ Ī +Ġr ival +Ġb orders +em ente +em ás +Ġy ol +Ġcom pe +end ers +ınd an +Ġmö glich +Ġbubb les +nat ural +Ġar med +Ġel abor +ĠìĿ´ë ²Ī +Ġwash ed +οÏħ με +è« ĭ +Ġfl avors +Ġexist e +Ġpre st +ĠThe ma +оп ÑĢоÑģ +er on +U E +er i +Ġconc er +Ġa ixò +åħ © +Ġprotect ive +Ġзна Ñİ +ĠëĤ ł +ĠII I +Ġme er +ĠSh op +ll i +ĠOr der +ĠM Y +ĠG host +ãĤĤ ãģĨ +ad el +Ġst ole +Ġrele asing +ĠCom ment +Ġtra ins +ë ªħ +Ġw issen +ens ed +Ġdesc end +Ġf ier +Ġrad i +Ġpers u +ç ¢ +Ġм н +ĠD est +Ġwor ries +it et +b as +Ġst ab +n ame +or ic +ĠCl ose +Ġalum ni +ĠS elf +ff e +it ating +ather ine +ĠRight s +Ġell os +Ġwar rant +Ġn erve +Ġveget able +ĠTe il +Ġê°Ļ ìĿ´ +R Y +Ġsustain ability +Ġste ht +Ġbr id +ada ÅŁ +Ġt v +Ġdur ation +Ġpesso a +Ġmet rics +Ġad am +c as +аÑĢ и +Ġev ident +Ġdisplay ed +Ø§Ø ¦ +Ġre ck +ĠBudd ha +Ġde le +ĠDie go +os ph +Ġb la +ĠM ik +ul ator +Ġ200 1 +Ġpromot ing +y ch +ĠE X +Ġlast ly +Ġout line +Ġspir its +Ġve ux +Ġsubt ract +ĠÅŁ imdi +Ġp ins +Ġbur ger +Ġmol to +Ġhab ÃŃa +Ġë° ĺ +ig u +er st +Ġn en +Ġbac on +it ious +Ġcar ries +Ġprom ises +nd e +ĠLe ft +ĠL im +æ £ +Ġ4 4 +Ġcare ers +Ġì£ ¼ë +Ġspeed s +qu é +m ad +mark et +is me +Ġ200 3 +Ġre cess +ĠJ UD +Ġrac ist +ĠSch l +Ġpar ler +Ġot ros +ish es +Ġconvert ed +aa aa +ани и +ĠAr k +ĠCh ance +Ġelement ary +ε ν +ink s +Inter viewer +Ġfre ely +al ah +Ġëĭ¤ë ¥¸ +Ġrequest ed +Ġtor que +no ÅĽci +ou red +ĠSt aff +Ġst ain +ĠAl an +Ġv ere +ĠW inter +Ġdef ect +ied y +Ġbe ats +Ġh á +um n +o ons +it udes +Ġse it +o ly +Ġres erv +Ġext r +Ġphys ician +vis or +Ġhand ful +ĠN ations +Ġì¢ĭ ìĿĢ +uc cess +Ġup stairs +ĠSqu are +Ġhe in +ĠSe ason +ol is +Ġpr ince +Ġdef ensive +ç ½ +Ġм еÑģÑĤ +Ñĸ й +Ġا ÙĨ +um ble +ê¹Į ìļĶ +Ġass ass +Ġcirc ular +Ġqual ities +Ġh mm +Ġbl own +ĠL iz +ĠK ur +ĠS A +Ġfind ings +Ġcol ours +Ġde lle +ĠI R +ĠA th +ĠD ub +ĠO x +ĠØ ® +Ġpo ckets +Ġgr ill +Ġswitch ing +Ġprefer red +ĠW ales +Ġex emplo +Ġchop ped +Ġvacc ination +Ġne uro +Ġspec ify +iv os +Ġser á +Ġz ie +Ġà® ® +Ġresult ing +ĠU gh +Ġmess ed +C D +Ġpa ar +Ġcom er +Ġcou ch +ĠFest ival +Ġ4 9 +v ous +z ens +ç¨ ® +ĠKenn edy +ĠT s +Ġë³´ì Ĺ +Ġdemonst ration +Ġun to +Ġfrust rating +Ġlabor atory +Ġe gy +Ġbeaut ifully +Ġìŀ ¬ë +Ġal gu +Ġö yle +ä½ł çľĭ +ĠP H +Ġfort une +Ġclean er +ĠRob in +Ġsa us +ĠG eld +Ġk at +o bs +Ġol ur +Ġm att +Ġquest a +Ġsuggest ion +en cer +о ÑģÑĤ +Ġrad ar +Ġìŀ ¡ +ish a +à® ¨ +ãĤĵ ãģª +j es +Ġve el +ìĤ ° +Ġauth ors +ãĢ İ +pl an +Ġcollabor ative +Ġinst inct +Ġfar ming +au ge +E du +Ġmembers hip +Ġsimult aneously +Ġb ake +Ġk ä +Ġlect ures +Ñĩ еÑģ +Ġprend re +Ġcoll aps +ĠS aya +ĠF ut +Ġy og +ĠR ather +ر ÙĬ +Ġcamp s +ол од +Ġsim ulation +ĠM ak +La ughs +Ġgre y +Ġsent ences +y en +ĠUn less +J e +ĠSat an +ĠÑĤак же +ĠN A +Ġbr on +Ġ? ] +Ġsoul s +Ġlight ning +Ġimag ined +Ġczy li +ps ilon +et ta +Ġbelie ving +Ġstrong est +ĠC ON +Ġquel ques +Ġimmig rants +Ġwall et +éĢĻ æĺ¯ +ĠJer sey +Ġimplic ations +Ġfor b +ãĢ ı +Ġun believable +Ø§Ø ¡ +Ġoper ational +ü s +ĠG M +Ġê·¸ëŁ °ëį° +Ġgrac ias +Ġent end +ĠReg ard +ro b +ĠÑĤ еÑħ +è ı +ĠRev olution +Ġwa ar +ĠB iz +th eless +Ġspons ored +qu ier +ĠìĿ ¼ë +Ġte k +ĠëIJ ł +ig keit +ĠL uck +ĠCertain ly +Ġto ll +Ġн иÑĩего +ĠM oney +ĠÑģ ÑĤоÑĢ +ĠDou ble +ĠW olf +Ġch unk +ά ν +it és +on ing +M ar +Ġgrand es +Ġcollect ions +ĠEurop a +Ġа ÑĢ +ĠâĢĭâĢĭ âĢĭ +Ġê·¸ëŁ¬ë ©´ +Ġоб ÑĬ +Ġãģ ª +Ġìĭľ ê°Ħ +ĠC ustom +Ġì² ĺ +Ñĸ лÑĮ +Ġindivid ually +í Ĺ +Ġdo zen +Ġo we +ĠVict oria +åı¯ èĥ½ +Ġbe et +ur b +Ġanal og +i ção +Ĥ ľ +so ever +Ġmod o +Ġsubscri bed +ìŀ ¬ +Ġent ities +çī ĩ +Ġclos et +Ġrespond ing +Ġprin ter +ĠStep han +Ġby ÅĤ +ĠD om +ĠF ern +ĠP ier +ĠwiÄĻ c +Ġh ence +Ġmod ules +ãĥ ¬ +ĠëĶ ± +ĠDann y +ĠÑģеб е +Ġv ad +ĠìĹ Ħ +Ġs ous +Ġsp here +B Y +ĠP ed +ign ed +Ġwhe at +Ġund ers +Ġevol ve +Ġdec lar +Ġlight ly +Ġident ifying +æĦı æĢĿ +Ġlegend ary +Ġgen uine +Ġgr ind +ĠU ne +ge ben +Ġb icy +Ġjump s +Ġprov ince +zi ÄĻ +Ġ×IJ× ł×Ļ +Ġh oc +Ġб л +ĠGr ad +Ġreven ge +ĠاÙĦ ت +o oh +æĭ ľ +аÑĨи и +å¹ ³ +Ġelect ro +ĠëIJ IJ +ãģ§ ãģ¯ +Ġf als +ri el +ok er +ĠEx cellent +ĠMor gan +Ġbr ick +Ġsubstant ial +Ġpoll ution +ĠT ür +ĠEv et +Ġl ung +ãģ ĸ +×Ļ× © +omm es +Ġreal izing +Ġhum ble +ĠL ock +Ġb od +Ġìĸ ¸ +Ġpe ers +uz z +Ġembed ded +Ġclar o +Ġag greg +Ġemploy ers +ĠR aj +Ġãģ ¨ +ĠY i +Ġje u +at ers +Ġstri kes +n os +aut res +d r +op her +ĠApp arently +íĺ Ħ +Ġinf ant +ا ب +ÑĤ Ñĭ +í Ľ +Ú ¯ +Ġred es +acaÄŁ ım +ĠDA VID +ĠCh icken +Ġperspect ives +Ġview er +Ġsh ar +ĠпÑĢо из +lig t +er os +it able +ил оÑģÑĮ +Ġdif ÃŃ +´ë į° +Ġret ired +Ġthat s +zen ie +be iten +Ġmy cket +ĠR ab +Ġinflam m +ì° ® +Ġd um +Ġdad dy +æľ Ł +Ġimm ers +Ġplay list +௠Ĩ +Ġtra um +Ġref use +st ep +à® ļ +c up +Ġpop s +r imin +ay ım +Ġa ld +Ġun necess +Ġd ah +ĠIr ish +Ġcomp r +la ÅŁ +T P +Ġtransl ated +S c +ce ÄŁim +´ IJ +Ġd rei +ĠлÑİд ей +Ġqu iero +Ġhe le +z lich +Ġapp les +Ġdistrict s +Ġcred its +Ġas p +Ġëĭ ¨ +or al +å½ ± +Ġste pping +ĠV a +Ġg ains +6 5 +Ġnuest ra +ed ay +ass ador +ĠL ind +Ġcrop s +ci endo +ig ue +Ġb ana +A m +Ġp ent +Ġadd iction +Ġpack aging +ä d +ª ¨ +Ġper què +Ġcampaign s +Ġste ep +Ġne ue +Ġembarrass ed +Ġdist inction +it zer +åij Ĭ +Ġregist ration +Ġll am +ĠAlm ighty +li est +Ġu z +n ak +ç º +Ġter az +iam ente +Ġtrans actions +Ġc ôt +Ġswitch ed +Ġcom bo +Ġpray ers +Ġintern ship +Ġaddress es +Ġchar ity +ĠW OO +Ġb ait +è¿ ĩ +Ġ � +Ġf ica +ĠTy ler +ar u +Ġat oms +ĠLe vel +ĠпоÑĤ ом +Ġf ame +ul k +Ġteach es +Ġre build +ед ÑĮ +ĠIndones ia +ush i +ĠSh ort +Ġens uring +f s +e le +Ġmargin al +Ġconclud e +am t +Ġver ify +ĠMc Donald +Ġsk al +Ġrec onst +ĠM ann +Ġbas ement +Ġtransform ed +Ġoccasion ally +z one +ĠD ans +Ġкак ой +Ġdiagn osed +ĠÏĦ α +Ġcomm ands +Ġpresident ial +Ġab b +Ġbrack et +ĠL em +Ã¥ ng +Ġfavor ites +Ġrev ol +ĠíĬ ¹ +Ġhar ass +é ħ +Ġcle ans +st änd +Ġknock ed +Ġpe oples +Ġmusic ians +Ġmut ual +ĠC old +8 8 +ze j +at ie +ĠHon or +Ġobs essed +ĠM USIC +ĠBre ak +ú ng +Ġmod ify +Ġs öyle +Ġ×ŀ ×Ķ +ĠOn line +f o +ĠMill er +Ġlik ing +Ġin hab +Ġgrat itude +ĠJour nal +arn ess +J ohn +ĠG it +åī Ľ +Ġsin cere +ĠS ci +ĠE li +Ġsymbol s +Ġman ually +ε ÏĤ +Ġв Ñĸд +ĠF at +Ġlab els +Ġsophistic ated +ump s +Ġrele ases +Ġ4 7 +ĠO M +ê°Ģ ë +ĠB ien +ĠRe f +è¨ ĺ +ĠSt a +ĠE gg +Ġindic ator +ps on +Ġnas ıl +R ight +Ġcon vey +Ġkn ot +Ġconnect s +ul as +Ġpre ced +Ġine quality +am iento +Ġrep ly +O Y +Ġdism iss +ĠëIJ ľ +çĦ ¡ +ĠÑħоÑĢоÑĪ о +Ġm éd +Ġrandom ly +ĠO nt +u ard +Ġpull s +ĠÑĤ епеÑĢÑĮ +ĠNe ed +ĠSo ft +Ġstrength s +Ġgo ed +um en +æŃ » +Ġíİ ¸ +Ġд об +Ġclar ity +ĠA i +Ġball oon +ĠP and +ĠìķĦ ëĭ +Ġsh iny +Ġsmall est +on ia +h ill +ot ing +Ġe ing +Ġmere ly +Ġse us +Ġн еп +Ġí Ĩµ +Ġgu ides +Ġspecial ist +Ġste ak +ãĤĪ ãģĨ +Ġmig ration +que le +Ġru ined +Ġpu pp +å¥ ³ +Ġk end +ang an +Ġpal m +Ġunf air +Ġz m +ĠD V +ch ester +и Ñİ +Ġo oh +er g +AT H +° © +åĵ ª +r ison +Ġinvol ving +Ġpart ly +anç ais +Ġv ow +Ġprom inent +Ġcry st +ib a +Ġdes erves +Ġover t +Ġsens it +ĠWh e +Ġtight en +Ġintim id +Ġal iment +w ill +Ġstrength en +ĠT an +åı Ī +ãģĹ ãģ¾ãģĻ +on i +ĠM un +Ġpro ph +Ġrehe ars +ĠK le +Ġve ces +Ġwonder ed +ok i +Ġsens es +´ì ĭ +Æ°á» Ľ +ĠÈĻ i +Ġmuch os +Ġwatch es +ortun ate +ĠJ uan +ìŀĸ ìķĦ +ÑĢ е +e i +ion en +Ġexperiment al +Ġda ughters +ภĽ +Ġment ally +bec ca +aw are +ìĦ Ŀ +Ġwhat soever +Ġen ables +ĠL ow +o id +ภĬ +ó d +Ø º +Ġconstruct ed +ĠLad ies +Ġaccus ed +Ġа н +D an +Ġsp awn +Ġcontain ers +Ġart istic +ı p +Ġdisc l +Ġaut res +in as +ĠN ation +Ġn ag +be an +w he +ľë ıĦ +ĠSe oul +Ġíı ¬ +ĠN ich +Ġcomp lement +Ġinter ven +ĠMod el +ĠOr ange +nam on +Ġcalcul ation +se e +Ġusted es +Ġle b +Ġdo ct +Ñĸ н +Ġf oster +Ġel astic +ĠAh h +Ġa ce +ĠP ink +ĠJ eg +Ġde er +ãģĹ ãģĦ +s is +Ġjak o +ĠEm ma +ÑģÑĤв енно +Ġport rait +Ġmak er +Ġa ument +ÑĢ об +Ġairpl ane +Ġtransparen cy +Ġadjust ment +ĠCD C +ç on +Ġupload ed +Ġд ейÑģÑĤв +Ġго ÑĤов +Ġit er +Ġcur se +ô n +mer ce +ar an +Ġle ak +çµ IJ +Ġabs ence +Ñģ кий +Ġread ers +al er +Ġbene ath +ang o +h etic +Ġfin ns +Ġpo op +Ġdu plic +H i +ig s +olog ically +op p +Ġd izer +ĠAll en +Ġgl i +Ġacc eleration +Ġvit amin +ãĥ Ń +v ä +ĠAc cess +à® Ļ +r ás +Ġappreci ated +Ġn ah +Ġpos ter +Ġt ale +Ġhighlight ed +æĸ ĩ +ż eli +Ġblock chain +Ġmic row +Ġcin ema +ĠCh ang +ĠSe arch +ust ers +ĠZ ero +ĠDiv ision +ÑĢ аÑģ +Ġsca re +Ġj elly +ĠAdminist ration +S O +Ġl ined +Ġê° Ħ +Ġge ben +Ġso da +Ġwin ners +³ ¼ +Ù Ĵ +ĠAm b +åķı é¡Į +å Ķ +Ġpe g +å· ± +4 3 +Ġra us +Ġre wards +Ġinc lus +Ġhigh way +Ġha h +Ġmultipl ied +Ġs ẽ +Ġdisci ples +Ġn ing +Ġdress ing +Ġattrib utes +ĠM osc +ĠGree ce +Ġse k +ĠLe arn +Ġj us +rend re +Ġperson ne +pl ete +Ġpl acing +Ġl uego +ill ance +Ġоб Ñī +Ġprov ision +Ġl ion +t ra +bo ards +Ġbehavi our +he y +Ġsubscri ption +Ġprot agon +ãĥ £ +Ġvar a +ĠÅŁ u +Ġha ha +Ġteas poon +æ Ł +av oir +Ġcrypt o +ĠÑģÑĤ аÑĢ +ĠSt ore +ab s +ĠStud ents +Ġla und +int o +Ġapproach ed +° ľ +ÑĥÑİ Ñī +ĠL abor +ot es +iat ric +Ġgro ÃŁ +ut ive +Ġи д +ĠG ib +Ġpl acement +ĠdifÃŃ cil +Ġf rog +ĠвÑģе Ñħ +ĠJ r +az ed +Ñĥ Ñī +Ġê ¼ +fr ame +а еÑĪÑĮ +Ġlock down +åij ³ +Ġmed i +Ġ×Ķ× ŀ× +ени й +em ale +ì¢ ħ +ater al +Ġdist ant +Ġbe ars +Ġjournal ist +è§ £ +ĠMarsh all +ĠIh nen +uet ooth +b ag +ĠÄij ã +ĠHigh ness +Ġì° į +и ка +ĠW u +ĠFr an +Ġp eng +Ġf on +Ġhypothes is +ĠÑĢ Ñĥ +Ġl y +× ļ +ìĽ Ķ +ĠRad io +ภŀ +D av +Ġembarrass ing +ĠìŀĪ ìĸ´ +Ġcast ing +Ġc age +ĠP sych +ĠìĿ¼ ëĭ¨ +ĠÅ ¾ +im b +Ġdirect ors +S H +ĠÏĦη ν +á»ģ u +Ġkon uÅŁ +Ġoption al +quar ters +ik er +ĠS ant +Ġvers es +ë ¶Ģ +Ġo lar +ĠÏ ĩ +ãĥ ķ +Ġγ ια +ĠI mm +Ġcontrovers ial +Ġer sten +Ġreci p +ĠChristian ity +Ġê´ ľ +ord on +×ķ× © +Ġsl ash +ĠP f +Ñĥд ÑĮ +×ķ× Ŀ +ĠPer ry +Ġm amy +Ġbackground s +Ġà®İ ன +Ġpend ant +ĠColumb ia +Ġin verse +ĠÑĩеÑĢ ез +Ġs v +Ġdig ging +4 1 +ch em +Ġnavig ation +ĠSh in +ĠFr ont +P D +Ġbe aring +ĠW asser +Ġw ax +ĠCH RIS +ch ing +Ġpress ed +E l +ĠD al +ons in +Ġb inding +Ñģк ой +po ons +Ġmo ck +are st +к ÑĢа +M M +Ġcor rupt +st orm +Ġref res +ĠCo ach +ll ä +ĠTH IS +Ġpar ag +Ġìĵ ° +p ool +Ġbill ions +Ġê¹ Ģ +gr oup +Ġwel coming +cell ence +ĠDu ke +ê¸ ´ +Ġprim era +ìł ¸ +Ġp ond +Ġstat ue +Ġêµ ¬ë +Ġh atch +Ġinstrument al +Ġresident ial +ì» ¤ +Ġaccept ing +osh i +d ate +ĠìĶ ¨ +Ġplant ed +Ġj oking +Ġì Ħľ +Ġh ated +ĠÑĢаÑģ Ñģк +Ġsle pt +Ġpack ages +Ġisland s +es en +ÄŁ ı +Ġdi agon +ĠO sc +Ġmes h +Ġsc ales +ar ity +ĠDef ense +ãģ¡ ãĤĩ +ĠLew is +ĠÑģ егоднÑı +Ġfl ies +uin ely +ĠCons ider +Ġst ark +he w +ĠAs ÃŃ +³ ´ë +Ġprop ose +Ġíķĺë ©´ +od o +ĠNorm ally +Ġhe eft +ĠHarr is +g ro +ĠBlo od +b ase +Ġi OS +Ġtouch es +Ġinsp ir +Ġ× ĵ +Ġb inary +Ġì¶ Ķ +Ġser ial +Ġ ion +Ġunemploy ment +Ġodd s +ĠF ab +ĠF BI +BR UN +Ġweight s +ν ο +at ile +Ġnurs es +Ġinvolve ment +ĠíĶ ¼ +Ġgovern ance +Ġâ Ĥ¬ +ÑĢÑĥ п +ier ra +íĺ ķ +ĠJ erry +Ġbe ard +Ġsal vation +ĠAl ong +g entle +ĠK i +b ol +ĠPl at +Ġhas ht +è¿ ij +Ġw are +Ġpart ie +y cz +Ġint r +F ih +n ent +Ġche at +il en +Ġë ¯ +or ie +Ġfá cil +et ric +Ġaffect ing +unci ation +Ġaff airs +Ġbe e +Ġview ing +Ġor ang +ĠL an +ĠС ÑĤ +ä¸ ĸ +ĠM es +ĥ ģ +er ie +Ġes pa +Ġinter pre +Ġposs ess +Ġpure ly +rit o +f ound +as ma +ìłģ ìĿ¸ +Ġexam ine +ĠÑĥ м +Ġbes ch +ĠTom orrow +ĠB lock +Ġvari ant +Ġprefer ence +Ġcoach es +Ġmedic ations +Ġíĺ Ħ +Ġemp ire +ë Ħ¤ +ĠIll inois +Ġcris py +Ġth ì +Ġbe es +7 7 +Ġgl ow +è º +ĠStud ies +åIJ Ħ +ĠChall enge +Ġunlike ly +Ð § +ıy orsun +DI E +Ġminim ize +iz ard +Ġú n +Ġencont rar +ĠK ill +å » +Ġvan illa +ĠGr ant +ĠG T +se a +Ġs ought +в од +Ġnä m +ĠA unt +OW N +Ġpump kin +st ellen +Ġr ag +ег да +Ġstory t +Ġfor um +æ© Ł +Ġestab a +uch e +Ġcon gress +ĠRe y +Ġdram atically +ĠSp ort +ĠYe llow +Ġê³Ħ ìĨį +Ġdisg usting +ĠRe cent +Ġacqu ired +Ġc ables +çĶ ļ +d in +Ġv isto +Ġcommunic ating +ÑģÑĤав лÑı +еÑģ ÑĤо +ãĥ»ãĥ» ãĥ» +Ġré g +Ġso cks +Ġpro ces +be cause +Ġut ter +Ġcoloc ar +Ġnew est +Ġgr amm +è¡ ¨ +ä¸į çŁ¥éģĵ +Ġsh ifting +Ġcar rier +ĠÑģк оÑĢ +ĠSch w +Ġexec uted +Ġmaint ained +ĠÏ Ĩ +ĠM oses +Ġdis se +Ġhor r +ãĢ ľ +Ġr ally +Ġall em +ĠEvent ually +Ġdi yor +lv ania +Ġsch nell +Ġê³ ¼ +Ġë§ ¤ +Ġstrugg les +l ate +Ġclar ify +é ment +Ġmulti plic +иб о +Ġjour n +Ġfra gr +Ġsurprising ly +Ġdesper ate +5 2 +Ġs ul +ĠRe ad +ĠF ried +Ġm ond +w oo +Ġorgan izing +ãģĹãĤĩ ãģĨ +ĠSo on +Ġв опÑĢоÑģ +ĠN ur +ĠÐĹ Ð´ +Ġsp ider +е ÑģÑı +Ġtutorial s +Ġnutri ents +or er +Ġcoe fficient +Ġarrange ment +Ġpr icing +n an +y u +B L +Ġtri be +ĠHow ard +un ks +Ġnew er +Ġprov in +Ġpred iction +h os +Ġol sun +ĠAr ound +Ġv ier +ĠÑģÑĤоÑĢ он +Ġv alley +ĠE la +if i +Ġgal axy +Ġtran qu +Ġad vers +ĠTem ple +iff s +ig ence +èĩª å·± +Ġkön nte +ĠÄij ó +D id +Ġphotograph s +ĠA WS +ÑĨи Ñı +Ġgu ards +Ġappoint ed +ĠG il +Ġм ом +Ġc od +ĠUn like +Ġeven ly +isc onsin +Ġest ou +Ġm nie +ĠEx ec +ĠM V +ĠE ine +ä¿ ¡ +ĠRog er +ĠF ac +ĠL ist +Ġf uer +аеÑĤ е +om ed +Ġattract ion +èī ² +Ġter rain +ĠD rop +Ġcorpor ations +Ġsci ences +Ġthr one +ãģĦ ãģŁ +Ġa j +ĠR ot +çī ¹ +Ġsupp orters +ĠB ere +H ere +Ġdifer entes +Ġsignific ance +Ïĥ η +æĪij 覺å¾Ĺ +Ġcl amp +Ġë ĮĢë +Ġfab ulous +re z +æĮ ģ +Ġassum ptions +ut her +w id +p ot +è¿ İ +Ġy an +ul in +ÑĢ Ñĭв +ĠSl ow +ĠPenn sy +Ġíķ ´ìĦľ +Ġme io +Ġwealth y +ĠE ight +Ġpul se +Ġfr iction +id ity +ĠH oll +i yorum +Ġsound ed +ĠC arr +Ġfor k +â ĺ +ĠP A +Ġcons pir +Ġc oding +r t +ĠTy p +Ġìĸ ij +Ġп ог +Ġmis er +ĠÑģм оÑĤÑĢ +ĠSw eden +Ġolar ak +ĠZh ang +ĠCh i +ĠT itan +Ġscreen ing +ĠSp ider +ĠÅŀ imdi +Ġobst acles +lar a +Ġchalleng ed +p se +T ON +á» ¥ +ĠP i +Ġlag i +ie urs +Ġhur ting +Ġneg lect +Ġgener ating +Ġyoung est +Ġaud it +ĠÑĢ ез +Ïģ ά +Ġdon ate +ĠPD F +Ġvis its +Ġcru ise +P P +as er +Ġw sp +back s +iv als +ãģĨ ãĤĵ +Ġde ve +Ġprop ort +Ġc ath +ĠE ffect +Ġwind s +ĠìĻ Ķ +Ġchart s +Ġs ama +Ġautom ation +Ġпок а +Ġol an +Ġbo ats +Ġca fe +Ġden ied +ĠM ama +Ġblock ing +ĠTh or +Ġphenomen al +Ġstake holders +Ġun os +Ñĥ еÑĤ +ĠAb raham +ãģ§ ãĤĤ +Ġdetect ion +Ġjur is +Ġpower ed +z ial +Ġwel fare +Ġup grad +Ġmoż na +ĠC ase +c ular +Ķ ìĿ´ +ãĥ ģ +ĠGu ess +Ġcy cles +ä¾ ĭ +çµ ¦ +ro ck +um i +Ġel ite +Ġqu è +åł ± +ÑĤ ом +Ġsh ore +gun ta +Ġk u +Ġfaith ful +ĠJ eremy +a id +à · +ug al +å°į åķĬ +ĠV el +Ġvra i +st ell +¨ ¸ +Ġk ol +è ½ +Ġquant o +Ġз аÑĢ +Ġ200 2 +es y +Ġres erve +Ġмом енÑĤ +Ġdeploy ed +Ġdefin ing +Ġsa u +Ġga at +" ) +Ġtrans mit +Ġpubl ishing +Ġrank ing +Ġoff ense +Ġ4 6 +p in +ĠT aking +Ġentit led +Ġgen uinely +Ġvari ations +Ġfind e +Ġt au +Ġunf ortunate +ĠR ah +port s +Ġc Å +Ġmon key +Ġbr ac +we i +l ung +Ġart if +Ġsy rup +ĠÐĶ ав +Ġlift ed +Ġche z +ĠAd vent +ĠSt ock +Ġdo l +м ен +иÑĪ ÑĮ +Ġy n +g io +d et +Ġdes se +Ġg ri +ĠChair man +ç ħ +Ġcu enta +an im +Ġcra b +Ġesc al +Ġpremi ère +ĠGe f +Ġd ining +Ġsevent h +Ġch asing +ĠT ower +Ġbrut al +Ġfundament ally +ãģ¨ ãģĨ +л ениÑı +st age +Ġacqu is +Ġcyl inder +Ġcomm ander +m em +ĠU V +ha ppy +Ġe psilon +Ġinv itation +Ġfar mer +ch air +Ġdest iny +Ġso vere +ĠHeb rew +Ġserv ant +Ġbe w +Ġg ast +ut ies +Ġadministr ative +ĠComm and +é ta +Ġnit rogen +ê· ¼ +Ġab i +Ġvill ain +Ġblank et +ĠS end +Ġbeat en +² Ħ +Ġvol unt +Ġschol ar +ĠEm peror +Ġ4 3 +v able +ĠD us +ĠG U +Ġtarget ing +ww w +Ġamend ment +ìĨ Įë +Ġt ing +Ġn asty +Ġg auge +ĠÑĢ од +ĠH ans +Y our +α ν +Ġpro jet +ĠHawai i +Ġsusp icious +Ġsch w +Ġremo val +Ġint rig +ĠM U +Ġp onto +ठ¾ +Ġоб ÑĢаз +Ġguess ing +p ace +Ġm others +Ġmill imeter +л ение +没 æľī +Ġavail ability +ic z +æŃ ¤ +Ġfr act +Ġbas es +k m +ĠB TS +ĠF ield +Ġd zie +Ġseg undo +ĠëĤĺ ëĬĶ +Ġlegit imate +im as +Ġв н +Ġcor ruption +Ġsm ash +ĠVal ent +Ġalign ed +ĠPennsy lvania +Ġg ab +ĠE un +ent h +ĠMor ning +Ġcand le +Ġback pack +ĠIslam ic +a ções +Ġenc ry +Ġmushroom s +íĮ Į +d it +Ġtrans it +ĠW isconsin +Ġparticip ated +ĠIl s +Ġunf old +¶ Ģë +Ġprof its +Ġwar ming +ĠG ang +Ġnetwork ing +Ġme ga +Ġthorough ly +le ments +ĠH m +Ġdec iding +Ġemotion ally +Ġexha usted +ĠÐŁ оÑĤ +c ido +ĠHT ML +Ġcopy right +Ġmel ody +y im +Ġand ers +osh op +Ġë³ ¼ +Ġathlet e +ĠG E +Ġfrequ ent +Ġdes ires +Ġneed ing +ĠY un +Ġrif le +Ġlo ver +' T +Ġd ense +Ġt ão +Ġnot ified +Ġid i +ìĹ Ń +í Ĩ +Ġinteract ing +Ġrapp ort +еÑĢ и +s ki +Ġb esser +Ġmanufact urer +ĠK yle +Ġaccount able +ĠS ak +ĠP il +ĠD omin +Ġpres um +ĠÐĴÑģ е +Ġvine gar +Ġguarante ed +çľĭ åĪ° +Ġhand led +éŁ ³ +c at +Ġcivil ization +Ġaccom p +ĠV M +é mon +Ġde ze +Ġgrad es +Ġsoll te +Ġst aring +×IJ× ª +ar nt +Ġhoriz on +Ġtrav ail +h our +第 ä¸Ģ +ĠE D +ĠD ak +Ġn y +Ġcon ve +ĠCh am +Ġfir ms +ĠL iu +ĠÑģÑĤ ÑĢан +Ġli bert +Ġlens es +Ġint ake +ĠвÑĭ б +Ġmens en +h el +Ġpract ition +Ġ3 50 +ãĤ ³ +F O +Ġbed s +Ġancest ors +ĠìĹĦ ì²Ń +Ġdistur b +ĠLast ly +ĠSupp ort +ี à¹ī +ĠCor ona +Ġenthus i +Ġвоз м +ĠìĤ¬ëŀ Įë +Ġ5 2 +b ird +Ġredu ces +ĠìŀĪ ìĿĦ +ĠG ene +êµ IJ +ÄĻ p +ĠÃľ ber +Ġconcer ning +us er +Ġconcent rate +ĠWH AT +ish op +onym ous +no ld +Ġsuggest ing +© ° +ĠF ish +.... .... +Ġvess el +Ġtrabaj o +ãģ µ +ĠO cean +å§ IJ +y g +Ġtown s +d el +Ġterr ifying +Ġçal Ä±ÅŁ +Ġs ino +Ġe ats +Ġge z +Ġg eme +ĠìĻ Ħ +Ġcomp art +Ġimplement ing +ĠPot ter +ĠGerm ans +Ġg ÅĤ +Ġt ennis +Ġcar pet +au er +ĠSaud i +ye ong +Ġcur ry +ĠFore st +Ñĭ л +Ġfif teen +Ġbol ts +Ġ{ \ +¬ ´ +Ġsett lement +Ġl ange +Ġb am +G et +íķ Ļ +Ġsw ap +ĠK han +Ġcomm ence +Ġquar antine +Ġsc ored +ç ĸ +Ġ19 50 +Ġthick er +Ġsû r +åı £ +ĠLar ry +Ġall ez +ìĭľ ëĬĶ +Ġg ü +Ġspect acular +/ / +b oth +Ġst ats +å¦ ³ +ĠN ancy +Ġbun u +Ġcr ust +Ġactiv ated +Ġê·¸ë ŀ +out he +Ġport s +Ġne ural +Ġj aw +Ġobserv ations +Ġvo it +ab an +ả i +¦¬ë ¥¼ +om es +௠ĭ +qu i +Ġkind ness +Ð ij +Ġ4 1 +Ġmoder ate +Ġang els +ĠT amb +è t +Ġch lor +ĠBill y +ì² ĺë +ac on +Ġselect ing +ĠDel ta +Ġn ull +den ly +Ġci ud +Ġtend ency +Ġbreak down +Ġm int +ÑĦ оÑĢм +or ph +Ġda wn +s pr +ĠW ILL +äch lich +Ġpu ppy +7 00 +Ġà® ¤ +Ġfail s +ĠCon c +Ġrel atives +Ġinv iting +Ġaut onom +Ġcomp osed +Ġun ity +Ġdec is +Ġaccess ories +ĠC ass +Ġb ist +ĠT ip +ì§ ¸ +Ġp unt +Ġr áp +éĢ ² +AN K +ãģ ļ +ex ist +Ġcompat ible +Ġn er +Ġе мÑĥ +Ġa plic +Ġb apt +Ġfail ing +ĠTam am +Ġos cill +Ġletz ten +Ġrepeated ly +Ġjung le +ĠP ush +h ai +ĠÎ · +Ġdead ly +Ñı ж +wi Äħ +ĠComm on +ĠÎ ķ +Ġsk ate +T C +ĠMin i +Ġhob by +ầ n +Ġrout es +Ġam igos +Ġcon jun +Ġpartners hips +Ġno vo +Ġa ver +Ġpou vez +br idge +Ġpre oc +h im +Ġtur b +Ġso b +ĠSn ap +Ġì° ¸ +min ute +Ġtra ject +uj ÄĻ +Ġe ager +Ġregul atory +Ġbank ing +b ling +ÑĪ ÑĮ +a ż +Ġbiz arre +it ated +d ire +Ġthreat ened +Ġsh ining +Ġn esse +Ġcor ps +ĠÑģ Ñĥ +Ġt eles +Ġtem p +t em +Ġк ан +Ġfe ver +N ew +Ġheav ier +ĠS ah +b ud +Ġout ros +Ġì° ¾ +Ġëª ħ +arr ing +Ġê´ľ ì°® +ĠN ap +Ġse min +ĠTh an +if s +Ġdes en +ĠÑĤак ое +Ġlos es +ĠB alt +k on +Ġнап ÑĢ +Ġvo is +ĠMosc ow +Ġch airs +h is +Ġrefuge es +k g +Ġk ole +į ¨ +аÑģ ибо +¦ ½ +ĠUn iverse +ĠDire ct +Ġche ating +ĠC in +Ġpat ri +Ġadv ise +ĠN ether +Ġprime iro +Ġmention ing +n ut +5 6 +ar ı +Ġpet ite +b led +Ġpens ar +ic io +IN D +Ġveter an +Ġlad der +Ġconsequ ence +ож ал +ĠB urn +Ġr ug +ĠM ade +Ġg it +" ... +Ġcompet itors +Ġprz ed +Ġapp arent +ĠArgent ina +ĠWork ing +Ġcollabor ate +w oman +Ġret ain +Ġle urs +Ġdash board +×Ļ× ĵ +ĠEar ly +B M +Ġе Ñij +ол ог +Ġsatisf ying +Ġoft entimes +Ġma pping +ünk ü +ar th +f old +Ġlaunch ing +Ġa ura +Ġprec ision +work s +G od +Ġstra p +ĠIm per +Ġr ivers +Ġ | +Ġcu er +reg on +Ġarri val +ка Ñħ +ĠM iami +ан Ñĭ +Ġsurviv ors +ĠSen ior +Dav id +Ġest ado +Ġse ctors +Ġpop ping +Ġch im +ay ı +Ġkun nen +Ġgall ery +Ġsun light +ese hen +Ġye lling +ĠMe in +ĠPho enix +Ġman o +Ġhistor ia +Ġoccur ring +æ¬ ¸ +ì ¸ +ад и +å¾ ħ +Ġinstitution al +ĠT ut +ç ² +Ġsl aves +ãģ© ãģĨ +Ġforg iveness +Ġtw in +ĠHy un +н ÑĮ +ĠK omm +and ra +sh ot +ss ä +ĠÑĨ е +at ta +Ġexp ense +ĠG PU +ĠP ast +rib ly +ĠëŃIJ ìķ¼ +Ġгод а +Ġresp ir +æĿ ± +ĠQue ens +h ops +Ġs érie +Ġpre f +Ġcom ed +Ġpl ut +ĠOver all +Ġãģ Ŀ +Ġc ush +Ġring ing +Ġincor rect +ĠÑģÑĤ ÑĢ +Ġgeomet ry +Ġadvert is +ĠÐ ¨ +Ġreview ed +ãģĤ ãģĤ +Ġdo zens +Ġdeterm ination +ĠPh ill +Ġcontrib uted +ĠC it +Ġpass engers +Ġcôt é +Ġre ver +Ġtechn ological +Ġall en +Ġr aining +av i +Ġsal ty +Ġtyp ing +ĠÑĤ е +Ġt ilt +Ġì¹ ĺ +Ġо ÑĢ +ĠпÑĢ Ñıм +Ġr ou +Ġare na +ar at +åĪ « +HH HH +Ġmanufact urers +ĠEd ward +Ġt uck +Ġbl ows +ing o +ĠMar c +ìķĦ ìĦľ +M ich +ĠCle an +è ´ +est o +ĠP ack +Ġsha ft +BRUN O +Ġa ven +u ur +Ñģк олÑĮко +ê´ Ģ +Ġautom ated +Ġvent ure +Ġsurve illance +ĠG row +ĠE mer +Ġд оÑĢ +Ġinvest or +ĠY ok +Ġl atter +ĠN I +Ġfunction ing +ĠHam ilton +Ġ5 1 +Ġmurder ed +Ġanch or +Ġc uc +ĠSC P +ĠMad am +Ġconstra ints +Ġb arn +ank en +Ġë§İ ìĿĢ +ĠMot or +ĠDo ing +Ġam en +et ts +Ġinst ructor +eg t +ak o +Ġpost ure +iv ia +ĠPol ish +Ġдв а +Ġcolor ful +Ġel bow +Ġpar le +Ġpass er +Ġcond em +ort al +Ġfert il +ا د +ĠCol omb +Ġalign ment +Ġastron aut +ĠM ut +Ġsal mon +Ġstructure d +ŀ ר +Ġclick s +Ġm iej +æĶ ¿ +ãģĦ ãĤĦ +ĠR ound +Ġrain bow +ĠV A +ãģĶ ãģĸ +ì§ Ī +ot z +, +Ġch ords +ĠSand ers +Ġë¶ Ħë +B en +Ġdar über +ili ans +Ġorder ing +ĠMan h +Ġkil ogram +Ġkar ÅŁ +Ġgr asp +Ġghost s +al en +ĠJ edi +Ġб ли +Ġdownload ed +Ġconduct ing +ĠH ak +Ġresearch er +il an +go od +ĠH annah +ĠdÃ¼ÅŁ ün +ĠMess iah +u ity +ion a +Ġprob able +ĠY E +Ġindepend ently +Ġbuff er +b urn +our d +ĠMc K +Ġl ingu +uj emy +еÑĢ ÑĤ +Ġintuit ive +Ġcrack s +app ropri +nt y +Ġge en +Ġl end +Ġcert ification +ID S +un ter +pe es +Ġtr ump +Ġbank rupt +Ġfe as +è Ĺ +Ġdu ż +æ¸ ħ +Ġvirus es +Ġ5 8 +g od +Ġж ел +Ġst alk +I nd +ach i +ĠC F +ĠC ond +Ġsan ct +Ġcont en +Ġfre ed +ĠR T +Ġment ors +ì¡ ± +Ġport able +ĠPaul o +r ane +HA HA +ĠS ection +ç Ĩ +hy un +ĠÎŃ Ïĩ +ĠP ub +ĠInd epend +Ġcomp ounds +ĠÑģ Ñĭ +Ġmess aging +Ġded ication +Ġnot icing +Ġdevot ed +ÑİÑĤ ÑģÑı +Ġsn akes +Ġbattle field +p ers +Ġdel a +9 2 +Ġha i +ill ä +ér er +e very +Ġrespons ive +×Ļ ×ķ +op f +é ī +Ĭ ¸ +Be cause +Ġtour ism +Ġê·¸ ê²Į +×ķ× ¦ +Ġcan s +st üt +Ġdon ne +ĠD ios +ĠU ber +act ory +Ġorient ed +ĠH erm +Ġpat ron +ur f +be i +Ġprogram a +ĠOh h +gen er +Ġf ist +ĠW endy +Ġand a +Ġguess ed +Ġfre ak +ä¸Ń åľĭ +ĠK ings +ch ool +Ġoff line +ĠIndian a +ĠAll iance +Ġ5 3 +Ġpartic ul +ĠF ocus +Ġinhab it +Ġê°ĻìĿĢ ëį° +ĠMc G +ows ki +ĠìĿ´ ê±´ +Ġpa ÅĦst +он и +itt a +Ġconfirm ation +ĠBrook lyn +Ġnood le +f und +it ud +Ġgrand parents +Ġbar becue +ει ÏĤ +Ġ á +Ġball ot +ĠV eter +Ġpip es +ig ious +ĠG raph +est ed +Ġë¸ Įë +ĠK E +ãģ¡ãĤĩ ãģ£ãģ¨ +Ġe ins +Ġhat red +ãģij ãģ© +Ġd ang +ee ee +Ġarch ae +ĠJes se +Ġdetect ed +Ġsen i +burg h +Ġdispl acement +Ġdo p +Ġcondition ing +Ġне ÑģколÑĮко +Ġdistur bing +P H +Ġthin ner +Ġwound ed +ĠCu ando +Ġcush ion +Ġwh ites +Ġprefer ences +Ġì¤Ģë ¹Ħ +Ġka ż +ĠG ate +ĠP ath +d les +à¸Ħ ร +im ore +Ġë³´ìĹ ¬ +Ġdiscipl ines +á» ı +Ġmes ma +Ġìĥ Īë +Ġìĭ ¬ +Ġg ing +Ġumbre lla +IGH T +Ġp ension +Ġcomb ining +S S +Ġrect angle +á»ĩ t +Ġpro xim +ĠC ow +¸ Į +Ġintention al +æķ Ļ +Ġdec id +ĠÑģк аж +ĠU ma +ias m +b uz +Ġdebr is +Ġc ass +ĠP rop +is ka +ë ł¥ +ester ol +uss ian +ìĿ´ë ŀij +Ġun limited +Ġadm ire +Ġtight ly +Ġgen ome +ĠJun ior +ven ir +g us +Ġc Äĥ +ĠV lad +Ġí Ĥ +Ġrel ativ +in ci +Ġaun que +ĠBo ys +ÑĨи он +ĠSw iss +Ġphys icians +Ġíı ī +ĠP ET +Ġw ounds +ab out +Ãł i +on z +ur ities +ĠÑĥв ид +å· ¦ +Ġment ality +Ġvari ance +Ġseg unda +Ġvol cano +al ie +ॠĩ +Ġt iles +ĠT erry +ĠاÙĦÙĦ Ùĩ +Ġcan on +Ġsc attered +pt on +Ġdefin itions +Ġal gebra +ot en +ab lo +ij uana +Ġwra pping +Ġses ame +ĠнаÑĩ ина +ĠAl f +ĠÐł оÑģÑģ +or no +Ġan kle +Ġspecial ty +Ġattempt ing +ili ation +Ġ19 20 +Ġphen omena +ĠPro duct +ĠB uck +ĠA ww +se en +Ġvo id +ĠFrank lin +Ġadvoc acy +ĠS ep +Ġcool est +ĠÑģ ÑĢазÑĥ +ĠQu and +Ġ9 00 +ĠTr ad +d ies +Ġhas h +æĪij å°± +ä¹Ł æĺ¯ +Ġpot s +Ġsad ly +Ġvi able +ĠT iger +ĠON E +Ġneur ons +ow anie +Ä Ĺ +ĠSh ar +ĠLand es +Ġconfer ences +è© ² +Ġcred ential +Ġl ime +ine e +x it +p ay +Ġinc ons +Ġ>> : +èª į +Ġí ŀĺë +Ġless er +Ġsp ill +Ġprem ise +Ġ36 5 +ĠH ost +Ġtom ar +×IJ× ľ +ë ²Ī +ĠWhat s +Ġlight weight +ĠM ap +f ia +ells chaft +Ġvend ors +uest o +ĠM ister +ĠÐŁ ÑĢи +åı ³ +h ma +Ġintention ally +ĠT ang +éĹ ® +Ġident ification +Ġetc etera +ĠN ee +ĠÑĤ ÑĢи +ê· ¸ +Ġcrypt ocur +Ġin hale +Ġadd ict +åIJĦ ä½į +Ġma u +ĠÑĤак аÑı +Ġë² Ħ +Ġcomp rar +ied zieÄĩ +ĠоÑĤ но +Ġbegin ner +Ġм Ñĥж +Ġobs c +Ġlim iting +asc ular +Ġins pection +ac i +Ġre jo +M us +Ġz aten +Ġsz cz +ĠMad rid +Ġvar ieties +Ġest Ãł +ĠSh akes +Ġk its +Ġad minister +Ġla va +Ġg Ã¥ +è© ¦ +ת ×Ļ +ĠWay ne +Ġinst agram +Ġr ated +p aper +Ġb ild +Ġpret ending +Ġobser ving +ĠÑģам ом +Ġtr or +Ġorgan isms +Ġfal ta +Ġh ometown +ç ± +Ġí ĭ +Ġche g +Ġì ¡ +Ġcomm a +is é +Ġlike lihood +av ored +Ġgel di +ни ков +Ġmed io +Ġjak ie +ĠJ up +Ġgreen house +Ġsp it +ко е +Ġк аж +ĠG ram +ĠCon ference +Ġdef icit +s ın +in se +u ÄŁ +Ġr icht +Ġcoinc idence +åı į +Ġeu rop +Ġbutter fly +p read +Ġìĸ ¼ +èĢ ¶ +Ġwa vel +ĠIn fin +ĠPlan et +Ġself ie +ient ras +Ġar rog +os er +id al +ł×Š׳×ķ +üt ün +Ġfresh man +ĠMach ine +Ïĥ ÏĦ +ĠD ia +ìĿ´ ëĭ¤ +ãģĵ ãģĨ +ne a +Ġlist ing +Ġconfig ure +ut or +U p +ts chaft +ri ère +Ġup wards +ĠÑħоÑĩ Ñĥ +Ġswe ep +B r +Ġexpress ing +Ġun happy +Ġmand atory +g ender +ĠA ÃŃ +Ġindic ators +Ġoil s +n ote +Ġseg ur +ож еÑĤ +yn asty +Ġdist ances +Ġmer ge +BER T +Ġsur render +Ġbu at +ĠA wards +Ġseñ or +od ox +Ġfl avour +Ġab dom +Ġconfig ur +8 6 +ĠDI Y +Ġrig id +° ĺ +Ġcorpor ation +Ġg room +j aw +ĠNe ar +ил о +Ġoper a +ĠIn nov +и ÑĢа +ĵ ± +Ġspec ified +Ġcos m +ĠFre edom +Ġcl own +ĠN em +Ġв ол +Ñij н +Ġchar ger +à¹ģ ล +Ġinflu ential +äs ident +é ¤ +ĠìĦ łë +Ġvol umes +æ IJ +Ġout ras +ĠTw itch +Ġfound ing +Ġa while +Ġco il +ê° Ļ +Ġc ả +ĠTh row +ĠH ence +omm t +ĠBen jamin +глÑı д +T ime +ob ic +Ġm our +Ġd read +ĠL Ãł +ĠCh ile +Ġpre val +Ġv ain +Ġart ık +Ġpres erved +ĠоÑĤ д +Ġware house +Ġbest e +ĠSever al +ĠS ituation +Ġcard board +T od +er na +Ġgar ant +Ġgest ure +Ġh en +Ġspe lling +ose xual +Ġan ne +Ġm ice +ĠMe ine +c ard +Ġre bell +Ġcert o +Ġìľ łë +Ġvers chied +ĠB os +Ġinv ention +Ġtr ze +Ġman ière +ĠCh ad +Ġsp re +Ġorganis ations +Ġpoor ly +Ġan terior +Ġst air +к ÑĢ +Ġatom ic +Ġsymp ath +Ġcontin ually +Ġkle ine +è te +и Ñī +ο ÏĤ +pe ut +Ġrep osit +Ġent ra +E m +Ġfinan cing +Ġмн ог +Ġthe sis +ĠCom puter +e au +ĠT ree +Ġbr ide +ons ieur +sh ire +w ic +D E +ĠìĪ ĺë +Ġac om +ĠP O +ers ch +Ġпом оÑī +ĠAr men +Ġì£ ½ +Ġz or +Ġprint s +ĠD ass +æ¸ ¯ +Ġdur able +ĠTrans port +ìŀIJ ê°Ģ +Ġл ег +Ġdé t +ô le +am ous +Y N +Ġcl iff +Ġgramm ar +ĠÐŁÐ¾ ÑįÑĤомÑĥ +ĠlÃł m +es ch +Ġmiser able +Ġvol ts +ĠC ad +uk an +ÑĤ ив +r ust +Ġìĺ¬ë Ŀ¼ +Ġver k +Ġchick ens +ĠY oo +Ġout fits +c ode +Ġhier archy +net es +Ġcounter part +Ġt ôi +Ġt ed +ĠB art +Ġë Ŀ¼ +ĠGen au +Ġinc oming +ĠA BC +ri que +ĠоÑĤ п +qu al +Ġincent ive +Ġih ren +׳ ×Ļ +lo e +Ġ19 30 +Ġbar g +Ġd iction +Ġön ce +IN S +Ġre h +isia j +m outh +Ġsc oring +l ık +ĠìķĦ 주 +OR IA +ĠEst ados +Ġcompan ion +Ġasse mble +Ġpun ished +Ġit al +Ġprev ents +ist es +ĠKent ucky +Ġloc ate +Ġfast ing +ãģ¨ æĢĿ +ĥ Ģ +ĠSe b +ĠCr own +op ia +Ġwh ip +us z +к ами +Ġdatab ases +åŃ Ĺ +Ġprose c +Ġ199 7 +ĠìĤ´ì §Ŀ +ĠSol ar +ĠP ues +ĠZ en +oll o +ĠG uru +Ġsque ez +ĠÐĹ Ð° +ĠÄ į +cept ions +c ca +iz able +m and +Ġbreak through +Ġtables poon +ĠS EC +ik h +ĠS ão +Ġп ло +am en +Ġpr ac +Ġdar ling +Ġtall er +Ġrend ering +Ġìļ°ë¦¬ ê°Ģ +ĠÏĦη ÏĤ +Ġm ã +Ġes os +uer do +ĠÑģ ÑĩиÑĤ +all er +ìĹĪ ìĸ´ìļĶ +Ġmill ones +ler in +Ġpe gar +on ne +Ġenroll ment +Ġli egt +Ġbo a +w iÄĻ +bs p +Ġcy cling +ĠBern ie +Ġ198 9 +Ġд алÑĮ +ĠDak ota +ĠÑģв Ñıз +ĠC P +Ġst are +íĤ ¤ +Ġprosper ity +Ġarrange ments +Ġarri ving +m ä +Ġkay ak +ip t +Ġp ardon +Ġrel at +Ġver ste +ĠF ig +Ġfo il +ĠTalk ing +pe are +Ġno i +ĠпÑĢи ÑĪ +Ġhoc key +Ġad o +ĠO UT +6 7 +Ġhorm ones +ĠAven ue +ĠSuper man +Ġpres cription +uber netes +C L +ot ive +N IS +ien en +Ġsad ness +ĠV it +T y +Ġstar ter +Ġbed e +Ġfound ations +Ġso re +åº Ĺ +Ñīе ÑģÑĤв +ìļ °ë +ĠÑĩ Ñĥв +l ink +Ġmane u +work ing +Ãł n +ĠAtt ack +ĠC art +ve is +ĠRes p +ens ing +Ġì¢ĭ ìķĦìļĶ +Ġesc uch +ĠR NA +Ĥ ´ +Ġad op +Ġb ending +ع د +Ġman ages +us p +Ġt art +Ġrout er +B o +Ġestab lishing +Ġbal ancing +Ġathlet ic +ĠS lo +Ġf ills +Ġн аб +Ġд ал +Ġpos so +ĠV ielen +Ġcrit ics +Ġlaws uit +ĠIsa ac +ĠÑĦилÑĮ м +Ġtr as +Ġpra w +ĠCra zy +Ġne u +Ġk ull +Ġtum or +ĠAP P +g ate +ĠA RE +9 8 +ĠSte am +Ġfuck ed +l age +ĠâĻ ¬ +ĠM D +f y +Ġshell s +ĠSe ems +iz ers +Ġr anges +ĠAnton io +AT ION +ĠB aba +Ġìĥ ī +k un +Ġpray ed +ÑĢ Ñı +ĠпÑĢоÑĤ ив +Ġse as +b ury +Ġ×Ķ× © +Ġtra it +ĠDep ending +Ġd re +Ġkön nt +ÑĨ Ñĥ +Ġlip stick +ee z +ĠпÑĢ имеÑĢ +Ġassign ments +B ob +Ġmet als +Ġspe cially +å°į ä¸įå°į +Ġìĺ Īë +ĠÅ ¡ +Ġv ista +ĠÎ ¬ +Ġtw ins +Ġnot able +ĠS au +Ġdé velop +Ġç ek +Ġpoly nom +av am +Ġtamb é +он ом +Ġpl asma +Ġe fect +Ġlä ng +Ġcas i +Ñģ а +ım ı +ãģĻ ãĤĭ +ĵ¤ ìĿĢ +Ġlab our +oss en +ĠP un +r if +Ġd oses +Ġoper ates +ил ли +Ġja ar +st aw +ĠìĤ¬ëŀ ij +Ġat m +Ġprotect s +Ġimp ed +H O +Ġc ima +Ġto ch +ab is +Ġsend o +la us +Ġcur l +ĠN um +Ġspons ors +Ġdé but +ĠAlex a +ĠB ür +ĠA mer +Ġc ope +Ġиз в +j al +Ġ199 5 +ap at +res se +ĠPri ze +ĠCla ire +ĠBrand on +Ġwszyst ko +Ġval ued +à¸Ļ ะ +Ġse ct +Ġsecret ly +Ġdiam onds +ĠEv an +ĠRP G +ãģ« ãģª +Īë ıĦ +ĠUnivers al +Ġdoub ts +ĠP in +wiÄħ z +ļ © +Ġal bo +Ġbra ucht +AU L +ĠM obile +gr ades +Ġsch em +wh y +ĠN icht +p i +g le +Ġchor us +Ġg ly +Ġrein force +Ġm uff +ĠSh en +ĠH ola +Ñĥ г +vid emment +v ial +ac ious +laim ed +ĠR ico +Ġve gg +Ġillust ration +ĠBut ter +ow ad +Ġeu x +Ġenf ants +ĠLe ader +ĠVill age +et ically +ÙĨ ÙĬ +Ġst ew +Ġsurpr ises +Ġc ue +ĠGrand ma +ĠC elsius +ĠR icht +en c +Ġpet ition +Ġher b +Ġw icked +Ġsch le +oc aly +Ġtrans f +Ġtok ens +ĠGr ay +ĠB BC +I K +Ġ15 00 +z n +ĠNe v +Ġk oy +Ġz ar +Ġbull shit +ĠColomb ia +ul ative +Ġwides pread +y ect +k it +Ġempres a +Ġn our +Ġburn s +at in +a ired +Ġrevolution ary +Ġгод Ñĥ +ĠLog an +Ġ199 6 +ĠGra ham +re b +ĠN HS +æľ Ľ +Ġcost umes +Ġnaw et +Ġlo vers +ĠLuc y +ĠInd igenous +íķĺ 기 +Ġimmun ity +¥ ´ë +uit o +Ġexcess ive +Ġdon ations +Ġ×Ķ ר +Ġì² « +éī Ħ +Ġdry ing +mel on +Ġsurve ys +Ġ무ì Ĭ¨ +é¢ ¨ +aa a +Ġpro be +an cial +Ġlou der +Ġhot els +ü ÄŁ +ag ner +Ġorig ins +Ġë§Ī ì§Ģë§ī +Ġ* * +Ġstr angers +ĠHa us +com ed +Ġan throp +Ġus o +ĠìķĦ ì§ģ +ĠY uan +ĠíķĦ ìļĶ +pl er +ress ive +Ġsp raw +ĠSt ew +Ġ199 4 +Ġeld ers +Ġme inen +Ġj unt +Ġac oust +ĠW ohn +Ġban anas +Ġproject ion +ĠSt ick +leg t +spe ed +ĠcÅ ©ng +ĠW ort +ĠBalt imore +ĠÑĨ ел +Ġdun no +å¼ · +? , +ãĥī ãĥ³ +ĠLoc al +ost o +Ð Ń +од а +ĠPort uguese +Ġtheir s +Ġdé m +åı ¦ +Ġdra uf +ĠBuddh ist +ert a +G e +Ġcar rot +ĠWonder ful +Ġso ak +Ġchair man +gg i +IC A +f ried +Ġfl ick +ĠThrough out +Ġìļ °ë +Ġc ough +Ġfl uffy +sch ool +Ġr ipped +---- ---- +ĠZuk unft +Ġн еб +Ġst o +ĠB O +p ent +ĠLaw rence +Ïī ÏĤ +st icks +ĠE ins +ĠÑĢ Ñĭ +ĠStr ong +Ġcar amel +Ġsp ite +az ar +éĥ½ æĺ¯ +Ġcrit ically +Ġob ra +ow itz +ĠZ one +ĠÑĢ ек +Ġsu g +ard ed +Ġg ì +ff entlich +an che +Ø Ł +ast ically +ìĿ ¼ë +л ав +Ġsimpl est +ĠF riend +Ġque llo +Ġamb ition +Ġabb iamo +åº ķ +ĠÑĦ оÑĢм +ĠEs sa +Ġeduc ators +Ġstatist ical +éĢĻ éĤĬ +Ġchang er +Ġat au +éta is +ĠShakes peare +ë IJĺ +Ġtr iggers +Ġreal iz +Ġcel ui +whe el +Ġloyal ty +Ġscream s +ke hr +ĠM ega +e ast +Ġtop s +ĠTot ally +ount ain +l ord +Ġviol ation +ĠG A +Ġnic er +ĠF resh +ĠMel issa +fun ction +Ġra pe +Ġexcept ions +Ġsil icon +Ġliber ty +Ġhousehold s +ãģį ãģ¾ãģĻ +ĠC A +ĠÐŀ б +Ġli b +ŀ Į +c ific +Ġtrop ical +Ġinvestig ating +H D +Ġad apter +ĠP itt +an cia +ĠShe ll +friend ly +Ġconclus ions +Ġtur tle +Ġdec omp +Ġanim ations +ĠÑģ ек +ins i +Ġret ention +k ie +Ġinject ion +ĠMad ison +ì° ° +Ġv ient +Ġvar ied +Ġviol in +ĠB il +Ġluck ily +Ġh tt +l ä +Ġr anch +çľĭ çľĭ +Ġsó lo +ìķ ħ +ĠD erek +ĠScript ure +оÑĢ а +Ġclassroom s +av il +form ed +Ġbefore hand +ĠG em +pre ch +Ġl in +Ġgre ens +ÑĨ ев +ĠMer cedes +Ġdr ought +gas ps +Ġab ortion +Ġter ribly +Ġspos ób +Ġsec ured +Ġat rás +Ġwavel ength +Ġgra ins +ect ive +Ġspace craft +Ġtour s +Ġprof es +Ġsur geon +ĠP ie +Ġide ally +arn er +U P +op ard +s ce +Ġimm ense +ĠOr t +roll er +ĠD allas +ĠNich olas +Ġs ulf +ĠToy ota +Ġquant ities +ce ans +Ġcu i +an ça +ĠC AN +itzer land +åĦ ¿ +Ġz ou +ĠCy ber +le gen +ĠIn it +ed u +Ġa pert +Ġad jac +ou v +èĢĮ ä¸Ķ +r s +Ġcab bage +Ġwheel chair +iny l +ĠD ynam +ĠìķĦëĭĪë Ŀ¼ +Ġl ing +h l +Ġмог Ñĥ +Ġcris p +Ġm ij +Ġd ug +n in +Ġbl oss +Ġbelong ing +Ġloud ly +Ġminer als +Ġconclud ed +Ġsearch ed +9 6 +ĠMe et +ĠS EO +ĠС к +ĠH ob +ot ta +Ġpropag anda +Ġcin namon +Ġhun ter +Ġgeme ins +Ġsculpt ure +uls ion +Ġv äl +Ġmagaz ines +Ġcontrovers y +ä¸Ģ 樣 +Ġsequ ences +ãģĦ ãĤĭ +Ġíļ Į +Ġdel eted +ä½ ¿ +IJë ıĦ +Ġvary ing +ãĥ Ĩ +Ġmount ing +Ġaff air +Ġpath ways +æ ¦ +Ġdig o +äº ® +Ġд ок +A lex +Ġtob acco +ĠC V +Ġbother ed +Ġamb ient +ink y +ĠS L +Ġh ates +Ġje żeli +Ġcon greg +Ġel as +Ġde uts +ĠStud ios +ch ÄĻ +Ġdocument ed +ĠCru z +ĠL en +ĠDoug las +ĠPort ugal +ent i +Ġsp ouse +Ġanal ys +av ia +Ġed ited +Ġl ại +bu ilt +Ġv ille +ad ora +Ġbrac elet +Ġs ushi +Ġp m +Ġtra ils +Ġl ug +Ġö ver +Ġs orrow +Ġcol ony +ado x +Ġser ie +any ak +ĠØ · +ĠG ulf +æĺ¯ ä¸įæĺ¯ +ĠP V +ĠSam uel +ĠK it +ĠR al +ont in +ex pl +Ġent ries +Ġactiv ists +P s +Ġs ant +ĠÑĤо Ñĩ +ĠBr uno +ke ley +Ġtut to +é Ķ +Ġv intage +Ġterr ified +Ġпо Ñħ +us ive +ow ers +ай ÑĤ +ë ıĻ +Ġtwist ed +ĠTh ought +Ġt ah +Ġshr ink +Ġshe er +l it +Ġdal am +Ġd ib +Ġv ard +ow ane +Ġdo br +ĠR ena +ĠÑģво Ñİ +ĠpaÃŃs es +ĠE ra +ãģ® ãģ§ +ĠB UT +s ighs +Ġê·¸ ê±° +Ġgro ÃŁen +Ġë¹ ¨ë¦¬ +Ġn erves +Ġconst it +Ġpreoc up +ĠG ay +ĠX u +keep er +he ure +.. ) +ĠCal m +ĠUn idos +ĠìĿ´ ê²ĥ +ĠAqu i +Ġìłľ ìĿ¼ +d ır +ì¦ ĺ +y our +ĠÑįÑĤ им +20 20 +Ġr und +ĠH O +ĠC atherine +iel i +Ġf usion +Ġide ology +Ġfor am +sh aped +ĠíĽ Ħë +Ġw t +Ġret r +Ġpr éc +Ġê° ij +Ġopen ly +v ity +구 ìļĶ +Ġobst acle +Ġbo o +Ġse iner +ic orn +Ġeigen lijk +Ġhead er +are mos +Ġso fter +ĠÐŁ од +Ġpre jud +Ġdefin es +ier te +Ġbl ending +Ġbelie vers +ĠWo chen +Ġник ак +ĠÐļ огда +ĠTyp ically +Ġíģ ¬ +ç® ¡ +ci os +Ġmiss iles +Ġsp onge +ĠK itchen +Ġt ren +ning en +Ġsc rap +Ġser ait +´ì ł +ç ¹ +Ġë° ĺë +Ġrest ored +Ġprzy kÅĤad +ĠK ubernetes +Ġsa it +Ġu w +Ġen abling +Ġtra vers +amp s +åı Ĺ +ĠOM G +ens or +Ġz osta +Ġpronoun ced +A ng +norm al +Ġeconom ies +t in +ĠChamp ion +iz en +Ġar beiten +ĠG ospel +ĠZ u +ng a +Ġliter acy +ĠM ans +Ġcircul ation +Ġad ap +ĠTot al +Ġmere ka +Ġol acak +ÑģÑĤ аÑĤи +J ack +Ġm und +Ġth ief +b ies +Ġê² ģ +a que +ĠÚ© ÛĮ +ĠSc ar +å ² +Ġab ol +Ġdev ote +Ġ0 1 +Ġs itten +ĠVis ual +we ek +s ome +ing t +Ġjournal ism +ĠH ir +ĠB achelor +in ery +Ãľ ND +ãĥ Ł +ç» Ļ +Ġcolor ing +ĠCr ist +Ġcelebr ities +ĠÑĩ иÑģ +ĠC rit +Ġdifferent iate +ĠÐľ не +el im +Ġse afood +Ġalgum as +otherap y +æĪ ° +Ġgla ub +Ġarbitr ary +g ens +ĠбÑĥд ем +Ġt av +Ġcream y +ĠCount ry +a ñ +м еÑĤ +Ġh inter +Ġm ism +Ġillust rate +ÃľND NIS +Ġdecre asing +Ġwen iger +AK I +ix on +Ġн ей +Ġfat to +Ġn erd +ç ł +Ġb itte +P er +Ġt ane +Ġgö z +Ġfor te +ĠE y +Ġнав еÑĢ +è¢ « +ĠWord Press +ĠM is +Å ¯ +z äh +Ġinté ress +osa urs +ĠFall s +Ġn essa +9 7 +Ġmuseum s +Ġcorrespond s +Ġs ings +f our +Ġed er +ĠCommun ist +o a +ne k +ĠWH O +Ġcor po +Ġmess ing +ÏĦ αι +Ġbrush es +Ġb isc +ĠAr beits +ĠT ax +Ġse le +Ġflag s +ou pe +Ġanticip ated +ãĥ ij +ĠN ad +Ġpou red +Ġm l +Ġll ama +Ġvisual ize +Ġlisten ers +ÙĦ Ùĥ +al ten +Mich ael +Ġcos ì +Õ¡ Õ +op us +Ġíķ´ì £¼ +Ġh ike +ĠAtt orney +ĠHill ary +ud ed +Ġíķĺ ì§Ģë§Į +Ġdo ve +Ġstorm s +ак Ñģ +Ġdoct rine +Ġhe x +ik s +no ÅĽÄĩ +Ġscript s +Ġδ εν +ĠÑįÑĤи Ñħ +ĠÐ Ĩ +ab er +ĠV as +Ġcent imeters +×ŀ ×Ķ +ни б +Ġrid ers +ĠT rib +åĮ ħ +Ġtak że +Ġn oun +Ġic ons +Ġsole ly +mind ed +Ġdisp on +ĠSw itzerland +Ġcl usters +Ġqu eda +ail ing +Ġman ga +Ġ6 8 +Ħ Ī +Ġt et +g ins +ha us +ç© º +å· ¥ +ĠO P +ot ed +Ġnouve au +AL LY +ÙĪ د +ò n +Ġmort ality +ĠGit Hub +d rop +Ġdis gu +Ġrec om +Ġloc als +Ġhome made +amb a +Ġpron unciation +Ġal phabet +ан ÑĮ +ow any +ir as +id ency +OM E +ĠÑĢаÑģ Ñģ +ar ak +v iamente +Ġnon profit +ĠYouT uber +Ġp arenth +ĠB oo +v at +ĠSt ir +Ġpre cip +Ġan ts +Ġall y +ĠMa ori +ĠëĮĢ íķľ +åı¯ æĺ¯ +og ene +ĠLab our +aret te +Ġrecy cling +ens a +Ġpurs uit +Ġs ak +ĠÐĹд еÑģÑĮ +Ġtoler ance +Ġsa at +Ġclick ed +âĻ ¥ +Ġface book +ĠInt o +Ġincent ives +기 ëĬĶ +ĠD ennis +ĠW ik +ges ch +à¹ĢภĽ +ĠÏĢ α +ĠWh oo +Ġround ed +Ġdo pe +Ġcapt uring +ĠWar ri +Ġcivil ian +Ġchar ming +Ġes as +Ġsust ained +Ġle aning +Ġabund ance +ÃŃ lia +алÑĮ нÑĭй +Ġph ải +ac ja +Ġê°Ļ ìķĦ +act iv +า ย +Ġ9 7 +Ġм ой +c ro +ĠJack ie +itt ees +br acht +ul ent +Ġìł ľë +Ġplug in +v antage +part y +Ġsu as +Ġan te +Ñĥ л +ÐĿ ÐIJ +æĤ ¨ +ĠÏĥ Ïħ +Ġmet h +Ġenthus iasm +ÑıÑĤ ÑģÑı +íĻ Ķë +Ġsynth etic +Ġseason ing +ĠL ost +on omy +ĠSp ark +Ġb ure +Ġass ured +Ġimag in +Ġcar ro +S ha +Äħ t +нÑĥ ÑĤÑĮ +át ica +T Y +Ġk ern +ĠBrazil ian +à ° +Ġsusp ended +ĠCar ib +Ġbiz im +ĠOl iver +ãģ ¶ +T om +Ġпл ан +Ġn ope +omet hing +Ġbe iden +ÑĨ ен +Ġflu ct +Ġμ οÏħ +Ġf athers +ĠBl ake +Ġup ward +ĠD ash +ĠL il +ĠìĪ ĺëıĦ +Ġrevel ation +Ġelev ated +ĠJi ang +LE D +ĠThom pson +Ġмог ÑĥÑĤ +ÑģÑĤ ÑĢÑĥ +if iers +Ġcome back +Ġbuy ers +ê² ° +ĠS ales +иÑĩ е +c iones +Ġwh istle +Ġd ull +LE X +Ġíķĺ ê²łìĬµëĭĪëĭ¤ +Ġcrimin als +Ġdes cent +ipp le +mas ı +Ġfool ish +ĠдÑĥм аÑİ +t ar +Ġman go +Ġchore ography +M att +Ġterr itor +Ġac aba +ĠEin stein +ĠI BM +ĠMet al +ĠCry stal +Ġr ah +Ġf oul +ĠIsland s +Ġint act +ĠR ail +. : +Ġac á +ĠпÑĢ оп +еÑĢ е +ĠWr ite +he he +ĠF O +ĠÏĥ ÏĦη +Ġdo in +h eld +Ġappropri ately +Ġdeliber ately +Ġarch ive +Ġgive away +ãģĵ ãģĵ +Ġfin ale +л аÑģ +ен о +Æ¡ n +æ£ Ĵ +og o +çī © +ĠAud ience +ãħ ł +Ġsub ur +Ġhead ache +ан нÑı +ĠW itch +ĠSwed ish +ĠB I +Ġer ase +Ġk hi +Ġcomment ary +ĠS ultan +íĥ Ŀ +ĠLe ban +Ġë³´ì ĭ +ĠP am +pe kt +mon th +Ġground ed +ê ¾ +ĠÅŁek ilde +2 50 +ĠS CH +ios o +Ġin aug +he imer +Ġreflect ing +ĠR uth +ĠO il +Ġtrou ver +u ep +.. ] +Ġìŀ Īë +Ġol ha +Ġreason ably +Ġgl itch +U B +ĠGr an +Ġad alah +Ġl ent +ر ا +Ġtr action +Ġadjust ing +´ ¤ +ниб ÑĥдÑĮ +Ġд оп +Ġstretch ed +Ġor t +Ġcos ine +vi ol +Ġì ħ +c ir +Ġbast ard +ä¸ ĩ +ĠÑħ од +Ġqu ier +Ġpress ures +ĠAn h +å¹ ¾ +Ġell es +Ġд ÑĢÑĥз +ĠможеÑĤ е +Ġch á» +ĠM é +ö k +ầ u +ìł Ī +z in +Ġca ution +ib an +Ġjud ging +ÑĥÑİ ÑĤ +Ġb aj +ĠС ейÑĩаÑģ +ĠPo or +ĠNaz i +Ġup beat +y ang +Ġweek ends +ĠEss entially +Ġol uyor +Ġspat ial +ack er +Ġsell er +Ġ×IJ ×ķת +ij ׾ +Ġv ivid +ĠB ond +ê ¶Į +is kt +ãĤ µ +Ġgo at +dri ver +Ġm ug +ict ional +Ġall t +ĠIn iti +ĠR and +Ġfinish es +Ġê° Ī +Ġvit am +Ġteen agers +ĠMor ris +ì¤ Ħ +ĠO ri +i ya +Ġmy ös +St ep +ĠK re +è¾ ¦ +Ġdin osaur +Ġëª ĩ +aff e +ĠëIJ ©ëĭĪëĭ¤ +Ġz eg +åĪ ĩ +ĠManh attan +Ġsu jet +ue lle +st off +Ġd ür +Ġsub mar +es es +Ġa quele +Ġn ou +ĠFa ith +t z +ĠÑĤ омÑĥ +ace ut +li ers +Ġband width +Æ°á» Ŀ +Ġrespect ive +ĠA ve +Ġspread she +ĠS ent +ic amente +Ġinf ra +Ġlearn ers +Ġà® ī +ai ah +ren al +Ġmust ard +Ġhab t +ç ĥ +ĠQu é +Ġanaly zing +æ¯ ı +Ġso lic +Ġ×Ķ ×ķ×IJ +Ġcaus a +Ġwel comed +ĠS uccess +Ġfac ile +ĠÐŁÐ¾ÑĤ омÑĥ +sche in +Ġf etch +Ġstr at +ĠÑģÑĤо иÑĤ +ìĹIJìĦľ ëĬĶ +ĠÑģп оÑģоб +m am +Ġser ÃŃa +nam ents +wr iter +Ġconsult ing +íĺ Ģ +ĠBer keley +e u +as ive +U U +ĠAnal yt +Ġsubm ission +Ġmagnific ent +en za +Ġe con +Ġprof iles +Ġinc ar +A b +ĠN un +Ġh ic +scream ing +Ġresil ient +åĪ © +gr und +Ġconc ur +Ġbere its +L D +Ġnur t +ì ī +Ġfe ast +Ġenc uent +ĠMich el +Ġsup rem +" ] +Ġfeed s +ĠKoll egen +iss er +ĠF eng +ĠW en +m un +Ġten ÃŃa +ĠW rest +Ġìĺ¤ëĬĺ ìĿĢ +Ġst ead +Ġrest oration +Ġdon ated +Ġdel s +Ġc ensus +Ġdesper ately +worth y +H E +ĠSp a +ĠBry an +Ġh j +ĠR aw +ìķĦ ë +ĠCam era +Ġz ien +Ġst yl +ĠT W +ĠChe ese +bor ne +Ġob l +ĠAl ready +Ġunst able +Ġfl ames +p ost +H a +rom agn +ĠìĹ Ħë§Ī +d est +Ġkole j +Ġtempor arily +Ġdeterm ining +ĠGl ass +ÑĢ он +ol an +Ġdom inated +åĮ ĸ +__ __ +ĠÙĩ ذا +ĠD ana +Ġdin heiro +a qu +ë ¯¼ +ĠÃł s +ĠJo ey +ĠGr iff +Ġatt ain +Ġtrans itions +ĠLiter ally +ен д +ĠHa ven +Ġgrab bing +Ġcryst als +ĠFour th +Ġcand les +ĠÑģлÑĥÑĩ а +ric o +Ġ5 000 +et to +Ġund o +Ġk to +Ġdi vert +Ġch ir +Ġper sec +Ġh iking +Ġannounce ments +çĶ ± +з Ñĭ +Ġa uc +Ġsystem ic +ĠR M +Ïĥ α +ĠÐĶ ж +Ġy ar +ĠW ard +Ġpiss ed +Ġcar n +Ġautonom ous +ãħİ ãħİ +so ver +æ²Ĵ éĮ¯ +å¾Ī 好 +Ġref lex +Ġgard ens +Ġd ated +ì ± +ami ÄĻ +Ġcontinu ity +Ġcitizens hip +Ġsch wer +Ġz ak +t able +ĠÑģ Ñĩ +è§ ģ +ĠÏĥ ε +Ġgener ates +구ë Ĥĺ +ö h +ó m +al am +ĠJUD Y +ĠB ug +Ġãģ ¦ +Ġdr ones +Ġá gua +ac aks +æ ļ +ĠÐļ он +× ĸ×Ķ +Ġstri ve +ĠAl tern +Ġne arest +Ġpro yect +ter a +ĠASH LEY +Ġwor m +Ġre play +Ġt ara +ĠInd ians +ãĤ ° +ica id +ĠìĪ ľ +Ġappe aling +ĠW es +Ġment ions +Ġдел е +Ġk w +Ġfrag ile +is z +k ów +h ang +col or +Ġpresident e +8 7 +е ÑĦ +çĪ ¸ +Ġдоб ав +ĠN elson +á fic +ĠMIC HAEL +Ġmechan ic +Ġmet res +Ġo czywiÅĽcie +ĠC ind +Ġog sÃ¥ +Ġlands ca +AC E +Ġhead lines +Ġcat alyst +ĠC atch +ink les +Ġp ills +ord o +Ġimmig rant +Ġexam ination +Ġacc idents +zÄħ d +Ġqui ere +Ġne lla +Ġ6 7 +Ġpass a +Ġsuper fic +ist or +Ġno v +ëĭ µ +Ġmand ate +is ons +ĠVirt ual +Ġsel ber +Ġcounsel ing +ĠN BA +Ġse pt +Ġbelie ver +Ġmar vel +ĠInte gr +Ġм Ñĸ +Ġor ph +Ġback ward +ĠGen eration +ĠP ict +ĠÑĤо ÑĤ +Ġtap i +pro chen +Ġhall way +ht e +ĠÛģ ÛĴ +ĠZ um +èĢģ 師 +ach ment +iqu er +fol g +ĠEd die +ĠK il +Ġwell ness +st ock +è¼ ĥ +Ġka ç +Ġterror ism +Ġpo inter +O f +her ic +ĠUlt imately +Ġmes es +ĠTr ade +Ġp int +Ġtu ition +Ġdisag re +Ġê²Į ìŀĦ +Ġmanus cript +Ġro omm +Ġoutput s +е ÑĨи +Ġr ies +Ġsal ud +otz dem +Ġmass es +Ġby ÅĤa +Ġclear ing +Ġdisc ourse +ats on +Ġfold ed +ĠJ ar +ÙĦ Ùī +9 00 +ĠÑĥ Ñģп +Ġprophe cy +Ġinterf ere +иÑħ од +๠Į +Ġth ri +Ġ×ŀ× © +Ġlaz ım +Ġ199 2 +Ġfut uro +Ġlock ing +Ġembar go +ĠNe ither +iv amente +ĠmÃ¥ ste +Ġm ik +Ġcollect or +еко ÑĤоÑĢ +ĠG and +Ġsent ir +ĠM ight +å¡ Ķ +Ġgan zen +U C +Ġrel ating +S D +Ġmos quito +G R +Ġho llow +âĺ ħ +ĠWalk er +Ġaffili ate +Ġduplic ate +н ем +Ġgra pe +ĠOrgan ization +Ġsy nt +J oe +Ġg eg +Ġreve aling +ĠEth an +out er +Ġy ay +é« Ķ +л аÑĢ +Ġreported ly +Ġihr er +Ġrecogn ise +Ġbum per +ĠR andy +ĠVen us +t les +Ġappet ite +Ġgluc ose +Ġch odzi +ĠFurther more +t ir +Ġcont a +Ġint uition +Ġalt itude +Ġch unks +ĠJosh ua +ıģ ım +ry lic +le ans +ĠíĶ ¼ë +L L +Q ue +Ġg or +Ġзна ÑĩиÑĤ +Ġpo ems +Ġexc el +Ġexpl ored +Ġpop ul +Ġinclus o +st ä +ĠG avin +all ing +ĠÏĦο ν +é © +ar beit +ĠG as +Ġgl orious +rie ben +Ġsp am +Ġindo or +Ġthr ust +ĠA ld +ĠPri or +Ġon board +ãģł ãģķãģĦ +o ca +AS H +£ ł +ĠChrist ine +Ġdra wer +Ġno on +Ġìŀ ĺë +Ġperman ently +æ· ± +ĠнапÑĢ имеÑĢ +Ġpodcast s +era peut +pr it +Ġstain less +ĠÚ© ÛĴ +Ġfamil ia +ĠÑĢаз ÑĢ +un to +ĠÑģÑĤ ол +Ġh ä +ĠH ai +ĠP B +iz on +Ġkon nte +Ġbüy ük +Ġutil izar +Ú Ĩ +Ġaqu esta +Ġmix er +ud ent +лек Ñģ +ÅĤ u +ĠÑģиÑģÑĤ ем +Ġн оÑĢм +Ġfat al +Ġconsider ations +Ġvalid ation +Ġo li +Ġk ardeÅŁ +ĠGL ORIA +Ġp all +еÑģÑĤ е +Ġrect ang +Ġmed ieval +allah i +ast i +ĠSy rian +Ġshe ar +Ġdeb ug +ĠM ai +Ġknock ing +ĠLe x +ard an +ro v +Ġmem orial +æ° £ +ook y +Ġstuff ed +Ġpass é +Ġw ig +Ĥ ł +Ġpróxim a +Ġ199 1 +Ġм еждÑĥ +Ġnuest ros +ĠBe ast +Ġsm o +atch ed +olog ia +Ġм од +Ġge e +Ġconcept ual +Ġà ´ +Ġdecre ases +Ġquer ies +олÑĮ ÑĪ +ĠA part +Ġex empl +å± ± +Ġfl ed +ĠO FF +gg ak +Ġbe ad +h ir +l ies +ĠClear ly +ı lar +Ġch ess +Ġwhich ever +Ġ9 6 +Ạ± +Ġrespect s +Ġм оÑĢ +Ġorgan ism +Ġgrand pa +ĠV ie +è·Ł ä½ł +Ġflo oding +Ġupgrad ed +Ñij ÑĢ +Ġcheek s +Ġcon quer +Ġstub born +Ġpuzz les +Ġau ction +Ġre lying +ĠPRO F +ĠEs per +ĠÐľ У +Ġhy pe +Ġposs ibil +Ġimp rison +ĠEr n +ìĹĪ ìĬµëĭĪëĭ¤ +Ġenv ie +Ġresur rection +ä¸į è¡Į +Ġs per +ĠVenez uela +s om +Ġìŀł ê¹ +Ġnouve lle +Ġclos es +Ġ19 40 +Ġqu a +ĠJ ared +ĠP ir +Ġind e +Ġscr ub +uk u +Ġrequ iring +Ġв ами +Ġconsider able +åIJ Ľ +il ia +Ġin ne +Ġmein em +Ġhard ship +Ġtra ps +ro c +ĠìĦ ¤ë +Ġresearch ing +ĠMarg aret +Ġpen ny +Ġbı rak +Ñij л +Ġw ool +Ġr het +Ġflat ten +ç ĩ +à¹Ģภ£ +Ġp ied +ĠCh ap +Ġunder m +Ġf ret +Ġcrash ed +ĠFra uen +Ø° Ùĩ +iv an +Ġliter ary +late go +Ġsp äter +Ġsimilar ities +â Ĩ +ĠCor on +ĠC reek +Ġboss es +Ġaccompan ied +Ġdeb ates +Ġassemb led +Ġà ģ +ĠV ai +Ġtr act +Ġsimple ment +ĠAr in +Ġvulner ability +Ġhorm one +I EL +OO K +Ġrel ay +ĠAnd rea +r il +Ġnecess ity +aceut ical +Ñİ Ñī +ous ing +nah men +Ġfoot print +m ap +ĠT ier +ann ya +int end +åĸ ® +å ¢ +Ġdecor ate +Ġzomb ies +ĠHy d +ĠSu z +Ġcampus es +ĠE mb +Ġthr ottle +Ġad min +Ġop ortun +Ġmir rors +Ġident ities +ĠCl in +Ġë¹ Ħë +á¹ £ +ĠO tt +Ġbl ues +Ġimpress ions +- , +Ġv ague +a fe +Ġinfer ior +eral d +Ġmedic ines +Ġpre gunta +os ely +Ġt élé +ĠMon th +ĠLe aders +ĠEgypt ian +Ġr ation +k ers +he its +Ġre cht +P lay +Ġe g +Ġpoll s +ĠWOO DR +Ġsl ots +j am +B oth +ĠR at +ÑĢ аж +ĠBr ight +ä¸Ģ å®ļ +á»ij i +ur ious +Ġsing ers +Ġlo gin +Ġt êm +l ation +ĠM um +Æ°á»Ŀ ng +ĠEd itor +åIJ ij +Ġinnov ations +h ave +ĠS ek +Ġwe aker +ĠG ob +A fter +´ì §Ģ +Ġ문 ìłľ +ãĥ¼ ãĥ¼ +Ġdisad vantage +ç¢ º +Ġg aze +ĠM ack +Ïģ ί +ĠK iss +ĠH olo +ĠBir th +iz i +b ab +ä¿ Ŀ +ìĭľ ê³ł +д еÑĢж +Ġsqu at +кÑĥ Ñģ +un i +ĠComm e +ĠWOODR UFF +ĠChampions hip +Ġwel che +ĠY outh +z em +Ġod pow +Ġpersist ent +r ut +ìĶ © +íĸ ¥ +la ir +ik u +Ġvend or +Ġch úng +Ġfinan ci +Ġover ly +â u +Ġgl uten +Ġ18 00 +Ġdiv isions +Ġciud ad +Ġob ed +Ġwar um +Ġe her +Ġel im +ĠÐĴ о +Ġpeu vent +ĠW anna +Ġattend ance +Ġassess ments +ĠB og +Ġimag ery +Ġcollect ively +Ġinform al +ĠSch we +Ġde utlich +ĠCh el +ĠP E +ow ed +Ġb anner +Ġshel ves +ĠRet urn +æĭ ¿ +LAUGH S +Ġcongrat ulate +ĠNor way +Ġd well +ĠCarib bean +Ġnorm s +ĠAn imal +ĠValent ine +Ġext ending +ĠV ou +or r +ĠCh eng + ¡ +ĠдоÑĢ ог +Ġve g +Ġh Ã¥ +ĠX in +Ġì¹ ´ë +em et +Ġhyp oth +Ġinteress ante +ric es +I Z +ĠUS D +Ġrun ner +ĠB ag +Ġê ½ +Ġcomeç ar +Ġpig s +Ġweakness es +P h +ĠVi ol +ä¸į çĶ¨ +Ġdra gging +ĠAqu ÃŃ +ĠCS S +Ġmill imeters +Ġest ás +Ġac ute +Ġde jar +i ÄŁ +ob ra +L ove +Ġsil k +** ** +Ġjo ins +Ġpro l +Ġê°IJìĤ¬ íķ©ëĭĪëĭ¤ +æĶ ¯ +ØŃ Ø¯ +agh etti +än ner +Ġstr ang +Ġdoub led +Ġdescri ptions +Ġst ellen +Ġpart i +ç« ĭ +² Ħë +Ġö ÄŁ +ig hing +Ġang ular +Ġnat uur +ĠSh el +Æ° Æ¡ +Ġr ays +Ġse per +st art +v ised +Ġrush ed +Ġinternation ally +Ġnive l +Ġbox ing +fall en +á»ij c +Ġse inen +plic ity +Ġcarb oh +ĠTra vis +us o +ĠPh ase +Ġactiv ation +Ġop io +· ¨ +Ġdecre ased +C ar +Ġbund le +Ġexp end +orm al +Ġadjac ent +Ġme e +ĠоÑĢ г +Ġtrans cript +ĠLang uage +G S +è§ ī +Ġse ul +Ãł nh +Ġn ya +ning s +Ġìĭ ľë +ĠëĶ°ë Ŀ¼ +ĠA gr +ÃŃ d +çķ Ļ +Ġab y +ĠNe o +ıyor uz +ĠThink ing +a ime +Ġv ite +Ġtrav és +Ġ×ij× ¢ +Ġм ед +O ur +ho ot +Ġl iner +ĠP izza +Ġhy g +fl ies +ĠContin ue +Ġdent al +ĠT ib +Ġreg ulate +lie ÃŁ +AL K +ĠTa e +ê¸ ¸ +ĠBre xit +ĠG ut +Ġoccup ation +Ġz robi +â m +Ġwh isk +ä¸ĸ çķĮ +Ġkans ke +om on +ro be +Ġwar fare +Ġth á»ĥ +Ġjak i +Ġstro kes +Ġpe as +ĠDam it +H AN +Ġinter ference +Ġмин ÑĥÑĤ +N ER +out ing +Ġtext ures +Ł ī +ow i +Ġíķ Ļ +Ġd ens +Ġprotagon ist +än n +Ġgod dess +Ġwoll te +ij o +ĠWo che +ĠV PN +st ory +Ġkind erg +Ġfun nel +Ġdist ress +ноÑģÑĤÑĮ Ñİ +Ġno isy +ĠпÑĢод олж +Ġdar an +Ġenzy me +л ож +Ġm ute +Ġd war +Ġا س +Ġkom pl +Ġmer it +Ġf osse +ĠDr ink +Ġfor a +Ġw ohl +Ġbree ze +Ġsan it +Ġdr in +ĠìĿ´ê±° ëĬĶ +Ġ6 2 +Ġì° ¨ë +aby tes +Ġde eds +ĠÐ ¹ +i ème +igg ling +Ġ" ' +ĠÑĩа ÑģÑĤÑĮ +ĠAns wer +Ġev angel +Ġ10 80 +ĠVis it +ic ient +Ġreli ability +Ñİ ÑģÑĮ +ĠEar lier +Ġf id +çŃī ä¸Ģä¸ĭ +Ġslee ves +iy orsun +Ġb ib +ĠAcc ount +Ñı ли +cipl inary +z as +Ġб еÑĢ +Ġneck lace +Ġbl ender +ĠPhill ips +et i +ĠJup iter +Ġprov oc +ĠYe ars +ent re +ac io +Ġk ü +Ġanten na +Ġnovel s +Ġf art +ĠS ugar +ĠJud y +Ġcollaps ed +ç ° +rit is +Ġìĥģ íĻ© +ÐĹ Ð« +ĠVer f +rane an +ere um +ĠTar get +Ġ8 8 +ĠÐĺ з +ide o +Ġreg ression +ì¶ ľ +Ġmów i +Ġstud ios +i ens +ip h +Ġfr ying +Ġfasc inated +ĠW ah +b ucks +m aya +ĠSat urn +ĠM ommy +Ġrating s +Ġaut umn +Æ°Æ¡ ng +Ġlos er +Ġcent ro +érie ur +ĠF old +Ġsuper visor +ĠNo bel +Ġunder est +ob ia +Ġв ÑģÑı +Ġver w +Ġfu els +Ġartif acts +Ġë¶ Ļ +ĠAut om +çļĦ æĺ¯ +Û Ķ +×ķ× ¡ +Ġih nen +Ġ5 9 +ound ing +еÑĢ Ñĭ +in ars +ch ant +Ġadd icted +Ġexplos ive +Ġdisp ers +â ĸĪ +ax is +AR Y +Ġl um +ĠÑĥ Ñģл +ĠØ Į +Ġru pees +ĠPe arl +c amp +t v +oy a +Ġconclud es +Ġcoll ision +Ġbuy er +Ġplay ground +Ġspr ings +Ġfemin ine +ĠR as +Ġincar cer +íĹ ĺ +Ġdial ect +Ġclos ure +Ġchat ting +Ġb abe +Ġspot light +Ġnot ation +è· ¯ +St ar +i ão +Ġt ête +Ġt ide +Ġjun to +Ġsen ator +Ð ¥ +Ġexcus es +Ġbl ink +Ġadm ission +ĠL ily +Ñĭ ми +Ġam igo +Ġl ust +ëĭ ¬ +Ġam ino +äºĭ æĥħ +Ġconsult ant +ĠElect ric +Ġëħ¸ë ŀĺ +uj ah +Ġshoot er +icht en +ĠUkrain ian +Ġaim s +ĠEnter tain +Ġmir acles +èŃ ° +Ġze igen +Ġl am +Ġres s +ĠJ ill +yl an +Ġro ok +Ġh aya +Ġpass port +ad ata +Ġju icy +con f +л ей +ĠS z +Ġinter cept +ãģĤãĤĬãģĮãģ¨ãģĨ ãģĶãģĸ +ĠTe ams +Ġmak en +ir rel +ĠLI KE +áºŃ y +êµ ° +Ġshort age +Ġparad igm +Ġpap el +Ġast ero +ãģ¾ ãģŁ +Ġsoll en +ĠMic key +ĠOr leans +Ġchol esterol +Ġgo ose +ÑĨи Ñİ +ãģĤ ãĤĭ +ĠF L +Ġгол ов +Ġtrib ute +ĠG am +Ġé videmment +Ñı Ñħ +å® ŀ +çĶ ° +Ġin appropri +uh an +Ġorganiz ational +ail ed +Ġend ure +Ġ7 6 +Ġshot gun +Ġliv re +Ġsu ited +Ġwarm th +ĠS IM +Ġenv ision +Ġde grad +î ne +La ughing +ĠWho ever +ĠBuddh ism +Ġspr inkle +ceÄŁ iz +Ġru ins +Ġst arch +ĠHer z +Ġinjust ice +Ġhum idity +ожал Ñĥй +ĠOb ject +ĠI gn +ĠEx am +ig ers +Ġth ou +ĠSo y +iv as +Ġpol es +m ath +Ġв ним +ING ING +ed ral +Ġexpl or +Ġroast ed +Ġcraw l +Ġco ff +Ġan om +Ġw ij +Ġimpro ves +Ġtreat y +Ġdiscover ing +Ġstat ute +Ġmerc ado +ĠÑģ ил +Ġint el +ĠChance llor +ĠMed icaid +ug i +Ġver bal +Ġd ön +Ġscript ure +Ġit eration +ek s +ĠOx ford +Ġw äh +ĠV ad +ĠA K +ĠìķĦ ìĿ´ë +Ġi ets +Ġneed les +Ùĥ Ùħ +Ġpas ado +Ġalbum s +Ġye a +et zen +Ħë ıĦ +Ġdeterm ines +Ġthe e +ĠPlay ing +är t +Ġ× ¦ +c led +Ġdown ward +al one +Ġsol u +Ġpart ition +Ġw z +d d +Ġpesso al +å ª½ +Ġfact ories +Ġble ibt +ม า +als a +ĠNF L +Ġfu era +Ġres erved +ĠE arn +Ġhel t +Ġshort cut +Ġconvin cing +sp ace +Ġen force +Ġc ores +Ġe fter +Ġrecess ion +x ico +Ġprop osition +ar ians +rop ol +Ġëª °ë +ĠÎ ľ +ĠìļĶ ì¦ĺ +Ġactiv ist +Ġconv iction +Ġz ab +Ġcancel ed +ÑĤо Ñĩно +ĠÎ ® +éĢĻ樣 åŃIJ +n ite +Ġfund ra +buz zer +ел о +ic ations +Ġz ona +Ġte ens +Ġmethod ology +Ġì¤ij ìļĶ +th an +ĠU l +ĠG rey +Ġh og +IN K +ĠS ung +ĠC laud +ĠCN N +Ġdel ivers +al in +ĠAd obe +ot he +ĠDes wegen +ภ³ +Ġwer de +Ġgre ase +Ġup grades +ĠFin land +ac cept +Ġinter rog +be e +Ġãģ « +Ġpre de +ĠN ep +ĠCam bridge +Ġgraph s +Ġha unted +Ñģ ем +æ § +åħ ĭ +S ome +ĠM all +Ġrehears al +ĠUr ban +ĠL ag +Ġn im +ê° ķ +Ġposition ed +Ġavo ided +EM A +Ġlleg ar +Ġráp ido +Ġgou vern +Ġh ing +Ġdeal er +Ġreform s +Ġfat ty +к ол +ĠA ce +Ġne p +Ġì² Ń +Ġcomput ation +ĠSt ream +bour ne +t ur +P or +Ġsleep y +Ġbang et +ãģĤ ãģ® +Ġwe ighs +Ġble iben +ĠG ren +Ġun ions +Ġêµ IJ +Ġap render +uit ar +ĠJ est +um ing +ĠPlay er +ĠExt rem +Ġinteg er +аÑĩ е +Ġconcert s +×ķ× Ľ +Ġtro chÄĻ +ĠRe pe +éĩį è¦ģ +๠Ĥ +ż en +Ġsound ing +Ġan onymous +Ġex ca +ĠIran ian +Ġener getic +Ġw ives +ĠÑĨ веÑĤ +Ġa is +ãģĭ ãģª +Ġsud ah +Ġunder wear +Ġcrunch y +ĠP ain +Ġger çek +red ict +Ġm isma +Ñĸ ÑĤ +Ġsurv iving +ÎŃ ÏĤ +Ġparticip ant +ĠH essen +ári as +Ġsub way +ist ä +Ġcor al +Ġmar ijuana +ĠMem orial +ÑĪ ий +ri z +Ġsatell ites +Ġle ase +ĠCam eron +um ph +Ġclass mates +äh än +ÑģÑĤв е +Ġh ue +ĵ¤ ìĿĦ +Ġproport ional +Ġn oss +Ġl aps +r Ã¥ +Ġbit coin +ÐĹЫ ÐļÐIJ +Ġì¶ © +ĠÙĦ ÙĦ +ĠM ort +ĠEs p +arn os +ĠÑģказ ал +Ġä nd +åħ Ħ +×Ļ ×Ļ×Ŀ +ĠGe b +ge hen +I naudible +bor ough +ÑĦ ÑĦ +Ġfellow ship +ĠP aper +Ġcur ved +ĠGE OR +Ġcalcul ator +ĠCat al +ĠvÃł o +Ġby pass +л еÑĤ +à ³ +tr ans +ren cies +ì ¡Į +ig ent +Ġtast ed +Ġo ceans +u ft +erv ice +ĠÐľÐ£ ÐĹЫÐļÐIJ +ĠClass ic +Ġrespect ively +~ ) +î tre +ĠN ash +Ġz it +ĠìĽ ĥ +ĠëĨ Ĵ +qu ote +ĠUn s +Ġt ac +Ġpro ves +ĠPort land +b ly +Ġ ere +ì¶ Ķ +Ġépo ca +ĠÑĤÑĭ ÑģÑıÑĩ +7 6 +Ġhad e +ĠF ro +ĠpolÃŃt ica +t ag +Ġíķ Ń +Ġsch ö +are tt +Ġprov isions +Ġmot ors +Ġimag ing +Ġdo k +ul ously +Ġme ille +çİ° åľ¨ +ë IJ +ĠIS O +ĠST EM +ĠBow l +Ġto wers +ĠE e +ĠPerform ance +Ġlo in +cuss ion +Ġcoast al +ial e +com pass +Ġspell s +Ġdisappoint ing +Ġë²Ī 째 +E ER +Ġvers atile +as ury +Ġen fin +Ġdown side +Ġgu iding +ĠاÙĦ ÙĤ +Ġnin ety +char ged +ĠF ans +Ġphilosoph ical +Ġg arn +ĠmÃ¥ nga +Ġwilling ness +Ġport ions +ab en +Ġ ï + ¿ +ra ul +Ġspr int +if en +ıy la +Ġк Ñĥп +ãģı ãģłãģķãģĦ +Ġens uite +ĠCap itol +Ġ6 3 +ĠговоÑĢ иÑĤ +Ġappoint ments +æī ¾ +omi ast +Ġcare g +Ġpubl isher +Ġher aus +Ġε ί +ĠV S +ãģĿ ãģĹãģ¦ +ä¸Ń åħ± +Ġsacrific es +th ird +Ġhuman itarian +ĠëĤ ´ì +im on +Ġine qu +Ġz ob +Ġcomfort ably +ĠD inge +Ġcancell ed +ĠPS AKI +ĠRob inson +Ġfin s +) ? +ĠHist or +ĠÑĩеловек а +Ġt bsp +te xt +k im +Ġupd ating +Ġgel d +f eld +ı ¼ +Ġm ä +Ġcaf é +Ö Ģ +ĠS ri +ĠReg ion +ĠH ahaha +Ġfin ances +ĠاÙĦØ ´ +Ġb unk +ru k +ha ft +Ġlater al +Ġext ensions +ĠìķĦ ìĿ´ +Ġdefin ite +ĠZ hao +ĠLu is +st y +Ġcas os +ĠK lim +Ġ199 3 +Ġreal ization +Ġhistor ian +Ġcrack ed +ëĤ ´ +Ġsyst ème +ĠC IA +ĠÑĤ во +osp heric +Ġfle e +Ġr ất +ĠRegard less +Ġrel uct +Ġtim ely +ĠJul ian +G M +é Ĵ +ad ura +é£ Ł +Ġdress es +çģ £ +ĠëĶ Ķ +Ġnom inated +Ġadvoc ates +ym ph +Ġrecord ings +Ġdev iation +Ġpriorit ize +Ġspir al +ĠYOU R +Ġtransp ose +amp oo +ĠìĽIJë ŀĺ +ĠV ision +Ġpol ite +Ġha mb +ĠPat ient +æ¯Ķ è¼ĥ +íģ ¬ë +Ġs ia +Ġê³ ³ +Ġž e +è§ Ģ +Ġsuper market +ë ¹ +ĠS ierra +Ġgr illed +ĠUp on +Ġabs ent +Ġme c +ĠAp ollo +Ġp unk +ĠPa ÅĦst +ĠÑģв ой +Ġê±° 기 +G irl +Ġskin ny +ĠPrem ier +Ġterrit ories +Ġli ability +Ġj erk +r atic +Ġdan cers +ĠÑĥ ÑĢов +Ġê´ Ģë +on ly +ĠSt u +Ġske leton +ĠëŃ IJë +Ġзак он +ı kt +ĠMI KE +Ġl ö +m ie +Ġre iter +ãģĵãĤĮ ãģ¯ +ĠKoll eg +ĠAd ams +lich er +Ġçoc uk +Ñı г +Ġbl ush +Ġsun shine +Ġe z +ĠDev il +Ġê¸ ¸ +Ġãģ Ĭ +ad d +Ġlic ensed +Ġv inyl +ĠC zech +im ag +Ġcrack ing +Ġì º +Ġud ah +Ġs ommes +Ġìĸ¼ êµ +wa Äĩ +Ġf res +åij ½ +ĠWal mart +ĠТ епеÑĢÑĮ +at isf +C I +l ang +Ġdiff usion +çĶ · +Ġsom os +ĠM akes +æĪij æĥ³ +ĠRick y +Ġmuch a +íķ ¨ +Ġhorse power +as ia +Ġfib ers +Ġ erm +Ñģ кие +Ġjest e +Ġfire fight +Ġcu isine +Ġbesond ers +d ig +Ġì¢ ħ +ĠÑĥ ж +Ġtr acing +Ġcertain s +ĠApp ly +Ñĭв аÑĤÑĮ +ç Į +Ġbr u +ĠY ES +ĠB ai +ĠD it +ĠB is +Ġun le +ÑģÑĤа ÑĤоÑĩно +ĠAw ak +.. " +Ġ12 5 +Ġroot ed +Ġcaut ious +con st +Ġorchest ra +çľ ¼ +Ġвн ÑĥÑĤ +Ġquel qu +ĠоÑĤ веÑĤ +ĠMet hod +ì¹ ľ +Ġμ αÏĤ +l ü +ĠìķĦ ê¹Į +Ġn aming +C har +ĠS icher +Ġprivile ged +ĠF ly +Ġãģ ĭ +áºŃ t +Ġadv ances +ĠZel da +Ġand ra +Ġgr inding +ĠEd ition +p f +Ġwarri ors +Ġh edge +Ġuns eren +ĠÑģÑİ Ð´Ð° +el iness +Ġpersonal ities +Ġf ö +' M +ĠÑĤо Ñĩно +Ġsh ipped +Ġmete or +Ġsurround ings +ĠF ill +u esta +ĠPerson al +ĠAll e +OR T +ä¹ ħ +ĠS che +V I +Ġcompar able +dam n +Ġd itch +Y AN +ism us +Ġpick up +Ġd ak +ĠE P +b est +ĠS ue +äll t +Ġpop corn +Ġfold ing +h ome +ив аеÑĤ +å·² ç¶ĵ +Ġan not +ch uck +Ġfier ce +Ġdam aging +Ġfl op +Ġpas ar +Ġre ef +ĠÑģво ей +Ġz oo +o vers +j ets +Ġpr ès +ĠSil icon +te ok +ĠS eth +at amente +Ġtransm itted +Ġrepl icate +Ġsl im +ĠC ream +æĦŁ ãģĺ +Ġside walk +ìĪ ĺë +Ġжиз нÑĮ +ĠMon ica +ä¾Ĩ äºĨ +Ġcop ied +ĠTer ra +ist ent +ç³ » +Ġо но +Ġwh ale +ĠW ITH +л ÑĥÑĪ +å½± çīĩ +ĠE en +ĠÑģво и +Ġord in +Ġpl ural +Ġsp okes +Ġdisp ute +Ġsens ible +Ġpre aching +Ġktó rzy +pt ed +av ier +Ġpist ol +ĠTap i +Ġ ÅĤ +ff ff +Ġac rylic +Ġignor ance +ĠZ iel +r ans +Ġweld ing +m id +æĪij ä¸į +Ġзан им +Ġlan es +Ġmin es +Ġmom s +×ķ× Ĺ +ĠCham ber +t ier +Ġmod est +ĠìĹ¬ê¸° ìĦľ +Ġun as +Ġw rench +hand ed +Ġsatur ated +ĠF ang +ĠCommission er +ठ° +Ġ× ĸ +ĠLouis iana +ĠM ask +Ġcub es +ìĶ ¨ +Ġvidé os +ĠnÃ¥ gon +Ġr ider +Ġì¶ ľ +Ġs ón +ĠLat ino +b ank +íķ´ì £¼ +ĠB rend +Ġsexual ity +... , +Ġforget ting +Ġ ÛĮ +ĠAven gers +ĠBon jour +cess or +кÑĢа ÑĹ +c ence +Ġge ograph +cul o +о ÑģÑĤÑĮ +Ġswe ating +íĥ Ģ +Ġsymm etry +ts Ã¥ +Ġj an +ĠFer r +é¦ ĸ +Ġamb assador +ziÄĻ k +Ġmus un +ĠÑĥ ÑĤ +ĠL G +iss ent +comm un +Ġcour s +Ġdevelop s +Ġbron ze +Ġsubst ances +dri ven +주 ìĦ¸ìļĶ +Ġa os +åĦ Ħ +ĠPROF ESS +h alf +Ġsort ed +ĠB omb +л аг +ĠMalays ia +ĠChrist ina +Ġteam mate +èģ ŀ +F T +Ġk ı +heart ed ++ + +ogen ic +Ġbell s +ĠOu ais +Ġspecial ists +б Ñĭ +dep th +lass es +g ies +ĠCo ffee +Ġmark ing +Ġfo ll +ul i +Ġad hesive +ĠB ot +ĠP unkt +e ye +ĠB ub +el ong +åĪ ¶ +ĠпÑĢ ик +Ġdon or +8 4 +Ġen for +Ġcatch es +Ġbr icks +Ġkn itting +ĠKnow ing +ok s +H Y +r ide +ĠFant asy +im an +Ġp se +Ġìĺ ¨ +Ġв д +Ġrest ra +Ġevalu ated +ÑĢ ев +Ġfortun ately +Ġche gar +ر ب +Ġdom ains +ib i +ar ry +Ġshut ter +Ġfic ou +M ike +Ġinc lu +Ġdon ors +Ġa pl +ĠL ower +Ġimport ed +Ġacad emy +Ġfin als +Ġdisappe ars +ÙĬ ا +Ġadministr ator +j s +Ġcut ter +Ġr anging +ör per +Ġconstra int +ĠT able +ĠSh an +v ic +ĠF ix +ĠSw ift +oun ces +ĠWar um +Ġlett uce +app elle +Ġsh ave +Ġb ás +Ġ7 7 +ĠO oo +a o +ĠMc M +ĠD rew +Ġl ump +Ġl ashes +schein lich +R ep +in is +ĠC ette +Ġcompos ite +emet ery +Ġsort e +ĠFin ancial +он е +ron es +ĠV oy +Ġt éc +ł ¹ +ĠNin ja +ĠCor in +ен нÑı +ìĿ´ìĹ Ī +Ġn ich +Ġdetect ive +âĢ¦ " +Ïĥ ε +Ŀ¼ë ıĦ +Ġë³ Ģ +Ġë¸ Ķë +Ġpro pe +ĠW right +Ġ×Ķ× ª +ĠSh i +Ġãģ Ł +Ġinvestig ations +éĤĦ æĺ¯ +ĠPower Point +ĠCh u +Ġìĺ ¤í +ĠìĻĦ ìłĦ +ĠFra gen +un ning +Ġpour rait +Ġtext book +м Ñĭ +Ġf ahren +Ġ ÑĤоÑĢ +Ġl akes +ünd e +I nt +ĠMet ro +Ġmans ion +Ġа б +ĠZh ou +Ġcorrid or +Ġesc ol +Ġindic ating +ia ÅĤa +Ġm ommy +Ġarch ives +Ġfound ers +eng ine +ĠDie u +Ġsick ness +Ġë³´ ëĭĪê¹Į +Ġar b +Ġn ed +ĠCh op +Ġco vid +Ġsl am +Ġpublic ations +D C +Ġsp ends +æ ¾ +Ġrefuge e +Ġd ile +Ġ×IJ× ĸ +ific ar +ĠS ach +G u +Ġre load +?? ?? +Ġje ÅĽli +ĠÑģ оÑģÑĤо +Ġsim plicity +Ġbull ying +Ġм ол +Ġreal idad +Ġuncle ar +app a +le vant +ĠIS IS +ĠW atson +Ġde in +ĠMic ro +íķ ľë +ü g +Ġdev am +Ġtwe eted +å° İ +Ġunderstand able +at an +Ġvers a +Ġpre ca +Ġv á»ģ +ĠCop y +ĠOr acle +Ġmindful ness +Ġdisc ret +ern en +ĠP le +H ave +Ġisol ate +Ġde u +Ġsevent y +ĠH ills +Ġarc ade +ĠÑģп еÑĨи +Ġsigu iente +ĠB ÃľNDNIS +lig a +ĠвÑģÑĤÑĢ еÑĩ +ô m +Ġtwe ets +Ġsch auen +Ġcrit ique +ĠðŁİ µ +Ġst att +ĠÑģам ое +ân cia +Ġsuper natural +Ġplug ged +F l +yn ı +ĠTamb ién +Ġencourage ment +ĠSer ver +ëĤ ľ +up a +Ġast on +Ġhe ars +ÑĢа Ñħ +Ġsch e +Ġr ats +Ġrec uper +Ġun ten +ĠFight ing +Ġacadem ics +ç¤ º +ĠS ü +Ñģ киÑħ +Ġpa ired +Ģ ìĿĦ +Ġá rea +Ġsweet ness +åı Ĭ +Ġde fer +Ġmuit as +ĠAud io +Ġlock er +ÙĬ د +ĠÑģÑĤ ав +Ġbu ena +AN S +Ġdetect or +av o +be k +Ġα ν +íİ ¸ +Ġdra gged +Ġдолж ен +à ĸ +ر Ø© +ìĿ´ì §Ģ +Ġcell e +ck ing +ĠاÙĦØ ¬ +ĠCan vas +Ġespa ñ +Ġgl imp +Ġspread s +ong o +ĠM ason +ĠIn g +Ġê°Ģ ëĬ¥ +ÏĦ ικ +Ġsec ular +Ġb ater +Ġinqu iry +Ġenerg ies +Ġmanufact ured +Ġveget arian +Ġpine apple +ÑıÑĤ а +Ġpractition ers +2 000 +Ġíķ´ì ļĶ +ĠìĹ¬ëŁ¬ë ¶Ħëĵ¤ +Ġë¶ Īë +ĠJeff erson +ĠJo an +Ġtr am +å® ¹ +ch mal +ĠH ait +á¹ ĩ +Ġun real +Ġsymbol ic +Ġste alth +Ġspl ash +ĠEntertain ment +Ġmetall ic +?" . +è¶ Ĭ +ar ound +Ġdesp air +ĠNev ada +ĠFin ance +Ġk rie +ĠL ux +ĠSm ash +ke eping +Ġз аг +Ġnarc iss +Ġdz isiaj +Ġtoler ate +o ard +Ġlink ing +ĠEconom ic +Ġì ¼ +Ġmor ph +ĠN ak +ĠB aker +at on +r ings +ĠP eng +ĠAir port +ãģĭ ãģ£ãģŁ +íķĺ ëĭ¤ +§ ģ +pr ints +Ġhad i +Ġemp ir +ĠL ives +ann ers +Ġн им +ĠPROFESS OR +Ġpositive ly +ant om +Ġbad ge +ke lt +Ġinter fer +Ġfulf illing +Ġvisual ization +éĹľ ä¿Ĥ +ĠPr ice +� � +Ġscen ery +Ġpr one +Ġw izard +Ġb anyak +ver b +s ky +Ġwish ed +Ġrail way +Ġü zer +Ġalgu ien +ĠA W +Ġкол иÑĩе +Ġreact ing +ĠB uch +ภ¶ +Ġan th +Ġsi h +Ġh ust +ĠSc reen +il ant +ah o +Ġfragr ance +Ġelev ation +ĠMed iter +Ġë ¿ +Ġé qu +Ġwra ps +Ġin ert +Ġrecre ate +л аÑĤ +Ġbo leh +Ġharass ment +unk y +Ġglimp se +reg ierung +Ġfut ur +Ġreposit ory +Ġeng ra +Ġtraff icking +ass is +ĠTre k +Ġë² Į +Ġë§ Īë +ĠK ab +ani u +g ive +Ġdin osaurs +Ġfe ather +Ġatt itudes +Ġpl um +ĠR S +ĠAn fang +ill ery +ĠìĬ ¤ +M Y +Ġtrze ba +Ġsk ies +ĠA j +ur able +C U +ĠSh ane +Ġdepart ure +ĠT ON +iet en +r ats +æ° Ĺ +is u +Ġb ord +Ġinteresting ly +çĻ » +oug hing +Ġr ushing +Ġvol atility +Ġp yt +Ġform ats +Ġз аÑĤ +Ġê¼ Ń +Ġwhat not +Ġcomp ort +s w +ore an +ĠRel ax +Ġcl an +ĠA H +Ġpe w +Ġdiction ary +T ake +sh irts +ĠH ugh +ĠعÙĦ ÙĬ +ĠP ic +Ġenroll ed +Ġjed nak +Ġoffer ings +Ġcor az +L ife +Ġ !!! +Ġcl er +ĠVide os +ĠRod rig +ĠId ent +ĠP os +ĠSt age +ĠR ace +Ġen act +ãģĦ ãģ¾ãģĹãģŁ +ĠG y +ĠHis pan +Ġdef ence +ĠCamp bell +m atic +Ġrele v +Ġpe ach +Ħ¸ ìļĶ +Ġparad ise +Ġcere mon +Ġannoy ed +æĮ ĩ +la x +Ġexplo it +Ġcla use +ek er +ĠBlo om +n ant +ate urs +Ġhe ights +E ven +Ñģ он +Ġoutra ge +ĠVietnam ese +ãģ¯ ãģ¯ +T R +Ġe er +Ġcann on +ĠCom b +IJë §Į +è» Ĭ +Ġê²ĥ ëıĦ +Ġaccomplish ments +ĠAnalyt ics +Ġshap ing +re iben +Ġb achelor +Ġfing ert +ack ed +Ġpyram id +ĠStew art +á st +Ġsurviv or +Ġdu ct +Ġdeal ers +æ´ » +ع Ùħ +ли н +Ġed e +×ķ× ¢ +ĠÙĥ اÙĨ +ĠÏĦ ι +Ġcho oses +ĠO wn +го ÑĤов +h ire +алÑĮ нÑĭе +ĠÐĽ Ñİ +Ġо ÑģÑĤав +te ch +Ġdro it +Ġsubject ive +en es +Ġdiv is +ave z +Ġmaneu ver +à¹Ħ à¸Ķ +ade ce +ĠEn s +ac ial +ĠProt ection +ĸ ´ +Ġform ally +Ġwy d +ingu ém +Ġz iem +Ġrecru iting +×Ļ× ļ +n em +Ġforb idden +ĠB apt +×IJ× ł×Ļ +Ġsubs et +ĠMag az +n ement +Ġaqu ela +rag on +Ġcomm ittees +Ġéta ient +ud i +ĠDa wn +Ġb ore +Ġcompos er +ĠwiÄĻ cej +ang a +Ġdis like +ĠD ays +åŁ º +Ġpar al +Ġm ientras +Ġheaven s +ãģ Ĵ +he id +Ġtrad ers +on ce +Ġmasc ara +ĠÏĢ Ïģο +Ġwhis per +ĠMus k +éĽ Ĩ +ĠFamil ie +All ah +ĠOl ivia +ĠPr os +Ġol ika +il im +Ġrép ond +ĠP eters +Ġ å¾Ī +Ġbit es +Ġv ic +ĠN Y +em ption +Ġ4 50 +Ġvisual s +Ġlie u +ück en +ĠSte el +ĠG P +w ait +Ġnotice able +uch a +Ġreh abil +Ġreject ion +ĠÑģлед ÑĥÑİÑī +Ġsl ider +Ġregard ed +Ġgrav it +ĠRes erve +c ount +Ġbre eding +Ġlon ge +ale b +Ġkn ight +Ġв ой +Ġprés ent +Ĥĺ ìļĶ +ĠSpec ifically +Ġpos es +Ġve ure +ok ay +em as +Ġ ãģ§ãģĻ +Ġma jÄħ +Ġweb inars +Ġcann abis +Ġdam als +ĠNorth west +Ġp ada +Ġcrowd s +Ġfut ures +Ġä n +Ġciv ilians +ĠS achen +æ į +Ġtr aces +Ġ먹 ê³ł +Q U +é¡ĺ ãģĦ +ĠI F +an ın +ìĤ ´ +Ġb iblical +ĠV ed +Ġst oring +ÑĢав лÑı +æĩī 該 +Ġn ast +Ġd ö +ÑĢ оп +el ia +Ġside ways +ĠUnder stand +ĠQ ur +Ġper pend +ĠMill ionen +Ġwater melon +ĠDiv ine +ult ur +ab ord +Ġsuccess es +Ġhom bre +Ġcar p +Ġsus cept +ung kin +Ġk ij +ul us +Ø§Ø ¬ +Ġnot ch +Ġpolynom ial +å¹ ² +å © +Ġún ico +Ġteles cope +Ġpolit ique +k iem +ĠÎŃ Î½Î± +Ġaggreg ate +ĠGe off +Ġtr il +ĠG RA +Ġsubscri ber +im et +Ġдол лаÑĢ +op ing +Ġth erapeut +ĠCan cer +Ġpar ade +Ġir rig +âĻª âĻª +Ġclear er +Ġb og +ĠM aur +า à¸ĩ +ĠShang hai +acht e +ĠK ol +el ujah +Ġha v +ĠCr ime +se k +Ġë ¡ľ +ien na +ĠG or +è Ľ +ĠпоÑĤ ÑĢ +Ġкаж еÑĤÑģÑı +ĠL ift +ĠS ort +ĠP sal +Ġp ing +ĵ Ŀ +ph is +ĠF UCK +ĠS yn +Ġbam boo +¬ ìĺģ +c uts +Ġm mm +Ġfunktion iert +Ġ _ +ÃŃ cio +St op +Ġimag inary +Ġnot amment +ĠIniti ative +ãĥ ¥ +ĠK urt +Ġlo osen +Ġbus car +çģ « +Ġz elf +Ġpro ps +åĽ ī +Ġmoet en +Ġmill i +Ġhall s +ĠM atch +Ġbrack ets +ĠC ou +æ¦ Ĥ +ĠÐľ аÑĢ +IS A +Ġcig arette +Ġcompet itions +ĠM IN +Ġbeh ö +vo or +Ġ ust +ĠZ i +ĠO cc +ul ates +Ġball oons +Ġpr onto +ĠM iy +ĠF ile +Ġкл аÑģÑģ +нÑĥ л +Ġcere al +Ġincre ment +Ġref ined +åı¦ å¤ĸ +pr ising +ĠR F +Ġrespect ful +Ġlo ot +ask et +Ġdeix a +ing le +Ġfuncion a +ĠRe vel +Ġso ber +Ġperform s +ĠG entle +ãĤ ¨ +Ġrecip ient +ĠHa use +Ġë ĥ +F rom +Ġmin isters +Ġpar adox +å°±æĺ¯ èªª +Ġtast ing +Ġ×Ķ× Ĺ +Ġre use +ĠL ane +ĠÑģов еÑĢÑĪ +Ġremem bers +Ġfemin ist +Ġcommit ments +Ġproject ed +Ġg az +iyor uz +Ġoblig ations +R o +z ar +Ġch w +ĠJ AM +ĠbÄĻd Äħ +asp berry +Ġм еÑģÑĤо +ë² ķ +Ġreg ulated +Ġw icht +ĠTre vor +Ġsecond ly +ĠIh re +els h +Ġrep orters +ÑĤоÑĢ а +oy o +G I +Ġinter connect +é IJĺ +OS H +æŃ ² +Ġbr ass +Ġign oring +ä»Ĭ æĹ¥ +in fect +Ġpro jekt +ore t +ÏĦα ν +ĠÑĤ ип +Ġmut ta +Ġunbox ing +Ħ ° +å¡ Ĭ +Ġadv ised +ĠDen ver +Ġsevere ly +ĠM hm +Ġfl ipped +Ġp ien +Ġkomm un +ĠF RE +Ġà®ĩ à®° +aint ed +Ġkn ives +Ġhab l +Ġgew orden +arett es +C S +Ġмал енÑĮ +Ġgal ax +Ġnin ete +ê±°ë Ĥĺ +Ġs is +Ġadvis ory +Ġdr illing +ĠWould n +ün f +gest ellt +ĠHel en +Ġ×ŀ× IJ +ap olis +Ġrze czy +Ġter ra +Ġhe p +Ġalg ún +ik k +Ġastron om +ĠStar bucks +k Äħ +Ġpat rol +Ġì½ Ķ +Ġg on +Ġ ãĢIJ +Ġson st +Ġencoun ters +Ġret rou +Ġshark s +Ġd or +ĠR ever +Ġev apor +Ġreserv oir +Ġalleg ed +ul er +Ġver m +Ġcommer ce +Ġf itted +ge m +Ġtact ical +Ġl ith +éīĦ å¡Ķ +h ad +è® Ĭ +Ġcarboh yd +Ġlength s +ι ο +Ġdem ographic +R ob +ĠS kin +cc oli +Ġsimpl ified +Ġread ily +ĠC um +ades h +ĠD Ã¥ +us st +ig ne +et on +Ġmen or +q i +OO M +à¸Ń à¸Ļ +Ġpsych iat +Ġeight y +Ġм илли +ĠT ob +ed o +ç¶ ² +ĠÄij ến +Ġcirc uits +ĠLAU GH +ic ism +em or +Ġreg ener +eg ree +Ġbure auc +ĠAl ber +ä¹ĭ å¾Į +ĠW or +å¤ « +Ġres in +Ġby ÅĤy +ĠI G +à¯į , +Ġ7 8 +Ġwe eds +ĠMy th +9 3 +æ ¿ +ĠëĤĺ ìĻĶ +é v +á ½ +ö ren +ç ar +ĠP AUL +Ġdisad vant +Ġposition ing +Ġcock tail +Ġagre es +n n +ĠS ally +M s +Ġinher ent +Ġmonet ary +Ġnat ur +ĠN h +ĠImp ort +Ġle ben +Ġw i +uss y +Ġob es +Ġwand ering +Ġìĭ łë +Äħ da +etch up +Ġdispos al +ĠJ A +ĠC er +z illa +Ġvir gin +ĠSl ide +and el +Ġrighteous ness +ĠÎ £ +Ġide ia +ä½ł 好 +иÑĢов аÑĤÑĮ +ר ×IJ +Com ment +Ġpre lim +ĠV ale +Ġì§Ģë Ĥľ +ĠV anc +OM AN +Ġп Ñĸд +Ġy um +st re +ce m +Ġpo cz +Ġfrag ment +ĠÑģлÑĥÑĩа е +Ġunder go +ĠH ank +ce ks +ĠF PS +Ġoc ur +Ġdeter ior +æ³ ¨ +Ġempres as +Pa ul +Ġ) )) +ĠвÑĢем ени +Ġsc old +×Ļ× ¢ +Ġsuspect ed +Ġaccess ing +Ġsubst it +Ġhistor ians +ä» » +Ġдел о +Ġsoci ed +r one +Ġre den +Ġext ends +epher d +Ġbal con +ä¸į èµ· +ĠSol o +Ġpolit ician +олÑĮ но +Ġirgend w +Ġtraum atic +Ġrapp er +ĠRO BERT +Re ally +æģ ¯ +Ġline up +AS E +Ġcontract or +ĠCorpor ation +g or +ĠTod o +ÑģÑĤÑĢ ой +F BE +Ġnews letter +Ġko ÅĦ +alt ies +ĠпÑĢ иÑĩ +ĠHe avy +Ġsw ords +Ġmanip ulation +Ġfun k +Ġv Ã¥r +ĠTal iban +Ġë° ¥ +Ġac ne +ür ü +Ġdes wegen +ĠD ust +Ġsil ic +Ġhook s +Ġbl ij +Ġpet its +Ġfil me +ĠBere ich +ĠSa id +Ġimp osed +Ġdi ary +Ġго ÑĢ +ĠG ates +Ġal ta +å¸ Į +Ġch cia +ple asant +Ġë° Ŀ +Ġmoż emy +ĠAust ria +Ġbro ker +Ġsuck ed +èĢ ĥ +Ġcomp artment +Ġcl one +Ġ×Ķ× ¢ +ĠDan ke +Ġnoch mal +ез д +Ġad renal +Ġkle inen +ãģ¾ ãģĹãĤĩãģĨ +Ġsubsequ ently +Ġdecent ral +Ġgen etics +Ġê´ ij +Ġmon itors +ĠApp lic +ĠRep orter +w ert +Ġwie m +ĠMove ment +Ġinterview ing +Ġhair s +Ġpu ò +ĠChel sea +Ġco her +Ġc ot +Ġz as +Ġpatch es +Ġl ah +Ñĥн к +ĠRe agan +ĠMar co +c ity +Ġdef ender +Ġdecor ation +ij i +Ġl itter +Ð ¨ +Ġj ego +RE W +ĠP ik +ĠHe e +ĠI v +Ġи де +ĠThe ater +ĠÑĩаÑģ ÑĤо +Ġswe ater +Ġhighlight ing +Ġa insi +Ġdipl omatic +ĠNever theless +å ³ +AS ON +Ġpúblic o +Ġf erm +reat ed +c od +Ġë¬ ¼ë +Ġm ister +ĠVanc ouver +Ġrecogn izes +ec d +Ġcomplic ations +en cial +ãģĹ ãģı +Ġê°Ģ ì§Ģ +ĠUlt imate +Ġva ig +ĠM erry +×ķ× Ĵ +ĠMar cus +ç¸ ½ +ow ego +Ġm ente +S m +Ġa ja +ĠTa o +Ġjud icial +Ġentrepreneurs hip +Ġнем ного +Ġp is +Ġer g +Ġch rist +ĠC urt +ĠÑĢаÑģ п +λ ε +ens ch +ÃŃ re +Ġfo cal +ĠDiam ond +av ÃŃa +Ġh anno +ĠSqu ad +Ġassoci ations +ĠCreat ive +Ġmess enger +Ġbe gging +Ġdec imal +Ġd Ä±ÅŁ +Ġmet adata +sel s +ĠÄ° ÅŁ +ữ a +Ġdiffic ile +d ı +Ġs laughter +ĠVer g +Ġ×Ĵ ×Ŀ +ç° ¡ +æĮ ī +ĠTe a +ass es +O k +Ġsynth es +ot iation +Ġpain ter +Ġel bows +Ġarchitect ural +ĠÑĢ ад +Ġgl or +im age +amp a +cul iar +ł ¨ +Ġte ve +ĠSt elle +ĠB am +Ġì´ Ī +as is +ip edia +ĠG I +ĠAct ive +çĦ¶ åIJİ +az i +ãĤĮ ãģ¦ +ĠL ucky +íķ © +ĠпÑĢ иÑħод +Ġrun way +Ġauthent ication +Ġpos ible +Ġsupp lements +Ġsurg ical +G en +Ġfeas ible +D O +Ġout look +Ġinter vals +Ġan ecd +Ãł ng +Ġstra ps +ĠSh u +ud d +iss enschaft +Ġport e +Ġcomm itting +Ġall ey +Ġco venant +ĠPed ro +less ness +ĠSol id +ĠM olly +Ġн екоÑĤоÑĢ +Ġcooper ate +åĮ Ĺ +oll en +Ġtun a +Ġkinderg arten +ĠS iz +Ġduż o +ĠM BA +ĠGEOR GE +ĠF isher +å¿ ĺ +ĠCa esar +ĠкÑĢаÑģ ив +ĠDel hi +zy m +Ġexpl icar +ê°Ģ ì§Ģ +un s +gr ow +ĠпÑĢ иÑģ +Ġ8 6 +Ġst ating +Ġmass a +ch ter +Ġì»¬ë Ł¬ +Ġdep uty +S M +n oc +Ġge ography +ĠEnter prise +ĠC ant +ö z +Ġun pack +ĠíĻ Ķë +Ġsearch es +Ġpres idency +Ġtri vial +Ġp ige +ou bt +ãĤ ļ +ì¼ ĢìĿ´ +Ġbudget s +Ġu b +Ġp ne +ĠY ale +ĠÅŁ öyle +reg ular +Ġimper fect +AR A +Ġfam ÃŃlia +ur m +ĠAdvent ure +ãĥ Ĭ +c is +em ark +Ġne go +Ġinappropri ate +ĠпÑĢи з +ĠÑĢ ол +Ġdream ed +B ry +Ġshut tle +Ġpill ars +Ġb ik +in um +ĠÑĥ Ñģ +ĠNe br +Ġperpend icular +Ġbook ed +ber y +Ġv ikt +be ar +es us +Ġвозм ожно +¨ ¹ +Ġpresum ably +ĠMem phis +Ġambul ance +×ķ× ŀר +Ġthumbna il +Ġmod ification +éĩ ı +Ġinterpret ed +Ġprom o +Ġκ ά +Ġε ÏĢ +Ġacoust ic +ĠD B +åĵ İ +Ġnon etheless +ou le +Ġpe qu +Ġkn ob +ãĤ £ +ĠëıĮ ìķĦ +Ġpurch ases +ĠÃĩ ünkü +Ġdivid ing +per form +ract ion +health y +ĠTit le +Ġu k +Ġcer ca +Ġargu ably +Ġf ale +ë³ µ +Ġgam ers +Ġutil izing +Ġoff ended +Ġt ava +al ı +Ġmed ian +Ġinfect ious +ĠAn nie +Ġsmart phones +Ġpar ole +åĸ Ŀ +ĠEp ic +z za +Ġun ified +Ġê·¸ë ķĮ +Ġcur tain +ĠÄ ĥ +Ġsex ually +Ġuns erem +ĠCon vention +Ġalleg edly +Y a +ĠH oo +en ment +æĢ ª +íĽ Ħ +Ġgig antic +Ġnot ing +Ġre bo +ĠJ ama +ĠAl z +Ġborrow ed +ì¹ ¨ +Ġper ipher +оÑĤ а +ĠG B +ĠGe ar +Ġeconom ically +Ġtele fon +Ġqu eremos +ĠдалÑĮ ÑĪе +Ġr as +ĠTe ach +ic ios +at os +Ġpl edge +b au +ĠHim self +L ink +Ġesper o +Ġchrom os +ĠP ER +Ġer le +Ġpod ium +ç os +Ġnie u +Ġf en +ĠGO D +ĠCh ocolate +wer k +Ġt ừ +Ġsupp ress +λ η +Ġ24 0 +Ġsit ä +Ġhonest y +ĠB io +ĠB ard +ĠобÑī ем +Ġм Ñĥз +Ġmar ble +ĠÑĨ енÑĤ +Ġproc ure +Ġrot or +ber n +Ġtu h +Ġhead set +at em +Ġwarrant y +à® ´ +Ġfil ing +ι ά +Ġcomp rendre +Ġimp ulse +Ġsal v +wr itten +Ġinstit ute +K im +ĠLGBT Q +fic iente +H is +ĠαÏħÏĦ ÏĮ +Ġteen age +or us +ĠÑĢаз б +S ee +ĠCons erv +á»ģ n +ful ness +Ġstraw berries +ĠAb u +и он +Ġo lla +NO ISE +ĠEm ploy +Ġwip ed +ur ger +Ġmod ifications +Ġíķĺ ì§Ģ +Ġfoot steps +Ġhon ors +Ġad ul +Ġfl ipping +ĠH U +Z Y +Ġintegr ating +ب ر +ull a +Ġnatuur lijk +ĠíĹ Ī +ĠEth ereum +ÙĬ ÙĦ +w ed +Ġpe aks +ĠK es +Ġblo om +Ġcr ashing +Ġ9 11 +ĠоÑĤ лиÑĩ +Ġcontro llers +ĠD od +Ġвм еÑģÑĤе +Ġsort ir +å¥ ĩ +ĠStra ight +ĠGrac ias +Ġgro ove +Ġto gg +Ġìĭ¶ ìĿĢ +é ro +Ġout ward +ĠW A +ĠRock y +Ġsc am +Ġhay at +ig nty +â Ħ +pl ings +Ġantibiot ics +Ġ ä¸Ģ +Ġnever theless +j ang +com merce +Ġspo iler +Ġglo ve +Ġch atter +ĠB Y +~ ? +Ġíĺ ¸ +Ġdem ol +we chsel +im ir +Ġra id +еÑĢ Ñħ +ìŀIJ 기 +en f +Ġcomment ed +Ġoptim ized +Ġconv icted +Ġb ats +ĠS B +ĠA ur +ĠT ong +Ġimplic it +ĠJan et +Ġre ag +ãģ ² +ĠAdv anced +Ġimp ose +ש ×Ķ +Ġschem es +oug her +ab olic +Ġê±° ì£ł +Ġslow ing +Ġwt edy +Ġdest ructive +Ġоп ÑĢед +Ġland mark +Ġëı Ī +ĠWalk ing +Ạ¹ +Ġt ijd +ĠK N +ĠQu ant +ìĺ ¤ë +Ġк ÑĢÑĥ +Ġper der +Ġno ve +änd e +Ġãģ Ĺ +b ia +Ġcust ody +Ġb iod +æĿ± 西 +Ġdirect ing +... âĢĭ +Ġre loc +Ġdemand e +ãĤĵ ãģł +Ġo ÄŁlum +Ġод на +ĠMil k +åı · +ĠK ra +ĠH onda +Ġp ue +Ġele kt +Ġbegin ners +Ġspe ar +ÃŃ nh +ĠLu ft +Ġn ig +ĠSchool s +Ġfor ums +ĠQ in +pp o +Ġz ag +ĠÐ ® +Ġtooth p +ĠSt yle +ì´ Ī +Ġpun ct +Ġrep s +ĠA ly +Ġamend ments +Ġö z +Ġdig its +ur ai +Ġcha otic +ĠMas ters +e on +ĠC ash +ĠC uz +Ġbede utet +Ġscan ning +Ġж д +н еÑĤ +Ġcertain ty +j ek +Ġdi jo +ĠCl imate +Ġr inse +Ġk rij +vel and +Ġsound track +ĠSa fe +ĠNo va +9 4 +Ġa the +ĠVer b +ol er +ìĿ´ì £ł +Ġv in +Ġrespir atory +ĠStud y +ĠC AM +Ġav ocado +ĠZ hen +Ġlat ency +Ġfe athers +Ġcont ar +Ġв еÑī +Ġf ark +Ġbl ended +Ġexpl oded +ĠX X +ĠBen im +Ġalgu ém +isto ire +Ġconfident ial +Ġm ast +Ġì ¿ +ge h +Ġdis respect +ĠSystem s +Æ° a +E d +Ġw ys +Ġex otic +Ġgl owing +ù ng +oun ge +è Ħ +ани з +Ġpal av +ĠSw ord +Ġg im +ĠC row +Ġpot ent +b ish +Ġab used +ĠJ ed +Ġg ambling +ĠS pect +Ġinvestig ators +æĻ ļ +Ġr att +Ġdo b +ĠD ES +h og +ĠоÑĤк ÑĢÑĭ +íĮ ħ +ĠденÑĮ ги +Ġíĺ ¹ +Ġë¨ ¸ë¦¬ +Ġsat uration +Ġinher ited +ĠInnov ation +ìĹ Īëįĺ +Ġtang ible +Ġdep ri +h ed +Ġпом ог +Ġslic ed +ॠį +Ġth ế +Å ¥ +6 8 +Ġcor ona +Ġgift ed +Ġso ir +Ġhum ility +ĠìĿ´ 걸 +Ġflaw s +ĠпÑĢ акÑĤи +Ġk ald +wa ż +y w +ãĤĵ ãģ§ãģĻ +ir teen +Ġcroch ets +¦¬ ê°Ģ +ĠìłĦ ìĹIJ +Ġdes e +æ¥ Ń +Ġм аг +Ġdz iaÅĤ +Ġl ég +ch anging +Ġlle v +ÅĦ sk +çĶ » +Ġ198 4 +orn s +ĠW elsh +Ġpharm aceutical +Ġpump ing +ĠSh aw +p unk +Ġva ult +Ġkin etic +Ġhur ricane +ĠInc luding +ứ c +ĠGrand pa +ans hip +é¦Ļ 港 +ĠвÑĭ Ñħод +н ож +ľ ł +ut ta +Ġê²ģ ëĭĪëĭ¤ +Ġb az +Ġпо ÑĪ +Ġpe culiar +zy Äĩ +ĠEll ie +Ġlearn s +ĠKr ishna +Ġconse cut +Ġemp ath +ĠD in +Ġtrad ed +ĠBor is +ugg age +oll a +Ġназ в +Ġetern ity +Ġв п +è mes +Ġgra pp +b é +ĠпÑĢед ÑģÑĤав +ĠF C +į ëĭĪëĭ¤ +e ven +ĠNebr aska +ortun e +Ġk arena +ĠAg ent +Ġst ing +ĠP I +Ġmunicip al +power ed +Ġconse gue +ĠMan chester +Ġrain y +Ġbl i +Ġk ost +Ġhal ten +ĠAh hh +ins ula +er ting +ĠاÙĦ Ùģ +Ġrel acion +Ġk omen +Ġd ome +Ġpri ests +ĠInt rodu +rop he +sh ore +vel t +clip se +ĠÑĢ ÑĥÑģ +×Ļ× ¡ +Ġsab emos +ĠHoll and +og i +ank i +ĠM ats +Ġsm oked +ull ie +Ġeuro pe +ĠдейÑģÑĤв иÑĤелÑĮно +Ġbard ziej +Ġtransform ing +ĠE z +op ath +Ġìĸ¸ ëĭĪ +ĠÑģÑĤ ан +ằ ng +ั à¹ī +ĠO uch +Ġclear ance +ust ain +Ġsolid arity +Ġpro ving +ĠÐĺ н +ĠÑģ ÑĬ +Ġpro long +ад но +Ġs os +ĠDe al +Ġ17 0 +m ons +Ġз ем +Ġlo gged +Ġlif elong +Ġsens ory +Ġbe hold +ĠF AR +èt ement +ĠFed eration +Ġdod ge +ĠSh ir +Ġdrag ons +ĠAr ctic +Äħ ż +Å į + º +Ġden ke +Ġpodr ÃŃa +co le +ÑĥлÑĮÑĤ аÑĤ +Ġsystem atic +ам а +ch os +Ġclin ics +ĠB S +Ġtal es +us ions +Ġí Ī¬ +Ġpres ervation +Ġl ore +ĠProt est +á» Ľ +å¸ Ĥ +Ġacknowled ged +ĠIs aiah +ĠëķĮ ëĬĶ +Ġ× ĺ +Ġcompet itor +Ġadv ancing +z ip +Ġtent h +ĠLa ure +Ġh ints +Ġexerc ising +ŀ ľë +ĠIntell igence +u ated +OU T +op ed +Ġaut onomy +Ġbrand ing +ĠMediter ranean +Ñĸ к +Ġscrew driver +Ġsu pre +Ġst ap +Ġjurisd iction +ĠSetting s +Ġfore front +ĠF emale +com fort +Ġmultiplic ation +ĠMur ray +Ġbo b +ĠT as +Ġt ahu +Ġon un +et ter +Ġproph ets +l ag +Ġreven ues +Ġpr á +Ġupload ing +Ġmach inery +asc al +ĠEst á +ĠG oth +ĠB ald +ĠS aw +Ġstri pes +ìł ij +Ġpow in +æĹ¥ æľ¬ +Ġhost ile +Ġdar um +Ġprevent ed +ожалÑĥй ÑģÑĤа +Ġalgun as +Ġhop eless +Ġz naj +Ġread ings +Ġcra ving +t at +ĠP ig +Ġli ar +çĪ ± +Ġmulti player +Ġd ale +ĠCour se +íģ ¼ +ĠK ita +Ġcustom s +Ġrespond s +end ra +è¦ ĸ +Ġmet ro +Ñģ ол +Ġmitig ate +Ġopp ression +Ġ æĪijåĢij +qu inho +Ġam mo +Ġen fer +Ġp ony +Ġ ounces +° Ķ +ĠìĪĺ ê°Ģ +Ġdich o +ĠDe b +Ġwond ers +ĠRo ose +Ġpri zes +ĠA LEX +Ġthank fully +Ġtiss ues +ĠÑĢав но +ĠL una +intell igible +ĠìĻ ¸ +ê° ij +ĠHe at +ĠÑģ ид +ĠQu i +Ġ ions +Ġaccommod ation +ä¾ ¿ +ĠK art +ien st +Ġt arde +Ġso aked +ĠCase y +Ġì´ Ŀ +ĠÑĢ Ñĥб +Ġdifferent i +Ġleft over +Ġexch anges +sec ond +Ġfirst ly +Ġbuild er +ri en +Ġd w +Ġboun cing +? < +olog ÃŃa +we alth +Ġmed itate +ĵ¤ ìĿĺ +ĠC raft +è§ī å¾Ĺ +æĻ ® +ri v +ĠAgain st +Ġcer amic +esp ère +Ġcompet ent +ĠHop kins +Ġkil os +Ġgra vel +Ġpist on +Ġfriends hips +Ġesc re +Ġvo z +ĠGes ellschaft +Ġunter stüt +Ġmu j +Ġwarning s +p os +ĠProfess ional +w szy +od le +b ands +Ġteam work +stell ung +Ġd x +åį Ĭ +Ġatt orneys +Ġweit ere +ãħĭãħĭ ãħĭ +ĠOrig inal +×Ļ× Ĺ +Ġbroadcast ing +ĠпеÑĢв Ñĭй +uch i +Ġhe ure +Ġgra bs +ĠW OR +ĠPla id +M in +Ġp az +ĠP uis +um u +it ates +Ġco ats +Ġbu en +Ġhe ir +Ġpne um +ש ר +ens er +ĠJUD GE +Ġbl onde +á¹ Ľ +Ġg ak +Ġs ık +Ġquot ed +Ġequip o +Ġw ishing +ÃŃ cia +Ġver bs +çµ Ħ +ĠCanad ians +Ġgover ning +ĠEv ans +E uro +Ġgen res +Ġunters chied +ĠBeck y +³¼ ê²ĮìļĶ +Ġe inge +ĠRa ise +ol and +ĠStr ateg +Ġer es +ĠVeter ans +Ġbreak out +Ġsant é +Ġad el +Ġinvestig ated +Ġpe ur +Ġag ile +Ġrail road +ans ka +Ġе й +Ġexp os +ator ies +ĠCont ent +Ġtruth s +ĠTra il +Ġgu a +Ġp ores +Ġwrit ings +ĠU hr +ĠThat s +Ġic ing +O C +ĠProdu ction +Ġcar ne +IS S +Ġn inguém +n on +Ġv icious +×ķ× Ķ +Ġrecon nect +Ġcent res +ĠK em +Ġcre ase +ĠìĿ´ë ¯¸ +айÑĤ еÑģÑĮ +Ġб оÑĢ +ĠHay ır +ĠÑģ Ñĥд +Ġún ica +owa ÅĤ +Ġad her +h ua +Z Z +Ġprecis o +Ġcurrent s +Ġseason ed +ĠIo T +ĠB ishop +è¨ Ī +st ed +ĠBern ard +ì¤ ĺ +æ² » +ĠGl enn +Ġktóry m +ื à¹Ī +Ġast rolog +ĠK ot +å¤ ľ +Ġparf ois +Ġfor wards +ĠW iÄĻ +ĠÎ ĺ +Ġn ano +è» į +s ub +ĠBr ill +Ġgr it +Ġc ited +g ado +Ġmel ts +Ġfor cé +âĸĪ âĸĪ +Ġb ajo +Ġdiscret ion +° ° +at ivity +Ġsitu ated +ãĥ« ãĤ¯ +Ñīе е +åľ° æĸ¹ +ĠпÑĢин ÑĨип +am az +Ġaqu arium +Ġdissol ve +ĠGod s +S uper +Ġam id +z k +Ġ ãģĦ +éł IJ +amp f +Ġhel a +' ! +Ġdevelopment al +ĠD ise +ĠÑĢабоÑĤ аеÑĤ +Ġsnaps hot +好 好 +Õ ¸ +ĠY ue +ĠH ulk +ĠDo om +ĠFel ix +Ġré f +M ale +ç· Ĭ +ph ants +EN S +ĠMe chan +ĠG olf +åĨį è¦ĭ +Ġgener osity +ät ze +Ġunlock ed +Ġ ãĤĴ +íĥ ģ +ocaly pse +Al right +Ġê° ľë +Ġ×IJ× ij׾ +ĠKeep ing +Ġcollabor ating +ch ief +ĠFern ando +Ġchef s +ĠíĶ¼ë ¶Ģ +Ġsk ipped +Ġperson n +Ġax e +che z +Ġextract ion +ĠA V +ĠGib bs +Ġí ľ +Ġs ı +I AM +V iew +ĠGR ANT +Ġëª ¸ +Ġver ification +Ġdep icted +ĠMo z +ou x +Ġt ul +Ġsc anner +Ġcomed ian +ĠVol ks +ĠJE FF +è¨Ĥ éĸ± +§ Ħ +Ġdistract ion +r á +ĠIN TER +Ġsin cer +Ġ×ŀ× ª +Ġש ׳ +Ġconstruct ive +ar f +ĠëĪ Ħë +Ġe co +r amos +Ġrenew ed +in ement +ĠU b +ĠPe pper +ì§Ģ ê°Ģ +ĠDar win +Ġmerch and +Ġv árias +è ce +N G +ĠìľĦ íķ´ìĦľ +Ġак ÑĤив +ĠUn ters +ع ÙĦ +Ġint ric +omm a +ie ving +ĠCarol ine +åĵ ģ +ĠPR ES +Ġperform er +Ġaut our +ãģ¾ãģĽ ãĤĵ +Ġutter ly +Ġsynth esis +Ġles bian +Ġretrie ve +Ġmane ira +Ġimp air +Ġment oring +ĠSoul s +ĠGo Pro +ÑĢ аÑĤÑĮ +Ġc ose +ĠSS D +I RE +Ġup front +ĠA un +Ġgam er +Ġl itt +Ġag gression +ĠLike wise +ĠBet ty +ĠD art +ĠD LC +ish ment +ìŀ¥ ìĿĦ +Ġ 对 +ç» ı +c ream +ĠBaby lon +Ġn ug +br ar +Ġa ynı +am ily +b ike +ahah aha +lo yd +Ġmir a +Ġper me +ĠG aming +Ġfirm ware +M a +Ġassist ed +at ics +Ġìķŀ ìľ¼ë¡ľ +ĠM ental +niej s +ĠI z +ow Äħ +Ġt ougher +Ġde ed +èĭ ¦ +Ġsty lish +ĠTool s +ĠH amp +Ġsun screen +Ġartic ulate +i ye +и ÑĦ +ĠSp read +ĠHA VE +Ġsw irl +Ġspons oring +ä» ĭ +iov ascular +mes i +Ġrelax ation +ĠÑģво иÑħ +Ġmar gins +Ġsa ÄŁ +ĠPr ide +ĠÏĦοÏħ ÏĤ +и ÑĨи +en ci +Do es +Ġcor pse +Ġend urance +Ġí ŀĺ +ì¹ ´ +Ġhair cut +Ġinterrupt ed +Ġwind y +ĠC aleb +Ïģ Ïĩ +ĠPour quoi +Ġhol istic +uc lear +ĠWho le +å£ « +A ct +Ġgall on +c ade +ĠReg ional +ro ads +ĠSch ne +á ng +Ġиз мен +ãĤĪ ãģŃ +Ġmen us +Ġspl itting +Ġpr iced +ĠÎ ĵ +Ġus ername +ĠÐŀ Ñĩ +Ġcomp ressed +y in +Ġguard ian +Ġgo of +Ġcheck list +Ġinter change +Ġexped ition +Ġex tern +Ġinfra red +eng o +Ġden ying +Ġpack ets +on ent +B B +ĠInc re +Ġsin i +ÃŁ er +è g +ma al +gen eration +Ġminor ities +Ġlle var +Ġnom ination +Ġcons id +Ġ×ľ× ¢ +m uÅŁ +ĠEs c +Ġnumer ator +Ġka ik +Ġktóry ch +ies en +Ġv ê +ĠUS S +ĠPri vate +Ġод но +Ġal ém +ÃŃt ulo +Ġlim b +Ġforg iven +Ġdiscl osure +ÏĦ ί +Ġning ún +Ġtherapeut ic +Ġnegoti ating +ĠN ike +ense ful +Ġin cap +Ġflag ship +t own +â Ī +ĠÏĢ ολ +Ġwol ves +Ġviol ations +ĠAr nold +Ġinterven e +Ġhe ater +Ġrecurs os +Ġma id +ê² ¼ +Ġдав айÑĤе +ĠCe lebr +Ġca pe +ĠSt y +ain en +s ite +b ij +Ġп олÑĮз +Ġfr amed +Ġpublish ers +ĠÑĩ ÑĥÑĤÑĮ +Ġtempt ation +Ġcert eza +Ġex empt +ìĬ ¹ +se lling +ĠT ask +ho on +ĠC oc +ĠPark s +Ġrepet ition +ĠÑĤ Ñĥда +Ġens l +ĠdeÄŁ iÅŁ +ĠOr lando +ĠMain ten +æŃ ¢ +oc ument +ĠH C +Ġscoot er +Ġнап иÑģ +Ġtight er +Ġte ase +Ġremo ves +Ġkij ken +ĠÑģÑĥ ÑīеÑģÑĤв +Ġth é +ĠвÑĭ глÑıд +Ġrel ieve +Ġmit ä +Ġstation ary +ö ff +p able +Ġar ter +Ġdé f +r ative +Ġcon ect +Ġsad dle +ĠD iane +Ġcomm emor +fend im +S ÃŃ +Ġíģ ´ë +Ġman ge +at te +Ġarrog ant +Ġrobot ic +Ġgi Ãł +æĺ¯ çļĦ +Ġneighbour hood +iss on +Ġдв иж +ĠR I +ĠNorm an +b rand +am ation +Ġraz or +Ġmur ders +ĠÑĤ Ñĥ +Ġwszystk im +Ġut ilities +Ġmicros cop +ê ¿ +Ġda qui +oll ar +ĠÐĶав айÑĤе +Ġann ée +Ġkilomet res +Ġhom osexual +Ġarchitect s +ãģ¡ ãģ¯ +Ġni ye +L ER +Ġmicro phones +ĠSt unden +Ġconsecut ive +iend a +v änd +D ER +Ġlif ts +ĠMe at +Ġsave z +íĸ Īëįĺ +M en +Ġdism ant +ê±°ë ¥¼ +Ġins ulation +Ġsc all +Ġsp ooky +Ġpar c +Ġball et +ĠWhats App +Ġfr anc +Ġdeliber ate +Ġíħ Į +Ġm ars +ĠZ ur +P r +dis ciplinary +Ġobs ession +м е +Ġmarch ing +ĠEmer gency +ig uous +Ġs zy +ĠL ands +Ġboard ing +ĠпоÑĩ ÑĤи +Ġenv y +Ġcompassion ate +Ġmer ci +Ġdes irable +d ale +Ġcan ım +ĠAnt ar +tem ps +Ġconfig ured +ĠComp ared +ne h +ic ating +Ġnic kel +ÙĪ ÙĤ +Ùĥ ÙĪÙĨ +op es +Ġform ulas +ĠÐķ ÑģÑĤÑĮ +Ġpo bl +ĠP J +ĠL ud +ä»Ĭ åĽŀ +ĠBr id +ĠH og +ĠBr is +J en +Ġshad ing +ĠY as +Ġdistur bed +Ġrecomm ending +Ġc é +ĠH OW +ìĹĪ ìĸ´ +Ġrevers ed +ĠInteresting ly +iox id +åħ Ń +Ġìĺ¤ ì¼ĢìĿ´ +ế u +x x +Ġou ais +ĠYouT ubers +ĠR osa +ĠH aupt +j adi +Ġvlog s +Ġcult ura +ĠLeaders hip +ĠH ep +Ġill um +´ë ıĻ +Ġcustom ized +Ġmar ca +Ġqu atro +Ġн аг +ĠSpace X +ĠE igen +ast ing +ĠolduÄŁ u +Ġfor ts +ãģ ī +r iment +ien cia +Ġten ir +ro ffen +Ġ197 9 +Ġc ie +ĠëIJĺ ê³ł +Ġes cri +ÏĮ ÏĤ +íı ¬ +uz zy +C ong +ìĿ¸ ìĿ´ +G reat +s il +é ch +ãģ¨ ãģĭ +Ġmult ic +ĠDis k +² ķ +Ġfaz la +Ġle vant +Ġab ajo +ur ry +st ru +Ġ먹 ëĬĶ +Ġaccess ory +Ġдв иг +ĠR id +20 19 +Ġdown stream +æķ ¸ +Ġk az +ut an +Ġchar coal +Ġa fect +w u +Ġcontext s +Ġfe ared +ĠìĦ ¤ +Ġhist ories +Ġf as +ens ible +Ġcoco a +ill ar +ge ons +Ġspiritual ity +ĠP ew +Ġpharm acy +Ġpass ions +Ġb os +Ġall á +Ġthri ving +ĠRe act +Ġoccup y +Ġwithdraw al +Ġallow ance +ĠFra ktion +Ġbud dies +Ġid le +Ġdissol ved +Ġpreval ent +Ġmil itar +Ġsens ing +Ġpo jaw +Ġanc ora +Ġabund ant +Ġha irst +ãģĤ ãĤĮ +Ġtw ee +Ġnäch ste +ĠMöglich keit +Ġho o +uff icient +Ġfant ast +Ġed ible +Ġëĸ¨ ìĸ´ì +ìĽ ĥ +Ġve in +uc ci +Ġdevot ion +Ġconce aler +in come +Ġrecy cled +ĠìĬ¤í ĥĢ +Ġpont os +Ġdess us +Ġvé rit +Ġreflect ions +ĠA A +Ġtake away +b are +ĠCont act +e il +ĠHe ar +Ġmir ac +ĠGer ilim +ĠÑģам Ñĭй +Ġv ivo +Ġkilogram s +ĠCr im +û t +7 8 +Ġsincere ly +ra z +Ġë³ µ +Ġarri v +Ġconcept ion +ĠPers ian +Ġsj äl +Ġst arring +ĠìķĦë ¬´ +ĠFore ver +е ÑģÑĤÑĮ +Ġve il +Ġsubt it +od ka +ĠоÑĤно ÑĪ +Ġcook s +ен Ñı +K ay +Ġni ños +ĠPh one +Ġstitch ing +Ġfinger print +é¢ ĺ +λ ά +Ġded icate +ĠL ob +Ġblack s +ĠB le +b out +ĠÄij ang +Ġe ks +Ġsqu ash +ĠK ü +od i +Ġn Æ°á»Ľc +Ġvoy age +Ġplay ful +ĠØ¥ ÙĦÙī +an ic +Ġcondem n +ĠB öyle +ĠPol ize +ãĤ¿ ãĥ¼ +Ġay uda +Ġp am +à¹Ħ à¸Ľ +ĠK athy +ед ин +нов а +Ġbr ig +eg er +Ġe agle +Ġvis ions +ĠíķŃ ìĥģ +Ġsh itty +Ġh ott +ĠBr itt +ut ors +ENT E +æĽ ² +Ġph on +ĠB ing +Ġпод деÑĢж +spr ing +æĸ ¯ +et ten +Ġpil gr +Ġed iyor +енÑĤ Ñĭ +ag gio +Ġj ul +Ġcomp rend +te il +ĠØ ² +Ġperform ers +Ġinf amous +ĠM K +ç ª +æ³ ģ +ot le +e ff +ĠH ash +Ġcow ard +ĠB RA +ĠD D +Ġcom ida +Ġpl ata +Ġfl ap +ĠMe hr +rib ution +ĠY emen +Ġmyster ies +ĠÄ° yi +Ġst ell +Ġeyel iner +Ġdel es +Ġnail ed +Ġillness es +Ġst acks +Ġtrabaj ar +fl ower +ci u +Ġcr ude +Ġsubstant ially +Ġhome m +Ġnep hew +Ġstamp s +Ġcar bs +ÑĮ ÑĤе +mo oth +Ġtun nels +ac ie +æ³ ¢ +ĠSe ñ +ĠH era +ĠìķĦëĭĪ ìĹIJìļĶ +ĠWy oming +ĠHD MI +ĠL is +u ción +Ġste er +о Ñİ +иÑĤ а +N T +Ġìĸ¼êµ ´ +Ġpal ms +Ġne on +ов аниÑı +Ġfilter ing +Ġjou er +ĠH ö +Ġне Ñģ +ê²ł ìĸ´ìļĶ +Ġ8 1 +Ġstory line +Ġprz ep +Ġthank ing +ĠBo eing +Ġsoft ly +j em +алÑĮ нÑĭÑħ +Ġflash light +Ġп Ñĥ +ĠW OMAN +ắ c +ÃŃ ch +Ġlux urious +Ġw ün +Ġimpact ful +Ġcons on +re u +ir ring +if ter +Ġconstitu ents +èIJ ½ +Ġ9 4 +ĠT ou +g om +ĠìĥĿê°ģ ìĿĦ +Ġstere otypes +Ġmoż li +åĪĨ 享 +Ĥ ¨ +Ġpencil s +ĠÑģл ож +Ġih rem +ĠBes ch +ĠK oh +ĠEnt scheid +Ġle k +Ġför s +Ġtotal mente +Ġlive ly +Ġent ropy +Ġdisc ern +ĠÐĹ Ð½Ð° +Ġdo v +Ġmyth ology +è¨ĺ å¾Ĺ +apan ese +Ġapprox imate +аÑĤ ив +if iable +ĠSe o +åĢ Ĵ +´ìĭ¬ íŀĪ +Ġìĺ · +Ġtempor al +Ġi T +Ġest at +к им +Ġspr ink +Ġgr und +Ġinfant ry +Ġsch affen +ç´ Ħ +Ġan k +ri ages +ĠYe on +ĠMor oc +Ġinv asive +ģ Ķ +Ġparent ing +ĠR is +ib ile +Ġmod s +å½ ¢ +ĠпÑĢов еÑĢ +ĠTh ing +ĠWhere ver +Ġacknowled ging +Ġpa wn +um mer +or b +6 9 +Ġretr ouve +Ġrel ies +ĠHigh way +Ġa we +ãģ§ãģĻ ãģĭ +ita ire +Ġapplic ant +Ġais le +w orm +Ġpay load +Ġcar re +ĠB ach +æł ¼ +Ġì¹ľ 구ë +ни е +Ġit ÃŃs +onna ise +s ol +èı ¯ +alg ia +Ġrock ing +Ġbest en +rit es +^ ^ +ин ой +Ġba ixo +Ġ기 ìĸµ +оÑĤ ÑĢи +s im +Ġinc arn +ëĭ¤ ìĿĮ +Ġl ick +s ided +Ġ7 1 +f order +Ġreson ance +Ġte gen +Ġmet aph +ows er +Ġ×IJ× ł×Ĺ׳×ķ +? ãĢį +Ġsp ielen +Ġvoll ey +ĶìĿ´íģ¬ ìĹħ +lo oked +Ġsent enced +Ġmultip lying +Ġide als +Ġwahr scheinlich +Ġdepos its +bil ir +Ġeff et +ill on +Īë §Į +Ġtestim on +Ġz awsze +ĠпÑĢоÑĨ еÑģÑģ +ĠL av +ä¸į éĮ¯ +Ġtrava iller +Ġla isse +ĠMount ains +ĠÑĢ об +Ġexam ined +it us +W as +л Ñĭ +Ġattrib uted +ĠìĬ ¹ +ĠBar on +Ġg ep +Ġatt ent +ĠColl ection +Ġthe at +ĠC ai +Ġwell s +Ġhuman o +çĹ ħ +ĠH ast +ĠÑħоÑĤ Ñı +cz as +Ġperm its +Ġle gg +Ġe po +ĠF en +Ġth i +ĠF oi +Ġé lect +Ġ8 3 +Ġover th +Ġ è¬Ŀè¬Ŀ +Ġten ant +è² · +N ext +Ġpra ised +sec urity +ĠImp act +为 ä»Ģä¹Ī +Ġv ouch +Ġneg ó +Ġun ve +Ġcritic ize +ĠKen ya +Ġtact ic +Ġlo gr +Ġpo is +Ġpap a +spe aks +ðŁ ij +isp ers +Ġsur plus +Ġcold er +åį Ĺ +åIJ ¬ +pl ets +ĠV ienna +ĠLe ad +Ġaer ial +ĠT ah +енÑĤ ов +ĠGree ks +C am +Ġmá xim +Ġk uin +ch io +Ġdemonst rates +an os +ĠC ert +ĠÑį н +Ġblog s +ĠìĦľ ìļ¸ +Ġbe ams +ик ов +Ġprompt ed +Ġfright ening +ĠPors che +ãģĪ ãģ¦ +lar ını +Ġch illing +is phere +Ġfl ashing +ĠK ard +b read +Ġex h +Ġty cker +Ġec ological +ĠMa e +Ġ×ŀ×IJ ×ķ×ĵ +ĠëĤ ĺëıĦ +л он +ys s +Ġper gunt +Ġpri x +izz ard +Ġcan cers +Ġ9 1 +s usp +ĠIt em +ÅŁ a +Ġp est +Ġtak Äħ +Ġl ymph +ĠPat ri +f ill +Ġrec onna +Ġoptim ism +Ġmim ic +Ġì² ľ +ĠMad ame +oc y +l ining +åijĬ 訴 +erm e +Ġfold ers +Ġcz ÅĤ +uch ar +Ġcur so +Ġbre ach +ни ÑĤÑĮ +Ġp amiÄĻ +Ġel ig +Ġaut op +F low +Ġprogram med +ĠPro cess +Ġfig ur +ĠS F +ĠE les +Ġprogram mes +Ġdiz zy +ìĭľ ê°Ħ +Ġли бо +Ġsn iff +ĠSeb astian +ĠH ye +Ġ4 000 +Ġperm ite +æ¢ Ŀ +Ġза Ñī +Ġgu it +ĠD ais +Ġaccord ance +Ġmod ular +ogene ous +æĭ į +Ġpou quinho +Ġart illery +Ġlub ric +Ġvol can +ĠN H +ðŁ ¤ +Ġde an +R h +Ġminist re +åĿ IJ +ĠIn v +ĠBul gar +ĠD aten +è İ +I m +Ġorigin ated +ĠN ixon +inte gr +Ġlack s +ĠN acht +ìĸ´ë Ĥĺ +cam era +Ġrad ish +ki ye +Ġang es +Ġpré f +j uk +ĠBe e +ĠB U +ĠвоÑģ п +ĠB T +ê mes +ĠSt ück +ĠIn k +æĪĸ èĢħ +ĠSerge ant +ĠMult ip +Ġhiç bir +ĠС ам +ĠD é +ol ph +ìĸ ¸ +Ġimp at +ĠìķĬ ê³ł +ĠÑĤак ого +ĠнавеÑĢ ное +Ġunpredict able +Ġm end +ĠìĹĨ ìĸ´ìļĶ +Ġjakie ÅĽ +Ġann i +Ġdon né +ĠK irsty +Ġrectang ular +Ġempez ar +ĠEx change +ê° Ķ +Ġé conom +ãģĵ ãĤĵ +el in +re ibt +Ġ×Ķ× ¤ +Ġc emetery +Ġespañ ol +ol in +лÑİ Ð´ +Ġgr âce +all en +ĠPh ilos +ĠEr st +Ġìĥ Ī +ĠV id +G ive +O H +μ ο +ĠP are +Ġmetabol ism +Ġma ple +Ġax le +ĠD y +Ġkomm e +Ïİ Î½ +Ġgreat ness +Ġver ified +Ġsp é +ĠFahren heit +ĠB ren +ĠConf eder +Ġhist oire +Ġelimin ating +ĠAd ding +ĠAb i +æĿ İ +Ġhospital ity +t im +Ġbon ito +Ġpart es +ĠдÑĢÑĥг иÑħ +ĠSh ay +ĠS ed +Ġreg rets +Ñı ми +Ġten ants +éĢ Ł +ĠP TS +Ġdev i +ĠL ate +ue z +Ġsö yl +ãĤ » +Ġìŀ¬ë °Į +Ġtogg le +Ġmas king +алÑĮ ного +Ġpers ön +Ġamer ican +f ik +ĠR GB +ens on +ĠK A +ww ww +ĠÑĢ ег +met ics +Ġeduc ator +ãĤ· ãĥ«ãĤ¯ +p ark +елÑĮ зÑı +ar us +ÑĢ еÑĤ +Ġfe ito +Ġcho ir +Ġlar go +Ġe ens +Ġwat ts +ĠSing le +Ġsuscept ible +ic er +Ġв клÑİÑĩ +Ġp us +íĻ ĺ +E ng +Ġfant as +Ġspecific ation +Ġconfront ed +ĠColumb us +ив еÑĤ +ar ım +Ġcaffe ine +mun ition +Ġmig rants +l ide +it ations +ĠG eme +Ạ« +Ġpl anner +Ġstim ulate +Ġapro xim +ce u +ĠN om +Ġv og +ĠÑĢ аÑģÑĤ +Ġense ñ +Ġsell ers +Ġgut en +z d +C al +Ġdescri pt +Ġrecon ciliation +z inho +á¹ĩ a +ãģĺãĤĥ ãģĤ +acy j +ĠCO L +s aw +ĠíĻķ ìĿ¸ +Ġvar it +Ġpartner ing +Ġdet ention +Ġbomb ing +c lapping +ien cies +ond u +AM E +Ġê°Ļ ìĬµëĭĪëĭ¤ +c ÃŃa +ĠпоÑģ ÑĤо +ĠAS MR +Ġhome page +Ġsi è +an tha +ĠP oll +Ġ igen +cy ch +Ġê°ij ìŀIJ기 +Ġconsider ably +ä»ĸ çļĦ +ĠAr ist +Ġwith stand +Ġqual itative +ĠK raft +ĠÑį лекÑĤ +ĠBe ad +екÑĤ ив +Ġcr ushing +ì³ IJ +Ġnav y +ÙĪ Úº +s ho +Ġo ak +ipp ers +Ġso ils +Ġpig ment +Ġev itar +ãĥ ĩ +Ġf use +ĠD ale +: " +Ġcompl ètement +Ġke l +๠Ĩ +Ġqu atre +ĠU M +Ġë§ IJë +æł ¹ +ÃŃ r +Ġle isure +ĠH ousing +Ġfold s +est ion +AR S +Ġm ash +urp ose +Ġaccum ulated +ĠSt uff +èª ŀ +Ġtap es +ĠÑģ илÑĮно +ĠLO VE +Ġ198 2 +Ġsc ars +Ġcapital ist +ĠN ed +Ġsoft en +Ġnot ably +Ġforcé ment +ĠRa um +Ġнеоб Ñħод +Ġtrad emark +Ġfert ig +Ġ? ! +æĹ ł +Ġreinfor ced +Ġre charge +ĠPut ting +Ġvill ains +Ġhand ic +Ġadvertis ement +ت ÙĬ +ĠÑģ Ñĥм +ĠR iley +×ķ× ij× +äº ¬ +O s +Ø§Ø ² +B oy +Ġsqu ish +ock et +Ġtest ify +æ¼ Ķ +Ġ×ľ× ŀ× +Ġм аÑģÑģ +man uel +ĠArk ansas +if fe +Ġanalyst s +ĠDe af +Ġj ó +Ġgrocer ies +ĠWhe el +ĠÑĢ иÑģ +Ġc òn +ĠC ob +Ġpris ons +è ve +ĠCab inet +Ġpos ed +Ġguer re +ĠL loyd +Ġcl erk +Ġcr ises +ĠSh o +ĠO re +ĠFoot ball +ĠAd vis +ĠZh eng +è į +ĠAM Y +Ġun for +Ġmon aster +Ġcomp ile +Ġimm ortal +at able +Ġpar ano +Ġt iver +ĠStep h +ĠFu ÃŁ +Ġdisc ontin +Ġr ipe +Ġhack ing +Ġs iendo +Ġsegu ro +alt res +Ġand eres +Ġë ¦¬ë +Ġexp orts +æŃ ¥ +Ġtab ii +Ġ기 ëĭ¤ë +Ġbother ing +Ġpick le +ĠBRI AN +Ġalt ar +ĠпÑĢи б +Ġtransfer ring +ĠV ors +ĠÙĩ ÙĪ +ĠZ a +ĠFr ances +Ġbrow se +em it +Ġche wing +ĠFred dy +Ġedit ors +ä lle +Ġí ĮĢ +ĠS que +ĠC ultural +aw k +ĠS ache +ĠCar bon +ắ t +F L +ĠN GO +pe ÅĤ +ĠS ou +Ġh vor +un intelligible +Ġë² ķ +Ġ ° +i in +Ġ×¢ ×Ŀ +Ġder rière +Ġczy m +ĠAp ost +Ġregard er +Ġag rade +ĠC andy +Ġma re +Ġintrodu ces +bird s +Ġuniqu ely +Ġm uk +Ġcook er +Ġcrew s +Ġje ito +ER T +¶ Ħë +n isse +Ġe f +Ġcart e +ĠY ak +ĠP AT +и но +bok ki +Ġm ates +Ġdist int +Ġì½Ķë¡ľ ëĤĺ +Ġy ıl +Ġκ άν +Ġconfigur ations +eng a +re cht +H appy +ãĤĦ ãģ£ãģ¦ +in vest +Ġreconst ruct +ĠÑįÑĤ омÑĥ +Ġmos que +ra um +Ġvoy ez +ĠN BC +ĠìŀIJ ìĭł +Ġstur dy +Ġк ап +Ġans ch +al id +Ġmas ih +ĠR EP +Ġì½ Ķë +Ġded uct +Ġsal ir +w urf +il ot +ĠM utter +old s +ĠF EMA +ĠB ib +Ġneighb oring +Ġbl iss +Ġíĺ ¼ +ли ÑģÑĮ +ĠÑĤÑĢ еб +Ġ å°±æĺ¯ +Ġgren ade +Ġe gal +Ġfin ely +Ġpet als +Ġke er +Ġch yba +Ġsk ipping +Ġth irteen +Ġgrav y +ĠS AT +6 1 +Ġн ог +Ġmin s +IT E +Ġso zial +íķĺë ©´ìĦľ +rukt ur +Ġвозм ож +Ġоп ÑıÑĤÑĮ +Ġar th +ĠCub an +Ġtre asures +Ġfertil izer +Ġawak ening +Ġë°± ìĭł +Ġr all +Ġdep ict +ĠP ablo +Ġninete en +Ġw att +Ġentire ty +K S +ĠWood s +S ch +ĠÚ© ÙĪ +ĠD ry +ãģ ŀ +u ve +Ġreconst ruction +Ġanat omy +Īë ¥¼ +Ġb aba +Ġlisten er +Ġshar pen +ĠPer u +ĠвÑĭ з +Ġrecre ation +Ġiniti ate +Ġcal or +ĠN aj +ge e +ĠFe els +ĠSnap chat +ĠT et +ĠN est +ĠD af +ĠFin ish +ĠÑĤак им +ú c +iz ens +Ġsp ins +Ġemb ry +Ġpass ages +Ġc ient +Ġjust ification +ä»ĸ 說 +Ġolm az +Ġflood ed +Ġemo ji +Ġembr acing +Ġdisc ard +ĠBas ic +ag og +ĠìľĦ íķ´ +Ġas ylum +er in +Ġf im +Ġnin ja +Ġautom ate +Ġaller gic +ÿÿ ÿÿ +am am +Ġм аÑĢ +ĠO i +ä us +Ġin duct +ĠB EN +Ġz ÅĤ +Ġkaż dy +ĠAM P +n ÄĽ +S ure +Ġqu il +Ġespe c +ro k +BS CRI +Ġlie be +p us +ach sen +Ġcr icket +ëĬ IJ +ĠFr ame +ekk ür +ar b +Ġp ÅĻ +иÑģ Ñģ +Ġzeg gen +Ġdou bles +ĠD re +t est +ins p +bo ys +Ġm ão +ĠVer se +Ġmus cular +ĠMA LE +Ġd ulu +Ġoccas ional +L o +conom ic +Ġv ak +Ġrem edy +å¤ ł +ĠâĻªâĻª âĻª +ve m +Ġön em +ĠkarÅŁ ı +ĠSh arp +h ur +Ġë°© ë²ķ +Ġgrand son +Ġakt iv +ĠTh rones +ĠìķĪ ìĹIJ +Ġto ts +Ġsub d +ĠPa ula +Ġgra ves +ĠB rent +Ġник ÑĤо +Ġsö z +Ġcre c +ĠVlad imir +çĸ « +Ġп ой +Ġ" - +Ġp sy +at ri +id an +Ġa ún +Ġstandard ized +ì¹ ĺë +Ġк ÑĢов +ĠZh u +s omething +Ġ7 50 +Ġmuj eres +Ġa it +éĹ ´ +ag u +Ġcorrect ed +ik ka +el ed +ĠCare er +ow ym +Ġroomm ate +Ġdescend ants +ĠNapole on +ĠÐĶ о +íĸĪ ìĸ´ìļĶ +Ġbun un +ĠMich a +ç· ļ +Ġdesc ob +P I +Ġpalab ra +Ġtrack ed +Ġdepend ence +ĠBar ack +åģ ĩ +Ġfert ility +ĠSouth west +Ġincom plete +Ġcomun ic +Ġcomp ris +ĠRest aur +Ġac ron +κ α +Ġapprent ices +Ġmus st +ĠA br +Ġpent ru +ĠCons ort +ĠAve c +Ġdum plings +L R +Ġwszystk ie +Ġsw amp +н ев +ugg le +Ġwater color +Ġprot on +ĠEspa ña +ock ing +ов ал +Ġtak im +V ery +Ġdement ia +ĠÅŁey i +J ac +ĠMac Book +ĠL iv +ffic ients +ĠH unt +Ġover lay +æĦŁ 覺 +ĠSky pe +p unkt +Ġconf ined +ĠAd rian +ر Ùĥ +ĠJe ep +Ġenqu anto +Ġan est +оÑĤ веÑĤ +Ġм енÑĮ +Ġirrig ation +á»ij n +Ġeight een +ĠP on +Ġresc ued +Ġ198 3 +r ü +ja e +ĠJe ong +Ġamazing ly +ĠF DP +Ġback stage +c ue +ĠÏĥÏĦη ν +ĠاÙĦØ µ +Ġlivest ock +ĠW arner +Ġmaj ors +ãĥģ ãĥ£ +Ġcooper ative +ĠBr ady +ra ined +rie b +Ġ×ij× ŀ× +Ġдов олÑĮно +ĠF E +Ġle aked +ĠMerc ury +Ġpersu ade +Ġtransform er +ĠNor weg +ĠìĹ¬ë Ł¬ +Ġzrobi Äĩ +Ġcard iovascular +ĠCr ash +Ġg ossip +а ÑģÑĤÑĮ +Ġì ª½ +Ġsw ept +ĠH orn +ĠAt é +Ġbu kan +ĠK aw +K Y +ĠSt ories +G ary +Ġgard ening +ĠQuick ly +ĠFal con +Ġov at +c ı +ĠCom plet +ĠD ate +ĠпÑĢ им +Ġlä uft +ĠAud rey +ĠW ent +Ġpel ÃŃcul +Ġcar riage +Ġun acceptable +ny mi +ĠÑģл ÑĭÑĪ +Ġter re +uell ement +EE EE +Ġpharm ac +h ões +Ġz ich +Ġmig rate +ĠF ry +ñ ana +ĠM uito +EO VER +Ġfort ress +ĠCom pan +ĠJ SON +ord nung +Ġw arto +Ġun gef +ìħĶ ìĦľ +ĠÑĢ ок +Ġpad dle +J ared +Ġsubm itting +Ġl atch +Ġf ug +Ġк оÑģ +ĠE f +Ġlaunch es +Ġf t +ote chn +Ġtrave lled +ا Ùģ +éģ ķ +Ġpro ch +Ġded im +8 3 +Ġreb ound +ĠL U +p ath +ĠÑģп ÑĢав +Ġö l +ĠíĤ ¤ +Ġpriv at +Ġtr actor +ĠAtt ention +S er +Ġcos es +á ria +p al +ĠìĿ Ģ +Ġsuccess or +Ġconnect ors +ĠÑĥÑģÑĤ анов +Ġgen ocide +Ġsufficient ly +ĠA ixò +Ġstabil ize +Ġcon gest +Ġcar ving +Ġz ost +ĠбÑĭ ÑģÑĤÑĢо +Ġshort est +Ġli vel +Ġ8 9 +éģ Ĭ +Ġer k +Ġport raits +ॠĢ +è ĺ +bo at +ll ah +AN C +Ġempir ical +ĠE cho +ĠNeder land +è¿Ļ ä¹Ī +N et +Ġcuid ado +ĠR oma +Ġc alf +Ġgi ants +ĠExpl orer +ĠColl ect +al ition +ĠDest iny +Ġaus ge +ĠE du +ĠC lo +Ġear rings +ĠTr ack +ĠR OS +ĠBe lle +çĻ ¾ +Ġpu eda +Ġday time +Ġsupp lier +ĠS V +ĠEx hale +Ġgal era +c ourse +Ġcent imeter +ĠB ast +m ud +Ġsang at +ĠPhys ical +Ġpriv ately +Ġtr ata +lyn n +ill i +Ġë© ĶìĿ´íģ¬ìĹħ +Ġcryst all +Ġpod s +ả n +in ator +ĠRec ords +å® ĺ +ÄŁim iz +isse ment +h are +h adow +ĠD K +ĠìķĮ ê³ł +Ġw yn +Ġrequest ing +ĠD onna +ĠìĹ ´ìĭ¬íŀĪ +ine a +Ġex ert +ĠDun can +Ġв еÑĩ +ĠH ah +ठĤ +ĠL if +ĠF inding +ĠNo v +Ġзн ак +Ġо ÑĦ +ĠQu è +Ġquarter back +ĠÑĦ ак +Ġbipart isan +ÄŁ in +Ġné cess +Ġrefer endum +Ġcomp iler +Ġprob abil +ед и +Ġtrad er +æĺ ĵ +ĠR um +ge me +Ġd io +ĠbÄĻdzie my +ĠÏĢ ά +ê¾ ¸ +×ķ× ĺ +Ġठķ +Ġбл аг +Ġscal p +ĠPa use +Ġcapt ion +Ġend anger +Ġen lar +Ġrot ten +ãĥĥ ãĥĪ +Ġw ah +èĤ ī +Ġd zi +ĠInst all +A y +Ġcre ar +енÑĤ а +Ġwe ighing +Ġbutter flies +ĠG ast +äº ķ +h orn +war z +IC EOVER +Ġнай ÑĤи +Ġcoe fficients +ç°¡ åĸ® +ĠSp encer +ĠH igher +Ġcow ork +å¨ ĺ +ĠкоÑĤоÑĢ ое +Ġmon it +Ġdys function +ĠÑģÑĤ анов +Ġtour naments +Ġoy ster +B N +Ġtr ud +sl ow +ĠPen ny +ĠOd ys +æ r +Ġf ou +Ġenjoy ment +аÑĤ Ñĭ +Ġwygl Äħda +алÑĮ наÑı +ĠProt ect +Ġmo y +Ġcl aw +Ġsusp icion +Ġsacrific ed +Ġgost o +B ig +Ġaggress ively +Ġvor ne +ãĥ ł +Ġbl amed +ĠSe hr +פ ר +c ito +Ġse als +Ġmu jer +ĠWe ird +Ġfore ns +Ġcontrib utes +est ra +Ġp og +L OL +Ġhacer lo +о ÑĤÑĮ +f iction +7 9 +λ ο +大 æ¦Ĥ +å£ ° +ĠÑĤ об +ĠG S +ĠCl ara +ite z +Ġadvoc ating +ĠíĶ Ħë +s ung +Ġvert ices +Ġnavig ating +Ġeurop é +çļ Ĩ +Ġslow ed +Ġfore ground +ĠIndust rial +Ġad ore +ìĭ Ń +Ġcré er +æŀ Ĺ +chn itt +Ġun aware +Ġcur ly +ent ar +Ġl er +Ġprohib ited +ĠHero es +ĠRe ed +u ca +Ġsm ok +Ġkun na +zeit ig +im men +ĠL un +Ġаб ÑģолÑİÑĤ +Ġdeg li +Ġvill agers +Ġpres et +z ept +ud s +Ġem it +ä½ł è¦ģ +Ġë ī +ëĬĶ ì§Ģ +нак о +Ġos ób +Ġ196 9 +ĠÐIJ ÑĢ +Ġman chmal +ĠBro ck +Ġmant ra +ĠW IL +b ach +in ä +el as +kel n +Ġdisci ple +Ġqual c +Ġde hyd +ìĿ´ë Ŀ¼ëĬĶ +A f +ìĦ± ìĿ´ +R yan +Ġpupp et +ĠдÑĢÑĥг ие +Ġr ud +Ġp ending +P lus +ĠìķĬ ìĿĦ +Ġb á»ĭ +ĠSe ga +ç e +Ġprogram mer +b li +Ġun l +Ġensl aved +Ġsoci été +Äģ h +Ġinherit ance +ĠBang l +erm aid +Ġpractition er +ĠSt alin +ĠUs er +ci ble +Ġcard iac +ĠKore ans +Ġdump ed +Ġ×Ķ ×Ļ×Ķ +á is +Ġhydraul ic +oubt edly +ĠP it +Ġpic nic +Ġbehö ver +ĠÑģм ог +Ġbra king +é» ij +ut ar +ĠìĦ ¸ë +ub l +Ġü z +Ġmaj esty +Ġb ers +ut able +Ġhot ter +çħ § +ÛĮ ÙĨ +Ġbi ases +Ġsubject ed +Ġnaught y +Ġcir cus +ãģĹ ãģĭ +ĠIm medi +ĠSte fan +ĠTri ple +en k +Ġw it +Ġrecy cle +em ie +d ated +Ġun load +Ġpop ula +ch in +Ġyield s +Ġeng lish +ĠBon nie +Ġsp iders +à ģ +Ġer osion +éĥ¨ åĪĨ +ĠN ICK +иÑı Ñħ +Ġimp art +Ġк ни +Ġres olutions +Ġlith ium +Ġconver gence +ĠT ara +Ġдв е +th s +ĠCind y +æĪij è¦ģ +å¹ « +ĠD IE +Ġass urance +Ġоп иÑģ +Ġbu ckets +Ġc ues +ĠQu iet +Ġsimilar ity +Ġfound ational +ĠMin ist +æ» ¿ +Ġp ian +Ġcent r +Ġnum b +Ġmon ks +uj ourd +en zie +Ġskate board +Ġd latego +ĠÑģ оÑĤ +ĠA E +Ġmaster piece +ĠSol omon +ĠRed dit +Ġr iot +ab l +ĠJ azz +Ġelectromagn etic +Ġinsec ure +ĠComp et +ger ies +об од +ł ×ķ +ðŁ Ĵ +Ġsen ators +ĠBris bane +ĠAl b +utter ing +ĠAll ow +z ero +Ġp ai +ĠÐIJ лекÑģ +ĠDis play +ĠBl ade +ĠApp s +Ġp ä +Ġд еÑģÑı +Ġque lla +ĠGa o +ен нÑĭÑħ +Ġspoil ers +Ġgall ons +ĠÙĦ ÙĬ +ĠZ ion +æľī ä¸Ģ +on ie +rag t +ĠCh and +Ġë³ ij +Ġbl unt +Ġus u +ĠK ad +ra kt +Ġcin ematic +Ġam munition +re ne +Ġfour teen +ĠC arn +c rit +Ġten ure +v u +Ġprincipal mente +Ġalle en +éĢĻ ä¸Ģ +Ġkompl ett +Ġdü ny +J ames +Ġrecept or +Ġones elf +g uru +Ġmerch ant +l iness +Ġover looked +Ġharmon ic +éķ ¿ +ies o +×ķ× ŀ +col m +ĠпÑĢо екÑĤ +ĠAd a +ا س +T im +Ġrecur ring +Ġproceed s +ĠPart icularly +ĠDown load +et rical +Ġmat rices +Ġproyect o +anc ies +ĠUh m +Ġc aves +Ġìĸ´ë ł¤ +ĠLe af +Ġоб ÑĭÑĩ +ĠìĿ´ì ľł +Euro pe +Ġt Äħ +Ġpul s +Ġtak iego +ÐĿ е +G U +Ġfor s +Ïģ γ +Ġfot os +Ġ) ) +Ġë© ¤ë +Ġaqu ilo +ĠK urd +ï¸ ı +pt ic +ĠD ort +Ġmis ery +aus o +åĬ Ł +chuck ling +ĠR idge +ĠíĸĪ ìĬµëĭĪëĭ¤ +Ġ* ** +å® ¢ +ĠHmm m +Ġge ographic +Ġany s +Ġtal vez +Ġske let +Ġsign atures +Ġlit ers +IJë ©´ +ĠÑģво его +Ġski ing +ĠÐľ оÑģ +Ġadop ting +Ġha ft +Ġsymm etric +ĠL iqu +Ġthy roid +Ġmis in +lud e +Ġh ull +ĠX D +ĠG ust +ze ich +Ġvibr ations +Ġes emp +ĠвÑģ Ñİ +ĠQu em +Ġü brig +ĠS ke +ĠLyn ch +room s +art et +f est +Ġfr üher +Ġl ure +ä¸į好 æĦıæĢĿ +ĠìķĮ ìķĦ +ĠW IN +ĠR YAN +ĠкоÑĤоÑĢ ÑĥÑİ +ĠK ash +Ġ×Ķ× ŀ +Ġsaf eg +ĠHall elujah +Ġдв ÑĥÑħ +Ġstap le +Ġsed iment +ĠAct s +Ġbl aming +Ġmain land +Ġsport ing +Ġdecor ations +Ġexecut ing +Ġpar an +ĠDoll ar +Ġproject ions +Ġcommission ed +Ġb our +ö m +Ġste amed +ĠëŃ ĺ +Ġpet rol +Ġcel ular +å¸ ¶ +ĠHung ary +Ġrent ed +Ġв аÑĢи +bb ie +Ġsé cur +ü ll +Ġsw ings +bet ween +Ġи ÑĤ +est ro +Ġnie mand +ĠìĤ ¼ +ĠP ardon +ess es +ĠM ID +Ġcentral ized +ĠAl ien +cul os +Ġcr ise +裡 éĿ¢ +Ġcl asse +beit et +i ÄŁi +Ġwh ales +Ġper imeter +Ġty ing +Ġstr ony +Ġlike wise +ĠP unch +D a +ĠBapt ist +Ġsort ing +Ġ iv +Ġíķ © +Ġre hab +Ġet a +ri ver +Ġsa i +ãģĦãģŁ ãģł +od us +ãģĬé¡ĺãģĦ ãģĹãģ¾ãģĻ +Ġess ayer +Ġtur tles +ĠHaz rat +Ġfab rics +Ġcav ity +Ġpon ieważ +Ġschle cht +Ġs alsa +ÅŁ ekkür +Ġse ating +Ġeconom ists +Ġman g +Ġsegu inte +Ġr ang +Ġrat ios +Ġconst ell +Ġlong temps +u ating +Ġspo iled +Ġrecip ients +Ġsn iper +ä¹ĭ åīį +ìĬµ ëĭĪê¹Į +Ġw p +ĠLIN KE +Ġfl are +ĠAd ri +ñ as +Ġback l +mä ÃŁ +ĠB end +Ġworkload s +ĠÑģ Ñĥп +Ġ197 5 +им ÑģÑı +ан е +Ġм он +Ġaspir ations +ĠA er +ĠговоÑĢ иÑĤÑĮ +ĠQ ian +å¦ Ī +Ġcomprom ised +Ġyol k +ла ÑģÑĤ +Ġhe men +ro ve +d ens +Ġком менÑĤ +Ġ- -- +Ġflu ores +но Ñģ +ĠLiver pool +ĠÑģоб ой +ĠZ we +Ġl umin +ĠO G +á ¸ +hol m +pro fits +S N +Ġproport ions +Ġm ica +ĠB oh +ĠAt las +Ġuns ure +Ġtour ing +Ġn ied +Ġt ÄĻ +Ġimper ative +Ġdem ek +ĠSher iff +r ance +Ġhom eland +ĠH ail +ĠG anz +y mm +M on +åĨ · +v ida +Ġdesar roll +æĬ Ģ +Ġintrig uing +ĠH ugo +Ġ ãĤĤ +é ¬ +а ÑĨ +ĠWiÄĻ c +att ed +ĠìķĦëĭĪ ê³ł +ĠV ari +á d +Ġsur real +Ġdispar ities +Ġm ó +ull en +ĠìŀĪ ëĭ¤ê³ł +Ġп ожалÑĥйÑģÑĤа +Ġma ins +Ġe ject +Ġmeth ane +Ġmarginal ized +Ġchill i +r ès +Ġy em +ä½ł æĺ¯ +ĠCh un +Ġdeb ts +Ġdownload ing +ĠAth ens +is ierung +ry n +Ġte kn +ĠQu indi +éľ Ģ +Ġtara f +Ġh é +Ġconscious ly +Ġfix es +uck le +may ın +Ġfre i +Ġsp a +Ġì§Ħ íĸī +ĠاÙĦØ ° +ĠÑĥ к +let t +Ġolm uÅŁ +Ġche esy +า à¸ģ +na ire +Ġw iden +Ġli en +Ġesca ping +igg s +ĠBl ick +c Äħ +ĠìĦ ľë +Ġ×Ķ× ¡ +Ġв пеÑĢ +oph one +ie ll +ĠSU BSCRI +Ġl ions +Ġê·¸ ê²ĥ +Ġinsp ires +Ġguarante es +Ġcome ça +ĠGrow ing +Ġneg lig +ĠFrank f +Ġge geben +ĠÄij ầu +Ġend lich +Ġì į¨ +ĠT T +ĠL ith +ÏĢ α +aster n +ĠA zer +Ġlun ar +h ic +Ġна ÑĢод +Ġnen hum +è· ij +ĠSalv ador +ĠPro gress +Ġprivile ges +ĠëıĻ ìķĪ +Ġant agon +ĠImp f +Ġdesc ub +ĠLe i +ĠìĥĪë ¡ľ +Ñĩ е +Ġdó lares +ĠMeg han +ĠW ire +to o +ay ing +us c +Ġt ud +Ġappe als +ed uc +Ġp ane +Ġj i +Ġde cks +ĠAl ter +Ġ å°± +ìĦ ¤ +åĪĨ éIJĺ +Ġproduct ions +ĠWILL IAM +Ġimpl ied +Ġfulfill ment +ĠA ah +Ġsa ja +x us +ĠÎļ αι +Ãł s +uc ch +ок о +ĠDisc ord +ĠS Y +j sk +ĠWall ace +un ction +Dan iel +Ġk öt +ij ah +Ġmarch e +Ġdis gr +Ġm ungkin +Ġal ma +³ µ +Ġextensive ly +ĠFl oren +ĠAll ison +ãĤ ± +ÙĬ Ùħ +Ġju ven +ĠRena issance +Ġfundra ising +ĠCha os +Ġpar aly +Ġnarr ator +Ġecosystem s +A sh +Ġmitig ation +ĠA ujourd +ĠIde e +! , +Ġ ½ +Ġland lord +Ġdefect s +Ġac re +uls ive +Ġalg ae +pe k +Ġem ba +ĠR oc +éĽ ¢ +ks om +ä che +Ġle uk +Ġlever aging +Ġê·¸ëłĩ ì§Ģ +ĠPal m +Ġä ven +Ġl is +ĠIn sp +ĠR ita +ĠAb b +ith m +Ġsuper vision +Ġrevis it +Ġpi ÄĻ +Ġeu h +Ġf ades +Ġmot to +åį ¡ +ез ж +ĠSh im +Ġrelev ance +Ġo o +Ġo stat +n ica +Ġcho ix +ĠFac ulty +Ġì¤ij ìĹIJ +ĠAb ove +Ġнеб олÑĮÑĪ +Ġsequ encing +Ġnutri ent +Ġconqu ered +Ġdigest ive +Ġback drop +ĠL ori +ail able +G ame +Ġneglect ed +om orph +ill ah +Ġkn e +Ġsi itä +Ġworks pace +ĠVen ice +ĠK ne +Ñī о +ħ Ģ +ĠH ass +Ġv ita +Ŀ¼ë ©´ +Ġlay s +ên cias +é rica +ĠL l +æ± Ĥ +ĠCo ca +ĠWH Y +èĪ ŀ +Ġrout ing +Ġperm issions +Ġd ings +pre nd +pro gram +Ġcro cod +br al +AAAA AAAA +ag it +ĠN ä +Ġgek ommen +at ten +Ġrefer enced +Ġpair ing +ĠPart ner +ĠCoron avirus +Ñĸ Ñģ +è½ ī +Ġ×Ķ× ĵ +Ġespec ÃŃfic +ars i +qu elle +Ġspont aneous +çĨ ± +Ġê²ĥ ìĿĦ +ĠÐŁÐ¾Ñģ ле +ĠاÙĦ د +ĠSh out +Ġн ал +Ġdisgu ise +ĠJ ord +Ġwe e +Ġmiej sc +Ġser um +Ġplais ir +Ġcred ible +Ġb Ã¥ +ĠA J +ma res +Ġrod s +Ġer an +ãģ¾ ãģĤ +Ġp ää +ĠU A +ĠUn known +ĠÙĦ Ùħ +ĠRab bi +Ġla at +Ġhairst yle +ĠØ º +éģ ĭ +Ġc ach +ĠWr iting +оÑĩ ки +ab ad +Ġstraight en +-- " +w ife +Ġhott est +Ġpun ya +ĠF ashion +gr iff +ĠQ R +ot ch +ĠÐľ ожеÑĤ +Cl oud +ĠStri ke +ĠHe in +Ġ 羣çļĦ +Ġle i +ĠFl ow +weg s +Ġha br +åīĽ åīĽ +nah me +Ì ģ +Ġple asing +op ping +Ġ구ë ıħ +Ġdr an +Ġbang s +Ġ7 9 +Ġsk et +Ġcav al +ĠMac ron +Ġweight ed +Ġm uted +Ġnuest ras +EE P +Ġmath ematic +ĠM RI +ag us +Ġtherap ies +θ ε +Ġun pl +Ġcomm encer +f ull +Ġtow els +Ġpr ue +Ġlic enses +׼ ×ķ׾ +ĠÐŁ оÑĩемÑĥ +Ġpoint less +B ye +Ġelig ibility +Ġscra pe +Ġab usive +ĠM ant +Ġje unes +t al +ĠPrin cip +ĠOrth odox +Ġmel od +ĠмаÑĤ еÑĢи +Ġprosecut or +Ġopio id +ĠÑĥ веÑĢ +ĠBe en +Ġìłij ì¢ħ +Ġd ynasty +Ġajud a +Ġent reg +Ġweigh ed +Ġe ure +ĠB em +Ġab normal +8 2 +ĠJ R +ĠA kt +ĠB ri +ú t +Ġst agn +! * +Ġwe gen +Ġle aking +ĠW ords +ĠM au +Ġv ue +ĠL iam +ани ем +Ġclin icians +ĠP ump +Ġför st +? ... +Ġautom otive +ĠOw en +zus agen +ĠH undred +Ġdecentral ized +Ġbul bs +Ġ×ľ× Ľ +Ġprovin ces +ĠMil an +8 1 +k as +Ġëĵ £ +Ġfor ça +Ġright ly +å³ ¶ +r Äħ +Ġven ues +Ġw ai +Ġpred icting +ĠWi Fi +Ġê¶ģ ê¸Ī +ر ÙĪ +Ġ×Ķ× ĸ +cent ury +Ġgrad ual +ĠProblem e +ĠìĹ ħ +Ġcop ing +ĠBr us +Ġpean uts +irts chaft +Ġз ал +ĠT roy +Ġsper m +ĠM itar +ĠTür kiye +g rand +¦ Ń +Ġ×ŀ× ¡ +Ġp ans +ĠKnow ledge +ber ly +ĠÐķ го +Ġdan ced +ĠFr ost +ĠB urg +Ġbit ing +ìłķ ìĿĦ +me al +Ġhero ic +Ġmother board +ĠL icht +ãģ£ ãģ +ll an +ай н +ĠÑĢ Ñıд +Ġ à¹Ģภ+on en +ir ie +Ar t +r ang +ν η +Ġnew born +Ġam is +Ġا ÙĪر +Ġsoph om +ĠCare ful +Ġprospect s +ens en +Ġthr ill +ĠVi á»ĩt +A dam +r ition +ent ric +ud en +Ġcertific ates +Ġas hes +èª ¿ +play ing +Ġs adece +Ġo st +Ġairpl anes +ÑĢ ок +on er +Ġmagnes ium +Ġgod damn +Ġ197 2 +ĠSch ule +Ġtem at +Ġpart out +௠Ĥ +Ġin ve +ĠScient ists +ĠHud son +win ning +ceks in +Ġcongress ional +or u +Ġro pes +в ед +Ġmad re +Ġf erry +ĠCoh en +ĠP red +Ġvag y +Ġб еÑģп +Ġmult im +Ġdrain age +Ġsim ulator +g iggles +ĠSt adium +об Ñī +Ġnot ices +Ġcraw ling +Ġgr oupe +åı ¸ +Ġkto ÅĽ +ĠY oga +Ġmed ida +ĠÑħ ваÑĤ +ĠL ite +Ġr av +or ama +Ġdisc ord +ĠDI RE +Ġte h +ĠN urs +ç² ī +Ġpitch ed +Ġbark ing +ĠC oke +wi ad +Ġpop ulated +éĻ ¤ +pe lled +Ġб ог +Ġpe wno +ĠC ube +Ġrecru ited +éĢĻ 種 +ĠC ara +ıģ ını +im ated +ĠÑĪ кол +ic ional +ĠпÑĢо ÑĦ +Ġcontam ination +Ġúlt imos +Ġfear ful +Ġele phants +us i +ĠiT unes +ĠSw ami +ê ¼ +ĠìĦ¤ë ªħ +ĠRich ards +Ġmagn ets +ĠRicht ung +ĠLeg ion +èı ľ +Ġk itty +Ġkiss ed +Ġwater ing +Ġcon o +ĠPalest ine +id ir +Ġma ze +Ġflu ids +ĠProdu cer +ĠKr sna +好 åķ¦ +la f +Ġ×IJ ×ķ +Ġm iesz +ĠX ing +oint ed +se in +ĠF uk +ĠDep ression +ĠD uty +ĠPan ther +Ġsu nd +Ġref ere +Ġexc lusion +Ġnav al +ĠWin ston +Ġsl ogan +Ġhypoth etical +Ġelev ate +ë ł¹ +Ġcabe ça +ĠGes und +m eter +ĠìķĦëĭĪë ©´ +Ġcloud y +âĢ¦ ? +ĠSch ritt +ĠJ S +ì į +ĠSpr ings +ĠB atter +· ° +Ġtail or +ĠPTS D +ĠG ent +Ġba ÄŁ +Ġspat ula +Ġcr ay +ĠLeg isl +Ġs ú +Ġle ve +า ม +Ġer ad +Ġdon g +Ġd erm +ĠBank s +ich o +åħĪ çĶŁ +ĠFr anz +ra vel +éģ Ķ +ол о +Ġfl ute +ĠE k +Ġjoy ful +Ġch ased +ĠLar ge +O ver +Ġentrepreneur ial +Ġcons iders +Ñĥ ем +op a +Ġdorm ir +ĠElement ary +Ġprzy pad +ÑĥÑģ ка +ĠоÑĩ еÑĢ +ug ene +Ġten ido +Ġlug ares +ë ¥ +ĠÑĩ аÑģÑĤ +Ġsa o +Ġbra id +ĠV ere +ĠRe ich +ĠP oss +Ġin an +w and +re f +Ġmont rer +Ġ198 1 +çķ ª +as ında +Ġch rome +ĠTr inity +Ġexplo itation +ĠS ense +ĠC MS +ĠNo ble +ĠìĦł íĥĿ +Ġswe lling +elect ronic +] ? +Ġbr ushing +Ġliquid ity +ĠH ook +ĠCon nor +ĠAl um +Ġgu cken +su ite +Ġwie le +Ġbarrel s +ĠReg el +ĠM ent +ĠT rip +ĠBr ush +ĠE rik +ur ate +ÉĻ r +ĠC yr +ou ble +ĠBe cca +Ġpass words +Å ± +bor g +Ġv endo +ĠCla us +ĠF az +ind est +Ġdece ased +Ġcompar isons +ĠL CD +ĠP ork +Ġevent ual +Ġpat reon +Ġin ability +Ġext inction +Ġì¢ĭìķĦ íķĺëĬĶ +ĠÑģ оÑģ +aj u +Ġ×ij× IJ× +Ġso fort +Ġdest ined +ĠR in +Ġmouth s +ĠNat ürlich +Ġpres erving +Ġlim p +é» ¨ +oc used +ин г +Ġexp osing +ĠÎ ¾ +ë į +la ugh +Ġhis s +ãģł ãģĭãĤī +Ġind ie +Ġdet al +ÑĢав ÑģÑĤв +Ġtr ên +æķ ° +Ġog ni +Ġsimple mente +Ġ197 8 +Ġgo o +Ġ196 7 +Ġgen ug +h ö +Ġhist ó +å® Ł +Ġlob ster +c endo +Ġte il +Ġalle vi +00 00 +OL D +Ġpes os +Ġbon uses +Ġam i +Ġrev ival +ĠHor se +Ġs ack +T alk +Ġmul her +ĠпоÑģÑĤо Ñıн +ĠH ood +H uh +Ġë¶ ģ +Ġhy ung +ĠMe eting +Ġimport a +Ġì°¾ ìķĦ +ĠV ern +Ġstri pped +Ġref uses +Ġqual ifications +op l +Ģë ıĦ +ix ÃŃ +Ġdi ab +it ime +fl ows +Ġin ac +ĠG ong +Ġmeaning less +Ġcourage ous +Ġmicro bi +az y +h ist +Ġvolunte ering +V IE +Ġviol ated +Ġsymp athy +ĠEd it +好 åĥı +elect ric +produ ct +Ġpand emia +Ġgeomet ric +ĠCon vers +g re +Ġgl ut +ist ed +ĠاÙĦ Ùĥ +ĠCh ain +ĠPres ent +ĠY in +ĠÑģ ог +ĠV log +Ġìĸ´ë ¨¸ +Ġdon n +Ġh itch +uck ing +ãģĬ ãģĦ +w ald +ris k +Ġhar i +ĠK ens +ĠId ol +Ġвним ание +Ġtod d +Ġsm ashed +Ġinv ari +Ġкон ÑĤÑĢ +Ġaut istic +ìŀ¥ ëĭĺ +R es +д Ñĭ +ch au +Ġsel v +Ġhät ten +ठ¿ +Ġexpect s +Ïģ η +Ġaç ık +ĠHT TP +le ÅŁ +Ġswe eping +ĠBet a +Ġcounterpart s +ab ile +ĠSim s +C s +Ġrep ar +s qu +Ġprovin cial +Ġshare holders +Ġrun ter +Ġged acht +ĠTe en +Ġgrand s +çĶ ¢ +ag les +Ġrock y +ven s +Ġr ivals +un al +Ġreact s +ë © +Ġmerc ury +ĠLu igi +Ġо г +ĠJ UST +Ġl od +Ġcort ex +w ig +Ġl akh +ì¤ij ìĹIJ +ĠV ic +ĠM und +Ġma pped +ĠD ell +ĠD ruck +Ġlif es +алÑĮ ное +ivid ual +ad ım +Ġat rav +ĠFl ug +ĠKle in +ê±° ìķ¼ +ห à¸Ļ +Ġapp li +ா ? +ü yorum +ĠинÑĤеÑĢеÑģ но +Ġdis infect +> - +Ġchamp agne +Ġk la +op ers +Tr ans +ĠDes ert +Ġcultiv ate +ĠFuck ing +idel ity +ĠÑĤ ан +Ġinc ub +Ġtem u +Ġlearn er +found er +ĠSy l +ãĤ Ģ +Ġf ato +z ier +ĠìĹĨ ìĿ´ +ĠìĪ ¨ +Ġpsych o +ĠÑĤел еÑĦ +Ġregard e +Ġrepresent ations +Ġlit igation +Ġsp ann +ult s +b ior +è¦ĭ ãģ¦ +ä¸į å¤ļ +ĠSur vey +ĠLED s +Ġtr ä +Ġl ên +Ġant ioxid +еÑĢ ом +Ġindu ction +Ġfool ed +ät zlich +ĠговоÑĢ ÑıÑĤ +ĠF act +umb ai +Ġw iggle +NO UN +Ġdévelop p +ĠCl aro +Ġì ¸ +ë ¬ +ãģªãĤĵ ãģł +Ġaccum ulate +Ġmaint ains +ë Ħ +ĠFight er +íĨ ł +Ġmat in +Ġcoup on +Ġst unt +Ġdeb uted +å¾ħ ãģ£ãģ¦ +Ġpra g +ив аем +7 3 +Ġexp res +Ġìĺ¤ë ¹ł +ĠпеÑĢ Ñģон +Ġcalcul us +Ġab rupt +ĠInspect or +our t +æĸ Ļ +ź niej +int ense +B a +Ġl ounge +Ġast hma +ĠHi ç +ª » +Ġeditor ial +Ġse ize +Ġk ır +Ġm ouve +Ġtier ra +Ġtestoster one +Ġr h +ĠKing ston +EL LE +ĠRepresent ative +Ġ197 4 +Ġi ba +T s +Ġsort a +Ġ( ?) +Ġت ÙĪ +ĠëĤ´ë ł¤ +Ġbek ommt +Ġspirit ually +Ġdist orted +M ad +Ġre im +á nh +ĠOtt oman +ĠRel ig +ĠEl s +Ġret ained +ĠLa ughs +æĢ » +ĠS AS +ĠколиÑĩе ÑģÑĤво +×ķת ר +Ġinnov ate +Ġk ork +ĠÑĢаÑģÑģк азÑĭв +ond ere +iv i +ay e +ount y +ĠполÑĥÑĩ аеÑĤÑģÑı +Ġbun s +åħ « +Ġyüz den +Ġsur geries +Ø£ ÙĨ +Ġbankrupt cy +w elt +Ġsi amo +Ġdark est +ĠH ann +gg a +Ġform as +ĠD j +n amed +Ġshield s +ue ller +ĠF ew +Ġl ace +Ġfur ious +ĠY U +Ġsociet al +Ġjudge ment +ĠD os +Ġj ab +law s +Ġrein vent +ĠK atherine +ĠCh oi +ad ows +Ġr ans +od en +ĠMid west +n ın +Ġdep ort +ĠD ip +ç´ ħ +Ġaten ción +ĠCourt ney +ivid ad +ĠÚ© Ûģ +Ġeffic acy +ĠBrook s +Ġrefer ral +Ġкон ÑĨ +Ġmal icious +Ġk ir +ĠGod dess +Ġfun ky +Ġinter im +ĠK örper +Ġìĸ¼ë § +k ur +Ġк ли +Ġtruc s +ges etz +Ġz ug +ĠGl ück +ĠMin ute +Ġprest igious +Ġnie z +Ġconcent rations +ла ÑģÑĤи +ĠS is +ĠVit amin +ko v +ĠP BS +Ġне е +Ġretail ers +Ġcon ventions +ĠSam antha +Ġproud ly +J ordan +ĠJ ASON +at k +Ġtr iste +Ġst är +Ġreiter ate +Ġpos terior +Ġ197 3 +ĠP ine +ĠJul iet +Ġped ir +k il +Ġover lapping +Ġexclud e +Ġecon óm +Ġaccept s +ĠS ter +æ± º +Ġìļ ´ëıĻ +est ab +Ġt ug +ar g +Ġliv ro +Ø§Ø µ +Ġse ams +Ġbur aya +Ġe llo +ĠT M +ĠP aw +ĠInd ex +Ex c +Ġinspir ational +Ġd unk +è° ģ +ak ter +Ġcondition er +ĠSal ut +ÅĤ ec +Ġìī ½ +ĠÑĥз на +ĠRome o +f ruit +ĠY O +Ġchá» ī +б Ñĥ +b ons +Ġreprodu ctive +Ġor ada +Ġíļ ¨ +Ġtent ar +Ġma ñana +ãĤ ¬ +Ġsol vent +Jess ica +ĠLeg al +Ġtu a +Ġs ic +ĠE Q +au kee +ìĭľ ëĭ¤ +ĠÅŀ u +Ġad here +ĠT ul +Ġà® Ĩ +Ġtext books +ĠFif th +Ġexper i +Ġch ic +Ġhe ap +in ely +at ra +T wo +Ġhele maal +Ġf ren +æİ ¨ +Ġbis her +Ø§Ø ´ +ĠìĦł ìĥĿ +ĠT ages +Ġs á»± +Ġbull ied +Ø ¤ +Ġbenef ited +ĠPre viously +ĠÑį ÑĦÑĦ +Ù į +Ġsen ate +ĠM orm +ij ke +ĠF lu +Ġincorpor ating +j ack +Ġп иÑĤ +Ġimp ly +Ġha cks +ĠR ICH +Ġк ваÑĢ +ĠпÑĢек ÑĢаÑģ +Ġdepend ency +Ġìļ © +Ġì± ħ +Ġwäh rend +Ġsu lla +ĠPitts burgh +Ġesemp io +¼ë ¡ľ +pr ot +ĠR osen +ĠIndepend ence +Ġpars ley +ie gen +Ġha w +Ġaqu ell +ĠC AP +ĠÑĢабоÑĤ аÑĤÑĮ +ĠCl iff +ion ar +Ġsec uring +æĪijåĢij çļĦ +ν ε +Ġutil is +Ġcou le +ĠP ing +Ġtre k +Ġf ak +Ġenorm e +Ġìĭ « +è® © +Ġdoub ling +ĠнÑĢав иÑĤÑģÑı +Ġh ed +ho ven +ĠStand ing +Ġm ÃŃn +ĠJ imin +Ġmon arch +Ġco ke +Ġm r +Ġcl ic +à į +Ġimpe achment +Ġdur ability +Ġvar ios +Ġcommercial s +Ġgreet ings +ĠR i +ĠApp reci +ìŀĪ ëĬĶ +Ġrés ult +ér t +Ġsal ute +Ġpoder ia +Ġsun rise +ve ck +Ġreluct ant +Ġcommission er +å¿ µ +â te +ĠKen ny +ĠSir i +ãĥĥ ãĥĹ +ĠëĬ ĺ +ĠE E +Ġun ch +к он +ĠاÙĦØ ¥ +Ġbel ts +Ġhas s +Ġмо Ñı +Ġdispl aced +Ġab ra +ÎŃ Î» +Ġscratch es +Ġcom et +Ġauthor ization +ĠL LC +Ġprodu k +Ġrehabil itation +å ŀ +Ñĸ Ñĩ +ud ing +ol it +Ġ10 5 +Ġexp ands +Ġalt ri +ĠKom ment +Ġan f +P l +ĠM ana +f ed +Ġb ri +Ġor a +G s +ĠG ur +uck land +Ġjun ction +Ġiron ic +ĠFe ed +Ġpra kt +ĠHam mer +Įë ıĦ +ĠTr acy +çµ ± +ĠAs ide +н его +ĠиÑģполÑĮз оваÑĤÑĮ +Ġz aj +Ġequ itable +Ġcur b +Ġãģĵ ãĤĮ +Ġderiv atives +Ġpupp ies +ĠKenn eth +ĠCom pl +ig ram +ĠGar cia +) " +ĠHar bor +est ial +Ġ ä¾Ĩ +Ġ ers +æ ¹ +Ġunw anted +Ġbel ang +аР³Ð¾ +em b +d os +ĠìĻ ľë +ĠBud get +Ġbatt ling +ØŃ Øª +k ok +наÑĩ ала +Ġpl ag +Ġcant idad +Ġgrup os +Ġplug ins +ler ini +Ġиме еÑĤ +Ġso zusagen +ol ics +Ġpue blo +Ġrem inis +r än +ĠMor rison +Ġl inha +Ġbreath s +ĠT aste +Ġenf rent +ĠDo cker +Ġд ен +Ġethnic ity +Ġw ob +Ġsuff ers +Ġtransition ing +ĠR ange +ÄĻd zy +Ġк аÑĤ +Ġsy ner +Ġdon ut +Ġprob abilities +ĠO mar +Wh ich +u ish +is in +Ġdem os +ĠìłĢ 기 +Ġëĺij ê°Ļ +Ġед ин +Ġc erve +Ġj oka +I AN +Ġkilomet er +Ġhorizont ally +ĠBh ag +Ġ- > +ĠMon itor +Ġknowledge able +Ġf av +Ġpin ned +Ġe Bay +ick er +Ġìŀłê¹ IJë§Į +ĠXia omi +Ġcap it +Ġn p +Ġ196 5 +ho e +Ġn ok +ĠS age +Ġн елÑĮзÑı +ĠT ow +g am +Ġdic en +ĠSUBSCRI BE +Ġrebo ot +Ġp aj +Ġë³´ìĹ ¬ë +Ġth icken +ĠRe ality +id än +N a +Ġê²ĥ ìĿĢ +!! ) +Ġrout ines +Ġод ного +Ġex ting +Ġì¦ Ŀ +Ġsulf ur +Ġcar ve +Ġastero id +ĠWarri or +Ġphotograph ers +Ġpe ll +Ġcros sover +æĪij çŁ¥éģĵ +Ġhace mos +ĠNe j +Ġsett ling +Ġir m +ĠBook s +ient ôt +Ġesp acio +ĠSchol ars +Ġdo omed +ĠIR S +w ohl +Ġseg ue +ĠëĪĦ ê°Ģ +Ġpr atic +B T +ĠConsider ing +ĠBuff alo +Ġtrain ings +Ġge bru +ĠG leich +Ġpir ates +Ġen velop +Ġre open +im at +Ġte e +Ġsu ed +fe h +Ġ×Ķ× § +Ġdi ets +Ġjunt os +ast o +Ġmisunder stood +Ġru im +Ġclass ify +ĠпÑĢод Ñĥк +Ġin se +Ġillust rated +Ġcorros ion +Ġacc red +ĠAunt ie +ĠпÑĢив еÑĤ +ĠLI VE +Ġre k +Ġrece ipt +åĪ° åºķ +ĠBar bie +ĠSn ake +t urn +Je ff +ãģĬ ãģĬ +ķ Ħ +VO ICEOVER +co ll +Ġrun ners +ìł ľë +os os +mo on +Ġkey note +ĠInst it +S PEAK +Ġplug s +Ġcur v +ĠY uri +ĠTh eres +ĠP s +Ġμ ÏĢο +Ġconver ter +Ġref ine +Ġbad ass +Ġο ι +Ġreg en +az zi +ÙĬ Ùģ +Ġse ized +Ġiç er +ile e +Ġup stream +Ġbud s +Ġp im +Ġíķĺë £¨ +Ġall uded +Ġthem ed +Ġconsist ing +Ġb ons +un uz +ĠпÑĢов од +ĠLove ly +ॠĭ +Ġpar ach +ĠSta ats +éļ Ĭ +Ġselect ive +Ġf ase +ĠGeor get +Ġcoc aine +Ġreprodu ction +ĠL ara +ĠL D +Ġg h +J on +Ġl Ã¥ +Ġëij IJë +Ġtyp ed +ĠB ana +ë ĵľë +Ġsav ory +ĠZ omb +stand en +Ġpedest rian +Ġdifférent s +Ġìĭ ¸ +èī ¯ +Ġcompl ained +ç¦ ı +ĠÐļ ÑĤо +Ġ×ľ× ¤ +ali ÅĽmy +Ġmort ar +Ġverd ict +Ġsu ficiente +ĠMill ion +mitt el +in als +ĠاÙĦØ ® +аÑİ ÑģÑĮ +Ġmi ÄĻdzy +ĠO le +Ġin vert +czy Äĩ +озм ожно +star ter +Ġaud itor +ĠSc out +ch ien +ĠSver ige +uff led +Ġze hn +ĠA uckland +Ġarg ent +Ġ197 6 +ĠHo e +Ġboth ers +Ġsocial ist +Ġpl iers +Ġemer gen +ĠX P +еÑĢ ов +M ore +ĠLe vi +ĠAnd ers +ibil idad +ĠP arents +Ġindu ced +ìĸ´ì ¤ +Ġbal ances +ĠвÑĭ ÑĪ +Ġsubmar ine +St art +Ġdri es +Ġvol ver +Ġtick ing +c ott +Ġf aj +pr és +ĠS abb +Ġза Ñĩ +Ġпок Ñĥп +Ġbapt ized +ĠBrill iant +ĠÐij ог +Ġm ots +b its +Ġlatt ice +æĪij è·Łä½ł +Ġcor iander +Ġresid ency +yn c +Ġpier wszy +ĠKn ock +ĠZ ap +ĠÐķ в +ê² ¬ +å°ı å¿ĥ +Ġune ven +ĠJ as +od or +ç¿ Ĵ +7 4 +ĠS ite +Ġacontece u +ym pt +Ġtril ogy +Ġlan tern +ĠZ ucker +v ari +we lling +ĠPot ato +gom ery +Ġreact ed +ĠChr on +Ġj ede +be eld +Ġtw ent +Ġl act +æ¨ Ĥ +Ġré se +Ġrel ent +Ġfurn ace +Ġwid get +Ġearthqu akes +ĠAd just +il it +ĠØ£ ÙĪ +Ġhear ings +Ġdefend ant +irs iniz +Ġbas k +c ja +ľ ¨ +Ġrif les +Ġinst al +ĠFor give +p ical +ĠÐŀÑĩ енÑĮ +Ġpet ites +Ġh p +Ġren owned +ĠIn n +Ġ주 ìĦ¸ìļĶ +Ġemphas ized +éĹ® é¢ĺ +ĠìŀĪ ì£ł +Ġê²ĥ ìľ¼ë¡ľ +ãĤ Ĩ +Å ĵ +g ili +D ave +Ġexha usting +ÅĤ ug +Ġsch ema +μ ά +cy cl +Ġaut ant +Ġpar cel +Ġmater ia +ĠB erry +ĠÑģ ами +Ġextract ed +ĠSay ing +ism atic +Ġпоп ÑĢоб +Ġneur on +g raph +ľë ©´ +Ġencl osure +ĠJoh ann +Ġafter math +ÑĤ об +Ġu ży +Ġs amp +3 60 +ĠMe i +Ġt aco +Ġrecept ors +Ġpunch es +ĠHo je +ĠÙĩ ÙĨا +=" # +ĠAng ular +Ġmus ique +Ġro l +Ġà ± +ster reich +Ġcl am +ĠTre asury +chem ical +Ġap ar +Ġapp end +Ġforb id +ĠHamb urg +ак ов +Ġê¸ Ī +ild a +Ġprepar ations +Ġmog Äħ +Ġcam ino +E ric +ĠBl ind +èĪ ĩ +å¹´ çļĦ +ĠDis covery +ì¸ ł +çĪ ¶ +Ġinterpre ter +Ġb red +ĠPsal m +Ġdef ended +ìī ¬ +ĠEr fahr +ĠPe ach +Ġmo ons +ĠO st +Ġspé cial +Ġarri ver +ĠW is +u ci +Ġrobot ics +I VE +Ġsie ge +ar la +Ġsepar ates +ĠT C +íı ° +quis ite +Ġparenth eses +ик е +ç« Ļ +Ġtr ous +å» º +ĠÑģ илÑĮ +Ġbe ers +Ġпл аÑĤ +ãģĻãģĶ ãģĦ +Ġso la +Ġd ès +ming ham +ik te +Ġo ops +Ġtw itch +å° ĩ +Ï Ī +ĠShould n +uv re +Ġle er +cript ions +Ġeyes hadow +ĠGu o +ĠPow ell +Ġsup uesto +Ġan a +r als +ĠMont real +Ġsurf ing +ĠÐŁÐµÑĢ в +×ŀ ×ķ +Ġmillise conds +Ġsubur bs +Ġplanet a +ÑĥÑĪ ка +hr lich +ĠH Y +Ġس ÛĴ +ĠM M +ĠE ff +åı¯ æĦĽ +ĠH S +ans on +Ġì§ģ ìłij +Ġsu o +Ġdeploy ing +Ġk unt +ter ing +Ġere ct +ìŀ¥ ìĿ´ +ĠìĿĮ ìĭĿ +Ġspec imen +! ... +æĪij 說 +Ġlig ne +Ġk onst +ade qu +Ġìĥģ íĥľ +Ġaccess ed +ĠP ole +k ill +Ġë² Ħë +Ġauthentic ity +Ġapp elle +ull e +Ġrev ision +Ġgo ats +г ли +Ġp au +ĠR anger +ĠIm ag +aut hor +Ġe ve +ĠMess enger +Ġn ay +Ġwh oles +ät te +Ġon wards +ĠDep ois +Ġíijľ íĺĦ +ĠSAR S +Ġwszystk ich +Ġdest ru +umb ing +Ġcompat ibility +Ġmis information +od ore +ĠF avor +ek o +ı Į +w aukee +ĠTe aching +ĠK O +Ġbet ting +Ġquest s +Ġviv re +ĠмÑĥз Ñĭ +Ġs aga +Ġswe ll +Ġge he +æĢİ麼 樣 +ĠоÑĢг аниз +Ġg ide +ĠG ross +Ġdale j +Ġcl aws +á»Ļ c +Ġprejud ice +Ġins ign +i hood +Ġpl ed +Ġdó nde +ĠPolit ical +Ġprem ises +und ert +ع ت +on nen +Ġespa ço +Ġf é +ĠHarr ison +ĠC ensus +Ġcard io +Ġdi y +Ġmil ieu +Ġjourn ée +ĠRe lease +N IE +ĠM uk +id ée +á»į i +Ġiç inde +ŀ Ļ +Ġreson ate +Ġm oles +ĠF lying +ĠGl oria +ĠPast or +ĠAre na +好 ä¸į好 +N ON +ол ов +Ġall ÃŃ +om at +ìĸ´ë ıĦ +Ġcaracter ÃŃst +Ġdecl ining +Ñĸ Ñı +an co +ĠIn form +Ġbarg ain +Ġbus hes +ĠNat urally +Ġre chts +ĠT ensor +ĠPat ricia +Ġprincip io +ĠM umbai +Ġwom b +Ġnost ra +Ġdile mma +Ġirgendw ann +Ġ196 4 +Ġenerg ÃŃa +Ġна ÑĢ +Ġseg regation +ĠA thlet +Ġ» , +Ġy eni +ĠSe it +Ġven om +Ġdak ika +Ġëı Įë +ĠÃī l +Ġf us +ĠM og +¦½ ëĭĪëĭ¤ +Ġrem ar +ĠTed dy +Ġbreast s +ic ans +æĶ¶ çľĭ +k ap +Ġh Æ¡n +ĠJ P +ãĥ³ ãĤ¿ +Ġresur rect +ĠìĿ ¸ë +her ical +Ġfot ograf +ĠJos é +Ġlivel ihood +Ġbib li +ter i +Ġvor stellen +ĠA AA +Ġassess ing +Y A +Ġspl end +Ġexca v +Ġbapt ism +y ll +w ow +M ac +Ġpl astics +teok bokki +Ġintéress ant +Ġcommand ed +Ġfamous ly +ĠÐĺ ли +ĠMan uel +Ġsouth west +Ġde formation +ÃŃcul o +ĠнаÑħод иÑĤÑģÑı +ĠP atter +d egree +ĠczÄĻ sto +" - +Ġìħ ĭ +Ġman ger +ĠTrust ee +Ģë ¦¬ +Ġpunt os +iv able +Ġvol atile +ĠëĬ IJ +Ġinst ability +Ġc iel +ci Äħ +Ġpur ity +но ÑģÑĤ +S il +ed ar +åĻ ¨ +NOUN CER +Ġspe lled +G ER +Ġsanct uary +Ġacceler ating +Ġsc out +ĠпÑĢ ев +f ahren +ãģĵ ãģ¡ãĤī +ĠëĤĺìĺ ¨ +Ġpocz Äħt +ĠMe u +ka ar +³´ ê³ł +ak ra +D own +ĠÃĦ r +ĠEl ite +Ġall ons +Ġmay onnaise +ĠS ustain +prising ly +Ġsuper vis +Ġê·¸ëłĩ ì£ł +Ġunemploy ed +Ġfresh ly +Ġ×ŀ× ¢ +ĠD h +Ġtack ling +Ġo gr +Ġì´ Īë +ãĤĪ ãĤį +Ġlo ft +ar ah +ĠA irl +ĠD ir +ĠÐľ ожно +Ġbook ing +ĠC RA +Ġhtt ps +Ġcho ke +Ġg own +Ġno ite +Ġz ac +ist ol +Ġsec re +Ġresemb les +Ġcu ad +ìĤ¬ ê°Ģ +sh ow +Ġbl anc +Ġag u +ĠPr int +ast ed +ĠWe ather +i pl +Ġobsc ure +Ġcont e +ough s +) ; +ĠD ame +ä¸Ģ 缴 +Ġclar ification +Ġintim acy +Ġup hold +ĠMir ror +Ġw agon +x ide +Ġcl og +app er +ĠImmedi ately +ú de +Ġtouch down +Ġro oft +аÑĪ а +Ġç ıkt +Ġla isser +ĠUn real +ens itive +Ġ12 3 +Ġpl aster +Ġduck s +Ġet me +Ġb ishop +bre vi +Ġb ic +ä¸ĭ åİ» +Ġrun time +Ġamb itions +м аÑĤ +ĠWe in +ĠMar i +ĠíĬ ¸ë +Ġresol ver +Ġng Ãły +ĠR ise +ãĤĪãģĨ ãģ« +ĠCr us +Ġmerchand ise +Ġel i +Ġstate wide +Ġow l +éģ ł +æĶ ¹ +Ġtwist ing +Ġcontam inated +ĠCom merce +hy thm +Ġà Ī +Ġìĭ ¤ë +Ġmus ste +u ir +Ġsum s +ĠSome where +ãĥ İ +Ġk ami +Ġa ired +ĠAND REW +Ġê º +Ġv iendo +Ġantib ody +Ġabsol ument +Ġprotest ers +ĠQué bec +st adt +Sha un +Ġcham bers +ĠWe ar +ĠEffect s +Ġhaz ards +Ġne i +Ġcoraz ón +Ġá ¼ +ĠS G +Ķ © +ĠìĹŃ ìĭľ +Ġcom fy +ĠC ody +Ġpens ando +Ġg anska +ĠAc ross +öll ig +aby te +Ġwed ge +Ġkal ian +Ġsig ue +end es +ĠGro ÃŁ +Ġutil iser +Ġfl own +ани Ñİ +Ġle var +rest rial +Ġillust rations +Ġas lında +BLE EP +Ġдо ÑģÑĤ +Ġtur ret +Ġsuit case +ziÄĻ ki +Ġsket ches +Ġac red +ĠRe i +Ġt sun +ĠS ag +Ġthird s +ĠKIR BY +ra i +Ġhuman os +Ġrecomm ends +Ġextraordin arily +Ġcommence ment +K N +ope z +Ġ×ij× © +Ġlet hal +ĠEst amos +Ġinspect or +ĠSe ok +e un +Ġoff shore +Ġget tin +ye ars +ĠSil ence +ĠNat ur +up un +Ġtr zy +Ġno get +Ġhamb urger +ĠPra ise +é nd +Ġ197 1 +yl ie +k rit +ĠìĥĿê°ģ ìĿ´ +çļ ® +Ġmoment os +Ġest é +Ġdisse min +Ġgig s +Ġdes af +Ġav is +ĠZ oo +ĠìķĬ ìĿĢ +h äng +åı ¥ +h ake +ĠB ism +Ġre think +ĠMal colm +Ġident ifies +l ower +ix el +Ġtv Ã¥ +k ed +ier z +Ġö ffentlich +Ġproc laim +so on +l ol +Ġlo i +Ġb itten +ro llo +Ġser mon +Ġes qu +Ġjack ets +Ġgr áfic +Ġпок азÑĭв +Ġcabe za +ch odzi +Ġpel vis +Ġnost algia +Ġbre w +Ġshort cuts +ĠAd emás +Ġsuperfic ial +åħ© åĢĭ +Ġbo ca +ĠæĪij æĺ¯ +iment os +åĽł 为 +Ġspr outs +é£ Ľ +ĠJon as +ĠFloren ce +st atic +da ughter +* ) +ÅĤ by +f ashion +ĠG inger +Ġë§ ¤ë +Ġhust le +ut os +ĠÑĤ Ñıж +ĠL ös +ש ×Ļ×Ŀ +any ch +tu ber +Ġtid y +Ġfront al +Ġwhis key +Ġhum id +ĠÎ Ł +Ġr idge +Ġmar in +Ġb ientôt +ĠCarr ie +ch w +Ġtah un +ĠEr geb +F R +Ġìłķ ë¶Ģ +ĠSold ier +Ġenlight enment +Ġexam ining +ĠNot re +Ġer am +ĠSun ny +Ġlay ered +ĠD azu +r ades +好 åIJĥ +ĠнаÑĪ ей +Ġtim ber +Ġman ners +ĠBir mingham +Ġmini ature +omet ers +Ġfill er +ĠR ip +ĠK omb +own er +ì ¿ +id ian +Ġdem ás +ĠÙĪ ت +Ġpreca utions +Ġgovern o +z elf +ĠCom plete +å¸ ĥ +ĠPh antom +ãģ¾ ãģļ +Ġн ез +ĠкаÑĢ ÑĤ +ĠAnt wort +ĠPf izer +ĠFran co +Ġw ÅĤ +Ġfr ig +es per +Ġk ale +Ġfilm maker +Ġk urt +Ġinv alid +å± Ģ +are lla +Äĥ ng +ram ento +Ġnutr itional +Ġdict ators +Ġaf in +Ġf uzzy +ĠG ina +ó t +ĠExtrem adura +Ġdemonst rations +ĠMont gomery +íķ´ì Ħ¤ +ĠGand hi +ãĥ Ŀ +ç½ ® +Ġreun ion +Ġjaki ÅĽ +ĠZ ug +OU GH +l ifting +Ġ ಠ+á¹Ľ á¹£ +e b +ĠW OW +ĠSh iva +omet ry +Ġwild ly +Ġt ended +Ġmeg ap +ì² ĺ +Ġna use +Ġg erek +ãĥ ĭ +ĠMar cel +Ġn este +Ø® ر +Ġfe h +åĨ ħ +susp enseful +ĠWrest le +ĠPalestin ians +ĠG ORD +iy et +ĠÑĢ ади +Ġvers uchen +Ġtrans istor +ĠÐŁÑĢ оÑģÑĤо +Ġпон ÑĢав +Ġrhy me +ĠVerm ont +pl atz +è® ° +ĠÄ°ÅŁ te +ĠH ag +ĠÐĺ м +ĠÑĢаÑģÑģк аз +Ġmet ros +ĠInfin ity +w olf +ib al +ft ig +Ġ ÚĨ +Ġíĺ¹ ìĭľ +Ġo ggi +Ġdisp osit +ĠпÑĢ ил +ĠвÑĭ пол +Ġth ôi +ĠK ENN +Ġhand ing +act us +Ġtac os +Ġformer ly +ĠCorinth ians +ãģ« ãģ¯ +ÑĨÑĸ ÑĹ +Ġpad re +Ġcongreg ation +æ ij +fer t +Ġsub ir +ais er +qu a +ara oh +ĠCur ry +ĠìķĬ ëĬĶ +ел Ñİ +Ġf uss +Ġbo oty +Ġl ows +Ġh ommes +ĠM H +ĠDisney land +w ent +Ġresid ue +Ġbe eping +è¼ ķ +ät ta +Ġm ould +ĠPro jekt +st alk +Ġartif act +ĠAnt rag +ĠAM D +ĠCry pt +Ġë© Ķ +ĠFel ipe +ĠCO B +el u +Ġself ies +ĠS anti +ch utz +ĠУ кÑĢаÑĹ +ges amt +Ġflo ck +j az +pl ain +Ġwr inkles +Ġre ais +Ġpal jon +Ġempower ment +Ġattend ees +pp a +Ġn eden +он Ñĭ +Ġtime frame +ĠCher ry +Ġid ée +Ġg ag +Ġdon key +Ġô ng +ĠH are +éļ Ľ +ĠK ara +Ġacom pan +pl aces +im ientos +ĠH amm +б и +ub en +ili yor +Ġth irst +Ġk ry +ĠGeorget own +׳ ×Ķ +Ġor ch +Ġheart beat +Ġtransform ations +est ones +ĠK H +Ġcart oons +Ġan ci +Ġworth less +Ġtail ored +p u +Americ ans +Ġp iles +ĠMon key +Ġbas in +ĠTem per +ĠP aint +Ġpunch ing +Ġba ik +ĠOak land +v re +ÅŁ allah +yd d +Ġcas ually +od u +Ġc oded +ĠNorweg ian +ĠV ince +Ġprem ature +ĠProm ise +ек ÑģÑĤ +Ġdevast ated +ĠPrem ium +ĠPar am +ĠÃĸ yle +um uz +P O +r ators +Ġlamp s +Ġterritor ial +Ġback bone +list ed +D Y +ĠاÙĦ ر +Ġpurs ued +ĠComm ons +Ġê³ ¡ +lo cks +ed or +Ġconce ived +g ere +Ġdisappe aring +ĠS ull +ĠìĹ °ë +Ġho ffe +Ġdet ox +íĶ Į +Ġret ir +ĠëģĿ ëĤ +Ġper gunta +ĠB OY +ç² ¾ +Ġp enn +æĿ¥ äºĨ +h és +h on +Ġcatastroph ic +Ġa ust +Ġtor so +Ġìĸ´ ëĬIJ +ĠìĤ¬ëŀĮë ĵ¤ìĿ´ +Ġmarvel ous +ĠHar ley +ach ine +Ġti ế +itt o +ĠI ÃŃm +yl on +Ġshut down +.' ' +Ġap ologies +ĠCommun ication +ĠговоÑĢ Ñİ +ãģĤ ãĥ¼ +âĦ ¢ +ÃŃ veis +ac un +Ġret aining +Ġcontrad iction +ĠAD AM +C OM +Bry an +ĠM onsieur +Ġadap ting +Ш ÐIJ +ĠSc r +änd ert +Ġpl aus +ä»Ĭ天 çļĦ +Ġon set +Ġassist ants +Ġval ves +Ġsc atter +ĠR ust +aw ia +Ġread iness +Ġp ais +Ġb ible +Ġamb iente +Ġа меÑĢик +Ġunc ond +Ġk alk +åĬ ¨ +Ġmo c +un n +Ġact u +Ġhum ming +iss imo +ĠPat rol +g ow +ãĥ ¤ +ĠTHE Y +ĠBod en +ĠB ie +Ġre el +ĠÑĥÑģл ов +Ġende avor +ĠPer iod +ustom ed +m als +al on +B ox +ĠÏĥ αÏĤ +Ġom dat +Ġal tre +ĠHe h +k ad +Ġprotect or +Ġdomin ance +odynam ic +Ġcommunic ated +k ö +Ġprede cessor +ĠL uk +ĠFl ower +Ġãģ © +po que +ÑĤи ÑĢов +Ġret rospect +Ġdecis ive +Ġexem pel +{ \ +ĠR ück +r ite +ĠZe us +Ġcal orie +Ġattract ions +ĠH inter +Ġuh m +ĠíĮ IJ +Ġrul ers +Ġdiscour aged +Ġaconte cer +Ġacc ents +ĠOpt im +ĠAl g +k ids +20 21 +ĠLind say +Ġfilm makers +pr owad +Ġter ug +ëĭ ´ +ĠSom mer +20 18 +Ġborrow ing +ĠTrans fer +н оп +ari as +Ġhead phone +ì¼ ľ +Ġtransl ating +Ġauf ge +ப à®Ł +we is +av ant +pa id +b aby +Ġtough est +Ġrepe ats +ĠTer esa +L ord +Ġacab ar +ĠR ide +d ir +Ġl eng +Ġd wa +Ġhead aches +Ġn ữa +ĠнаÑģ ÑĤоÑıÑī +Ġbo ils +Ġlong ing +ri as +ó rio +ĠParad ise +ĠSeñ or +erd em +Ġrein st +Ġsal aries +Ġinsec urity +ÅĤo ÅĽci +ĠабÑģолÑİÑĤ но +ink en +ĠEd dy +ud os +Ġd ummy +Ðļ ак +s ix +Ġin box +Ạ© +Pe ople +á»ĵ ng +Ġorganiz ers +f ind +Ġü l +ĠCO M +ż a +we ile +Comment ary +íĬ¸ë ¥¼ +ĠMitt el +k us +èĽ ĭ +ठ¨ +ir al +Ġgar ment +ικ ά +Ġst ool +pay ers +Ġsh immer +ĠO llie +ĠJe żeli +è¿ĺ æľī +Ġ197 7 +Ġje ux +Ġext inct +ĠTransport ation +ĠM aker +Ġj ohn +Ġrich est +Ġtraum at +Ġli egen +´ë ¥¼ +è¿Ļ éĩĮ +Ġun rest +ĠSt raw +æĭľ æĭľ +Ġcom a +ĠKr isten +ĠÐļон еÑĩно +ĠBry ce +ĠÑıк Ñĸ +Ġpearl s +Ġпоним аÑİ +Ġadd itions +Ġas ympt +ĠменÑĮ ÑĪе +Ġsc ans +Ch ild +ĠH ide +к ÑĥÑİ +et as +Ġd ank +Ġple as +Ġess ays +Ġj ets +åħ Ĵ +Ġв ед +Ġposit ives +ho f +- ) +zz o +Ġstar ters +Ġsm iled +Ġ194 4 +qu iera +Ġro k +Ġpu esto +N ico +Ġsim ulations +Ġ ච+Ġintrig ued +ĠOver watch +åĸ Ĥ +s igh +b ai +Ġë§IJ ê³ł +id é +Ġcra bs +áºŃ p +ĠIraq i +ìĿ´ë ¥¼ +ÑĤ Ñı +ĠSoph ia +ĠDN S +Ġönem li +ĠLu o +Ŀ ¤ +ĠCoun sel +l igen +анÑĮ ÑĪе +Ġtrump et +Ġd apat +ĠJ M +ĠEVER Y +Ġå°į ä¸įå°į +å¤ ¢ +ĠL ayer +Ġc ô +н ал +ĠJ oo +ĠH ack +Ġs unt +ĠLeon ard +ĠFire base +äng er +Ġexpl oding +v oy +Ġì¦ IJ +ĠÑģ еÑĢÑĮ +Ġsever ity +Ġbest imm +çµIJ æŀľ +Ġt iring +Ġprocure ment +Ġdiplom acy +Ġdecor ative +ĠÙĬ ا +Ġpenet ration +Õ « +Ġout right +EN E +ĠUn i +od les +Ġz eros +Ġdelight ful +j m +Ġdo po +没 äºĭ +Ġposit ivity +ĠVIS TA +ĠRes ource +íĥ Ģë +ÑĪ ие +C arl +Ġpip ing +Ġchop ping +ĠGan ze +ü ss +ĠA o +Ġsh attered +ĠDet ective +Ġund oubtedly +Ġhall uc +Ġen ch +Ñĭ Ñĩно +ÑĥлÑı ÑĢ +is esti +Ġped als +Ġdur um +¤í Ķ +la imer +Ġprop re +C u +Ġtransl ator +Ġca ÅĤ +Ġê·¸ 걸 +Ġca ÅĤy +U A +Ġrev ised +Ġпод об +ĠArt icle +ĠHait i +Ġà ĵ +ĠC trl +Ġroz m +la it +Ġletz te +is pering +dis play +Ġalumin ium +Ġpalab ras +Ġconoc er +Ġz itten +Ġdir ig +åıª æľī +Ġbrain storm +Ġw ifi +ĠPart icip +Ġview point +ĠQu an +Ġhier arch +W elcome +å¯ ¾ +Ġoff en +ĠRe covery +gan o +W ould +Ġrep ro +Ġper ceptions +Ġdem asi +ĠBangl adesh +ĠIncred ible +Ġlet zt +Ġbehav ing +Ġaston ishing +Ġâ Ĩ +ĠëĤ¨ ìŀIJ +èµ° äºĨ +ãĥ Ķ +ĠGORD ON +C AR +? !" +ĠP rest +Ġë§ŀ ìķĦìļĶ +Ġt and +Ġl ash +ç Ĭ +ific ant +Ġint oler +Ġг еÑĢо +Ġte u +as o +ĠÑģов еÑĤ +Ġtravel ers +ĠSy nd +ĠвеÑĢ Ñģ +F onda +ad ı +Ġtrans cription +Ġtit anium +Ġtw ists +Ġgear box +ens ation +f at +C oll +ĠCommon wealth +z on +ĠPolize i +ĠAPP LAUSE +f ry +ĠJud a +este em +Ġso ck +ĠJug end +Ġк ÑģÑĤаÑĤи +ĠD ro +Ġproch aine +ãĥ¼ ãĥ« +Ġli ksom +ĠEner gie +ĠMar ina +Ġ2 30 +Ġê°Ģ ìĦľ +ump ing +Ġl one +ç´ ļ +Ġfont s +Ġbusiness man +Ġp ly +Ġdo e +gr id +ĠMil waukee +ĠE den +! ". +ĠÛĮ Ûģ +og ens +Ġteas er +Ġqui én +Ġincent iv +go vern +Ġchild care +Ġsneak ers +Ġimprison ed + ® +иÑĤ еÑģÑĮ +an bul +Ġreg ain +Ġtranqu il +Red ner +éĽ ¨ +IF A +Ġide ological +Ġmayor ÃŃa +Ġb ureau +et erm +ĠD ID +ìĬ · +Ġw aving +Ġbe b +Ġá r +Ġк в +Ġenv oy +an ut +ик Ñĥ +ĠEnviron ment +ĠAss ass +ãĤĵ ãģ§ +ĠB read +ĠТ ÑĥÑĤ +Ġstair case +ĠDise ase +Ġauc un +Ġëĭ Ī +Ġconfront ation +Ġ194 1 +Ġiron y +Ġwor sh +ãĤĮ ãĤĭ +Ġf ick +ĠNa omi +Ġback side +ie ux +K ap +Ġved ere +Ġlength y +Ġbreak er +ĠRoll e +Ġpred ator +Ġnoss os +Ġadvert ise +è³ ĩ +ÑĢод е +Redner wechsel +re ten +Ġcollect ors +ıģ ımız +Ġtr ig +Ġax es +in ters +Ġpen alties +ĠOs man +ĠJen na +Ġfl akes +Ġtrain ers +Ġstun ned +ĠSc roll +ĠP ip +Ġна ÑģÑĤ +Ġnh Ãł +ĠSm ack +ẫ n +rat os +ĠÑĢабоÑĤ Ñĭ +Ġu cz +ĠLem on +ĠS ind +Ġpsych ic +ĠAb g +Ġmamm als +Ġimmers ive +Ġb ots +Ġverschied ene +Ġg eral +Ġfoll ower +Ġ ä»ĸ +Ġsegur idad +Ġimmers ed +fe ito +c ross +Ġö ld +íĥ Ħ +Ġãģĵ ãģ® +Ġ×Ķ ×Ļ×IJ +ĠJ ian +Ġbili yor +are a +Ġk af +Ġgod t +缸 ä¿¡ +Ġë°© ìĨ¡ +Ġdet riment +æ¥ ļ +Ñĸ л +ĠÄij âu +Ġchlor ide +ø re +le i +Ġmont e +Ġdifférent es +à¯ģ . +Ġcareg ivers +Ġin adequ +Ġfare well +ĠÑĤип а +ont ec +ĠE ph +HH H +ĠTod os +ĠС ШÐIJ +Ġtro v +Ġl ige +Ġc ông +ĠC iv +Ġcap az +ĠV allahi +Ġquest e +Ġrepl ica +س ب +z na +ĠÑģл Ñĥж +ĠP T +w ave +ien i +Ġrel ied +de velop +Ġdem e +ĠA man +Ġ[ ...] +Ġcompl iments +u ais +ĠíĮ ¨ +Ġsmell ing +Ġdad urch +ÙĪ ت +Ġor anges +Ġл ай +Ġstabil ization +åĢ į +ãĤĮ ãģŁ +æ¥ ½ +Ġappl iances +Ġh m +ĥ IJë©´ +odynam ics +Ġc iÄĻ +ĠC ott +M ON +ĠM ang +æĶ¯ æĮģ +Ġall erdings +ικ ή +sh ots +Ġt s +ĠG ör +ĠCH AR +Ġ: ( +Ġwr ath +Ġf ique +Ġfüh ren +Ġtest ament +Ġ^ ^ +á¹Ľá¹£ á¹ĩa +AL D +Ġtext o +ĠDog s +Ġs ib +Ġpath etic +ock s +Ġrad ically +ĠM ORE +ĠJAM ES +Ġing l +ĠTechn ical +Ġpor ch +ĠU T +ĠобÑıз аÑĤелÑĮно +Ġrenew al +Ġaesthet ics +ik um +Ġbe verage +der n +Ġpredict ive +Ġch uy +ĠRegard ing +ĠFor ward +ĠÙĪ ÙĦ +Ġcontext ual +Ġdwar f +Ġpre he +Ġgovern ed +ħ Ħ +Ġtrabal har +Ġnegó cio +ĠболÑĮÑĪ ой +еÑĩ аÑĤ +Ġд ÑĥÑħ +Ġflood s +Ġbow ling +ĠO B +ĠH är +Ġgrad ing +주 ëĬĶ +Ġg ars +d ling +Ġr ak +ë Ī +c reat +ĠÑī е +Ġneighb ours +f ood +Qu ery +Ġhero in +ice ps +ĠK inda +N ET +Ġmar i +Ġim itate +Ġach ter +Ġsettle ments +ra re +cc iones +Ġë ĵľ +Ġf ik +it ung +Ġм акÑģим +Ġel f +Ġd alla +ĠPol sce +ĠP ul +Ч ÑĤо +ĠMor gen +ØŃ Ùħ +Ġsuprem acy +Ġk ys +ĠHur ricane +ĠG TA +ĠFe h +Ġfinal mente +m und +ĠK rie +é poque +ĠT ucker +IT T +Ġl ur +Ġdi pping +ä v +Ġeer ste +ĠFl int +bild ung +ู à¹ī +Ġto im +Ġpr acy +Ġtransform s +Ġspeed ing +Ġpresent er +Ġfellow s +f illed +ie za +Ġadv ising +ĠInter view +и гÑĢ +we hr +ĠD ante +pt ure +Īë¬ ¸ +¯ ¸ë +IJ IJ +ĠCoun ter +Ġcr ist +Ġì§ ľ +Ġje une +ĠÑģÑĤ ÑĢаÑĪ +Ġmie Äĩ +Ġtut or +Ġmas ala +Ġpowder ed +Ġn au +ĠFreder ick +Ġbill ing +ĠE isen +Ġд обÑĢ +Ġm est +æ ½ +Ġsn ipp +Ġmon o +ĠA lo +ĠMer cy +éri ence +Ġcasual ties +ĠAN NOUNCER +ä» İ +Ġto car +Ġbacter ial +H o +Ġstre ak +ĠJ ENN +Ġpl ast +Ñģ лед +Ġre app +Ġpay check +Ġmin ers +hab t +ĠJ ap +н ÑĥÑĤ +Ġred emption +Ġqu ir +hn lich +Ġaccum ulation +Ġsh ove +Ġadrenal ine +M ake +ĠH ern +oss ing +ĠV il +ub by +her tz +bre aks +Ġsp ur +ĠD aha +US TIN +Ġcontinu er +ĠSa ul +ãģ® ãģ¯ +Ġíı Ń +ĠëIJĺë ©´ +Ġë§IJìĶ Ģ +Ġо ж +Ġsuspect s +Ġla quelle +ĠMuch as +Ġv öllig +ul en +Ġimp res +Ġlo bb +ene e +Ġн аж +T a +Ġréal ité +ĠRe x +Ġharvest ing +Ġest r +æ ¶ +osp ace +OS S +Ġdisturb ance +ass ic +ĠIs ab +Ġdéc ouv +ĠHamp shire +Ġor nament +Ġlu ôn +ĠU W +Ġj Äħ +éĤ£ ä¹Ī +Ġrespect o +Ġcomun idad +Ġcom igo +ag na +Ġintrins ic +ĠAlum ni +Ġses leri +Ġestim ation +âĢĶ âĢĶ +Ġprodu it +ãĢĤ ãĢį +Ġв ÑĢ +Ġwh irl +Ġac ces +ç u +Ġvari ability +Ġv odka +its u +Ġinternship s +Ġalloc ate +R R +íĽ Ī +Ġinstruction al +t ant +Ġà®ħ த +Ġinv ites +Ġha k +Ġsca res +Ġe clipse +п ов +к олÑĮ +ativ as +Ġstab bed +ĠD OM +ä¸į åĪ° +ro ots +ĠPict ure +íĺ ¼ +ĠC HA +ie c +ı ı +han ol +Ġmisunder stand +R ay +Ġroad map +ocument ed +iz ione +ĠOl ive +r ift +Ġ×Ķ× ł +æ¯ į +l est +; ; +ĠE A +éľĢ è¦ģ +од Ñĥ +Ġhob bies +Ġbur ial +ãģ« ãģ¡ãģ¯ +Ð ¤ +le ge +ĠH J +Ġobject ion +Ġãģ Ń +ct ory +Ġincre mental +Ġgym n +Ġepid emi +Ñģ Ñĭл +à ij +Ġadvance ment +Ġpar ch +New s +Ġa yr +л ам +Ġ×ľ× © +Ġdipl oma +ãģ¡ãĤĥ ãĤĵ +Ġrob bed +On ly +Ġinc ur +Ġch anting +Ġíķ´ë ıĦ +Ġrich es +ĠCar men +Ġnost ro +λ ÎŃ +ĠPow der +à¹Ģภ« +ĠìŀĪ ìľ¼ë©´ +Ġgerçek ten +ĠPik achu +ем он +OL L +Ġplanet ary +Ġsl ows +Ġclock wise +al ion +Ġì Į +Ġver n +Ġh omme +Ġend point +Ġinnoc ence +Ġelement os +Ġsophom ore +Ġnot ions +ĠCould n +p ur +Ġz at +Ġobs ess +Ġmotiv o +ĠK ub +ĠDr ug +A nt +ĠPlay ers +ĠHum ans +Ġme lee +ĠWild life +ĠV P +Ġvolcan ic +Ġcom in +ĠGu ang +ĠÏĦι ÏĤ +ĠоÑģоб енно +ĠS ize +L isten +ĠA aa +app ro +Ġbar bar +ĠPark inson +нÑı ÑĤÑĮ +å į° +Ġunderest imate +Ġsubst itution +Ġcosm etic +ä¸ĭ 次 +Ġwill en +Ġbe ide +ann i +Ġcondition ed +ĠDe bbie +Ġis to +ĠEd wards +ìĽĮ ìļĶ +ĠÑĤ ов +Ġab brevi +ĠM ün +ĠPr inc +ĠLi ang +Ġst ink +Ġradio active +ãģĨ ãĤı +Ġac ontec +Ġun con +ĠTur bo +ãģ IJ +Ġkiss es +æĺ¯ ä»Ģ麼 +еÑĤ ÑĢов +Ġfront ier +ĠSp y +ĠBel arus +ĠC BS +á» Ĺ +am oto +íķľë į° +ĠÑģÑĤ ÑĢо +ĠEn fin +Ġbread th +éĺ ² +ĠCa fe +ĠDaf ür +ĠB our +ar as +Ġbl ueprint +an ı +Ġconst ants +Ġattack er +ĠForm ula +za Äĩ +Ġs owie +Ġeyebr ow +ob ook +Ġset zen +第 ä¸ī +ons ider +aw ning +Ġsöyle ye +Ġinv aded +Ġpronoun s +Ġdob ry +S i +ĠÐ¥ оÑĤ +Ġvolley ball +Ġl ament +is ches +ar me +ap i +ĠW iki +ли ÑĪ +Ġkas ih +Ġp ess +ĠÑĦ оÑĤ +ĠS ul +å¾ · +Ġpse udo +Ġmem o +ĠìĹ° ìĬµ +ĠдоллаÑĢ ов +ĠпеÑĢ ем +ĠRe ach +mir al +alt ed +Ġstat ut +read ing +Ġsöy led +ĠLind sey +ĠAh mad +ë ¶Ģë +ĠС егоднÑı +Ġprzy got +Ġhy ster +U RE +ĠNe igh +Rep orter +ĠB unu +ĠTreat y +ĠR ank +ĠF ame +in ished +Ġge ared +Ġcomp ose +od ia +ĠL on +Ġjeste ÅĽmy +ĠDIRE CTOR +Ġel kaar +ĠV iel +×IJ× © +ynth ia +ä¸ ¦ +Ġm ère +ĠTom ato +Ġex atamente +ni ÄĻ +ĠFre i +ĠD if +Ġopen ings +Ġgraph ical +ĠÑĥд об +ĠвÑģ п +ĠWeek ly +ев а +Ġhang s +Ġuns afe +Ġem blem +ĠKolleg innen +al ay +Ġk si +Ġh ides +Ġol may +Ġent ste +Ġarth ritis +ÃŁ erdem +Ġbin nen +Ġlist ens +ĠH ess +åĨį ä¾Ĩ +ĠLou ise +ld en +ен Ñģ +ĠVers ion +ĠAgric ulture +ìĬ¤ë ¥¼ +м ан +ë Ħ¤ìļĶ +Ġw ines +ĠIN F +r ul +ĠJ K +ıyor lar +sh ield +reat h +Ġter us +ĠL um +Ġanticip ation +Ġacc ustomed +ĠM ina +Ġw ield +io è +mer a +Ġcount down +Ġcl ing +Ġcomm end +Ġfakt iskt +Ġdef enses +Ġcock pit +Ġком анд +Ġdish was +ĠThan os +Ġkid neys +Ġse he +Ġmicro bes +Ġc uff +ĠвÑĭÑģ ок +ĠSp icy +çŃī çŃī +வ à®° +cul us +or c +ç¾ ħ +ix es +ĠC redit +Ġr aj +Ġbring t +ĠN iss +Ġgr im +ĠS OL +Ġten im +ĠSud an +ĠSp art +Ġpromot es +ĠN ossa +ĠÑģоÑģÑĤо Ñıни +Ġì° © +Ġunc ont +ĠLiber al +ĠТ олÑĮко +ĠV iele +Ġktóre j +Ġ* *** +M ax +ĠЧ ÑĤобÑĭ +3 50 +Ġíĺ¼ ìŀIJ +Ġë¶Ħë ĵ¤ìĿ´ +Ġwar p +Ġteng a +Ġsympath etic +Ġbiz i +ĠZ ack +ied o +Ġëī ´ì +p iel +ĠÑĤ ол +Ġsc aled +ĠPET ER +ĠCO MM +ĠC ame +Ġcatast rophe +Ġsweat y +ig ration +Ġstuff ing +ĠÏĢολ Ïį +ĠDri ver +zy st +T ech +Ġassess ed +ĠSur face +ır ım +s ur +ler weile +Ġд ог +Ġshut ting +Ġfr actions +ĠÑģ ол +every one +Ġer n +ĠÐĿ ов +Ġdefend ers +Ġvers ucht +ãĥ³ãĥ Ģ +Ġpol ity +ĠÐŁ он +ver ständ +Ġbrows ers +Ġtransform ative +Ġdict ate +ĠLE GO +Ġning una +ê´ ij +Ġp izz +ĠHar old +ĠL opez +Ú¾ ÛĮ +an ız +atch et +ÙĬ ت +Ġl ernen +Ġê·Ģ ìŬ +Ġhous ed +Ġclean se +ĠW AT +lar ation +Ġby tes +Ġtuck ed +Ġfault s +д о +F X +Ġìĸ¼ë§ ĪëĤĺ +Ġde form +Ġcontract ing +ĠTIM E +ir se +Ġne ben +Ġc erc +ĠArm strong +Ġtest er +Ġparf ait +Ġjealous y +Ġtox ins +Ġdis bel +ÑĥÑĢ Ñĭ +imp ression +Ġprost ate +Ġfire wall +Ġclass ics +еÑĩ ÑĮ +Ġsocial ism +Ġgrac ious +ĠÑģ нова +Ġд нÑı +Ġburn er +ĠMin or +Ġìļ°ë ¦¬ë +Ġjed es +Ġcontinu um +Ġh ots +Ġoccur rence +Ġadminister ed +Ġзам еÑĤ +Ġhes itation +Ġdr ills +er ca +ĠвÑĤоÑĢ ой +Ġstead ily +Ġinsan lar +Ġi han +í ij +Ġhel per +ĠSen in +åģ ľ +ов ание +ĠER IC +b la +ĠAcad emic +Ġhuman ities +bl ack +ump y +ort ex +Ġìł Īë +ĠØ¥ ÙĨ +Ġdiscl ose +ĠEl ijah +Ġλ ÎŃ +ĠQu er +ب ÙĦ +ãĤ ¡ +T ell +ar le +Ñĸ ÑĢ +Ġaug mented +Ġë¹Ħ ìĬ· +Ġand roid +ठ¤ +ar ma +Ġs zer +ge ord +Ġge ek +Ġye ux +Ġp ong +ĠãģĿ ãģĨ +Ġtort ured +ĠB ath +z ig +ason able +Ġn ets +Ġbar u +ĠFl at +ĠV ater +ĠTer ror +ĠA vo +Ġceremon ies +ro e +Ùģ س +O ps +Ġhy vin +Ġap resent +ol or +ĠигÑĢ Ñĭ +ort on +Ġê·¸ëŀ ¬ +Ġlook in +ĠT Y +ĠM int +Ad d +Ġm ite +ĠSm oke +Ġnot a +Ġm oss +ĠAb end +Ġì» ¨ +Ġexagger ated +f ires +Ġred ist +ff iti +Ġopen ness +ê°IJ ìĿ´ +ende u +ен ной +W atch +Ġav atar +ĠP ey +ur un +Ġsen za +Ġì§Ģ ìĹŃ +ĠNat omiast +Ġemer gence +ray s +Ġcraft ed +g ary +ãģł ãģij +ü ng +- " +Ġhack ed +Ġstr ay +en cie +em o +Ġcom en +ĠK ız +ĠJ asmine +ĠH indi +man as +Ġinfin itely +em on +ìĿ¸ëį° ìļĶ +j ak +Ġro aring +éri que +s weise +ĠRo lex +åł± å°İ +ĠStu art +bn b +Ġdiagn ose +Ġcoher ent +ĠM J +æºĸ åĤĻ +Ġp ike +l av +Ġorchest ral +а ÑģÑĤи +Ġterm inar +Ġgather ings +Ġcompl iant +Ġupgrad ing +Ġregul ator +Ġlan ç +éĢ £ +Ġmerch ants +ta wa +Ġmonit ored +Ġrend re +ä¸ ¤ +Ġunter wegs +ang uard +g ard +ĠBel ow +du ino +ĠЦ е +Ġimped ance +ìľ ¡ +ä» ½ +Ġakt uell +ĠV atic +åŃ © +Ġste wards +Ġbright est +Ġk enn +Ġk au +ĠMat rix +ĠB ark +ĠðŁ ij +Ġt aper +Ġcas ino +ר ×Ķ +ys ical +Ġbuild ers +ĠczÅĤ owie +ĠNep al +Ġ! " +Ġterm e +Ġin nych +Ġmath s +Ġdraft ed +ĠB alk +Ġhesit ant +Ġvolt ar +Ġrev ive +ĠÑĦилÑĮ ма +Ġassass in +ĠS olutions +Ġdu el +Ġbear ings +à¸Ħ ะ +Ġrook ie +ik at +Ġbisc uits +Ġc ords +Ñĥв аÑĤи +AR IN +Ġprogress ing +ĠG ir +Ġpenet rate +ĠSt orage +e ight +ĠÑĤ ÑĢÑĥ +Ġdon ÃŃt +Ġsiz in +Ġout dated +ĠнаÑĪ и +Ġaff ir +Ġspo ons +Ġon i +Ġfl ank +ĠG ol +h ã +Ġp éri +Ġhonor able +ĠBreat he +sc enes +Ġob viamente +ик Ñģ +Ġש ×ŀ× +Ġsmooth ie +ŀ Īë +Ġd ime +ĠíĸĪ ìĸ´ìļĶ +Ġapp el +ĠCath olics +Ġsing les +Ġlat en +Ġç ünkü +ĠV ader +æı Ľ +Ġvard ı +ĠIst anbul +gr é +ĠEl sa +ë l +Ġinve ce +Ġcr ane +Ġo be +ĠSh ark +Ġsm ack +Ġrest oring +. \ +Ġë¹ łë +Ġf aded +um bers +S inging +Ġdep ressing +th est +ĠW ahr +Ġmult itude +ÑĢавÑģÑĤв ÑĥйÑĤе +rij k +ek a +Ġcomplet es +ĠWell s +Ġro y +ĠPr ay +ĠKal au +iz in +iaÅĤ em +Ġlo com +ĠNash ville +ĠPent agon +ë ¯¸ +ĠNE W +Äħ Äĩ +ÃŃ ss +Ġmarry ing +Ġfe ud +íĻ ķ +æĢ ¥ +) ! +ĠOper ations +Ñĥ ÑĶ +Ġmo je +Ġinstruct ed +ĠëĪĦ 구 +Ġ×Ķ× Ĵ +ĠпомоÑī ÑĮÑİ +Ġsab ia +ìķĺ ìĸ´ìļĶ +pl ane +p ri +Ġпол ноÑģÑĤÑĮÑİ +ĠK itty +Ġpróp rio +ed ere +Ġinteres ante +Ġд е +Ġcond ensed +Ġav ent +T OR +Ġgre asy +AR K +ort a +A J +Ġdis reg +Ġcorrect ions +Ġst ero +Ġinfluen za +Ġdess es +Ġball ots +Ġme get +Ġma fia +Ġb öl +n ost +ĠÑģÑĤ аÑĤÑĮ +Ġrespond er +Ġhint en +g rav +à¸Ń ะ +yn chron +Ġvi ens +Ġsam o +Ġd t +pan nt +ĠÅĽwi at +Ġзап иÑģ +Ġmer ged +Ġke p +Ġmis leading +Ġdig amos +Ġam mon +è¾ Ľ +ch et +Ġê°Ģ ìł¸ +Ġun i +ĠëIJĺ ëĬĶëį° +Ġнап ÑĢав +ĠкоÑĤоÑĢ ого +Ġanim ate +×ķ× IJ× +еÑĢ в +Ġmin ced +Ġka um +ãģĤ ãģģ +ÏĢ ε +л ег +exist ing +Ġplata form +ĠK RIS +ìĽ ł +ĠFamil ien +ĠLib ya +Ġbiod iversity +Ġidi ots +ird i +Ġszy b +ĠRoll ing +ü cht +ĠÑĥд ив +Ñģ Ñĥд +Ġreal izar +Ġcan ned +ĠÑĢ ан +Ġmet abolic +ĠBe ef +Ġkil ka +лÑİ Ñģ +Ġreg istry +моÑĤÑĢ иÑĤе +Ġviel ä +Ġod c +Ġcondem ned +æ© ĭ +f al +ĠD il +wo ÅĽci +A w +Ġstatist ically +Ġso gen +ĠB ETH +Ġsh aving +å¹ ¸ +oc al +ĠFun ny +Ġpeace fully +Ġaddict ive +ĠIns ert +la uf +Ġexperien cia +é¦ĸ åħĪ +иÑĤ елÑı +ÃŃ gen +ág ina +Ġabdom en +íķľ ëĭ¤ +ic us +im ana +ì į¨ +arch ing +Ġkonk ret +ìķ ĺë +ек а +ou fl +ive l +Ġn ude +èt res +Ġm onsieur +Ġcl ash +Ġtherap ists +Ġcub ed +Ġretrou ver +Ġwave form +Ġpot em +ĠForm er +is ión +åº ľ +Ġ×IJ× Ŀ +und os +ĠMein ung +ص ÙĦ +ĠJ ude +Ġn Ã¥r +ĠLeon ardo +ĠCr isto +ĠG OT +ÑģÑĤÑĢÑĥ к +L AN +Ġg Ã¥ng +Ġdé b +ĠFrankf urt +Ġcra ppy +Ġli l +ann ée +ĠмеÑģÑĤ е +RE T +ĠN er +ĠCO STA +Ġjed em +Ġcurt ains +Ġiter ations +Ġun av +Ġpla que +or um +ĠÎ ¶ +Ġnúmer os +Ġdes ap +² ½ +Ġcomp iled +Ġref le +Ġrank ings +Ġrep aired +ĠÐĿап ÑĢ +Ġdownload s +Ġarm our +Ġ×Ļ ×ķתר +Ġlonge vity +ĠTON ER +ĠкомменÑĤ аÑĢ +Ġcz ego +Ġnot ify +Ġairport s +Ġend uring +let te +Ġapp arat +Ġhab il +á»ĩ c +n ad +IC O +ĠBra h +Ġseg ún +Ġgovern ors +k aha +ĠSchl uss +Ġodpow ied +ir ting +Ġrem pl +ĠAb original +ident ally +Ġenhan cing +lic ting +ĠHawai ian +Ġstri ving +ĠN iet +Ġzn aczy +Ġobed ience +ĠnÃ¥ got +Ġexp ired +Ġ19 18 +pres ented +Ġpr owad +ĠTer r +ĠPrinc eton +Ġmor gen +Ġattract ing +ĠS igma +ign er +ĠRe chts +ĠP eki +Ġmet hy +Ġha mm +Ġdire ito +Ġdeleg ation +ив аÑİÑĤ +Ġg in +You ng +Ġdepend encies +ĠBrad ley +bud s +Ġf is +Ġpyt anie +Ġinterconnect ed +Ġemba ixo +ĠS as +Ġr uh +ĠS icht +S ur +Ġsuper b +ĠSabb ath +ĠD anger +k ol +Ġh ou +s upp +ĠN acional +Ġsuccess ion +Ġv á +ĠMaÃŁ nahmen +ĠJess ie +ĠId aho +fore st +ħ ĺ +Ġ×ŀ× ĵ +ĠØ£ ÙĬ +Ġsweet heart +Ġneat ly +ĠEv angel +ê³ ¡ +ĠSu ite +úblic a +ĠÑĥ ли +ĠAnn ouncer +l igh +Ġsens ations +Ġshel ters +Ġh art +Ġsqueez ing +ĠR ivers +ĠCook ing +ì± ħ +person al +Ġman os +ÑijÑĤ ÑģÑı +w ij +Ġgo gg +ĠMill i +ĠF P +ün st +ĠL S +Ġspray ing +Ġf aux +Ġaut ograph +olog ic +Ġtor ment +Ġencry pted +á» ħ +Ġest re +ç¹ ¼ +à ± +Ġst umbled +Ġa ider +Ġsab en +x ter +ĠC ities +ĠTür k +ëĭ ¥ +ch ine +Ġto pping +Ġpoison ed +ĠRoman ia +×ĵ ×Ļ +Ģë ¡ľ +ĠпоÑĢ Ñıд +Ġchir ping +ĠìĻ Ħë +×ij× ¢ +Ġcu anto +Ġdon ating +ĠReg ent +ĠBer uf +Ġdistract ing +Ġstam ina +ĠDar ren +Ġì¶ ķ +l ists +d al +ch uss +Ġeconom ist +ãģĪ ãĥ¼ +org t +Ġist iyorum +è¿ Ľ +ĠSur prise +ĠHa o +Ġìµľ ê³ł +ĠG W +ĠIn ner +Ġqu ieren +Ġmind ed +Ġsupercom puter +Ġdiagram s +íĬ ľë +ê²ł ìĸ´ +ĠобÑĬ ÑıÑģ +Ġestab an +Ġdestro ys +ĠBre aking +Ġkar Ä±ÅŁ +Ġrebuild ing +ľë ĮĢ +ли во +ĠSau ce +ĠF usion +×ķ× ŀ× +ĠQu inn +Ġga uche +ĠÙĪ Ø£ +Ġ È +ç ĵľ +Ġtechn o +Ġdisp atch +ĠaÅŁ k +Ġein zel +ĠG mail +ç ŀ +Ġê°ľ ìĿ¸ +ĠÑģем ÑĮ +Ġjour neys +Ġi ht +Ġfib re +Ġdram as +ouch ed +Ġren ame +Ġоп еÑĢ +Ġpo o +ĠD ru +ĠиÑĤ ог +Ġz ast +Ġco z +Ġz ucch +Ġobt aining +Ġcomm ute +Ġsub mer +ĠV ish +ĠR abb +og g +Ġh ut +íĸĪ ìĸ´ +æ¯Ķ å¦Ĥ +ere mi +Ġμ α +Ġdisk ut +Ġб Ñĥк +Ġimp aired +d epend +ĠÙĪ ا +ĠÑĢ Ñĥк +Ġб аÑĢ +Ġoxid ation +Ġsitu ação +ÉĻ n +u ção +Ġsag te +ĠS ER +ĠC ake +Ġtur meric +ĠK ak +b ung +ĠK á¹Ľá¹£á¹ĩa +Ġpoison ing +Ġsl ipping +ĠS ays +å°± åı¯ä»¥ +ò ng +çŁ ³ + « +ĠClaud ia +ĠChar acter +ни ÑĨ +co at +Ġprogress ed +ĠFer gus +Ġìĺ¤ ëĬ +Ġo at +ord able +ĠLe y +ĠHera us +Ġresult ados +ĠKay la +Ġr iff +Ġcheg ou +Ġx i +Ġsp acious +Ġrecogn ised +Ġe ch +ĠT ie +Ġlaunch er +J im +Ġsupp ression +ĠImp ossible +Ġguit ars +ĠFour ier +иÑĩеÑģ кий +ĠTh erap +ĠK af +cent ered +ĠÑģо оÑĤвеÑĤ +Ġk lim +Ġcarbohyd rates +ign ant +ĠAst ron +Ġem ple +Ġdr astic +ĠмиÑĢ е +в ин +u w +Ġpret tier +Ġdon uts +ĠAth ena +Ġdiss ert +Ġpl ante +Ġur anium +ìĿ Įë +ar é +Ġrze cz +Ġdisplay ing +æĪ ² +Ġsar c +r ão +Ġtamp oco +Ġphilosoph ers +ĠRe cht +æĵ ļ +Ġcoment arios +y se +Ġìľ ¤ +Ġm ise +ĠG in +Ġн ом +ĠFR OM +l iner +at if +Ġspo ÅĤec +x a +ĠÑĤ ÑĢÑĥд +Ġw ag +기 ìĹIJ +ĠM G +Ġoff spring +ĠUnder standing +åıª æĺ¯ +OR A +Ġwh irring +Ġsur rend +Ġpok er +Ġmon uments +ĠâĻ © +Ġorgan ised +ĠSo zial +ĠF actory +Ñħ а +Ġrese mble +з д +Ġexplos ions +Ġpay roll +Ġom n +ĠJ orge +ι Ïĥ +Ġfract ure +Ġpersec ution +Ġdem ais +E CH +, ) +Ġcri ar +ĠJ OSH +Ġdem ographics +Ġ16 00 +Ġcur rencies +ĠT ips +Ġ éĢĻåĢĭ +ĠRe fer +ĠDan cing +Ġincons istent +Ġde h +Ġimm ens +Ġme ist +Ġimpat ient +Ġbehav es +æĿ ¾ +ĠëĤ´ì ļ© +Ġback story +Ġagree ing +ĠÅ ģ +ih in +Ġtemper atura +ĠBack ground +Ġnut zen +Ġëħ ¹ +ĠM änner +Ġcollabor ations +ĠK os +éģİ åİ» +Ġnight mares +ë ĵ± +ĠQueens land +Ġassoci ates +ĠK ok +Ġfact orial +ĠHy ung +Ġê·¸ ëĭ¤ìĿĮ +Ġfil ho +Ġel ét +Ġíĸī ë³µ +° ± +Ġgef unden +Ġsemic ondu +Ġcounsel ors +ĠU pper +ĠA ub +ick ers +V er +Ġnorth west +ĠMainten ant +ĠL akes +аÑı в +int é +ì° ½ +Ġг аз +Ġgi orn +Ġdigit ally +ĠCirc uit +ì¼ Ģ +ãĤĬ ãģ¾ãģĹãģŁ +Ġcheer ful +ĠPet erson +ĠDan ish +ativ os +Ġli ken +Ġhar bor +али ÑģÑĤ +x e +Ġcur ls +ĠR hod +E nd +ĠE T +Ġacqu aint +ĠKel vin +Ġtr if +ĠA way +ìŀIJ ëĬĶ +v s +Ġp ágina +Ġin let +ĠSant os +Ġìļ° ìĻĢ +Ġyap ıyorsun +th eme +Ġsou ff +Ġinject ed +Ġpó źniej +iver so +amp ed +Ġda her +Ġd agger +ĠлÑİб им +Ġt ummy +Ġenlight ened +c ents +ĠD ah +Ġcu est +ä¾Ĩ 說 +IL Y +Ġ×ij ר +Ġbang ing +ĠEm il +ĠC ler +ĠB order +иж Ñĥ +Ġpresent ers +ĠST UD +co ins +ĠíĻ į +Ġper ks +Ġpar ap +Ġcertain es +ĠL ore +ö st +ĠMAR TIN +Ġb ios +Ġwhere by +ver ts +ĠMir anda +Ġst ip +æ¾ ¤ +and ez +׼ ׾ +uj in +Ġê ¾ +Ġaller gies +pl ate +Ġyap ıl +Ġundert ake +ĠëĤĺ ê°Ģ +P art +Ġkız ım +h guru +ãģĤ ãģ¨ +ĠJohn s +Ġeyel ashes +Ġdra ined +Ġst Ã¥r +ãģĤãĤĬ ãģ¾ãģĻ +ĠJ ade +Ġcal end +fil m +Ġmes a +Ġlud zie +Ġattract s +Ġju ices +Ġк ил +Ġnieu we +Ġmen cion +Ġign ition +Ġbl adder +anda ag +ĠExt ension +íĤ ¨ +fe ed +ĠÙĪ Ùĩ +Ġsp un +Ġt ät +оÑĢ оÑĤ +ty ard +ron ics +ĠH uge +Ñĥж д +st ring +Ġun just +Ġpra wn +Ġfrost ing +Ġdisappear ance +ios a +Ġcard i +ĠPri est +Ġcient ÃŃfic +åĵª 裡 +ĠÐĴ аÑģ +Ġë¶Ģ íĥģ +Ġth ieves +Ġphys ique +ĠE ugene +Ġбли з +Ġmon opoly +Ġbi ography +Ġho ÅŁ +Ġt ö +m ac +Ġshock s +ìĦ ¸ë +h it +Ġsn ug +Ġinc l +Ġded ic +Ġult ras +Ġизв еÑģÑĤ +Ġutil ization +ĠÑģовеÑĢÑĪ енно +Ġserv i +st ag +1 80 +Ġse wer +ĠCh oice +Ġdis charged +ĠJ D +ол еÑĤ +ĠкваÑĢ ÑĤи +Ġteles cop +ĠJe ÅĽli +ĠN ana +c ale +ĠÑĤ он +mm m +äºĨ åIJ§ +Ġge habt +ëĤ ł +æĬ ķ +à¸Ļ à¸Ļ +Ġet her +Ġz en +Ġresearch ed +ĠCzy li +å®Į åħ¨ +work ers +Ġê²½ ì°° +Ġsher iff +all o +Ġtip os +Ġprosec ution +Ġfrog s +Ġf alt +j d +ĠíĮ Ķ +Ġfilter ed +ĠO ft +Ġì į +Ġdis fr +ĠMust ang +Ġwo ah +ĠRE ALLY +Ġмог ли +Ġentr ada +Ġиг ÑĢа +Ġmix es +ĠавÑĤом об +Ð Ļ +Ġsh in +Ġparan ormal +Ġsome place +Ġdish on +eta an +Ġfu erte +Ù ¹ +Ġdo om +ìĪ ľ +Ġexist ential +Ġbu ld +ĠSD K +ĠпÑĢав да +Ġturn over +ĠìĹ¬ê¸° ìĹIJ +Ġठ¹ +Ġmodel ed +Ġbug ün +Ġexperiment ation +Ġmorning s +Ġmed o +Ste vie +Ġplay able +Ġairl ines +g ments +Ġê¸°ë ¶Ħ +ĠT omb +ĠMV P +AUDI ENCE +Ġcheck out +Ġpas st +Ġbe ispiel +ĠLink s +he avy +Ġquestion able +Ġìĵ °ë +Ġs ill +Ġmanip ulated +ĠL oren +Ġìľ ¼ +Ġver ge +á k +I ES +Ġsab ot +ĠCustom er +ale ży +Ġnom inee +ĠG ad +Ġnouve lles +ĠS PE +ist ling +Ġo val +обÑĢ аж +if ty +éĩ İ +Ġbez el +y et +Ġfre ight +ĠHan ım +r ÃŃa +Ġz oning +Ġind em +ĠB ü +Ġfemin ism +Ġvo ix +Ġof icial +Ġdi yorum +» IJ +Ġar ose +Ġpar ar +ìĿ¸ ì§Ģ +ĠMart ine +ĠL ect +Ġrest er +Ġdrown ing +u ya +c ida +ĠAri el +Ġ0 2 +Ġ×Ķ ×Ķ +ç´ ł +ĠW ert +Т Ñĭ +Ġwid ow +Ġparch ment +Ġcott age +ĠX L +ĠSl ack +ĠN ES +Ġro be +Ġg imm +Ġcam inho +ĠHar per +Ġcit rus +Ġfirefight ers +Ġdop amine +el ets +Ġdemocr at +ìł ľë¡ľ +Ġplay back +o j +ĠпÑĢ ок +ĠSull ivan +se mble +ĠW orth +ĠMust afa +า ร +Ġmet s +éĸ Ģ +л оÑģÑĮ +Ġinert ia +Ġuniform s +è¶ ³ +é rio +×ķר ×Ķ +é nt +Ġà® Ĵ +ĠÑģам ÑĭÑħ +Ġvou lais +ĠZ immer +ê² łë +Ġн оÑģ +en cias +Ġrel ación +Ġê± ¸ë +Ġfact ion +Ġg osp +пол ож +n ap +h ak +Ġproceed ings +ĠìĨ Ķ +ìķĦ ëĭĪ +ĠìŀIJ 기 +Ġwer d +Ġso f +Ġsch lim +Ġfl avored +Ġquad ratic +ĠBo ot +Ġpublic ity +ĠCar o +Ġ ?" +ни ÑĨа +man ia +ĠS UR +ĠB UR +l ance +ét ica +Ġzob aczy +Ġtri o +s ama +Ġta ÅŁ +Ġas ymm +ress er +Ġت ع +Ġп еÑģ +Ġbeginning s +lad ım +ĠбÑĭ ÑģÑĤÑĢ +Ġmo o +ĠGene va +Ġ åľ¨ +er us +bor ah +Ġref using +b ull +ĠWait ing +ĠInd ividual +Ġan onym +im ens +Ġmed idas +Ġfragr ant +Ġdirect ement +ĠìķĦ ë§Ī +ur ia +Ġsp herical +Ġab ge +ĠVictor ian +Ġspect acle +ĠRodrig uez +Ġoc up +ĠN är +mark s +ng ulo +ĠLu ci +Ġshout ed +Ġregul ators +ÄŁ ini +Ġdis ent +ĠÑĢÑĭ н +ëĤ ¨ +ĠìĤ ´ë +Ġprobl èmes +ĠF inger +asse mble +Ġpe ar +Ġdro ite +ĠEvery where +t am +оÑĤ ив +в ой +ordin ate +ĠL ak +Ġm Ỽi +ĠTele vision +Ġexpon entially +av as +Ġble v +ĠM T +ä¿ º +Con nell +ĠêµŃ 민 +ĠÑģво им +Ġach a +ĠD ynasty +J in +Ġto re +Ġfl or +Ġмног ие +æ²Ĵ äºĭ +ow an +b ah +Ġì£ Ħ +ĠC ela +Ġìµľ ê·¼ +Ġpermett re +Ġab ras +Ġverste hen +Ġesc ort +ĠThe m +är ke +por ter +Ġkah kaha +Ġhe ct +Ġda u +w ah +ol ve +ĠAg es +s chaft +ĠSt ell +ne lle +ĠEn suite +ĠÐĴÑģ ем +Ġcr éd +ĠP P +l ords +gr unting +Ġcontract ion +G ot +Ġacqu iring +Ġso pr +Ġpoison ous +R NA +Ġan ar +ĠH of +' ) +Ġremark ably +Ġintern acional +ü cke +in qu +Ġdu y +Ġbeast s +ĠL AN +Ġpreced ent +ĠRP M +åij ¨ +Ġsel on +Ġmort e +Ġcomeç ou +Ñı ла +Ġinterpre ting +ĠBur ke +ÑĤ ÑĢа +ĠìĿ´ë Ł¬ +Ġpess im +ĠN ok +íĮ Ŀ +F emale +Ġìĭ ¤í +Ļ Ģ +Ġstim ulation +Ġsl ick +Ġê°Ģ ëĬĶ +Ġк аз +ĠH BO +Ġpap ier +Ġkön nten +Ñĥб ли +ĠConst ant +SPEAK ING +Ġktó rÄħ +Ġcos metics +ĠT rend +Ġrob bery +Ġt itt +Ġgj ort +Ġdiet ary +ł Į +ĠKir by +ĠпÑĢимеÑĢ но +Ġqual ification +Ġìķ ī +Ġcabin ets +Ġhtt p +ĠEric a +ç¾ © +Ġdisadvant ages +Ġch attering +y z +fe it +Ġgu ild +ĠE TF +ĠDrag ons +ĠH ERE +vent h +ÙĦ اÙħ +Ġmarch é +D am +Ġphot on +Ġest able +M ag +Ġol har +Ġcou pling +ĠHil fe +ĠW izard +Ġм ало +hel p +ĠlÃŃ nea +Ġì « +Ġstand alone +Ġmor ale +Ġzwe ite +ãĤĪãĤį ãģĹãģı +ähr t +Ġd otted +Ġdri pping +ĠFl ag +éĿ Ĵ +ro cket +rate gy +ir im +Ġíķĺë ©´ìĦľ +Ġsogen an +ĠUn o +ĠSch utz +Ġest ilo +ĠS ubs +ĠDais y +ÐĿ еÑĤ +' ... +Ġplat inum +Ġb irl +ĠSo vi +Ġviol ate +Ñĥ еÑĤÑģÑı +r ill +Ġtra z +Ġsn ip +Ġcum pl +à¸Ń à¸ģ +Ġc uk +éħ Ĵ +ĠParl ament +Ġhyper t +Ġpul p +Ġtong ues +at to +Ġbus ca +ih n +ER O +ĠÙĬ ع +Ġvari as +ĠMar ian +Ġbound ed +Ġpitch ing +Ġdefic iency +ĠBless ed +ĠEx erc +uch s +ĠnhÆ° ng +æľ¬ å½ĵ +Ġrap ed +h ales +Ġmal a +p ic +Ġ40 1 +ÅĽ niej +ar ina +ëĵ¤ ìĿĦ +ott i +Ġдол го +Ġtrack er +ĠShel by +Ġvan ished +Ġbak ery +Kap ı +J esus +ĠK R +J O +ħ ¸ +Ġdisc s +ìĦ ¯ +ì§Ģ ë +×Ļ× ¦ +em ary +K endra +Ġy ük +ück t +Ġv az +Ġk up +akt u +ĠÑģп аÑģибо +Ġa ik +Ġnurs ery +Ġendanger ed +êm ement +emat ics +Ġrespond ers +ĠRepresent atives +Ġsculpt ures +ig keiten +Ġde pl +Ġinterpret ations +Ġdead lines +Ġ194 2 +Ã Ĺ +Ġsug ars +em u +l ively +Ġrecre ational +Ġdist ort +Ġunders core +Ġun quote +Ġsaf est +Ġsw ollen +Ġanalys es +Ġcommen cé +å¦ ¹ +and in +ĠÐ¥ оÑĢоÑĪо +Ġdi arr +ãģ¾ ãģģ +zi est +Ġtooth brush +éł» éģĵ +u ations +Ġc ade +Ġbackl ash +h ind +Ġris que +z ess +ĠìĿ´ìķ¼ 기 +Ġesper ar +Ġtransl ations +ion ed +gro ans +Ġп ÑĥÑĤ +Ġgen etically +éĢ ł +Ġhapp iest +Ġwer k +ato on +Ġmus i +Ġfun ção +Ġìŀħ ëĭĪëĭ¤ +ĠÑĢ ай +Ġbe vor +BL ANK +Ġrepent ance +P ut +Ġpotrze b +Ġsal a +Ġcamp a +W ER +Ġdec ÃŃa +Ġsécur ité +ĠAppreci ate +Ñĩ и +ĠR andom +ë³ Ħ +k ah +Ġmö j +Ġsä ger +Ġ×Ļ ׼×ķ׾ +Ġ19 0 +xt ures +E u +Ġg ä +Ġ×ij× ª +ĠC roat +ap o +P LE +Ġpersist ence +åĬ © +Ġbl ends +Ġtre ffen +ĠSanti ago +yd ia +al do +ĠTensor Flow +ĠD ual +ãĥ ľ +Ġch iff +ìĹ ´ +Ġcontract ed +Ġseg reg +ĠFair y +Ġwis ely +Ġvulner abilities +Ġhand held +Ġgad gets +Ġbo ÅŁ +ĠPop ular +Ġcurv ature +ë ¬¸ +ĠMAR Y +ìĿ´ì Ĭ +Ġform ulation +Ġcel ery +Ġblur ry +ĠT S +ale z +Ġw s +Ġprogram m +ĠSt ack +ĠJ IM +ов али +ı ll +Ġp ère +ĠKan ye +ĠDel aware +Ġãģ ł +Ġda unting +Ġб еÑģ +ĠSt upid +b ig +ffic ial +Ġprecip itation +Ġpl ung +ụ c +bur se +Ġdar le +Ġcri pp +Ġpione er +Ġdis put +Ġse an +ãģĵ ãĤĵãģª +Ġresist or +Ġalle in +ipp les +are l +Ġend ors +z ust +ĠÑĢеб ÑıÑĤа +ed ed +Ġì¹´ë ©Ķë +Ġlle va +Ġken nt +Ġб ал +ĠDoc ument +ĠKn ights +Ġbuck le +Ġìī ¬ +Ġal k +ĠEvery day +atter s +Ġtoil ets +Ġj ugar +ĠìŀĪ ì§Ģ +Ġgen auso +ĠLandes regierung +ãģ£ãģ ± +ij e +Ġtrail ers +ĠT igers +Ġg itti +Ġforg iving +Ġconcur rent +ĠV u +ĠíĬ¹ íŀĪ +ĠBR OWN +ound ed +" ; +Ġtre mb +Ġt iet +ĠÑĢеж им +Ġnuts hell +ел иÑĩ +Ġlos ers +ric ting +Ġrede em +def ined +N ice +Ġbroad band +K O +Ġte asing +Ġpart isan +ı ma +Ġìŀ¬ë ¯¸ +ĠJour ney +Ġslop es +un ing +gr unts +Ġt äll +Ġuncover ed +Ġmy ÅĽlÄĻ +ĠEst her +äº İ +ĠHealth y +Ġë° ij +r ée +Ġpolar ization +Ġfl av +Ġcambi ar +Ġy r +ĠR anch +Ġspl its +Ġtrou vé +åľĭ 家 +Ġrecord er +Ġdé part +ÙĪ ب +ĠK ry +Ġinteress ant +Ġeder im +ÅĽ wiad +il ateral +w right +Ġpour ra +ê ter +Ġcam el +á ŀ +Ġrapid ement +Ġme j +Ġstiff ness +AD AS +Ġdiff ers +Ġal ot +ĠS ig +ÑıÑĤ елÑĮ +Ġabstract ion +åľ ĺ +Ġke iner +gr upp +ĠSher lock +íĺ Ķ +Ġc ite +Ġover flow +Ġt ại +ú car +b ula +Ġconjun to +ĠC I +Ġmoder ator +Ġindirect ly +Ġalle ine +â Ĥ +ÑĪ иб +Ġб аб +Ġdan ach +Ġ19 39 +Ġpr omet +Ġdest inations +ĠIll ust +ικ ÏĮ +Ġsab es +Ġhe h +ĠGesetz ent +ĠM iz +ен ко +ĠM ys +Ð ¬ +ĠJuda ism +Ġmust ache +Ġst immt +ĠG aza +Ġvol te +Ġnu o +Ġm ón +ĠCom put +ู à¹Ī +ĠR adi +Ġexception ally +Ġassum es +éĸĭ å¿ĥ +ãģĪ ãģ° +in form +Ġshr ine +æĵ Ĭ +Ġimplic ation +ĠF itz +æ²Ĵ éĹľä¿Ĥ +! . +Ġl t +Ġall oy +Ġeth ic +Ġmonaster y +ìĭľ ì£ł +ica ção +Ġcoordin ating +ĠM oto +Ġover look +Ġcho is +Ġantibiot ic +ĠMin ne +ĠB J +ĠA pa +or ian +Ġsp illed +J am +Ġhus bands +Ġcre ations +Ġa ñ +üs sel +ĠìĿ´ì ļ© +Ġanaly se +r ose +Ġpunch ed +Ġpres que +Ġastron omy +Ġschwier ig +ĠEb ola +Ġc is +Ġac et +ĠF X +end re +ĠìĿĮ ìķħ +Ġweb page +Ġfre aked +Ġlat te +Ġì¿ ł +Ġë¨ ¸ë +N ever +G ra +íĻĶë ¥¼ +ey ed +Ġë°ľë Ŀ¼ +Ġesper a +Ġapare ce +ra ção +Ġdisrupt ive +ĠJo int +ur ous +re as +Ġquer ÃŃa +Ġdistrib utions +Ġexpon ent +ì¹ ĺ를 +Ġd l +z hou +ĠHe aring +å·® ä¸įå¤ļ +ĠC raw +Ġflo ats +oun ced +L ab +W orld +Ġbur dens +Ġauthor itarian +ĠB olt +Ġод нÑĥ +Ġpige on +Ġdistract ions +ĠHeraus forder +Ġz est +es c +Ġsh akes +at as +ĠÙħ Ø´ +hol es +Ġthink ers +al ta +Ġar che +ĠS uk +an ha +Ġtempt ing +Ġyou tuber +Ġv ì +Ġdz iaÅĤa +ĠVatic an +P ark +Ġsup ers +ĠNik ki +ëĬ IJë +or ang +ram ient +é ¬¼ +Ġê°ĸ ê³ł +Ġdessert s +Ġav ere +ĠGreg ory +Ġëĵ¤ìĸ´ì ĺ +Ġcost ing +ĠClin ic +Ġreb els +ĠM ob +Ġbun lar +ĠYour s +ert ime +Ġret ali +m ara +at us +all es +Ġд ÑĢ +Ġд иÑģ +Ġdiscount s +ĠGU Y +Ġкак ое +ĠExper iment +re ment +ĠXi ang +Ġb ate +W E +Ġspecial ize +Ġde ity +ĠL oki +m ag +ĠN it +W est +Ġmater nal +Ġqu is +åŁº æľ¬ +bro ken +Ġlas ers +Ġha kk +ĠAng els +Ġmaster y +ant is +T iffany +ee e +ç ij +ore m +Ġin acc +Ġjurisd ictions +ĠKard ash +æľ º +I l +ĠS inn +åĭķ çĶ» +Ġathlet ics +c ÄĻ +Ġlo osely +Ġdiet a +A g +Ġ? ? +ĠëĮĢ íijľ +Ġsuper v +Ġnut rit +Ġdr ifting +ĠìĦłìĥĿ ëĭĺ +Ġпон Ñıл +ĠVict ory +ÙĦ Ø© +×ķ׳ ×Ķ +Ġп иÑĪ +Ġsh aved +Ġmes ure +ond en +Ùĥ ر +Ġex ile +ĠDes de +ĠP interest +Ġattach ments +Ġh ombres +Ġfin es +ĠìĦ¸ ìĥģ +Ġsleep s +ĠT aco +ĠI RA +ri os +Ġo ll +et es +Ġun ut +fashion ed +Ġtre ball +ĠNear ly +ĠÑĢе алÑĮно +Ġch il +éĢ ± +ÄŁ a +ĠM EL +ros cop +ĠC G +Ġv enge +Ġdishwas her +al gic +Ġmod ifier +Ġemb assy +t imer +em ics +Ġintric ate +Ġev et +ĠëĮĢë °ķ +Ġis ot +Ġна ÑĥÑĩ +ĠQu iz +res o +δ Ïİ +Ġye lled +Ġfed er +ELL ER +Ġexceed ed +on as +ic ano +Ġжив оÑĤ +ĠMa o +ĠKaz uto +Ġ ãħĭãħĭãħĭãħĭ +Ġfront line +ĠHung arian +Ġüber all +aw at +Ġgri ps +i ções +arn ya +ĠÍ ¡ +Ġse id +Ġan ak +Ġacab ou +íķ ij +Ġnot orious +ĠGod zilla +Ġover coming +ĠP end +Ġol abilir +ül me +Ġer halten +ãĤī ãģĦ +ê· ¹ +ĠM eter +Ġsta an +O l +Ġch ats +ĠBu enos +ÃŃ ve +alu able +Ġstrateg ically +Ġcompr ised +ĠпеÑĢÑģон аж +Ġw ann +ĠC en +н иÑĤе +Ł ģ +ĠÑĤоб ой +i ad +ĠkardeÅŁ im +ĠCongress man +ream ing +h omme +Ġcommun aut +Ġalcohol ic +Ġpick led +Ġac ord +p osition +eg ól +Ġtrou bling +ĠMarch eg +Ġzum indest +Ġseam lessly +Ġol un +ĠTV s +ĠпÑĢакÑĤи ÑĩеÑģки +Ġback end +ãģĵãĤĵ ãģ«ãģ¡ãģ¯ +id able +Ġgad get +Ġfa ço +ĠMarcheg iani +Ġë° ¤ +Ġaccident al +ĠL P +Ġeld est +ĠAd miral +Ġn Äĥm +le ver +Ġpast el +Ġfond o +Con nie +Ġter cer +Ġp act +ĠMont e +Ġme ats +ĠS MS +ĠAustral ians +ç ¼ +Rh ett +Ġexact ement +Ġë¹ ¼ +ĠM OD +ç ¡ +ĠR apt +ĠNo ch +Ġab ort +ĠNav al +ĠFu ji +IN TER +Ġнов Ñĭй +Ġmiej sce +ĠIC U +ĠGrad uate +ĠGl en +ard i +ĠÈ ĺ +Ġsold er +Ġprofess ions +Ġorth og +om n +int rodu +ĠDen ise +ìŀIJë ¥¼ +Ġcorrespond ence +AM A +Ġinf lict +Ġf and +ĠG ü +ĠÑĩ еÑĤ +Ġtr aced +Ġpat ents +Ġamb ush +Ġlot ta +ff er +ĠW agner +Ġimp erson +Ġextr êmement +ÙĤ ت +cond uct +A tt +ĠM ueller +ĠAl icia +Ġcy c +Ġha cker +Ġt ys +Ġha il +Ġз аÑıв +Ġpas so +Ġì¶ Ķê°Ģ +ĠÎ Ī +Ġpack aged +ĠC ynthia +he et +ä¸Ń åĽ½ +ĠNiss an +ĠQuest o +é ¨ +d id +Ġμ ια +ĠEll is +ĠAnal ysis +ce mos +Ġas eg +ĠMy ster +ĠCa o +Ġtu v +ĠIndust ry +주 ê³ł +ot al +Ġpeque ño +br as +Ġcompreh end +ĠSim pson +ÑģÑĤв ие +ocr acy +иÑĩеÑģ ки +ĠM ush +ĠLaur ie +Ġtriang ular +ĠPres ents +ĠK unden +ç´ ¹ +æŃ ¦ +ĠIs s +ĠDe ck +á»ĥ n +ĠDark ness +Ġinflamm atory +eremi ah +Ġwar med +vey ard +ĠMem ory +et ty +Ġtax payers +ภĵ +Ø ¡ +Ġpract ise +ëĭ ¬ë +Ġdr illed +m Ã¼ÅŁ +log o +ĠF ach +¤ë ¡ľ +Ġübrig ens +Ġkon nten +Ġnormal mente +Ġarg ues +iling ual +°ë ¥¼ +eg al +Ġtrava ill +ov y +а ÑĤо +Ġr uth +ĠL ights +Ġconsist ed +×ijר ×Ļ×Ŀ +Ġstere otype +Ġpay er +ĠRe e +ĠAir bnb +Ġdr owned +ĠZ oe +Ġcan opy +Ġbar r +Ġн оÑĩ +Ġpag an +Ġj ars +Ġr ê +er ver +æĪ ¿ +ie ben +Ġes pect +ĠF i +Ġunw illing +Ġtechn ician +ặ t +m ember +ĠCan al +س Ùħ +Ġlie ber +Ġin ference +Ġhon oring +åij µ +ĠCamp aign +Ġline age +ĠSt ress +Ġvict ories +Ġde ja +× £ +ê tes +bl ick +Ġмен ее +oth s +ĠCou ple +J ason +ĠNic olas +ек Ñģ +l ib +Ġher ramient +Ġ×IJ ×ķ×ŀר +Ġвид им +mill imeter +Ġsil houette +Ġdrive way +Ġcher ish +ãħł ãħł +Ġrans om +Ġinter disciplinary +ĠPort al +Ġtra g +th ood +Ġted ious +Ġgloss y +Ġpré par +ĠC ay +ĠT ook +ĠBott om +Ġz ig +å « +åį ± +re presented +à¹Ģล ย +Ġdesar rollo +ìĦ ľë +Ġvis cos +Ġmill igram +ĠG und +Ġfer ment +d rum +Ġdraw ers +La ugh +Ġpel os +Ġpave ment +Ġmem oir +av ait +Ġ20 50 +¤ë ¥¼ +Ġraz ón +Ġflour ish +Ġst ern +ä¸ Ī +ĠCh ung +Ġser pent +ĠGentle men +羣çļĦ å¾Ī +k ook +Ġl ut +import e +p arent +Ġw sz +Ġsc ree +ĠMitar beiter +å· ´ +m ut +Ġìĸĺ 기를 +Ġsem ble +ĠO W +Ġinvestig ator +ĠCher yl +ĠG erald +Ġpr ere +Ġcomp ares +ny t +Ġdiferen ça +? - +Ġqu á +ר ×Ļ +S en +Ġhe ps +Ġgrat uit +Ġcons ort +ĠST OP +ĠProtest ant +Ġelectro de +â Ĺ +Ġsecure ly +иÑĩеÑģ кой +Ġt ää +Ġreg isters +ĠHeaven ly +og ly +iss ä +ĠPhys ics +ĠMer kel +Ġré v +éĻ ¢ +Ġer ased +ĠSac ramento +Ġcoff in +Ġex acer +Ġl anz +Ġpo ets +ul if +Ġì¹ ĺë +ĠN erd +ĠN CT +ĠH our +neh mer +ŀ ĺëıĦ +ĠPrin ci +S w +m ies +ar med +ĠBeat les +Ġpropag ation +Ġexch anged +Ġcum ulative +Ġì§ij ìĹIJ +Ġdefe ating +æĬ ± +b els +Ġw es +ĠOdys sey +ä½ł æĥ³ +av ior +ĠìľĦ ìĹIJ +Ġbr it +Ġhij o +D AY +ĠاÙĦت ÙĬ +ĠС еÑĢг +Ñĥ ка +eds iÄĻ +Ġimp os +Ġell as +Ġfire arms +ĠN R +Ġ×ij× IJ +ĠÐŁ ока +aw i +ĠìĦ± ê³µ +Ġpup ils +ĠT ack +Ġfr ase +ĠSh ip +Ġst ad +ä¸ ľ +ĠGreat er +un un +imm ung +gr own +ĠN XT +ĠAmeric as +f ox +Ġmant en +éłIJ åĤĻ +ĠÑģ ок +Ġr ikt +lect ric +de ep +Ġзна еÑĪÑĮ +Ġben ut +ĠInf rast +ĠEm ir +ĠоÑĤп ÑĢав +ĠKim chi +ĠFinn ish +´ìł ģ +ina ire +Ġo ike +æ¸ħ æ¥ļ +Ġhost age +ĠBut ton +ÙĤ ÙĬ +ek ing +ĠKaz akh +Ġcomfort ing +Ġso g +Ġgreet ed +g uitar +p ayer +Ġrel ational +Ġconstru ir +çī¹ åĪ¥ +op ian +ĠVol ume +iet h +ÑģÑĤв ом +ur rection +li ÅĽmy +Ġhem isphere +ĠBe an +IG N +Ġköt ü +ĠFall out +Ġbr ace +ç¹¼ çºĮ +ÏĢ ά +ĠH AS +Ġg é +Ġcharacter ize +ặ c +ĠMil ky +Ġtum ors +Ġn uit +ĠG az +ĠìŀĪ ëĭ¤ëĬĶ +Ġг аÑĢ +ess ment +ĠA be +Ġë½ ij +ĠEins atz +J IN +j ä +C ry +ĠProm ised +ĠÑģеÑĢ д +ok us +Ġscal able +ĠпоÑģмоÑĤÑĢ еÑĤÑĮ +ück lich +Ġreal ism +Ġmay o +Ġjuven ile +Ġhead lights +Ġgör Ã¼ÅŁ +ĠRe form +Ġhal ves +cz ne +Ġbreak up +że j +Ġr ätt +D ay +ĠìĿ¼ë ³¸ +Ġmu erte +Ġtun es +ĠSm ile +rec ord +Ġrecher che +atisf ied +Ġpo zi +Ġcelebr ations +ise xual +ĠRO B +third s +ĠF ortune +ĠÑĤ ой +Ġbrand ed +lo o +Ġd ud +Ġrandom ized +Ġcomb in +ä¸Ģ äºĽ +ier an +c zenia +į ãĥ« +Ġcur ator +Ġar tery +ĠÑĥ ÑĪ +ĠÑĩ иÑĤ +Ġsubsid ies +Ġbloss om +ĠTw ilight +Ġhy vä +ĠPom pe +ĠC isco +ĠÐŁÑĢ о +Ġbir i +Ġg ern +Ġre built +Ġw cze +Ġbenefic i +Ġdrum mer +Ġsol ids +Ġdi yorsun +ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ ãģĦãģ¾ãģĹãģŁ +l ated +Ġmud dy +Ġh olog +Ġcl aps +ĠR ings +ĠO key +ĠBra ve +Ġvalu ation +Ġmig rant +Ġinter mitt +Ġeig ene +ili ary +ãĥ¼ ãĥĪ +mark t +k r +ĠR ib +á»Ļ i +Ġaccus ations +Ġa rab +w ash +ĠBard zo +Ġu gh +est ers +oph ren +Ġaliment os +ĠU z +Ö Ĥ +Ġ6 50 +ĠпÑĢи еÑħ +F I +Ġsamp ai +Ġparl é +hes ion +Ġs ır +Ġapparat us +Ġcor related +ĠPrincip al +Ġcor r +ĠOffic ial +иÑĩеÑģ кие +Ġtermin als +Sh ould +Ġvac un +Ġst ellt +Ġmo oi +etz ung +Ġк ÑĢа +Ġda i +Ġп ож +Te am +ĠP PE +ĠÐŀ Ñģ +ĠLe ah +ĠI vy +y st +Ġuh hh +Ġnight time +Ġtrend y +Ġsec urities +Ġcontin ents +Ġfirst hand +ĠVer on +ĠëĤ ® +Ġbrows ing +ĠC ada +t ro +Ġtr amp +re ib +Ġerst mal +irl er +Ġps ic +Ġget ir +ĠN P +Ġdzie ci +об ÑĢаз +Ġmagic ian +Ġscrut iny +Ġsl ab +ĠO T +ist y +ir ies +ore st +Ġtask ed +Ġmor ally +ìķ¼ ì§Ģ +ust ered +Ġfool s +Ġir respons +Ġein f +Ġvi á»ĩc +Ġsc or +Ġpill ows +ĠG egen +Ġtut te +Ġquarter ly +Ġdid nt +ĠG ym +ĠE ther +ĠØ « +лиÑĪ ком +Ġsign aling +ĠN ode +ĠDonc s +Ġy ah +ĠKan al +Ġf ading +et in +Ġinfluen cers +Ġmed als +Ġengine ered +Ġfer mented +ê²ł ì§Ģë§Į +ĠBeet hoven +×ŀ× © +inent al +ĠìķĮë ł¤ +üt fen +al nya +Ġo vere +Ġden kt +ак ÑĤеÑĢ +Ġâ ĺ +Ġneces it +Ġgener ators +gr ass +Ġпод Ñĥм +lie ÃŁen +B ar +ľë ıĻ +ĠдеÑĤ ей +Ġsuck ing +Ġsten cil +Ġprim o +ĠBreat h +st rom +Ġimmens ely +Ġapp reh +ìłķ ìĿ´ +P op +Ġj ong +ĠGi ul +ĠAD HD +Ġhö ren +Ġe lo +iv ent +Ġr us +Ġoutrage ous +Ġmaster ed +Ġì» ¤ +ÙĪ Ùģ +ip es +ĠRud y +Jac ob +Ġbull ish +Ġt apped +Ġfa ud +iz ophren +ĠÑģо Ñħ +ĠDar ling +Ġ196 3 +ĠPre vention +² Ķ +Ġabdom inal +st ones +Ġav aient +á»ķ i +m ake +Ġs are +ĠInst ant +к ам +Ġkeep er +Ġblank ets +ãģ§ ãģĹãĤĩãģĨ +Ġswe ats +ĠMinne apolis +åħ¨ éĥ¨ +Ġgen ommen +Ġfast en +ĠBrus sels +åij ¼ +Ġcaf eter +Ġabsor bing +Ġha go +ĠEl mo +Ġgust o +ĠY ap +M úsica +Ġt ert +Ġband a +Ġm ily +Ġthere after +ĠStock holm +ĠC arson +Ġcalib ration +ava ÅŁ +ans a +ik ke +Ġfore see +Ġqual che +Ġdest e +æ ¤ +ün üz +Ġfor ge +D is +est en +Ġδ ια +Ġenca ps +ĠGes pr +Ġcher cher +ick ets +ÑĤоÑĢ Ñĭ +C r +ĠТак же +Ġrabb its +ĠD ot +he iten +Ġcaus al +ĠF oster +ajÄħ c +Ġbere it +Ġayud ar +é« Ļ +ãģ ³ +s ong +com b +Ġfr inge +Ġcyber security +Ġëľ ¨ +Ġk ier +Ġbesch äft +Ġкон ÑĨе +Ġfacil it +ĠNam en +Ġbil ateral +t x +ĠW issenschaft +Ġnu ances +Ġr ipping +Ġf y +ĠSicher heit +ĠGh ana +ol on +Ġto pped +ĠMoroc co +Ġrad ial +ĠL EE +ĠAndre as +ed d +ĠìĹ ´ë +ĠAirl ines +ãģĵ ãĤį +Ġval ores +ê· ľ +H y +Ġзад аÑĩ +ĠKend all +ĠÑħ аÑĢ +ĠV amp +Ġpy thon +Ġmanage able +ĠG ente +o ise +ici ary +Ġimp oss +ĠBun ny +iest a +And rew +Ġser t +ĠC ec +zz arella +Ġautom obile +ĠT iere +all ows +åĨ Ĩ +Ġë° Ģ +ĠSc orp +ĠJ elly +ag ara +ĠSt retch +Ġrede f +Ġexacer b +ĠS HA +é f +ors a +Ġflaw ed +ĠNo el +?! ? +Ġpro cent +Ġmen stru +ĠпÑĢо Ñĩ +Ġinf ants +ðŁİ µ +pa use +ĠR acing +Ġ194 8 +Ġsuper intendent +id ores +id y +bra him +Ġunl ucky +Ġper k +an ci +Ġë§Įë Ĥĺ +ĠÐľÐ¾Ñģ кв +Ġfin ans +Ġdiferen cia +łĪ ìĿ´ +éħ į +OR Y +ĠT ac +ÛĮ ا +Ġdes em +Ġваж но +ĠJ U +ĠìŀĪ ìŀĸìķĦìļĶ +ĠÎ Ŀ +Ġinform ations +ĠH EL +h st +Ġпог овоÑĢ +Ġvo iture +Ġre us +änd ig +ĠпоÑħ ож +j ing +Ġd ru +alt ra +Ġprodu its +Ġk ite +Ġeye ball +ĠB elt +ĠRestaur ant +Ġg amb +Ġpor ridge +it ters +Ġconver ts +Ġyard ım +Ġmáxim o +w irtschaft +Ġíķĺë Ĥĺë +Ġì¤ Ģ +Ġice berg +Ġvor bei +Ġ25 6 +ocr atic +Ġreck less +on ner +Ġm ús +Ġlog ically +ĠPr ison +ĠNet z +Ġvac ant +Ġn immt +ĠH ARR +Ġз ов +ĠDe e +ring e +ni est +ĠR ules +ìĬ¤ë Ł½ +cuss ions +Ġfl oral +Ġconstra ined +Ġdifferent iation +ĠQue bec +ĠÛģ ÛĮÚº +Ġpúblic a +it el +Ġaccommod ations +ĠGr ü +í ľ +Ġpick les +иÑĩеÑģ киÑħ +Ġcomm issions +ĠBa ek +Ġçoc uÄŁ +ĠMed ium +Ġperiod ically +Ġwonder fully +Ġstaff ing +ìĽ IJë +ri re +f le +ĠMc L +ĠÑĤ еп +ĠпеÑĢ ек +н олог +Ġíģ¬ ê²Į +çĻ¼ çı¾ +Ġprosper ous +ĠSpirit ual +ĠCh ick +DI A +ĠÐŁÑĢ ивеÑĤ +Ġper ÃŃ +ÑĮ ÑİÑĤ +Ġconsult ants +ĠEar l +ä»Ĭ å¹´ +Ġru ining +оÑĢ е +Ġpens er +Ġtak iej +Ġstrength ened +ĠLiqu id +он еÑĨ +ав аÑĤÑĮ +Ġcam er +Ġdisagre ement +Ġbat hing +ĠY osh +a al +pre chen +RIS ADAS +Ġsuper star +æģ Ń +лÑı ÑĤÑĮ +Ġn ib +ĠTh erm +ĠDAN IEL +Ġp aw +Ġliqu ids +Ġcapac it +ark en +Ġvag ina +Ġm ashed +Ġemer ges +ys cy +Ġun related +ĠGu ild +Ġin verted +it ives +T ra +Ġbe gr +Ġal te +ì§ ķ +ãĤģ ãģ¦ +ĠÑĢазÑĢ абоÑĤ +f inder +Ġдал ее +Ġблаг одаÑĢ +walk er +Ġcr ater +ass adors +ren ces +ins ki +ĠK IM +ĠEll iot +20 17 +ĠS r +ink a +ano v +Ġìŀĺë ª» +Ġpropriet ary +display style +ĠÑģ им +Ġиз б +ĠPan el +Ġinstinct s +ĠCommun ications +éº » +mid t +Ġë§Įëĵ¤ ìĸ´ +ĠÑģл ова +ĠGil bert +缮 åīį +Т ак +voor beeld +е ÑİÑģÑĮ +ary n +que z +Ġd art +Ñĸ ÑĪ +ĠH ut +S al +Ġs outheast +Ġpestic ides +Ġhelicop ters +Ġend ured +i ada +Ġbre wing +ìĹ ¬ë +ĠÑģв обод +ĠS aints +ĠFr ançais +ĠEconom ics +Ġdis loc +oph obia +C amer +Ġnegoti ated +ĠÑģÑĤ али +ìĬ¤í ģ +og ie +Ġtsun ami +Ġpeel ed +Ġmotiv ations +è¨ Ń +ost at +fl an +ĠD AC +Ġk av +' RE +ĠPe arson +b be +c zenie +Ġaten ção +íĨµ ëł¹ +ãģ£ ãģ¡ +ĠÑĥд аÑĢ +Ġintrodu ctory +ĠI ci +ë ĮĢë +ak at +Ġt rench +Ġproceed ed +ĠCo in +Ġdere cho +ĠRed e +æ¯ Ľ +ан нÑĭй +Ġincarcer ated +ĠRich mond +R ock +ĠP av +ĠKar ma +ug es +Ġconte ú +ë ¹Ħ +Ġê·¸ë §Į +ĠG one +Ġwsp óÅĤ +ĠRah men +un ken +Ġì¤ijìļĶ íķľ +Ġi b +Ġatt aching +H ay +Ġsu ka +ìį ¹ +Ġpivot al +ĠRes pect +ÃŃ da +I B +ĠVer antwort +w iet +Ġforens ic +ÑĢи ÑģÑĤ +ĠпÑĢинÑĨип е +Ġmark ings +Ġk ettle +ĠOper a +ĠDo ctors +Ġshred ded +Ġrec uer +Ġvig il +ĠF ail +Ġentre v +Ġд ÑĥÑĪ +Ġout breaks +èµ° åIJ§ +ĠÏĢ ο +Ġro gue +ang led +Ġyear ly +ĠCre ed +Ġw am +Ġlot us +ê³ ¼ë +ãĢģ ãĢģ +ĠSp it +ĠIt u +Ġstra ins +Ġstamp ed +Ġpl aint +Ġpot ion +Ġconsolid ation +è© ķ +оÑĩ кÑĥ +Ġvlog ging +Ġsl ate +ĠAu ft +ĠInc or +ừ ng +§ IJ +en h +Ġhe iÃŁ +Ġdom est +ĠSt rom +åį ³ +ak is +Ġfra gen +Ġfin er +ĠS ug +Ġup hill +Ġé én +âĢ¦ ) +ĠÑģ оп +ĠCore y +Ġsie bie +Ġm use +Ġclo ves +Ġp ous +ĠFin anz +ĠR oute +am at +Ġmut ually +ĠвнÑĥÑĤ ÑĢи +ĠSel ena +ë Ķ +ĠGa ussian +ë ¶ĢíĦ° +Ġ×ij× Ľ +Ġej erc +å¾ ® +ke a +ĠG erry +ĠS ic +大 çļĦ +Ġ196 6 +ies e +Ġfoss ils +Ġest ad +ĠK ane +ci Äĩ +Ġìľł íĬľë +Ġп ам +ĠCru ise +int érieur +Ġbe kannt +ĠP ode +Ġdem ander +R em +Ġinv ade +Ġdecor ating +rop ic +Ġcow boy +ĠPh oto +opol it +Ġì»¬ë Ł¬ë +Ġre ap +Ġhand writing +à¹Ħ ร +Ġë ļ +Ġب عد +ĠM t +Ù Ģ +Ġspaces hip +Ġnational ism +Ġcouncil s +ĠGriff in +ĠAh med +Ġcl ich +ĠO L +w l +ĠPil ot +å® ® +Ġacron ym +Ġg els +Ġelectro ly +è ĵ +Ġм ной +Ġepis od +ĠDies es +ĠAT P +Ġed iyorum +Ġexpress es +Ġexhib its +C omm +Ġк ÑĢÑĥп +Ġmat ar +Ġ20 25 +ĠArt em +vas ive +r Ãł +Ġbe ÅŁ +é» ĥ +Ġliz ard +Ġfill e +Ġì§ Ī문 +Ġмо Ñī +Ġt ür +Ġcul prit +Ġwo ven +ĠAN Y +n im +Ġt ay +Ġprom in +Ġacom pa +Ġid é +Ġbo iler +ĠThe men +Ġaven ue +ĠM ud +Ġнов Ñĭе +Ġwitness ing +Ġl ance +ĠCH AN +ĠBe ver +ت Ùħ +Ġchem otherapy +K ing +ĠbÄĻd ÄĻ +Ġat ual +Ġt ive +Ġtalk in +Ġqued ar +ie ÃŁ +ed el +Ġìĸ´ì łľ +Ġjog ar +Ġö r +Ġundert aking +ĠStre ngth +Ġmil hões +ĠW ine +ĠM olt +è® ² +ãģij ãĤĮ +Ġunderm ine +ĠArch ives +v ana +mer cial +M C +Ġcast e +п ÑĢ +Ġlegisl ators +ul ators +ên io +Ġëį °ë +ĠÑħоÑĤ иÑĤе +Ġн ек +Ġs urn +Ġcons ci +ĠP OW +Ġcul inary +ĠK AT +ĠFol ks +Ñĭв аем +Ġв ок +ãģij ãĤĭ +s ervice +pt s +Ġпоб ед +æĺ¯ åķĬ +Ġt ents +Ġn ord +ST E +Ġrepublic an +Ġwy k +Ġmin ions +èĻ ķ +Ġmem ang +j est +Ġcompar ative +Ġty le +car bon +bed ingt +ks en +Ġneg ativity +Ġsjäl v +Ġd ú +æīĢ æľī +Ġrec alled +c ra +ĠT ada +ĠÑĢÑĥ ки +ĠопÑĢед ел +Ġproc rast +Ġjog os +ĠO o +ĠHe arts +Ġé ch +Ġksi Äħż +Ġco arse +ĠT ube +ĠG reens +Ġé n +Ġdumb bell +ĠÑĤ и +Ġquer er +ا ØŃ +Ïĥ ει +ĠпÑĢав илÑĮно +Ġп ап +Ġcomp ra +Ġt ér +ĠAnt es +Ġoptim um +Ġbisc uit +κ ι +acz ego +Ġìĭľê°Ħ ìĿ´ +ĠMar ines +ver o +Ġvacc inations +Ġpet ty +rit ers +Ġа л +count ry +Ġcoun ters +Ġattend ant +ĠH ui +ãģ¨ãģĦãģĨãģĵãģ¨ ãģ§ +ck a +ÑģÑĤвен нÑĭй +gu y +Ġtrick ed +ĠR ED +Ġthr illing +ÏĢο ι +Ġpig gy +Ġan unci +OR TER +ĠVal ue +Ġr ond +ĠA DA +Ġpos er +h ores +ĠR oland +ĵ ¯ +Ġno ir +Ġש ×IJ× +ë° ľ +iem and +ĠпоÑĤ еÑĢ +ê³ ³ +Ġê± ± +Ġformat ting +ĠL ed +è§Ģ çľ¾ +Ġkill ers +ĠÄij ấy +Ġha ar +ag ain +! > [ +min ster +Ġв ли +Ġident ifier +ĠLamb da +Ġtr os +Ġflaw less +Ġdetriment al +Ġbun ları +W ar +Ġreg ião +羣çļĦ æĺ¯ +ĠB ike +cess ors +Ġc ùng +ĠR N +Ġê½ ĥ +Ġküç ük +ĠBegin ning +íĺ ¸ë +Ġge we +Ġden ote +ĠAlber to +Ġprob iot +Ġo de +Ġmol ar +Ġburst ing +ass umed +Ġfoot prints +ved a +Ġstero ids +Ġfl aming +ĠE ller +Ġerk ennen +ät zen +Ġlife cycle +ĠD OU +ĠK arena +ĠGuer ra +è¿ĺ æĺ¯ +Ġsin ister +Ġpod éis +Ġpar ab +Ġok o +Ġmat éri +Ġcar ic +son aro +Ġpratic amente +ÑĥÑģ а +Ġcomun que +Ġvig ilant +Ġreg imes +ĠShoot ing +Ġra ids +ĠN ora +ĠW ieder +m ens +ĠÑģ од +Ġê²½ìļ° ìĹIJëĬĶ +Ġв Ñħод +Ġaut obi +ĠS chn +ĠRob bie +ĠF itness +Ġкон ÑĦ +Ġpeng uin +моÑĤÑĢ Ñı +Ġми ним +play s +Ġdeleg ates +M er +Ġsist em +ĠMicha els +m ale +ا ع +Ġcá ch +ĠH ä +Ġ×Ļ ×ķ×ĵ×¢ +Ġsuper power +Ġstr on +Ġro ver +Ġdé pend +éĻ ³ +Ġret iring +Ġvamp ires +Ġmer de +ĠCh anging +Ġt ame +Ġspokes person +Ġc ay +Ġfl irting +ĠGr ö +Ġw är +Ġwy b +Ġcoe ur +ạ nh +ĠìĻĢ ìĦľ +Ġconna is +ĠHundred s +ĠBe a +Ġα ÏĢ +pr uch +Ġsocied ade +ĠWh ilst +ĠK ait +esp ace +Ġch ia +ĠEr m +Ġë°Ķ ê¿ +Ġf ences +ĠM ortal +ê² ģ +Ġг ÑĢаÑĦ +ĠHom eland +ĠJ UN +is st +Ġpar lar +Ġsport y +é o +Ġdeep en +ĠBeh avior +éĢ ı +åĵĪåĵĪ åĵĪ +Ġer rand +Ġrot ary +ĠWell ington +W ind +Ġmes ela +ả ng +iend e +Ġex cell +ĠGen ius +ĠEdu ardo +æľī 人 +ĠÅŁ unu +ĠÄ° stanbul +Ġprod uto +Ġ ãħİãħİ +O FF +Ġwoll t +çĪ Ĩ +Ġëī´ì Ĭ¤ +Ġl ass +Ġher tz +Ġar omatic +Ġзв он +Ġaut oc +ĠL ust +Ġ11 2 +ĠÎ Ĺ +Ġreview ers +Ġrecept ive +å°į äºĨ +â nd +og lo +ĠìķĦëĭ Ļ +Ġn go +Ñĸ ÑĤи +Ã¥ t +con o +Ġtek rar +Ġ주 ê³ł +Ġgel miÅŁ +Ġbed time +ĠAr gh +AD A +ĠгоÑĢод а +ĠÄ ĩ +Ġall iances +g iggling +Ġyer de +Ġsp ies +Ġg utes +ç i +Ġallt id +ĠL ah +ŀ IJë +Ġdo kÅĤad +ÙĪ ÙĬ +Ġtoxic ity +Ġcancell ation +Ġ195 8 +d ro +Ġìŀij ìĿĢ +ĠMotor ola +Ġmult in +Ġenthusi asts +ĠM ighty +ĠCoc onut +: ãĢĮ +ĠPict ures +Ġsang re +Ġbl inking +ol esome +ĠìĬ¤íĥĢ ìĿ¼ +F P +Ġboom ing +ĠдеÑģÑı ÑĤ +Ġr atchet +Ġtim elines +len ess +Ġc ages +ĠGood night +omet imes +Ġc unning +ĠR isk +ul ed +d ade +Ġpr ata +Ġgust arÃŃa +am us +ĠJin ping +Ġest rut +Ġdescob rir +ĠM Äģ +ĠAll an +Ġ åĪĨ +Ġ×ľ× § +Ġpres erv +ĠStraw berry +Ä ı +L u +Ġk ro +ĠRep orts +ìħĶ ìķ¼ +Ġval t +Ġpouv ait +Ġapp ar +ĠB one +Ġprefer ably +ĠRep ública +å°± åĪ° +Ġher zlich +Ġchim ney +Ġç ev +Ġvis as +Ġver r +Ġcultiv ation +ĠArmen ia +Ġвд ÑĢÑĥг +Ġcock ro +retch ed +art z +ĠлÑİд Ñıм +ĠpolÃŃt icas +ĠP anz +ĠA KA +ĠëĪ Į룬 +Ġer ro +Ġcam per +Ġ10 2 +ठ¸ +d one +Ġho ard +ĠÐŁÐ¾ÑĤ ом +je ong +Ġdest a +p ak +Ġin im +Ġgrow ers +ĠMess age +Ġele ctor +eng age +ĠFor bes +ĠCincinn ati +Ġdiffé rence +d f +Ġsp ar +Ġawait s +ĠUSS R +ĠR ising +ĠHo ÅŁ +Ġfoot ing +Ġcond iciones +ÑĤоÑĢ ов +Ġclin ician +ĠDisk uss +å£ ĵ +ר ×Ĵ +× ¥ +ite it +g ren +Ġchar isma +Ġle uke +Ġirrit ating +Ġcir ca +ĠRhod es +Ġp ior +Ġhandic ap +roy able +Ġv ull +O G +Ġin ÃŃcio +ier i +Ġspl ashing +Ġdem ise +Ġassist ir +Ñĩ ÑĤо +Ġcover t +ĠG ud +ภī +kl är +ĠìŀIJ 꾸 +Ġver ändert +ĠR EM +ĠCon ven +at ge +Ġpierws ze +Ġcler gy +ling ton +l iv +V PN +ĠÑģ ожал +ĠH ate +ãģ¨ ãģĵãĤį +ÏĨ ο +ĠResp ons +оз д +Ġet mek +Ġchem in +Ùħ Ø© +Ġê°Ģ 족 +T re +Ġum as +ĠBur ton +Ġpatri arch +ĠSmithson ian +¥ ĺ +M oon +A ir +Ġmed ios +Ġer aser +Ġwoll ten +Ġpare il +ĠBill ie +æĬ ½ +еÑĢÑĤ в +Ġparl ament +Ġag ony +ĠQU E +sequ ently +An other +ĠWh ew +ĠAnn ual +Ġse ben +ìĥģ ìĿĦ +val ues +ŀľë §Į +Ġsin on +ere al +ĠEn light +ĠChem istry +ĠCatal unya +Ġdoct r +ant on +Ġst uk +ĠPl ate +ĠKardash ian +Ġfil os +ĠW et +Ġпоп ÑĭÑĤ +Ġunknown s +ĠSch on +ĠBald win +Ġtelescop es +ĠG ucci +ox ide +ĠConserv ative +ìĦ± ìĿĦ +Ġhina us +P ower +Ġê±´ ê°ķ +Ġprev ail +orm an +m achine +Ġ194 6 +Ġun bel +Ġsch aut +Ġp iel +e enth +Ġobject ively +Ġch akra +aud io +Ġch icos +ĠV ault +å° Ī +Ġmedic inal +ĠT ail +Wh ile +Ġas phalt +Ġfro ze +ĠE K +unch ing +n osis +20 15 +ĠG ri +Ġodd ly +ĠM är +ĠA eg +c olo +P ar +Ġëĵ¤ ìĸ´ë +Ġv inden +ĠO VER +Ġ iced +Ġsc orp +Ġha c +qual ified +ĠÑĥвид еÑĤÑĮ +erm o +H EN +Ġso i +Ġmulti ples +Ġlay outs +Ġblind ness +ĠB owser +Ġпод ÑĤ +ĠÃ İ +vention al +Ġm ata +mad ı +Ġge ez +Ġcad ence +Ġważ ne +ĠChrist ie +ven ge +C all +Ġturn around +Ġblo b +ĠЯ к +ĠVoice over +Ġper il +ĠJa ime +ĠH OY +l ane +Ġse bel +ĠDu o +ĠHistor ical +Ġd ni +Ġg ema +y k +Ġsab em +ắ ng +Ġv ars +ĠRon nie +ĠRon aldo +ĠPer què +ns inn +h air +Ġrelent less +Ġl yn +Ġtravel er +æĢİ麼 äºĨ +n ine +Ġant im +Ġì¼ Ģ +Ġsnow ball +ĠÑħаÑĢ акÑĤеÑĢ +Ġintern s +Ġconstitu ency +ĠÐĿ ам +׾ ׾ +V EL +Ġvikt igt +Ġap oyo +ÙĦ ب +Ġj ard +Ġheight ened +ÑĢо ÑģÑĤ +ĠSM ITH +Ġдел а +Ġrepair ing +Ġr igt +ĠShe ikh +ĠBrit ney +Ġevery time +Ġadvent urous +oc key +er nt +Ġat aque +ĠAltern atively +e ffect +Ġpalav ras +ĠElli ott +Ġréuss i +Ġhypert ension +ĠMan ual +Ġproph etic +Ġhand c +ÑĮ е +Ġref rain +ĠSqu id +ìŀ ¡ +Ġком ан +äll en +Ġlleg ó +Ġbas h +ion y +ĠÑģк лад +Ġк аб +Ġcare less +ĠP ool +Ġtr ás +Ġfil s +ĠSch r +Ġsp rawd +ĠMon aten +Ġunfor gettable +ĠCott on +Ġinconven ient +ĠR X +or is +Ġhum bled +ת ×Ĺ +ĠØ¢ Ù¾ +Ġincre ÃŃ +ĠKomment are +èĪ Ĵ +r ación +Ġv antage +ĠSe al +ĠìĿ´ 거를 +Ġjou e +ãģĿãģĨ ãģ§ãģĻãģŃ +Ġìĺ¤ë ŀĺ +ĠиÑģп ÑĭÑĤ +ob en +Ġgr ate +Ġcontro le +ĠPer cy +ÅĤ ada +Ġsimult aneous +Ġprot oty +ĠgroÃŁ er +Ġbew usst +iniz i +Ġpass ieren +ĠHapp iness +åī ĩ +sh i +ge ht +Ġstation ed +ĠErgeb nis +Ġdirect amente +Ġsurv ives +Ġperson es +BER G +Ġvom iting +Ġconhe cer +Ġad jour +ĠCiv ic +pe i +bur st +Ġëĭ¤ ëĭĪ +é ı +Ġsl ed +Ġplataform a +ĠS ect +ĠDe fin +çĻ» éĮ² +én om +chn et +Ġprofit ability +Ġerre icht +á»ı i +c ation +Ġì§Ģ ê¸ +Ġperd re +Ġfel ony +Ġ195 7 +æĪij å¾Ī +Ġunsuccess ful +Ġnag yon +Ġelastic ity +Ġfac ade +Ġearth ly +ĠамеÑĢик ан +Ġcon n +c la +D u +Ġpolit iques +Ġhal o +iant es +Ġмо ей +ãĥ³ ãĥī +ton es +el ier +è® ļ +ht aking +Ġwicht ige +Ġan no +ĠL ok +ill ions +Ġv iver +Ġsol chen +Ġsu f +ĠSal z +ĠN vidia +z uge +ĠSp ike +V ideo +Ġtw or +ĠA la +èij ī +Ġh anya +ĠAd m +ìĿ µ +ĠPatient en +ĠOn ion +ĠKo be +ĠSc ene +ĠR ash +æ¨ Ļ +ÑĢа ÑģÑĤ +ist ani +Gen eral +le ye +imb ap +Ġconce aled +ĠFr idays +ĠW ool +Ġнов ÑĭÑħ +Ø´ ر +Ġê²° ê³¼ +Ġjed och +´ìĭ ľ +ĵ¤ ëıĦ +Ġìŀ¥ ëĤľ +uk t +L ou +Ġ먹 ìĸ´ +ĠEx pect +Ġдом ой +Ġirrespons ible +Ġac erca +ĠZ ust +ר ×ĺ +U I +Ġyout ubers +ĠPos itive +Ġsoci oe +Ġsn atch +èĥ Į +Ġrefresh ed +Ġnom inations +ĠP att +Ġobsol ete +Ġdem iÅŁ +åı ¤ +orm uÅŁ +ĠìĨĶì§ģ íŀĪ +Ġf la +Ġcra ziest +ĠZ ie +ĠT ú +z ep +ic em +Ġë©ĭ ìŀĪ +Ġcyn ical +ãģĿ ãĤĵãģª +Ġt resp +Ġcra z +Õ¥ Õ +Ġne lle +Ġm ph +ĠN ered +ĠK ob +ĠE ck +¨¸ ëĭĪ +J an +ĠТ огда +Ġde ci +ĠV og +Ġbubb ling +éĢ Ģ +ú a +Ġproduct os +iber al +Ġrepl icated +ĠImp rove +ill ary +C ha +Ġré du +ĥIJ íķĺë©´ +Ġcon not +ĠK rit +ĠдÑĥÑħ ов +Ġtread mill +ĠP W +Ġзов ÑĥÑĤ +Ġcl ams +Ġdra fting +Ġ195 6 +un ta +Ġexpend itures +ĠHoo ver +W OO +ÑĪе е +Ġded uction +mon ary +Ġreci b +Ġpo vo +Ġëį Ķë +ĠP AL +ĠBl ow +Ġwy p +Ġdest ac +de al +Gra eme +Ġnécess aire +Ġdamn ed +Ġ19 38 +Ġìĭ¤ ìłľë¡ľ +Ġtro op +Ġinsight ful +ĠT J +ĠоÑģ в +Ġf idelity +ĠSk ip +ĠMay o +ë§ Ŀ +app e +Ġbl as +ĠW Y +ĠG N +ct ar +S u +Ġcu ent +he ws +Ġcorps es +A bs +Ġwaste water +Ġc iek +ĠOn u +Ġexplos ives +Ġar ma +ĠSTEP HAN +polit ik +ĠOs aka +ta ÅĤ +Ġyap ıyor +Ġiz quier +Ġbele za +ĠWy att +åIJ ¸ +Ġsu k +Ġspec jal +Ġdan ke +wh istle +ĠfÃŃs ica +ĠHar riet +ĠìķĦ íĮĮ +Ġwill kommen +ip ing +ĠÑģмоÑĤÑĢ иÑĤе +Ġмож еÑĪÑĮ +Ġinacc urate +Ġarrog ance +ĠRem o +γ ά +ass ed +Ġdeliver ies +Ġst inky +ĠпеÑĢ еж +j ay +Ġtrans itional +Ġr ere +ĠNGO s +ĠAT M +Ø® ت +i ology +Ġв лад +Ġsch me +ĠSh ine +ìķ ¡ +p ants +Ġser ge +Ġsen hor +Ġab duct +ĠBry ant +V ES +Ġawak ened +ĠL az +rop olis +ĠLa o +è¾Ľ èĭ¦ +Ġvill a +Ġsumm ers +Ġent hal +Ġ194 9 +V ia +Ġìĸ´ì ¨ +Ġtend on +Ġviol et +Ġintellect ually +Ġboun ced +ara us +Ġ19 19 +Ġvra ag +Ġsp el +ĠSch war +Sc ott +ĠInd o +Ġë§ Ŀ +Ġcanon ical +ĠI KE +Ġthat ÃŃs +Ġme llan +æ¯ Ĵ +ig mat +C ould +... ?) +Ġfo arte +ĠKum ar +rend o +Ġél é +à ´ +val uation +c ases +Ġintuit ively +h ong +ett ed +Ġsou ven +Ġmor b +Ġc ors +ĠN V +ĠHas an +æĥħ åĨµ +ie ved +Ġì§Ģê¸Ī ìĿĢ +Ġdum pling +Ġcontr ôle +Ġambigu ity +æ©Ł æľĥ +Ġco g +ĠScript ures +Ġc ai +Ġbe ver +大家 éĥ½ +Ġhu is +Ġa ime +Ġerkl ären +ĠL M +ĠF ey +éļ ¾ +à®± த +Ġsuper vised +Ġje we +s pl +ĠÑĨенÑĤ ÑĢ +Ġcoll isions +ÙĦ Ùģ +ĠHog warts +ĠDur ham +×ķ× £ +Ġphosph ate +Ġoverse e +Ġinspect ions +Ġbr inc +ĠZ ak +Ġpay off +Ġch aud +ĠHung er +ã os +v ir +Ġf iance +Ġb oug +l ived +c ry +åĽŀ ä¾Ĩ +Ġjoint ly +Ġgirl friends +ĠNe xus +¦¬ ê²łìĬµëĭĪëĭ¤ +ĠK wang +åĵĪ åĽī +å§ ij +ÅĤ ÄĻ +ĠN eden +ie ce +Ġins erting +æŁ ĵ +ĠM ummy +ĠGlo be +Ġle e +Ġg erman +Ġcre ams +ach o +Ġch Æ°a +ĠGal ile +Ġfür s +Ġest iver +c idos +Christ ian +Ġlors qu +Ġcut est +v ale +ĠкÑĢ еп +Ġw ary +Ġslic ing +Ġesper ando +ĠV ander +ĠDe ixa +Ġ195 4 +Ġmów iÄħ +Ñĸ ÑĶ +Ġtool ing +Ġrest or +Ġpos ición +Ġintent ar +ĠAp ache +OU L +ĠÙĪ ب +Ġmat ière +ãĥ¼ ãĤĵ +Ġl inen +Ġestrat ég +ĠMut ta +é¡ ¯ +è¡Į äºĨ +Ġpart ing +Ġminim izing +Ġapp rendre +æľ Ŀ +Ġан глий +ĠDo o +ĠFire fox +c ómo +Ġge opolit +Ġmak an +Ġmog elijk +ĠÏĢε Ïģι +Ġcá» © +Ġinstall er +Ġdib uj +ĠHe ath +lo op +ĠBro ken +HY UN +sh elf +Ġf izer +Ġenh ances +ä¾ĭ ãģĪãģ° +Ġдо ÑģÑĤи +ĠP UB +ĠKolleg in +Ġatt ained +Ä ¾ +Ġmist ress +ĠOft entimes +×ŀ ×Ļ×Ŀ +Ġbe we +ĠS ora +ra uen +ba um +Ġroll ers +Ġm ering +ĠP AC +Ġн Ñĸ +ĠRép ublique +ĠÑĤ ÑĢав +ĠV anguard +uc iones +Ġ무ë ĮĢ +Ġg our +¯ ¤ +ĠÏ ī +Ġsa una +Ġpe ine +ĠVal erie +ĠS ikh +fend imiz +ber o +ĠÑĩ и +Ġdo ÅĽwiad +ĠE uros +Ġcomment aires +Ġtwe aks +ĠF aster +ĠÑĢаÑģ к +Ġprogress ively +ĠE uch +bor o +ĠIng red +C ap +Ġun check +Ġìĺ¤ë ¥¸ +Ġw re +ĠF T +ör ung +Ġmemor ized +ĠD inner +ĠP hew +ou bl +Ġput a +Ġadm its +ез де +op od +Ġpand a +Ġhing es +ci pe +Ġtrans act +Ġpod ia +Ġp ics +Ġcriter ion +ĠOrchest ra +ĠBl og +Ġsolem n +ĠPix ar +Th ree +Ġв низ +ĠVol unte +ĠSav age +ĠPV C +ĠC af +Ġwy kon +Ġgrad ers +Ġcr ouch +Ġcl iche +Ġsoy beans +ĠM UR +ĠGonz alez +ĠM imi +ĠBol sonaro +Ġdi aphrag +Ġbil ang +ëIJĺ ëĬĶ +éĤ£ æĪijåĢij +Ġregul ating +M c +J udge +Ġн ож +Ġjak Äħ +ites se +ĠW ij +Ġl ata +gro aning +POS ING +Ġ×IJ×ķת ×ķ +Ġha ga +Ġground ing +Ġviol ently +Ġt ills +Ġeng ag +ĠHo llow +Ġпоп ÑĥлÑıÑĢ +Ġw prowad +Ġrepl aces +Ġfluores cent +urg ical +igg ly +ĠTrad itional +t te +ĠÙĦ Ùĩ +Ġphosph orus +Ġapr on +ĠWat ers +ĠK ultur +ав ай +Ġol ives +Ġ×Ķ×IJ× ľ +Ġteil weise +Ġsen cill +Ġprend s +Ġnarr ower +Ġj ätte +ĠInformation en +ìĥģ ìĿ´ +Ġstar ve +Ġfr ick +ĠBe weg +ठ² +Ġdolph in +ĠLAUGH TER +ĠINTER VIE +åĶ ī +Ġyan lÄ±ÅŁ +Ġtor pedo +Ġshort ages +ìĿ´ë ĵľ +ıld ı +Ġp aws +Ġo zone +Ġcultiv ated +ĠF ot +Ġnot or +н оз +Ġко ÑĪ +Ġtouch screen +ĠAll y +æľĢ è¿ij +Ġ맼ìŀĪ ìĸ´ìļĶ +ĠС еÑĢ +Ġв полне +Ġpap rika +ĠDust in +Ġefect o +Ġop ini +Ġmu ut +Ġhá»į c +Ġinter ject +ÄĻ t +Ġbut ts +ure z +ĠP ike +ĠH ok +ĠGu inea +ĠCath edral +Ġ14 00 +C ra ++ , +ë§ Ľ +³´ë ıĦë¡Ŀ +aby rin +Ġvide og +Ġо ÑĢÑĥж +Ġu ž +Ġbus cando +ĠAss istance +éĻ ½ +Ġmel hores +ì¡ ´ +Ġëģ ¼ +ĠR J +Ġت Ùħ +Ġo min +Ġmotor cycles +ĠS app +Ġsupply ing +ĠAl gun +Ġaer ospace +×¢ ׾ +oc cup +le ist +Ġê±° ëĬĶ +Ġcomplet a +b res +! ( +ĠÐŁÑĢ ед +Ġdisadvant aged +ĠAtt end +ĠJud ah +á»ĭ ch +yl ene +act ly +Ġset ups +Ġammon ia +ĠSchwe iz +ĠSh ame +Ġband e +ĠF uel +Ġtroubles ome +Ġnum ero +ĠM OM +ĠпÑĢед лаг +ment ioned +ĠболÑĮÑĪ ое +ĠVikt or +ĠSty les +Ġcruc ified +ructure d +en viron +Ġmor als +Ġmed itating +Ġax ial +is ance +ĠAb st +G reen +Ġê± ´ì +Ġquad rant +Ġper gi +Ġcamer aman +ĠSe qu +Ġpa used +ĠLa ughing +ê· Ģ +? .. +ĠÅ» e +Ġpermit ir +Ġdetect ors +ĠH UD +av al +ĠìĹ¬ê¸° ê¹Įì§Ģ +Ġh ubs +Ġbest immt +ĠбÑĥдеÑĤ е +INTER POSING +Ġten gan +Ġcra ve +ĠBundes regierung +ĠBlo ody +Ġus ability +ĠE as +ĠÄijá»Ļ ng +Ġ195 5 +Ġkrie gen +Ġhabit ual +Ġessential s +rim inal +Ġroomm ates +éĤ£ å°± +ĠпеÑĢе Ñħод +Ġng hi +Ġmen ing +ĠSym phony +ĠH ug +ag gi +Ġw ied +Ġmit ad +ãģ£ãģ¦ ãģĦãģĨ +te enth +ida Äĩ +S ave +Ġrob iÄĩ +Ġboun ces +° ĸìĹIJ +st ars +Ġprag matic +Ġcogn ition +Ġwra pper +Ġw arten +ad h +Ġpens a +ĠHert z +Ġn ÄĽ +ĠRe id +ĠPC s +ĠMo le +Ġ.. ... +Ġpre cio +ĠChampions hips +ê°Ģë Ŀ½ +Ġv ér +Ġcorrid ors +ĠElect ronic +S l +Ġа ле +Ġoverth row +Ġk abul +ĠR ES +ĠCyber punk +ог од +ĠÐĿ ав +Ġw an +Ġmanifest ations +Ġcual es +ĠW ise +ĠLös ung +Ġex fol +Ġearn s +ÑĥÑģÑĤ иÑĤÑĮ +Ġsa pp +ĠBra un +ĠBRAND ON +ì¹ Ļ +Ġs ano +ĠF EL +Ñĭв айÑĤеÑģÑĮ +ожд ениÑı +Ġse wn +F un +Ġrecipro cal +Ġexpans ive +ĠTra ffic +Ġktóre go +ĠÙĪ س +æĺ ¥ +Ġë¹ ¨ +pro ve +ig are +Ġlo h +Ø§Ø ¶ +H ope +Ġdevote es +ĠG om +Ġste als +ĠU ms +ĠTw ice +ãĤ ² +iy im +Ġrhythm ic +ĠV orte +Ġpref ix +om ination +Ġdat o +Ġcust ard +ĠVO ICE +å· ŀ +Ġmen y +ist ors +Ġíĺ ij +ĠìĤ´ì ķĦ +Ġíĥ Ħ +Ġk ort +Ġab a +ĠV era +ep y +Ġì¹´ë©Ķë Ŀ¼ +Ġsubmer ged +ĠC lock +Ġthumbna ils +Ġbo ast +ĠF are +!! ] +ĠÅĽ m +Ġkaik ki +ĠTechn ologies +ìĻ ¸ +ãĥ Ĵ +иÑĤ ай +å°ı æĻĤ +Ġа ÑĤ +Ġkn obs +Ġre icht +ượ ng +gl io +Ġ맼 ìĿ´ +ê°IJ ìĿĦ +Ġjot ka +ĠHand y +ĠHab en +n ous +Ġin land +Ġam azon +ho oting +S L +Ġle isten +~ " +Ġprov oke +ĠTw ist +Ġ×ij× Ĺ +Ġdepart ed +ê° ľë¥¼ +Ġk onse +ĠCar wyn +íķĺ ìĭł +ident al +ES CO +Ġt teokbokki +Ġdiz endo +ç· ´ +ınd aki +imas u +af ar +Ġland fill +Ġcorrect ing +Ġcle ars +ĠNum mer +H AM +Ġcart ridges +ĠDies el +p aced +Ġobl iv +Ġmoy ens +ĠSin ne +ĠPre is +il iz +ĠÑģм ож +Ġbroad en +ä»ĸ æĺ¯ +x es +Ġcarbohyd rate +íĺ ¹ +se ok +Ġecho es +Ġc ess +ë° Ķ +Ġб изнеÑģ +Ġllam ado +Ġess ent +ĠìĿ¼ë °ĺ +ĠA ires +ph en +Ġze bra +Ġsymbol ism +On ce +Ġr acks +ĠKaf ka +ĠÑģеÑĢÑĮ ез +Ġsin n +p icious +ka a +Ġmotherf ucker +Ġapprentices hip +Ġr pm +Ġtax ation +Ġfur ry +ĠSac red +ĠÑĢаз м +por a +eng es +ĠíĹ Īë +ĠÑģ ин +Ġsanit izer +Ġcr inge +ĠS ca +оÑĩ но +Ġof ere +Ġmel odies +ĠVel vet +ĠIhr er +ĠHy brid +ĠG iov +Ġirgend was +Ġdep ende +ĠUs ers +Ġh ump +dri ving +Ġs f +Ġruth less +à¹ĢภĦ +Ġlem ons +Ġfö ret +ĠO j +Ġм ама +Ġinter personal +Ġge v +Ġab norm +иÑģ л +Ġин д +Ġkont roll +Ġreg res +Ġled ge +Ġerzäh lt +ĠT act +Ġarri vé +Ġsubstant ive +Ġspoon ful +zw ischen +oooo o +Ġconten ido +Ġbes l +á»ĥ m +k ten +Jam ie +Ġsand y +ä¸į åIJĮ +â ĭ +Ġp ase +Ġdet te +ĠBelg ian +ê° ľë +ula res +r ud +ig or +ĠíĮ ¬ë +Ġremed ies +Ġblast ing +ĠS ich +Ġож ид +Ġmon str +Ġmanif old +Ġglaub en +ĠE ST +Ġstream line +Ġlobb ying +ĠGoth ic +to ire +.. ' +Ġdém ocr +Ġнаб лÑİд +Ġwsp ól +ĠczÄĻ ÅĽÄĩ +ä¸ĭ éĿ¢ +is és +g angen +Ġbez pie +rem lin +ê° Ŀ +St ill +Ġres ides +Ġgele cek +Ġtélé phone +Ġpe wn +Ġle opard +Ġcompliment ary +Ġc rib +ĠAnim als +Ġge il +ess el +Ġgard er +Ġcatch y +æ¨ ¹ +ĠE ts +ĠCom mercial +ĠD ENNIS +ĠCoordin ator +ĠAb igail +ffff ff +ấ p +Ġpeque ña +Ġinject ions +ce kt +Ġphilanthrop y +Ġp uck +Ġcelebr ates +ĠD unk +ĠD latego +ãģ¾ ãģł +δ ή +grad uate +ĠM obil +t ill +ac am +Ġyol ks +Ġtang led +Ġman iac +Ġoblig ed +ĠLa ink +Ġver der +ĠDam on +Ġmut ant +Ġhop ping +Ġre ins +Ġinver ter +Ġcont empt +׳ ס +le arning +M iss +ĠÐĵ оÑģ +ĠMe yer +ê»ĺ ìĦľ +é£ İ +×ķ׳ ×Ļ×Ŀ +ask ing +Ġtrim ming +Ġtre asury +Ġs ente +A ust +ĠUnterstüt zung +ĠCom edy +ĠAn akin +é ¹ +ÑĢÑĥ ÑĤ +ĠH ari +ograph ers +Ġoat meal +ĠB ots +ä¸į äºĨ +Ġп алÑĮ +Ġacknowledge ment +x ic +Ġê´Ģ ìĭ¬ +gas ping +Ġãģ ķ +Ġterr ace +Ġor naments +ĠM ER +comm ittee +ĠìĹĨ ìĬµëĭĪëĭ¤ +Ġr ij +é ³ +צ ×Ŀ +le me +Ġlibert ies +Ġfell as +ĠCop per +ben ch +ĠIde a +á»į n +ÑĪ а +Ġvers ión +ÏĦο Ïį +ĠÐľ и +ĠпÑĢил ож +Ġbox er +ĠT anner +ĠM oy +ì¹ĺ ëĬĶ +T hr +Ġtin ham +Ġpol ishing +Ġconsequ ently +Ġamen ities +ĠK I +ĠGRE EN +ĠFrank ie +н иÑĤ +itt el +Ñģ кое +urs ed +Ġup bringing +Ġth ứ +ĠìĭĿ ìľ¼ë¡ľ +Ġwh im +Ġchin ese +conf idence +ĠJ eder +ãģª ãģ®ãģ§ +aj cie +ĠT ous +ĠPow ers +ừ a +other mal +ĠвÑĭ ÑĪе +r ale +Ø§Ø ® +Ġì§Ģ ìĽIJ +Ġép isode +Ġsul ph +Ġenc ara +k raft +alar ı +ĠCom es +Ġdiv ul +ĠRud olph +ĠM use +Ġut ens +ĠìŀIJ 주 +Ġp ana +ĠVeget a +ĠPH P +ĠN SA +ent in +ĠCarne gie +ا ÙĬ +iÄĻ cy +H arry +Ġf ır +С п +Ġglad ly +Ġaver aging +íķĺ ê²łìĬµëĭĪëĭ¤ +лÑı ÑİÑĤÑģÑı +ĠÐľ енÑı +Ġquot ation +ri res +itch ens +ay ed +Ġun att +ĠP erez +ĠоÑĤ меÑĤ +Ġtact ile +ĠEu h +is ini +b uh +Ġhat ır +ĠìŀĪ ìľ¼ +Ġpolicy makers +³´ì Ħ¸ìļĶ +ac ı +Ġκ ι +Ġregister ing +re to +ĠSpr inkle +ĠGram my +ax ter +Ġб и +Ġsit ter +Ġpred ic +Ġthin ly +Ġstr um +Ġag grav +Ġa ha +ر ج +m ellow +Ġconst ante +ĠL aut +ist on +Ġtransition ed +ĠCamb odia +ãģĦ ãģįãģ¾ãģĻ +è·Ł 大家 +art ed +Ġmis f +ĠPunk te +Įë ĵł +Ġtremb ling +Ġges pannt +ĠعÙĦÙĬ Ùĩ +Ġникак иÑħ +Ġë¶Ģë ĵľë +ĠÑĢазв иÑĤ +Ġit chy +Ġc iento +Ġpl ains +Ġk ittens +Ġback log +ĠPres iding +pt a +Ġha voc +ĠDarr in +ĠÐĽÑİ Ð± +Ġsegreg ated +Ġg hetto +Ġerle bt +Ġdrug iej +ĠSi xt +åı ĥ +ร ะ +uen cia +Ġíķĺ 기 +ĠëĨ į +Ġrob i +Ġpione ers +Ġmilli ards +ĠWitch er +Ġ무ìĹ ĩ +or ro +m ass +Ġdiver gence +ĠRiver a +ĠNo odles +Ġend roit +ĠK osten +ĠдÑĢÑĥг а +ĠmÃŃn imo +ĠKazakh stan +ت Ùĩ +Ġвоз дÑĥ +Ġgesch rieben +ĠN il +Ñģ ки +ĠFr üh +Ġbever ages +æº IJ +ĠG on +æĺ ¨ +Ar in +ĠInt ro +ocaly ptic +Ġexhaust ion +ĠStat us +ĠBatter y +és z +£ ¼ë +air y +Ġë³´ìŬë ĵľë +Ġdispar ity +Ù Į +ĠTuc son +Ġbright ly +pro blem +Ġbiom ass +éĻ į +§ ī +Ġhur dle +Ġwavelength s +Ġ< < +Ġteam ed +FF FF +ĠS lim +om ial +Ġunve iled +ĠVere in +ÙĤ Ø· +est ry +Ġcl ás +Ġch eddar +Ġaccus ing +ĠScient ific +ĠбÑĥд е +ĠCyr us +ε ÏĦε +Ĩĵ ê³ł +Ġë³ Ħ +Ġcur d +Ġrefer rals +sh ift +åį ķ +nik ów +Ġm ier +Ġconf ronting +ê²ĥ ëıĦ +aw l +Ġtry in +Ġê·¸ëŀĺ ìļĶ +Ġch iar +Ġìĺ¤ëĬ ĺëıĦ +æĶ¿ æ²» +es que +Ġmism os +ĠSh ak +Ġsoci aux +Ġpi ÅŁ +ĠkiÅŁ i +Ġcy an +h ay +be w +b od +ĠÎ ¹ +ĠMain ly +Ñİ ÑĤÑĮ +hab itude +ĠÑģп окой +è·Ł æĪij +Ġpre con +ĠM andy +ðŁ¤ £ +ill os +Ġgr upp +Ġcr umble +Ġconstru ctor +erv ices +Ġlight house +ĠCon cept +ан ÑĤи +alt ro +h ope +ĠAll eg +ìĸ´ë ¥¼ +pie ces +oun ter +Ġíķĺ ëĭĪê¹Į +ĠìĿ¸ íĦ°ë +Ġvérit able +Ġthread ed +bl ind +Ĥĺë Ŀ¼ +Ġtr ays +ĠEd ison +ĠÃĸ z +ĠSte vie +Ġl ender +Ġbrig ade +Ġdeuts che +m uffled +b art +Ġinsan ity +Ġsav vy +Ġsens ational +Ġdere chos +ĠM X +ĠпÑĢ еп +Ġthreat ens +Ġrealt Ãł +Ġindic ative +Ġch ops +Ġbenef iting +ĠVern on +ĠSt rand +n un +qu ently +10 1 +Ġe el +ìĪ Ļ +r ints +ĠÙħ س +Ġب د +Ġпо ÑģÑĤÑĢо +Ġyap mÄ±ÅŁ +Ġol ması +Ġi edereen +ol é +ke f +Ġë°ľ ìĥĿ +Ġr ained +Ġalm ighty +ĠвÑĭ д +ĠC PR +F re +Ġinhab ited +Ġarb ets +Ġa kin +а ÑģÑĤв +v ania +Ġhäuf ig +ĠMat te +s orry +Jen ny +ĠгÑĢ ад +Ġwh it +Ġbro kers +å¯ Ł +Ġh ine +ast en +Ġг ÑĢÑĥ +M B +ĠP RI +S ab +Ġwrest ler +Ġfacil itating +Ġeh kä +ĠC red +Ġ12 7 +Ġnot hin +Ġmand ated +å¯ Į +ÑĥÑĤ ÑģÑĤв +F rank +Ġwor s +Ġdzie ÅĦ +ĠUnder ground +Ġznaj du +ĠB ä +ĠPrin zip +аÑĤ елей +Ġveter inar +Ġsplend id +Ġroz p +Ġpsych opath +ig on +Ġh ops +Ġc ần +ĠX ian +Ġtro isième +Ġproduct o +ĠdeÄŁ er +ĠContin uing +ив ал +c ık +Ġmoistur izer +Wh ite +Ġsi is +ĠEver est +ien ced +Ġcả m +ĠJ apon +´ìł Ħ +Ġten ÃŃan +Ġenc anta +M m +Ġdrop down +ĠI ya +³´ë ©´ +Ġword ing +ĠSque eze +ĠMap le +Ġclar ified +ĠMun icip +ĠRou ge +ĠNick i +ĠGo o +v olt +t ek +fect ure +f red +ar rive +ãĥ¼ ãģĦ +te z +E p +Ġob ras +ĠV ID +ĠR iv +ĠMod i +i be +Ġacontec endo +Ġim itation +Ġcamoufl age +Ġspan ning +ĠSEC RET +ĠOre o +ìĨĮë ¦¬ +Ġh unch +Ġca ÅĤe +Ġspont aneously +ĠPer d +Ġet ap +ĠHo le +ĠDis ability +Ġafter life +æģ © +Ġtest ified +Ġpres up +Ġpet roleum +Ġcontr ario +ĠAss essment +ÄŁ lu +Ġp ests +Ġdil ig +ĠвÑģÑĤÑĢ еÑĤ +Ġcons équ +Ġcann ons +Ġcan oe +ĠM ile +Ġcit oy +Ġbe gged +ĠMin nie +ÅĤy ch +Ġprinci pe +ÏĢÏĮ ν +m niej +Ġw ert +Ġëĭ¤ë ĵ¤ +an se +Ġunc les +Ġprovoc ative +Ġinter sections +Ġdemocr ats +ĠJul ius +ин ки +yg usal +Ġ׾ ×ķ +Ġgj orde +Ġg asket +ĠB ock +ĠÄ° n +b reat +ĠEqu ity +ard ı +Ġкан але +Ġд ней +Ġt Ỽi +Ġfi xture +Ġab uses +Ġv aya +Ġou vert +Ġmultic ultural +Ġcontext o +ĠSes ame +Ġdé pl +Ġcons omm +ĠPart e +Ġp em +ĠCon an +Ġб ÑĸлÑĮ +Ġpersu aded +Ġdra ins +M oo +F ORE +Ġб аÑĤ +Ġf od +ĠProduct s +ì§Ħ ì§ľ +Ġ" [ +ĠW ick +ĠNar uto +н али +ry w +Ġl odge +Ġin h +Ġvont ade +Ġdi j +ĠJes ús +Look ing +Ġfore arm +ĠIntegr ation +ĠHARR IS +Ġtool bar +le ader +Ġsel dom +Ġб ÑĢоÑģ +ĠK ook +он д +Ġmon opol +Ġmill et +Ġl ira +ĠAs ians +Ġ18 90 +ci ÄŁim +Ġed en +ĠIKE A +ĠNeigh bor +ĠKazu ya +ü d +Ġpsych edel +Ġenvision ed +åĿ Ĺ +Ġï· » +Ġw under +ĠBulgar ia +B rid +Ġmar row +Ġdep iction +ĠT in +ĠPhar ise +Ġeinz ige +Ġblind ly +ãģĽ ãģ¦ +Ġdef ens +D ire +Ġvibr ating +Ġtroll s +Ġdisrespect ful +Ġw od +Ġstimul i +Ġcreep ing +Ġcla irement +Ġsc ariest +Ġdécouv rir +Ġ10 4 +ĠвеÑĢ Ñħ +ĠÅĤ at +Ġróż ne +Ġbar ley +ĠRe pl +ĠT we +k ke +ĠãģĿ ãĤĮ +ĠRed mi +ĠMet roid +Ġή ÏĦαν +Che ck +ĠS EN +Ġ ido +ÑĤоÑĢ ии +ó p +UN KNOWN +Ġänd ern +ĠJu ice +ĠGes icht +å°± æľĥ +ĠнаÑģÑĤ олÑĮко +íĥ ķ +Â Ń +ex hales +Ġì´ ī +Ġj sem +ÏĢ ÏīÏĤ +Ġit t +ëªħ ìĿ´ +Ġrem ix +Ġbloss oms +ĠR enee +is ations +ìĬ¤í Ħ° +Ġë³´ ìĿ´ëĬĶ +uest as +op edia +ĠA im +ìĿ´ì¦ Ī +sc ene +Ġleak age +uck t +S ad +A sk +Ġsusp ense +Ġimp ost +ĠStrateg ic +ĠIt ÃŃs +âĢ Į +Ġkey boards +Ġam using +og r +id erman +ŀ ĸ +Ġв ижÑĥ +Ġd ips +Ġapolog ized +ĠST AR +Ġesc uela +ĠC hing +н ениÑı +Ġë¶Ģë¶Ħ ìĿ´ +ĠFle et +Ġs amb +Ġentsprech end +Ġelectrod es +ĠFrei heit +æĪij ä¸įçŁ¥éģĵ +ĠSh rim +iÃŁ e +Ġselect ions +Ġfor di +Ġd oss +Ñı Ñĩ +Ġdiscrimin ate +ĠAu ÃŁerdem +Ġdesenvol v +ĠIntern al +ĠBened ict +å¯ Ĩ +ĠSh iv +M issy +Ġоб наÑĢÑĥж +Ġна ÑģÑĤÑĢо +Ġcontrol ar +ĠL ia +Ġopio ids +ant u +Ġcup board +æģ IJ +г е +acht s +Ġcur ated +Ġx em +Ġwe ary +Ġbre thren +Ġbudget ing +Ġpour tant +éļ » +ais ia +ĠоÑĤв еÑĩ +ĠG IS +μ αι +Ġש×Ķ ×ķ×IJ +Ġsa ud +Ġl Ỽ +Ðķ Т +ub ine +ĠнÑĥж ен +Ġkidna pping +Ġbr at +ĠTer re +ĠMon et +Ġë§Ī ìĬ¤íģ +Ġflash y +ĠIS BN +Ġfreel ance +i age +Ġjun ge +ì¶ © +cer al +ĠÑĤоÑĩ ки +Ġform ulate +ĠF ER +ĠDart mouth +ìľ¼ë ©´ìĦľ +å¢ ĥ +ow iÄħ +ĠëĶĶ ìŀIJ +Ġreg iment +Ġmetabol ismo +ĠP arr +Ġ충 ë¶Ħ +Ġsan ity +ĠL al +ĠG ö +ĠG la +Ġprot o +Ġmicroscop ic +Ġk ang +ĠSc alia +Ġp ug +ĠSc ore +ĠSav annah +Ġgard e +ĠN OR +å°į åIJ§ +Ġsche int +Ġp óÅĤ +Ġcor ri +Ġbr ute +Ġ ÅĤad +ä»ĸ 们 +Ġsucceed ing +Ġbicy cles +N on +Ġseek ers +Ġuncond itional +Ġrhy mes +ĠGar age +Ġinv oice +Ġcan vi +ne ck +Ġcustom izable +irit ual +Que en +íķĺ ìĭľëĬĶ +Ġpower less +Ġcs ak +ä¸į ä¼ļ +is oft +Ġìłķ íĻķ +Ġnh ân +ĠM AND +ĠH af +Ġrevol ves +ä¹Ł åı¯ä»¥ +ov an +ar oo +ĠGr ind +éĽ ª +Ġindispens able +Ġconsult ed +ĠClin ical +A cc +Ġol hos +Ġmon ter +ĠH ana +et ah +Ġva an +Ġt igers +Ġcau cus +ðŁĺ Ĥ +³´ì ŀIJ +pow ers +ium s +ĠíĨ łë +Ġtrad icional +Ġreson ated +Ġìĭł 기 +th em +Ro bert +Ġelement o +Ġant id +Ġоб Ñģ +Ġnat ives +Ġlo ca +ow ment +ĠT ight +Ġ æĢĿ +Ġmel an +ĠN ue +am is +Ġsor gen +as ına +H ome +ĠPUB G +Ġaw fully +ĠSh ore +ĠPer ché +ĠL au +ĠCind erella +ĠCh est +Ġsem antic +Ġdesert ed +ĠMom o +ĠHern andez +gen es +ĠAd ult +иÑĩеÑģ кого +osh ima +ĠcaracterÃŃst icas +ĠK L +´ìŀ ¥ +oc ar +Ġfeh lt +Ġd ruk +ĠPop py +EN GLISH +ĠVerg leich +B rien +Ġrec omp +ĠÑģ д +Ġmer ger +Ġmarket ers +Ġhoney moon +Ġpen so +Ġbell i +еÑĤ Ñĥ +Ġbank er +Cam era +ĠSt all +ĠSt amp +ĠB ite +еж де +Ġs ür +Ġgü ç +ĠPas sover +ĠBug ün +ĠÑģожал ениÑİ +Ġн из +Ġman ure +Ġglac ier +è« ĩ +RA Y +ter ror +Ġsal ads +Ġhur ricanes +ĠDesign er +ator io +Ġfact ual +ĠTam my +Ġзв ÑĥÑĩ +Ġintrodu ctions +Ġhouse keeping +Ġh anger +ëĭ ĺë +ak te +ĠCol a +' ] +ĠG ender +оÑĢ он +ip se +ic ias +Ġsuccess ive +Ġpolit ic +Ġhö her +ĠQ iao +ĠG imme +Ġл ож +Ġse b +ĠWe iter +ĠSak ura +ĠB oulder +ĠAm érica +peÅĤ nie +Ġtecn ologÃŃa +ish ops +f ur +Ġmoon light +Ġdispers ed +Ġre z +ен ное +алÑĮ нÑĥÑİ +ĠTw elve +ĠH OR +ìĭ¤í ŀĪ +il age +Ġshad ed +Ġres umes +ĠPe anut +ĠM ILL +ap ons +ĠU FC +ĠSo le +Ġjoy stick +ĠOliv ier +war ming +Ġsyll abus +Ġоб Ñīе +Ġhi á»ĩn +Ġfest a +Ġcr adle +ĠZ ac +Ġremem brance +Ġê°Ļ ìķĦìĦľ +ĠpiÄĻ k +Ġco exist +ĠV II +Ġá reas +Ġu waż +Ġobser vers +Ġmännisk or +co on +ĠD AM +Ġnas zym +Ġall igator +ĠFree ze +ĠEst ate +ĠÑĤÑĢ ади +Ġunder cover +Ġn ies +ĠFeh ler +pl in +ĠK abul +il ate +Ġê³ł ìĸij +Ġm op +ìĦ ¼ +Ġand erer +ĠK ELL +ок и +Ġж еÑģÑĤ +Ġgra zing +Ġda ÃŃ +Ġcapital ize +Ġa pex +Ġnurt uring +Ġcort ar +Ġcontr ac +ımız ı +Ġtand em +éĥ½ æľī +ge ment +ĠÑģиÑģÑĤем а +Ġman que +ia jÄħ +W OR +Ġا ب +Ġcart s +AN O +Ġë°Ľ ê³ł +ĠC ena +ĠBi ology +id ar +Ġa ż +er ne +an u +Ġthank ed +Ġsubmar ines +Ġman ic +Ġм оз +ä¼ Ĭ +inst ant +ess ential +Ġsam urai +Ġpast i +Ġal an +Ġbro ch +Ġb aker +ĠGu ill +¨ ¼ +Ġwithd rawn +ëĭ Ŀ +Per fect +qu ency +Ġstream lined +Ġ13 00 +´ë ıĦ +Ġëĸ łë +Ġãģ¯ ãģĦ +Ġh vad +ä¸Ģå®ļ è¦ģ +Ġverb ally +ĠK ons +Ġì¡° ìĭ¬ +Ġdie z +æİ° æİ° +Ġchuck ling +ĠM ih +Ġrall ies +Ġman ter +Ġearn est +s uper +Ġge ce +ĠR end +ĠGer ade +jen igen +ĠV all +Ġìŀ ĪëĤĺ +ĠÑģказ ала +Ġtrabal h +ĠнаÑĪ ем +Ġм еÑħ +ik it +Ġnoun s +Ġneurolog ical +Ġmotiv ational +ĠMcM ahon +ĠFin ished +Ġë³´ ìĿ´ +ĠField s +Ġadoles cents +ĠT isch +ĠNe ben +ĠFl owers +ĠEner g +Ġdire t +ĠTh i +ĠP icas +æĥ ľ +æĢİä¹Ī æł· +Ġav ete +ĠF ors +ĠChap el +N ão +E t +ĠÑģод еÑĢж +ren o +Ġs ven +Ġdost ÄĻp +ne e +ĠSnap dragon +ĠID s +ìķĺ ëĬĶëį° +ר ×ļ +Ġsun flower +Ġperpet ual +ç³ ĸ +Ġkn ights +Ġg ird +ĠTo ld +Ġvolcano es +Ġadvers ary +ĠEconom y +Ġextra pol +Ġbl uetooth +Ġzoom ing +Ġsk ys +Ġgen ial +ÃŃcul os +amb re +Ġм еÑĢ +Ġteen y +Ġstress ing +ìķ Į +ON Y +Ġtransluc ent +Ġround ing +Ġgr ues +×Ļ׳ ×Ķ +ap rès +Ġprue ba +Ġpoly gon +Ġblue berry +ĠProgram m +Ġtren ches +Ġse bagai +Ġpal ate +Ġla ude +Ġbehav ed +Ġlongitud inal +ĠMod ule +Ġadm ir +λ ι +G reg +Ġwy st +Ġpropag ate +Ġmold s +ĠT ub +ĠL oud +ust o +Ġun stoppable +Ġreinfor cing +éĿŀ常 çļĦ +ĠпÑĢоблем а +Ġpot encial +Ġhe mp +ìŀ Ķ +ठ¯ +Ġopt ic +Ġerfolg reich +Ñģ Ñĭ +олÑĮ ÑĪе +ur st +ĠPo is +Ġrespond ents +Ġneh me +ĠEx ternal +ol ate +H yun +Ġquart z +Ġmathematic ian +Ġbás icamente +Ġa il +ìł ľë¥¼ +att utto +Ġno oit +Ġaff lict +ĠOl ga +èŃ · +Ġна ÑĤ +Ġd ites +Ġreal idade +Ġk än +Ġuniqu eness +Ġpad res +Ġsubs idi +Ġpige ons +β α +st ad +Ġder en +ĠС лед +d oo +ĠопиÑģ ании +Ġam ber +Ġgoose bumps +ĠfrÃ¥ gor +ĠV ital +ĠIsrael ites +w asser +Is n +Ġcomm its +ĠSTE VEN +ĠBev ölker +uit ive +Ġleg en +Ġbr uk +иÑĢов ан +yn en +hel m +Ġgener ational +ĠL ändern +οι ÏĢÏĮν +uz u +Ġcall er +он ÑĮ +üm ü +Ġbes ar +Ġpl ats +Ġmig rated +Ġj ap +ĠW AR +Ġdis sect +ĠZus ch +ĠZe iten +ĠL ions +ĠD F +â Ķ +ки в +Ġpedest rians +ĠMar ilyn +d ock +Ġy ht +Ġre incarn +ĠSon o +ĠGrow th +ÑĥÑģ ов +Ġdun geons +Ġbag us +k ich +ĠÑĥ кÑĢаÑĹ +éĨ « +ĠK eller +chem istry +J apanese +Ġwill st +Ġdecomp osition +ĠÑģÑĤ ен +Ġrev ived +íķĻ êµIJ +ĠÅ ĵ +ä½ IJ +ìĭ ¸ +ipp y +Ġhour ly +j än +ĠWork shop +Ŀ¼ ìĦľ +Ġcu arto +Ġpat rim +ĠB urch +ĠìŀĪ 기 +Ġhe pat +Ġh Ãłng +ĠëĮĢ íķ´ +ĠваÑĪ и +Ġre work +Ġpar se +Ġçıkt ı +ĠS ax +ĠMong o +ĠAa ah +ram ble +D J +Ġstabil ized +ĠSpe ech +Book s +Ġhur dles +ĠW O +ĠLamb org +Ġ19 33 +Ġvor bere +Ġclin ically +Ġbreat htaking +ĠGate way +пеÑĢв ÑĭÑħ +ut ers +Ġë¹ µ +Ġyet er +Ġpull ey +Ġmuff in +ĠPre fer +ĠP ence +Ġinform ação +ìĬ¤í Ĭ¸ë +ãĤ¸ ãĥ£ +ĠTur tle +ĠReg ina +ĠLo ad +do es +pan ze +¸ Ķ +Ġmin a +ĠLatin os +amm ers +ĠT ort +ĠBey once +имо ÑģÑĤи +ĠвопÑĢоÑģ Ñĭ +Ġbul un +èĢĮ å·² +ine k +bere ich +Ġpast ure +ĠO A +ĠM elt +ĠEt t +ĠD Y +Ġob wohl +Ġle agues +ÑĤ еÑģÑĮ +Ġк ÑĥÑģ +Ġv ors +Ġto pp +ograph ical +as st +Ġl indo +Ġë°Ŀ íĺĶ +Ġré fl +Ġclim bs +Ġv arsa +Ġmethy l +ĠKar ere +Æ°á» Ł +R ad +Ġprepared ness +он Ñĩ +ĠO D +ĠC GI +Ġठ® +Ġspeech less +Ġlas ci +Ġbol ag +ĠÑħоÑĩ еÑĤÑģÑı +Ġgr ieving +ĠJohann es +ĠCar roll +ad aki +Ī ¬ë +ĠsÅĤ u +Ġinner halb +Ġgymn astics +п ÑĢи +if iques +Ġkar ate +Ġdom u +ãģĿãĤĮ ãģ§ +OTH ER +Ġdemand é +Ġbook let +ĠKy oto +Ġw oh +ĠMar ÃŃa +viol ent +J E +Ġl óg +Ġbrut ally +c ot +ĠÙħ ÛĮ +ĠWars z +å® Ī +w ol +Ġmik ä +ĠPron ounce +ĠBrend an +Ġr oup +Ġital iano +å¦Ĥ æѤ +Ġкомп ÑĮÑİÑĤ +Ġur ging +ed es +Ġcarbon o +ĠRichards on +ĠÐĿ аÑĩ +ĠTra iner +ĠCrime a +Ġdi apers +Ġco vet +ĠMah ar +ĠH utch +ĠAus w +ber ty +Ġind ifferent +кÑĢ еÑĤ +uld ade +Ġhar ms +¢ ÙĨ +les ia +Ġg io +ĠMist ress +ĠK nox +ĠFRE E +Ġë £¨ë +ĠнаÑĪ а +Ġinvinci ble +Ġma iden +ĠJ eez +Ġbre ve +po le +Ġcritic isms +ĠRus ia +ठ® +ph in +ĠComp are +ĠB ON +Ġsne aking +ĠR ails +ĠG eral +Ġ195 3 +H ola +Ġоп ÑĭÑĤ +Ġrain forest +Ġbel um +ĠOb i +ĠIS S +ãĤĮ ãģªãģĦ +ĠС в +Ġbl ond +Ġwz gl +Ġpowiedz iaÅĤ +Ġch oking +ĠSong s +ĠBir az +Ġyell s +Ġstyl ist +ÏĮ ÏĦε +Ġsch reiben +ĠJ aw +ĠEle ven +ĠR if +/ . +Ġìĺ¤ë ŀľë§Į +Ġtreat ies +uff ed +ĠâĪ Ĵ +Ġroof s +à¹Ģภª +Ġë » +Ġspark le +ĠK iev +ĠAr gu +ere cht +ĠÐĿад о +ĠF IL +Ġmol ta +ĠDe vi +Ġcam pe +Ġbene vol +ĠT ough +Ġmo im +Ġevac uate +Ġer rado +å© Ĩ +ÑĢÑĥ го +Ġíİ ĺ +ĠÎĵ ια +Ġweak en +Ġillum inated +Ġsig lo +ĠV acc +и ей +al is +ĠÑĥ ÑģÑĤÑĢой +Ġdon a +ÅĤ os +ü man +Ġprodu cción +Ġcl ot +ĠM ango +Ġune asy +Ġsh uts +ĠExam ples +ve ll +e be +Ġprompt ly +ĠT eles +ĠпÑĢоÑĪ л +Ġpu erta +Ġüber zeug +Ġco ch +so cial +ĠB enson +ĠM eth +ĠEx ped +Ġsupplement al +Ġconce ive +Ġ×ĺ ×ķ×ij +Ġcapt ivity +ıĻ ìķĪ +ĠÑħ Ñĥд +form ing +Ġupload s +Ġturbul ence +j oint +Ġsatisf actory +ĠAn ime +Ġwash es +Ġliber als +ĠSun shine +ĠRE AL +ub lik +b inary +T ony +Ġpolar ized +Ġenrich ed +t aking +ĠëģĿ ëĤĺ +Ġple asures +Ġex termin +in ese +at l +v är +аÑĢ Ñĭ +Ġmy ÅĽ +n arrator +Ġод ном +Ġnaj wiÄĻ +Ġmobil ize +Ġmill or +Ġat a +æ· · +ĠpolÃŃt ico +Ġple ad +Ġpain ters +ĠS ow +о ÑĦ +ĠìĺĽ ëĤł +ĠÑĩ ÑĤоб +Ġs abor +ĠUnd ert +ĠJER RY +Å¡ ÃŃ +Ġë° ĸìĹIJ +Ġpréc éd +Ġannot ation +ĠI naudible +Ġtext ured +Ġfisher man +v ordan +icher ung +Ġìłģ ìĿ´ +Ġge zeigt +Ġmand ates +Ġbe ak +ĠTW O +ĠAk bar +il ian +Ġtiế p +Ġsuperior ity +ink u +Ġl ys +ĠF CC +ĠC PA +ust ering +nic os +an ja +Ġch ills +ĠC age +Ġse aling +Ġsa ç +Ġded ans +ĠAl ger +Ġspe zie +Ġcol oss +ıy ı +clock wise +Ġexact amente +Ġ iemand +am ı +Ġmand ar +ra j +f aced +ag ua +Ġê¹ Ķë +Ġins besondere +Ġdri zzle +Ġdimin ish +ĠY oda +A I +Ġbil miyorum +ĠM MA +ateg ory +ĠпеÑĢ еп +Ġparticip ar +Ġnormal ized +Ġcomplex ities +æ´ ² +æİ § +аÑĢ ов +m ist +ich a +Gr oup +Ġresil iency +Ġnog le +ĠCN C +pr ü +Ġphysic ists +н ок +L I +Ġstuff s +Ġsist emas +Ġinterfer ing +ĠMar vin +ér cito +ĠìĹĨ ê³ł +Ġson ic +Ġequ iv +Ġab ord +ĠRam en +Ġ0 9 +med im +at iques +Ġдел аÑİÑĤ +Ġunanim ously +Ġsk irts +ĠíĬ¹ ë³Ħ +ĠP rix +k ami +Ġfr uition +Ġbirthday s +ик ом +Ġinaug ural +Ġcorrel ate +ĠT ory +ĠëĤĺ ìģ +Ġde w +ĠPre cis +ih i +Ġë¬¸ìłľ ê°Ģ +Ġc iting +ĠL ana +ĠK ag +Ġplay through +ĠProt ocol +fr ist +hov ah +Ġmerc iful +Ġb ilingual +ĠG uitar +r h +Ġglam orous +ĠVik ings +ĠOoo oh +íķĺ ëĬĶëį° +ĠUg anda +Ġcollaps es +ent ry +Ġantioxid ants +ëĤ ĺë +ÑĪ аÑı +Ġtri via +Ġgä ller +Ġfun gi +Ġmil ks +Ġd icht +μ η +po ke +ĠвÑĭп ÑĥÑģк +Ġfeed er +ĠAl cohol +h ower +Ġdes erving +ĠRe bel +ios is +Ġ10 3 +Ġhand out +Ġen m +Ġland lords +Ġge ology +r ils +Ġco bra +ĠV old +ĠP anch +ĠGRE G +Ġpr oss +Ġbrac elets +ĠV ega +Ġroz um +æ¬ ¾ +аз д +ĠLy nd +ĠHon ors +Ġsurrend ered +Ġlibr arians +12 5 +ĠÑģ иг +Ġuniform ly +ĠE agles +ìķ Ļ +иÑĤ ан +and id +ĠìłĪë ĮĢ +ĠØ ¶ +Ġarrest s +ĠCS V +ĠAzerbai jan +ort ic +ĠD X +ĠAdvent ures +Ġab us +ĠF au +Ġschlim m +Ġratt ling +Ġconsum es +ĠTol kien +Ġresurrect ed +ĠX Y +íĬ¸ ê°Ģ +ĠвÑĭ ÑģÑĤÑĥп +ĠAng ie +żen ia +M ic +ĠShe ila +acht et +Ġover st +Ġl â +Ġine ffective +æĿ ¡ +æĢİä¹Ī äºĨ +å¿ Ļ +Ġwicht iger +Ġv ino +Ġp um +Ġang led +ĠP ione +ĠM ỹ +ãģĿãĤĮ ãģ¯ +wo ÅĽÄĩ +d raw +ั à¹Ī +mark ets +Ġcaf es +ĠC em +â Ŀ¤ +ĠS uit +M K +Ġemphas izes +Ġtort illa +Ġmejor ar +ĠSur viv +cast ing +Ġeduc ación +ĠG um +u ely +ĠìĹ¬ê¸° ëĬĶ +Ġstretch y +en ça +Ġwith hold +Ġex iting +Ġenthal py +ĠTrans it +ıl mÄ±ÅŁ +al ies +Ġsal var +Ġlean ed +ĠgroÃŁ es +Ġf itt +ак и +S arah +Ġhost el +Ġfinger na +Ġnadzie jÄĻ +w ives +R ec +Ġsp ool +аÑĤ ов +ĠEn emy +Ġf ury +Ġdet ta +ĠF ay +éļ ¨ +Ñı ÑİÑĤ +Ġaproxim adamente +Ġsil os +Ġmag ist +Ġc ree +ĠKr ank +ĠD OWN +Ġstart led +Ġre born +ĠUm welt +ĠSuz anne +ни ÑĨÑĭ +out ez +ĠJ AC +y ards +rad as +ra u +ip ts +h ail +Ġparagraph s +Ġme glio +Ġisol ating +Ġace ite +ĠH arsh +Ġcy st +ĠBlock chain +ĠÑħоÑĢоÑĪ ий +Ġvirt uous +Ġinvestig ación +Ġdev oir +Ġmast urb +ĠS ale +ÙĬر Ø© +ĠÎ § +ĠStra ÃŁen +Ġdi kk +Ġa fore +ĠJung kook +Ġcho ciaż +ĠDebat te +Ġweird ly +Ġvia je +reg ist +H elp +Ġkind eren +Ġform ulated +Ġenf im +ĠTow ards +ко ÑĹ +iver ing +ĠдеÑĤ и +char ger +Ġpur l +Ġacadem ically +ĠNur se +Ġdel eting +ay o +Ġref usal +Ġdepict s +ĠDr acula +Ġtoast ed +ĠZomb ie +ĠSuper ior +ĠB old +Ġquizz es +Ġg le +4 50 +Ġcome ço +yn n +Ġver st +ĠO laf +Ġpom oc +ĠS ask +ë ĺ +ĠT CP +ĠProper ty +íķĺ ì£ł +à¸ľ ม +bo om +ar os +ĠÑĢоÑģÑģ ий +ĠбÑĭв аеÑĤ +åĩº åİ» +ĠìĿ´ìķ¼ 기를 +Ġcomb ien +v acc +Ġeben falls +par a +Ġз м +Ġdesper ation +ord re +Ġש׾ ×Ļ +Ġgener ously +ĠÐŀ к +Ġorb iting +> ", + "archeological": "archaeological", + "ardour": "ardor", + "armour": "armor", + "armoured": "armored", + "armourer": "armorer", + "armourers": "armorers", + "armouries": "armories", + "armoury": "armory", + "artefact": "artifact", + "artefacts": "artifacts", + "authorise": "authorize", + "authorised": "authorized", + "authorises": "authorizes", + "authorising": "authorizing", + "axe": "ax", + "backpedalled": "backpedaled", + "backpedalling": "backpedaling", + "bannister": "banister", + "bannisters": "banisters", + "baptise": "baptize", + "baptised": "baptized", + "baptises": "baptizes", + "baptising": "baptizing", + "bastardise": "bastardize", + "bastardised": "bastardized", + "bastardises": "bastardizes", + "bastardising": "bastardizing", + "battleax": "battleaxe", + "baulk": "balk", + "baulked": "balked", + "baulking": "balking", + "baulks": "balks", + "bedevilled": "bedeviled", + "bedevilling": "bedeviling", + "behaviour": "behavior", + "behavioural": "behavioral", + "behaviourism": "behaviorism", + "behaviourist": "behaviorist", + "behaviourists": "behaviorists", + "behaviours": "behaviors", + "behove": "behoove", + "behoved": "behooved", + "behoves": "behooves", + "bejewelled": "bejeweled", + "belabour": "belabor", + "belaboured": "belabored", + "belabouring": "belaboring", + "belabours": "belabors", + "bevelled": "beveled", + "bevvies": "bevies", + "bevvy": "bevy", + "biassed": "biased", + "biassing": "biasing", + "bingeing": "binging", + "bougainvillaea": "bougainvillea", + "bougainvillaeas": "bougainvilleas", + "bowdlerise": "bowdlerize", + "bowdlerised": "bowdlerized", + "bowdlerises": "bowdlerizes", + "bowdlerising": "bowdlerizing", + "breathalyse": "breathalyze", + "breathalysed": "breathalyzed", + "breathalyser": "breathalyzer", + "breathalysers": "breathalyzers", + "breathalyses": "breathalyzes", + "breathalysing": "breathalyzing", + "brutalise": "brutalize", + "brutalised": "brutalized", + "brutalises": "brutalizes", + "brutalising": "brutalizing", + "busses": "buses", + "bussing": "busing", + "caesarean": "cesarean", + "caesareans": "cesareans", + "calibre": "caliber", + "calibres": "calibers", + "calliper": "caliper", + "callipers": "calipers", + "callisthenics": "calisthenics", + "canalise": "canalize", + "canalised": "canalized", + "canalises": "canalizes", + "canalising": "canalizing", + "cancelation": "cancellation", + "cancelations": "cancellations", + "cancelled": "canceled", + "cancelling": "canceling", + "candour": "candor", + "cannibalise": "cannibalize", + "cannibalised": "cannibalized", + "cannibalises": "cannibalizes", + "cannibalising": "cannibalizing", + "canonise": "canonize", + "canonised": "canonized", + "canonises": "canonizes", + "canonising": "canonizing", + "capitalise": "capitalize", + "capitalised": "capitalized", + "capitalises": "capitalizes", + "capitalising": "capitalizing", + "caramelise": "caramelize", + "caramelised": "caramelized", + "caramelises": "caramelizes", + "caramelising": "caramelizing", + "carbonise": "carbonize", + "carbonised": "carbonized", + "carbonises": "carbonizes", + "carbonising": "carbonizing", + "carolled": "caroled", + "carolling": "caroling", + "catalogue": "catalog", + "catalogued": "cataloged", + "catalogues": "catalogs", + "cataloguing": "cataloging", + "catalyse": "catalyze", + "catalysed": "catalyzed", + "catalyses": "catalyzes", + "catalysing": "catalyzing", + "categorise": "categorize", + "categorised": "categorized", + "categorises": "categorizes", + "categorising": "categorizing", + "cauterise": "cauterize", + "cauterised": "cauterized", + "cauterises": "cauterizes", + "cauterising": "cauterizing", + "cavilled": "caviled", + "cavilling": "caviling", + "centigramme": "centigram", + "centigrammes": "centigrams", + "centilitre": "centiliter", + "centilitres": "centiliters", + "centimetre": "centimeter", + "centimetres": "centimeters", + "centralise": "centralize", + "centralised": "centralized", + "centralises": "centralizes", + "centralising": "centralizing", + "centre": "center", + "centred": "centered", + "centrefold": "centerfold", + "centrefolds": "centerfolds", + "centrepiece": "centerpiece", + "centrepieces": "centerpieces", + "centres": "centers", + "channelled": "channeled", + "channelling": "channeling", + "characterise": "characterize", + "characterised": "characterized", + "characterises": "characterizes", + "characterising": "characterizing", + "cheque": "check", + "chequebook": "checkbook", + "chequebooks": "checkbooks", + "chequered": "checkered", + "cheques": "checks", + "chilli": "chili", + "chimaera": "chimera", + "chimaeras": "chimeras", + "chiselled": "chiseled", + "chiselling": "chiseling", + "circularise": "circularize", + "circularised": "circularized", + "circularises": "circularizes", + "circularising": "circularizing", + "civilise": "civilize", + "civilised": "civilized", + "civilises": "civilizes", + "civilising": "civilizing", + "clamour": "clamor", + "clamoured": "clamored", + "clamouring": "clamoring", + "clamours": "clamors", + "clangour": "clangor", + "clarinettist": "clarinetist", + "clarinettists": "clarinetists", + "collectivise": "collectivize", + "collectivised": "collectivized", + "collectivises": "collectivizes", + "collectivising": "collectivizing", + "colonisation": "colonization", + "colonise": "colonize", + "colonised": "colonized", + "coloniser": "colonizer", + "colonisers": "colonizers", + "colonises": "colonizes", + "colonising": "colonizing", + "colour": "color", + "colourant": "colorant", + "colourants": "colorants", + "coloured": "colored", + "coloureds": "coloreds", + "colourful": "colorful", + "colourfully": "colorfully", + "colouring": "coloring", + "colourize": "colorize", + "colourized": "colorized", + "colourizes": "colorizes", + "colourizing": "colorizing", + "colourless": "colorless", + "colours": "colors", + "commercialise": "commercialize", + "commercialised": "commercialized", + "commercialises": "commercializes", + "commercialising": "commercializing", + "compartmentalise": "compartmentalize", + "compartmentalised": "compartmentalized", + "compartmentalises": "compartmentalizes", + "compartmentalising": "compartmentalizing", + "computerise": "computerize", + "computerised": "computerized", + "computerises": "computerizes", + "computerising": "computerizing", + "conceptualise": "conceptualize", + "conceptualised": "conceptualized", + "conceptualises": "conceptualizes", + "conceptualising": "conceptualizing", + "connexion": "connection", + "connexions": "connections", + "contextualise": "contextualize", + "contextualised": "contextualized", + "contextualises": "contextualizes", + "contextualising": "contextualizing", + "cosier": "cozier", + "cosies": "cozies", + "cosiest": "coziest", + "cosily": "cozily", + "cosiness": "coziness", + "cosy": "cozy", + "councillor": "councilor", + "councillors": "councilors", + "counselled": "counseled", + "counselling": "counseling", + "counsellor": "counselor", + "counsellors": "counselors", + "crenelated": "crenellated", + "criminalise": "criminalize", + "criminalised": "criminalized", + "criminalises": "criminalizes", + "criminalising": "criminalizing", + "criticise": "criticize", + "criticised": "criticized", + "criticises": "criticizes", + "criticising": "criticizing", + "crueller": "crueler", + "cruellest": "cruelest", + "crystallisation": "crystallization", + "crystallise": "crystallize", + "crystallised": "crystallized", + "crystallises": "crystallizes", + "crystallising": "crystallizing", + "cudgelled": "cudgeled", + "cudgelling": "cudgeling", + "customise": "customize", + "customised": "customized", + "customises": "customizes", + "customising": "customizing", + "cypher": "cipher", + "cyphers": "ciphers", + "decentralisation": "decentralization", + "decentralise": "decentralize", + "decentralised": "decentralized", + "decentralises": "decentralizes", + "decentralising": "decentralizing", + "decriminalisation": "decriminalization", + "decriminalise": "decriminalize", + "decriminalised": "decriminalized", + "decriminalises": "decriminalizes", + "decriminalising": "decriminalizing", + "defence": "defense", + "defenceless": "defenseless", + "defences": "defenses", + "dehumanisation": "dehumanization", + "dehumanise": "dehumanize", + "dehumanised": "dehumanized", + "dehumanises": "dehumanizes", + "dehumanising": "dehumanizing", + "demeanour": "demeanor", + "demilitarisation": "demilitarization", + "demilitarise": "demilitarize", + "demilitarised": "demilitarized", + "demilitarises": "demilitarizes", + "demilitarising": "demilitarizing", + "demobilisation": "demobilization", + "demobilise": "demobilize", + "demobilised": "demobilized", + "demobilises": "demobilizes", + "demobilising": "demobilizing", + "democratisation": "democratization", + "democratise": "democratize", + "democratised": "democratized", + "democratises": "democratizes", + "democratising": "democratizing", + "demonise": "demonize", + "demonised": "demonized", + "demonises": "demonizes", + "demonising": "demonizing", + "demoralisation": "demoralization", + "demoralise": "demoralize", + "demoralised": "demoralized", + "demoralises": "demoralizes", + "demoralising": "demoralizing", + "denationalisation": "denationalization", + "denationalise": "denationalize", + "denationalised": "denationalized", + "denationalises": "denationalizes", + "denationalising": "denationalizing", + "deodorise": "deodorize", + "deodorised": "deodorized", + "deodorises": "deodorizes", + "deodorising": "deodorizing", + "depersonalise": "depersonalize", + "depersonalised": "depersonalized", + "depersonalises": "depersonalizes", + "depersonalising": "depersonalizing", + "deputise": "deputize", + "deputised": "deputized", + "deputises": "deputizes", + "deputising": "deputizing", + "desensitisation": "desensitization", + "desensitise": "desensitize", + "desensitised": "desensitized", + "desensitises": "desensitizes", + "desensitising": "desensitizing", + "destabilisation": "destabilization", + "destabilise": "destabilize", + "destabilised": "destabilized", + "destabilises": "destabilizes", + "destabilising": "destabilizing", + "dialled": "dialed", + "dialling": "dialing", + "dialogue": "dialog", + "dialogues": "dialogs", + "diarrhoea": "diarrhea", + "digitise": "digitize", + "digitised": "digitized", + "digitises": "digitizes", + "digitising": "digitizing", + "disc": "disk", + "discolour": "discolor", + "discoloured": "discolored", + "discolouring": "discoloring", + "discolours": "discolors", + "discs": "disks", + "disembowelled": "disemboweled", + "disembowelling": "disemboweling", + "disfavour": "disfavor", + "dishevelled": "disheveled", + "dishonour": "dishonor", + "dishonourable": "dishonorable", + "dishonourably": "dishonorably", + "dishonoured": "dishonored", + "dishonouring": "dishonoring", + "dishonours": "dishonors", + "disorganisation": "disorganization", + "disorganised": "disorganized", + "distil": "distill", + "distils": "distills", + "dramatisation": "dramatization", + "dramatisations": "dramatizations", + "dramatise": "dramatize", + "dramatised": "dramatized", + "dramatises": "dramatizes", + "dramatising": "dramatizing", + "draught": "draft", + "draughtboard": "draftboard", + "draughtboards": "draftboards", + "draughtier": "draftier", + "draughtiest": "draftiest", + "draughts": "drafts", + "draughtsman": "draftsman", + "draughtsmanship": "draftsmanship", + "draughtsmen": "draftsmen", + "draughtswoman": "draftswoman", + "draughtswomen": "draftswomen", + "draughty": "drafty", + "drivelled": "driveled", + "drivelling": "driveling", + "duelled": "dueled", + "duelling": "dueling", + "economise": "economize", + "economised": "economized", + "economises": "economizes", + "economising": "economizing", + "editorialise": "editorialize", + "editorialised": "editorialized", + "editorialises": "editorializes", + "editorialising": "editorializing", + "edoema": "edema", + "empathise": "empathize", + "empathised": "empathized", + "empathises": "empathizes", + "empathising": "empathizing", + "emphasise": "emphasize", + "emphasised": "emphasized", + "emphasises": "emphasizes", + "emphasising": "emphasizing", + "enamelled": "enameled", + "enamelling": "enameling", + "enamoured": "enamored", + "encyclopaedia": "encyclopedia", + "encyclopaedias": "encyclopedias", + "encyclopaedic": "encyclopedic", + "endeavour": "endeavor", + "endeavoured": "endeavored", + "endeavouring": "endeavoring", + "endeavours": "endeavors", + "energise": "energize", + "energised": "energized", + "energises": "energizes", + "energising": "energizing", + "enrol": "enroll", + "enrols": "enrolls", + "enthral": "enthrall", + "enthrals": "enthralls", + "epaulette": "epaulet", + "epaulettes": "epaulets", + "epicentre": "epicenter", + "epicentres": "epicenters", + "epilogue": "epilog", + "epilogues": "epilogs", + "epitomise": "epitomize", + "epitomised": "epitomized", + "epitomises": "epitomizes", + "epitomising": "epitomizing", + "equalisation": "equalization", + "equalise": "equalize", + "equalised": "equalized", + "equaliser": "equalizer", + "equalisers": "equalizers", + "equalises": "equalizes", + "equalising": "equalizing", + "eulogise": "eulogize", + "eulogised": "eulogized", + "eulogises": "eulogizes", + "eulogising": "eulogizing", + "evangelise": "evangelize", + "evangelised": "evangelized", + "evangelises": "evangelizes", + "evangelising": "evangelizing", + "exorcise": "exorcize", + "exorcised": "exorcized", + "exorcises": "exorcizes", + "exorcising": "exorcizing", + "extemporisation": "extemporization", + "extemporise": "extemporize", + "extemporised": "extemporized", + "extemporises": "extemporizes", + "extemporising": "extemporizing", + "externalisation": "externalization", + "externalisations": "externalizations", + "externalise": "externalize", + "externalised": "externalized", + "externalises": "externalizes", + "externalising": "externalizing", + "factorise": "factorize", + "factorised": "factorized", + "factorises": "factorizes", + "factorising": "factorizing", + "faecal": "fecal", + "faeces": "feces", + "familiarisation": "familiarization", + "familiarise": "familiarize", + "familiarised": "familiarized", + "familiarises": "familiarizes", + "familiarising": "familiarizing", + "fantasise": "fantasize", + "fantasised": "fantasized", + "fantasises": "fantasizes", + "fantasising": "fantasizing", + "favour": "favor", + "favourable": "favorable", + "favourably": "favorably", + "favoured": "favored", + "favouring": "favoring", + "favourite": "favorite", + "favourites": "favorites", + "favouritism": "favoritism", + "favours": "favors", + "feminise": "feminize", + "feminised": "feminized", + "feminises": "feminizes", + "feminising": "feminizing", + "fertilisation": "fertilization", + "fertilise": "fertilize", + "fertilised": "fertilized", + "fertiliser": "fertilizer", + "fertilisers": "fertilizers", + "fertilises": "fertilizes", + "fertilising": "fertilizing", + "fervour": "fervor", + "fibre": "fiber", + "fibreglass": "fiberglass", + "fibres": "fibers", + "fictionalisation": "fictionalization", + "fictionalisations": "fictionalizations", + "fictionalise": "fictionalize", + "fictionalised": "fictionalized", + "fictionalises": "fictionalizes", + "fictionalising": "fictionalizing", + "fillet": "filet", + "filleted": "fileted", + "filleting": "fileting", + "fillets": "filets", + "finalisation": "finalization", + "finalise": "finalize", + "finalised": "finalized", + "finalises": "finalizes", + "finalising": "finalizing", + "flautist": "flutist", + "flautists": "flutists", + "flavour": "flavor", + "flavoured": "flavored", + "flavouring": "flavoring", + "flavourings": "flavorings", + "flavourless": "flavorless", + "flavours": "flavors", + "flavoursome": "flavorsome", + "flyer / flier": "flier / flyer", + "foetal": "fetal", + "foetid": "fetid", + "foetus": "fetus", + "foetuses": "fetuses", + "formalisation": "formalization", + "formalise": "formalize", + "formalised": "formalized", + "formalises": "formalizes", + "formalising": "formalizing", + "fossilisation": "fossilization", + "fossilise": "fossilize", + "fossilised": "fossilized", + "fossilises": "fossilizes", + "fossilising": "fossilizing", + "fraternisation": "fraternization", + "fraternise": "fraternize", + "fraternised": "fraternized", + "fraternises": "fraternizes", + "fraternising": "fraternizing", + "fulfil": "fulfill", + "fulfilment": "fulfillment", + "fulfils": "fulfills", + "funnelled": "funneled", + "funnelling": "funneling", + "gage": "gauge", + "gaged": "gauged", + "gages": "gauges", + "gaging": "gauging", + "galvanise": "galvanize", + "galvanised": "galvanized", + "galvanises": "galvanizes", + "galvanising": "galvanizing", + "gambolled": "gamboled", + "gambolling": "gamboling", + "gaol": "jail", + "gaolbird": "jailbird", + "gaolbirds": "jailbirds", + "gaolbreak": "jailbreak", + "gaolbreaks": "jailbreaks", + "gaoled": "jailed", + "gaoler": "jailer", + "gaolers": "jailers", + "gaoling": "jailing", + "gaols": "jails", + "gasses": "gases", + "generalisation": "generalization", + "generalisations": "generalizations", + "generalise": "generalize", + "generalised": "generalized", + "generalises": "generalizes", + "generalising": "generalizing", + "ghettoise": "ghettoize", + "ghettoised": "ghettoized", + "ghettoises": "ghettoizes", + "ghettoising": "ghettoizing", + "gipsies": "gypsies", + "glamor": "glamour", + "glamorise": "glamorize", + "glamorised": "glamorized", + "glamorises": "glamorizes", + "glamorising": "glamorizing", + "globalisation": "globalization", + "globalise": "globalize", + "globalised": "globalized", + "globalises": "globalizes", + "globalising": "globalizing", + "glueing": "gluing", + "goitre": "goiter", + "goitres": "goiters", + "gonorrhoea": "gonorrhea", + "gramme": "gram", + "grammes": "grams", + "gravelled": "graveled", + "grey": "gray", + "greyed": "grayed", + "greying": "graying", + "greyish": "grayish", + "greyness": "grayness", + "greys": "grays", + "grovelled": "groveled", + "grovelling": "groveling", + "groyne": "groin", + "groynes": "groins", + "gruelling": "grueling", + "gruellingly": "gruelingly", + "gryphon": "griffin", + "gryphons": "griffins", + "gynaecological": "gynecological", + "gynaecologist": "gynecologist", + "gynaecologists": "gynecologists", + "gynaecology": "gynecology", + "haematological": "hematological", + "haematologist": "hematologist", + "haematologists": "hematologists", + "haematology": "hematology", + "haemoglobin": "hemoglobin", + "haemophilia": "hemophilia", + "haemophiliac": "hemophiliac", + "haemophiliacs": "hemophiliacs", + "haemorrhage": "hemorrhage", + "haemorrhaged": "hemorrhaged", + "haemorrhages": "hemorrhages", + "haemorrhaging": "hemorrhaging", + "haemorrhoids": "hemorrhoids", + "harbour": "harbor", + "harboured": "harbored", + "harbouring": "harboring", + "harbours": "harbors", + "harmonisation": "harmonization", + "harmonise": "harmonize", + "harmonised": "harmonized", + "harmonises": "harmonizes", + "harmonising": "harmonizing", + "homoeopath": "homeopath", + "homoeopathic": "homeopathic", + "homoeopaths": "homeopaths", + "homoeopathy": "homeopathy", + "homogenise": "homogenize", + "homogenised": "homogenized", + "homogenises": "homogenizes", + "homogenising": "homogenizing", + "honour": "honor", + "honourable": "honorable", + "honourably": "honorably", + "honoured": "honored", + "honouring": "honoring", + "honours": "honors", + "hospitalisation": "hospitalization", + "hospitalise": "hospitalize", + "hospitalised": "hospitalized", + "hospitalises": "hospitalizes", + "hospitalising": "hospitalizing", + "humanise": "humanize", + "humanised": "humanized", + "humanises": "humanizes", + "humanising": "humanizing", + "humour": "humor", + "humoured": "humored", + "humouring": "humoring", + "humourless": "humorless", + "humours": "humors", + "hybridise": "hybridize", + "hybridised": "hybridized", + "hybridises": "hybridizes", + "hybridising": "hybridizing", + "hypnotise": "hypnotize", + "hypnotised": "hypnotized", + "hypnotises": "hypnotizes", + "hypnotising": "hypnotizing", + "hypothesise": "hypothesize", + "hypothesised": "hypothesized", + "hypothesises": "hypothesizes", + "hypothesising": "hypothesizing", + "idealisation": "idealization", + "idealise": "idealize", + "idealised": "idealized", + "idealises": "idealizes", + "idealising": "idealizing", + "idolise": "idolize", + "idolised": "idolized", + "idolises": "idolizes", + "idolising": "idolizing", + "immobilisation": "immobilization", + "immobilise": "immobilize", + "immobilised": "immobilized", + "immobiliser": "immobilizer", + "immobilisers": "immobilizers", + "immobilises": "immobilizes", + "immobilising": "immobilizing", + "immortalise": "immortalize", + "immortalised": "immortalized", + "immortalises": "immortalizes", + "immortalising": "immortalizing", + "immunisation": "immunization", + "immunise": "immunize", + "immunised": "immunized", + "immunises": "immunizes", + "immunising": "immunizing", + "impanelled": "impaneled", + "impanelling": "impaneling", + "imperilled": "imperiled", + "imperilling": "imperiling", + "individualise": "individualize", + "individualised": "individualized", + "individualises": "individualizes", + "individualising": "individualizing", + "industrialise": "industrialize", + "industrialised": "industrialized", + "industrialises": "industrializes", + "industrialising": "industrializing", + "inflexion": "inflection", + "inflexions": "inflections", + "initialise": "initialize", + "initialised": "initialized", + "initialises": "initializes", + "initialising": "initializing", + "initialled": "initialed", + "initialling": "initialing", + "instal": "install", + "instalment": "installment", + "instalments": "installments", + "instals": "installs", + "instil": "instill", + "instils": "instills", + "institutionalisation": "institutionalization", + "institutionalise": "institutionalize", + "institutionalised": "institutionalized", + "institutionalises": "institutionalizes", + "institutionalising": "institutionalizing", + "intellectualise": "intellectualize", + "intellectualised": "intellectualized", + "intellectualises": "intellectualizes", + "intellectualising": "intellectualizing", + "internalisation": "internalization", + "internalise": "internalize", + "internalised": "internalized", + "internalises": "internalizes", + "internalising": "internalizing", + "internationalisation": "internationalization", + "internationalise": "internationalize", + "internationalised": "internationalized", + "internationalises": "internationalizes", + "internationalising": "internationalizing", + "ionisation": "ionization", + "ionise": "ionize", + "ionised": "ionized", + "ioniser": "ionizer", + "ionisers": "ionizers", + "ionises": "ionizes", + "ionising": "ionizing", + "italicise": "italicize", + "italicised": "italicized", + "italicises": "italicizes", + "italicising": "italicizing", + "itemise": "itemize", + "itemised": "itemized", + "itemises": "itemizes", + "itemising": "itemizing", + "jeopardise": "jeopardize", + "jeopardised": "jeopardized", + "jeopardises": "jeopardizes", + "jeopardising": "jeopardizing", + "jewelled": "jeweled", + "jeweller": "jeweler", + "jewellers": "jewelers", + "jewellery": "jewelry", + "judgement": "judgment", + "kilogramme": "kilogram", + "kilogrammes": "kilograms", + "kilometre": "kilometer", + "kilometres": "kilometers", + "labelled": "labeled", + "labelling": "labeling", + "labour": "labor", + "laboured": "labored", + "labourer": "laborer", + "labourers": "laborers", + "labouring": "laboring", + "labours": "labors", + "lacklustre": "lackluster", + "legalisation": "legalization", + "legalise": "legalize", + "legalised": "legalized", + "legalises": "legalizes", + "legalising": "legalizing", + "legitimise": "legitimize", + "legitimised": "legitimized", + "legitimises": "legitimizes", + "legitimising": "legitimizing", + "leukaemia": "leukemia", + "levelled": "leveled", + "leveller": "leveler", + "levellers": "levelers", + "levelling": "leveling", + "libelled": "libeled", + "libelling": "libeling", + "libellous": "libelous", + "liberalisation": "liberalization", + "liberalise": "liberalize", + "liberalised": "liberalized", + "liberalises": "liberalizes", + "liberalising": "liberalizing", + "licence": "license", + "licenced": "licensed", + "licences": "licenses", + "licencing": "licensing", + "likeable": "likable", + "lionisation": "lionization", + "lionise": "lionize", + "lionised": "lionized", + "lionises": "lionizes", + "lionising": "lionizing", + "liquidise": "liquidize", + "liquidised": "liquidized", + "liquidiser": "liquidizer", + "liquidisers": "liquidizers", + "liquidises": "liquidizes", + "liquidising": "liquidizing", + "litre": "liter", + "litres": "liters", + "localise": "localize", + "localised": "localized", + "localises": "localizes", + "localising": "localizing", + "louvre": "louver", + "louvred": "louvered", + "louvres": "louvers", + "lustre": "luster", + "magnetise": "magnetize", + "magnetised": "magnetized", + "magnetises": "magnetizes", + "magnetising": "magnetizing", + "manoeuvrability": "maneuverability", + "manoeuvrable": "maneuverable", + "manoeuvre": "maneuver", + "manoeuvred": "maneuvered", + "manoeuvres": "maneuvers", + "manoeuvring": "maneuvering", + "manoeuvrings": "maneuverings", + "marginalisation": "marginalization", + "marginalise": "marginalize", + "marginalised": "marginalized", + "marginalises": "marginalizes", + "marginalising": "marginalizing", + "marshalled": "marshaled", + "marshalling": "marshaling", + "marvelled": "marveled", + "marvelling": "marveling", + "marvellous": "marvelous", + "marvellously": "marvelously", + "materialisation": "materialization", + "materialise": "materialize", + "materialised": "materialized", + "materialises": "materializes", + "materialising": "materializing", + "maximisation": "maximization", + "maximise": "maximize", + "maximised": "maximized", + "maximises": "maximizes", + "maximising": "maximizing", + "meagre": "meager", + "mechanisation": "mechanization", + "mechanise": "mechanize", + "mechanised": "mechanized", + "mechanises": "mechanizes", + "mechanising": "mechanizing", + "mediaeval": "medieval", + "memorialise": "memorialize", + "memorialised": "memorialized", + "memorialises": "memorializes", + "memorialising": "memorializing", + "memorise": "memorize", + "memorised": "memorized", + "memorises": "memorizes", + "memorising": "memorizing", + "mesmerise": "mesmerize", + "mesmerised": "mesmerized", + "mesmerises": "mesmerizes", + "mesmerising": "mesmerizing", + "metabolise": "metabolize", + "metabolised": "metabolized", + "metabolises": "metabolizes", + "metabolising": "metabolizing", + "metre": "meter", + "metres": "meters", + "mhm": "hmm", + "micrometre": "micrometer", + "micrometres": "micrometers", + "militarise": "militarize", + "militarised": "militarized", + "militarises": "militarizes", + "militarising": "militarizing", + "milligramme": "milligram", + "milligrammes": "milligrams", + "millilitre": "milliliter", + "millilitres": "milliliters", + "millimetre": "millimeter", + "millimetres": "millimeters", + "miniaturisation": "miniaturization", + "miniaturise": "miniaturize", + "miniaturised": "miniaturized", + "miniaturises": "miniaturizes", + "miniaturising": "miniaturizing", + "minibusses": "minibuses", + "minimise": "minimize", + "minimised": "minimized", + "minimises": "minimizes", + "minimising": "minimizing", + "misbehaviour": "misbehavior", + "misdemeanour": "misdemeanor", + "misdemeanours": "misdemeanors", + "misspelt": "misspelled", + "mitre": "miter", + "mitres": "miters", + "mm": "hmm", + "mmm": "hmm", + "mobilisation": "mobilization", + "mobilise": "mobilize", + "mobilised": "mobilized", + "mobilises": "mobilizes", + "mobilising": "mobilizing", + "modelled": "modeled", + "modeller": "modeler", + "modellers": "modelers", + "modelling": "modeling", + "modernise": "modernize", + "modernised": "modernized", + "modernises": "modernizes", + "modernising": "modernizing", + "moisturise": "moisturize", + "moisturised": "moisturized", + "moisturiser": "moisturizer", + "moisturisers": "moisturizers", + "moisturises": "moisturizes", + "moisturising": "moisturizing", + "monologue": "monolog", + "monologues": "monologs", + "monopolisation": "monopolization", + "monopolise": "monopolize", + "monopolised": "monopolized", + "monopolises": "monopolizes", + "monopolising": "monopolizing", + "moralise": "moralize", + "moralised": "moralized", + "moralises": "moralizes", + "moralising": "moralizing", + "motorised": "motorized", + "mould": "mold", + "moulded": "molded", + "moulder": "molder", + "mouldered": "moldered", + "mouldering": "moldering", + "moulders": "molders", + "mouldier": "moldier", + "mouldiest": "moldiest", + "moulding": "molding", + "mouldings": "moldings", + "moulds": "molds", + "mouldy": "moldy", + "moult": "molt", + "moulted": "molted", + "moulting": "molting", + "moults": "molts", + "moustache": "mustache", + "moustached": "mustached", + "moustaches": "mustaches", + "moustachioed": "mustachioed", + "multicoloured": "multicolored", + "nationalisation": "nationalization", + "nationalisations": "nationalizations", + "nationalise": "nationalize", + "nationalised": "nationalized", + "nationalises": "nationalizes", + "nationalising": "nationalizing", + "naturalisation": "naturalization", + "naturalise": "naturalize", + "naturalised": "naturalized", + "naturalises": "naturalizes", + "naturalising": "naturalizing", + "neighbour": "neighbor", + "neighbourhood": "neighborhood", + "neighbourhoods": "neighborhoods", + "neighbouring": "neighboring", + "neighbourliness": "neighborliness", + "neighbourly": "neighborly", + "neighbours": "neighbors", + "neutralisation": "neutralization", + "neutralise": "neutralize", + "neutralised": "neutralized", + "neutralises": "neutralizes", + "neutralising": "neutralizing", + "normalisation": "normalization", + "normalise": "normalize", + "normalised": "normalized", + "normalises": "normalizes", + "normalising": "normalizing", + "odour": "odor", + "odourless": "odorless", + "odours": "odors", + "oesophagus": "esophagus", + "oesophaguses": "esophaguses", + "oestrogen": "estrogen", + "offence": "offense", + "offences": "offenses", + "omelette": "omelet", + "omelettes": "omelets", + "optimise": "optimize", + "optimised": "optimized", + "optimises": "optimizes", + "optimising": "optimizing", + "organisation": "organization", + "organisational": "organizational", + "organisations": "organizations", + "organise": "organize", + "organised": "organized", + "organiser": "organizer", + "organisers": "organizers", + "organises": "organizes", + "organising": "organizing", + "orthopaedic": "orthopedic", + "orthopaedics": "orthopedics", + "ostracise": "ostracize", + "ostracised": "ostracized", + "ostracises": "ostracizes", + "ostracising": "ostracizing", + "outmanoeuvre": "outmaneuver", + "outmanoeuvred": "outmaneuvered", + "outmanoeuvres": "outmaneuvers", + "outmanoeuvring": "outmaneuvering", + "overemphasise": "overemphasize", + "overemphasised": "overemphasized", + "overemphasises": "overemphasizes", + "overemphasising": "overemphasizing", + "oxidisation": "oxidization", + "oxidise": "oxidize", + "oxidised": "oxidized", + "oxidises": "oxidizes", + "oxidising": "oxidizing", + "paederast": "pederast", + "paederasts": "pederasts", + "paediatric": "pediatric", + "paediatrician": "pediatrician", + "paediatricians": "pediatricians", + "paediatrics": "pediatrics", + "paedophile": "pedophile", + "paedophiles": "pedophiles", + "paedophilia": "pedophilia", + "palaeolithic": "paleolithic", + "palaeontologist": "paleontologist", + "palaeontologists": "paleontologists", + "palaeontology": "paleontology", + "panelled": "paneled", + "panelling": "paneling", + "panellist": "panelist", + "panellists": "panelists", + "paralyse": "paralyze", + "paralysed": "paralyzed", + "paralyses": "paralyzes", + "paralysing": "paralyzing", + "parcelled": "parceled", + "parcelling": "parceling", + "parlour": "parlor", + "parlours": "parlors", + "particularise": "particularize", + "particularised": "particularized", + "particularises": "particularizes", + "particularising": "particularizing", + "passivisation": "passivization", + "passivise": "passivize", + "passivised": "passivized", + "passivises": "passivizes", + "passivising": "passivizing", + "pasteurisation": "pasteurization", + "pasteurise": "pasteurize", + "pasteurised": "pasteurized", + "pasteurises": "pasteurizes", + "pasteurising": "pasteurizing", + "patronise": "patronize", + "patronised": "patronized", + "patronises": "patronizes", + "patronising": "patronizing", + "patronisingly": "patronizingly", + "pedalled": "pedaled", + "pedalling": "pedaling", + "pedestrianisation": "pedestrianization", + "pedestrianise": "pedestrianize", + "pedestrianised": "pedestrianized", + "pedestrianises": "pedestrianizes", + "pedestrianising": "pedestrianizing", + "penalise": "penalize", + "penalised": "penalized", + "penalises": "penalizes", + "penalising": "penalizing", + "pencilled": "penciled", + "pencilling": "penciling", + "personalise": "personalize", + "personalised": "personalized", + "personalises": "personalizes", + "personalising": "personalizing", + "pharmacopoeia": "pharmacopeia", + "pharmacopoeias": "pharmacopeias", + "philosophise": "philosophize", + "philosophised": "philosophized", + "philosophises": "philosophizes", + "philosophising": "philosophizing", + "philtre": "filter", + "philtres": "filters", + "phoney": "phony", + "plagiarise": "plagiarize", + "plagiarised": "plagiarized", + "plagiarises": "plagiarizes", + "plagiarising": "plagiarizing", + "plough": "plow", + "ploughed": "plowed", + "ploughing": "plowing", + "ploughman": "plowman", + "ploughmen": "plowmen", + "ploughs": "plows", + "ploughshare": "plowshare", + "ploughshares": "plowshares", + "polarisation": "polarization", + "polarise": "polarize", + "polarised": "polarized", + "polarises": "polarizes", + "polarising": "polarizing", + "politicisation": "politicization", + "politicise": "politicize", + "politicised": "politicized", + "politicises": "politicizes", + "politicising": "politicizing", + "popularisation": "popularization", + "popularise": "popularize", + "popularised": "popularized", + "popularises": "popularizes", + "popularising": "popularizing", + "pouffe": "pouf", + "pouffes": "poufs", + "practise": "practice", + "practised": "practiced", + "practises": "practices", + "practising": "practicing", + "praesidium": "presidium", + "praesidiums": "presidiums", + "pressurisation": "pressurization", + "pressurise": "pressurize", + "pressurised": "pressurized", + "pressurises": "pressurizes", + "pressurising": "pressurizing", + "pretence": "pretense", + "pretences": "pretenses", + "primaeval": "primeval", + "prioritisation": "prioritization", + "prioritise": "prioritize", + "prioritised": "prioritized", + "prioritises": "prioritizes", + "prioritising": "prioritizing", + "privatisation": "privatization", + "privatisations": "privatizations", + "privatise": "privatize", + "privatised": "privatized", + "privatises": "privatizes", + "privatising": "privatizing", + "professionalisation": "professionalization", + "professionalise": "professionalize", + "professionalised": "professionalized", + "professionalises": "professionalizes", + "professionalising": "professionalizing", + "programme": "program", + "programmes": "programs", + "prologue": "prolog", + "prologues": "prologs", + "propagandise": "propagandize", + "propagandised": "propagandized", + "propagandises": "propagandizes", + "propagandising": "propagandizing", + "proselytise": "proselytize", + "proselytised": "proselytized", + "proselytiser": "proselytizer", + "proselytisers": "proselytizers", + "proselytises": "proselytizes", + "proselytising": "proselytizing", + "psychoanalyse": "psychoanalyze", + "psychoanalysed": "psychoanalyzed", + "psychoanalyses": "psychoanalyzes", + "psychoanalysing": "psychoanalyzing", + "publicise": "publicize", + "publicised": "publicized", + "publicises": "publicizes", + "publicising": "publicizing", + "pulverisation": "pulverization", + "pulverise": "pulverize", + "pulverised": "pulverized", + "pulverises": "pulverizes", + "pulverising": "pulverizing", + "pummelled": "pummel", + "pummelling": "pummeled", + "pyjama": "pajama", + "pyjamas": "pajamas", + "pzazz": "pizzazz", + "quarrelled": "quarreled", + "quarrelling": "quarreling", + "radicalise": "radicalize", + "radicalised": "radicalized", + "radicalises": "radicalizes", + "radicalising": "radicalizing", + "rancour": "rancor", + "randomise": "randomize", + "randomised": "randomized", + "randomises": "randomizes", + "randomising": "randomizing", + "rationalisation": "rationalization", + "rationalisations": "rationalizations", + "rationalise": "rationalize", + "rationalised": "rationalized", + "rationalises": "rationalizes", + "rationalising": "rationalizing", + "ravelled": "raveled", + "ravelling": "raveling", + "realisable": "realizable", + "realisation": "realization", + "realisations": "realizations", + "realise": "realize", + "realised": "realized", + "realises": "realizes", + "realising": "realizing", + "recognisable": "recognizable", + "recognisably": "recognizably", + "recognisance": "recognizance", + "recognise": "recognize", + "recognised": "recognized", + "recognises": "recognizes", + "recognising": "recognizing", + "reconnoitre": "reconnoiter", + "reconnoitred": "reconnoitered", + "reconnoitres": "reconnoiters", + "reconnoitring": "reconnoitering", + "refuelled": "refueled", + "refuelling": "refueling", + "regularisation": "regularization", + "regularise": "regularize", + "regularised": "regularized", + "regularises": "regularizes", + "regularising": "regularizing", + "remodelled": "remodeled", + "remodelling": "remodeling", + "remould": "remold", + "remoulded": "remolded", + "remoulding": "remolding", + "remoulds": "remolds", + "reorganisation": "reorganization", + "reorganisations": "reorganizations", + "reorganise": "reorganize", + "reorganised": "reorganized", + "reorganises": "reorganizes", + "reorganising": "reorganizing", + "revelled": "reveled", + "reveller": "reveler", + "revellers": "revelers", + "revelling": "reveling", + "revitalise": "revitalize", + "revitalised": "revitalized", + "revitalises": "revitalizes", + "revitalising": "revitalizing", + "revolutionise": "revolutionize", + "revolutionised": "revolutionized", + "revolutionises": "revolutionizes", + "revolutionising": "revolutionizing", + "rhapsodise": "rhapsodize", + "rhapsodised": "rhapsodized", + "rhapsodises": "rhapsodizes", + "rhapsodising": "rhapsodizing", + "rigour": "rigor", + "rigours": "rigors", + "ritualised": "ritualized", + "rivalled": "rivaled", + "rivalling": "rivaling", + "romanticise": "romanticize", + "romanticised": "romanticized", + "romanticises": "romanticizes", + "romanticising": "romanticizing", + "rumour": "rumor", + "rumoured": "rumored", + "rumours": "rumors", + "sabre": "saber", + "sabres": "sabers", + "saltpetre": "saltpeter", + "sanitise": "sanitize", + "sanitised": "sanitized", + "sanitises": "sanitizes", + "sanitising": "sanitizing", + "satirise": "satirize", + "satirised": "satirized", + "satirises": "satirizes", + "satirising": "satirizing", + "saviour": "savior", + "saviours": "saviors", + "savour": "savor", + "savoured": "savored", + "savouries": "savories", + "savouring": "savoring", + "savours": "savors", + "savoury": "savory", + "scandalise": "scandalize", + "scandalised": "scandalized", + "scandalises": "scandalizes", + "scandalising": "scandalizing", + "sceptic": "skeptic", + "sceptical": "skeptical", + "sceptically": "skeptically", + "scepticism": "skepticism", + "sceptics": "skeptics", + "sceptre": "scepter", + "sceptres": "scepters", + "scrutinise": "scrutinize", + "scrutinised": "scrutinized", + "scrutinises": "scrutinizes", + "scrutinising": "scrutinizing", + "secularisation": "secularization", + "secularise": "secularize", + "secularised": "secularized", + "secularises": "secularizes", + "secularising": "secularizing", + "sensationalise": "sensationalize", + "sensationalised": "sensationalized", + "sensationalises": "sensationalizes", + "sensationalising": "sensationalizing", + "sensitise": "sensitize", + "sensitised": "sensitized", + "sensitises": "sensitizes", + "sensitising": "sensitizing", + "sentimentalise": "sentimentalize", + "sentimentalised": "sentimentalized", + "sentimentalises": "sentimentalizes", + "sentimentalising": "sentimentalizing", + "sepulchre": "sepulcher", + "sepulchres": "sepulchers", + "serialisation": "serialization", + "serialisations": "serializations", + "serialise": "serialize", + "serialised": "serialized", + "serialises": "serializes", + "serialising": "serializing", + "sermonise": "sermonize", + "sermonised": "sermonized", + "sermonises": "sermonizes", + "sermonising": "sermonizing", + "sheikh": "sheik", + "shovelled": "shoveled", + "shovelling": "shoveling", + "shrivelled": "shriveled", + "shrivelling": "shriveling", + "signalise": "signalize", + "signalised": "signalized", + "signalises": "signalizes", + "signalising": "signalizing", + "signalled": "signaled", + "signalling": "signaling", + "smoulder": "smolder", + "smouldered": "smoldered", + "smouldering": "smoldering", + "smoulders": "smolders", + "snivelled": "sniveled", + "snivelling": "sniveling", + "snorkelled": "snorkeled", + "snorkelling": "snorkeling", + "snowplough": "snowplow", + "snowploughs": "snowplow", + "socialisation": "socialization", + "socialise": "socialize", + "socialised": "socialized", + "socialises": "socializes", + "socialising": "socializing", + "sodomise": "sodomize", + "sodomised": "sodomized", + "sodomises": "sodomizes", + "sodomising": "sodomizing", + "solemnise": "solemnize", + "solemnised": "solemnized", + "solemnises": "solemnizes", + "solemnising": "solemnizing", + "sombre": "somber", + "specialisation": "specialization", + "specialisations": "specializations", + "specialise": "specialize", + "specialised": "specialized", + "specialises": "specializes", + "specialising": "specializing", + "spectre": "specter", + "spectres": "specters", + "spiralled": "spiraled", + "spiralling": "spiraling", + "splendour": "splendor", + "splendours": "splendors", + "squirrelled": "squirreled", + "squirrelling": "squirreling", + "stabilisation": "stabilization", + "stabilise": "stabilize", + "stabilised": "stabilized", + "stabiliser": "stabilizer", + "stabilisers": "stabilizers", + "stabilises": "stabilizes", + "stabilising": "stabilizing", + "standardisation": "standardization", + "standardise": "standardize", + "standardised": "standardized", + "standardises": "standardizes", + "standardising": "standardizing", + "stencilled": "stenciled", + "stencilling": "stenciling", + "sterilisation": "sterilization", + "sterilisations": "sterilizations", + "sterilise": "sterilize", + "sterilised": "sterilized", + "steriliser": "sterilizer", + "sterilisers": "sterilizers", + "sterilises": "sterilizes", + "sterilising": "sterilizing", + "stigmatisation": "stigmatization", + "stigmatise": "stigmatize", + "stigmatised": "stigmatized", + "stigmatises": "stigmatizes", + "stigmatising": "stigmatizing", + "storey": "story", + "storeys": "stories", + "subsidisation": "subsidization", + "subsidise": "subsidize", + "subsidised": "subsidized", + "subsidiser": "subsidizer", + "subsidisers": "subsidizers", + "subsidises": "subsidizes", + "subsidising": "subsidizing", + "succour": "succor", + "succoured": "succored", + "succouring": "succoring", + "succours": "succors", + "sulphate": "sulfate", + "sulphates": "sulfates", + "sulphide": "sulfide", + "sulphides": "sulfides", + "sulphur": "sulfur", + "sulphurous": "sulfurous", + "summarise": "summarize", + "summarised": "summarized", + "summarises": "summarizes", + "summarising": "summarizing", + "swivelled": "swiveled", + "swivelling": "swiveling", + "symbolise": "symbolize", + "symbolised": "symbolized", + "symbolises": "symbolizes", + "symbolising": "symbolizing", + "sympathise": "sympathize", + "sympathised": "sympathized", + "sympathiser": "sympathizer", + "sympathisers": "sympathizers", + "sympathises": "sympathizes", + "sympathising": "sympathizing", + "synchronisation": "synchronization", + "synchronise": "synchronize", + "synchronised": "synchronized", + "synchronises": "synchronizes", + "synchronising": "synchronizing", + "synthesise": "synthesize", + "synthesised": "synthesized", + "synthesiser": "synthesizer", + "synthesisers": "synthesizers", + "synthesises": "synthesizes", + "synthesising": "synthesizing", + "syphon": "siphon", + "syphoned": "siphoned", + "syphoning": "siphoning", + "syphons": "siphons", + "systematisation": "systematization", + "systematise": "systematize", + "systematised": "systematized", + "systematises": "systematizes", + "systematising": "systematizing", + "tantalise": "tantalize", + "tantalised": "tantalized", + "tantalises": "tantalizes", + "tantalising": "tantalizing", + "tantalisingly": "tantalizingly", + "tasselled": "tasseled", + "technicolour": "technicolor", + "temporise": "temporize", + "temporised": "temporized", + "temporises": "temporizes", + "temporising": "temporizing", + "tenderise": "tenderize", + "tenderised": "tenderized", + "tenderises": "tenderizes", + "tenderising": "tenderizing", + "terrorise": "terrorize", + "terrorised": "terrorized", + "terrorises": "terrorizes", + "terrorising": "terrorizing", + "theatre": "theater", + "theatregoer": "theatergoer", + "theatregoers": "theatergoers", + "theatres": "theaters", + "theorise": "theorize", + "theorised": "theorized", + "theorises": "theorizes", + "theorising": "theorizing", + "tonne": "ton", + "tonnes": "tons", + "towelled": "toweled", + "towelling": "toweling", + "toxaemia": "toxemia", + "tranquillise": "tranquilize", + "tranquillised": "tranquilized", + "tranquilliser": "tranquilizer", + "tranquillisers": "tranquilizers", + "tranquillises": "tranquilizes", + "tranquillising": "tranquilizing", + "tranquillity": "tranquility", + "tranquillize": "tranquilize", + "tranquillized": "tranquilized", + "tranquillizer": "tranquilizer", + "tranquillizers": "tranquilizers", + "tranquillizes": "tranquilizes", + "tranquillizing": "tranquilizing", + "tranquilly": "tranquility", + "transistorised": "transistorized", + "traumatise": "traumatize", + "traumatised": "traumatized", + "traumatises": "traumatizes", + "traumatising": "traumatizing", + "travelled": "traveled", + "traveller": "traveler", + "travellers": "travelers", + "travelling": "traveling", + "travelog": "travelogue", + "travelogs": "travelogues", + "trialled": "trialed", + "trialling": "trialing", + "tricolour": "tricolor", + "tricolours": "tricolors", + "trivialise": "trivialize", + "trivialised": "trivialized", + "trivialises": "trivializes", + "trivialising": "trivializing", + "tumour": "tumor", + "tumours": "tumors", + "tunnelled": "tunneled", + "tunnelling": "tunneling", + "tyrannise": "tyrannize", + "tyrannised": "tyrannized", + "tyrannises": "tyrannizes", + "tyrannising": "tyrannizing", + "tyre": "tire", + "tyres": "tires", + "unauthorised": "unauthorized", + "uncivilised": "uncivilized", + "underutilised": "underutilized", + "unequalled": "unequaled", + "unfavourable": "unfavorable", + "unfavourably": "unfavorably", + "unionisation": "unionization", + "unionise": "unionize", + "unionised": "unionized", + "unionises": "unionizes", + "unionising": "unionizing", + "unorganised": "unorganized", + "unravelled": "unraveled", + "unravelling": "unraveling", + "unrecognisable": "unrecognizable", + "unrecognised": "unrecognized", + "unrivalled": "unrivaled", + "unsavoury": "unsavory", + "untrammelled": "untrammeled", + "urbanisation": "urbanization", + "urbanise": "urbanize", + "urbanised": "urbanized", + "urbanises": "urbanizes", + "urbanising": "urbanizing", + "utilisable": "utilizable", + "utilisation": "utilization", + "utilise": "utilize", + "utilised": "utilized", + "utilises": "utilizes", + "utilising": "utilizing", + "valour": "valor", + "vandalise": "vandalize", + "vandalised": "vandalized", + "vandalises": "vandalizes", + "vandalising": "vandalizing", + "vaporisation": "vaporization", + "vaporise": "vaporize", + "vaporised": "vaporized", + "vaporises": "vaporizes", + "vaporising": "vaporizing", + "vapour": "vapor", + "vapours": "vapors", + "verbalise": "verbalize", + "verbalised": "verbalized", + "verbalises": "verbalizes", + "verbalising": "verbalizing", + "victimisation": "victimization", + "victimise": "victimize", + "victimised": "victimized", + "victimises": "victimizes", + "victimising": "victimizing", + "videodisc": "videodisk", + "videodiscs": "videodisks", + "vigour": "vigor", + "visualisation": "visualization", + "visualisations": "visualizations", + "visualise": "visualize", + "visualised": "visualized", + "visualises": "visualizes", + "visualising": "visualizing", + "vocalisation": "vocalization", + "vocalisations": "vocalizations", + "vocalise": "vocalize", + "vocalised": "vocalized", + "vocalises": "vocalizes", + "vocalising": "vocalizing", + "vulcanised": "vulcanized", + "vulgarisation": "vulgarization", + "vulgarise": "vulgarize", + "vulgarised": "vulgarized", + "vulgarises": "vulgarizes", + "vulgarising": "vulgarizing", + "waggon": "wagon", + "waggons": "wagons", + "watercolour": "watercolor", + "watercolours": "watercolors", + "weaselled": "weaseled", + "weaselling": "weaseling", + "westernisation": "westernization", + "westernise": "westernize", + "westernised": "westernized", + "westernises": "westernizes", + "westernising": "westernizing", + "womanise": "womanize", + "womanised": "womanized", + "womaniser": "womanizer", + "womanisers": "womanizers", + "womanises": "womanizes", + "womanising": "womanizing", + "woollen": "woolen", + "woollens": "woolens", + "woollies": "woolies", + "woolly": "wooly", + "worshipped": "worshiped", + "worshipper": "worshiper", + "worshipping": "worshiping", + "yodelled": "yodeled", + "yodelling": "yodeling", + "yoghourt": "yogurt", + "yoghourts": "yogurts", + "yoghurt": "yogurt", + "yoghurts": "yogurts" +} diff --git a/distil-large-v3-init/preprocessor_config.json b/distil-large-v3-init/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..931c77a740890c46365c7ae0c9d350ba3cca908f --- /dev/null +++ b/distil-large-v3-init/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 128, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/distil-large-v3-init/special_tokens_map.json b/distil-large-v3-init/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..312bc106291bb51bf2cc1648df070bef963a0639 --- /dev/null +++ b/distil-large-v3-init/special_tokens_map.json @@ -0,0 +1,139 @@ +{ + "additional_special_tokens": [ + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|yue|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nospeech|>", + "<|notimestamps|>" + ], + "bos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/distil-large-v3-init/tokenizer_config.json b/distil-large-v3-init/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..06ffdc8308eae6bb7bd1fdd81e94b0a881a539ab --- /dev/null +++ b/distil-large-v3-init/tokenizer_config.json @@ -0,0 +1,12996 @@ +{ + "add_prefix_space": false, + "added_tokens_decoder": { + "50257": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50258": { + "content": "<|startoftranscript|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50259": { + "content": "<|en|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50260": { + "content": "<|zh|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50261": { + "content": "<|de|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50262": { + "content": "<|es|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50263": { + "content": "<|ru|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50264": { + "content": "<|ko|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50265": { + "content": "<|fr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50266": { + "content": "<|ja|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50267": { + "content": "<|pt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50268": { + "content": "<|tr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50269": { + "content": "<|pl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50270": { + "content": "<|ca|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50271": { + "content": "<|nl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50272": { + "content": "<|ar|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50273": { + "content": "<|sv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50274": { + "content": "<|it|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50275": { + "content": "<|id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50276": { + "content": "<|hi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50277": { + "content": "<|fi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50278": { + "content": "<|vi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50279": { + "content": "<|he|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50280": { + "content": "<|uk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50281": { + "content": "<|el|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50282": { + "content": "<|ms|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50283": { + "content": "<|cs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50284": { + "content": "<|ro|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50285": { + "content": "<|da|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50286": { + "content": "<|hu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50287": { + "content": "<|ta|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50288": { + "content": "<|no|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50289": { + "content": "<|th|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50290": { + "content": "<|ur|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50291": { + "content": "<|hr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50292": { + "content": "<|bg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50293": { + "content": "<|lt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50294": { + "content": "<|la|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50295": { + "content": "<|mi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50296": { + "content": "<|ml|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50297": { + "content": "<|cy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50298": { + "content": "<|sk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50299": { + "content": "<|te|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50300": { + "content": "<|fa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50301": { + "content": "<|lv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50302": { + "content": "<|bn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50303": { + "content": "<|sr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50304": { + "content": "<|az|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50305": { + "content": "<|sl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50306": { + "content": "<|kn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50307": { + "content": "<|et|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50308": { + "content": "<|mk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50309": { + "content": "<|br|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50310": { + "content": "<|eu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50311": { + "content": "<|is|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50312": { + "content": "<|hy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50313": { + "content": "<|ne|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50314": { + "content": "<|mn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50315": { + "content": "<|bs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50316": { + "content": "<|kk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50317": { + "content": "<|sq|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50318": { + "content": "<|sw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50319": { + "content": "<|gl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50320": { + "content": "<|mr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50321": { + "content": "<|pa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50322": { + "content": "<|si|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50323": { + "content": "<|km|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50324": { + "content": "<|sn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50325": { + "content": "<|yo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50326": { + "content": "<|so|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50327": { + "content": "<|af|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50328": { + "content": "<|oc|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50329": { + "content": "<|ka|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50330": { + "content": "<|be|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50331": { + "content": "<|tg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50332": { + "content": "<|sd|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50333": { + "content": "<|gu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50334": { + "content": "<|am|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50335": { + "content": "<|yi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50336": { + "content": "<|lo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50337": { + "content": "<|uz|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50338": { + "content": "<|fo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50339": { + "content": "<|ht|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50340": { + "content": "<|ps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50341": { + "content": "<|tk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50342": { + "content": "<|nn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50343": { + "content": "<|mt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50344": { + "content": "<|sa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50345": { + "content": "<|lb|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50346": { + "content": "<|my|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50347": { + "content": "<|bo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50348": { + "content": "<|tl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50349": { + "content": "<|mg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50350": { + "content": "<|as|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50351": { + "content": "<|tt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50352": { + "content": "<|haw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50353": { + "content": "<|ln|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50354": { + "content": "<|ha|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50355": { + "content": "<|ba|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50356": { + "content": "<|jw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50357": { + "content": "<|su|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50358": { + "content": "<|yue|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50359": { + "content": "<|translate|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50360": { + "content": "<|transcribe|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50361": { + "content": "<|startoflm|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50362": { + "content": "<|startofprev|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50363": { + "content": "<|nospeech|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50364": { + "content": "<|notimestamps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50365": { + "content": "<|0.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50366": { + "content": "<|0.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50367": { + "content": "<|0.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50368": { + "content": "<|0.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50369": { + "content": "<|0.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50370": { + "content": "<|0.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50371": { + "content": "<|0.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50372": { + "content": "<|0.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50373": { + "content": "<|0.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50374": { + "content": "<|0.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50375": { + "content": "<|0.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50376": { + "content": "<|0.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50377": { + "content": "<|0.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50378": { + "content": "<|0.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50379": { + "content": "<|0.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50380": { + "content": "<|0.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50381": { + "content": "<|0.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50382": { + "content": "<|0.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50383": { + "content": "<|0.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50384": { + "content": "<|0.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50385": { + "content": "<|0.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50386": { + "content": "<|0.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50387": { + "content": "<|0.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50388": { + "content": "<|0.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50389": { + "content": "<|0.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50390": { + "content": "<|0.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50391": { + "content": "<|0.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50392": { + "content": "<|0.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50393": { + "content": "<|0.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50394": { + "content": "<|0.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50395": { + "content": "<|0.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50396": { + "content": "<|0.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50397": { + "content": "<|0.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50398": { + "content": "<|0.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50399": { + "content": "<|0.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50400": { + "content": "<|0.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50401": { + "content": "<|0.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50402": { + "content": "<|0.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50403": { + "content": "<|0.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50404": { + "content": "<|0.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50405": { + "content": "<|0.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50406": { + "content": "<|0.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50407": { + "content": "<|0.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50408": { + "content": "<|0.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50409": { + "content": "<|0.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50410": { + "content": "<|0.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50411": { + "content": "<|0.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50412": { + "content": "<|0.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50413": { + "content": "<|0.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50414": { + "content": "<|0.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50415": { + "content": "<|1.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50416": { + "content": "<|1.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50417": { + "content": "<|1.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50418": { + "content": "<|1.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50419": { + "content": "<|1.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50420": { + "content": "<|1.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50421": { + "content": "<|1.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50422": { + "content": "<|1.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50423": { + "content": "<|1.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50424": { + "content": "<|1.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50425": { + "content": "<|1.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50426": { + "content": "<|1.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50427": { + "content": "<|1.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50428": { + "content": "<|1.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50429": { + "content": "<|1.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50430": { + "content": "<|1.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50431": { + "content": "<|1.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50432": { + "content": "<|1.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50433": { + "content": "<|1.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50434": { + "content": "<|1.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50435": { + "content": "<|1.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50436": { + "content": "<|1.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50437": { + "content": "<|1.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50438": { + "content": "<|1.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50439": { + "content": "<|1.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50440": { + "content": "<|1.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50441": { + "content": "<|1.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50442": { + "content": "<|1.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50443": { + "content": "<|1.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50444": { + "content": "<|1.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50445": { + "content": "<|1.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50446": { + "content": "<|1.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50447": { + "content": "<|1.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50448": { + "content": "<|1.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50449": { + "content": "<|1.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50450": { + "content": "<|1.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50451": { + "content": "<|1.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50452": { + "content": "<|1.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50453": { + "content": "<|1.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50454": { + "content": "<|1.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50455": { + "content": "<|1.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50456": { + "content": "<|1.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50457": { + "content": "<|1.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50458": { + "content": "<|1.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50459": { + "content": "<|1.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50460": { + "content": "<|1.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50461": { + "content": "<|1.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50462": { + "content": "<|1.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50463": { + "content": "<|1.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50464": { + "content": "<|1.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50465": { + "content": "<|2.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50466": { + "content": "<|2.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50467": { + "content": "<|2.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50468": { + "content": "<|2.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50469": { + "content": "<|2.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50470": { + "content": "<|2.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50471": { + "content": "<|2.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50472": { + "content": "<|2.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50473": { + "content": "<|2.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50474": { + "content": "<|2.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50475": { + "content": "<|2.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50476": { + "content": "<|2.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50477": { + "content": "<|2.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50478": { + "content": "<|2.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50479": { + "content": "<|2.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50480": { + "content": "<|2.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50481": { + "content": "<|2.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50482": { + "content": "<|2.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50483": { + "content": "<|2.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50484": { + "content": "<|2.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50485": { + "content": "<|2.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50486": { + "content": "<|2.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50487": { + "content": "<|2.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50488": { + "content": "<|2.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50489": { + "content": "<|2.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50490": { + "content": "<|2.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50491": { + "content": "<|2.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50492": { + "content": "<|2.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50493": { + "content": "<|2.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50494": { + "content": "<|2.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50495": { + "content": "<|2.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50496": { + "content": "<|2.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50497": { + "content": "<|2.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50498": { + "content": "<|2.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50499": { + "content": "<|2.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50500": { + "content": "<|2.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50501": { + "content": "<|2.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50502": { + "content": "<|2.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50503": { + "content": "<|2.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50504": { + "content": "<|2.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50505": { + "content": "<|2.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50506": { + "content": "<|2.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50507": { + "content": "<|2.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50508": { + "content": "<|2.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50509": { + "content": "<|2.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50510": { + "content": "<|2.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50511": { + "content": "<|2.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50512": { + "content": "<|2.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50513": { + "content": "<|2.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50514": { + "content": "<|2.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50515": { + "content": "<|3.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50516": { + "content": "<|3.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50517": { + "content": "<|3.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50518": { + "content": "<|3.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50519": { + "content": "<|3.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50520": { + "content": "<|3.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50521": { + "content": "<|3.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50522": { + "content": "<|3.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50523": { + "content": "<|3.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50524": { + "content": "<|3.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50525": { + "content": "<|3.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50526": { + "content": "<|3.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50527": { + "content": "<|3.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50528": { + "content": "<|3.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50529": { + "content": "<|3.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50530": { + "content": "<|3.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50531": { + "content": "<|3.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50532": { + "content": "<|3.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50533": { + "content": "<|3.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50534": { + "content": "<|3.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50535": { + "content": "<|3.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50536": { + "content": "<|3.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50537": { + "content": "<|3.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50538": { + "content": "<|3.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50539": { + "content": "<|3.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50540": { + "content": "<|3.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50541": { + "content": "<|3.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50542": { + "content": "<|3.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50543": { + "content": "<|3.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50544": { + "content": "<|3.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50545": { + "content": "<|3.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50546": { + "content": "<|3.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50547": { + "content": "<|3.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50548": { + "content": "<|3.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50549": { + "content": "<|3.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50550": { + "content": "<|3.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50551": { + "content": "<|3.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50552": { + "content": "<|3.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50553": { + "content": "<|3.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50554": { + "content": "<|3.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50555": { + "content": "<|3.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50556": { + "content": "<|3.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50557": { + "content": "<|3.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50558": { + "content": "<|3.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50559": { + "content": "<|3.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50560": { + "content": "<|3.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50561": { + "content": "<|3.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50562": { + "content": "<|3.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50563": { + "content": "<|3.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50564": { + "content": "<|3.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50565": { + "content": "<|4.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50566": { + "content": "<|4.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50567": { + "content": "<|4.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50568": { + "content": "<|4.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50569": { + "content": "<|4.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50570": { + "content": "<|4.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50571": { + "content": "<|4.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50572": { + "content": "<|4.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50573": { + "content": "<|4.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50574": { + "content": "<|4.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50575": { + "content": "<|4.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50576": { + "content": "<|4.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50577": { + "content": "<|4.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50578": { + "content": "<|4.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50579": { + "content": "<|4.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50580": { + "content": "<|4.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50581": { + "content": "<|4.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50582": { + "content": "<|4.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50583": { + "content": "<|4.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50584": { + "content": "<|4.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50585": { + "content": "<|4.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50586": { + "content": "<|4.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50587": { + "content": "<|4.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50588": { + "content": "<|4.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50589": { + "content": "<|4.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50590": { + "content": "<|4.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50591": { + "content": "<|4.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50592": { + "content": "<|4.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50593": { + "content": "<|4.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50594": { + "content": "<|4.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50595": { + "content": "<|4.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50596": { + "content": "<|4.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50597": { + "content": "<|4.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50598": { + "content": "<|4.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50599": { + "content": "<|4.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50600": { + "content": "<|4.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50601": { + "content": "<|4.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50602": { + "content": "<|4.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50603": { + "content": "<|4.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50604": { + "content": "<|4.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50605": { + "content": "<|4.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50606": { + "content": "<|4.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50607": { + "content": "<|4.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50608": { + "content": "<|4.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50609": { + "content": "<|4.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50610": { + "content": "<|4.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50611": { + "content": "<|4.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50612": { + "content": "<|4.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50613": { + "content": "<|4.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50614": { + "content": "<|4.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50615": { + "content": "<|5.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50616": { + "content": "<|5.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50617": { + "content": "<|5.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50618": { + "content": "<|5.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50619": { + "content": "<|5.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50620": { + "content": "<|5.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50621": { + "content": "<|5.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50622": { + "content": "<|5.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50623": { + "content": "<|5.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50624": { + "content": "<|5.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50625": { + "content": "<|5.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50626": { + "content": "<|5.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50627": { + "content": "<|5.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50628": { + "content": "<|5.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50629": { + "content": "<|5.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50630": { + "content": "<|5.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50631": { + "content": "<|5.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50632": { + "content": "<|5.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50633": { + "content": "<|5.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50634": { + "content": "<|5.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50635": { + "content": "<|5.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50636": { + "content": "<|5.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50637": { + "content": "<|5.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50638": { + "content": "<|5.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50639": { + "content": "<|5.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50640": { + "content": "<|5.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50641": { + "content": "<|5.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50642": { + "content": "<|5.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50643": { + "content": "<|5.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50644": { + "content": "<|5.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50645": { + "content": "<|5.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50646": { + "content": "<|5.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50647": { + "content": "<|5.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50648": { + "content": "<|5.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50649": { + "content": "<|5.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50650": { + "content": "<|5.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50651": { + "content": "<|5.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50652": { + "content": "<|5.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50653": { + "content": "<|5.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50654": { + "content": "<|5.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50655": { + "content": "<|5.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50656": { + "content": "<|5.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50657": { + "content": "<|5.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50658": { + "content": "<|5.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50659": { + "content": "<|5.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50660": { + "content": "<|5.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50661": { + "content": "<|5.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50662": { + "content": "<|5.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50663": { + "content": "<|5.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50664": { + "content": "<|5.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50665": { + "content": "<|6.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50666": { + "content": "<|6.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50667": { + "content": "<|6.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50668": { + "content": "<|6.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50669": { + "content": "<|6.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50670": { + "content": "<|6.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50671": { + "content": "<|6.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50672": { + "content": "<|6.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50673": { + "content": "<|6.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50674": { + "content": "<|6.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50675": { + "content": "<|6.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50676": { + "content": "<|6.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50677": { + "content": "<|6.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50678": { + "content": "<|6.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50679": { + "content": "<|6.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50680": { + "content": "<|6.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50681": { + "content": "<|6.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50682": { + "content": "<|6.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50683": { + "content": "<|6.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50684": { + "content": "<|6.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50685": { + "content": "<|6.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50686": { + "content": "<|6.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50687": { + "content": "<|6.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50688": { + "content": "<|6.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50689": { + "content": "<|6.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50690": { + "content": "<|6.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50691": { + "content": "<|6.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50692": { + "content": "<|6.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50693": { + "content": "<|6.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50694": { + "content": "<|6.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50695": { + "content": "<|6.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50696": { + "content": "<|6.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50697": { + "content": "<|6.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50698": { + "content": "<|6.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50699": { + "content": "<|6.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50700": { + "content": "<|6.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50701": { + "content": "<|6.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50702": { + "content": "<|6.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50703": { + "content": "<|6.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50704": { + "content": "<|6.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50705": { + "content": "<|6.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50706": { + "content": "<|6.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50707": { + "content": "<|6.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50708": { + "content": "<|6.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50709": { + "content": "<|6.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50710": { + "content": "<|6.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50711": { + "content": "<|6.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50712": { + "content": "<|6.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50713": { + "content": "<|6.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50714": { + "content": "<|6.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50715": { + "content": "<|7.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50716": { + "content": "<|7.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50717": { + "content": "<|7.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50718": { + "content": "<|7.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50719": { + "content": "<|7.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50720": { + "content": "<|7.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50721": { + "content": "<|7.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50722": { + "content": "<|7.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50723": { + "content": "<|7.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50724": { + "content": "<|7.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50725": { + "content": "<|7.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50726": { + "content": "<|7.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50727": { + "content": "<|7.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50728": { + "content": "<|7.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50729": { + "content": "<|7.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50730": { + "content": "<|7.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50731": { + "content": "<|7.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50732": { + "content": "<|7.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50733": { + "content": "<|7.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50734": { + "content": "<|7.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50735": { + "content": "<|7.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50736": { + "content": "<|7.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50737": { + "content": "<|7.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50738": { + "content": "<|7.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50739": { + "content": "<|7.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50740": { + "content": "<|7.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50741": { + "content": "<|7.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50742": { + "content": "<|7.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50743": { + "content": "<|7.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50744": { + "content": "<|7.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50745": { + "content": "<|7.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50746": { + "content": "<|7.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50747": { + "content": "<|7.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50748": { + "content": "<|7.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50749": { + "content": "<|7.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50750": { + "content": "<|7.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50751": { + "content": "<|7.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50752": { + "content": "<|7.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50753": { + "content": "<|7.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50754": { + "content": "<|7.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50755": { + "content": "<|7.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50756": { + "content": "<|7.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50757": { + "content": "<|7.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50758": { + "content": "<|7.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50759": { + "content": "<|7.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50760": { + "content": "<|7.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50761": { + "content": "<|7.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50762": { + "content": "<|7.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50763": { + "content": "<|7.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50764": { + "content": "<|7.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50765": { + "content": "<|8.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50766": { + "content": "<|8.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50767": { + "content": "<|8.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50768": { + "content": "<|8.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50769": { + "content": "<|8.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50770": { + "content": "<|8.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50771": { + "content": "<|8.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50772": { + "content": "<|8.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50773": { + "content": "<|8.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50774": { + "content": "<|8.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50775": { + "content": "<|8.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50776": { + "content": "<|8.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50777": { + "content": "<|8.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50778": { + "content": "<|8.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50779": { + "content": "<|8.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50780": { + "content": "<|8.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50781": { + "content": "<|8.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50782": { + "content": "<|8.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50783": { + "content": "<|8.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50784": { + "content": "<|8.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50785": { + "content": "<|8.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50786": { + "content": "<|8.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50787": { + "content": "<|8.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50788": { + "content": "<|8.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50789": { + "content": "<|8.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50790": { + "content": "<|8.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50791": { + "content": "<|8.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50792": { + "content": "<|8.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50793": { + "content": "<|8.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50794": { + "content": "<|8.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50795": { + "content": "<|8.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50796": { + "content": "<|8.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50797": { + "content": "<|8.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50798": { + "content": "<|8.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50799": { + "content": "<|8.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50800": { + "content": "<|8.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50801": { + "content": "<|8.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50802": { + "content": "<|8.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50803": { + "content": "<|8.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50804": { + "content": "<|8.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50805": { + "content": "<|8.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50806": { + "content": "<|8.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50807": { + "content": "<|8.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50808": { + "content": "<|8.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50809": { + "content": "<|8.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50810": { + "content": "<|8.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50811": { + "content": "<|8.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50812": { + "content": "<|8.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50813": { + "content": "<|8.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50814": { + "content": "<|8.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50815": { + "content": "<|9.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50816": { + "content": "<|9.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50817": { + "content": "<|9.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50818": { + "content": "<|9.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50819": { + "content": "<|9.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50820": { + "content": "<|9.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50821": { + "content": "<|9.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50822": { + "content": "<|9.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50823": { + "content": "<|9.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50824": { + "content": "<|9.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50825": { + "content": "<|9.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50826": { + "content": "<|9.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50827": { + "content": "<|9.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50828": { + "content": "<|9.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50829": { + "content": "<|9.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50830": { + "content": "<|9.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50831": { + "content": "<|9.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50832": { + "content": "<|9.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50833": { + "content": "<|9.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50834": { + "content": "<|9.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50835": { + "content": "<|9.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50836": { + "content": "<|9.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50837": { + "content": "<|9.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50838": { + "content": "<|9.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50839": { + "content": "<|9.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50840": { + "content": "<|9.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50841": { + "content": "<|9.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50842": { + "content": "<|9.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50843": { + "content": "<|9.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50844": { + "content": "<|9.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50845": { + "content": "<|9.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50846": { + "content": "<|9.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50847": { + "content": "<|9.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50848": { + "content": "<|9.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50849": { + "content": "<|9.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50850": { + "content": "<|9.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50851": { + "content": "<|9.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50852": { + "content": "<|9.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50853": { + "content": "<|9.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50854": { + "content": "<|9.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50855": { + "content": "<|9.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50856": { + "content": "<|9.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50857": { + "content": "<|9.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50858": { + "content": "<|9.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50859": { + "content": "<|9.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50860": { + "content": "<|9.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50861": { + "content": "<|9.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50862": { + "content": "<|9.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50863": { + "content": "<|9.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50864": { + "content": "<|9.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50865": { + "content": "<|10.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50866": { + "content": "<|10.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50867": { + "content": "<|10.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50868": { + "content": "<|10.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50869": { + "content": "<|10.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50870": { + "content": "<|10.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50871": { + "content": "<|10.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50872": { + "content": "<|10.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50873": { + "content": "<|10.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50874": { + "content": "<|10.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50875": { + "content": "<|10.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50876": { + "content": "<|10.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50877": { + "content": "<|10.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50878": { + "content": "<|10.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50879": { + "content": "<|10.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50880": { + "content": "<|10.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50881": { + "content": "<|10.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50882": { + "content": "<|10.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50883": { + "content": "<|10.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50884": { + "content": "<|10.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50885": { + "content": "<|10.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50886": { + "content": "<|10.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50887": { + "content": "<|10.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50888": { + "content": "<|10.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50889": { + "content": "<|10.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50890": { + "content": "<|10.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50891": { + "content": "<|10.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50892": { + "content": "<|10.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50893": { + "content": "<|10.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50894": { + "content": "<|10.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50895": { + "content": "<|10.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50896": { + "content": "<|10.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50897": { + "content": "<|10.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50898": { + "content": "<|10.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50899": { + "content": "<|10.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50900": { + "content": "<|10.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50901": { + "content": "<|10.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50902": { + "content": "<|10.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50903": { + "content": "<|10.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50904": { + "content": "<|10.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50905": { + "content": "<|10.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50906": { + "content": "<|10.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50907": { + "content": "<|10.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50908": { + "content": "<|10.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50909": { + "content": "<|10.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50910": { + "content": "<|10.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50911": { + "content": "<|10.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50912": { + "content": "<|10.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50913": { + "content": "<|10.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50914": { + "content": "<|10.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50915": { + "content": "<|11.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50916": { + "content": "<|11.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50917": { + "content": "<|11.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50918": { + "content": "<|11.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50919": { + "content": "<|11.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50920": { + "content": "<|11.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50921": { + "content": "<|11.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50922": { + "content": "<|11.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50923": { + "content": "<|11.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50924": { + "content": "<|11.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50925": { + "content": "<|11.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50926": { + "content": "<|11.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50927": { + "content": "<|11.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50928": { + "content": "<|11.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50929": { + "content": "<|11.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50930": { + "content": "<|11.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50931": { + "content": "<|11.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50932": { + "content": "<|11.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50933": { + "content": "<|11.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50934": { + "content": "<|11.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50935": { + "content": "<|11.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50936": { + "content": "<|11.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50937": { + "content": "<|11.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50938": { + "content": "<|11.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50939": { + "content": "<|11.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50940": { + "content": "<|11.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50941": { + "content": "<|11.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50942": { + "content": "<|11.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50943": { + "content": "<|11.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50944": { + "content": "<|11.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50945": { + "content": "<|11.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50946": { + "content": "<|11.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50947": { + "content": "<|11.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50948": { + "content": "<|11.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50949": { + "content": "<|11.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50950": { + "content": "<|11.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50951": { + "content": "<|11.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50952": { + "content": "<|11.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50953": { + "content": "<|11.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50954": { + "content": "<|11.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50955": { + "content": "<|11.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50956": { + "content": "<|11.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50957": { + "content": "<|11.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50958": { + "content": "<|11.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50959": { + "content": "<|11.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50960": { + "content": "<|11.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50961": { + "content": "<|11.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50962": { + "content": "<|11.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50963": { + "content": "<|11.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50964": { + "content": "<|11.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50965": { + "content": "<|12.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50966": { + "content": "<|12.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50967": { + "content": "<|12.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50968": { + "content": "<|12.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50969": { + "content": "<|12.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50970": { + "content": "<|12.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50971": { + "content": "<|12.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50972": { + "content": "<|12.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50973": { + "content": "<|12.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50974": { + "content": "<|12.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50975": { + "content": "<|12.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50976": { + "content": "<|12.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50977": { + "content": "<|12.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50978": { + "content": "<|12.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50979": { + "content": "<|12.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50980": { + "content": "<|12.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50981": { + "content": "<|12.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50982": { + "content": "<|12.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50983": { + "content": "<|12.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50984": { + "content": "<|12.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50985": { + "content": "<|12.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50986": { + "content": "<|12.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50987": { + "content": "<|12.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50988": { + "content": "<|12.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50989": { + "content": "<|12.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50990": { + "content": "<|12.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50991": { + "content": "<|12.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50992": { + "content": "<|12.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50993": { + "content": "<|12.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50994": { + "content": "<|12.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50995": { + "content": "<|12.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50996": { + "content": "<|12.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50997": { + "content": "<|12.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50998": { + "content": "<|12.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50999": { + "content": "<|12.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51000": { + "content": "<|12.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51001": { + "content": "<|12.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51002": { + "content": "<|12.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51003": { + "content": "<|12.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51004": { + "content": "<|12.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51005": { + "content": "<|12.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51006": { + "content": "<|12.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51007": { + "content": "<|12.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51008": { + "content": "<|12.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51009": { + "content": "<|12.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51010": { + "content": "<|12.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51011": { + "content": "<|12.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51012": { + "content": "<|12.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51013": { + "content": "<|12.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51014": { + "content": "<|12.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51015": { + "content": "<|13.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51016": { + "content": "<|13.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51017": { + "content": "<|13.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51018": { + "content": "<|13.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51019": { + "content": "<|13.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51020": { + "content": "<|13.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51021": { + "content": "<|13.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51022": { + "content": "<|13.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51023": { + "content": "<|13.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51024": { + "content": "<|13.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51025": { + "content": "<|13.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51026": { + "content": "<|13.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51027": { + "content": "<|13.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51028": { + "content": "<|13.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51029": { + "content": "<|13.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51030": { + "content": "<|13.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51031": { + "content": "<|13.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51032": { + "content": "<|13.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51033": { + "content": "<|13.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51034": { + "content": "<|13.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51035": { + "content": "<|13.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51036": { + "content": "<|13.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51037": { + "content": "<|13.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51038": { + "content": "<|13.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51039": { + "content": "<|13.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51040": { + "content": "<|13.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51041": { + "content": "<|13.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51042": { + "content": "<|13.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51043": { + "content": "<|13.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51044": { + "content": "<|13.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51045": { + "content": "<|13.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51046": { + "content": "<|13.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51047": { + "content": "<|13.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51048": { + "content": "<|13.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51049": { + "content": "<|13.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51050": { + "content": "<|13.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51051": { + "content": "<|13.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51052": { + "content": "<|13.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51053": { + "content": "<|13.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51054": { + "content": "<|13.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51055": { + "content": "<|13.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51056": { + "content": "<|13.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51057": { + "content": "<|13.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51058": { + "content": "<|13.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51059": { + "content": "<|13.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51060": { + "content": "<|13.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51061": { + "content": "<|13.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51062": { + "content": "<|13.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51063": { + "content": "<|13.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51064": { + "content": "<|13.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51065": { + "content": "<|14.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51066": { + "content": "<|14.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51067": { + "content": "<|14.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51068": { + "content": "<|14.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51069": { + "content": "<|14.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51070": { + "content": "<|14.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51071": { + "content": "<|14.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51072": { + "content": "<|14.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51073": { + "content": "<|14.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51074": { + "content": "<|14.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51075": { + "content": "<|14.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51076": { + "content": "<|14.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51077": { + "content": "<|14.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51078": { + "content": "<|14.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51079": { + "content": "<|14.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51080": { + "content": "<|14.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51081": { + "content": "<|14.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51082": { + "content": "<|14.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51083": { + "content": "<|14.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51084": { + "content": "<|14.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51085": { + "content": "<|14.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51086": { + "content": "<|14.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51087": { + "content": "<|14.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51088": { + "content": "<|14.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51089": { + "content": "<|14.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51090": { + "content": "<|14.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51091": { + "content": "<|14.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51092": { + "content": "<|14.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51093": { + "content": "<|14.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51094": { + "content": "<|14.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51095": { + "content": "<|14.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51096": { + "content": "<|14.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51097": { + "content": "<|14.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51098": { + "content": "<|14.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51099": { + "content": "<|14.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51100": { + "content": "<|14.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51101": { + "content": "<|14.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51102": { + "content": "<|14.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51103": { + "content": "<|14.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51104": { + "content": "<|14.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51105": { + "content": "<|14.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51106": { + "content": "<|14.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51107": { + "content": "<|14.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51108": { + "content": "<|14.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51109": { + "content": "<|14.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51110": { + "content": "<|14.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51111": { + "content": "<|14.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51112": { + "content": "<|14.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51113": { + "content": "<|14.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51114": { + "content": "<|14.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51115": { + "content": "<|15.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51116": { + "content": "<|15.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51117": { + "content": "<|15.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51118": { + "content": "<|15.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51119": { + "content": "<|15.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51120": { + "content": "<|15.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51121": { + "content": "<|15.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51122": { + "content": "<|15.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51123": { + "content": "<|15.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51124": { + "content": "<|15.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51125": { + "content": "<|15.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51126": { + "content": "<|15.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51127": { + "content": "<|15.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51128": { + "content": "<|15.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51129": { + "content": "<|15.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51130": { + "content": "<|15.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51131": { + "content": "<|15.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51132": { + "content": "<|15.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51133": { + "content": "<|15.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51134": { + "content": "<|15.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51135": { + "content": "<|15.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51136": { + "content": "<|15.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51137": { + "content": "<|15.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51138": { + "content": "<|15.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51139": { + "content": "<|15.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51140": { + "content": "<|15.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51141": { + "content": "<|15.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51142": { + "content": "<|15.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51143": { + "content": "<|15.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51144": { + "content": "<|15.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51145": { + "content": "<|15.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51146": { + "content": "<|15.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51147": { + "content": "<|15.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51148": { + "content": "<|15.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51149": { + "content": "<|15.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51150": { + "content": "<|15.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51151": { + "content": "<|15.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51152": { + "content": "<|15.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51153": { + "content": "<|15.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51154": { + "content": "<|15.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51155": { + "content": "<|15.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51156": { + "content": "<|15.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51157": { + "content": "<|15.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51158": { + "content": "<|15.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51159": { + "content": "<|15.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51160": { + "content": "<|15.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51161": { + "content": "<|15.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51162": { + "content": "<|15.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51163": { + "content": "<|15.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51164": { + "content": "<|15.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51165": { + "content": "<|16.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51166": { + "content": "<|16.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51167": { + "content": "<|16.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51168": { + "content": "<|16.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51169": { + "content": "<|16.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51170": { + "content": "<|16.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51171": { + "content": "<|16.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51172": { + "content": "<|16.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51173": { + "content": "<|16.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51174": { + "content": "<|16.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51175": { + "content": "<|16.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51176": { + "content": "<|16.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51177": { + "content": "<|16.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51178": { + "content": "<|16.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51179": { + "content": "<|16.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51180": { + "content": "<|16.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51181": { + "content": "<|16.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51182": { + "content": "<|16.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51183": { + "content": "<|16.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51184": { + "content": "<|16.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51185": { + "content": "<|16.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51186": { + "content": "<|16.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51187": { + "content": "<|16.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51188": { + "content": "<|16.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51189": { + "content": "<|16.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51190": { + "content": "<|16.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51191": { + "content": "<|16.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51192": { + "content": "<|16.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51193": { + "content": "<|16.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51194": { + "content": "<|16.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51195": { + "content": "<|16.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51196": { + "content": "<|16.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51197": { + "content": "<|16.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51198": { + "content": "<|16.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51199": { + "content": "<|16.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51200": { + "content": "<|16.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51201": { + "content": "<|16.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51202": { + "content": "<|16.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51203": { + "content": "<|16.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51204": { + "content": "<|16.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51205": { + "content": "<|16.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51206": { + "content": "<|16.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51207": { + "content": "<|16.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51208": { + "content": "<|16.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51209": { + "content": "<|16.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51210": { + "content": "<|16.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51211": { + "content": "<|16.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51212": { + "content": "<|16.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51213": { + "content": "<|16.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51214": { + "content": "<|16.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51215": { + "content": "<|17.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51216": { + "content": "<|17.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51217": { + "content": "<|17.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51218": { + "content": "<|17.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51219": { + "content": "<|17.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51220": { + "content": "<|17.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51221": { + "content": "<|17.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51222": { + "content": "<|17.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51223": { + "content": "<|17.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51224": { + "content": "<|17.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51225": { + "content": "<|17.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51226": { + "content": "<|17.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51227": { + "content": "<|17.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51228": { + "content": "<|17.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51229": { + "content": "<|17.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51230": { + "content": "<|17.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51231": { + "content": "<|17.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51232": { + "content": "<|17.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51233": { + "content": "<|17.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51234": { + "content": "<|17.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51235": { + "content": "<|17.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51236": { + "content": "<|17.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51237": { + "content": "<|17.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51238": { + "content": "<|17.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51239": { + "content": "<|17.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51240": { + "content": "<|17.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51241": { + "content": "<|17.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51242": { + "content": "<|17.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51243": { + "content": "<|17.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51244": { + "content": "<|17.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51245": { + "content": "<|17.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51246": { + "content": "<|17.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51247": { + "content": "<|17.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51248": { + "content": "<|17.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51249": { + "content": "<|17.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51250": { + "content": "<|17.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51251": { + "content": "<|17.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51252": { + "content": "<|17.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51253": { + "content": "<|17.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51254": { + "content": "<|17.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51255": { + "content": "<|17.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51256": { + "content": "<|17.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51257": { + "content": "<|17.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51258": { + "content": "<|17.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51259": { + "content": "<|17.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51260": { + "content": "<|17.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51261": { + "content": "<|17.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51262": { + "content": "<|17.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51263": { + "content": "<|17.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51264": { + "content": "<|17.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51265": { + "content": "<|18.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51266": { + "content": "<|18.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51267": { + "content": "<|18.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51268": { + "content": "<|18.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51269": { + "content": "<|18.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51270": { + "content": "<|18.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51271": { + "content": "<|18.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51272": { + "content": "<|18.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51273": { + "content": "<|18.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51274": { + "content": "<|18.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51275": { + "content": "<|18.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51276": { + "content": "<|18.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51277": { + "content": "<|18.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51278": { + "content": "<|18.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51279": { + "content": "<|18.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51280": { + "content": "<|18.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51281": { + "content": "<|18.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51282": { + "content": "<|18.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51283": { + "content": "<|18.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51284": { + "content": "<|18.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51285": { + "content": "<|18.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51286": { + "content": "<|18.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51287": { + "content": "<|18.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51288": { + "content": "<|18.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51289": { + "content": "<|18.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51290": { + "content": "<|18.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51291": { + "content": "<|18.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51292": { + "content": "<|18.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51293": { + "content": "<|18.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51294": { + "content": "<|18.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51295": { + "content": "<|18.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51296": { + "content": "<|18.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51297": { + "content": "<|18.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51298": { + "content": "<|18.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51299": { + "content": "<|18.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51300": { + "content": "<|18.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51301": { + "content": "<|18.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51302": { + "content": "<|18.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51303": { + "content": "<|18.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51304": { + "content": "<|18.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51305": { + "content": "<|18.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51306": { + "content": "<|18.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51307": { + "content": "<|18.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51308": { + "content": "<|18.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51309": { + "content": "<|18.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51310": { + "content": "<|18.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51311": { + "content": "<|18.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51312": { + "content": "<|18.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51313": { + "content": "<|18.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51314": { + "content": "<|18.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51315": { + "content": "<|19.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51316": { + "content": "<|19.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51317": { + "content": "<|19.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51318": { + "content": "<|19.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51319": { + "content": "<|19.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51320": { + "content": "<|19.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51321": { + "content": "<|19.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51322": { + "content": "<|19.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51323": { + "content": "<|19.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51324": { + "content": "<|19.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51325": { + "content": "<|19.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51326": { + "content": "<|19.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51327": { + "content": "<|19.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51328": { + "content": "<|19.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51329": { + "content": "<|19.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51330": { + "content": "<|19.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51331": { + "content": "<|19.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51332": { + "content": "<|19.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51333": { + "content": "<|19.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51334": { + "content": "<|19.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51335": { + "content": "<|19.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51336": { + "content": "<|19.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51337": { + "content": "<|19.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51338": { + "content": "<|19.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51339": { + "content": "<|19.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51340": { + "content": "<|19.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51341": { + "content": "<|19.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51342": { + "content": "<|19.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51343": { + "content": "<|19.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51344": { + "content": "<|19.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51345": { + "content": "<|19.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51346": { + "content": "<|19.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51347": { + "content": "<|19.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51348": { + "content": "<|19.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51349": { + "content": "<|19.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51350": { + "content": "<|19.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51351": { + "content": "<|19.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51352": { + "content": "<|19.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51353": { + "content": "<|19.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51354": { + "content": "<|19.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51355": { + "content": "<|19.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51356": { + "content": "<|19.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51357": { + "content": "<|19.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51358": { + "content": "<|19.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51359": { + "content": "<|19.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51360": { + "content": "<|19.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51361": { + "content": "<|19.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51362": { + "content": "<|19.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51363": { + "content": "<|19.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51364": { + "content": "<|19.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51365": { + "content": "<|20.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51366": { + "content": "<|20.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51367": { + "content": "<|20.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51368": { + "content": "<|20.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51369": { + "content": "<|20.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51370": { + "content": "<|20.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51371": { + "content": "<|20.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51372": { + "content": "<|20.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51373": { + "content": "<|20.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51374": { + "content": "<|20.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51375": { + "content": "<|20.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51376": { + "content": "<|20.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51377": { + "content": "<|20.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51378": { + "content": "<|20.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51379": { + "content": "<|20.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51380": { + "content": "<|20.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51381": { + "content": "<|20.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51382": { + "content": "<|20.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51383": { + "content": "<|20.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51384": { + "content": "<|20.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51385": { + "content": "<|20.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51386": { + "content": "<|20.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51387": { + "content": "<|20.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51388": { + "content": "<|20.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51389": { + "content": "<|20.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51390": { + "content": "<|20.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51391": { + "content": "<|20.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51392": { + "content": "<|20.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51393": { + "content": "<|20.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51394": { + "content": "<|20.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51395": { + "content": "<|20.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51396": { + "content": "<|20.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51397": { + "content": "<|20.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51398": { + "content": "<|20.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51399": { + "content": "<|20.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51400": { + "content": "<|20.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51401": { + "content": "<|20.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51402": { + "content": "<|20.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51403": { + "content": "<|20.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51404": { + "content": "<|20.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51405": { + "content": "<|20.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51406": { + "content": "<|20.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51407": { + "content": "<|20.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51408": { + "content": "<|20.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51409": { + "content": "<|20.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51410": { + "content": "<|20.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51411": { + "content": "<|20.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51412": { + "content": "<|20.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51413": { + "content": "<|20.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51414": { + "content": "<|20.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51415": { + "content": "<|21.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51416": { + "content": "<|21.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51417": { + "content": "<|21.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51418": { + "content": "<|21.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51419": { + "content": "<|21.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51420": { + "content": "<|21.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51421": { + "content": "<|21.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51422": { + "content": "<|21.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51423": { + "content": "<|21.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51424": { + "content": "<|21.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51425": { + "content": "<|21.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51426": { + "content": "<|21.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51427": { + "content": "<|21.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51428": { + "content": "<|21.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51429": { + "content": "<|21.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51430": { + "content": "<|21.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51431": { + "content": "<|21.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51432": { + "content": "<|21.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51433": { + "content": "<|21.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51434": { + "content": "<|21.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51435": { + "content": "<|21.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51436": { + "content": "<|21.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51437": { + "content": "<|21.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51438": { + "content": "<|21.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51439": { + "content": "<|21.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51440": { + "content": "<|21.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51441": { + "content": "<|21.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51442": { + "content": "<|21.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51443": { + "content": "<|21.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51444": { + "content": "<|21.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51445": { + "content": "<|21.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51446": { + "content": "<|21.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51447": { + "content": "<|21.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51448": { + "content": "<|21.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51449": { + "content": "<|21.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51450": { + "content": "<|21.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51451": { + "content": "<|21.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51452": { + "content": "<|21.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51453": { + "content": "<|21.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51454": { + "content": "<|21.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51455": { + "content": "<|21.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51456": { + "content": "<|21.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51457": { + "content": "<|21.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51458": { + "content": "<|21.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51459": { + "content": "<|21.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51460": { + "content": "<|21.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51461": { + "content": "<|21.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51462": { + "content": "<|21.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51463": { + "content": "<|21.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51464": { + "content": "<|21.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51465": { + "content": "<|22.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51466": { + "content": "<|22.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51467": { + "content": "<|22.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51468": { + "content": "<|22.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51469": { + "content": "<|22.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51470": { + "content": "<|22.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51471": { + "content": "<|22.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51472": { + "content": "<|22.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51473": { + "content": "<|22.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51474": { + "content": "<|22.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51475": { + "content": "<|22.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51476": { + "content": "<|22.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51477": { + "content": "<|22.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51478": { + "content": "<|22.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51479": { + "content": "<|22.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51480": { + "content": "<|22.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51481": { + "content": "<|22.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51482": { + "content": "<|22.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51483": { + "content": "<|22.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51484": { + "content": "<|22.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51485": { + "content": "<|22.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51486": { + "content": "<|22.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51487": { + "content": "<|22.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51488": { + "content": "<|22.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51489": { + "content": "<|22.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51490": { + "content": "<|22.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51491": { + "content": "<|22.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51492": { + "content": "<|22.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51493": { + "content": "<|22.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51494": { + "content": "<|22.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51495": { + "content": "<|22.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51496": { + "content": "<|22.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51497": { + "content": "<|22.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51498": { + "content": "<|22.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51499": { + "content": "<|22.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51500": { + "content": "<|22.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51501": { + "content": "<|22.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51502": { + "content": "<|22.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51503": { + "content": "<|22.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51504": { + "content": "<|22.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51505": { + "content": "<|22.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51506": { + "content": "<|22.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51507": { + "content": "<|22.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51508": { + "content": "<|22.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51509": { + "content": "<|22.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51510": { + "content": "<|22.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51511": { + "content": "<|22.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51512": { + "content": "<|22.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51513": { + "content": "<|22.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51514": { + "content": "<|22.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51515": { + "content": "<|23.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51516": { + "content": "<|23.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51517": { + "content": "<|23.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51518": { + "content": "<|23.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51519": { + "content": "<|23.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51520": { + "content": "<|23.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51521": { + "content": "<|23.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51522": { + "content": "<|23.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51523": { + "content": "<|23.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51524": { + "content": "<|23.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51525": { + "content": "<|23.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51526": { + "content": "<|23.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51527": { + "content": "<|23.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51528": { + "content": "<|23.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51529": { + "content": "<|23.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51530": { + "content": "<|23.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51531": { + "content": "<|23.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51532": { + "content": "<|23.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51533": { + "content": "<|23.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51534": { + "content": "<|23.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51535": { + "content": "<|23.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51536": { + "content": "<|23.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51537": { + "content": "<|23.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51538": { + "content": "<|23.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51539": { + "content": "<|23.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51540": { + "content": "<|23.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51541": { + "content": "<|23.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51542": { + "content": "<|23.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51543": { + "content": "<|23.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51544": { + "content": "<|23.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51545": { + "content": "<|23.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51546": { + "content": "<|23.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51547": { + "content": "<|23.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51548": { + "content": "<|23.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51549": { + "content": "<|23.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51550": { + "content": "<|23.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51551": { + "content": "<|23.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51552": { + "content": "<|23.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51553": { + "content": "<|23.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51554": { + "content": "<|23.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51555": { + "content": "<|23.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51556": { + "content": "<|23.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51557": { + "content": "<|23.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51558": { + "content": "<|23.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51559": { + "content": "<|23.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51560": { + "content": "<|23.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51561": { + "content": "<|23.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51562": { + "content": "<|23.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51563": { + "content": "<|23.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51564": { + "content": "<|23.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51565": { + "content": "<|24.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51566": { + "content": "<|24.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51567": { + "content": "<|24.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51568": { + "content": "<|24.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51569": { + "content": "<|24.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51570": { + "content": "<|24.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51571": { + "content": "<|24.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51572": { + "content": "<|24.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51573": { + "content": "<|24.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51574": { + "content": "<|24.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51575": { + "content": "<|24.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51576": { + "content": "<|24.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51577": { + "content": "<|24.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51578": { + "content": "<|24.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51579": { + "content": "<|24.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51580": { + "content": "<|24.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51581": { + "content": "<|24.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51582": { + "content": "<|24.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51583": { + "content": "<|24.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51584": { + "content": "<|24.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51585": { + "content": "<|24.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51586": { + "content": "<|24.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51587": { + "content": "<|24.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51588": { + "content": "<|24.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51589": { + "content": "<|24.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51590": { + "content": "<|24.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51591": { + "content": "<|24.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51592": { + "content": "<|24.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51593": { + "content": "<|24.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51594": { + "content": "<|24.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51595": { + "content": "<|24.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51596": { + "content": "<|24.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51597": { + "content": "<|24.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51598": { + "content": "<|24.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51599": { + "content": "<|24.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51600": { + "content": "<|24.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51601": { + "content": "<|24.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51602": { + "content": "<|24.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51603": { + "content": "<|24.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51604": { + "content": "<|24.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51605": { + "content": "<|24.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51606": { + "content": "<|24.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51607": { + "content": "<|24.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51608": { + "content": "<|24.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51609": { + "content": "<|24.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51610": { + "content": "<|24.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51611": { + "content": "<|24.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51612": { + "content": "<|24.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51613": { + "content": "<|24.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51614": { + "content": "<|24.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51615": { + "content": "<|25.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51616": { + "content": "<|25.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51617": { + "content": "<|25.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51618": { + "content": "<|25.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51619": { + "content": "<|25.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51620": { + "content": "<|25.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51621": { + "content": "<|25.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51622": { + "content": "<|25.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51623": { + "content": "<|25.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51624": { + "content": "<|25.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51625": { + "content": "<|25.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51626": { + "content": "<|25.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51627": { + "content": "<|25.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51628": { + "content": "<|25.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51629": { + "content": "<|25.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51630": { + "content": "<|25.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51631": { + "content": "<|25.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51632": { + "content": "<|25.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51633": { + "content": "<|25.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51634": { + "content": "<|25.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51635": { + "content": "<|25.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51636": { + "content": "<|25.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51637": { + "content": "<|25.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51638": { + "content": "<|25.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51639": { + "content": "<|25.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51640": { + "content": "<|25.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51641": { + "content": "<|25.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51642": { + "content": "<|25.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51643": { + "content": "<|25.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51644": { + "content": "<|25.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51645": { + "content": "<|25.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51646": { + "content": "<|25.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51647": { + "content": "<|25.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51648": { + "content": "<|25.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51649": { + "content": "<|25.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51650": { + "content": "<|25.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51651": { + "content": "<|25.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51652": { + "content": "<|25.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51653": { + "content": "<|25.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51654": { + "content": "<|25.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51655": { + "content": "<|25.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51656": { + "content": "<|25.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51657": { + "content": "<|25.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51658": { + "content": "<|25.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51659": { + "content": "<|25.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51660": { + "content": "<|25.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51661": { + "content": "<|25.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51662": { + "content": "<|25.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51663": { + "content": "<|25.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51664": { + "content": "<|25.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51665": { + "content": "<|26.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51666": { + "content": "<|26.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51667": { + "content": "<|26.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51668": { + "content": "<|26.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51669": { + "content": "<|26.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51670": { + "content": "<|26.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51671": { + "content": "<|26.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51672": { + "content": "<|26.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51673": { + "content": "<|26.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51674": { + "content": "<|26.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51675": { + "content": "<|26.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51676": { + "content": "<|26.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51677": { + "content": "<|26.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51678": { + "content": "<|26.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51679": { + "content": "<|26.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51680": { + "content": "<|26.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51681": { + "content": "<|26.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51682": { + "content": "<|26.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51683": { + "content": "<|26.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51684": { + "content": "<|26.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51685": { + "content": "<|26.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51686": { + "content": "<|26.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51687": { + "content": "<|26.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51688": { + "content": "<|26.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51689": { + "content": "<|26.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51690": { + "content": "<|26.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51691": { + "content": "<|26.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51692": { + "content": "<|26.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51693": { + "content": "<|26.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51694": { + "content": "<|26.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51695": { + "content": "<|26.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51696": { + "content": "<|26.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51697": { + "content": "<|26.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51698": { + "content": "<|26.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51699": { + "content": "<|26.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51700": { + "content": "<|26.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51701": { + "content": "<|26.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51702": { + "content": "<|26.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51703": { + "content": "<|26.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51704": { + "content": "<|26.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51705": { + "content": "<|26.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51706": { + "content": "<|26.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51707": { + "content": "<|26.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51708": { + "content": "<|26.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51709": { + "content": "<|26.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51710": { + "content": "<|26.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51711": { + "content": "<|26.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51712": { + "content": "<|26.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51713": { + "content": "<|26.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51714": { + "content": "<|26.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51715": { + "content": "<|27.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51716": { + "content": "<|27.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51717": { + "content": "<|27.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51718": { + "content": "<|27.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51719": { + "content": "<|27.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51720": { + "content": "<|27.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51721": { + "content": "<|27.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51722": { + "content": "<|27.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51723": { + "content": "<|27.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51724": { + "content": "<|27.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51725": { + "content": "<|27.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51726": { + "content": "<|27.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51727": { + "content": "<|27.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51728": { + "content": "<|27.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51729": { + "content": "<|27.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51730": { + "content": "<|27.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51731": { + "content": "<|27.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51732": { + "content": "<|27.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51733": { + "content": "<|27.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51734": { + "content": "<|27.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51735": { + "content": "<|27.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51736": { + "content": "<|27.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51737": { + "content": "<|27.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51738": { + "content": "<|27.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51739": { + "content": "<|27.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51740": { + "content": "<|27.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51741": { + "content": "<|27.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51742": { + "content": "<|27.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51743": { + "content": "<|27.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51744": { + "content": "<|27.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51745": { + "content": "<|27.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51746": { + "content": "<|27.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51747": { + "content": "<|27.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51748": { + "content": "<|27.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51749": { + "content": "<|27.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51750": { + "content": "<|27.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51751": { + "content": "<|27.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51752": { + "content": "<|27.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51753": { + "content": "<|27.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51754": { + "content": "<|27.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51755": { + "content": "<|27.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51756": { + "content": "<|27.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51757": { + "content": "<|27.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51758": { + "content": "<|27.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51759": { + "content": "<|27.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51760": { + "content": "<|27.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51761": { + "content": "<|27.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51762": { + "content": "<|27.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51763": { + "content": "<|27.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51764": { + "content": "<|27.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51765": { + "content": "<|28.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51766": { + "content": "<|28.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51767": { + "content": "<|28.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51768": { + "content": "<|28.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51769": { + "content": "<|28.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51770": { + "content": "<|28.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51771": { + "content": "<|28.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51772": { + "content": "<|28.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51773": { + "content": "<|28.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51774": { + "content": "<|28.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51775": { + "content": "<|28.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51776": { + "content": "<|28.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51777": { + "content": "<|28.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51778": { + "content": "<|28.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51779": { + "content": "<|28.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51780": { + "content": "<|28.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51781": { + "content": "<|28.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51782": { + "content": "<|28.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51783": { + "content": "<|28.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51784": { + "content": "<|28.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51785": { + "content": "<|28.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51786": { + "content": "<|28.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51787": { + "content": "<|28.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51788": { + "content": "<|28.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51789": { + "content": "<|28.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51790": { + "content": "<|28.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51791": { + "content": "<|28.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51792": { + "content": "<|28.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51793": { + "content": "<|28.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51794": { + "content": "<|28.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51795": { + "content": "<|28.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51796": { + "content": "<|28.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51797": { + "content": "<|28.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51798": { + "content": "<|28.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51799": { + "content": "<|28.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51800": { + "content": "<|28.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51801": { + "content": "<|28.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51802": { + "content": "<|28.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51803": { + "content": "<|28.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51804": { + "content": "<|28.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51805": { + "content": "<|28.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51806": { + "content": "<|28.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51807": { + "content": "<|28.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51808": { + "content": "<|28.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51809": { + "content": "<|28.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51810": { + "content": "<|28.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51811": { + "content": "<|28.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51812": { + "content": "<|28.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51813": { + "content": "<|28.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51814": { + "content": "<|28.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51815": { + "content": "<|29.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51816": { + "content": "<|29.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51817": { + "content": "<|29.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51818": { + "content": "<|29.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51819": { + "content": "<|29.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51820": { + "content": "<|29.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51821": { + "content": "<|29.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51822": { + "content": "<|29.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51823": { + "content": "<|29.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51824": { + "content": "<|29.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51825": { + "content": "<|29.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51826": { + "content": "<|29.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51827": { + "content": "<|29.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51828": { + "content": "<|29.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51829": { + "content": "<|29.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51830": { + "content": "<|29.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51831": { + "content": "<|29.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51832": { + "content": "<|29.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51833": { + "content": "<|29.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51834": { + "content": "<|29.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51835": { + "content": "<|29.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51836": { + "content": "<|29.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51837": { + "content": "<|29.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51838": { + "content": "<|29.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51839": { + "content": "<|29.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51840": { + "content": "<|29.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51841": { + "content": "<|29.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51842": { + "content": "<|29.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51843": { + "content": "<|29.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51844": { + "content": "<|29.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51845": { + "content": "<|29.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51846": { + "content": "<|29.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51847": { + "content": "<|29.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51848": { + "content": "<|29.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51849": { + "content": "<|29.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51850": { + "content": "<|29.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51851": { + "content": "<|29.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51852": { + "content": "<|29.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51853": { + "content": "<|29.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51854": { + "content": "<|29.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51855": { + "content": "<|29.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51856": { + "content": "<|29.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51857": { + "content": "<|29.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51858": { + "content": "<|29.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51859": { + "content": "<|29.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51860": { + "content": "<|29.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51861": { + "content": "<|29.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51862": { + "content": "<|29.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51863": { + "content": "<|29.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51864": { + "content": "<|29.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51865": { + "content": "<|30.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "additional_special_tokens": [ + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|yue|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nospeech|>", + "<|notimestamps|>" + ], + "bos_token": "<|endoftext|>", + "clean_up_tokenization_spaces": true, + "eos_token": "<|endoftext|>", + "errors": "replace", + "model_max_length": 1000000000000000019884624838656, + "pad_token": "<|endoftext|>", + "processor_class": "WhisperProcessor", + "tokenizer_class": "WhisperTokenizer", + "trust_remote_code": false, + "unk_token": "<|endoftext|>" +} diff --git a/distil-large-v3-init/vocab.json b/distil-large-v3-init/vocab.json new file mode 100644 index 0000000000000000000000000000000000000000..0f3456460629e21d559c6daa23ab6ce3644e8271 --- /dev/null +++ b/distil-large-v3-init/vocab.json @@ -0,0 +1,50259 @@ +{ + "": 50256, + "!": 0, + "!!": 1432, + "!!!": 4589, + "!!!!": 8153, + "!!!!!": 28493, + "!!!!!!": 50199, + "!!!!!!!!": 28618, + "!!\"": 44556, + "!!)": 33826, + "!!]": 46990, + "!\"": 2963, + "!\",": 44815, + "!\".": 35323, + "!'": 13840, + "!(": 46824, + "!)": 5700, + "!*": 32854, + "!,": 32652, + "!.": 37817, + "!..": 44311, + "!...": 34205, + "!": 21732, + "\"?": 8930, + "\"]": 23711, + "#": 2, + "$": 3, + "%": 4, + "%,": 8923, + "%.": 6856, + "&": 5, + "'": 6, + "'!": 30159, + "''": 15025, + "')": 37380, + "',": 6098, + "'.": 5004, + "'...": 37474, + "'?": 16265, + "'D": 41063, + "'M": 25310, + "'RE": 39040, + "'S": 11460, + "'T": 18010, + "']": 48038, + "'d": 1116, + "'ll": 603, + "'m": 478, + "'re": 434, + "'s": 311, + "'t": 380, + "'ve": 600, + "(": 7, + "()": 45191, + "(?)": 20396, + ")": 8, + ")!": 36380, + ")\"": 33739, + ")(": 29422, + "))": 9383, + "),": 3824, + ").": 3050, + ")...": 40144, + "):": 4507, + ");": 34446, + ")?": 25107, + ")]": 8245, + "*": 9, + "*)": 34634, + "**": 4852, + "***": 13684, + "****": 24396, + "+": 10, + "++": 25472, + "+,": 46797, + "+.": 45585, + ",": 11, + ",\"": 2494, + ",'": 12529, + ",)": 36881, + ",,": 20387, + ",-": 44013, + ",.": 40698, + ",...": 16007, + ",": 29, + ">-": 33335, + "><": 29986, + ">>": 893, + "?": 30, + "?!": 3529, + "?!\"": 35271, + "?!?": 38825, + "?!?!": 44587, + "?\"": 1811, + "?\",": 29359, + "?\".": 25760, + "?'": 8569, + "?)": 4827, + "?,": 22753, + "?-": 38337, + "?.": 27552, + "?..": 46863, + "?...": 32865, + "?": 14350, + "Ġ-...": 41975, + "Ġ->": 33798, + "Ġ-[": 14635, + "Ġ-âĻª": 45499, + "Ġ.": 2411, + "Ġ..": 4386, + "Ġ...": 1097, + "Ġ...\"": 39463, + "Ġ....": 13368, + "Ġ.....": 46915, + "Ġ/": 2460, + "Ġ//": 29178, + "Ġ0": 1958, + "Ġ00": 7143, + "Ġ000": 13711, + "Ġ01": 23185, + "Ġ02": 37202, + "Ġ03": 43677, + "Ġ04": 50022, + "Ġ09": 48729, + "Ġ1": 502, + "Ġ10": 1266, + "Ġ100": 2319, + "Ġ1000": 9714, + "Ġ101": 21055, + "Ġ102": 45937, + "Ġ103": 48784, + "Ġ104": 47757, + "Ġ105": 33705, + "Ġ108": 41342, + "Ġ1080": 24547, + "Ġ11": 2975, + "Ġ110": 20154, + "Ġ112": 45835, + "Ġ115": 39436, + "Ġ12": 2272, + "Ġ120": 10411, + "Ġ1200": 29139, + "Ġ123": 34466, + "Ġ125": 25276, + "Ġ127": 47561, + "Ġ128": 29810, + "Ġ13": 3705, + "Ġ130": 19966, + "Ġ1300": 48156, + "Ġ135": 42652, + "Ġ14": 3499, + "Ġ140": 21548, + "Ġ1400": 46795, + "Ġ144": 45218, + "Ġ15": 2119, + "Ġ150": 8451, + "Ġ1500": 22671, + "Ġ16": 3165, + "Ġ160": 21243, + "Ġ1600": 36885, + "Ġ17": 3282, + "Ġ170": 27228, + "Ġ1700": 43373, + "Ġ175": 41165, + "Ġ18": 2443, + "Ġ180": 11971, + "Ġ1800": 24327, + "Ġ1890": 47725, + "Ġ19": 1294, + "Ġ190": 37609, + "Ġ1900": 28898, + "Ġ1914": 45131, + "Ġ1917": 42757, + "Ġ1918": 36588, + "Ġ1919": 46484, + "Ġ1920": 22003, + "Ġ1930": 22350, + "Ġ1933": 48390, + "Ġ1938": 46398, + "Ġ1939": 37785, + "Ġ194": 9754, + "Ġ1940": 24158, + "Ġ1941": 35364, + "Ġ1942": 37549, + "Ġ1943": 40402, + "Ġ1944": 35133, + "Ġ1945": 28253, + "Ġ1946": 46062, + "Ġ1947": 40417, + "Ġ1948": 38833, + "Ġ1949": 46476, + "Ġ195": 10858, + "Ġ1950": 18141, + "Ġ1953": 48528, + "Ġ1954": 46590, + "Ġ1955": 46881, + "Ġ1956": 46379, + "Ġ1957": 46256, + "Ġ1958": 45868, + "Ġ1959": 45608, + "Ġ196": 7998, + "Ġ1960": 16157, + "Ġ1961": 41720, + "Ġ1962": 39498, + "Ġ1963": 38698, + "Ġ1964": 34314, + "Ġ1965": 33809, + "Ġ1966": 39157, + "Ġ1967": 33193, + "Ġ1968": 29930, + "Ġ1969": 32090, + "Ġ197": 7560, + "Ġ1970": 14577, + "Ġ1971": 34578, + "Ġ1972": 32952, + "Ġ1973": 33530, + "Ġ1974": 33422, + "Ġ1975": 32454, + "Ġ1976": 33978, + "Ġ1977": 35092, + "Ġ1978": 33191, + "Ġ1979": 30595, + "Ġ198": 6375, + "Ġ1980": 13626, + "Ġ1981": 33117, + "Ġ1982": 31352, + "Ġ1983": 31758, + "Ġ1984": 27127, + "Ġ1985": 28962, + "Ġ1986": 27895, + "Ġ1987": 29008, + "Ġ1988": 27816, + "Ġ1989": 22427, + "Ġ199": 4303, + "Ġ1990": 13384, + "Ġ1991": 24097, + "Ġ1992": 23952, + "Ġ1993": 25137, + "Ġ1994": 22736, + "Ġ1995": 22601, + "Ġ1996": 22690, + "Ġ1997": 22383, + "Ġ1998": 21404, + "Ġ1999": 19952, + "Ġ2": 568, + "Ġ20": 945, + "Ġ200": 2331, + "Ġ2000": 8132, + "Ġ2001": 16382, + "Ġ2002": 17822, + "Ġ2003": 16416, + "Ġ2004": 15817, + "Ġ2005": 14394, + "Ġ2006": 14062, + "Ġ2007": 12656, + "Ġ2008": 10389, + "Ġ2009": 11453, + "Ġ201": 1525, + "Ġ2010": 9657, + "Ġ2011": 10154, + "Ġ2012": 9125, + "Ġ2013": 9012, + "Ġ2014": 8227, + "Ġ2015": 7546, + "Ġ2016": 6549, + "Ġ2017": 6591, + "Ġ2018": 6096, + "Ġ2019": 6071, + "Ġ2020": 4808, + "Ġ2021": 7201, + "Ġ2022": 20229, + "Ġ2023": 44377, + "Ġ2024": 45237, + "Ġ2025": 39209, + "Ġ2030": 28638, + "Ġ2050": 38308, + "Ġ21": 5080, + "Ġ210": 42692, + "Ġ22": 5853, + "Ġ220": 29387, + "Ġ23": 6673, + "Ġ230": 35311, + "Ġ24": 4022, + "Ġ240": 26837, + "Ġ25": 3552, + "Ġ250": 11650, + "Ġ2500": 41171, + "Ġ256": 38882, + "Ġ26": 7551, + "Ġ260": 44624, + "Ġ27": 7634, + "Ġ270": 40774, + "Ġ28": 7562, + "Ġ280": 41229, + "Ġ29": 9413, + "Ġ3": 805, + "Ġ30": 2217, + "Ġ300": 6641, + "Ġ3000": 20984, + "Ġ31": 10353, + "Ġ32": 8858, + "Ġ320": 42429, + "Ġ33": 11816, + "Ġ330": 45374, + "Ġ34": 12790, + "Ġ35": 6976, + "Ġ350": 18065, + "Ġ36": 8652, + "Ġ360": 13898, + "Ġ365": 22046, + "Ġ37": 13435, + "Ġ38": 12843, + "Ġ39": 15238, + "Ġ4": 1017, + "Ġ40": 3356, + "Ġ400": 8423, + "Ġ4000": 31104, + "Ġ401": 37510, + "Ġ41": 18173, + "Ġ42": 14034, + "Ġ43": 17914, + "Ġ44": 16408, + "Ġ45": 6905, + "Ġ450": 26034, + "Ġ46": 17835, + "Ġ47": 16953, + "Ġ48": 11174, + "Ġ49": 16513, + "Ġ5": 1025, + "Ġ50": 2625, + "Ġ500": 5923, + "Ġ5000": 23777, + "Ġ51": 18485, + "Ġ52": 18079, + "Ġ53": 21860, + "Ġ54": 20793, + "Ġ55": 12330, + "Ġ550": 42514, + "Ġ56": 19687, + "Ġ57": 21423, + "Ġ58": 21786, + "Ġ59": 24624, + "Ġ6": 1386, + "Ġ60": 4060, + "Ġ600": 11849, + "Ġ6000": 41789, + "Ġ61": 28294, + "Ġ62": 24536, + "Ġ63": 25082, + "Ġ64": 12145, + "Ġ65": 11624, + "Ġ650": 38566, + "Ġ66": 21126, + "Ġ67": 23879, + "Ġ68": 23317, + "Ġ69": 28267, + "Ġ7": 1614, + "Ġ70": 5285, + "Ġ700": 15204, + "Ġ71": 30942, + "Ġ72": 18731, + "Ġ720": 40881, + "Ġ73": 28387, + "Ġ74": 28868, + "Ġ75": 9562, + "Ġ750": 31682, + "Ġ76": 24733, + "Ġ77": 25546, + "Ġ78": 26369, + "Ġ79": 32803, + "Ġ8": 1649, + "Ġ80": 4688, + "Ġ800": 13083, + "Ġ81": 30827, + "Ġ82": 29097, + "Ġ83": 30997, + "Ġ84": 29018, + "Ġ85": 14695, + "Ġ86": 26687, + "Ġ87": 27990, + "Ġ88": 24587, + "Ġ89": 31877, + "Ġ9": 1722, + "Ġ90": 4289, + "Ġ900": 22016, + "Ġ91": 31064, + "Ġ911": 26901, + "Ġ92": 28225, + "Ġ93": 28876, + "Ġ94": 30849, + "Ġ95": 13420, + "Ġ96": 24124, + "Ġ97": 23399, + "Ġ98": 20860, + "Ġ99": 11803, + "Ġ:": 1982, + "Ġ:(": 35495, + "Ġ:)": 11201, + "Ġ;": 12562, + "Ġ;)": 41540, + "Ġ<": 2627, + "Ġ": 12331, + "Ġ>>": 902, + "Ġ>>:": 22040, + "Ġ>>>": 13793, + "Ġ>>[": 45687, + "Ġ?": 2506, + "Ġ?!": 31363, + "Ġ?\"": 37266, + "Ġ??": 37969, + "Ġ???": 29678, + "Ġ?]": 16587, + "Ġ@": 10428, + "ĠA": 316, + "ĠAA": 30680, + "ĠAAA": 34347, + "ĠAB": 13838, + "ĠABC": 22342, + "ĠABOUT": 50249, + "ĠABS": 41707, + "ĠAC": 8157, + "ĠACC": 42251, + "ĠACE": 44606, + "ĠACL": 43873, + "ĠACT": 40341, + "ĠAD": 9135, + "ĠADA": 39354, + "ĠADAM": 34938, + "ĠADHD": 38680, + "ĠAE": 32207, + "ĠAF": 20389, + "ĠAG": 28406, + "ĠAGA": 49133, + "ĠAH": 25888, + "ĠAI": 7318, + "ĠAIDS": 27929, + "ĠAJ": 32759, + "ĠAK": 24789, + "ĠAKA": 45933, + "ĠAL": 7056, + "ĠALEX": 27351, + "ĠALISSA": 39430, + "ĠALL": 14824, + "ĠAM": 6475, + "ĠAMD": 34808, + "ĠAMP": 31616, + "ĠAMY": 31410, + "ĠAN": 5252, + "ĠAND": 8093, + "ĠANDREW": 34504, + "ĠANNOUNCER": 35629, + "ĠANY": 39222, + "ĠAO": 40684, + "ĠAP": 5372, + "ĠAPI": 9362, + "ĠAPIs": 21445, + "ĠAPP": 22513, + "ĠAPPLAUSE": 35298, + "ĠAR": 8943, + "ĠARE": 22515, + "ĠARM": 45209, + "ĠAS": 7469, + "ĠASH": 20146, + "ĠASHLEY": 23834, + "ĠASMR": 31300, + "ĠAT": 8872, + "ĠATM": 46455, + "ĠATP": 39202, + "ĠAU": 7171, + "ĠAUDI": 8029, + "ĠAUDIENCE": 8155, + "ĠAV": 30198, + "ĠAW": 25815, + "ĠAWS": 17650, + "ĠAZ": 49698, + "ĠAa": 21460, + "ĠAaa": 35820, + "ĠAaah": 48381, + "ĠAah": 32616, + "ĠAaron": 14018, + "ĠAb": 2847, + "ĠAbb": 32673, + "ĠAbby": 27726, + "ĠAbd": 27548, + "ĠAbdul": 42591, + "ĠAbdullah": 45625, + "ĠAbe": 38472, + "ĠAbend": 36194, + "ĠAber": 5992, + "ĠAbg": 35407, + "ĠAbgeord": 40730, + "ĠAbi": 31205, + "ĠAbigail": 47174, + "ĠAboriginal": 36577, + "ĠAbout": 7769, + "ĠAbove": 32691, + "ĠAbr": 31717, + "ĠAbraham": 17782, + "ĠAbs": 5813, + "ĠAbsol": 43965, + "ĠAbsolutely": 7021, + "ĠAbst": 46853, + "ĠAbu": 26874, + "ĠAc": 5097, + "ĠAcad": 9740, + "ĠAcademic": 36139, + "ĠAcademy": 11735, + "ĠAcc": 5725, + "ĠAccept": 39957, + "ĠAccess": 17166, + "ĠAccording": 7328, + "ĠAccount": 24558, + "ĠAce": 24900, + "ĠAch": 15847, + "ĠAcho": 40731, + "ĠAcross": 34527, + "ĠAct": 3251, + "ĠActing": 42413, + "ĠAction": 16261, + "ĠActiv": 28550, + "ĠActive": 26635, + "ĠActor": 45457, + "ĠActs": 32363, + "ĠActually": 5135, + "ĠAd": 1999, + "ĠAda": 32276, + "ĠAdam": 7938, + "ĠAdams": 25214, + "ĠAdapt": 49643, + "ĠAdd": 5349, + "ĠAdding": 31204, + "ĠAdditional": 44272, + "ĠAdditionally": 19927, + "ĠAde": 43177, + "ĠAdemás": 34621, + "ĠAdjust": 34049, + "ĠAdm": 46292, + "ĠAdminist": 13322, + "ĠAdministration": 17187, + "ĠAdmiral": 38097, + "ĠAdobe": 24862, + "ĠAdri": 32447, + "ĠAdrian": 31746, + "ĠAds": 44325, + "ĠAdult": 47987, + "ĠAdv": 13634, + "ĠAdvance": 44425, + "ĠAdvanced": 26951, + "ĠAdvent": 17856, + "ĠAdventure": 26718, + "ĠAdventures": 48818, + "ĠAdvis": 31407, + "ĠAdvisor": 49719, + "ĠAdvisory": 39816, + "ĠAeg": 46085, + "ĠAer": 32459, + "ĠAf": 3325, + "ĠAfD": 28413, + "ĠAff": 12840, + "ĠAffairs": 21721, + "ĠAffordable": 41337, + "ĠAfghan": 11393, + "ĠAfghanistan": 13658, + "ĠAfric": 4390, + "ĠAfrica": 7349, + "ĠAfrican": 7312, + "ĠAfricans": 42228, + "ĠAfter": 2381, + "ĠAfterwards": 41357, + "ĠAg": 2725, + "ĠAgain": 3764, + "ĠAgainst": 29995, + "ĠAge": 16280, + "ĠAgency": 21649, + "ĠAgent": 27174, + "ĠAges": 37362, + "ĠAgg": 41512, + "ĠAgora": 16023, + "ĠAgr": 24454, + "ĠAgre": 29324, + "ĠAgreement": 40572, + "ĠAgric": 27587, + "ĠAgriculture": 35966, + "ĠAh": 2438, + "ĠAha": 27448, + "ĠAhh": 17116, + "ĠAhhh": 27185, + "ĠAhmad": 35911, + "ĠAhmed": 39189, + "ĠAhora": 18840, + "ĠAhÃŃ": 49924, + "ĠAi": 16993, + "ĠAid": 39916, + "ĠAim": 47796, + "ĠAin": 29672, + "ĠAir": 5774, + "ĠAirPods": 43247, + "ĠAirbnb": 38232, + "ĠAires": 47058, + "ĠAirl": 34421, + "ĠAirlines": 38788, + "ĠAirport": 25784, + "ĠAixò": 31869, + "ĠAj": 25862, + "ĠAk": 9629, + "ĠAkbar": 48665, + "ĠAkt": 32850, + "ĠAku": 41120, + "ĠAl": 967, + "ĠAla": 46289, + "ĠAlab": 20302, + "ĠAlabama": 20898, + "ĠAladdin": 45071, + "ĠAlan": 16442, + "ĠAlaska": 19553, + "ĠAlb": 32223, + "ĠAlban": 41547, + "ĠAlber": 26361, + "ĠAlbert": 20812, + "ĠAlberta": 43279, + "ĠAlberto": 45709, + "ĠAlcohol": 48779, + "ĠAld": 24031, + "ĠAle": 9366, + "ĠAlej": 44568, + "ĠAlert": 44939, + "ĠAlex": 5202, + "ĠAlexa": 22595, + "ĠAlexand": 28800, + "ĠAlexander": 14845, + "ĠAlexandra": 45546, + "ĠAlexandria": 41943, + "ĠAlexis": 39826, + "ĠAlf": 21996, + "ĠAlfred": 28327, + "ĠAlg": 35014, + "ĠAlger": 48681, + "ĠAlgun": 46816, + "ĠAli": 12020, + "ĠAlice": 16004, + "ĠAlicia": 38153, + "ĠAlien": 32396, + "ĠAlison": 41001, + "ĠAll": 1057, + "ĠAllah": 4574, + "ĠAllahu": 44351, + "ĠAllan": 45902, + "ĠAlle": 25318, + "ĠAlleg": 47486, + "ĠAllen": 17160, + "ĠAlles": 27633, + "ĠAllez": 29616, + "ĠAlliance": 21859, + "ĠAllied": 45620, + "ĠAllies": 44949, + "ĠAllison": 32638, + "ĠAllow": 32225, + "ĠAlly": 46776, + "ĠAllÄģh": 41778, + "ĠAlm": 14344, + "ĠAlma": 42439, + "ĠAlmighty": 16849, + "ĠAlmost": 12627, + "ĠAlo": 35625, + "ĠAlone": 42056, + "ĠAlong": 17457, + "ĠAlors": 9946, + "ĠAlpha": 20588, + "ĠAlready": 23741, + "ĠAlright": 2798, + "ĠAlrighty": 43301, + "ĠAls": 12948, + "ĠAlso": 2743, + "ĠAlt": 15992, + "ĠAlter": 32608, + "ĠAltern": 23830, + "ĠAlternatively": 46167, + "ĠAlthough": 5780, + "ĠAlto": 50066, + "ĠAlum": 33134, + "ĠAlumni": 35699, + "ĠAlways": 11270, + "ĠAly": 27008, + "ĠAlz": 26804, + "ĠAlzheimer": 27932, + "ĠAlém": 44457, + "ĠAm": 2012, + "ĠAma": 14171, + "ĠAman": 35466, + "ĠAmanda": 20431, + "ĠAmazing": 14165, + "ĠAmazon": 6795, + "ĠAmb": 17196, + "ĠAmbassador": 28506, + "ĠAmber": 29407, + "ĠAmelia": 42814, + "ĠAmen": 14092, + "ĠAmend": 20404, + "ĠAmendment": 21443, + "ĠAmer": 22597, + "ĠAmeric": 1656, + "ĠAmerica": 3374, + "ĠAmerican": 2665, + "ĠAmericans": 6280, + "ĠAmericas": 38415, + "ĠAmerika": 42345, + "ĠAmong": 16119, + "ĠAmsterdam": 28291, + "ĠAmy": 12651, + "ĠAmérica": 48053, + "ĠAn": 1107, + "ĠAna": 21202, + "ĠAnakin": 47218, + "ĠAnal": 16128, + "ĠAnalysis": 38172, + "ĠAnalyt": 23688, + "ĠAnalytics": 25944, + "ĠAnat": 42628, + "ĠAnch": 39547, + "ĠAncient": 28352, + "ĠAnd": 400, + "ĠAnda": 40480, + "ĠAnders": 33988, + "ĠAnderson": 18768, + "ĠAndre": 20667, + "ĠAndrea": 24215, + "ĠAndreas": 38785, + "ĠAndrew": 10110, + "ĠAndroid": 8853, + "ĠAndy": 13285, + "ĠAnfang": 25856, + "ĠAng": 4521, + "ĠAngeb": 44301, + "ĠAngel": 14902, + "ĠAngela": 20848, + "ĠAngeles": 12292, + "ĠAngels": 37950, + "ĠAngie": 48829, + "ĠAnglo": 49570, + "ĠAngry": 49860, + "ĠAngst": 28622, + "ĠAngular": 34107, + "ĠAnh": 23574, + "ĠAnim": 21691, + "ĠAnimal": 24358, + "ĠAnimals": 47164, + "ĠAnimation": 44635, + "ĠAnime": 48615, + "ĠAnita": 44528, + "ĠAnk": 42483, + "ĠAnn": 8860, + "ĠAnna": 12899, + "ĠAnne": 13706, + "ĠAnnie": 26781, + "ĠAnnouncer": 36640, + "ĠAnnual": 46030, + "ĠAnother": 3996, + "ĠAns": 14590, + "ĠAnsch": 45062, + "ĠAnswer": 24545, + "ĠAnt": 5130, + "ĠAntar": 30536, + "ĠAntarctica": 39866, + "ĠAntes": 39325, + "ĠAnth": 12727, + "ĠAnthony": 15853, + "ĠAnti": 27757, + "ĠAnton": 15291, + "ĠAntonio": 22527, + "ĠAntrag": 34807, + "ĠAntwort": 34693, + "ĠAny": 2639, + "ĠAnybody": 19082, + "ĠAnyone": 14643, + "ĠAnything": 11998, + "ĠAnytime": 39401, + "ĠAnyway": 5684, + "ĠAnyways": 15585, + "ĠAo": 35208, + "ĠAp": 8723, + "ĠApa": 37831, + "ĠApache": 46597, + "ĠApart": 24111, + "ĠAph": 41775, + "ĠApollo": 25187, + "ĠApost": 31467, + "ĠApp": 3132, + "ĠApparently": 16755, + "ĠAppe": 41322, + "ĠApplause": 19281, + "ĠApple": 6373, + "ĠApplic": 26519, + "ĠApplication": 39512, + "ĠApply": 25264, + "ĠAppreci": 33669, + "ĠAppreciate": 37601, + "ĠAppro": 29551, + "ĠApps": 32231, + "ĠApr": 6305, + "ĠApril": 6929, + "ĠAprès": 29265, + "ĠAqu": 8728, + "ĠAqua": 45591, + "ĠAqui": 23089, + "ĠAquÃŃ": 24386, + "ĠAr": 1587, + "ĠAra": 18601, + "ĠArab": 8625, + "ĠArabia": 21610, + "ĠArabic": 19938, + "ĠArabs": 39770, + "ĠArbeit": 18604, + "ĠArbeits": 23262, + "ĠArc": 21727, + "ĠArch": 10984, + "ĠArchitect": 29306, + "ĠArchitecture": 43049, + "ĠArchives": 39258, + "ĠArctic": 27241, + "ĠArduino": 39539, + "ĠAre": 2014, + "ĠArea": 19405, + "ĠAren": 15464, + "ĠArena": 34290, + "ĠArg": 40081, + "ĠArgent": 15183, + "ĠArgentina": 18336, + "ĠArgh": 45851, + "ĠArgu": 48560, + "ĠAri": 9433, + "ĠAriana": 43296, + "ĠAriel": 37201, + "ĠArin": 24209, + "ĠArist": 31310, + "ĠAristotle": 42368, + "ĠArizona": 14723, + "ĠArk": 16427, + "ĠArkansas": 31386, + "ĠArm": 11893, + "ĠArmed": 42024, + "ĠArmen": 22302, + "ĠArmenia": 45925, + "ĠArmenian": 41581, + "ĠArmor": 44679, + "ĠArms": 42561, + "ĠArmstrong": 36100, + "ĠArmy": 9583, + "ĠArnold": 30406, + "ĠAround": 17633, + "ĠArri": 45188, + "ĠArrow": 40269, + "ĠArsen": 41218, + "ĠArsenal": 49156, + "ĠArt": 5735, + "ĠArtem": 39210, + "ĠArthur": 19624, + "ĠArticle": 35230, + "ĠArtist": 39504, + "ĠArts": 12407, + "ĠAry": 39960, + "ĠAs": 1018, + "ĠAsh": 10279, + "ĠAshe": 45006, + "ĠAshley": 19571, + "ĠAsia": 10038, + "ĠAsian": 10645, + "ĠAsians": 47724, + "ĠAside": 33726, + "ĠAsk": 12320, + "ĠAss": 6281, + "ĠAssad": 40122, + "ĠAssass": 35355, + "ĠAssassin": 43176, + "ĠAssembly": 20399, + "ĠAssessment": 47643, + "ĠAssim": 40376, + "ĠAssist": 49633, + "ĠAssistance": 46805, + "ĠAssistant": 14890, + "ĠAssoci": 8619, + "ĠAssociate": 28520, + "ĠAssociation": 10734, + "ĠAst": 12884, + "ĠAstra": 45242, + "ĠAstron": 36819, + "ĠAsÃŃ": 17419, + "ĠAt": 1711, + "ĠAtari": 41381, + "ĠAth": 16487, + "ĠAthena": 36827, + "ĠAthens": 32530, + "ĠAthlet": 34318, + "ĠAtl": 11000, + "ĠAtlanta": 20225, + "ĠAtlantic": 20233, + "ĠAtlas": 32485, + "ĠAtt": 7298, + "ĠAttack": 22477, + "ĠAttend": 46827, + "ĠAttention": 31858, + "ĠAttorney": 23283, + "ĠAté": 31793, + "ĠAu": 12160, + "ĠAub": 36927, + "ĠAuch": 13382, + "ĠAuckland": 33976, + "ĠAud": 8821, + "ĠAudi": 28943, + "ĠAudience": 23517, + "ĠAudio": 25706, + "ĠAudrey": 31808, + "ĠAuf": 9462, + "ĠAufg": 29648, + "ĠAufgabe": 40070, + "ĠAuft": 39119, + "ĠAug": 6088, + "ĠAugen": 29692, + "ĠAugust": 6897, + "ĠAujourd": 32650, + "ĠAun": 30265, + "ĠAunque": 45068, + "ĠAunt": 17535, + "ĠAuntie": 33878, + "ĠAur": 26945, + "ĠAurora": 40663, + "ĠAus": 9039, + "ĠAuss": 21286, + "ĠAust": 4126, + "ĠAustin": 15356, + "ĠAustral": 5273, + "ĠAustralia": 7060, + "ĠAustralian": 13337, + "ĠAustralians": 38108, + "ĠAustria": 26501, + "ĠAustrian": 41507, + "ĠAusw": 48500, + "ĠAut": 6049, + "ĠAuth": 40231, + "ĠAuthor": 20216, + "ĠAuthority": 29824, + "ĠAuto": 13738, + "ĠAutob": 49909, + "ĠAutom": 24619, + "ĠAutumn": 45597, + "ĠAuÃŁerdem": 47834, + "ĠAv": 11667, + "ĠAvant": 44822, + "ĠAvatar": 44748, + "ĠAve": 23650, + "ĠAvec": 31720, + "ĠAven": 13573, + "ĠAvengers": 25430, + "ĠAvenue": 22454, + "ĠAvi": 40712, + "ĠAvo": 36175, + "ĠAvoid": 41061, + "ĠAw": 6381, + "ĠAwak": 25274, + "ĠAward": 13894, + "ĠAwards": 22187, + "ĠAware": 43949, + "ĠAway": 36957, + "ĠAwesome": 10391, + "ĠAww": 22007, + "ĠAx": 20118, + "ĠAy": 9081, + "ĠAye": 13377, + "ĠAz": 7607, + "ĠAzer": 32580, + "ĠAzerbai": 41937, + "ĠAzerbaijan": 48815, + "ĠAzure": 11969, + "ĠAÃŃ": 22175, + "ĠB": 363, + "ĠBA": 21050, + "ĠBACK": 42467, + "ĠBAR": 27952, + "ĠBB": 19168, + "ĠBBC": 22669, + "ĠBBQ": 40969, + "ĠBC": 14359, + "ĠBCE": 49369, + "ĠBE": 13513, + "ĠBEC": 45090, + "ĠBEN": 31613, + "ĠBER": 42488, + "ĠBET": 41804, + "ĠBETH": 36480, + "ĠBH": 40342, + "ĠBI": 23524, + "ĠBIG": 39761, + "ĠBILL": 28062, + "ĠBJ": 37830, + "ĠBL": 15132, + "ĠBLACK": 43408, + "ĠBM": 15901, + "ĠBMW": 21355, + "ĠBO": 22785, + "ĠBOB": 43765, + "ĠBON": 48524, + "ĠBOY": 34909, + "ĠBP": 40533, + "ĠBR": 10262, + "ĠBRA": 30777, + "ĠBRAND": 41466, + "ĠBRANDON": 46940, + "ĠBRE": 41450, + "ĠBRI": 27466, + "ĠBRIAN": 31434, + "ĠBROWN": 37705, + "ĠBS": 27253, + "ĠBT": 31144, + "ĠBTS": 17951, + "ĠBU": 31142, + "ĠBUR": 37270, + "ĠBUT": 23073, + "ĠBY": 26930, + "ĠBa": 6777, + "ĠBab": 15820, + "ĠBaba": 22529, + "ĠBabe": 44127, + "ĠBaby": 9425, + "ĠBabylon": 30278, + "ĠBach": 30920, + "ĠBachelor": 23193, + "ĠBack": 5833, + "ĠBackground": 36904, + "ĠBacon": 42460, + "ĠBad": 11523, + "ĠBaek": 38913, + "ĠBag": 24377, + "ĠBagh": 45487, + "ĠBah": 14782, + "ĠBahn": 44337, + "ĠBai": 25269, + "ĠBailey": 28192, + "ĠBak": 12063, + "ĠBake": 42597, + "ĠBaker": 25780, + "ĠBal": 13140, + "ĠBalance": 41899, + "ĠBald": 27306, + "ĠBaldwin": 46050, + "ĠBali": 40664, + "ĠBalk": 36289, + "ĠBall": 10744, + "ĠBalt": 18294, + "ĠBaltimore": 22749, + "ĠBam": 26630, + "ĠBan": 13850, + "ĠBana": 33942, + "ĠBanana": 39588, + "ĠBand": 15462, + "ĠBang": 11538, + "ĠBangkok": 43055, + "ĠBangl": 32123, + "ĠBangladesh": 35260, + "ĠBank": 8915, + "ĠBanks": 33081, + "ĠBao": 42099, + "ĠBapt": 25991, + "ĠBaptist": 32410, + "ĠBar": 4156, + "ĠBarack": 31705, + "ĠBarb": 14876, + "ĠBarbara": 19214, + "ĠBarbie": 33884, + "ĠBarcel": 20496, + "ĠBarcelona": 21247, + "ĠBard": 26841, + "ĠBardzo": 38559, + "ĠBare": 43957, + "ĠBark": 36275, + "ĠBarn": 21605, + "ĠBarnes": 43903, + "ĠBaron": 30978, + "ĠBarr": 28694, + "ĠBarry": 21639, + "ĠBart": 22338, + "ĠBas": 5859, + "ĠBase": 21054, + "ĠBased": 18785, + "ĠBash": 43068, + "ĠBasic": 31598, + "ĠBasically": 8537, + "ĠBasil": 43175, + "ĠBasket": 45360, + "ĠBass": 29626, + "ĠBast": 31915, + "ĠBat": 10066, + "ĠBath": 36167, + "ĠBatman": 15432, + "ĠBatt": 29439, + "ĠBatter": 33066, + "ĠBattery": 47410, + "ĠBattle": 11846, + "ĠBattlefield": 41091, + "ĠBau": 28772, + "ĠBaum": 40165, + "ĠBay": 7840, + "ĠBayern": 29163, + "ĠBaz": 42220, + "ĠBaÅŁ": 28942, + "ĠBe": 879, + "ĠBea": 45786, + "ĠBeach": 14866, + "ĠBead": 31315, + "ĠBeam": 40916, + "ĠBean": 38454, + "ĠBear": 19836, + "ĠBears": 50180, + "ĠBeast": 24100, + "ĠBeat": 16031, + "ĠBeatles": 38376, + "ĠBeau": 43702, + "ĠBeaut": 10584, + "ĠBeautiful": 14724, + "ĠBeauty": 21450, + "ĠBecause": 1436, + "ĠBecca": 33148, + "ĠBeck": 19184, + "ĠBecky": 30059, + "ĠBecome": 44308, + "ĠBed": 19893, + "ĠBee": 31141, + "ĠBeef": 36465, + "ĠBeen": 32839, + "ĠBeer": 41453, + "ĠBeet": 28798, + "ĠBeethoven": 38651, + "ĠBefore": 4546, + "ĠBegin": 20660, + "ĠBeginning": 45705, + "ĠBeh": 13068, + "ĠBehavior": 45807, + "ĠBehind": 20475, + "ĠBei": 16188, + "ĠBeij": 18995, + "ĠBeijing": 20240, + "ĠBeim": 45113, + "ĠBeing": 8891, + "ĠBeispiel": 13772, + "ĠBeit": 43637, + "ĠBel": 6248, + "ĠBelarus": 35855, + "ĠBelg": 19234, + "ĠBelgian": 47127, + "ĠBelgium": 28094, + "ĠBelieve": 21486, + "ĠBell": 11485, + "ĠBella": 29133, + "ĠBelle": 31905, + "ĠBelo": 49244, + "ĠBelow": 36261, + "ĠBelt": 38869, + "ĠBem": 32846, + "ĠBen": 3964, + "ĠBend": 32451, + "ĠBene": 27702, + "ĠBened": 39753, + "ĠBenedict": 47837, + "ĠBeng": 29425, + "ĠBengal": 50221, + "ĠBeni": 44460, + "ĠBenim": 27051, + "ĠBenjamin": 22231, + "ĠBenn": 29686, + "ĠBennett": 40620, + "ĠBenny": 44531, + "ĠBenson": 48601, + "ĠBent": 28894, + "ĠBentley": 43147, + "ĠBer": 5637, + "ĠBere": 17684, + "ĠBereich": 26489, + "ĠBerg": 27511, + "ĠBerkeley": 23684, + "ĠBerlin": 13848, + "ĠBern": 10781, + "ĠBernard": 30116, + "ĠBernie": 22426, + "ĠBerry": 34084, + "ĠBert": 29594, + "ĠBeruf": 36688, + "ĠBes": 8190, + "ĠBesch": 30860, + "ĠBesides": 13212, + "ĠBest": 9752, + "ĠBet": 6279, + "ĠBeta": 33286, + "ĠBeth": 14011, + "ĠBets": 49352, + "ĠBett": 45083, + "ĠBetter": 15753, + "ĠBetty": 30270, + "ĠBetween": 18967, + "ĠBev": 41159, + "ĠBever": 39236, + "ĠBeverly": 43598, + "ĠBevölker": 48313, + "ĠBew": 40512, + "ĠBeweg": 46757, + "ĠBey": 15550, + "ĠBeyonce": 48416, + "ĠBeyond": 19707, + "ĠBh": 13550, + "ĠBhag": 33797, + "ĠBhar": 49104, + "ĠBi": 13007, + "ĠBian": 39509, + "ĠBib": 31520, + "ĠBible": 6544, + "ĠBiden": 9877, + "ĠBie": 34972, + "ĠBieber": 42377, + "ĠBien": 16956, + "ĠBier": 50222, + "ĠBig": 5429, + "ĠBigQuery": 43422, + "ĠBij": 41809, + "ĠBike": 45699, + "ĠBil": 22879, + "ĠBild": 15746, + "ĠBilder": 44719, + "ĠBill": 5477, + "ĠBillboard": 40351, + "ĠBillie": 46021, + "ĠBilly": 18179, + "ĠBin": 18983, + "ĠBing": 30755, + "ĠBio": 26840, + "ĠBiology": 48132, + "ĠBir": 7145, + "ĠBiraz": 48542, + "ĠBird": 15931, + "ĠBirds": 41456, + "ĠBirmingham": 34673, + "ĠBirth": 24299, + "ĠBirthday": 29236, + "ĠBis": 25271, + "ĠBishop": 30113, + "ĠBism": 34594, + "ĠBit": 9101, + "ĠBitch": 40678, + "ĠBitcoin": 11414, + "ĠBite": 48012, + "ĠBitte": 42890, + "ĠBiz": 16619, + "ĠBizim": 45180, + "ĠBj": 49660, + "ĠBl": 2177, + "ĠBla": 18925, + "ĠBlack": 4076, + "ĠBlade": 32230, + "ĠBlair": 42157, + "ĠBlake": 23451, + "ĠBlaze": 49894, + "ĠBle": 30721, + "ĠBlend": 44836, + "ĠBless": 21562, + "ĠBlessed": 37501, + "ĠBlick": 32556, + "ĠBlind": 34126, + "ĠBliss": 50034, + "ĠBlizzard": 40976, + "ĠBlo": 9865, + "ĠBlock": 17500, + "ĠBlockchain": 48916, + "ĠBlog": 46693, + "ĠBlood": 17428, + "ĠBloody": 46877, + "ĠBloom": 25927, + "ĠBloomberg": 40363, + "ĠBlow": 46391, + "ĠBlue": 8510, + "ĠBlues": 44979, + "ĠBluetooth": 20286, + "ĠBo": 3286, + "ĠBoard": 10008, + "ĠBob": 6085, + "ĠBobby": 19573, + "ĠBock": 47672, + "ĠBod": 19482, + "ĠBoden": 34971, + "ĠBody": 21329, + "ĠBoeing": 30831, + "ĠBog": 24339, + "ĠBoh": 32484, + "ĠBol": 14331, + "ĠBold": 48954, + "ĠBolsonaro": 46710, + "ĠBolt": 37884, + "ĠBom": 19812, + "ĠBomb": 25463, + "ĠBon": 7368, + "ĠBond": 23604, + "ĠBone": 45915, + "ĠBong": 39813, + "ĠBonjour": 25431, + "ĠBonnie": 32170, + "ĠBonus": 44917, + "ĠBoo": 23351, + "ĠBook": 9476, + "ĠBooks": 33843, + "ĠBoom": 15523, + "ĠBoost": 43902, + "ĠBoot": 37263, + "ĠBor": 13739, + "ĠBora": 49967, + "ĠBorder": 36985, + "ĠBoris": 27158, + "ĠBorn": 29808, + "ĠBos": 22264, + "ĠBose": 45206, + "ĠBoss": 15215, + "ĠBoston": 12333, + "ĠBot": 25486, + "ĠBoth": 6767, + "ĠBots": 47224, + "ĠBott": 28479, + "ĠBottom": 38289, + "ĠBou": 43833, + "ĠBoulder": 48052, + "ĠBoule": 50121, + "ĠBour": 35866, + "ĠBow": 12903, + "ĠBowl": 25044, + "ĠBowser": 46102, + "ĠBox": 15112, + "ĠBoy": 9486, + "ĠBoys": 21963, + "ĠBr": 1603, + "ĠBra": 4991, + "ĠBrad": 11895, + "ĠBradley": 36607, + "ĠBrady": 31773, + "ĠBrah": 36569, + "ĠBrain": 29783, + "ĠBran": 45265, + "ĠBranch": 40482, + "ĠBrand": 11119, + "ĠBrandon": 22606, + "ĠBrasil": 14861, + "ĠBraun": 46939, + "ĠBrave": 38545, + "ĠBravo": 28861, + "ĠBrazil": 9435, + "ĠBrazilian": 23435, + "ĠBre": 7090, + "ĠBread": 35357, + "ĠBreak": 16925, + "ĠBreakfast": 45371, + "ĠBreaking": 36715, + "ĠBreat": 20093, + "ĠBreath": 38672, + "ĠBreathe": 36323, + "ĠBree": 49188, + "ĠBref": 49957, + "ĠBren": 31200, + "ĠBrend": 25425, + "ĠBrenda": 39610, + "ĠBrendan": 48484, + "ĠBrent": 31665, + "ĠBret": 42000, + "ĠBrett": 29447, + "ĠBrew": 42906, + "ĠBrexit": 24480, + "ĠBri": 32851, + "ĠBrian": 10765, + "ĠBrid": 30552, + "ĠBridge": 18917, + "ĠBrief": 39805, + "ĠBrig": 29675, + "ĠBright": 24271, + "ĠBrill": 30132, + "ĠBrilliant": 34007, + "ĠBring": 12842, + "ĠBringing": 45241, + "ĠBris": 30554, + "ĠBrisbane": 32222, + "ĠBristol": 41208, + "ĠBrit": 4760, + "ĠBritain": 12960, + "ĠBritish": 6221, + "ĠBritney": 46161, + "ĠBritt": 30750, + "ĠBrittany": 41067, + "ĠBro": 5425, + "ĠBroad": 14074, + "ĠBroadway": 19414, + "ĠBrock": 32093, + "ĠBroken": 46624, + "ĠBron": 19544, + "ĠBronx": 41862, + "ĠBronze": 44916, + "ĠBrook": 13945, + "ĠBrooke": 43092, + "ĠBrooklyn": 21872, + "ĠBrooks": 33493, + "ĠBros": 27651, + "ĠBrother": 8904, + "ĠBrothers": 19886, + "ĠBrown": 8030, + "ĠBru": 12792, + "ĠBruce": 15429, + "ĠBruno": 23046, + "ĠBrus": 32894, + "ĠBrush": 33142, + "ĠBrussels": 38717, + "ĠBry": 12812, + "ĠBryan": 23730, + "ĠBryant": 46466, + "ĠBryce": 35109, + "ĠBu": 4078, + "ĠBub": 25489, + "ĠBubble": 43072, + "ĠBuch": 25818, + "ĠBuck": 22006, + "ĠBud": 6384, + "ĠBudd": 8845, + "ĠBuddh": 13522, + "ĠBuddha": 16375, + "ĠBuddhism": 24744, + "ĠBuddhist": 22764, + "ĠBuddy": 27829, + "ĠBudget": 33751, + "ĠBueno": 16046, + "ĠBuenos": 38058, + "ĠBuff": 20254, + "ĠBuffalo": 33855, + "ĠBug": 23821, + "ĠBugün": 48017, + "ĠBuild": 11875, + "ĠBuilding": 18974, + "ĠBuilt": 49822, + "ĠBul": 19825, + "ĠBulgar": 31125, + "ĠBulgaria": 47737, + "ĠBull": 14131, + "ĠBullet": 44975, + "ĠBun": 14661, + "ĠBund": 10203, + "ĠBundes": 14031, + "ĠBundesregierung": 46876, + "ĠBundest": 43825, + "ĠBunny": 38803, + "ĠBunu": 35919, + "ĠBunun": 45160, + "ĠBur": 7031, + "ĠBurada": 43776, + "ĠBurch": 48370, + "ĠBureau": 19738, + "ĠBurg": 32911, + "ĠBurger": 28936, + "ĠBurke": 37396, + "ĠBurn": 18328, + "ĠBurning": 43905, + "ĠBurns": 41195, + "ĠBurton": 46011, + "ĠBus": 8006, + "ĠBusan": 43538, + "ĠBush": 15782, + "ĠBusiness": 10715, + "ĠBut": 583, + "ĠButler": 27571, + "ĠButt": 40801, + "ĠButter": 22646, + "ĠButton": 38435, + "ĠBuy": 19146, + "ĠBuzz": 29209, + "ĠBy": 3146, + "ĠBye": 4621, + "ĠByz": 41014, + "ĠBä": 47571, + "ĠBöyle": 30734, + "ĠBü": 37186, + "ĠBür": 22596, + "ĠBürger": 28514, + "ĠBÃľNDNIS": 25667, + "ĠC": 383, + "ĠCA": 22852, + "ĠCAD": 41143, + "ĠCAL": 50188, + "ĠCAM": 27040, + "ĠCAN": 22931, + "ĠCAP": 33636, + "ĠCAR": 15939, + "ĠCAS": 43268, + "ĠCAT": 41192, + "ĠCB": 18745, + "ĠCBD": 41584, + "ĠCBS": 35856, + "ĠCC": 12630, + "ĠCCP": 27876, + "ĠCCTV": 44838, + "ĠCD": 6743, + "ĠCDC": 17133, + "ĠCDU": 19181, + "ĠCDs": 45257, + "ĠCE": 28109, + "ĠCEO": 9282, + "ĠCEOs": 40736, + "ĠCF": 21792, + "ĠCG": 38007, + "ĠCGI": 48448, + "ĠCH": 5995, + "ĠCHA": 35732, + "ĠCHAN": 39235, + "ĠCHAR": 35494, + "ĠCHEERING": 45465, + "ĠCHRIS": 17353, + "ĠCI": 37777, + "ĠCIA": 25143, + "ĠCJ": 42285, + "ĠCL": 12855, + "ĠCM": 20424, + "ĠCMS": 33124, + "ĠCN": 14589, + "ĠCNC": 48714, + "ĠCNN": 24859, + "ĠCO": 3002, + "ĠCOB": 34812, + "ĠCOL": 31286, + "ĠCOM": 35074, + "ĠCOME": 49563, + "ĠCOMM": 36041, + "ĠCON": 16596, + "ĠCOP": 48988, + "ĠCOR": 43137, + "ĠCOSTA": 36537, + "ĠCOVID": 4566, + "ĠCP": 22431, + "ĠCPA": 48672, + "ĠCPR": 47536, + "ĠCPU": 13199, + "ĠCR": 14123, + "ĠCRA": 34425, + "ĠCRIS": 49256, + "ĠCS": 9460, + "ĠCSS": 24387, + "ĠCSV": 48814, + "ĠCT": 19529, + "ĠCU": 29777, + "ĠCV": 22995, + "ĠCa": 7544, + "ĠCab": 14704, + "ĠCabinet": 31398, + "ĠCad": 22323, + "ĠCada": 38603, + "ĠCaesar": 26678, + "ĠCaf": 46701, + "ĠCafe": 35864, + "ĠCage": 48677, + "ĠCai": 30983, + "ĠCait": 28250, + "ĠCaitlin": 50131, + "ĠCake": 36773, + "ĠCal": 3511, + "ĠCaleb": 30331, + "ĠCalendar": 43583, + "ĠCaliforn": 5284, + "ĠCalifornia": 5384, + "ĠCall": 7807, + "ĠCalled": 45001, + "ĠCalling": 44150, + "ĠCalm": 23086, + "ĠCalvin": 28025, + "ĠCam": 6886, + "ĠCamb": 29287, + "ĠCambodia": 47347, + "ĠCambridge": 24876, + "ĠCame": 36042, + "ĠCamera": 23734, + "ĠCameron": 24962, + "ĠCamp": 9189, + "ĠCampaign": 38256, + "ĠCampbell": 25914, + "ĠCampus": 28095, + "ĠCan": 1664, + "ĠCanad": 10380, + "ĠCanada": 6309, + "ĠCanadian": 12641, + "ĠCanadians": 30053, + "ĠCanal": 38250, + "ĠCancer": 26127, + "ĠCand": 20466, + "ĠCandy": 31470, + "ĠCann": 29866, + "ĠCannon": 43102, + "ĠCanon": 27666, + "ĠCant": 26697, + "ĠCanton": 44170, + "ĠCanvas": 25725, + "ĠCanyon": 29170, + "ĠCao": 38176, + "ĠCap": 8363, + "ĠCape": 27517, + "ĠCapital": 21502, + "ĠCapitol": 25081, + "ĠCapt": 9480, + "ĠCaptain": 10873, + "ĠCar": 2741, + "ĠCara": 33006, + "ĠCarbon": 31453, + "ĠCard": 11877, + "ĠCare": 9532, + "ĠCareer": 31690, + "ĠCareful": 32932, + "ĠCarib": 23438, + "ĠCaribbean": 24356, + "ĠCarl": 14256, + "ĠCarla": 41325, + "ĠCarlo": 45112, + "ĠCarlos": 19646, + "ĠCarm": 44530, + "ĠCarmen": 35778, + "ĠCarn": 32254, + "ĠCarne": 42799, + "ĠCarnegie": 47301, + "ĠCarney": 29351, + "ĠCaro": 37265, + "ĠCarol": 7925, + "ĠCarolina": 11480, + "ĠCaroline": 30245, + "ĠCarolyn": 42731, + "ĠCarr": 17715, + "ĠCarrie": 34654, + "ĠCarroll": 48456, + "ĠCarry": 44168, + "ĠCars": 43595, + "ĠCarson": 38731, + "ĠCart": 22478, + "ĠCarter": 21622, + "ĠCarwyn": 47021, + "ĠCas": 16100, + "ĠCasa": 44843, + "ĠCase": 17791, + "ĠCasey": 27369, + "ĠCash": 27016, + "ĠCass": 18208, + "ĠCast": 11019, + "ĠCastle": 21076, + "ĠCastro": 43221, + "ĠCat": 9565, + "ĠCatal": 24994, + "ĠCatalunya": 46039, + "ĠCatch": 23869, + "ĠCath": 8764, + "ĠCathedral": 46794, + "ĠCatherine": 23098, + "ĠCatholic": 11981, + "ĠCatholics": 36333, + "ĠCathy": 39799, + "ĠCats": 40902, + "ĠCau": 49788, + "ĠCauc": 44044, + "ĠCaucas": 44941, + "ĠCause": 10865, + "ĠCav": 28066, + "ĠCave": 41100, + "ĠCay": 38287, + "ĠCe": 8257, + "ĠCec": 38807, + "ĠCel": 19967, + "ĠCela": 37348, + "ĠCelebr": 30413, + "ĠCeline": 42704, + "ĠCell": 28859, + "ĠCelsius": 22658, + "ĠCelt": 44591, + "ĠCem": 48852, + "ĠCen": 38065, + "ĠCena": 48131, + "ĠCensus": 34273, + "ĠCent": 3408, + "ĠCenter": 5169, + "ĠCenters": 41911, + "ĠCentral": 9701, + "ĠCentre": 20764, + "ĠCentury": 28555, + "ĠCer": 26402, + "ĠCert": 31036, + "ĠCertain": 13407, + "ĠCertainly": 16628, + "ĠCes": 28414, + "ĠCette": 25556, + "ĠCh": 761, + "ĠCha": 12374, + "ĠChad": 22268, + "ĠChain": 33252, + "ĠChair": 8678, + "ĠChairman": 17866, + "ĠChall": 14398, + "ĠChallenge": 17517, + "ĠCham": 18054, + "ĠChamber": 25401, + "ĠChamp": 9863, + "ĠChampion": 23160, + "ĠChampions": 14391, + "ĠChampionship": 24310, + "ĠChampionships": 46917, + "ĠChan": 16064, + "ĠChance": 16428, + "ĠChancellor": 24778, + "ĠChand": 32244, + "ĠChanel": 42698, + "ĠChang": 17179, + "ĠChange": 15060, + "ĠChanging": 45773, + "ĠChannel": 13553, + "ĠChaos": 32644, + "ĠChap": 24187, + "ĠChapel": 48203, + "ĠChapter": 18874, + "ĠChar": 4327, + "ĠCharacter": 36786, + "ĠCharge": 40546, + "ĠCharl": 14130, + "ĠCharles": 10523, + "ĠCharlie": 13754, + "ĠCharlotte": 19059, + "ĠChart": 49762, + "ĠChase": 21384, + "ĠChat": 27503, + "ĠChe": 3351, + "ĠCheck": 6881, + "ĠCheer": 39899, + "ĠCheers": 13006, + "ĠCheese": 23738, + "ĠChef": 14447, + "ĠChel": 24345, + "ĠChelsea": 26527, + "ĠChem": 21357, + "ĠChemical": 42754, + "ĠChemistry": 46038, + "ĠChen": 13682, + "ĠCheng": 24363, + "ĠCher": 14825, + "ĠChern": 49504, + "ĠCherry": 34831, + "ĠCheryl": 38331, + "ĠChest": 47981, + "ĠChev": 44236, + "ĠChevy": 49426, + "ĠChi": 17730, + "ĠChic": 9010, + "ĠChicago": 9525, + "ĠChick": 38930, + "ĠChicken": 16765, + "ĠChief": 10068, + "ĠChild": 9004, + "ĠChildren": 13354, + "ĠChile": 22238, + "ĠChili": 45624, + "ĠChill": 41368, + "ĠChin": 4430, + "ĠChina": 3533, + "ĠChinese": 4649, + "ĠChing": 47818, + "ĠChip": 29751, + "ĠChloe": 29694, + "ĠCho": 12366, + "ĠChocolate": 26832, + "ĠChoi": 33479, + "ĠChoice": 37080, + "ĠChong": 43040, + "ĠChoose": 21661, + "ĠChop": 25615, + "ĠChr": 1721, + "ĠChris": 6688, + "ĠChrist": 2040, + "ĠChristian": 5778, + "ĠChristianity": 17326, + "ĠChristians": 12254, + "ĠChristie": 46111, + "ĠChristina": 25466, + "ĠChristine": 24038, + "ĠChristmas": 5272, + "ĠChristopher": 20649, + "ĠChrome": 15327, + "ĠChron": 34038, + "ĠChry": 43183, + "ĠChu": 25585, + "ĠChuck": 21607, + "ĠChun": 32527, + "ĠChung": 38314, + "ĠChurch": 7882, + "ĠChurchill": 39837, + "ĠCi": 20188, + "ĠCiao": 28473, + "ĠCin": 18310, + "ĠCinc": 44142, + "ĠCincinn": 45323, + "ĠCincinnati": 45951, + "ĠCind": 23863, + "ĠCinderella": 47980, + "ĠCindy": 32185, + "ĠCinema": 42502, + "ĠCinnamon": 40446, + "ĠCir": 13791, + "ĠCirc": 28938, + "ĠCircle": 29381, + "ĠCircuit": 36939, + "ĠCisco": 38528, + "ĠCit": 18435, + "ĠCities": 36672, + "ĠCitizen": 44371, + "ĠCitizens": 44120, + "ĠCity": 4392, + "ĠCiv": 35452, + "ĠCivic": 46237, + "ĠCivil": 13405, + "ĠCl": 2033, + "ĠCla": 12947, + "ĠClaire": 22605, + "ĠClan": 45117, + "ĠClap": 45297, + "ĠClar": 28410, + "ĠClara": 32048, + "ĠClark": 18572, + "ĠClaro": 33380, + "ĠClass": 9471, + "ĠClassic": 25008, + "ĠClaud": 24858, + "ĠClaudia": 36785, + "ĠClaus": 33153, + "ĠClay": 21392, + "ĠCle": 8834, + "ĠClean": 18463, + "ĠClear": 14993, + "ĠClearly": 24120, + "ĠClement": 49517, + "ĠCler": 36984, + "ĠClerk": 45175, + "ĠCleveland": 27846, + "ĠClick": 8230, + "ĠCliff": 33638, + "ĠClimate": 27025, + "ĠClin": 24240, + "ĠClinic": 37918, + "ĠClinical": 47942, + "ĠClint": 45311, + "ĠClinton": 15445, + "ĠClo": 31901, + "ĠClock": 46986, + "ĠClone": 45536, + "ĠClose": 16346, + "ĠCloud": 8061, + "ĠClub": 11288, + "ĠCly": 44752, + "ĠCo": 3066, + "ĠCoach": 17369, + "ĠCoalition": 40586, + "ĠCoast": 14960, + "ĠCob": 31395, + "ĠCoc": 30430, + "ĠCoca": 32719, + "ĠCock": 39410, + "ĠCoco": 29787, + "ĠCoconut": 45875, + "ĠCode": 15549, + "ĠCody": 34524, + "ĠCoffee": 25481, + "ĠCoh": 29000, + "ĠCohen": 32968, + "ĠCoin": 39054, + "ĠCoke": 32996, + "ĠCol": 4004, + "ĠCola": 48037, + "ĠCold": 16918, + "ĠCole": 20394, + "ĠColeman": 49930, + "ĠColin": 29253, + "ĠColl": 4586, + "ĠCollabor": 44483, + "ĠCollect": 31896, + "ĠCollection": 30981, + "ĠCollege": 6745, + "ĠCollins": 27973, + "ĠColomb": 18514, + "ĠColombia": 22677, + "ĠColon": 21408, + "ĠColonel": 28478, + "ĠColor": 10458, + "ĠColorado": 15786, + "ĠColumb": 13056, + "ĠColumbia": 17339, + "ĠColumbus": 31258, + "ĠCom": 2432, + "ĠComb": 25939, + "ĠCombat": 41019, + "ĠCome": 2492, + "ĠComedy": 47217, + "ĠComes": 47290, + "ĠComic": 40945, + "ĠComics": 43533, + "ĠComing": 12473, + "ĠComm": 3046, + "ĠCommand": 17901, + "ĠCommander": 20857, + "ĠComme": 24308, + "ĠComment": 16328, + "ĠCommerce": 34493, + "ĠCommercial": 47171, + "ĠCommission": 10766, + "ĠCommissioner": 25410, + "ĠCommittee": 11556, + "ĠCommon": 18235, + "ĠCommons": 34894, + "ĠCommonwealth": 35295, + "ĠComms": 42664, + "ĠCommun": 6800, + "ĠCommunication": 34930, + "ĠCommunications": 38998, + "ĠCommunist": 23253, + "ĠCommunity": 10421, + "ĠComo": 11913, + "ĠComp": 6620, + "ĠCompan": 31827, + "ĠCompanies": 44031, + "ĠCompany": 13918, + "ĠCompare": 48523, + "ĠCompared": 30539, + "ĠCompass": 50179, + "ĠCompet": 32216, + "ĠCompetition": 43634, + "ĠCompl": 33736, + "ĠComplet": 31804, + "ĠComplete": 34687, + "ĠCompletely": 39978, + "ĠComplex": 41184, + "ĠComput": 37804, + "ĠComputer": 22289, + "ĠCon": 2656, + "ĠConan": 47691, + "ĠConc": 18200, + "ĠConcept": 47482, + "ĠCond": 21793, + "ĠConf": 11701, + "ĠConfeder": 31201, + "ĠConfederate": 45000, + "ĠConference": 22131, + "ĠConfig": 44151, + "ĠCong": 4280, + "ĠCongo": 42839, + "ĠCongrats": 40219, + "ĠCongratulations": 9694, + "ĠCongress": 6426, + "ĠCongressman": 38071, + "ĠConnect": 11653, + "ĠConnecticut": 29433, + "ĠConnie": 49558, + "ĠConnor": 33133, + "ĠCons": 6923, + "ĠConse": 39706, + "ĠConserv": 26870, + "ĠConservation": 40131, + "ĠConservative": 46054, + "ĠConsider": 17416, + "ĠConsidering": 33854, + "ĠConsole": 44152, + "ĠConsort": 31719, + "ĠConst": 8574, + "ĠConstant": 37413, + "ĠConstitution": 14505, + "ĠConstruction": 40017, + "ĠConsult": 40057, + "ĠConsumer": 39494, + "ĠCont": 4839, + "ĠContact": 30683, + "ĠContain": 43732, + "ĠContent": 30078, + "ĠContin": 14674, + "ĠContinue": 24472, + "ĠContinuing": 47585, + "ĠContract": 44659, + "ĠControl": 12912, + "ĠController": 44969, + "ĠConven": 45992, + "ĠConvention": 26793, + "ĠConvers": 33247, + "ĠCook": 12259, + "ĠCookie": 42011, + "ĠCooking": 36647, + "ĠCool": 8561, + "ĠCooper": 20355, + "ĠCoordin": 39620, + "ĠCoordinator": 47173, + "ĠCop": 11579, + "ĠCopenh": 50135, + "ĠCopper": 47243, + "ĠCopy": 25653, + "ĠCor": 3925, + "ĠCord": 40267, + "ĠCore": 14798, + "ĠCorey": 39136, + "ĠCorin": 25567, + "ĠCorinth": 29455, + "ĠCorinthians": 34778, + "ĠCorn": 21590, + "ĠCornell": 43257, + "ĠCorner": 42391, + "ĠCoron": 24199, + "ĠCorona": 18075, + "ĠCoronavirus": 32737, + "ĠCorpor": 19665, + "ĠCorporation": 26464, + "ĠCorps": 20169, + "ĠCorrect": 12753, + "ĠCort": 28522, + "ĠCory": 41695, + "ĠCos": 15855, + "ĠCost": 20863, + "ĠCosta": 28440, + "ĠCostco": 43453, + "ĠCott": 35485, + "ĠCotton": 46195, + "ĠCou": 26180, + "ĠCould": 7497, + "ĠCouldn": 35800, + "ĠCoun": 4780, + "ĠCouncil": 7076, + "ĠCouncill": 10778, + "ĠCouncillor": 11731, + "ĠCouncillors": 44912, + "ĠCounsel": 35157, + "ĠCount": 5247, + "ĠCounter": 35607, + "ĠCountry": 23216, + "ĠCounty": 6658, + "ĠCouple": 38266, + "ĠCour": 6413, + "ĠCourse": 27327, + "ĠCourt": 7873, + "ĠCourtney": 33489, + "ĠCover": 19106, + "ĠCovid": 14633, + "ĠCow": 21933, + "ĠCox": 41576, + "ĠCr": 4779, + "ĠCra": 11138, + "ĠCraft": 29991, + "ĠCraig": 19732, + "ĠCrash": 31787, + "ĠCraw": 37877, + "ĠCrazy": 22509, + "ĠCre": 9549, + "ĠCream": 25358, + "ĠCreat": 11972, + "ĠCreate": 20248, + "ĠCreating": 40002, + "ĠCreation": 42874, + "ĠCreative": 26598, + "ĠCreator": 28208, + "ĠCred": 47560, + "ĠCredit": 36006, + "ĠCreed": 39103, + "ĠCreek": 24200, + "ĠCreo": 40640, + "ĠCrew": 29857, + "ĠCrim": 30691, + "ĠCrime": 26140, + "ĠCrimea": 48495, + "ĠCriminal": 43698, + "ĠCrisis": 42846, + "ĠCrisp": 49077, + "ĠCrist": 23199, + "ĠCristo": 36524, + "ĠCrit": 23202, + "ĠCritical": 39482, + "ĠCro": 18965, + "ĠCroat": 37614, + "ĠCroatia": 50186, + "ĠCross": 11623, + "ĠCrossing": 41675, + "ĠCrow": 27072, + "ĠCrowd": 40110, + "ĠCrown": 22375, + "ĠCru": 13586, + "ĠCruise": 39165, + "ĠCrunch": 44233, + "ĠCrus": 34484, + "ĠCrush": 44211, + "ĠCruz": 23008, + "ĠCry": 12267, + "ĠCrypt": 34809, + "ĠCrystal": 23489, + "ĠCtrl": 35233, + "ĠCu": 13205, + "ĠCuando": 21907, + "ĠCub": 21300, + "ĠCuba": 20604, + "ĠCuban": 31547, + "ĠCube": 33003, + "ĠCul": 49037, + "ĠCult": 41550, + "ĠCultural": 31450, + "ĠCulture": 27539, + "ĠCum": 26337, + "ĠCup": 13751, + "ĠCur": 7907, + "ĠCuriosity": 48998, + "ĠCurrent": 15629, + "ĠCurrently": 19964, + "ĠCurry": 34789, + "ĠCurt": 26587, + "ĠCurtis": 42140, + "ĠCustom": 16649, + "ĠCustomer": 37168, + "ĠCut": 9431, + "ĠCute": 29121, + "ĠCuz": 27017, + "ĠCy": 10295, + "ĠCyber": 22935, + "ĠCyberpunk": 46927, + "ĠCycl": 49173, + "ĠCynthia": 38163, + "ĠCyr": 33146, + "ĠCyrus": 47439, + "ĠCzech": 25227, + "ĠCzy": 19832, + "ĠCzyli": 37099, + "ĠCó": 41306, + "ĠD": 413, + "ĠDA": 9578, + "ĠDAC": 39038, + "ĠDAM": 48093, + "ĠDAN": 15331, + "ĠDANIEL": 38958, + "ĠDAR": 49274, + "ĠDAVID": 16764, + "ĠDAY": 27665, + "ĠDB": 26754, + "ĠDC": 9114, + "ĠDD": 30778, + "ĠDDR": 49272, + "ĠDE": 10113, + "ĠDENNIS": 47172, + "ĠDES": 27083, + "ĠDF": 48336, + "ĠDH": 28606, + "ĠDI": 11953, + "ĠDID": 35345, + "ĠDIE": 32188, + "ĠDIRE": 32990, + "ĠDIRECTOR": 35929, + "ĠDIS": 49028, + "ĠDIY": 22194, + "ĠDJ": 13078, + "ĠDK": 31934, + "ĠDLC": 30272, + "ĠDM": 15322, + "ĠDN": 21500, + "ĠDNA": 8272, + "ĠDNS": 35153, + "ĠDO": 10699, + "ĠDOM": 35727, + "ĠDON": 20403, + "ĠDOT": 50142, + "ĠDOU": 45723, + "ĠDOWN": 48897, + "ĠDP": 42796, + "ĠDR": 12118, + "ĠDS": 15816, + "ĠDU": 28423, + "ĠDV": 17021, + "ĠDVD": 21187, + "ĠDW": 45318, + "ĠDX": 48817, + "ĠDY": 48427, + "ĠDa": 3933, + "ĠDaar": 29883, + "ĠDabei": 39606, + "ĠDad": 5639, + "ĠDaddy": 15323, + "ĠDae": 42361, + "ĠDaf": 31582, + "ĠDafür": 35865, + "ĠDag": 41866, + "ĠDah": 36977, + "ĠDaha": 35658, + "ĠDai": 39521, + "ĠDaily": 19685, + "ĠDais": 31109, + "ĠDaisy": 37472, + "ĠDak": 18051, + "ĠDakota": 22429, + "ĠDal": 17357, + "ĠDale": 31329, + "ĠDallas": 22923, + "ĠDam": 5885, + "ĠDamas": 49327, + "ĠDame": 34447, + "ĠDamen": 21131, + "ĠDamit": 24495, + "ĠDamn": 11907, + "ĠDamon": 47197, + "ĠDan": 3394, + "ĠDana": 23759, + "ĠDance": 16114, + "ĠDancing": 36890, + "ĠDang": 29580, + "ĠDanger": 36619, + "ĠDani": 42136, + "ĠDaniel": 8033, + "ĠDanielle": 21182, + "ĠDanish": 36944, + "ĠDank": 14148, + "ĠDanke": 26508, + "ĠDann": 7455, + "ĠDanny": 16682, + "ĠDans": 16897, + "ĠDante": 35602, + "ĠDar": 7803, + "ĠDare": 42320, + "ĠDark": 9563, + "ĠDarkness": 38198, + "ĠDarling": 38697, + "ĠDarr": 44007, + "ĠDarren": 36691, + "ĠDarrin": 47368, + "ĠDart": 30271, + "ĠDarth": 40696, + "ĠDartmouth": 47883, + "ĠDarwin": 30233, + "ĠDas": 2846, + "ĠDash": 23453, + "ĠDass": 22306, + "ĠDat": 9315, + "ĠData": 11888, + "ĠDatab": 40461, + "ĠDate": 31805, + "ĠDaten": 31126, + "ĠDav": 3724, + "ĠDave": 11017, + "ĠDavid": 4389, + "ĠDavidson": 44401, + "ĠDavis": 15658, + "ĠDaw": 28407, + "ĠDawn": 26001, + "ĠDay": 5226, + "ĠDays": 26007, + "ĠDayton": 44718, + "ĠDazu": 34667, + "ĠDe": 1346, + "ĠDead": 12550, + "ĠDeadpool": 45493, + "ĠDeaf": 31389, + "ĠDeal": 27227, + "ĠDean": 13324, + "ĠDear": 14383, + "ĠDeath": 13703, + "ĠDeb": 27347, + "ĠDebat": 42167, + "ĠDebatte": 48930, + "ĠDebbie": 35834, + "ĠDeborah": 39695, + "ĠDec": 12427, + "ĠDecember": 7687, + "ĠDeck": 38196, + "ĠDeclaration": 40844, + "ĠDed": 41300, + "ĠDee": 38894, + "ĠDeep": 14895, + "ĠDef": 9548, + "ĠDefence": 43291, + "ĠDefense": 17410, + "ĠDefin": 46245, + "ĠDefinitely": 12151, + "ĠDeixa": 46589, + "ĠDel": 5831, + "ĠDelaware": 37655, + "ĠDelete": 49452, + "ĠDelhi": 26680, + "ĠDelicious": 28518, + "ĠDell": 33319, + "ĠDelta": 18183, + "ĠDem": 4686, + "ĠDemocr": 7141, + "ĠDemocracy": 43062, + "ĠDemocrat": 27827, + "ĠDemocratic": 14928, + "ĠDemocrats": 12217, + "ĠDemokrat": 27802, + "ĠDemokraten": 41139, + "ĠDemon": 29683, + "ĠDen": 6458, + "ĠDenis": 45351, + "ĠDenise": 38133, + "ĠDenmark": 28065, + "ĠDenn": 19027, + "ĠDennis": 23376, + "ĠDent": 41622, + "ĠDenver": 26270, + "ĠDep": 4056, + "ĠDepartment": 5982, + "ĠDepending": 22539, + "ĠDepois": 34231, + "ĠDepot": 45445, + "ĠDepression": 33044, + "ĠDeputy": 21560, + "ĠDer": 5618, + "ĠDerek": 22887, + "ĠDes": 3885, + "ĠDesde": 37985, + "ĠDesert": 33340, + "ĠDeshalb": 27969, + "ĠDesign": 12748, + "ĠDesigner": 48027, + "ĠDesktop": 49044, + "ĠDesp": 9891, + "ĠDespite": 11334, + "ĠDespués": 40995, + "ĠDest": 16339, + "ĠDestiny": 31898, + "ĠDestroy": 41719, + "ĠDeswegen": 24864, + "ĠDet": 4237, + "ĠDetails": 42811, + "ĠDetective": 35210, + "ĠDetroit": 20887, + "ĠDeus": 15057, + "ĠDeuts": 10514, + "ĠDeutsch": 12699, + "ĠDeutsche": 45567, + "ĠDeutschen": 45070, + "ĠDeutschland": 14802, + "ĠDev": 9096, + "ĠDevOps": 43051, + "ĠDevelop": 11442, + "ĠDeveloper": 44915, + "ĠDevelopment": 15041, + "ĠDevi": 48565, + "ĠDevice": 50140, + "ĠDevil": 25221, + "ĠDew": 43079, + "ĠDh": 34414, + "ĠDharma": 40552, + "ĠDi": 8789, + "ĠDia": 22157, + "ĠDial": 29658, + "ĠDiam": 21706, + "ĠDiamond": 26593, + "ĠDiana": 21470, + "ĠDiane": 30460, + "ĠDick": 18754, + "ĠDid": 2589, + "ĠDidn": 11151, + "ĠDie": 3229, + "ĠDiego": 16377, + "ĠDienst": 43932, + "ĠDies": 10796, + "ĠDiese": 18993, + "ĠDiesel": 47037, + "ĠDieser": 39609, + "ĠDieses": 39201, + "ĠDiet": 29606, + "ĠDieu": 25610, + "ĠDif": 35940, + "ĠDifferent": 20825, + "ĠDig": 10976, + "ĠDigital": 15522, + "ĠDil": 36475, + "ĠDim": 20975, + "ĠDin": 27156, + "ĠDing": 20558, + "ĠDinge": 25102, + "ĠDingen": 49351, + "ĠDinner": 46678, + "ĠDion": 45212, + "ĠDios": 21838, + "ĠDip": 33486, + "ĠDir": 34422, + "ĠDire": 5822, + "ĠDirect": 18308, + "ĠDirector": 7680, + "ĠDirectory": 49598, + "ĠDis": 4208, + "ĠDisability": 47636, + "ĠDisc": 19839, + "ĠDiscord": 32623, + "ĠDiscover": 40386, + "ĠDiscovery": 34129, + "ĠDise": 30161, + "ĠDisease": 35360, + "ĠDisk": 30609, + "ĠDiskuss": 45963, + "ĠDisney": 8653, + "ĠDisneyland": 34797, + "ĠDisplay": 32229, + "ĠDist": 9840, + "ĠDistrict": 14374, + "ĠDit": 25270, + "ĠDiv": 9886, + "ĠDiversity": 44187, + "ĠDivine": 26098, + "ĠDivision": 17183, + "ĠDj": 33464, + "ĠDlatego": 47184, + "ĠDo": 1144, + "ĠDob": 29679, + "ĠDoc": 16024, + "ĠDoch": 21533, + "ĠDocker": 33772, + "ĠDoctor": 10143, + "ĠDoctors": 39090, + "ĠDocument": 37684, + "ĠDod": 26904, + "ĠDodge": 41883, + "ĠDoes": 4402, + "ĠDoesn": 12955, + "ĠDog": 13472, + "ĠDogs": 35504, + "ĠDoing": 18496, + "ĠDok": 29768, + "ĠDol": 18786, + "ĠDoll": 20059, + "ĠDollar": 32370, + "ĠDom": 16674, + "ĠDomin": 18027, + "ĠDominican": 45486, + "ĠDon": 1468, + "ĠDonald": 8632, + "ĠDonc": 7477, + "ĠDoncs": 38641, + "ĠDone": 18658, + "ĠDong": 13609, + "ĠDonkey": 44217, + "ĠDonna": 31938, + "ĠDont": 49271, + "ĠDoo": 46612, + "ĠDoom": 30168, + "ĠDoor": 29636, + "ĠDop": 42657, + "ĠDor": 13643, + "ĠDorothy": 41105, + "ĠDort": 32308, + "ĠDos": 33474, + "ĠDot": 38753, + "ĠDou": 13200, + "ĠDouble": 16633, + "ĠDoug": 12742, + "ĠDouglas": 23010, + "ĠDow": 20947, + "ĠDown": 9506, + "ĠDownload": 32282, + "ĠDownt": 44386, + "ĠDowntown": 49255, + "ĠDoy": 40059, + "ĠDr": 2491, + "ĠDra": 15971, + "ĠDracula": 48950, + "ĠDrag": 8832, + "ĠDragon": 11517, + "ĠDragons": 37437, + "ĠDrake": 27465, + "ĠDrama": 45406, + "ĠDraw": 20386, + "ĠDre": 31635, + "ĠDream": 12105, + "ĠDreams": 41887, + "ĠDrew": 25550, + "ĠDri": 19150, + "ĠDrink": 24529, + "ĠDrive": 15622, + "ĠDriver": 36048, + "ĠDriving": 44028, + "ĠDro": 35305, + "ĠDrop": 17675, + "ĠDru": 36744, + "ĠDruck": 33320, + "ĠDrug": 35806, + "ĠDrum": 40320, + "ĠDry": 31562, + "ĠDu": 5153, + "ĠDual": 37625, + "ĠDub": 16488, + "ĠDubai": 29100, + "ĠDublin": 42323, + "ĠDuch": 44267, + "ĠDuck": 29266, + "ĠDud": 42622, + "ĠDude": 12042, + "ĠDue": 18980, + "ĠDuke": 17380, + "ĠDul": 50115, + "ĠDum": 29572, + "ĠDun": 11959, + "ĠDuncan": 31942, + "ĠDunk": 47183, + "ĠDuo": 46123, + "ĠDur": 13710, + "ĠDurch": 28557, + "ĠDurham": 46540, + "ĠDuring": 6842, + "ĠDus": 17916, + "ĠDust": 26483, + "ĠDustin": 46782, + "ĠDutch": 15719, + "ĠDuty": 33045, + "ĠDuygusal": 50090, + "ĠDw": 41448, + "ĠDy": 31193, + "ĠDylan": 28160, + "ĠDynam": 22947, + "ĠDynamic": 45440, + "ĠDynasty": 37339, + "ĠDz": 39448, + "ĠDziÄĻkujÄĻ": 43721, + "ĠDá": 49794, + "ĠDär": 40291, + "ĠDÃ¥": 26339, + "ĠDé": 31153, + "ĠDü": 41835, + "ĠE": 462, + "ĠEA": 35747, + "ĠEB": 50148, + "ĠEC": 19081, + "ĠED": 18050, + "ĠEE": 33685, + "ĠEH": 39416, + "ĠEK": 46078, + "ĠEL": 14426, + "ĠEM": 16237, + "ĠEN": 15244, + "ĠEP": 25330, + "ĠEPA": 27447, + "ĠEQ": 33580, + "ĠER": 14929, + "ĠERIC": 36137, + "ĠES": 12564, + "ĠEST": 47140, + "ĠET": 36953, + "ĠETF": 37436, + "ĠEU": 10887, + "ĠEV": 15733, + "ĠEVER": 27843, + "ĠEVERY": 35163, + "ĠEX": 16385, + "ĠEach": 6947, + "ĠEagle": 27926, + "ĠEagles": 48807, + "ĠEar": 3929, + "ĠEarl": 38936, + "ĠEarlier": 24552, + "ĠEarly": 18344, + "ĠEarn": 24820, + "ĠEarnest": 28214, + "ĠEarth": 4755, + "ĠEas": 46879, + "ĠEast": 6747, + "ĠEaster": 9403, + "ĠEastern": 12901, + "ĠEasy": 16002, + "ĠEat": 14429, + "ĠEating": 29234, + "ĠEb": 20418, + "ĠEbola": 37846, + "ĠEc": 28993, + "ĠEcho": 31887, + "ĠEck": 46354, + "ĠEco": 40263, + "ĠEconom": 14821, + "ĠEconomic": 25776, + "ĠEconomics": 39024, + "ĠEconomy": 48223, + "ĠEcu": 40675, + "ĠEcuador": 41558, + "ĠEd": 3977, + "ĠEddie": 23911, + "ĠEddy": 35062, + "ĠEden": 35322, + "ĠEdgar": 42981, + "ĠEdge": 19328, + "ĠEdin": 39697, + "ĠEdinburgh": 41215, + "ĠEdison": 47497, + "ĠEdit": 33241, + "ĠEdition": 25301, + "ĠEditor": 24281, + "ĠEdu": 31900, + "ĠEduardo": 45819, + "ĠEduc": 9517, + "ĠEducation": 10680, + "ĠEdward": 18456, + "ĠEdwards": 35836, + "ĠEe": 25046, + "ĠEen": 25374, + "ĠEf": 31840, + "ĠEfendi": 43472, + "ĠEfendimiz": 50120, + "ĠEff": 34192, + "ĠEffect": 17764, + "ĠEffects": 34515, + "ĠEg": 43515, + "ĠEgg": 16960, + "ĠEggs": 42486, + "ĠEgypt": 9582, + "ĠEgyptian": 24257, + "ĠEgyptians": 44119, + "ĠEh": 9663, + "ĠEi": 29786, + "ĠEig": 40561, + "ĠEigen": 30586, + "ĠEight": 17708, + "ĠEin": 6391, + "ĠEine": 17664, + "ĠEink": 49128, + "ĠEins": 22790, + "ĠEinsatz": 38474, + "ĠEinstein": 23486, + "ĠEis": 43174, + "ĠEisen": 35619, + "ĠEither": 13746, + "ĠEk": 33089, + "ĠEl": 2699, + "ĠEla": 17637, + "ĠElaine": 42322, + "ĠEld": 19705, + "ĠElder": 28390, + "ĠEle": 8024, + "ĠElect": 12575, + "ĠElection": 45074, + "ĠElectric": 24677, + "ĠElectronic": 46921, + "ĠElekt": 40321, + "ĠElement": 20900, + "ĠElementary": 33099, + "ĠElena": 39603, + "ĠEles": 31096, + "ĠEleven": 48548, + "ĠEli": 16943, + "ĠElijah": 36147, + "ĠEliot": 44023, + "ĠElise": 40545, + "ĠElite": 34404, + "ĠEliz": 11991, + "ĠElizabeth": 12978, + "ĠEll": 8353, + "ĠElla": 29261, + "ĠElle": 16227, + "ĠEllen": 20306, + "ĠEller": 45719, + "ĠElli": 40612, + "ĠEllie": 27151, + "ĠElliot": 38986, + "ĠElliott": 46170, + "ĠEllis": 38171, + "ĠElmo": 38722, + "ĠElo": 41784, + "ĠElon": 28498, + "ĠEls": 33437, + "ĠElsa": 36342, + "ĠElse": 45472, + "ĠEltern": 29101, + "ĠElvis": 39944, + "ĠEm": 3968, + "ĠEmail": 49482, + "ĠEmb": 24234, + "ĠEmbassy": 49637, + "ĠEmer": 18477, + "ĠEmergency": 30524, + "ĠEmil": 36983, + "ĠEmily": 15034, + "ĠEmin": 40695, + "ĠEmir": 38426, + "ĠEmm": 28237, + "ĠEmma": 17124, + "ĠEmmanuel": 44421, + "ĠEmmy": 45580, + "ĠEmp": 8599, + "ĠEmperor": 17913, + "ĠEmpire": 12197, + "ĠEmploy": 26878, + "ĠEmpress": 28559, + "ĠEn": 2193, + "ĠEnc": 29584, + "ĠEnd": 6967, + "ĠEnde": 15152, + "ĠEnemy": 48886, + "ĠEner": 11132, + "ĠEnerg": 48195, + "ĠEnergie": 35309, + "ĠEnergy": 14939, + "ĠEnfin": 35861, + "ĠEng": 2469, + "ĠEngagement": 43931, + "ĠEngine": 7659, + "ĠEngineer": 15808, + "ĠEngineering": 16215, + "ĠEngineers": 43950, + "ĠEngland": 8196, + "ĠEnglish": 3669, + "ĠEnjoy": 15411, + "ĠEnlight": 46037, + "ĠEnough": 19401, + "ĠEns": 25979, + "ĠEnsuite": 37366, + "ĠEnt": 3951, + "ĠEnter": 10399, + "ĠEnterprise": 26696, + "ĠEntertain": 24684, + "ĠEntertainment": 25758, + "ĠEntonces": 15097, + "ĠEntre": 27979, + "ĠEntreprene": 49049, + "ĠEntscheid": 30862, + "ĠEntscheidung": 44667, + "ĠEntwick": 29397, + "ĠEntwicklung": 39654, + "ĠEntão": 6469, + "ĠEnviron": 19286, + "ĠEnvironment": 35354, + "ĠEnvironmental": 27813, + "ĠEp": 9970, + "ĠEph": 35445, + "ĠEpic": 26785, + "ĠEpisode": 19882, + "ĠEqu": 15624, + "ĠEquity": 47675, + "ĠEr": 3300, + "ĠEra": 23071, + "ĠErde": 43720, + "ĠEren": 49479, + "ĠErfahr": 34137, + "ĠErfahrung": 49318, + "ĠErfolg": 45232, + "ĠErgeb": 34657, + "ĠErgebnis": 46229, + "ĠEric": 9336, + "ĠErica": 37429, + "ĠErik": 33143, + "ĠErin": 27983, + "ĠErm": 45794, + "ĠErn": 24147, + "ĠErst": 31183, + "ĠEs": 2313, + "ĠEsc": 30379, + "ĠEscape": 42960, + "ĠEso": 27795, + "ĠEsp": 24978, + "ĠEspa": 27907, + "ĠEspaña": 31729, + "ĠEspecially": 8545, + "ĠEsper": 24142, + "ĠEspero": 41831, + "ĠEss": 14357, + "ĠEssa": 22818, + "ĠEsse": 18814, + "ĠEssen": 42098, + "ĠEssential": 49736, + "ĠEssentially": 23596, + "ĠEst": 4410, + "ĠEsta": 20547, + "ĠEstado": 29740, + "ĠEstados": 22362, + "ĠEstamos": 34563, + "ĠEstate": 48097, + "ĠEste": 16105, + "ĠEsther": 37731, + "ĠEsto": 20880, + "ĠEstoy": 49651, + "ĠEstá": 27304, + "ĠEt": 3790, + "ĠEternal": 44432, + "ĠEth": 10540, + "ĠEthan": 23984, + "ĠEther": 38636, + "ĠEthereum": 26894, + "ĠEthi": 29380, + "ĠEthiopia": 39445, + "ĠEts": 47170, + "ĠEtt": 48426, + "ĠEu": 2186, + "ĠEuch": 46668, + "ĠEugene": 37059, + "ĠEuh": 47320, + "ĠEun": 17965, + "ĠEuro": 3010, + "ĠEurop": 12201, + "ĠEuropa": 16642, + "ĠEurope": 3315, + "ĠEuropean": 6473, + "ĠEuropeans": 29746, + "ĠEuros": 46662, + "ĠEv": 5689, + "ĠEva": 29377, + "ĠEvan": 22613, + "ĠEvangel": 36635, + "ĠEvans": 30055, + "ĠEve": 15544, + "ĠEven": 2754, + "ĠEvent": 13222, + "ĠEvents": 45314, + "ĠEventually": 17586, + "ĠEver": 12123, + "ĠEverest": 47591, + "ĠEvery": 2048, + "ĠEverybody": 7646, + "ĠEveryday": 37689, + "ĠEveryone": 5198, + "ĠEverything": 5471, + "ĠEverywhere": 37322, + "ĠEvet": 16729, + "ĠEvil": 20528, + "ĠEvolution": 40800, + "ĠEw": 28101, + "ĠEx": 2111, + "ĠExact": 7199, + "ĠExactly": 7587, + "ĠExam": 24755, + "ĠExamples": 48591, + "ĠExc": 9368, + "ĠExcel": 19060, + "ĠExcellence": 44684, + "ĠExcellent": 16723, + "ĠExcept": 16192, + "ĠExchange": 31169, + "ĠExcuse": 11359, + "ĠExec": 17662, + "ĠExecutive": 20658, + "ĠExerc": 37502, + "ĠExercise": 44307, + "ĠExhale": 31911, + "ĠExodus": 44472, + "ĠExp": 21391, + "ĠExpect": 46318, + "ĠExped": 48603, + "ĠExper": 12522, + "ĠExperience": 28503, + "ĠExperiment": 37933, + "ĠExpert": 41255, + "ĠExpl": 12514, + "ĠExplain": 39574, + "ĠExplorer": 31895, + "ĠExport": 50130, + "ĠExpress": 20212, + "ĠExt": 9881, + "ĠExtension": 37034, + "ĠExternal": 48277, + "ĠExtra": 29429, + "ĠExtrem": 24921, + "ĠExtremadura": 34713, + "ĠExtreme": 39525, + "ĠEy": 23236, + "ĠEye": 21603, + "ĠEyes": 28925, + "ĠEz": 27211, + "ĠEÄŁer": 41930, + "ĠF": 479, + "ĠFA": 19894, + "ĠFAR": 27235, + "ĠFBI": 17441, + "ĠFC": 27168, + "ĠFCC": 48671, + "ĠFDA": 18933, + "ĠFDP": 31763, + "ĠFE": 31778, + "ĠFEL": 46943, + "ĠFEMA": 31519, + "ĠFER": 47882, + "ĠFIFA": 39497, + "ĠFIL": 48563, + "ĠFIN": 43022, + "ĠFIR": 41538, + "ĠFL": 24720, + "ĠFM": 29614, + "ĠFO": 23501, + "ĠFOR": 15174, + "ĠFP": 36655, + "ĠFPS": 26429, + "ĠFR": 15288, + "ĠFRE": 26276, + "ĠFREE": 48511, + "ĠFROM": 36848, + "ĠFS": 41138, + "ĠFT": 46675, + "ĠFUCK": 26154, + "ĠFX": 37849, + "ĠFY": 42730, + "ĠFa": 12710, + "ĠFab": 17440, + "ĠFac": 17667, + "ĠFace": 4047, + "ĠFacebook": 4384, + "ĠFach": 38213, + "ĠFact": 33375, + "ĠFactory": 36868, + "ĠFaculty": 32689, + "ĠFahr": 19843, + "ĠFahren": 29109, + "ĠFahrenheit": 31199, + "ĠFail": 39094, + "ĠFair": 12157, + "ĠFairy": 37631, + "ĠFaith": 23642, + "ĠFake": 40469, + "ĠFal": 15202, + "ĠFalcon": 31801, + "ĠFall": 7465, + "ĠFallout": 38457, + "ĠFalls": 23245, + "ĠFalse": 50040, + "ĠFam": 7342, + "ĠFame": 35922, + "ĠFamil": 15672, + "ĠFamilie": 26021, + "ĠFamilien": 36451, + "ĠFamilies": 45081, + "ĠFamily": 11661, + "ĠFan": 18564, + "ĠFang": 25409, + "ĠFans": 25065, + "ĠFant": 12885, + "ĠFantastic": 21320, + "ĠFantasy": 25503, + "ĠFar": 9067, + "ĠFare": 46989, + "ĠFarm": 19991, + "ĠFasc": 49098, + "ĠFashion": 32782, + "ĠFast": 15968, + "ĠFaster": 46665, + "ĠFat": 16948, + "ĠFate": 40900, + "ĠFather": 7085, + "ĠFau": 48820, + "ĠFavor": 34240, + "ĠFavorite": 43697, + "ĠFay": 48889, + "ĠFaz": 33154, + "ĠFe": 3697, + "ĠFear": 28054, + "ĠFebru": 8534, + "ĠFebruary": 8711, + "ĠFed": 7772, + "ĠFeder": 45545, + "ĠFederal": 12380, + "ĠFederation": 27237, + "ĠFeed": 33720, + "ĠFeel": 14113, + "ĠFeeling": 29945, + "ĠFeels": 31578, + "ĠFeh": 35576, + "ĠFehler": 48101, + "ĠFei": 39587, + "ĠFel": 13298, + "ĠFeld": 42677, + "ĠFelipe": 34811, + "ĠFelix": 30169, + "ĠFell": 29709, + "ĠFellow": 44794, + "ĠFellows": 40011, + "ĠFemale": 27288, + "ĠFen": 30993, + "ĠFeng": 23715, + "ĠFer": 10728, + "ĠFergus": 36790, + "ĠFerguson": 40823, + "ĠFerm": 43261, + "ĠFern": 16675, + "ĠFernando": 30190, + "ĠFerr": 25443, + "ĠFerrari": 29828, + "ĠFest": 12993, + "ĠFestival": 16512, + "ĠFeuer": 39972, + "ĠFew": 33468, + "ĠFey": 46530, + "ĠFi": 38245, + "ĠField": 17952, + "ĠFields": 48190, + "ĠFif": 21501, + "ĠFifth": 33588, + "ĠFig": 22443, + "ĠFight": 12371, + "ĠFighter": 33387, + "ĠFighting": 25694, + "ĠFigure": 43225, + "ĠFil": 7905, + "ĠFile": 26196, + "ĠFilip": 28241, + "ĠFilipino": 41266, + "ĠFill": 25315, + "ĠFilm": 13801, + "ĠFilter": 39592, + "ĠFin": 3773, + "ĠFinal": 13443, + "ĠFinally": 6288, + "ĠFinance": 25765, + "ĠFinancial": 25560, + "ĠFinanz": 39141, + "ĠFind": 11809, + "ĠFinding": 31947, + "ĠFine": 12024, + "ĠFinger": 37318, + "ĠFinish": 31583, + "ĠFinished": 48188, + "ĠFinland": 24869, + "ĠFinn": 21066, + "ĠFinnish": 38429, + "ĠFiona": 42556, + "ĠFir": 28164, + "ĠFire": 7652, + "ĠFirebase": 35173, + "ĠFirefox": 46613, + "ĠFirma": 50206, + "ĠFirst": 2386, + "ĠFirstly": 20042, + "ĠFish": 18096, + "ĠFisher": 26676, + "ĠFit": 29263, + "ĠFitness": 45750, + "ĠFitz": 37815, + "ĠFive": 9436, + "ĠFix": 25538, + "ĠFl": 3235, + "ĠFlag": 37461, + "ĠFlame": 42792, + "ĠFlash": 20232, + "ĠFlat": 36172, + "ĠFle": 18612, + "ĠFleet": 47821, + "ĠFleisch": 44911, + "ĠFlex": 29208, + "ĠFlight": 28954, + "ĠFlint": 35587, + "ĠFlip": 28210, + "ĠFlo": 15153, + "ĠFlor": 8328, + "ĠFloren": 32637, + "ĠFlorence": 34631, + "ĠFlorida": 9117, + "ĠFlow": 32792, + "ĠFlower": 34993, + "ĠFlowers": 48194, + "ĠFloyd": 28494, + "ĠFlu": 33612, + "ĠFlug": 33326, + "ĠFly": 25294, + "ĠFlying": 34287, + "ĠFlynn": 40391, + "ĠFo": 8564, + "ĠFocus": 21862, + "ĠFoi": 30995, + "ĠFol": 15255, + "ĠFold": 24609, + "ĠFolge": 43597, + "ĠFolks": 39275, + "ĠFollow": 9876, + "ĠFollowing": 19192, + "ĠFont": 43901, + "ĠFood": 11675, + "ĠFoods": 40724, + "ĠFool": 41583, + "ĠFoot": 20989, + "ĠFootball": 31406, + "ĠFor": 1171, + "ĠForbes": 45950, + "ĠForce": 10580, + "ĠForces": 27445, + "ĠFord": 11961, + "ĠFore": 9018, + "ĠForeign": 20430, + "ĠForest": 18124, + "ĠForever": 30703, + "ĠForget": 18675, + "ĠForgive": 34060, + "ĠForm": 10126, + "ĠFormer": 36514, + "ĠFormula": 35872, + "ĠFors": 48202, + "ĠForsch": 42938, + "ĠFort": 11002, + "ĠFortnite": 28712, + "ĠFortunately": 20652, + "ĠFortune": 38508, + "ĠForum": 29704, + "ĠForward": 35524, + "ĠFoster": 38756, + "ĠFot": 46771, + "ĠFound": 8207, + "ĠFoundation": 10335, + "ĠFour": 7451, + "ĠFourier": 36810, + "ĠFourth": 23773, + "ĠFox": 11388, + "ĠFr": 1526, + "ĠFra": 5849, + "ĠFrage": 13685, + "ĠFragen": 25588, + "ĠFraktion": 30648, + "ĠFrame": 31628, + "ĠFran": 17288, + "ĠFranc": 8686, + "ĠFrance": 6190, + "ĠFrances": 31441, + "ĠFrancis": 19648, + "ĠFrancisco": 12279, + "ĠFranco": 34695, + "ĠFrank": 6823, + "ĠFranken": 39678, + "ĠFrankf": 32571, + "ĠFrankfurt": 36530, + "ĠFrankie": 47263, + "ĠFranklin": 22010, + "ĠFrankly": 41344, + "ĠFranz": 33084, + "ĠFrançais": 39023, + "ĠFraser": 49119, + "ĠFrau": 13930, + "ĠFrauen": 24191, + "ĠFre": 6142, + "ĠFred": 10112, + "ĠFreddie": 41264, + "ĠFreddy": 31445, + "ĠFreder": 27535, + "ĠFrederick": 35617, + "ĠFree": 11551, + "ĠFreedom": 22208, + "ĠFreeman": 42163, + "ĠFreeze": 48096, + "ĠFrei": 35939, + "ĠFreiheit": 47825, + "ĠFrench": 5522, + "ĠFres": 42618, + "ĠFresh": 22843, + "ĠFreud": 41590, + "ĠFreund": 29685, + "ĠFreunde": 40016, + "ĠFriday": 6984, + "ĠFridays": 46306, + "ĠFried": 17605, + "ĠFriend": 22812, + "ĠFriends": 14042, + "ĠFro": 25028, + "ĠFrog": 40103, + "ĠFrom": 3358, + "ĠFront": 17348, + "ĠFrost": 32910, + "ĠFrozen": 39422, + "ĠFruit": 39989, + "ĠFry": 31822, + "ĠFrüh": 47400, + "ĠFu": 12807, + "ĠFuck": 10965, + "ĠFucking": 33342, + "ĠFuel": 46837, + "ĠFuj": 43915, + "ĠFuji": 38119, + "ĠFuk": 33043, + "ĠFull": 13841, + "ĠFun": 11166, + "ĠFund": 13493, + "ĠFunk": 45285, + "ĠFunny": 36484, + "ĠFur": 11705, + "ĠFurther": 15364, + "ĠFurthermore": 23999, + "ĠFury": 40327, + "ĠFusion": 36721, + "ĠFut": 16569, + "ĠFuture": 20805, + "ĠFuÃŁ": 31419, + "ĠFuÃŁball": 49487, + "ĠFör": 20665, + "ĠFür": 14990, + "ĠG": 460, + "ĠGA": 22841, + "ĠGB": 26809, + "ĠGC": 29435, + "ĠGDP": 19599, + "ĠGE": 18003, + "ĠGEOR": 24992, + "ĠGEORGE": 26675, + "ĠGET": 28091, + "ĠGG": 42240, + "ĠGH": 40690, + "ĠGI": 26634, + "ĠGIR": 44027, + "ĠGIS": 47860, + "ĠGL": 16225, + "ĠGLORIA": 24074, + "ĠGM": 16609, + "ĠGN": 46411, + "ĠGO": 10365, + "ĠGOD": 26831, + "ĠGOOD": 28771, + "ĠGORD": 34746, + "ĠGORDON": 35269, + "ĠGOT": 36525, + "ĠGP": 26039, + "ĠGPA": 41321, + "ĠGPS": 19462, + "ĠGPU": 18407, + "ĠGR": 10903, + "ĠGRA": 26121, + "ĠGRANT": 30204, + "ĠGRE": 20830, + "ĠGREEN": 47262, + "ĠGREG": 48793, + "ĠGRÃľ": 21100, + "ĠGRÃľNEN": 21584, + "ĠGS": 32047, + "ĠGSA": 41754, + "ĠGT": 17530, + "ĠGTA": 35575, + "ĠGU": 17917, + "ĠGUY": 37931, + "ĠGW": 36704, + "ĠGa": 10384, + "ĠGab": 11995, + "ĠGabe": 39524, + "ĠGabrie": 50053, + "ĠGabriel": 20985, + "ĠGad": 37171, + "ĠGaga": 41465, + "ĠGal": 7336, + "ĠGalaxy": 13520, + "ĠGalile": 46576, + "ĠGall": 14588, + "ĠGallery": 29733, + "ĠGam": 24723, + "ĠGamb": 44643, + "ĠGame": 7522, + "ĠGames": 12761, + "ĠGaming": 30288, + "ĠGan": 19461, + "ĠGand": 23962, + "ĠGandhi": 34717, + "ĠGang": 17984, + "ĠGanz": 32496, + "ĠGanze": 35206, + "ĠGao": 32235, + "ĠGar": 7995, + "ĠGarage": 47918, + "ĠGarcia": 33738, + "ĠGard": 12882, + "ĠGarden": 19429, + "ĠGardens": 45268, + "ĠGarlic": 41124, + "ĠGarr": 42326, + "ĠGarrett": 40266, + "ĠGary": 13788, + "ĠGas": 24025, + "ĠGast": 31988, + "ĠGate": 21913, + "ĠGates": 26494, + "ĠGateway": 48394, + "ĠGather": 39841, + "ĠGaussian": 39148, + "ĠGavin": 24020, + "ĠGay": 23081, + "ĠGaz": 38468, + "ĠGaza": 37800, + "ĠGe": 2876, + "ĠGear": 26810, + "ĠGeb": 24984, + "ĠGed": 28166, + "ĠGedanken": 44612, + "ĠGee": 39840, + "ĠGeez": 43836, + "ĠGef": 17873, + "ĠGefühl": 29715, + "ĠGeg": 27826, + "ĠGegen": 38631, + "ĠGel": 16142, + "ĠGeld": 16535, + "ĠGem": 22894, + "ĠGeme": 31266, + "ĠGen": 3632, + "ĠGenau": 22340, + "ĠGender": 48039, + "ĠGene": 18083, + "ĠGener": 15409, + "ĠGeneral": 6996, + "ĠGenerally": 21082, + "ĠGeneration": 23898, + "ĠGenesis": 20587, + "ĠGeneva": 37285, + "ĠGenius": 45818, + "ĠGent": 33070, + "ĠGente": 38799, + "ĠGentle": 26214, + "ĠGentlemen": 38316, + "ĠGeoff": 26119, + "ĠGeor": 27909, + "ĠGeorg": 10114, + "ĠGeorge": 7136, + "ĠGeorget": 33932, + "ĠGeorgetown": 34848, + "ĠGeorgia": 11859, + "ĠGer": 9409, + "ĠGerade": 48175, + "ĠGeral": 48527, + "ĠGerald": 38332, + "ĠGerilim": 30687, + "ĠGerm": 3848, + "ĠGerman": 6521, + "ĠGermans": 18116, + "ĠGermany": 7244, + "ĠGerry": 39154, + "ĠGes": 6761, + "ĠGesch": 14241, + "ĠGeschichte": 28896, + "ĠGeschäft": 40440, + "ĠGesellschaft": 30006, + "ĠGesetz": 20685, + "ĠGesetzent": 37792, + "ĠGesetzentwurf": 42040, + "ĠGesicht": 47777, + "ĠGespr": 38746, + "ĠGest": 39909, + "ĠGesund": 33057, + "ĠGesundheits": 44709, + "ĠGet": 3240, + "ĠGetting": 13674, + "ĠGew": 19063, + "ĠGh": 20321, + "ĠGhana": 38779, + "ĠGhost": 16323, + "ĠGi": 15334, + "ĠGian": 41958, + "ĠGiant": 29391, + "ĠGib": 17256, + "ĠGibbs": 30199, + "ĠGibson": 42250, + "ĠGift": 44890, + "ĠGig": 40489, + "ĠGil": 17654, + "ĠGilbert": 39003, + "ĠGill": 27709, + "ĠGimme": 48047, + "ĠGin": 36846, + "ĠGina": 34711, + "ĠGinger": 34637, + "ĠGins": 41728, + "ĠGinsburg": 49347, + "ĠGiov": 47089, + "ĠGir": 36306, + "ĠGirl": 8502, + "ĠGirls": 16245, + "ĠGit": 16939, + "ĠGitHub": 23331, + "ĠGiul": 38679, + "ĠGive": 5303, + "ĠGiven": 18600, + "ĠGiving": 28983, + "ĠGl": 5209, + "ĠGla": 47895, + "ĠGlad": 28301, + "ĠGlas": 29078, + "ĠGlasgow": 40457, + "ĠGlass": 23752, + "ĠGleich": 33858, + "ĠGlen": 38125, + "ĠGlenn": 30119, + "ĠGlo": 10786, + "ĠGlobal": 14465, + "ĠGlobe": 46570, + "ĠGloria": 34288, + "ĠGlory": 28524, + "ĠGlue": 49832, + "ĠGlück": 33508, + "ĠGmail": 36732, + "ĠGo": 1037, + "ĠGoPro": 30259, + "ĠGob": 24287, + "ĠGobierno": 41963, + "ĠGod": 1265, + "ĠGoddess": 33498, + "ĠGods": 30151, + "ĠGodzilla": 38046, + "ĠGoes": 44471, + "ĠGog": 39690, + "ĠGoing": 10963, + "ĠGoku": 29138, + "ĠGol": 36319, + "ĠGold": 6731, + "ĠGolden": 13410, + "ĠGoldman": 45378, + "ĠGolf": 30176, + "ĠGom": 46961, + "ĠGomez": 43537, + "ĠGon": 47403, + "ĠGone": 39068, + "ĠGong": 33231, + "ĠGonna": 20341, + "ĠGonz": 28458, + "ĠGonzalez": 46708, + "ĠGoo": 47609, + "ĠGood": 2205, + "ĠGoodbye": 15528, + "ĠGoodness": 39863, + "ĠGoodnight": 45889, + "ĠGoog": 45005, + "ĠGoogle": 3329, + "ĠGor": 26144, + "ĠGordon": 19369, + "ĠGore": 45450, + "ĠGos": 41272, + "ĠGosh": 19185, + "ĠGospel": 23163, + "ĠGot": 5803, + "ĠGotcha": 42109, + "ĠGoth": 27305, + "ĠGothic": 47143, + "ĠGott": 19133, + "ĠGotta": 21527, + "ĠGottes": 49569, + "ĠGovern": 5515, + "ĠGovernment": 7321, + "ĠGovernor": 14550, + "ĠGr": 2606, + "ĠGra": 8985, + "ĠGrab": 20357, + "ĠGrac": 20586, + "ĠGrace": 15742, + "ĠGracias": 26909, + "ĠGrad": 16710, + "ĠGrade": 44452, + "ĠGraduate": 38124, + "ĠGraham": 22691, + "ĠGram": 22130, + "ĠGrammy": 47332, + "ĠGran": 23554, + "ĠGrand": 6757, + "ĠGrande": 28384, + "ĠGrandma": 22657, + "ĠGrandpa": 27139, + "ĠGranny": 40746, + "ĠGrant": 17529, + "ĠGraph": 21884, + "ĠGrass": 39891, + "ĠGravity": 49478, + "ĠGray": 22668, + "ĠGre": 14986, + "ĠGreat": 3769, + "ĠGreater": 38410, + "ĠGree": 7229, + "ĠGreece": 17214, + "ĠGreek": 10281, + "ĠGreeks": 31029, + "ĠGreen": 6969, + "ĠGreens": 39314, + "ĠGreet": 18678, + "ĠGreetings": 20032, + "ĠGreg": 11490, + "ĠGregory": 37915, + "ĠGren": 24913, + "ĠGrey": 24854, + "ĠGri": 46082, + "ĠGrid": 42905, + "ĠGriff": 23765, + "ĠGriffin": 39188, + "ĠGrill": 43592, + "ĠGrind": 47938, + "ĠGro": 12981, + "ĠGross": 34256, + "ĠGround": 28371, + "ĠGroup": 10500, + "ĠGrove": 43111, + "ĠGrow": 18476, + "ĠGrowing": 32569, + "ĠGrowth": 48345, + "ĠGroÃŁ": 34534, + "ĠGru": 10459, + "ĠGrund": 13941, + "ĠGrö": 45778, + "ĠGrü": 38908, + "ĠGu": 2694, + "ĠGuan": 41431, + "ĠGuang": 35815, + "ĠGuard": 11549, + "ĠGuardian": 27684, + "ĠGuardians": 45236, + "ĠGuatem": 39462, + "ĠGuatemala": 43120, + "ĠGucci": 46052, + "ĠGud": 45986, + "ĠGue": 44847, + "ĠGuer": 28305, + "ĠGuerra": 45725, + "ĠGuess": 17795, + "ĠGuid": 49036, + "ĠGuide": 18727, + "ĠGuild": 38968, + "ĠGuill": 48149, + "ĠGuin": 44117, + "ĠGuinea": 46793, + "ĠGuitar": 48758, + "ĠGul": 43314, + "ĠGulf": 23033, + "ĠGum": 48862, + "ĠGun": 14153, + "ĠGund": 38299, + "ĠGuo": 34175, + "ĠGur": 33716, + "ĠGuru": 22389, + "ĠGus": 40619, + "ĠGust": 32337, + "ĠGut": 24481, + "ĠGuten": 42833, + "ĠGuy": 14690, + "ĠGuys": 7855, + "ĠGwen": 42499, + "ĠGy": 25911, + "ĠGym": 38635, + "ĠGö": 47894, + "ĠGör": 35493, + "ĠGü": 38139, + "ĠGün": 50225, + "ĠH": 389, + "ĠHA": 11979, + "ĠHAM": 45561, + "ĠHAR": 19819, + "ĠHARF": 27602, + "ĠHARR": 38892, + "ĠHARRIS": 47714, + "ĠHAS": 38461, + "ĠHAVE": 30309, + "ĠHBO": 37409, + "ĠHC": 30440, + "ĠHD": 12149, + "ĠHDMI": 30811, + "ĠHDR": 29650, + "ĠHE": 11827, + "ĠHEL": 38856, + "ĠHER": 29060, + "ĠHERE": 37438, + "ĠHEY": 43821, + "ĠHI": 44376, + "ĠHIM": 43854, + "ĠHIS": 45470, + "ĠHIV": 15907, + "ĠHJ": 35755, + "ĠHK": 39378, + "ĠHO": 23097, + "ĠHOL": 44069, + "ĠHOR": 48064, + "ĠHOW": 30561, + "ĠHOY": 46120, + "ĠHP": 12557, + "ĠHQ": 43209, + "ĠHR": 19460, + "ĠHS": 34194, + "ĠHT": 11751, + "ĠHTML": 17995, + "ĠHTTP": 33283, + "ĠHU": 26887, + "ĠHUD": 46867, + "ĠHY": 34189, + "ĠHa": 4064, + "ĠHab": 14225, + "ĠHaben": 47007, + "ĠHack": 35170, + "ĠHad": 12298, + "ĠHadi": 18908, + "ĠHae": 44245, + "ĠHaf": 47933, + "ĠHag": 34758, + "ĠHah": 31944, + "ĠHaha": 19131, + "ĠHahah": 42656, + "ĠHahaha": 25122, + "ĠHahn": 45303, + "ĠHai": 24055, + "ĠHail": 32495, + "ĠHair": 27957, + "ĠHait": 25752, + "ĠHaiti": 35231, + "ĠHaj": 43347, + "ĠHak": 21750, + "ĠHal": 13896, + "ĠHalf": 15917, + "ĠHall": 5434, + "ĠHallelujah": 32359, + "ĠHallo": 21242, + "ĠHalloween": 13860, + "ĠHalo": 29795, + "ĠHam": 8234, + "ĠHamb": 27551, + "ĠHamburg": 34118, + "ĠHamilton": 18484, + "ĠHamm": 34842, + "ĠHammer": 33722, + "ĠHamp": 30303, + "ĠHampshire": 35688, + "ĠHan": 7820, + "ĠHana": 47946, + "ĠHand": 8854, + "ĠHands": 21369, + "ĠHandy": 47006, + "ĠHang": 14070, + "ĠHani": 39731, + "ĠHank": 26427, + "ĠHann": 33461, + "ĠHannah": 21754, + "ĠHans": 17926, + "ĠHanım": 37182, + "ĠHao": 36702, + "ĠHapp": 7412, + "ĠHappiness": 46224, + "ĠHappy": 8277, + "ĠHar": 3653, + "ĠHarbor": 33740, + "ĠHard": 11817, + "ĠHardy": 43930, + "ĠHare": 34836, + "ĠHari": 47221, + "ĠHarlem": 44196, + "ĠHarley": 34921, + "ĠHarm": 43523, + "ĠHarmon": 40599, + "ĠHarold": 36076, + "ĠHarper": 37216, + "ĠHarr": 13321, + "ĠHarriet": 46437, + "ĠHarris": 17426, + "ĠHarrison": 34272, + "ĠHarry": 9378, + "ĠHarsh": 48914, + "ĠHart": 21414, + "ĠHarvard": 13378, + "ĠHarvey": 28796, + "ĠHas": 8646, + "ĠHasan": 46513, + "ĠHash": 30775, + "ĠHass": 32711, + "ĠHast": 30987, + "ĠHasta": 45027, + "ĠHat": 15867, + "ĠHate": 46000, + "ĠHaupt": 30573, + "ĠHaus": 22725, + "ĠHause": 26217, + "ĠHaush": 39581, + "ĠHaut": 49668, + "ĠHave": 3560, + "ĠHaven": 23770, + "ĠHaving": 10222, + "ĠHaw": 9325, + "ĠHawai": 13613, + "ĠHawaii": 17930, + "ĠHawaiian": 36581, + "ĠHawk": 42219, + "ĠHay": 8721, + "ĠHayır": 30102, + "ĠHaz": 15852, + "ĠHazrat": 32423, + "ĠHe": 634, + "ĠHead": 11398, + "ĠHealing": 48997, + "ĠHealth": 5912, + "ĠHealthcare": 45548, + "ĠHealthy": 37733, + "ĠHear": 30685, + "ĠHearing": 37875, + "ĠHeart": 13569, + "ĠHearts": 39309, + "ĠHeat": 27359, + "ĠHeath": 46622, + "ĠHeather": 21728, + "ĠHeaven": 13676, + "ĠHeavenly": 38352, + "ĠHeavy": 26473, + "ĠHeb": 15606, + "ĠHebrew": 17895, + "ĠHebrews": 44604, + "ĠHeck": 41948, + "ĠHee": 26545, + "ĠHeh": 34984, + "ĠHehe": 45185, + "ĠHeidi": 40947, + "ĠHeights": 44039, + "ĠHeil": 45650, + "ĠHein": 32789, + "ĠHej": 44567, + "ĠHel": 6128, + "ĠHelen": 26294, + "ĠHelena": 49294, + "ĠHell": 12090, + "ĠHello": 2425, + "ĠHelp": 10773, + "ĠHels": 45429, + "ĠHem": 18568, + "ĠHen": 8651, + "ĠHence": 22229, + "ĠHend": 28594, + "ĠHenderson": 45013, + "ĠHenri": 45365, + "ĠHenry": 11085, + "ĠHep": 30578, + "ĠHer": 3204, + "ĠHera": 30808, + "ĠHeraus": 36795, + "ĠHerausforder": 37888, + "ĠHerbert": 41942, + "ĠHere": 1692, + "ĠHeritage": 27406, + "ĠHerm": 21842, + "ĠHerman": 44676, + "ĠHern": 35651, + "ĠHernandez": 47985, + "ĠHero": 14731, + "ĠHeroes": 32070, + "ĠHerr": 10367, + "ĠHerren": 20810, + "ĠHerrn": 41791, + "ĠHers": 41222, + "ĠHert": 41898, + "ĠHertz": 46910, + "ĠHerz": 24749, + "ĠHess": 35960, + "ĠHessen": 24951, + "ĠHet": 12045, + "ĠHeute": 27978, + "ĠHey": 1911, + "ĠHi": 2421, + "ĠHidden": 41156, + "ĠHide": 35118, + "ĠHier": 10886, + "ĠHigh": 5229, + "ĠHigher": 31997, + "ĠHighness": 17284, + "ĠHighway": 30911, + "ĠHij": 27832, + "ĠHil": 19914, + "ĠHilfe": 37448, + "ĠHill": 9109, + "ĠHillary": 23284, + "ĠHills": 25663, + "ĠHim": 5920, + "ĠHimself": 26821, + "ĠHin": 29571, + "ĠHind": 15307, + "ĠHindi": 36225, + "ĠHindu": 21231, + "ĠHindus": 49726, + "ĠHinter": 35006, + "ĠHip": 29596, + "ĠHir": 23192, + "ĠHis": 2812, + "ĠHispan": 25912, + "ĠHispanic": 29559, + "ĠHist": 9038, + "ĠHistor": 25108, + "ĠHistorical": 46124, + "ĠHistory": 12486, + "ĠHit": 9217, + "ĠHitler": 19038, + "ĠHiç": 33410, + "ĠHm": 17989, + "ĠHmm": 8239, + "ĠHmmm": 32317, + "ĠHo": 3631, + "ĠHob": 22966, + "ĠHobby": 49705, + "ĠHoch": 29193, + "ĠHod": 45151, + "ĠHoe": 33979, + "ĠHof": 37379, + "ĠHoff": 29135, + "ĠHog": 30553, + "ĠHogwarts": 46539, + "ĠHoje": 34104, + "ĠHok": 46792, + "ĠHol": 11086, + "ĠHola": 22637, + "ĠHold": 6962, + "ĠHolding": 40818, + "ĠHole": 47635, + "ĠHoliday": 40898, + "ĠHoll": 17712, + "ĠHolland": 27201, + "ĠHollow": 46731, + "ĠHolly": 10055, + "ĠHollywood": 11628, + "ĠHolmes": 27474, + "ĠHolo": 24298, + "ĠHolocaust": 28399, + "ĠHoly": 6295, + "ĠHolz": 45455, + "ĠHom": 20903, + "ĠHome": 8719, + "ĠHomeland": 45800, + "ĠHomer": 42273, + "ĠHon": 6625, + "ĠHond": 45260, + "ĠHonda": 26989, + "ĠHonestly": 12348, + "ĠHoney": 16187, + "ĠHong": 8868, + "ĠHonor": 16922, + "ĠHonors": 48801, + "ĠHoo": 26796, + "ĠHood": 33213, + "ĠHook": 33132, + "ĠHoover": 46382, + "ĠHop": 13438, + "ĠHope": 6483, + "ĠHopefully": 10429, + "ĠHopkins": 29999, + "ĠHor": 10691, + "ĠHoriz": 42141, + "ĠHorizon": 40102, + "ĠHorn": 31792, + "ĠHorror": 42993, + "ĠHorse": 33208, + "ĠHos": 44004, + "ĠHosp": 14516, + "ĠHospital": 15645, + "ĠHost": 22047, + "ĠHot": 9423, + "ĠHotel": 20354, + "ĠHou": 16273, + "ĠHour": 38369, + "ĠHouse": 4928, + "ĠHousing": 31340, + "ĠHouston": 18717, + "ĠHow": 1012, + "ĠHoward": 17626, + "ĠHowever": 2908, + "ĠHoy": 28664, + "ĠHoÅŁ": 45958, + "ĠHu": 11874, + "ĠHua": 19094, + "ĠHuang": 28073, + "ĠHuawei": 28542, + "ĠHub": 18986, + "ĠHubble": 42317, + "ĠHud": 27767, + "ĠHudson": 32959, + "ĠHue": 40015, + "ĠHug": 46892, + "ĠHuge": 37043, + "ĠHugh": 25893, + "ĠHughes": 41102, + "ĠHugo": 32504, + "ĠHuh": 8063, + "ĠHui": 39340, + "ĠHulk": 30167, + "ĠHum": 12877, + "ĠHuman": 10294, + "ĠHumans": 35809, + "ĠHun": 11648, + "ĠHund": 43361, + "ĠHundred": 32869, + "ĠHundreds": 45785, + "ĠHung": 15063, + "ĠHungarian": 38034, + "ĠHungary": 32380, + "ĠHunger": 46549, + "ĠHunt": 31740, + "ĠHunter": 18704, + "ĠHunting": 44793, + "ĠHur": 8598, + "ĠHurricane": 35574, + "ĠHurry": 12944, + "ĠHus": 21282, + "ĠHut": 39012, + "ĠHutch": 48499, + "ĠHy": 5701, + "ĠHybrid": 47088, + "ĠHyd": 24231, + "ĠHye": 31103, + "ĠHyp": 45649, + "ĠHyper": 29592, + "ĠHyun": 18398, + "ĠHyundai": 44133, + "ĠHyung": 36917, + "ĠHz": 39747, + "ĠHä": 45763, + "ĠHär": 35539, + "ĠHé": 42318, + "ĠHö": 30824, + "ĠI": 286, + "ĠIB": 40385, + "ĠIBM": 23487, + "ĠIC": 14360, + "ĠICE": 43337, + "ĠICU": 38123, + "ĠID": 7348, + "ĠIDE": 40930, + "ĠIDs": 48212, + "ĠIF": 26080, + "ĠIG": 26367, + "ĠII": 6351, + "ĠIII": 16317, + "ĠIKE": 46492, + "ĠIKEA": 47728, + "ĠIL": 40413, + "ĠIM": 21463, + "ĠIN": 6892, + "ĠINF": 35971, + "ĠINT": 43140, + "ĠINTER": 30219, + "ĠINTERVIE": 46761, + "ĠINTERVIEWER": 49667, + "ĠIO": 39839, + "ĠIP": 8671, + "ĠIPO": 50220, + "ĠIPS": 50021, + "ĠIQ": 28921, + "ĠIR": 16486, + "ĠIRA": 37993, + "ĠIRS": 33848, + "ĠIS": 6205, + "ĠISBN": 47874, + "ĠISIL": 45518, + "ĠISIS": 25639, + "ĠISO": 25042, + "ĠISS": 48534, + "ĠIT": 6783, + "ĠIU": 44218, + "ĠIV": 15967, + "ĠIX": 49497, + "ĠIan": 19595, + "ĠIb": 40790, + "ĠIce": 15332, + "ĠIceland": 28004, + "ĠIch": 3141, + "ĠIci": 39049, + "ĠId": 11506, + "ĠIdaho": 36628, + "ĠIde": 13090, + "ĠIdea": 47245, + "ĠIdeally": 40817, + "ĠIdee": 32651, + "ĠIdent": 25905, + "ĠIdi": 40187, + "ĠIdol": 33266, + "ĠIf": 759, + "ĠIg": 19271, + "ĠIgn": 24754, + "ĠIgor": 40356, + "ĠIh": 10485, + "ĠIhnen": 17280, + "ĠIhr": 14773, + "ĠIhre": 26247, + "ĠIhrer": 47087, + "ĠIk": 8316, + "ĠIl": 4416, + "ĠIll": 10597, + "ĠIllinois": 17508, + "ĠIllust": 37788, + "ĠIls": 17979, + "ĠIm": 4331, + "ĠImag": 34223, + "ĠImage": 29903, + "ĠImagine": 11739, + "ĠImam": 39875, + "ĠImm": 17322, + "ĠImma": 50089, + "ĠImmedi": 32157, + "ĠImmediately": 34457, + "ĠImmer": 42676, + "ĠImp": 8270, + "ĠImpact": 31005, + "ĠImper": 18360, + "ĠImperial": 21395, + "ĠImpf": 32591, + "ĠImport": 26391, + "ĠImportant": 42908, + "ĠImpossible": 36808, + "ĠImprove": 46366, + "ĠIn": 682, + "ĠInaudible": 48655, + "ĠInc": 7779, + "ĠIncluding": 27137, + "ĠIncor": 39120, + "ĠIncre": 30367, + "ĠIncred": 27792, + "ĠIncredible": 35261, + "ĠInd": 2333, + "ĠIndeed": 15061, + "ĠIndepend": 21809, + "ĠIndependence": 33631, + "ĠIndependent": 40310, + "ĠIndex": 33552, + "ĠIndia": 5282, + "ĠIndian": 6427, + "ĠIndiana": 21858, + "ĠIndians": 23838, + "ĠIndigenous": 22699, + "ĠIndividual": 37292, + "ĠIndo": 46489, + "ĠIndones": 13942, + "ĠIndonesia": 16879, + "ĠIndonesian": 39772, + "ĠIndust": 16018, + "ĠIndustrial": 32059, + "ĠIndustries": 45375, + "ĠIndustry": 38178, + "ĠInf": 11537, + "ĠInfin": 22145, + "ĠInfinite": 43368, + "ĠInfinity": 34762, + "ĠInform": 34301, + "ĠInformation": 15357, + "ĠInformationen": 46753, + "ĠInfrast": 38425, + "ĠIng": 25731, + "ĠIngred": 46670, + "ĠInhale": 27586, + "ĠIni": 28929, + "ĠInit": 22937, + "ĠIniti": 23613, + "ĠInitially": 29446, + "ĠInitiative": 26166, + "ĠInk": 31147, + "ĠInn": 34066, + "ĠInnen": 43617, + "ĠInner": 36705, + "ĠInnov": 22203, + "ĠInnovation": 27092, + "ĠIns": 9442, + "ĠInsert": 36487, + "ĠInside": 15123, + "ĠInsp": 32671, + "ĠInspect": 29552, + "ĠInspector": 33402, + "ĠInst": 2730, + "ĠInstagram": 5281, + "ĠInstall": 31982, + "ĠInstant": 38707, + "ĠInstead": 7156, + "ĠInstit": 33897, + "ĠInstitute": 9446, + "ĠInstr": 39785, + "ĠInsurance": 39971, + "ĠInt": 5681, + "ĠInte": 21525, + "ĠIntegr": 23894, + "ĠIntegration": 47713, + "ĠIntel": 19762, + "ĠIntell": 18762, + "ĠIntelligence": 27274, + "ĠInter": 5751, + "ĠInteresting": 14711, + "ĠInterestingly": 30564, + "ĠInterior": 44346, + "ĠIntern": 4844, + "ĠInternal": 47836, + "ĠInternational": 9157, + "ĠInternet": 7703, + "ĠInterview": 35599, + "ĠInterviewer": 43184, + "ĠInto": 23373, + "ĠIntro": 47406, + "ĠIntrodu": 27193, + "ĠInv": 31124, + "ĠInvest": 14008, + "ĠInvestig": 42030, + "ĠInvestment": 43427, + "ĠIo": 19239, + "ĠIoT": 30112, + "ĠIowa": 14514, + "ĠIr": 9151, + "ĠIra": 10954, + "ĠIran": 8283, + "ĠIranian": 24934, + "ĠIraq": 11818, + "ĠIraqi": 35149, + "ĠIre": 13151, + "ĠIreland": 15880, + "ĠIrene": 40834, + "ĠIris": 40789, + "ĠIrish": 16801, + "ĠIron": 13720, + "ĠIs": 1119, + "ĠIsa": 19718, + "ĠIsaac": 22505, + "ĠIsab": 35686, + "ĠIsaiah": 27263, + "ĠIsh": 42854, + "ĠIslam": 8571, + "ĠIslamic": 17970, + "ĠIsland": 7637, + "ĠIslands": 23492, + "ĠIsn": 6998, + "ĠIsrael": 5674, + "ĠIsraeli": 19974, + "ĠIsraelis": 45086, + "ĠIsraelites": 48308, + "ĠIss": 38195, + "ĠIsso": 14887, + "ĠIst": 12810, + "ĠIstanbul": 36340, + "ĠIt": 467, + "ĠItal": 8158, + "ĠItalia": 41355, + "ĠItalian": 10003, + "ĠItalians": 43620, + "ĠItaly": 10705, + "ĠItem": 31066, + "ĠIts": 6953, + "ĠItu": 39109, + "ĠItÃŃs": 47806, + "ĠIv": 26546, + "ĠIvan": 28893, + "ĠIvy": 38592, + "ĠIya": 47600, + "ĠIz": 30296, + "ĠIÃŃm": 34925, + "ĠJ": 508, + "ĠJA": 26401, + "ĠJAC": 48904, + "ĠJACK": 40281, + "ĠJAKE": 45452, + "ĠJAM": 26238, + "ĠJAMES": 35510, + "ĠJASON": 33524, + "ĠJAY": 29116, + "ĠJB": 43019, + "ĠJC": 49802, + "ĠJD": 37082, + "ĠJE": 21072, + "ĠJEFF": 30214, + "ĠJEN": 50245, + "ĠJENN": 35635, + "ĠJER": 29257, + "ĠJERRY": 48650, + "ĠJES": 49350, + "ĠJESS": 49439, + "ĠJF": 40951, + "ĠJH": 27473, + "ĠJI": 50172, + "ĠJIM": 37650, + "ĠJJ": 21386, + "ĠJJonak": 42805, + "ĠJK": 35973, + "ĠJM": 35162, + "ĠJO": 9787, + "ĠJOE": 44114, + "ĠJOHN": 13844, + "ĠJON": 27838, + "ĠJOSH": 36883, + "ĠJP": 34336, + "ĠJR": 32849, + "ĠJS": 33063, + "ĠJSON": 31828, + "ĠJU": 38852, + "ĠJUD": 16418, + "ĠJUDGE": 30042, + "ĠJUDY": 23820, + "ĠJUL": 40820, + "ĠJUN": 45801, + "ĠJUST": 33310, + "ĠJUSTIN": 41987, + "ĠJW": 49885, + "ĠJY": 43587, + "ĠJa": 3530, + "ĠJab": 40319, + "ĠJac": 9538, + "ĠJack": 4718, + "ĠJackie": 23402, + "ĠJackson": 10647, + "ĠJacob": 14117, + "ĠJacobs": 44068, + "ĠJacqu": 49770, + "ĠJacques": 42691, + "ĠJade": 37021, + "ĠJadi": 21662, + "ĠJae": 20916, + "ĠJag": 9014, + "ĠJah": 12443, + "ĠJahr": 11674, + "ĠJahre": 15557, + "ĠJahren": 13080, + "ĠJahres": 44360, + "ĠJaime": 46119, + "ĠJak": 15029, + "ĠJake": 15822, + "ĠJam": 10372, + "ĠJama": 26803, + "ĠJamaica": 42927, + "ĠJames": 5678, + "ĠJamie": 19309, + "ĠJan": 4956, + "ĠJana": 49164, + "ĠJane": 13048, + "ĠJaneiro": 44711, + "ĠJanet": 26948, + "ĠJang": 29912, + "ĠJanuary": 7061, + "ĠJap": 35642, + "ĠJapan": 3367, + "ĠJapanese": 5433, + "ĠJapon": 47594, + "ĠJar": 23941, + "ĠJared": 24160, + "ĠJas": 34023, + "ĠJasmine": 36224, + "ĠJason": 11181, + "ĠJava": 10745, + "ĠJavaScript": 15778, + "ĠJaw": 48547, + "ĠJay": 11146, + "ĠJaz": 45640, + "ĠJazz": 32213, + "ĠJe": 2588, + "ĠJean": 13854, + "ĠJed": 27076, + "ĠJeder": 47274, + "ĠJedi": 21746, + "ĠJeep": 31748, + "ĠJeez": 48516, + "ĠJeff": 7506, + "ĠJefferson": 25747, + "ĠJeffrey": 28721, + "ĠJeg": 17119, + "ĠJeju": 42966, + "ĠJelly": 38815, + "ĠJen": 9228, + "ĠJenkins": 41273, + "ĠJenn": 12342, + "ĠJenna": 35391, + "ĠJennifer": 14351, + "ĠJenny": 20580, + "ĠJeong": 31761, + "ĠJer": 8139, + "ĠJeremiah": 40460, + "ĠJeremy": 17809, + "ĠJerome": 44965, + "ĠJerry": 17454, + "ĠJersey": 16601, + "ĠJerusalem": 15393, + "ĠJes": 2547, + "ĠJess": 10484, + "ĠJesse": 21895, + "ĠJessica": 15570, + "ĠJessie": 36627, + "ĠJest": 24918, + "ĠJesus": 2705, + "ĠJesús": 47710, + "ĠJet": 28730, + "ĠJetzt": 12592, + "ĠJew": 5679, + "ĠJewish": 9246, + "ĠJews": 11041, + "ĠJeżeli": 35090, + "ĠJeÅĽli": 37086, + "ĠJi": 9702, + "ĠJia": 29242, + "ĠJian": 35423, + "ĠJiang": 23458, + "ĠJie": 41731, + "ĠJill": 24690, + "ĠJim": 6637, + "ĠJimin": 33657, + "ĠJimmy": 15709, + "ĠJin": 10617, + "ĠJing": 19534, + "ĠJinping": 45898, + "ĠJo": 3139, + "ĠJoan": 25748, + "ĠJoanna": 49314, + "ĠJob": 18602, + "ĠJobs": 29169, + "ĠJoe": 6807, + "ĠJoel": 21522, + "ĠJoey": 23764, + "ĠJoh": 19180, + "ĠJohann": 34094, + "ĠJohannes": 48455, + "ĠJohn": 2619, + "ĠJohnny": 15999, + "ĠJohns": 37016, + "ĠJohnson": 9779, + "ĠJoin": 19642, + "ĠJoining": 40229, + "ĠJoint": 37866, + "ĠJoker": 27453, + "ĠJon": 7745, + "ĠJonah": 42353, + "ĠJonas": 34630, + "ĠJonathan": 15471, + "ĠJones": 10512, + "ĠJong": 19589, + "ĠJoo": 35169, + "ĠJord": 32752, + "ĠJordan": 10979, + "ĠJorge": 36875, + "ĠJos": 18541, + "ĠJose": 8635, + "ĠJoseph": 11170, + "ĠJosh": 9785, + "ĠJoshua": 24005, + "ĠJosé": 34342, + "ĠJour": 13483, + "ĠJournal": 16936, + "ĠJourney": 37724, + "ĠJoy": 15571, + "ĠJoyce": 40044, + "ĠJoão": 21302, + "ĠJr": 17261, + "ĠJu": 13582, + "ĠJuan": 17064, + "ĠJub": 43560, + "ĠJud": 7661, + "ĠJuda": 35300, + "ĠJudah": 46828, + "ĠJudaism": 37797, + "ĠJudas": 49632, + "ĠJude": 36521, + "ĠJudge": 19476, + "ĠJudith": 45395, + "ĠJudy": 24577, + "ĠJug": 27892, + "ĠJugend": 35303, + "ĠJuice": 47776, + "ĠJul": 7174, + "ĠJulia": 18551, + "ĠJulian": 25151, + "ĠJulie": 18794, + "ĠJuliet": 33532, + "ĠJulius": 47666, + "ĠJuly": 7370, + "ĠJump": 18697, + "ĠJun": 8492, + "ĠJune": 6928, + "ĠJung": 12739, + "ĠJungkook": 48928, + "ĠJungle": 44021, + "ĠJunior": 21954, + "ĠJup": 22125, + "ĠJupiter": 24567, + "ĠJur": 27544, + "ĠJurassic": 44730, + "ĠJust": 1449, + "ĠJustice": 10422, + "ĠJustin": 11320, + "ĠJá": 21237, + "ĠK": 591, + "ĠKA": 31233, + "ĠKAR": 42976, + "ĠKAT": 39274, + "ĠKE": 21887, + "ĠKELL": 48109, + "ĠKENN": 34773, + "ĠKENNETH": 42303, + "ĠKEVIN": 50006, + "ĠKH": 34854, + "ĠKI": 47261, + "ĠKIM": 38985, + "ĠKIR": 29927, + "ĠKIRBY": 34553, + "ĠKL": 47991, + "ĠKN": 26967, + "ĠKNOW": 39429, + "ĠKO": 34245, + "ĠKP": 41371, + "ĠKR": 37522, + "ĠKRIS": 36449, + "ĠKY": 41150, + "ĠKa": 10988, + "ĠKab": 25848, + "ĠKabul": 48103, + "ĠKad": 32248, + "ĠKaf": 36813, + "ĠKafka": 47064, + "ĠKag": 48751, + "ĠKah": 39444, + "ĠKai": 20753, + "ĠKaiser": 42066, + "ĠKait": 45791, + "ĠKak": 36775, + "ĠKal": 12655, + "ĠKalau": 36366, + "ĠKam": 11934, + "ĠKamera": 42728, + "ĠKampf": 45126, + "ĠKan": 11120, + "ĠKanal": 38643, + "ĠKane": 39161, + "ĠKang": 20360, + "ĠKann": 29074, + "ĠKansas": 19422, + "ĠKant": 40927, + "ĠKanye": 37654, + "ĠKap": 21216, + "ĠKar": 8009, + "ĠKara": 34838, + "ĠKard": 31050, + "ĠKardash": 37959, + "ĠKardashian": 46044, + "ĠKaren": 14834, + "ĠKarena": 45724, + "ĠKarere": 48442, + "ĠKarl": 20405, + "ĠKarma": 39063, + "ĠKart": 27365, + "ĠKas": 28059, + "ĠKash": 32356, + "ĠKat": 8365, + "ĠKate": 16251, + "ĠKath": 20067, + "ĠKatherine": 33478, + "ĠKathleen": 41648, + "ĠKathryn": 49655, + "ĠKathy": 30740, + "ĠKatie": 19602, + "ĠKatrina": 42550, + "ĠKaty": 42959, + "ĠKauf": 44590, + "ĠKaw": 31795, + "ĠKay": 14179, + "ĠKayla": 36797, + "ĠKaz": 16264, + "ĠKazakh": 38438, + "ĠKazakhstan": 47394, + "ĠKazu": 41038, + "ĠKazuto": 38031, + "ĠKazuya": 47730, + "ĠKe": 3189, + "ĠKeep": 5527, + "ĠKeeping": 30187, + "ĠKeith": 20613, + "ĠKel": 19158, + "ĠKell": 28554, + "ĠKeller": 48352, + "ĠKelly": 12345, + "ĠKelsey": 44714, + "ĠKelvin": 36955, + "ĠKem": 30097, + "ĠKen": 8273, + "ĠKend": 20891, + "ĠKendall": 38794, + "ĠKenn": 12369, + "ĠKennedy": 16517, + "ĠKenneth": 33735, + "ĠKenny": 33681, + "ĠKens": 33265, + "ĠKensuke": 44708, + "ĠKent": 15843, + "ĠKentucky": 22369, + "ĠKenya": 31011, + "ĠKer": 20706, + "ĠKern": 40224, + "ĠKerry": 28528, + "ĠKes": 26898, + "ĠKevin": 9954, + "ĠKey": 12759, + "ĠKeys": 43733, + "ĠKh": 11681, + "ĠKhal": 27724, + "ĠKhan": 18136, + "ĠKhông": 49125, + "ĠKi": 17459, + "ĠKia": 45505, + "ĠKick": 20886, + "ĠKickstarter": 41288, + "ĠKid": 18978, + "ĠKids": 15694, + "ĠKiev": 48559, + "ĠKil": 23912, + "ĠKill": 17526, + "ĠKiller": 39846, + "ĠKim": 5652, + "ĠKimberly": 39804, + "ĠKimchi": 38428, + "ĠKin": 27950, + "ĠKind": 9242, + "ĠKinda": 35553, + "ĠKinder": 14193, + "ĠKindern": 43987, + "ĠKing": 3819, + "ĠKingdom": 11277, + "ĠKings": 21855, + "ĠKingston": 33419, + "ĠKir": 11305, + "ĠKirby": 37423, + "ĠKirk": 27834, + "ĠKirsty": 31166, + "ĠKiss": 24297, + "ĠKit": 23037, + "ĠKita": 27329, + "ĠKitchen": 23135, + "ĠKitty": 36393, + "ĠKivol": 27506, + "ĠKivolowitz": 27507, + "ĠKl": 16053, + "ĠKlar": 44893, + "ĠKle": 17053, + "ĠKlein": 33327, + "ĠKlim": 25136, + "ĠKn": 10519, + "ĠKne": 32708, + "ĠKnight": 18708, + "ĠKnights": 37685, + "ĠKnock": 34017, + "ĠKnow": 10265, + "ĠKnowing": 25499, + "ĠKnowledge": 32906, + "ĠKnox": 48510, + "ĠKo": 10509, + "ĠKob": 46353, + "ĠKobe": 46296, + "ĠKoch": 40401, + "ĠKoh": 30861, + "ĠKok": 36915, + "ĠKol": 26137, + "ĠKoll": 11621, + "ĠKolleg": 25213, + "ĠKollege": 28505, + "ĠKollegen": 23713, + "ĠKollegin": 46632, + "ĠKolleginnen": 35950, + "ĠKom": 14286, + "ĠKomb": 34678, + "ĠKombat": 49131, + "ĠKomm": 18400, + "ĠKomment": 33708, + "ĠKommentare": 46203, + "ĠKommun": 28832, + "ĠKommunen": 42566, + "ĠKon": 12718, + "ĠKong": 9832, + "ĠKons": 48163, + "ĠKonst": 44200, + "ĠKont": 20629, + "ĠKontakt": 43396, + "ĠKook": 47719, + "ĠKop": 49656, + "ĠKopf": 28231, + "ĠKor": 21690, + "ĠKore": 3893, + "ĠKorea": 6307, + "ĠKorean": 6933, + "ĠKoreans": 32130, + "ĠKos": 36909, + "ĠKosten": 47391, + "ĠKot": 30123, + "ĠKr": 6332, + "ĠKra": 26988, + "ĠKraft": 31313, + "ĠKrank": 48896, + "ĠKranken": 39950, + "ĠKre": 23625, + "ĠKrie": 35579, + "ĠKris": 28486, + "ĠKrishna": 27153, + "ĠKrist": 19562, + "ĠKristen": 35107, + "ĠKristin": 42189, + "ĠKrit": 46372, + "ĠKrsna": 33035, + "ĠKry": 37747, + "ĠKu": 20311, + "ĠKub": 35805, + "ĠKubernetes": 23145, + "ĠKultur": 46744, + "ĠKum": 28039, + "ĠKumar": 46500, + "ĠKun": 19089, + "ĠKund": 49759, + "ĠKunden": 38192, + "ĠKung": 44317, + "ĠKunst": 40099, + "ĠKur": 16481, + "ĠKurd": 32305, + "ĠKurt": 26168, + "ĠKurz": 45307, + "ĠKush": 49709, + "ĠKw": 43432, + "ĠKwang": 46561, + "ĠKy": 12237, + "ĠKyle": 18023, + "ĠKylie": 39424, + "ĠKyoto": 48470, + "ĠKyung": 40285, + "ĠKä": 40502, + "ĠKö": 43197, + "ĠKön": 29077, + "ĠKörper": 33501, + "ĠKü": 30726, + "ĠKız": 36223, + "ĠKá¹Ľá¹£á¹ĩa": 36777, + "ĠL": 441, + "ĠLA": 9855, + "ĠLAKE": 42193, + "ĠLAN": 37387, + "ĠLAU": 8150, + "ĠLAUGH": 26355, + "ĠLAUGHTER": 46760, + "ĠLAURA": 10105, + "ĠLC": 42198, + "ĠLCD": 33158, + "ĠLD": 33936, + "ĠLE": 11378, + "ĠLED": 11261, + "ĠLEDs": 33366, + "ĠLEE": 38784, + "ĠLEGO": 36072, + "ĠLEO": 49692, + "ĠLET": 40866, + "ĠLG": 25449, + "ĠLGB": 15452, + "ĠLGBT": 16179, + "ĠLGBTQ": 26862, + "ĠLI": 7169, + "ĠLIAM": 13194, + "ĠLIKE": 24705, + "ĠLIN": 19763, + "ĠLINKE": 32445, + "ĠLISA": 42448, + "ĠLIVE": 33880, + "ĠLLC": 33698, + "ĠLM": 46529, + "ĠLO": 15731, + "ĠLOL": 15086, + "ĠLOOK": 45648, + "ĠLORD": 29818, + "ĠLOT": 42930, + "ĠLOU": 49486, + "ĠLOVE": 31351, + "ĠLP": 38095, + "ĠLS": 36657, + "ĠLT": 42671, + "ĠLU": 31851, + "ĠLY": 42154, + "ĠLa": 2369, + "ĠLab": 10137, + "ĠLabor": 17250, + "ĠLaboratory": 40824, + "ĠLabour": 23361, + "ĠLabs": 40047, + "ĠLac": 40113, + "ĠLad": 12106, + "ĠLaden": 45555, + "ĠLadies": 17084, + "ĠLady": 11256, + "ĠLag": 24886, + "ĠLage": 41555, + "ĠLah": 45862, + "ĠLaink": 47195, + "ĠLak": 37327, + "ĠLake": 10582, + "ĠLakes": 36932, + "ĠLal": 47893, + "ĠLam": 18825, + "ĠLamb": 19302, + "ĠLambda": 45691, + "ĠLamborg": 48389, + "ĠLan": 17482, + "ĠLana": 48750, + "ĠLanc": 39803, + "ĠLance": 40493, + "ĠLand": 6607, + "ĠLandes": 22031, + "ĠLandesregierung": 37695, + "ĠLanding": 49458, + "ĠLands": 30527, + "ĠLane": 26226, + "ĠLang": 13313, + "ĠLanguage": 24445, + "ĠLanka": 42765, + "ĠLao": 46471, + "ĠLap": 42498, + "ĠLar": 11569, + "ĠLara": 33935, + "ĠLarge": 33092, + "ĠLarry": 18145, + "ĠLars": 41563, + "ĠLas": 10663, + "ĠLaser": 43810, + "ĠLast": 5264, + "ĠLastly": 18072, + "ĠLat": 7354, + "ĠLate": 31220, + "ĠLater": 11965, + "ĠLatin": 10803, + "ĠLatino": 25422, + "ĠLatinos": 48413, + "ĠLau": 47979, + "ĠLaughing": 46861, + "ĠLaughs": 33439, + "ĠLaughter": 13584, + "ĠLaunch": 28119, + "ĠLaur": 29906, + "ĠLaura": 13220, + "ĠLaure": 27270, + "ĠLauren": 18915, + "ĠLaurent": 49357, + "ĠLaurie": 38189, + "ĠLaut": 47344, + "ĠLav": 30966, + "ĠLaw": 7744, + "ĠLawrence": 22787, + "ĠLay": 20084, + "ĠLayer": 35166, + "ĠLaz": 46469, + "ĠLazar": 49273, + "ĠLe": 1456, + "ĠLead": 31025, + "ĠLeader": 22650, + "ĠLeaders": 24256, + "ĠLeadership": 30577, + "ĠLeaf": 32290, + "ĠLeague": 11199, + "ĠLeah": 38591, + "ĠLean": 49303, + "ĠLearn": 17216, + "ĠLearning": 15205, + "ĠLeave": 9825, + "ĠLeaving": 41253, + "ĠLeb": 19437, + "ĠLeban": 23530, + "ĠLebanon": 29532, + "ĠLeben": 15399, + "ĠLebens": 21530, + "ĠLect": 37196, + "ĠLed": 39367, + "ĠLee": 6957, + "ĠLeft": 16405, + "ĠLeg": 7470, + "ĠLegacy": 42838, + "ĠLegal": 33577, + "ĠLegend": 21480, + "ĠLegends": 28103, + "ĠLegion": 33024, + "ĠLegisl": 33074, + "ĠLego": 28761, + "ĠLeh": 42631, + "ĠLehr": 29943, + "ĠLehrer": 49718, + "ĠLei": 32593, + "ĠLeist": 39577, + "ĠLem": 16905, + "ĠLemon": 35404, + "ĠLen": 23009, + "ĠLena": 41549, + "ĠLeno": 45661, + "ĠLeo": 19344, + "ĠLeon": 13244, + "ĠLeonard": 35172, + "ĠLeonardo": 36523, + "ĠLes": 6965, + "ĠLeslie": 28140, + "ĠLess": 18649, + "ĠLet": 961, + "ĠLets": 15655, + "ĠLetter": 43426, + "ĠLeute": 13495, + "ĠLeuten": 42301, + "ĠLev": 28471, + "ĠLevel": 16872, + "ĠLevi": 33987, + "ĠLew": 14542, + "ĠLewis": 17412, + "ĠLex": 24086, + "ĠLey": 36794, + "ĠLi": 8349, + "ĠLia": 47844, + "ĠLiam": 32860, + "ĠLiang": 35842, + "ĠLib": 15834, + "ĠLiber": 14175, + "ĠLiberal": 36020, + "ĠLiberty": 27527, + "ĠLibr": 12006, + "ĠLibrary": 12806, + "ĠLibya": 36452, + "ĠLic": 40627, + "ĠLicht": 32917, + "ĠLie": 11197, + "ĠLiebe": 28790, + "ĠLieutenant": 28412, + "ĠLif": 31946, + "ĠLife": 7720, + "ĠLift": 26148, + "ĠLight": 8279, + "ĠLightning": 28848, + "ĠLights": 38226, + "ĠLike": 1743, + "ĠLikewise": 30269, + "ĠLil": 23454, + "ĠLilly": 41386, + "ĠLily": 24669, + "ĠLim": 16406, + "ĠLima": 50217, + "ĠLimited": 43231, + "ĠLin": 9355, + "ĠLincoln": 15993, + "ĠLind": 16828, + "ĠLinda": 20324, + "ĠLindsay": 35017, + "ĠLindsey": 35910, + "ĠLine": 14670, + "ĠLing": 20977, + "ĠLink": 8466, + "ĠLinked": 19322, + "ĠLinkedIn": 20657, + "ĠLinks": 37156, + "ĠLinux": 18734, + "ĠLion": 21704, + "ĠLions": 48335, + "ĠLip": 27475, + "ĠLiqu": 32331, + "ĠLiquid": 38943, + "ĠLis": 30812, + "ĠLisa": 12252, + "ĠList": 17668, + "ĠListen": 7501, + "ĠListening": 49321, + "ĠLit": 41841, + "ĠLite": 32986, + "ĠLiter": 16090, + "ĠLiterally": 23768, + "ĠLith": 32577, + "ĠLittle": 8022, + "ĠLiu": 18056, + "ĠLiv": 31738, + "ĠLive": 10385, + "ĠLiver": 28010, + "ĠLiverpool": 32473, + "ĠLives": 25791, + "ĠLiving": 18824, + "ĠLiz": 16480, + "ĠLl": 32717, + "ĠLloyd": 31401, + "ĠLo": 6130, + "ĠLoad": 48408, + "ĠLob": 30719, + "ĠLoc": 12859, + "ĠLocal": 22755, + "ĠLoch": 49912, + "ĠLock": 16736, + "ĠLog": 10824, + "ĠLogan": 22689, + "ĠLogic": 49898, + "ĠLok": 46278, + "ĠLoki": 37940, + "ĠLol": 41026, + "ĠLon": 35927, + "ĠLond": 6735, + "ĠLondon": 7042, + "ĠLong": 8282, + "ĠLook": 2053, + "ĠLooking": 11053, + "ĠLooks": 10027, + "ĠLoop": 45660, + "ĠLopez": 36077, + "ĠLor": 29358, + "ĠLord": 3257, + "ĠLords": 41870, + "ĠLore": 36994, + "ĠLoren": 37162, + "ĠLori": 32698, + "ĠLos": 7632, + "ĠLost": 23422, + "ĠLot": 20131, + "ĠLots": 15908, + "ĠLotus": 44769, + "ĠLou": 7272, + "ĠLoud": 48259, + "ĠLouis": 9763, + "ĠLouise": 35962, + "ĠLouisiana": 25413, + "ĠLove": 5956, + "ĠLovely": 33925, + "ĠLow": 17078, + "ĠLower": 25523, + "ĠLoy": 50048, + "ĠLt": 44451, + "ĠLu": 5047, + "ĠLub": 43781, + "ĠLuc": 9593, + "ĠLuca": 42076, + "ĠLucas": 19178, + "ĠLuci": 37309, + "ĠLuck": 16627, + "ĠLuckily": 19726, + "ĠLucky": 26639, + "ĠLucy": 22698, + "ĠLud": 30550, + "ĠLuego": 45665, + "ĠLuft": 26995, + "ĠLuigi": 33308, + "ĠLuis": 25133, + "ĠLuiza": 45208, + "ĠLuk": 34992, + "ĠLuke": 13044, + "ĠLulu": 45223, + "ĠLum": 35978, + "ĠLun": 32077, + "ĠLuna": 27355, + "ĠLunch": 44958, + "ĠLuo": 35155, + "ĠLup": 44319, + "ĠLust": 45834, + "ĠLuther": 20693, + "ĠLux": 25767, + "ĠLy": 12687, + "ĠLydia": 44038, + "ĠLyn": 15214, + "ĠLynch": 32345, + "ĠLynd": 48800, + "ĠLynn": 27469, + "ĠLänder": 43441, + "ĠLändern": 48321, + "ĠLö": 50123, + "ĠLös": 34642, + "ĠLösung": 46934, + "ĠLÃł": 22237, + "ĠM": 376, + "ĠMA": 12191, + "ĠMAC": 27716, + "ĠMAL": 40643, + "ĠMALE": 31642, + "ĠMAN": 15372, + "ĠMAND": 47932, + "ĠMAR": 6450, + "ĠMARC": 49433, + "ĠMARISHA": 12265, + "ĠMARK": 20606, + "ĠMARTIN": 36996, + "ĠMARY": 37640, + "ĠMAS": 42129, + "ĠMAT": 5904, + "ĠMATT": 6291, + "ĠMAX": 39549, + "ĠMAY": 28996, + "ĠMAYOR": 43967, + "ĠMB": 28866, + "ĠMBA": 26674, + "ĠMC": 8797, + "ĠMCU": 39415, + "ĠMD": 22521, + "ĠME": 12003, + "ĠMEL": 38005, + "ĠMEM": 40524, + "ĠMER": 47234, + "ĠMG": 36856, + "ĠMH": 34796, + "ĠMI": 13696, + "ĠMIC": 20565, + "ĠMICH": 41276, + "ĠMICHAEL": 23859, + "ĠMID": 32394, + "ĠMIDI": 41474, + "ĠMIKE": 25208, + "ĠMIL": 43346, + "ĠMILL": 48070, + "ĠMIN": 26186, + "ĠMIT": 13100, + "ĠMJ": 36240, + "ĠMK": 30770, + "ĠML": 21601, + "ĠMM": 34191, + "ĠMMA": 48700, + "ĠMO": 19290, + "ĠMOD": 38113, + "ĠMOM": 46840, + "ĠMON": 27398, + "ĠMOO": 49197, + "ĠMOR": 29533, + "ĠMORE": 35509, + "ĠMOS": 44219, + "ĠMP": 14146, + "ĠMR": 9808, + "ĠMRI": 32812, + "ĠMS": 7395, + "ĠMT": 37333, + "ĠMTV": 43924, + "ĠMU": 17935, + "ĠMUELLER": 42573, + "ĠMUR": 46707, + "ĠMUS": 49764, + "ĠMUSIC": 16924, + "ĠMV": 17663, + "ĠMVP": 37151, + "ĠMX": 47509, + "ĠMY": 16322, + "ĠMa": 4042, + "ĠMaar": 14294, + "ĠMac": 5707, + "ĠMacBook": 31737, + "ĠMaced": 45603, + "ĠMach": 12089, + "ĠMachine": 22155, + "ĠMacht": 40873, + "ĠMack": 24295, + "ĠMacron": 32806, + "ĠMad": 5326, + "ĠMadam": 18490, + "ĠMadame": 31077, + "ĠMade": 18330, + "ĠMadison": 22874, + "ĠMadonna": 49540, + "ĠMadrid": 22091, + "ĠMae": 31055, + "ĠMaf": 41517, + "ĠMag": 6395, + "ĠMagaz": 25994, + "ĠMagazine": 27618, + "ĠMage": 49293, + "ĠMaggie": 29107, + "ĠMagic": 16154, + "ĠMagn": 19664, + "ĠMah": 10104, + "ĠMahar": 48498, + "ĠMai": 24084, + "ĠMail": 29164, + "ĠMain": 12383, + "ĠMaine": 28180, + "ĠMainly": 47468, + "ĠMainten": 30437, + "ĠMaintenant": 36931, + "ĠMais": 6313, + "ĠMaj": 7048, + "ĠMajesty": 10665, + "ĠMajor": 15581, + "ĠMak": 16576, + "ĠMake": 4387, + "ĠMaker": 35096, + "ĠMakes": 25245, + "ĠMaking": 14595, + "ĠMal": 5746, + "ĠMalays": 21543, + "ĠMalaysia": 25465, + "ĠMalcolm": 34596, + "ĠMale": 21080, + "ĠMall": 24883, + "ĠMam": 19899, + "ĠMama": 17775, + "ĠMan": 2458, + "ĠMana": 33711, + "ĠManagement": 14781, + "ĠManager": 13821, + "ĠManchester": 27180, + "ĠMand": 15458, + "ĠMandal": 49869, + "ĠMandarin": 42292, + "ĠMandy": 47474, + "ĠMang": 35487, + "ĠMango": 48588, + "ĠManh": 21740, + "ĠManhattan": 23633, + "ĠMann": 16892, + "ĠMans": 23167, + "ĠMansion": 45572, + "ĠMant": 32829, + "ĠManual": 46173, + "ĠManuel": 34362, + "ĠManufact": 44957, + "ĠMany": 5126, + "ĠMao": 38030, + "ĠMaori": 23357, + "ĠMap": 22053, + "ĠMaple": 47604, + "ĠMaps": 28978, + "ĠMar": 2039, + "ĠMarc": 18460, + "ĠMarcel": 34738, + "ĠMarch": 6129, + "ĠMarcheg": 38081, + "ĠMarchegiani": 38092, + "ĠMarco": 26535, + "ĠMarcus": 26574, + "ĠMarg": 20000, + "ĠMargaret": 24177, + "ĠMari": 34478, + "ĠMaria": 12734, + "ĠMarian": 37497, + "ĠMarie": 15130, + "ĠMarilyn": 48340, + "ĠMarin": 43016, + "ĠMarina": 35310, + "ĠMarine": 20415, + "ĠMarines": 39331, + "ĠMario": 9343, + "ĠMarion": 49270, + "ĠMark": 3934, + "ĠMarket": 15596, + "ĠMarketing": 27402, + "ĠMarkt": 39774, + "ĠMarkus": 45041, + "ĠMarly": 50129, + "ĠMarriage": 49593, + "ĠMars": 9692, + "ĠMarsh": 14443, + "ĠMarshall": 17279, + "ĠMart": 5807, + "ĠMartha": 27787, + "ĠMartin": 9184, + "ĠMartine": 37195, + "ĠMartinez": 41886, + "ĠMarty": 29192, + "ĠMarvel": 13837, + "ĠMarvin": 48722, + "ĠMarx": 21703, + "ĠMary": 6059, + "ĠMaryland": 19939, + "ĠMarÃŃa": 48472, + "ĠMas": 5224, + "ĠMash": 42039, + "ĠMask": 25414, + "ĠMason": 25730, + "ĠMass": 10482, + "ĠMassachusetts": 19979, + "ĠMaster": 6140, + "ĠMasters": 27014, + "ĠMat": 6789, + "ĠMatch": 26178, + "ĠMate": 27594, + "ĠMater": 19188, + "ĠMaterial": 29160, + "ĠMath": 15776, + "ĠMatrix": 36274, + "ĠMats": 27204, + "ĠMatt": 7397, + "ĠMatte": 47544, + "ĠMatter": 20285, + "ĠMatth": 11327, + "ĠMatthew": 12434, + "ĠMau": 32858, + "ĠMaur": 26133, + "ĠMaurice": 49041, + "ĠMax": 7402, + "ĠMaxim": 29076, + "ĠMaxwell": 39594, + "ĠMay": 1891, + "ĠMaya": 21695, + "ĠMaybe": 2704, + "ĠMayo": 46406, + "ĠMayor": 13925, + "ĠMaz": 28568, + "ĠMaÃŁ": 28645, + "ĠMaÃŁnahmen": 36626, + "ĠMc": 4050, + "ĠMcC": 12061, + "ĠMcCain": 49725, + "ĠMcCarthy": 44085, + "ĠMcConnell": 41331, + "ĠMcD": 49269, + "ĠMcDonald": 16889, + "ĠMcG": 21865, + "ĠMcK": 21765, + "ĠMcL": 38922, + "ĠMcM": 25549, + "ĠMcMahon": 48187, + "ĠMcN": 48996, + "ĠMe": 1923, + "ĠMean": 12302, + "ĠMeaning": 19948, + "ĠMeans": 40290, + "ĠMeanwhile": 13879, + "ĠMeasure": 41436, + "ĠMeat": 30502, + "ĠMechan": 30175, + "ĠMed": 3982, + "ĠMedal": 42437, + "ĠMedia": 14741, + "ĠMedic": 11555, + "ĠMedicaid": 24779, + "ĠMedical": 15896, + "ĠMedicare": 19583, + "ĠMedicine": 20338, + "ĠMedien": 44030, + "ĠMediter": 25828, + "ĠMediterranean": 27280, + "ĠMedium": 38915, + "ĠMeer": 49758, + "ĠMeet": 22963, + "ĠMeeting": 33217, + "ĠMeg": 9986, + "ĠMega": 22834, + "ĠMegan": 21332, + "ĠMeghan": 32597, + "ĠMeh": 29337, + "ĠMehr": 30782, + "ĠMei": 34100, + "ĠMein": 18382, + "ĠMeine": 22258, + "ĠMeinung": 36519, + "ĠMel": 7375, + "ĠMelanie": 42798, + "ĠMelbourne": 27496, + "ĠMelissa": 22844, + "ĠMelt": 48425, + "ĠMem": 8731, + "ĠMember": 16037, + "ĠMembers": 21495, + "ĠMemorial": 24957, + "ĠMemory": 38203, + "ĠMemphis": 26743, + "ĠMen": 6685, + "ĠMend": 40887, + "ĠMeng": 29090, + "ĠMenge": 40723, + "ĠMens": 7364, + "ĠMensch": 27773, + "ĠMenschen": 8397, + "ĠMent": 33140, + "ĠMental": 30294, + "ĠMenu": 43343, + "ĠMeow": 42996, + "ĠMer": 6124, + "ĠMerc": 18897, + "ĠMercedes": 22899, + "ĠMerci": 19856, + "ĠMercury": 31780, + "ĠMercy": 35626, + "ĠMeredith": 29737, + "ĠMerkel": 38356, + "ĠMerry": 26572, + "ĠMes": 17485, + "ĠMess": 9847, + "ĠMessage": 45947, + "ĠMessenger": 34226, + "ĠMessi": 42969, + "ĠMessiah": 21756, + "ĠMet": 6377, + "ĠMetal": 23488, + "ĠMetall": 49447, + "ĠMete": 43328, + "ĠMeter": 38054, + "ĠMeth": 48602, + "ĠMethod": 25285, + "ĠMetro": 25598, + "ĠMetroid": 47767, + "ĠMetropolitan": 45489, + "ĠMeu": 34398, + "ĠMex": 6496, + "ĠMexican": 16164, + "ĠMexico": 8612, + "ĠMeyer": 47207, + "ĠMhm": 26272, + "ĠMi": 10204, + "ĠMia": 28545, + "ĠMiami": 18367, + "ĠMic": 5818, + "ĠMich": 3392, + "ĠMicha": 31698, + "ĠMichael": 5116, + "ĠMichaels": 45759, + "ĠMichel": 23709, + "ĠMichelle": 14933, + "ĠMichigan": 11925, + "ĠMick": 42538, + "ĠMickey": 24714, + "ĠMicro": 25642, + "ĠMicrosoft": 8116, + "ĠMid": 7033, + "ĠMiddle": 10775, + "ĠMidwest": 33483, + "ĠMig": 18951, + "ĠMight": 23964, + "ĠMighty": 45874, + "ĠMiguel": 29150, + "ĠMih": 48168, + "ĠMik": 16380, + "ĠMike": 6602, + "ĠMikey": 42344, + "ĠMil": 7036, + "ĠMilan": 32874, + "ĠMile": 47651, + "ĠMiles": 27384, + "ĠMilitary": 28460, + "ĠMilk": 26986, + "ĠMilky": 38465, + "ĠMill": 7190, + "ĠMillenn": 42007, + "ĠMiller": 16932, + "ĠMilli": 36654, + "ĠMilliarden": 44784, + "ĠMillion": 33959, + "ĠMillionen": 26096, + "ĠMills": 44277, + "ĠMilton": 40778, + "ĠMilwaukee": 35321, + "ĠMimi": 46709, + "ĠMin": 2829, + "ĠMina": 35981, + "ĠMind": 13719, + "ĠMine": 11620, + "ĠMinecraft": 21029, + "ĠMing": 19352, + "ĠMinh": 45093, + "ĠMini": 18239, + "ĠMinist": 32196, + "ĠMinister": 6506, + "ĠMinistry": 19720, + "ĠMinne": 37829, + "ĠMinneapolis": 38713, + "ĠMinnesota": 13996, + "ĠMinnie": 47654, + "ĠMinor": 36117, + "ĠMins": 49239, + "ĠMint": 36188, + "ĠMinute": 33509, + "ĠMinuten": 27593, + "ĠMir": 9421, + "ĠMira": 28394, + "ĠMiranda": 37000, + "ĠMire": 50008, + "ĠMirror": 34452, + "ĠMis": 23240, + "ĠMiss": 5275, + "ĠMission": 20170, + "ĠMississippi": 20347, + "ĠMissouri": 21334, + "ĠMist": 20166, + "ĠMister": 22058, + "ĠMistress": 48509, + "ĠMit": 10821, + "ĠMitar": 32900, + "ĠMitarbeiter": 38324, + "ĠMitch": 18546, + "ĠMitchell": 27582, + "ĠMitgl": 44167, + "ĠMits": 40897, + "ĠMitt": 18784, + "ĠMitte": 41526, + "ĠMittel": 35079, + "ĠMix": 12769, + "ĠMiy": 26195, + "ĠMiz": 37793, + "ĠMm": 8266, + "ĠMmm": 12146, + "ĠMmmm": 42992, + "ĠMo": 3335, + "ĠMob": 37920, + "ĠMobil": 47188, + "ĠMobile": 22625, + "ĠMod": 6583, + "ĠMode": 20500, + "ĠModel": 17105, + "ĠModer": 42067, + "ĠModern": 19814, + "ĠModi": 47621, + "ĠModule": 48251, + "ĠMog": 34327, + "ĠMoh": 16123, + "ĠMohammad": 43939, + "ĠMohammed": 41910, + "ĠMoi": 20256, + "ĠMol": 28278, + "ĠMole": 46914, + "ĠMolly": 26665, + "ĠMolt": 39254, + "ĠMom": 5576, + "ĠMoment": 19093, + "ĠMommy": 24602, + "ĠMomo": 47984, + "ĠMon": 4713, + "ĠMona": 43731, + "ĠMonate": 44067, + "ĠMonaten": 46193, + "ĠMond": 7492, + "ĠMonday": 8138, + "ĠMonet": 47871, + "ĠMoney": 16631, + "ĠMong": 19423, + "ĠMongo": 48380, + "ĠMongol": 43573, + "ĠMonica": 25363, + "ĠMonitor": 33799, + "ĠMonkey": 34862, + "ĠMonroe": 43900, + "ĠMonsieur": 34941, + "ĠMonst": 39768, + "ĠMonster": 21059, + "ĠMont": 7947, + "ĠMontana": 27916, + "ĠMonte": 38105, + "ĠMontgomery": 34715, + "ĠMonth": 24255, + "ĠMontreal": 34180, + "ĠMoo": 43224, + "ĠMoon": 10714, + "ĠMoore": 21644, + "ĠMor": 5146, + "ĠMore": 5048, + "ĠMoreover": 19838, + "ĠMorgan": 16724, + "ĠMorgen": 35570, + "ĠMorm": 33610, + "ĠMormon": 39515, + "ĠMorning": 17967, + "ĠMoroc": 30893, + "ĠMorocco": 38782, + "ĠMorris": 23619, + "ĠMorrison": 33767, + "ĠMort": 24977, + "ĠMortal": 45797, + "ĠMos": 19430, + "ĠMosc": 17213, + "ĠMoscow": 18298, + "ĠMoses": 17580, + "ĠMoss": 39591, + "ĠMost": 4534, + "ĠMostly": 29035, + "ĠMot": 8956, + "ĠMother": 8931, + "ĠMotion": 27771, + "ĠMoto": 37825, + "ĠMotor": 18495, + "ĠMotorola": 45871, + "ĠMotors": 40118, + "ĠMount": 8426, + "ĠMountain": 15586, + "ĠMountains": 30970, + "ĠMouse": 29383, + "ĠMov": 43756, + "ĠMove": 10475, + "ĠMovement": 26523, + "ĠMovie": 28766, + "ĠMoving": 14242, + "ĠMoy": 47254, + "ĠMoz": 30208, + "ĠMozart": 42653, + "ĠMoż": 44736, + "ĠMoże": 43774, + "ĠMr": 2221, + "ĠMrs": 9814, + "ĠMs": 7741, + "ĠMt": 39183, + "ĠMu": 15601, + "ĠMuch": 12313, + "ĠMuchas": 35669, + "ĠMud": 39231, + "ĠMueller": 38152, + "ĠMuh": 15651, + "ĠMuhammad": 19360, + "ĠMuito": 31824, + "ĠMuk": 34280, + "ĠMul": 29960, + "ĠMull": 41621, + "ĠMult": 14665, + "ĠMulti": 29238, + "ĠMultip": 31150, + "ĠMultiple": 40056, + "ĠMum": 24279, + "ĠMumbai": 34309, + "ĠMummy": 46569, + "ĠMun": 17050, + "ĠMund": 33317, + "ĠMunich": 40601, + "ĠMunicip": 47606, + "ĠMur": 9373, + "ĠMurder": 44370, + "ĠMurphy": 28549, + "ĠMurray": 27291, + "ĠMus": 3569, + "ĠMuse": 47293, + "ĠMuseum": 10967, + "ĠMush": 38188, + "ĠMusic": 7609, + "ĠMusical": 42527, + "ĠMusik": 14156, + "ĠMusk": 26019, + "ĠMuslim": 8178, + "ĠMuslims": 14793, + "ĠMuss": 43879, + "ĠMust": 13252, + "ĠMustafa": 37229, + "ĠMustang": 37115, + "ĠMut": 18517, + "ĠMutta": 46604, + "ĠMutter": 31517, + "ĠMuy": 39586, + "ĠMy": 1222, + "ĠMyan": 42297, + "ĠMyanmar": 42725, + "ĠMyers": 45088, + "ĠMys": 37795, + "ĠMyst": 28510, + "ĠMyster": 38175, + "ĠMystery": 41660, + "ĠMyth": 26371, + "ĠMythical": 44566, + "ĠMäd": 49182, + "ĠMänner": 36907, + "ĠMär": 46084, + "ĠMé": 23580, + "ĠMéxico": 28128, + "ĠMême": 42027, + "ĠMöglich": 21467, + "ĠMöglichkeit": 30662, + "ĠMöglichkeiten": 42627, + "ĠMü": 21295, + "ĠMün": 35840, + "ĠMÄģ": 45901, + "ĠMỹ": 48845, + "ĠN": 426, + "ĠNA": 16585, + "ĠNARRATOR": 10160, + "ĠNAS": 10182, + "ĠNASA": 12077, + "ĠNAT": 14500, + "ĠNATO": 19419, + "ĠNAU": 44789, + "ĠNBA": 23890, + "ĠNBC": 31504, + "ĠNC": 20786, + "ĠNCAA": 49650, + "ĠNCT": 38368, + "ĠND": 40709, + "ĠNE": 12384, + "ĠNES": 37212, + "ĠNEW": 36373, + "ĠNF": 13576, + "ĠNFL": 24817, + "ĠNFT": 50075, + "ĠNGO": 31456, + "ĠNGOs": 46454, + "ĠNH": 31118, + "ĠNHS": 22693, + "ĠNI": 18482, + "ĠNICK": 32175, + "ĠNIH": 28716, + "ĠNO": 9146, + "ĠNOR": 47904, + "ĠNOT": 12854, + "ĠNOW": 27734, + "ĠNP": 38611, + "ĠNPC": 28787, + "ĠNR": 38399, + "ĠNS": 15943, + "ĠNSA": 47299, + "ĠNT": 43452, + "ĠNV": 46512, + "ĠNXT": 38414, + "ĠNY": 26032, + "ĠNYU": 42682, + "ĠNZ": 41089, + "ĠNa": 6056, + "ĠNab": 45366, + "ĠNach": 11815, + "ĠNacht": 31133, + "ĠNacional": 36623, + "ĠNad": 23269, + "ĠNada": 40992, + "ĠNag": 18913, + "ĠNah": 13933, + "ĠNai": 50205, + "ĠNaj": 31576, + "ĠNak": 25779, + "ĠNam": 10684, + "ĠName": 13866, + "ĠNamen": 38771, + "ĠNan": 18852, + "ĠNana": 37087, + "ĠNancy": 18154, + "ĠNano": 43511, + "ĠNaomi": 35369, + "ĠNap": 18287, + "ĠNapole": 28298, + "ĠNapoleon": 31694, + "ĠNar": 13512, + "ĠNarr": 45658, + "ĠNarrator": 19242, + "ĠNaru": 42518, + "ĠNaruhodou": 44658, + "ĠNaruto": 47703, + "ĠNas": 16151, + "ĠNash": 25012, + "ĠNashville": 36370, + "ĠNast": 42185, + "ĠNasıl": 28710, + "ĠNat": 6821, + "ĠNatalie": 29574, + "ĠNatasha": 40624, + "ĠNate": 28064, + "ĠNathan": 20634, + "ĠNation": 17095, + "ĠNational": 4862, + "ĠNations": 16459, + "ĠNative": 15093, + "ĠNatomiast": 36210, + "ĠNatur": 34571, + "ĠNatural": 20137, + "ĠNaturally": 34304, + "ĠNature": 20159, + "ĠNatürlich": 33172, + "ĠNav": 9219, + "ĠNaval": 38118, + "ĠNavy": 15659, + "ĠNaw": 40315, + "ĠNay": 42019, + "ĠNaz": 11870, + "ĠNazi": 23592, + "ĠNazis": 29812, + "ĠNe": 1734, + "ĠNear": 22200, + "ĠNearly": 38000, + "ĠNeben": 48193, + "ĠNebr": 26733, + "ĠNebraska": 27171, + "ĠNed": 31355, + "ĠNeden": 46565, + "ĠNeder": 29005, + "ĠNederland": 31888, + "ĠNee": 22067, + "ĠNeed": 16984, + "ĠNeg": 19103, + "ĠNegative": 43230, + "ĠNegro": 45256, + "ĠNeigh": 35917, + "ĠNeighbor": 47729, + "ĠNeil": 18615, + "ĠNein": 18878, + "ĠNeither": 23956, + "ĠNej": 33840, + "ĠNelson": 23857, + "ĠNem": 22210, + "ĠNeo": 24458, + "ĠNep": 24875, + "ĠNepal": 36283, + "ĠNept": 45560, + "ĠNeptune": 49527, + "ĠNer": 36536, + "ĠNerd": 38367, + "ĠNered": 46352, + "ĠNest": 31581, + "ĠNet": 6188, + "ĠNetflix": 12778, + "ĠNether": 18313, + "ĠNetherlands": 20873, + "ĠNetwork": 12640, + "ĠNetz": 38889, + "ĠNev": 22673, + "ĠNevada": 25764, + "ĠNever": 7344, + "ĠNevertheless": 26554, + "ĠNew": 1873, + "ĠNewman": 49377, + "ĠNews": 7987, + "ĠNewton": 19541, + "ĠNext": 3087, + "ĠNexus": 46559, + "ĠNg": 21198, + "ĠNh": 26390, + "ĠNi": 12370, + "ĠNiagara": 45123, + "ĠNic": 14776, + "ĠNice": 5490, + "ĠNich": 17102, + "ĠNicholas": 22924, + "ĠNicht": 22629, + "ĠNick": 9449, + "ĠNickel": 45416, + "ĠNicki": 47608, + "ĠNico": 15115, + "ĠNicolas": 38268, + "ĠNicole": 18532, + "ĠNie": 12016, + "ĠNiet": 36583, + "ĠNig": 39554, + "ĠNiger": 21489, + "ĠNigeria": 28828, + "ĠNight": 10190, + "ĠNik": 13969, + "ĠNike": 30397, + "ĠNikki": 37907, + "ĠNil": 47398, + "ĠNim": 45251, + "ĠNin": 16093, + "ĠNina": 29204, + "ĠNine": 18939, + "ĠNing": 39417, + "ĠNinja": 25566, + "ĠNintendo": 11578, + "ĠNir": 44813, + "ĠNiss": 36009, + "ĠNissan": 38166, + "ĠNit": 37942, + "ĠNixon": 31130, + "ĠNiye": 40938, + "ĠNo": 883, + "ĠNoah": 20895, + "ĠNobel": 24611, + "ĠNoble": 33125, + "ĠNobody": 9297, + "ĠNoch": 38116, + "ĠNode": 38640, + "ĠNoel": 38824, + "ĠNoise": 44821, + "ĠNok": 37400, + "ĠNokia": 43980, + "ĠNolan": 43707, + "ĠNom": 31272, + "ĠNon": 8774, + "ĠNone": 14492, + "ĠNonetheless": 45437, + "ĠNoodles": 47389, + "ĠNope": 12172, + "ĠNor": 6966, + "ĠNora": 45741, + "ĠNord": 16229, + "ĠNorm": 8702, + "ĠNormal": 21277, + "ĠNormally": 17424, + "ĠNorman": 30475, + "ĠNorth": 4067, + "ĠNortheast": 42150, + "ĠNorthern": 14335, + "ĠNorthwest": 26068, + "ĠNorway": 24354, + "ĠNorweg": 31783, + "ĠNorwegian": 34875, + "ĠNos": 18749, + "ĠNossa": 36016, + "ĠNot": 1726, + "ĠNote": 11633, + "ĠNotes": 41360, + "ĠNothing": 6693, + "ĠNotice": 13428, + "ĠNotre": 34663, + "ĠNou": 28843, + "ĠNous": 15343, + "ĠNov": 31948, + "ĠNova": 27031, + "ĠNove": 7539, + "ĠNovember": 7674, + "ĠNow": 823, + "ĠNowadays": 28908, + "ĠNu": 13612, + "ĠNuclear": 42528, + "ĠNue": 47970, + "ĠNum": 22592, + "ĠNumber": 5118, + "ĠNummer": 47034, + "ĠNun": 23696, + "ĠNur": 17612, + "ĠNurs": 32992, + "ĠNurse": 48945, + "ĠNursing": 42655, + "ĠNut": 19861, + "ĠNvidia": 46284, + "ĠNy": 29214, + "ĠNão": 8010, + "ĠNä": 32731, + "ĠNär": 37306, + "ĠNós": 27626, + "ĠO": 422, + "ĠOA": 48424, + "ĠOB": 35538, + "ĠOC": 42278, + "ĠOD": 48447, + "ĠOF": 11944, + "ĠOFF": 24115, + "ĠOFFIC": 40579, + "ĠOFFICER": 44724, + "ĠOG": 32477, + "ĠOH": 13931, + "ĠOK": 2264, + "ĠOL": 39191, + "ĠOLED": 43944, + "ĠOM": 16954, + "ĠOMG": 23152, + "ĠON": 9299, + "ĠONE": 22026, + "ĠOP": 23324, + "ĠOR": 19654, + "ĠOS": 12731, + "ĠOT": 38617, + "ĠOUR": 45611, + "ĠOUT": 22451, + "ĠOVER": 46090, + "ĠOW": 38329, + "ĠOak": 19692, + "ĠOakland": 34868, + "ĠOb": 4075, + "ĠObama": 9560, + "ĠOber": 27664, + "ĠObi": 48533, + "ĠObject": 24753, + "ĠObrig": 45619, + "ĠObs": 20707, + "ĠObserv": 42547, + "ĠObviously": 7580, + "ĠOcc": 26191, + "ĠOcean": 18101, + "ĠOch": 13128, + "ĠOct": 6788, + "ĠOctober": 7617, + "ĠOculus": 49094, + "ĠOczywiÅĽcie": 42980, + "ĠOd": 12210, + "ĠOdd": 43630, + "ĠOder": 20988, + "ĠOdys": 32010, + "ĠOdyssey": 38385, + "ĠOf": 2720, + "ĠOff": 6318, + "ĠOffic": 11511, + "ĠOffice": 8935, + "ĠOfficer": 15434, + "ĠOfficial": 38577, + "ĠOft": 37112, + "ĠOften": 20043, + "ĠOftentimes": 46636, + "ĠOg": 14883, + "ĠOh": 876, + "ĠOhh": 21847, + "ĠOhhh": 29108, + "ĠOhio": 14469, + "ĠOi": 31610, + "ĠOil": 23545, + "ĠOj": 47100, + "ĠOk": 3477, + "ĠOkay": 1033, + "ĠOke": 29094, + "ĠOkey": 38544, + "ĠOklah": 20872, + "ĠOklahoma": 21183, + "ĠOl": 6141, + "ĠOlaf": 48961, + "ĠOld": 8633, + "ĠOle": 33965, + "ĠOlga": 48288, + "ĠOlha": 19450, + "ĠOliv": 42477, + "ĠOlive": 35741, + "ĠOliver": 23440, + "ĠOlivia": 26023, + "ĠOlivier": 48075, + "ĠOllie": 35089, + "ĠOlymp": 10395, + "ĠOlympic": 19169, + "ĠOlympics": 19854, + "ĠOlá": 41811, + "ĠOm": 9757, + "ĠOmaha": 49575, + "ĠOmar": 33784, + "ĠOmega": 27645, + "ĠOn": 1282, + "ĠOna": 49793, + "ĠOnce": 3443, + "ĠOnd": 40091, + "ĠOne": 1485, + "ĠOnePlus": 41352, + "ĠOnion": 46295, + "ĠOnline": 16930, + "ĠOnly": 5686, + "ĠOnt": 16980, + "ĠOntario": 19673, + "ĠOnu": 46420, + "ĠOnun": 40379, + "ĠOo": 39308, + "ĠOoh": 7951, + "ĠOok": 50081, + "ĠOoo": 25547, + "ĠOooh": 27413, + "ĠOoooh": 48762, + "ĠOops": 21726, + "ĠOp": 12011, + "ĠOpen": 7238, + "ĠOpening": 41137, + "ĠOper": 12480, + "ĠOpera": 39089, + "ĠOperation": 27946, + "ĠOperations": 36381, + "ĠOpp": 15666, + "ĠOpportun": 39441, + "ĠOprah": 43804, + "ĠOpt": 21455, + "ĠOptim": 35013, + "ĠOption": 29284, + "ĠOptions": 42934, + "ĠOr": 1610, + "ĠOra": 43672, + "ĠOracle": 25654, + "ĠOrange": 17106, + "ĠOrb": 44329, + "ĠOrchest": 42414, + "ĠOrchestra": 46692, + "ĠOrd": 29388, + "ĠOrder": 16321, + "ĠOre": 31405, + "ĠOregon": 18664, + "ĠOreo": 47628, + "ĠOrgan": 12538, + "ĠOrganisation": 49425, + "ĠOrganization": 23979, + "ĠOri": 23621, + "ĠOrient": 49544, + "ĠOrig": 13895, + "ĠOrigin": 45313, + "ĠOriginal": 30022, + "ĠOriginally": 28696, + "ĠOrion": 41028, + "ĠOrlando": 30436, + "ĠOrleans": 24715, + "ĠOrt": 22921, + "ĠOrth": 27554, + "ĠOrthodox": 32833, + "ĠOs": 8875, + "ĠOsaka": 46425, + "ĠOsc": 17406, + "ĠOscar": 20718, + "ĠOsman": 35390, + "ĠOst": 34140, + "ĠOt": 12936, + "ĠOther": 5358, + "ĠOthers": 20277, + "ĠOtherwise": 10328, + "ĠOtt": 24243, + "ĠOttawa": 40767, + "ĠOtto": 41716, + "ĠOttoman": 33435, + "ĠOu": 11710, + "ĠOuais": 25475, + "ĠOuch": 27217, + "ĠOui": 14005, + "ĠOur": 2621, + "ĠOut": 5925, + "ĠOutside": 28218, + "ĠOv": 50005, + "ĠOver": 4886, + "ĠOverall": 18420, + "ĠOverwatch": 35141, + "ĠOw": 12773, + "ĠOwen": 32867, + "ĠOwn": 25964, + "ĠOwner": 43290, + "ĠOx": 16489, + "ĠOxford": 24786, + "ĠOy": 40023, + "ĠOz": 29843, + "ĠOÄŁlum": 41783, + "ĠP": 430, + "ĠPA": 17718, + "ĠPAC": 46644, + "ĠPAL": 46390, + "ĠPAR": 21720, + "ĠPAT": 31485, + "ĠPAUL": 26379, + "ĠPB": 24056, + "ĠPBS": 33517, + "ĠPC": 6465, + "ĠPCB": 42065, + "ĠPCR": 44022, + "ĠPCs": 46913, + "ĠPD": 10464, + "ĠPDF": 17752, + "ĠPE": 24346, + "ĠPER": 26825, + "ĠPET": 21968, + "ĠPETER": 36040, + "ĠPF": 43402, + "ĠPG": 40975, + "ĠPH": 16530, + "ĠPHIL": 49933, + "ĠPHP": 47298, + "ĠPI": 27176, + "ĠPJ": 30549, + "ĠPK": 49475, + "ĠPL": 6999, + "ĠPLAY": 8726, + "ĠPLAYING": 9871, + "ĠPM": 12499, + "ĠPO": 22299, + "ĠPOL": 45682, + "ĠPOW": 39272, + "ĠPP": 37369, + "ĠPPE": 38589, + "ĠPR": 11568, + "ĠPRE": 44164, + "ĠPRES": 30247, + "ĠPRESID": 42508, + "ĠPRI": 47555, + "ĠPRO": 15008, + "ĠPROF": 24141, + "ĠPROFESS": 25460, + "ĠPROFESSOR": 25794, + "ĠPS": 8168, + "ĠPSAKI": 25104, + "ĠPT": 35460, + "ĠPTS": 31218, + "ĠPTSD": 33069, + "ĠPU": 44098, + "ĠPUB": 46631, + "ĠPUBG": 47975, + "ĠPV": 23035, + "ĠPVC": 46700, + "ĠPW": 46375, + "ĠPa": 3426, + "ĠPablo": 31554, + "ĠPac": 10702, + "ĠPacific": 13335, + "ĠPack": 18466, + "ĠPad": 18691, + "ĠPage": 21217, + "ĠPaige": 45177, + "ĠPain": 24943, + "ĠPaint": 34865, + "ĠPak": 11543, + "ĠPakistan": 15985, + "ĠPakistani": 50253, + "ĠPal": 6116, + "ĠPalace": 19121, + "ĠPale": 50007, + "ĠPalest": 14926, + "ĠPalestin": 19750, + "ĠPalestine": 33030, + "ĠPalestinian": 28202, + "ĠPalestinians": 34745, + "ĠPalm": 32668, + "ĠPalmer": 43889, + "ĠPam": 23532, + "ĠPan": 7557, + "ĠPanama": 41202, + "ĠPanch": 48792, + "ĠPand": 16995, + "ĠPanda": 44207, + "ĠPandemie": 44694, + "ĠPanel": 38996, + "ĠPang": 49499, + "ĠPanther": 33046, + "ĠPanz": 45932, + "ĠPap": 15919, + "ĠPapa": 21102, + "ĠPaper": 24990, + "ĠPar": 3457, + "ĠPara": 11107, + "ĠParad": 28527, + "ĠParadise": 35053, + "ĠParam": 34882, + "ĠParce": 20429, + "ĠPardon": 32392, + "ĠPare": 31189, + "ĠParece": 45419, + "ĠParent": 44717, + "ĠParents": 33990, + "ĠParis": 8380, + "ĠPark": 4964, + "ĠParker": 20155, + "ĠParkinson": 35823, + "ĠParks": 30431, + "ĠParl": 29666, + "ĠParlament": 37487, + "ĠParliament": 15538, + "ĠParr": 47890, + "ĠPars": 49691, + "ĠPart": 4100, + "ĠParte": 47689, + "ĠParticip": 35247, + "ĠParticularly": 32281, + "ĠPartner": 32736, + "ĠPartners": 28058, + "ĠPartnership": 49589, + "ĠParty": 8552, + "ĠPas": 14199, + "ĠPascal": 41723, + "ĠPass": 10319, + "ĠPassion": 45554, + "ĠPassover": 48016, + "ĠPast": 18408, + "ĠPaste": 43827, + "ĠPastor": 34289, + "ĠPat": 4379, + "ĠPatch": 44359, + "ĠPath": 21914, + "ĠPatient": 25173, + "ĠPatienten": 46294, + "ĠPatreon": 15692, + "ĠPatri": 31071, + "ĠPatricia": 34307, + "ĠPatrick": 13980, + "ĠPatrol": 34967, + "ĠPatt": 46332, + "ĠPatter": 34367, + "ĠPatty": 44116, + "ĠPaty": 43760, + "ĠPaul": 4552, + "ĠPaula": 31663, + "ĠPaulo": 21801, + "ĠPause": 31973, + "ĠPav": 39062, + "ĠPaw": 33551, + "ĠPay": 11431, + "ĠPayPal": 39906, + "ĠPaÅĦst": 25189, + "ĠPaÅĦstwo": 42239, + "ĠPe": 2396, + "ĠPeace": 13204, + "ĠPeach": 34138, + "ĠPeak": 43604, + "ĠPeanut": 48069, + "ĠPear": 45461, + "ĠPearl": 24639, + "ĠPearson": 39041, + "ĠPed": 16689, + "ĠPedro": 26662, + "ĠPeg": 28007, + "ĠPeki": 36598, + "ĠPel": 21083, + "ĠPelosi": 44145, + "ĠPen": 10571, + "ĠPence": 48402, + "ĠPend": 38048, + "ĠPeng": 25783, + "ĠPenguin": 49562, + "ĠPeninsula": 40922, + "ĠPenn": 12667, + "ĠPennsy": 17704, + "ĠPennsylvania": 17963, + "ĠPenny": 32009, + "ĠPens": 45035, + "ĠPent": 20165, + "ĠPentagon": 36371, + "ĠPeople": 3432, + "ĠPep": 28637, + "ĠPepper": 30231, + "ĠPepsi": 42311, + "ĠPer": 3026, + "ĠPerché": 47978, + "ĠPercy": 46216, + "ĠPerd": 47633, + "ĠPere": 49349, + "ĠPerez": 47317, + "ĠPerfect": 10246, + "ĠPerform": 19351, + "ĠPerformance": 25047, + "ĠPerhaps": 10517, + "ĠPeriod": 34976, + "ĠPerm": 41006, + "ĠPero": 9377, + "ĠPerquè": 46133, + "ĠPerry": 17334, + "ĠPers": 14006, + "ĠPersian": 30699, + "ĠPerson": 8443, + "ĠPersonal": 25317, + "ĠPersonality": 44523, + "ĠPersonally": 21079, + "ĠPersonen": 40942, + "ĠPeru": 31571, + "ĠPerò": 20533, + "ĠPet": 10472, + "ĠPete": 19013, + "ĠPeter": 6508, + "ĠPeters": 26028, + "ĠPetersburg": 42367, + "ĠPeterson": 36943, + "ĠPew": 30638, + "ĠPey": 36206, + "ĠPf": 17331, + "ĠPfizer": 34694, + "ĠPh": 2623, + "ĠPhD": 14476, + "ĠPhantom": 34689, + "ĠPhar": 45050, + "ĠPharaoh": 43444, + "ĠPharise": 47742, + "ĠPharm": 44032, + "ĠPhase": 24432, + "ĠPhew": 46679, + "ĠPhi": 41435, + "ĠPhil": 7777, + "ĠPhiladelphia": 21205, + "ĠPhilip": 21144, + "ĠPhilipp": 13694, + "ĠPhilippines": 20153, + "ĠPhill": 18433, + "ĠPhillip": 44051, + "ĠPhillips": 24565, + "ĠPhilos": 31182, + "ĠPhilosophy": 43655, + "ĠPho": 14936, + "ĠPhoenix": 18383, + "ĠPhone": 30713, + "ĠPhot": 13919, + "ĠPhoto": 39175, + "ĠPhotoshop": 20821, + "ĠPhys": 15542, + "ĠPhysical": 31918, + "ĠPhysics": 38355, + "ĠPi": 17741, + "ĠPic": 25895, + "ĠPicas": 48198, + "ĠPicasso": 49708, + "ĠPick": 14129, + "ĠPict": 23899, + "ĠPicture": 35730, + "ĠPictures": 45877, + "ĠPie": 22914, + "ĠPiece": 42868, + "ĠPier": 16676, + "ĠPierce": 45432, + "ĠPierre": 28461, + "ĠPiet": 41970, + "ĠPig": 27322, + "ĠPik": 26544, + "ĠPikachu": 35785, + "ĠPike": 46791, + "ĠPil": 18026, + "ĠPill": 44656, + "ĠPilot": 39193, + "ĠPin": 22619, + "ĠPine": 33531, + "ĠPing": 33645, + "ĠPink": 17118, + "ĠPinterest": 37986, + "ĠPione": 48844, + "ĠPip": 35396, + "ĠPir": 24161, + "ĠPis": 43263, + "ĠPit": 32136, + "ĠPitt": 22861, + "ĠPitts": 29478, + "ĠPittsburgh": 33626, + "ĠPix": 18652, + "ĠPixar": 46695, + "ĠPixel": 28323, + "ĠPizza": 24469, + "ĠPl": 2149, + "ĠPla": 19942, + "ĠPlace": 13637, + "ĠPlaid": 30030, + "ĠPlan": 8112, + "ĠPlanet": 22146, + "ĠPlanning": 29308, + "ĠPlant": 28995, + "ĠPlat": 17461, + "ĠPlate": 46043, + "ĠPlatform": 28707, + "ĠPlato": 43027, + "ĠPlatz": 27595, + "ĠPlay": 5506, + "ĠPlayStation": 20599, + "ĠPlayer": 24920, + "ĠPlayers": 35808, + "ĠPlaying": 24801, + "ĠPlaystation": 42787, + "ĠPlaza": 41890, + "ĠPle": 25658, + "ĠPlease": 2555, + "ĠPlug": 40740, + "ĠPlus": 7721, + "ĠPluto": 41205, + "ĠPo": 6165, + "ĠPocket": 44594, + "ĠPod": 12646, + "ĠPodcast": 29972, + "ĠPode": 39168, + "ĠPoint": 12387, + "ĠPoints": 44763, + "ĠPois": 48274, + "ĠPok": 14958, + "ĠPoke": 12645, + "ĠPokemon": 13796, + "ĠPokémon": 20104, + "ĠPol": 3635, + "ĠPoland": 15950, + "ĠPole": 34212, + "ĠPolice": 11882, + "ĠPolicy": 21708, + "ĠPolish": 18504, + "ĠPolit": 13812, + "ĠPolitical": 34265, + "ĠPolitics": 45348, + "ĠPolitik": 29847, + "ĠPolize": 30735, + "ĠPolizei": 35297, + "ĠPoll": 31304, + "ĠPolsce": 35567, + "ĠPolski": 44589, + "ĠPoly": 18553, + "ĠPom": 21227, + "ĠPompe": 38527, + "ĠPon": 31756, + "ĠPont": 41127, + "ĠPool": 46188, + "ĠPoor": 23591, + "ĠPop": 10215, + "ĠPope": 19291, + "ĠPoppy": 47996, + "ĠPopular": 37637, + "ĠPor": 5269, + "ĠPork": 33159, + "ĠPorque": 11287, + "ĠPors": 29416, + "ĠPorsche": 31044, + "ĠPort": 6733, + "ĠPortal": 38281, + "ĠPorter": 42609, + "ĠPortland": 25020, + "ĠPortugal": 23011, + "ĠPortuguese": 22759, + "ĠPos": 25906, + "ĠPose": 40174, + "ĠPosition": 29780, + "ĠPositive": 46326, + "ĠPoss": 33112, + "ĠPost": 10223, + "ĠPot": 9145, + "ĠPotato": 34035, + "ĠPotter": 18115, + "ĠPour": 8732, + "ĠPourquoi": 30333, + "ĠPow": 14762, + "ĠPowder": 35781, + "ĠPowell": 34176, + "ĠPower": 7086, + "ĠPowerPoint": 25584, + "ĠPowers": 47278, + "ĠPr": 2114, + "ĠPra": 12133, + "ĠPrab": 48995, + "ĠPract": 19170, + "ĠPractice": 27904, + "ĠPrag": 40067, + "ĠPrague": 45370, + "ĠPraise": 34576, + "ĠPray": 36365, + "ĠPrayer": 45226, + "ĠPre": 6001, + "ĠPrecis": 48746, + "ĠPred": 32969, + "ĠPrefer": 48401, + "ĠPreis": 47042, + "ĠPrem": 13011, + "ĠPremier": 25194, + "ĠPremiere": 39724, + "ĠPremium": 34881, + "ĠPrep": 21684, + "ĠPrepare": 29689, + "ĠPres": 2718, + "ĠPresent": 33253, + "ĠPresents": 38191, + "ĠPresident": 3117, + "ĠPresidential": 41823, + "ĠPresiding": 47365, + "ĠPress": 6776, + "ĠPrest": 35272, + "ĠPret": 9739, + "ĠPretty": 10693, + "ĠPrevention": 38699, + "ĠPreviously": 33606, + "ĠPri": 8087, + "ĠPrice": 25803, + "ĠPride": 30319, + "ĠPriest": 37052, + "ĠPrim": 19671, + "ĠPrimary": 42576, + "ĠPrime": 9655, + "ĠPrin": 9367, + "ĠPrinc": 35841, + "ĠPrince": 9821, + "ĠPrincess": 13903, + "ĠPrinceton": 36592, + "ĠPrinci": 38372, + "ĠPrincip": 32832, + "ĠPrincipal": 38575, + "ĠPrint": 34439, + "ĠPrinzip": 47572, + "ĠPrior": 24032, + "ĠPrison": 38888, + "ĠPriv": 39691, + "ĠPrivate": 30386, + "ĠPrix": 48736, + "ĠPrize": 22604, + "ĠPro": 1705, + "ĠProb": 8736, + "ĠProbably": 9210, + "ĠProblem": 11676, + "ĠProbleme": 32891, + "ĠProcess": 31093, + "ĠProdu": 11793, + "ĠProducer": 33034, + "ĠProduct": 22005, + "ĠProduction": 30088, + "ĠProducts": 47699, + "ĠProdukt": 44599, + "ĠProf": 6039, + "ĠProfess": 7487, + "ĠProfessional": 30011, + "ĠProfessor": 8419, + "ĠProgram": 8338, + "ĠProgramm": 48244, + "ĠPrograms": 44762, + "ĠProgress": 32587, + "ĠProject": 9849, + "ĠProjekt": 34804, + "ĠProm": 15833, + "ĠPromise": 34878, + "ĠPromised": 38478, + "ĠPron": 27723, + "ĠPronounce": 48483, + "ĠPronunciation": 45496, + "ĠProp": 21944, + "ĠProper": 27627, + "ĠProperty": 48966, + "ĠProphet": 12849, + "ĠPros": 26024, + "ĠProse": 50058, + "ĠProt": 10019, + "ĠProte": 43371, + "ĠProtect": 32017, + "ĠProtection": 25981, + "ĠProtest": 27259, + "ĠProtestant": 38345, + "ĠProtocol": 48753, + "ĠProv": 15685, + "ĠProvince": 40649, + "ĠProvost": 45426, + "ĠProzent": 29726, + "ĠPrzy": 39590, + "ĠPräsident": 27513, + "ĠPs": 33903, + "ĠPsaki": 50037, + "ĠPsal": 26150, + "ĠPsalm": 34134, + "ĠPsych": 17303, + "ĠPsychology": 42827, + "ĠPu": 13605, + "ĠPub": 21808, + "ĠPublic": 9489, + "ĠPuerto": 21472, + "ĠPues": 22386, + "ĠPuis": 30033, + "ĠPul": 35568, + "ĠPull": 15074, + "ĠPump": 32863, + "ĠPun": 22574, + "ĠPunch": 32408, + "ĠPunj": 44989, + "ĠPunk": 27852, + "ĠPunkt": 25487, + "ĠPunkte": 47352, + "ĠPur": 14682, + "ĠPurd": 41632, + "ĠPurdue": 42506, + "ĠPure": 29474, + "ĠPurple": 28483, + "ĠPush": 18229, + "ĠPut": 4935, + "ĠPutin": 19818, + "ĠPutting": 31367, + "ĠPv": 41896, + "ĠPy": 9953, + "ĠPython": 15329, + "ĠPÃ¥": 45133, + "ĠQ": 1249, + "ĠQR": 32784, + "ĠQU": 7246, + "ĠQUE": 46026, + "ĠQUES": 8521, + "ĠQUESTION": 8557, + "ĠQatar": 41691, + "ĠQi": 21430, + "ĠQian": 32461, + "ĠQiao": 48046, + "ĠQin": 26999, + "ĠQing": 20089, + "ĠQiu": 49024, + "ĠQu": 2326, + "ĠQuad": 29619, + "ĠQual": 13616, + "ĠQuality": 28892, + "ĠQuan": 35249, + "ĠQuand": 22015, + "ĠQuando": 18725, + "ĠQuant": 26968, + "ĠQuantum": 44964, + "ĠQuarter": 43794, + "ĠQue": 4493, + "ĠQuebec": 38903, + "ĠQueen": 10077, + "ĠQueens": 18414, + "ĠQueensborough": 40722, + "ĠQueensland": 36913, + "ĠQuel": 43521, + "ĠQuem": 32342, + "ĠQuer": 36149, + "ĠQuest": 8800, + "ĠQuestion": 14464, + "ĠQuestions": 27738, + "ĠQuesto": 38167, + "ĠQui": 27361, + "ĠQuick": 12101, + "ĠQuickly": 31800, + "ĠQuiet": 32193, + "ĠQuin": 44761, + "ĠQuindi": 32534, + "ĠQuinn": 36723, + "ĠQuit": 50139, + "ĠQuite": 20464, + "ĠQuiz": 38020, + "ĠQur": 26094, + "ĠQuran": 19375, + "ĠQuè": 31951, + "ĠQué": 23662, + "ĠQuébec": 34510, + "ĠQuá»ijc": 41494, + "ĠR": 497, + "ĠRA": 14626, + "ĠRAM": 14561, + "ĠRAMSAY": 42487, + "ĠRAW": 40539, + "ĠRB": 40302, + "ĠRC": 28987, + "ĠRD": 49488, + "ĠRE": 10869, + "ĠREAL": 48619, + "ĠREALLY": 37117, + "ĠRED": 39346, + "ĠREM": 45991, + "ĠREP": 31511, + "ĠRES": 46926, + "ĠRF": 26204, + "ĠRGB": 31231, + "ĠRH": 50209, + "ĠRI": 30474, + "ĠRICH": 33618, + "ĠRICHARD": 45302, + "ĠRIGHT": 41631, + "ĠRJ": 46810, + "ĠRM": 23790, + "ĠRN": 45702, + "ĠRNA": 22484, + "ĠRO": 9025, + "ĠROB": 38506, + "ĠROBERT": 26458, + "ĠROI": 49808, + "ĠROM": 41678, + "ĠROS": 31904, + "ĠRP": 14105, + "ĠRPG": 22614, + "ĠRPM": 37389, + "ĠRS": 25855, + "ĠRT": 21797, + "ĠRTX": 44573, + "ĠRUS": 43719, + "ĠRV": 28314, + "ĠRW": 42513, + "ĠRX": 46197, + "ĠRYAN": 32354, + "ĠRa": 7591, + "ĠRab": 16781, + "ĠRabb": 36753, + "ĠRabbi": 32768, + "ĠRabbit": 42092, + "ĠRac": 42033, + "ĠRace": 25908, + "ĠRach": 40793, + "ĠRachel": 14246, + "ĠRacing": 38832, + "ĠRad": 9654, + "ĠRadi": 37806, + "ĠRadio": 17296, + "ĠRaf": 29611, + "ĠRafael": 43173, + "ĠRag": 44289, + "ĠRah": 17844, + "ĠRahmen": 39070, + "ĠRail": 23494, + "ĠRails": 48526, + "ĠRain": 14487, + "ĠRainbow": 29477, + "ĠRais": 43374, + "ĠRaise": 30062, + "ĠRaj": 16745, + "ĠRak": 43000, + "ĠRal": 23038, + "ĠRalph": 28131, + "ĠRam": 9078, + "ĠRama": 39828, + "ĠRamadan": 39848, + "ĠRamen": 48728, + "ĠRams": 28990, + "ĠRamsay": 40721, + "ĠRan": 27948, + "ĠRanch": 37740, + "ĠRand": 23614, + "ĠRandom": 37603, + "ĠRandy": 23993, + "ĠRange": 33778, + "ĠRanger": 34222, + "ĠRangers": 40703, + "ĠRank": 35921, + "ĠRap": 16184, + "ĠRapha": 49690, + "ĠRapid": 44580, + "ĠRapt": 38115, + "ĠRare": 43920, + "ĠRas": 24649, + "ĠRash": 46298, + "ĠRaspberry": 41154, + "ĠRat": 24269, + "ĠRate": 49583, + "ĠRather": 16571, + "ĠRaum": 31359, + "ĠRaven": 28956, + "ĠRavi": 44486, + "ĠRaw": 23732, + "ĠRay": 10883, + "ĠRaymond": 42813, + "ĠRaz": 29051, + "ĠRe": 1300, + "ĠReach": 35904, + "ĠReact": 30644, + "ĠRead": 17604, + "ĠReading": 29766, + "ĠReady": 9944, + "ĠReagan": 26534, + "ĠReal": 8467, + "ĠReality": 33822, + "ĠReally": 4083, + "ĠRealm": 44723, + "ĠReaper": 49956, + "ĠReason": 39693, + "ĠRebecca": 19381, + "ĠRebel": 48782, + "ĠRec": 9647, + "ĠRece": 41962, + "ĠRecent": 17553, + "ĠRecently": 20072, + "ĠRecht": 36840, + "ĠRechts": 36597, + "ĠRecogn": 44682, + "ĠRecomm": 49545, + "ĠRecord": 27401, + "ĠRecords": 31928, + "ĠRecovery": 35254, + "ĠRed": 4477, + "ĠReddit": 32210, + "ĠRede": 39056, + "ĠRedmi": 47766, + "ĠRee": 38231, + "ĠReed": 32071, + "ĠReese": 49474, + "ĠRef": 16957, + "ĠRefer": 36889, + "ĠReform": 38489, + "ĠReg": 4791, + "ĠRegard": 16613, + "ĠRegarding": 35523, + "ĠRegardless": 25148, + "ĠRegel": 33139, + "ĠRegent": 36687, + "ĠRegierung": 42979, + "ĠRegina": 48407, + "ĠRegion": 25121, + "ĠRegional": 30341, + "ĠRegister": 43167, + "ĠRegular": 45659, + "ĠRei": 34549, + "ĠReich": 33111, + "ĠReid": 46912, + "ĠRein": 42116, + "ĠRel": 8738, + "ĠRelations": 28663, + "ĠRelax": 25886, + "ĠRelease": 34278, + "ĠRelig": 33436, + "ĠReligion": 40127, + "ĠRem": 4080, + "ĠRemember": 5459, + "ĠRemo": 46445, + "ĠRemote": 44858, + "ĠRemove": 18831, + "ĠRen": 12883, + "ĠRena": 23068, + "ĠRenaissance": 32642, + "ĠRend": 48174, + "ĠRenee": 47790, + "ĠReno": 44404, + "ĠRent": 42743, + "ĠRep": 3696, + "ĠRepe": 24927, + "ĠRepeat": 28523, + "ĠRepl": 47762, + "ĠReport": 16057, + "ĠReporter": 26520, + "ĠReporting": 44229, + "ĠReports": 45910, + "ĠRepresent": 19945, + "ĠRepresentative": 33421, + "ĠRepresentatives": 37543, + "ĠRepublic": 5564, + "ĠRepublican": 10937, + "ĠRepublicans": 12017, + "ĠRepública": 45917, + "ĠRequ": 42029, + "ĠRes": 5015, + "ĠRescue": 39379, + "ĠResearch": 10303, + "ĠResearchers": 43555, + "ĠReserve": 26049, + "ĠResident": 29563, + "ĠResistance": 45647, + "ĠResource": 35200, + "ĠResources": 29706, + "ĠResp": 22480, + "ĠRespect": 39079, + "ĠRespons": 46003, + "ĠResponse": 43937, + "ĠRest": 13094, + "ĠRestaur": 31712, + "ĠRestaurant": 38870, + "ĠRet": 11495, + "ĠReturn": 24350, + "ĠRev": 12127, + "ĠRevel": 26211, + "ĠRevelation": 28979, + "ĠRever": 26314, + "ĠReverend": 44896, + "ĠReview": 19954, + "ĠRevolution": 16617, + "ĠRex": 35678, + "ĠRey": 17547, + "ĠReynolds": 29516, + "ĠRh": 16111, + "ĠRhod": 36951, + "ĠRhode": 40202, + "ĠRhodes": 45973, + "ĠRi": 33668, + "ĠRib": 38554, + "ĠRic": 21215, + "ĠRica": 42080, + "ĠRicardo": 42634, + "ĠRice": 19386, + "ĠRich": 6781, + "ĠRichard": 9809, + "ĠRichards": 33021, + "ĠRichardson": 48492, + "ĠRichmond": 39060, + "ĠRicht": 22659, + "ĠRichtung": 33023, + "ĠRick": 11224, + "ĠRicky": 25247, + "ĠRico": 22643, + "ĠRid": 30619, + "ĠRide": 35042, + "ĠRider": 40150, + "ĠRidge": 32313, + "ĠRif": 48549, + "ĠRig": 42720, + "ĠRight": 1779, + "ĠRights": 16352, + "ĠRiley": 31373, + "ĠRim": 44034, + "ĠRin": 33170, + "ĠRing": 19844, + "ĠRings": 38543, + "ĠRio": 18719, + "ĠRiot": 49536, + "ĠRip": 34677, + "ĠRis": 30897, + "ĠRise": 34482, + "ĠRising": 45957, + "ĠRisk": 45892, + "ĠRita": 32672, + "ĠRiv": 47620, + "ĠRiver": 8640, + "ĠRivera": 47388, + "ĠRivers": 36646, + "ĠRo": 3101, + "ĠRoad": 11507, + "ĠRob": 5424, + "ĠRobbie": 45749, + "ĠRober": 15800, + "ĠRobert": 7977, + "ĠRoberto": 40354, + "ĠRoberts": 20919, + "ĠRobin": 16533, + "ĠRobinson": 25105, + "ĠRobot": 29601, + "ĠRoc": 32661, + "ĠRochester": 39895, + "ĠRock": 6922, + "ĠRockef": 50178, + "ĠRocket": 29651, + "ĠRocky": 26916, + "ĠRod": 11097, + "ĠRodrig": 25904, + "ĠRodriguez": 37304, + "ĠRog": 11860, + "ĠRoger": 17666, + "ĠRogers": 29877, + "ĠRogue": 43770, + "ĠRoh": 27490, + "ĠRoland": 39357, + "ĠRolex": 36234, + "ĠRoll": 9926, + "ĠRolle": 35376, + "ĠRolling": 36457, + "ĠRom": 10141, + "ĠRoma": 31892, + "ĠRoman": 8566, + "ĠRomania": 36678, + "ĠRomanian": 49963, + "ĠRomans": 20252, + "ĠRome": 12043, + "ĠRomeo": 33563, + "ĠRon": 9949, + "ĠRonald": 27397, + "ĠRonaldo": 46132, + "ĠRong": 43383, + "ĠRonnie": 46131, + "ĠRoom": 19190, + "ĠRoose": 27349, + "ĠRoosevelt": 28515, + "ĠRos": 11144, + "ĠRosa": 30572, + "ĠRose": 12765, + "ĠRosen": 33630, + "ĠRosie": 40521, + "ĠRoss": 16140, + "ĠRot": 17681, + "ĠRoth": 28089, + "ĠRou": 28392, + "ĠRouge": 47607, + "ĠRough": 42791, + "ĠRound": 18525, + "ĠRoute": 39142, + "ĠRover": 43278, + "ĠRow": 20309, + "ĠRox": 44427, + "ĠRoy": 8751, + "ĠRoyal": 12717, + "ĠRoz": 43313, + "ĠRs": 21643, + "ĠRu": 15702, + "ĠRub": 10518, + "ĠRuby": 19907, + "ĠRud": 18636, + "ĠRudolph": 47292, + "ĠRudy": 38690, + "ĠRug": 50057, + "ĠRule": 27533, + "ĠRules": 38897, + "ĠRum": 31963, + "ĠRun": 8950, + "ĠRunner": 50105, + "ĠRunning": 28136, + "ĠRus": 13155, + "ĠRush": 28389, + "ĠRusia": 48520, + "ĠRuss": 3878, + "ĠRussell": 20937, + "ĠRussia": 6797, + "ĠRussian": 7220, + "ĠRussians": 20605, + "ĠRust": 34952, + "ĠRut": 42723, + "ĠRuth": 23544, + "ĠRy": 13654, + "ĠRyan": 9116, + "ĠRyu": 41599, + "ĠRép": 41587, + "ĠRépublique": 46646, + "ĠRück": 35001, + "ĠS": 318, + "ĠSA": 16482, + "ĠSAL": 40713, + "ĠSAM": 9617, + "ĠSAN": 49557, + "ĠSAND": 44097, + "ĠSAP": 27743, + "ĠSAR": 18748, + "ĠSARAH": 41666, + "ĠSARS": 34233, + "ĠSAS": 33441, + "ĠSAT": 31536, + "ĠSAY": 42948, + "ĠSB": 26944, + "ĠSBS": 41788, + "ĠSC": 9028, + "ĠSCH": 23539, + "ĠSCOTT": 41181, + "ĠSCP": 18489, + "ĠSD": 14638, + "ĠSDK": 37135, + "ĠSE": 10269, + "ĠSEC": 22399, + "ĠSECRET": 47627, + "ĠSEE": 44712, + "ĠSEN": 47770, + "ĠSEO": 22964, + "ĠSER": 36772, + "ĠSEÃij": 40677, + "ĠSF": 31095, + "ĠSG": 34520, + "ĠSH": 7405, + "ĠSHA": 38820, + "ĠSHE": 44179, + "ĠSI": 29083, + "ĠSIM": 24738, + "ĠSJ": 44883, + "ĠSK": 21483, + "ĠSL": 22999, + "ĠSM": 13115, + "ĠSMITH": 46156, + "ĠSMS": 38107, + "ĠSN": 13955, + "ĠSO": 10621, + "ĠSOL": 36011, + "ĠSOUND": 45383, + "ĠSP": 8420, + "ĠSPD": 19572, + "ĠSPE": 37173, + "ĠSPEAK": 11824, + "ĠSPEAKER": 12081, + "ĠSQL": 19200, + "ĠSR": 20840, + "ĠSS": 12238, + "ĠSSD": 30262, + "ĠST": 4904, + "ĠSTACK": 49114, + "ĠSTAR": 47816, + "ĠSTART": 49326, + "ĠSTE": 20039, + "ĠSTEM": 25043, + "ĠSTEP": 28143, + "ĠSTEPHAN": 46423, + "ĠSTEVE": 40878, + "ĠSTEVEN": 48312, + "ĠSTOP": 38344, + "ĠSTR": 43013, + "ĠSTUD": 36988, + "ĠSTUDENT": 41833, + "ĠSU": 9872, + "ĠSUBSCRI": 32563, + "ĠSUBSCRIBE": 33817, + "ĠSUN": 42596, + "ĠSUPER": 49342, + "ĠSUR": 37269, + "ĠSUS": 40117, + "ĠSUV": 28452, + "ĠSV": 31910, + "ĠSW": 20346, + "ĠSY": 32624, + "ĠSa": 6299, + "ĠSaaS": 49733, + "ĠSab": 13915, + "ĠSabb": 34003, + "ĠSabbath": 36618, + "ĠSabrina": 45439, + "ĠSac": 19356, + "ĠSach": 25626, + "ĠSache": 31452, + "ĠSachen": 26074, + "ĠSacramento": 38360, + "ĠSacred": 47074, + "ĠSad": 12269, + "ĠSadhguru": 40000, + "ĠSadly": 29628, + "ĠSaf": 14152, + "ĠSafari": 43820, + "ĠSafe": 27030, + "ĠSafety": 21340, + "ĠSag": 34551, + "ĠSage": 33812, + "ĠSah": 18280, + "ĠSahib": 43545, + "ĠSai": 27987, + "ĠSaid": 26490, + "ĠSail": 42014, + "ĠSaint": 12902, + "ĠSaints": 39022, + "ĠSak": 18025, + "ĠSakura": 48051, + "ĠSal": 5996, + "ĠSale": 48922, + "ĠSalem": 49619, + "ĠSales": 23467, + "ĠSalesforce": 40398, + "ĠSally": 26385, + "ĠSalt": 19503, + "ĠSalut": 33559, + "ĠSalv": 28596, + "ĠSalvador": 32586, + "ĠSalz": 46283, + "ĠSam": 4832, + "ĠSamantha": 33521, + "ĠSame": 10635, + "ĠSami": 44029, + "ĠSammy": 44316, + "ĠSams": 12666, + "ĠSamsung": 13173, + "ĠSamuel": 23036, + "ĠSan": 5271, + "ĠSana": 29200, + "ĠSand": 7985, + "ĠSanders": 21734, + "ĠSandra": 28184, + "ĠSandy": 27390, + "ĠSang": 19037, + "ĠSans": 21504, + "ĠSanskrit": 44392, + "ĠSant": 17315, + "ĠSanta": 9933, + "ĠSanti": 34815, + "ĠSantiago": 37621, + "ĠSanto": 49639, + "ĠSantos": 36962, + "ĠSap": 49287, + "ĠSapp": 46814, + "ĠSar": 6894, + "ĠSara": 18694, + "ĠSarah": 9519, + "ĠSas": 36613, + "ĠSasha": 29276, + "ĠSask": 48963, + "ĠSat": 5344, + "ĠSatan": 16583, + "ĠSaturday": 8803, + "ĠSaturn": 24601, + "ĠSau": 22557, + "ĠSauce": 36720, + "ĠSaud": 15717, + "ĠSaudi": 18121, + "ĠSaul": 35661, + "ĠSav": 12346, + "ĠSavage": 46699, + "ĠSavannah": 47902, + "ĠSave": 15541, + "ĠSavior": 29310, + "ĠSaw": 27307, + "ĠSax": 48379, + "ĠSay": 6463, + "ĠSaya": 16568, + "ĠSaying": 34087, + "ĠSays": 36780, + "ĠSc": 2747, + "ĠSca": 47082, + "ĠScale": 42999, + "ĠScalia": 47899, + "ĠScan": 41177, + "ĠScandin": 42403, + "ĠScar": 23181, + "ĠScary": 45504, + "ĠScene": 46297, + "ĠSch": 2065, + "ĠSche": 25321, + "ĠSched": 44926, + "ĠSchl": 16420, + "ĠSchluss": 36573, + "ĠSchmidt": 42621, + "ĠSchn": 45748, + "ĠSchne": 30343, + "ĠSchol": 27866, + "ĠScholars": 33846, + "ĠSchon": 46049, + "ĠSchool": 5070, + "ĠSchools": 26997, + "ĠSchr": 46191, + "ĠSchritt": 33062, + "ĠSchul": 21223, + "ĠSchuld": 50153, + "ĠSchule": 32953, + "ĠSchulen": 41909, + "ĠSchutz": 37469, + "ĠSchw": 17576, + "ĠSchwar": 46487, + "ĠSchwe": 24343, + "ĠSchweiz": 46834, + "ĠSchön": 41060, + "ĠSchüler": 39776, + "ĠSci": 16942, + "ĠScience": 8976, + "ĠSciences": 21108, + "ĠScient": 18944, + "ĠScientific": 47437, + "ĠScientists": 32958, + "ĠSco": 27682, + "ĠScore": 47901, + "ĠScorp": 38814, + "ĠScot": 9534, + "ĠScotland": 11180, + "ĠScott": 6659, + "ĠScottish": 13777, + "ĠScout": 33971, + "ĠScr": 34944, + "ĠScreen": 25823, + "ĠScrew": 42630, + "ĠScript": 15675, + "ĠScripture": 22888, + "ĠScriptures": 46522, + "ĠScroll": 35395, + "ĠSe": 1100, + "ĠSea": 11352, + "ĠSeal": 46207, + "ĠSean": 14839, + "ĠSearch": 17180, + "ĠSeason": 16465, + "ĠSeattle": 15721, + "ĠSeb": 22374, + "ĠSebastian": 31102, + "ĠSec": 3306, + "ĠSecond": 5736, + "ĠSecondly": 19483, + "ĠSecret": 7400, + "ĠSecretary": 9126, + "ĠSect": 46244, + "ĠSection": 21804, + "ĠSecurity": 11164, + "ĠSed": 31213, + "ĠSee": 3008, + "ĠSeeing": 19703, + "ĠSeems": 22524, + "ĠSeg": 21595, + "ĠSega": 32114, + "ĠSehr": 32028, + "ĠSei": 49229, + "ĠSeit": 34321, + "ĠSeite": 19748, + "ĠSeiten": 45200, + "ĠSek": 24285, + "ĠSel": 10736, + "ĠSelbst": 29712, + "ĠSelect": 13638, + "ĠSelena": 39146, + "ĠSelf": 16348, + "ĠSell": 44296, + "ĠSem": 14421, + "ĠSempre": 49724, + "ĠSen": 3862, + "ĠSenate": 9867, + "ĠSenator": 10893, + "ĠSend": 17908, + "ĠSenhor": 43792, + "ĠSeni": 42752, + "ĠSenin": 36134, + "ĠSenior": 18370, + "ĠSens": 40926, + "ĠSense": 33123, + "ĠSent": 23652, + "ĠSentinel": 49498, + "ĠSeo": 30877, + "ĠSeok": 34565, + "ĠSeong": 40333, + "ĠSeoul": 17100, + "ĠSep": 22012, + "ĠSepar": 43480, + "ĠSept": 6978, + "ĠSeptember": 7216, + "ĠSequ": 46859, + "ĠSer": 4210, + "ĠSerbia": 39461, + "ĠSerge": 18885, + "ĠSergeant": 31149, + "ĠSergey": 49238, + "ĠSergio": 45078, + "ĠSerie": 49135, + "ĠSeries": 13934, + "ĠSeriously": 14063, + "ĠServ": 6213, + "ĠServe": 45663, + "ĠServer": 25684, + "ĠService": 9561, + "ĠServices": 12124, + "ĠSerá": 42968, + "ĠSes": 29827, + "ĠSesame": 47686, + "ĠSet": 8928, + "ĠSeth": 25353, + "ĠSetting": 21063, + "ĠSettings": 27286, + "ĠSeung": 20384, + "ĠSev": 28960, + "ĠSeven": 14868, + "ĠSever": 19635, + "ĠSeveral": 22246, + "ĠSew": 42697, + "ĠSex": 29037, + "ĠSexual": 45449, + "ĠSeñ": 30807, + "ĠSeñor": 35054, + "ĠSh": 1160, + "ĠSha": 14944, + "ĠShadow": 19036, + "ĠShah": 21159, + "ĠShak": 47459, + "ĠShake": 27809, + "ĠShakes": 22094, + "ĠShakespeare": 22825, + "ĠShakt": 40867, + "ĠShall": 12128, + "ĠSham": 42912, + "ĠShame": 46835, + "ĠShan": 25536, + "ĠShane": 25865, + "ĠShang": 19316, + "ĠShanghai": 26135, + "ĠShank": 45264, + "ĠShannon": 28974, + "ĠShap": 44160, + "ĠShape": 49148, + "ĠShar": 22030, + "ĠShare": 14945, + "ĠSharing": 49060, + "ĠShark": 36347, + "ĠSharon": 28573, + "ĠSharp": 31654, + "ĠShaun": 49363, + "ĠShaw": 27132, + "ĠShawn": 28634, + "ĠShay": 31212, + "ĠShe": 1240, + "ĠSheikh": 46160, + "ĠSheila": 48832, + "ĠShel": 24415, + "ĠShelby": 37517, + "ĠShell": 22863, + "ĠShelley": 42337, + "ĠShen": 22636, + "ĠSheng": 40544, + "ĠShepherd": 43395, + "ĠSher": 11789, + "ĠSheriff": 32492, + "ĠSherlock": 37769, + "ĠSherman": 45130, + "ĠShh": 41429, + "ĠShi": 25580, + "ĠShield": 28539, + "ĠShift": 28304, + "ĠShim": 32683, + "ĠShin": 17347, + "ĠShine": 46460, + "ĠShiny": 49683, + "ĠShip": 38407, + "ĠShir": 27239, + "ĠShirley": 43275, + "ĠShit": 19593, + "ĠShiv": 47839, + "ĠShiva": 34729, + "ĠSho": 31404, + "ĠShock": 39474, + "ĠShoot": 19760, + "ĠShooting": 45739, + "ĠShop": 16319, + "ĠShopify": 43991, + "ĠShore": 47977, + "ĠShort": 16881, + "ĠShortly": 40109, + "ĠShot": 28845, + "ĠShould": 6454, + "ĠShouldn": 34170, + "ĠShout": 32749, + "ĠShow": 6895, + "ĠShrim": 47827, + "ĠShu": 26655, + "ĠShut": 13870, + "ĠShy": 45250, + "ĠSi": 4909, + "ĠSiber": 42608, + "ĠSic": 39155, + "ĠSich": 47135, + "ĠSicher": 25292, + "ĠSicherheit": 38778, + "ĠSicht": 36615, + "ĠSick": 43471, + "ĠSid": 19797, + "ĠSide": 19026, + "ĠSie": 3559, + "ĠSierra": 25182, + "ĠSig": 37763, + "ĠSigma": 36595, + "ĠSign": 13515, + "ĠSignal": 43414, + "ĠSikh": 46657, + "ĠSil": 6943, + "ĠSilence": 34570, + "ĠSilent": 40862, + "ĠSilicon": 25351, + "ĠSilk": 43853, + "ĠSilva": 50171, + "ĠSilver": 15861, + "ĠSim": 3998, + "ĠSimilar": 10905, + "ĠSimilarly": 13157, + "ĠSimmons": 42516, + "ĠSimon": 13193, + "ĠSimone": 41652, + "ĠSimple": 21532, + "ĠSimply": 19596, + "ĠSimpson": 38184, + "ĠSims": 33289, + "ĠSin": 11187, + "ĠSince": 4162, + "ĠSind": 35405, + "ĠSing": 7474, + "ĠSingapore": 14491, + "ĠSinger": 44184, + "ĠSingh": 27529, + "ĠSinging": 39483, + "ĠSingle": 31248, + "ĠSinn": 37962, + "ĠSinne": 47041, + "ĠSir": 6144, + "ĠSiri": 33682, + "ĠSis": 33514, + "ĠSister": 14145, + "ĠSisters": 43166, + "ĠSit": 14523, + "ĠSite": 34027, + "ĠSith": 43860, + "ĠSitting": 43129, + "ĠSituation": 22247, + "ĠSix": 11678, + "ĠSixt": 47374, + "ĠSiz": 26672, + "ĠSize": 35818, + "ĠSk": 7324, + "ĠSke": 32344, + "ĠSket": 45012, + "ĠSketch": 49245, + "ĠSkill": 40737, + "ĠSkills": 27856, + "ĠSkillshare": 42991, + "ĠSkin": 26333, + "ĠSkip": 46405, + "ĠSky": 9879, + "ĠSkype": 31743, + "ĠSkywalker": 49220, + "ĠSl": 6187, + "ĠSlack": 37211, + "ĠSleep": 19383, + "ĠSleeping": 49618, + "ĠSlide": 26405, + "ĠSlim": 47428, + "ĠSlo": 22497, + "ĠSloven": 50122, + "ĠSlow": 17703, + "ĠSlowly": 29674, + "ĠSm": 3915, + "ĠSmack": 35399, + "ĠSmall": 15287, + "ĠSmart": 12923, + "ĠSmash": 25768, + "ĠSmells": 44355, + "ĠSmile": 38499, + "ĠSmith": 8538, + "ĠSmithson": 44350, + "ĠSmithsonian": 46013, + "ĠSmoke": 36191, + "ĠSmooth": 42404, + "ĠSn": 9264, + "ĠSna": 41539, + "ĠSnake": 33885, + "ĠSnap": 18254, + "ĠSnapchat": 31579, + "ĠSnapdragon": 48211, + "ĠSne": 41336, + "ĠSno": 42902, + "ĠSnow": 14827, + "ĠSny": 49464, + "ĠSo": 407, + "ĠSoc": 43627, + "ĠSoci": 12276, + "ĠSocial": 9909, + "ĠSociety": 13742, + "ĠSod": 42059, + "ĠSofia": 42611, + "ĠSoft": 16985, + "ĠSoftware": 27428, + "ĠSol": 7026, + "ĠSolar": 22385, + "ĠSold": 20064, + "ĠSoldier": 34660, + "ĠSole": 48073, + "ĠSolid": 26664, + "ĠSolo": 26452, + "ĠSolomon": 32209, + "ĠSolutions": 36295, + "ĠSom": 12297, + "ĠSome": 2188, + "ĠSomebody": 13463, + "ĠSomehow": 28357, + "ĠSomeone": 8734, + "ĠSomet": 3379, + "ĠSomething": 6595, + "ĠSometimes": 4803, + "ĠSomewhere": 34500, + "ĠSommer": 35022, + "ĠSon": 5185, + "ĠSong": 11862, + "ĠSongs": 48541, + "ĠSonic": 14290, + "ĠSono": 48344, + "ĠSonra": 41379, + "ĠSony": 13575, + "ĠSoo": 28784, + "ĠSoon": 17610, + "ĠSoph": 18921, + "ĠSophia": 35152, + "ĠSophie": 29645, + "ĠSor": 21421, + "ĠSora": 46639, + "ĠSorry": 4919, + "ĠSort": 26149, + "ĠSou": 31458, + "ĠSoul": 13588, + "ĠSouls": 30258, + "ĠSound": 14673, + "ĠSounds": 14576, + "ĠSoup": 40648, + "ĠSource": 29629, + "ĠSouth": 4242, + "ĠSoutheast": 27906, + "ĠSouthern": 13724, + "ĠSouthwest": 31708, + "ĠSovi": 37477, + "ĠSoviet": 11348, + "ĠSoviets": 41354, + "ĠSow": 48644, + "ĠSoy": 24758, + "ĠSozial": 36867, + "ĠSp": 1738, + "ĠSpa": 23729, + "ĠSpace": 8705, + "ĠSpaceX": 30585, + "ĠSpain": 12838, + "ĠSpanish": 8058, + "ĠSpark": 23424, + "ĠSpart": 36014, + "ĠSpaÃŁ": 27460, + "ĠSpe": 3550, + "ĠSpeak": 27868, + "ĠSpeaker": 8454, + "ĠSpeaking": 13069, + "ĠSpec": 20484, + "ĠSpecial": 11863, + "ĠSpecifically": 26058, + "ĠSpect": 27078, + "ĠSpeech": 48385, + "ĠSpeed": 18774, + "ĠSpencer": 31996, + "ĠSpicy": 35999, + "ĠSpider": 17733, + "ĠSpiel": 14266, + "ĠSpieler": 44053, + "ĠSpike": 46286, + "ĠSpin": 29185, + "ĠSpirit": 7218, + "ĠSpiritual": 38929, + "ĠSpit": 39108, + "ĠSpl": 19788, + "ĠSplit": 45111, + "ĠSpo": 45011, + "ĠSponge": 43742, + "ĠSport": 17549, + "ĠSports": 20191, + "ĠSpot": 19102, + "ĠSpotify": 29036, + "ĠSpr": 7702, + "ĠSpread": 30308, + "ĠSpring": 14013, + "ĠSprings": 33065, + "ĠSprinkle": 47331, + "ĠSpy": 35854, + "ĠSqu": 8683, + "ĠSquad": 26596, + "ĠSquare": 16463, + "ĠSque": 31449, + "ĠSqueeze": 47603, + "ĠSquid": 46178, + "ĠSr": 38988, + "ĠSri": 25120, + "ĠSt": 745, + "ĠSta": 16959, + "ĠStaat": 45559, + "ĠStaats": 33928, + "ĠStack": 37649, + "ĠStacy": 43644, + "ĠStadium": 32976, + "ĠStadt": 20550, + "ĠStaff": 16440, + "ĠStage": 25907, + "ĠStalin": 32126, + "ĠStall": 48010, + "ĠStamp": 48011, + "ĠStan": 10061, + "ĠStand": 9133, + "ĠStandard": 21298, + "ĠStandards": 44546, + "ĠStanding": 33655, + "ĠStanford": 20374, + "ĠStanley": 28329, + "ĠStar": 5705, + "ĠStarbucks": 26303, + "ĠStark": 28967, + "ĠStars": 20957, + "ĠStart": 6481, + "ĠStarted": 39715, + "ĠStarting": 16217, + "ĠStat": 16249, + "ĠState": 4533, + "ĠStates": 3040, + "ĠStation": 14467, + "ĠStatistics": 49226, + "ĠStatus": 47409, + "ĠStay": 8691, + "ĠSte": 3592, + "ĠSteam": 22517, + "ĠSteel": 26038, + "ĠStef": 43421, + "ĠStefan": 32158, + "ĠStein": 29453, + "ĠStell": 37364, + "ĠStella": 45073, + "ĠStelle": 26629, + "ĠStellen": 41893, + "ĠStep": 5470, + "ĠSteph": 31418, + "ĠStephan": 16672, + "ĠStephanie": 18634, + "ĠStephen": 13391, + "ĠSter": 33539, + "ĠStern": 39538, + "ĠSteuer": 44250, + "ĠSteve": 7466, + "ĠSteven": 12754, + "ĠStevens": 41727, + "ĠStevie": 47499, + "ĠStew": 22735, + "ĠStewart": 25951, + "ĠStick": 22744, + "ĠStill": 8291, + "ĠStir": 23353, + "ĠStitch": 44871, + "ĠStock": 17857, + "ĠStockholm": 38730, + "ĠStone": 15012, + "ĠStones": 49982, + "ĠStop": 5535, + "ĠStorage": 36308, + "ĠStore": 17242, + "ĠStories": 31797, + "ĠStorm": 20494, + "ĠStory": 14484, + "ĠStr": 8251, + "ĠStra": 12875, + "ĠStraight": 26908, + "ĠStrand": 47517, + "ĠStrange": 29068, + "ĠStrateg": 30064, + "ĠStrategic": 47805, + "ĠStrategy": 40915, + "ĠStraw": 35104, + "ĠStrawberry": 45906, + "ĠStraÃŁe": 43817, + "ĠStraÃŁen": 48925, + "ĠStre": 19597, + "ĠStream": 24904, + "ĠStreet": 7638, + "ĠStrength": 39251, + "ĠStress": 38258, + "ĠStretch": 38817, + "ĠStri": 20390, + "ĠStrike": 32788, + "ĠStro": 42196, + "ĠStrom": 39126, + "ĠStrong": 22792, + "ĠStu": 25203, + "ĠStuart": 36236, + "ĠStud": 4541, + "ĠStudent": 12464, + "ĠStudents": 17244, + "ĠStudien": 49496, + "ĠStudies": 17515, + "ĠStudio": 13500, + "ĠStudios": 23005, + "ĠStudy": 27039, + "ĠStuff": 31347, + "ĠStunde": 42781, + "ĠStunden": 30496, + "ĠStupid": 37659, + "ĠSty": 30415, + "ĠStyle": 27004, + "ĠStyles": 46845, + "ĠStück": 31146, + "ĠSu": 2746, + "ĠSub": 8511, + "ĠSubaru": 43044, + "ĠSubs": 37471, + "ĠSubscribe": 10611, + "ĠSubst": 42090, + "ĠSuccess": 23669, + "ĠSuch": 9653, + "ĠSud": 12323, + "ĠSudan": 36013, + "ĠSuddenly": 21194, + "ĠSue": 25332, + "ĠSuff": 40178, + "ĠSug": 39131, + "ĠSugar": 24576, + "ĠSuit": 48854, + "ĠSuite": 36637, + "ĠSuk": 37898, + "ĠSul": 35897, + "ĠSull": 34901, + "ĠSullivan": 37226, + "ĠSultan": 23528, + "ĠSum": 8626, + "ĠSummer": 16161, + "ĠSummit": 28726, + "ĠSun": 6163, + "ĠSund": 6942, + "ĠSunday": 7776, + "ĠSundays": 44857, + "ĠSung": 24857, + "ĠSunny": 34665, + "ĠSunshine": 48618, + "ĠSup": 9141, + "ĠSuper": 4548, + "ĠSuperintendent": 49623, + "ĠSuperior": 48953, + "ĠSuperman": 22455, + "ĠSupp": 9391, + "ĠSupport": 18073, + "ĠSuppose": 21360, + "ĠSupreme": 11032, + "ĠSur": 6732, + "ĠSure": 4894, + "ĠSurely": 29803, + "ĠSurf": 43124, + "ĠSurface": 36052, + "ĠSurprise": 36701, + "ĠSurprisingly": 49908, + "ĠSurv": 40716, + "ĠSurvey": 33365, + "ĠSurviv": 48859, + "ĠSus": 9545, + "ĠSusan": 15160, + "ĠSustain": 34407, + "ĠSut": 40492, + "ĠSuz": 24232, + "ĠSuzanne": 48901, + "ĠSuzuki": 49457, + "ĠSven": 49787, + "ĠSver": 29490, + "ĠSverige": 33973, + "ĠSw": 3926, + "ĠSwami": 33018, + "ĠSwan": 40884, + "ĠSwe": 29918, + "ĠSwed": 21617, + "ĠSweden": 17727, + "ĠSwedish": 23523, + "ĠSweet": 14653, + "ĠSwift": 25539, + "ĠSwiss": 21965, + "ĠSwitch": 13893, + "ĠSwitzerland": 23312, + "ĠSword": 27070, + "ĠSy": 3902, + "ĠSyd": 19918, + "ĠSydney": 21065, + "ĠSyl": 33349, + "ĠSym": 28877, + "ĠSymphony": 46891, + "ĠSyn": 26155, + "ĠSynd": 35284, + "ĠSyndrome": 44545, + "ĠSyria": 13314, + "ĠSyrian": 24081, + "ĠSystem": 8910, + "ĠSystems": 27059, + "ĠSz": 24699, + "ĠSão": 22401, + "ĠSÃ¥": 12728, + "ĠSé": 49556, + "ĠSó": 19961, + "ĠSü": 25697, + "ĠSÃŃ": 12375, + "ĠT": 314, + "ĠTA": 20094, + "ĠTALI": 13763, + "ĠTALIESIN": 13787, + "ĠTB": 29711, + "ĠTC": 34150, + "ĠTCP": 48965, + "ĠTD": 42606, + "ĠTE": 19744, + "ĠTED": 43036, + "ĠTER": 41305, + "ĠTF": 40964, + "ĠTH": 3578, + "ĠTHAT": 15532, + "ĠTHE": 5663, + "ĠTHERE": 40562, + "ĠTHEY": 34970, + "ĠTHIS": 17371, + "ĠTHOM": 40933, + "ĠTI": 28819, + "ĠTIM": 20187, + "ĠTIME": 36096, + "ĠTJ": 46402, + "ĠTL": 40277, + "ĠTM": 33550, + "ĠTO": 8232, + "ĠTOM": 29473, + "ĠTON": 25867, + "ĠTONER": 36557, + "ĠTOP": 40925, + "ĠTP": 44462, + "ĠTR": 15176, + "ĠTRA": 10841, + "ĠTRAVIS": 12317, + "ĠTS": 37645, + "ĠTT": 32576, + "ĠTU": 42408, + "ĠTV": 3558, + "ĠTVs": 38085, + "ĠTW": 23737, + "ĠTWO": 48664, + "ĠTY": 36187, + "ĠTa": 6551, + "ĠTab": 14106, + "ĠTabii": 41770, + "ĠTable": 25535, + "ĠTac": 38848, + "ĠTack": 38405, + "ĠTaco": 37992, + "ĠTact": 47111, + "ĠTada": 39303, + "ĠTae": 24478, + "ĠTag": 11204, + "ĠTage": 29724, + "ĠTagen": 41721, + "ĠTages": 33601, + "ĠTah": 31027, + "ĠTai": 9623, + "ĠTail": 46074, + "ĠTails": 49888, + "ĠTaiwan": 12296, + "ĠTaiwanese": 45187, + "ĠTaj": 44837, + "ĠTak": 9118, + "ĠTake": 3664, + "ĠTakes": 44347, + "ĠTaking": 17837, + "ĠTal": 10516, + "ĠTale": 49846, + "ĠTalent": 44081, + "ĠTales": 50099, + "ĠTaliban": 26478, + "ĠTalk": 8780, + "ĠTalking": 22445, + "ĠTall": 42633, + "ĠTam": 8540, + "ĠTamam": 18224, + "ĠTamara": 40424, + "ĠTamb": 18176, + "ĠTambién": 25682, + "ĠTamil": 39938, + "ĠTammy": 48030, + "ĠTampa": 40583, + "ĠTan": 17046, + "ĠTang": 22063, + "ĠTank": 28746, + "ĠTanner": 47253, + "ĠTanz": 42420, + "ĠTao": 26580, + "ĠTap": 13445, + "ĠTapi": 25386, + "ĠTar": 10537, + "ĠTara": 32182, + "ĠTarget": 24586, + "ĠTas": 27293, + "ĠTask": 30428, + "ĠTaste": 33770, + "ĠTat": 19645, + "ĠTax": 23263, + "ĠTay": 10132, + "ĠTaylor": 12060, + "ĠTe": 1989, + "ĠTea": 26614, + "ĠTeach": 26816, + "ĠTeacher": 19745, + "ĠTeachers": 40596, + "ĠTeaching": 34244, + "ĠTeam": 7606, + "ĠTeams": 24702, + "ĠTech": 13795, + "ĠTechn": 8337, + "ĠTechnical": 35512, + "ĠTechnically": 42494, + "ĠTechnologies": 46993, + "ĠTechnology": 15037, + "ĠTed": 14985, + "ĠTeddy": 34330, + "ĠTeen": 33297, + "ĠTeil": 16357, + "ĠTek": 27821, + "ĠTel": 27729, + "ĠTele": 14889, + "ĠTeles": 48595, + "ĠTelevision": 37329, + "ĠTell": 5115, + "ĠTem": 8095, + "ĠTemper": 34864, + "ĠTempl": 39563, + "ĠTemple": 17642, + "ĠTen": 9380, + "ĠTenemos": 44903, + "ĠTenn": 19418, + "ĠTennessee": 21127, + "ĠTensor": 34306, + "ĠTensorFlow": 37624, + "ĠTer": 6564, + "ĠTeraz": 41810, + "ĠTeresa": 35039, + "ĠTerm": 19835, + "ĠTerr": 36591, + "ĠTerra": 25366, + "ĠTerre": 47870, + "ĠTerror": 36174, + "ĠTerry": 21983, + "ĠTes": 12262, + "ĠTesla": 13666, + "ĠTest": 9279, + "ĠTestament": 15473, + "ĠTesting": 45517, + "ĠTet": 31580, + "ĠTex": 7479, + "ĠTexas": 7885, + "ĠText": 18643, + "ĠTh": 334, + "ĠThai": 19254, + "ĠThailand": 19434, + "ĠThan": 18289, + "ĠThank": 1044, + "ĠThankfully": 28344, + "ĠThanks": 2561, + "ĠThanksgiving": 21230, + "ĠThanos": 35993, + "ĠThat": 663, + "ĠThats": 30085, + "ĠThe": 440, + "ĠTheater": 26548, + "ĠTheatre": 27782, + "ĠTheir": 6710, + "ĠThem": 37354, + "ĠThema": 16306, + "ĠTheme": 42428, + "ĠThemen": 39229, + "ĠThen": 1396, + "ĠTheo": 42519, + "ĠTheory": 29009, + "ĠTherap": 36812, + "ĠThere": 821, + "ĠTherefore": 7504, + "ĠTheres": 33902, + "ĠTheresa": 42595, + "ĠTherm": 38957, + "ĠThese": 1981, + "ĠThey": 814, + "ĠThi": 48197, + "ĠThing": 30902, + "ĠThings": 9514, + "ĠThink": 6557, + "ĠThinking": 24460, + "ĠThird": 12548, + "ĠThirty": 41490, + "ĠThis": 639, + "ĠThom": 19409, + "ĠThomas": 8500, + "ĠThompson": 23460, + "ĠThor": 17777, + "ĠThose": 3950, + "ĠThough": 10404, + "ĠThought": 23058, + "ĠThous": 29852, + "ĠThousands": 40535, + "ĠThr": 41645, + "ĠThree": 6244, + "ĠThrones": 31659, + "ĠThrough": 8927, + "ĠThroughout": 22775, + "ĠThrow": 22228, + "ĠThunder": 21023, + "ĠThursday": 10383, + "ĠThus": 13827, + "ĠThy": 40010, + "ĠTi": 20456, + "ĠTian": 19736, + "ĠTib": 24474, + "ĠTibet": 28884, + "ĠTibetan": 44963, + "ĠTie": 36804, + "ĠTier": 24224, + "ĠTiere": 38810, + "ĠTiffany": 28104, + "ĠTig": 44550, + "ĠTiger": 22025, + "ĠTigers": 37699, + "ĠTight": 47967, + "ĠTik": 15613, + "ĠTikTok": 20211, + "ĠTil": 45141, + "ĠTill": 20227, + "ĠTim": 7172, + "ĠTime": 6161, + "ĠTimes": 11366, + "ĠTimothy": 29418, + "ĠTin": 47741, + "ĠTina": 28504, + "ĠTinder": 49341, + "ĠTing": 43196, + "ĠTiny": 39992, + "ĠTip": 18210, + "ĠTipp": 42102, + "ĠTips": 36887, + "ĠTir": 45523, + "ĠTisch": 48192, + "ĠTit": 14489, + "ĠTitan": 17731, + "ĠTitanic": 42183, + "ĠTitans": 45574, + "ĠTitle": 26768, + "ĠTo": 1407, + "ĠTob": 26350, + "ĠToby": 40223, + "ĠTod": 2465, + "ĠToday": 2692, + "ĠTodd": 21488, + "ĠTodo": 26466, + "ĠTodos": 35447, + "ĠTogether": 15911, + "ĠTok": 11036, + "ĠTokyo": 15147, + "ĠTol": 21402, + "ĠTold": 48220, + "ĠTolkien": 48824, + "ĠTom": 5041, + "ĠTomato": 35936, + "ĠTomb": 37150, + "ĠTommy": 19448, + "ĠTomorrow": 17499, + "ĠTon": 11385, + "ĠTong": 26946, + "ĠToni": 41374, + "ĠTonight": 18702, + "ĠTony": 10902, + "ĠToo": 11395, + "ĠTook": 38288, + "ĠTool": 15934, + "ĠTools": 30302, + "ĠTop": 8840, + "ĠTor": 7160, + "ĠTorah": 29676, + "ĠToronto": 14140, + "ĠTorres": 41506, + "ĠTort": 48415, + "ĠTory": 48743, + "ĠTot": 11236, + "ĠTotal": 23170, + "ĠTotally": 22837, + "ĠTou": 30850, + "ĠTouch": 20029, + "ĠTough": 48568, + "ĠTour": 13077, + "ĠTous": 47277, + "ĠTout": 20453, + "ĠTow": 33814, + "ĠTowards": 48938, + "ĠTower": 17877, + "ĠTown": 15954, + "ĠToy": 15708, + "ĠToyota": 22926, + "ĠTr": 1765, + "ĠTra": 5403, + "ĠTrack": 31903, + "ĠTracy": 33724, + "ĠTrad": 22017, + "ĠTrade": 23923, + "ĠTrading": 49929, + "ĠTraditional": 46738, + "ĠTraffic": 46950, + "ĠTrail": 30080, + "ĠTrain": 28029, + "ĠTrainer": 48494, + "ĠTraining": 20620, + "ĠTran": 42971, + "ĠTrans": 6531, + "ĠTransfer": 35025, + "ĠTransform": 27938, + "ĠTransit": 48870, + "ĠTransport": 22309, + "ĠTransportation": 35095, + "ĠTravel": 20610, + "ĠTravis": 24430, + "ĠTre": 8648, + "ĠTreasure": 49884, + "ĠTreasury": 34113, + "ĠTreat": 20298, + "ĠTreaty": 35920, + "ĠTree": 22291, + "ĠTrek": 25845, + "ĠTrend": 37417, + "ĠTrent": 40119, + "ĠTrevor": 26245, + "ĠTri": 10931, + "ĠTrib": 23304, + "ĠTribe": 44984, + "ĠTrick": 43367, + "ĠTrinity": 33121, + "ĠTrip": 33141, + "ĠTriple": 32159, + "ĠTro": 19406, + "ĠTrop": 43917, + "ĠTroy": 32898, + "ĠTru": 21388, + "ĠTruck": 44600, + "ĠTrue": 13587, + "ĠTruly": 43548, + "ĠTruman": 49723, + "ĠTrump": 3899, + "ĠTrung": 40555, + "ĠTrust": 11580, + "ĠTrustee": 34373, + "ĠTrustees": 45099, + "ĠTruth": 20522, + "ĠTry": 6526, + "ĠTrying": 20180, + "ĠTs": 16518, + "ĠTsch": 44461, + "ĠTu": 7836, + "ĠTub": 48258, + "ĠTube": 39313, + "ĠTuc": 42272, + "ĠTucker": 35581, + "ĠTucson": 47417, + "ĠTudo": 29871, + "ĠTuesday": 10017, + "ĠTul": 33585, + "ĠTumb": 50088, + "ĠTun": 21363, + "ĠTur": 5712, + "ĠTurbo": 35848, + "ĠTurk": 15714, + "ĠTurkey": 12647, + "ĠTurkish": 18565, + "ĠTurks": 42275, + "ĠTurn": 7956, + "ĠTurner": 28950, + "ĠTurning": 39660, + "ĠTurns": 29524, + "ĠTurtle": 48406, + "ĠTus": 42026, + "ĠTut": 18392, + "ĠTutaj": 41819, + "ĠTw": 2574, + "ĠTwe": 47763, + "ĠTwelve": 48063, + "ĠTwenty": 28789, + "ĠTwice": 46964, + "ĠTwilight": 38525, + "ĠTwin": 27444, + "ĠTwist": 47016, + "ĠTwitch": 22222, + "ĠTwitter": 5794, + "ĠTwo": 4453, + "ĠTy": 5569, + "ĠTyl": 49286, + "ĠTyler": 16869, + "ĠTyp": 17722, + "ĠType": 15576, + "ĠTypically": 23129, + "ĠTyr": 43126, + "ĠTyson": 43382, + "ĠTá": 20907, + "ĠTä": 41204, + "ĠTôi": 43345, + "ĠTú": 46341, + "ĠTür": 16728, + "ĠTürk": 36673, + "ĠTürkiye": 32901, + "ĠU": 624, + "ĠUA": 32765, + "ĠUC": 14079, + "ĠUCLA": 42862, + "ĠUE": 42260, + "ĠUFC": 48072, + "ĠUFO": 28318, + "ĠUH": 50030, + "ĠUI": 15682, + "ĠUK": 7051, + "ĠUM": 31335, + "ĠUN": 8229, + "ĠUNC": 44886, + "ĠUP": 20074, + "ĠURL": 12905, + "ĠURLs": 43267, + "ĠUS": 2546, + "ĠUSA": 10827, + "ĠUSB": 10109, + "ĠUSC": 44066, + "ĠUSD": 24375, + "ĠUSDA": 41244, + "ĠUSS": 30385, + "ĠUSSR": 45956, + "ĠUT": 35514, + "ĠUV": 17887, + "ĠUW": 35691, + "ĠUX": 40176, + "ĠUb": 30230, + "ĠUber": 21839, + "ĠUg": 28690, + "ĠUganda": 48764, + "ĠUgh": 16506, + "ĠUh": 4019, + "ĠUhh": 29365, + "ĠUhm": 32287, + "ĠUhr": 30084, + "ĠUk": 9816, + "ĠUkrain": 21481, + "ĠUkraine": 14081, + "ĠUkrainian": 24682, + "ĠUl": 24853, + "ĠUlt": 9523, + "ĠUltimate": 26570, + "ĠUltimately": 23921, + "ĠUltra": 20925, + "ĠUm": 3301, + "ĠUma": 21939, + "ĠUmm": 18918, + "ĠUms": 46963, + "ĠUmwelt": 48900, + "ĠUn": 1156, + "ĠUna": 15491, + "ĠUnbelievable": 39523, + "ĠUncle": 12347, + "ĠUnd": 2719, + "ĠUnder": 6974, + "ĠUnderground": 47569, + "ĠUnderstand": 26093, + "ĠUnderstanding": 36858, + "ĠUnderstood": 42832, + "ĠUndert": 48649, + "ĠUne": 16701, + "ĠUnf": 8170, + "ĠUnfortunately": 8590, + "ĠUng": 43559, + "ĠUni": 35191, + "ĠUnidos": 23087, + "ĠUnion": 8133, + "ĠUnit": 27894, + "ĠUnited": 2824, + "ĠUnity": 27913, + "ĠUnivers": 14052, + "ĠUniversal": 22617, + "ĠUniverse": 18307, + "ĠUniversity": 3535, + "ĠUnknown": 32766, + "ĠUnless": 16581, + "ĠUnlike": 17657, + "ĠUno": 37468, + "ĠUnreal": 34464, + "ĠUns": 25017, + "ĠUnt": 8256, + "ĠUnter": 12065, + "ĠUnternehmen": 27577, + "ĠUnters": 30240, + "ĠUnterschied": 41414, + "ĠUnterstüt": 42128, + "ĠUnterstützung": 47216, + "ĠUntil": 9088, + "ĠUp": 5858, + "ĠUpdate": 28923, + "ĠUpon": 25184, + "ĠUpper": 36926, + "ĠUr": 9533, + "ĠUran": 44407, + "ĠUrban": 24885, + "ĠUrs": 41303, + "ĠUs": 4958, + "ĠUse": 8278, + "ĠUsed": 43237, + "ĠUser": 32127, + "ĠUsers": 47092, + "ĠUsing": 11142, + "ĠUsually": 11419, + "ĠUt": 12555, + "ĠUtah": 20226, + "ĠUz": 38564, + "ĠV": 691, + "ĠVA": 18527, + "ĠVAN": 49090, + "ĠVC": 41922, + "ĠVER": 27686, + "ĠVERY": 45655, + "ĠVI": 27619, + "ĠVIC": 41519, + "ĠVID": 47619, + "ĠVII": 48087, + "ĠVIP": 29732, + "ĠVIS": 29421, + "ĠVISTA": 35199, + "ĠVM": 18038, + "ĠVMware": 40146, + "ĠVND": 39777, + "ĠVO": 15216, + "ĠVOICE": 46973, + "ĠVOICES": 44623, + "ĠVP": 35812, + "ĠVPN": 24512, + "ĠVR": 13722, + "ĠVS": 25091, + "ĠVa": 16822, + "ĠVac": 44442, + "ĠVacc": 48579, + "ĠVad": 24788, + "ĠVader": 36337, + "ĠVai": 24206, + "ĠVal": 7188, + "ĠVale": 26415, + "ĠValent": 17961, + "ĠValentine": 24359, + "ĠValerie": 46656, + "ĠVall": 48177, + "ĠVallahi": 35454, + "ĠValley": 10666, + "ĠValue": 39352, + "ĠValve": 41369, + "ĠVamos": 10894, + "ĠVamp": 38796, + "ĠVan": 8979, + "ĠVanc": 26417, + "ĠVancouver": 26563, + "ĠVander": 46588, + "ĠVanessa": 27928, + "ĠVanguard": 46648, + "ĠVar": 14662, + "ĠVari": 32511, + "ĠVas": 23299, + "ĠVater": 36173, + "ĠVatic": 36268, + "ĠVatican": 37904, + "ĠVault": 46071, + "ĠVay": 39556, + "ĠVe": 9706, + "ĠVed": 26084, + "ĠVeg": 12895, + "ĠVega": 48796, + "ĠVegan": 49688, + "ĠVegas": 15841, + "ĠVeget": 28092, + "ĠVegeta": 47297, + "ĠVeh": 41230, + "ĠVel": 17814, + "ĠVelvet": 47086, + "ĠVen": 11182, + "ĠVenez": 19656, + "ĠVenezuela": 24153, + "ĠVenice": 32707, + "ĠVent": 28290, + "ĠVenus": 23994, + "ĠVer": 4281, + "ĠVera": 46982, + "ĠVerantwort": 39082, + "ĠVerantwortung": 43423, + "ĠVerb": 27034, + "ĠVerd": 41257, + "ĠVere": 33110, + "ĠVerein": 47431, + "ĠVerf": 24583, + "ĠVerfüg": 41611, + "ĠVerfügung": 43026, + "ĠVerg": 26610, + "ĠVergleich": 47998, + "ĠVerizon": 44456, + "ĠVerkehr": 40706, + "ĠVerm": 20185, + "ĠVermont": 34754, + "ĠVern": 33220, + "ĠVernon": 47516, + "ĠVeron": 38600, + "ĠVeronica": 43498, + "ĠVers": 12226, + "ĠVerse": 31640, + "ĠVersion": 35965, + "ĠVert": 21044, + "ĠVery": 4372, + "ĠVet": 50111, + "ĠVeter": 21881, + "ĠVeterans": 30066, + "ĠVi": 6626, + "ĠVia": 49232, + "ĠVic": 33316, + "ĠVice": 13276, + "ĠVict": 8676, + "ĠVictor": 15777, + "ĠVictoria": 16656, + "ĠVictorian": 37302, + "ĠVictory": 37976, + "ĠVid": 31185, + "ĠVide": 7926, + "ĠVideo": 9777, + "ĠVideos": 25903, + "ĠVie": 24130, + "ĠViel": 35931, + "ĠViele": 36022, + "ĠVielen": 22502, + "ĠVielleicht": 29838, + "ĠVienna": 31024, + "ĠVietnam": 11013, + "ĠVietnamese": 25934, + "ĠView": 13909, + "ĠVij": 41201, + "ĠVik": 29465, + "ĠViking": 40375, + "ĠVikings": 48761, + "ĠVikt": 42500, + "ĠViktor": 46844, + "ĠVil": 35653, + "ĠVill": 14244, + "ĠVilla": 40280, + "ĠVillage": 22651, + "ĠVin": 15011, + "ĠVince": 34876, + "ĠVincent": 28003, + "ĠVine": 40569, + "ĠViol": 24383, + "ĠViolence": 49279, + "ĠVir": 7566, + "ĠVirgin": 9281, + "ĠVirginia": 10956, + "ĠVirt": 19447, + "ĠVirtual": 23887, + "ĠVirus": 39790, + "ĠVis": 10410, + "ĠVisa": 44907, + "ĠVish": 36752, + "ĠVision": 25170, + "ĠVisit": 24548, + "ĠVisual": 23187, + "ĠVit": 22463, + "ĠVital": 48307, + "ĠVitamin": 33515, + "ĠViv": 28188, + "ĠVive": 44288, + "ĠViá»ĩt": 32936, + "ĠVlad": 21958, + "ĠVladimir": 31669, + "ĠVlog": 33256, + "ĠVo": 7518, + "ĠVoc": 8993, + "ĠVocê": 9781, + "ĠVocês": 40262, + "ĠVog": 46359, + "ĠVoice": 15229, + "ĠVoiceover": 46117, + "ĠVoilÃł": 18677, + "ĠVol": 8911, + "ĠVold": 48791, + "ĠVolks": 30213, + "ĠVolkswagen": 39856, + "ĠVoll": 39602, + "ĠVolt": 40332, + "ĠVolume": 38448, + "ĠVolunte": 46698, + "ĠVolvo": 43381, + "ĠVon": 20700, + "ĠVoor": 43114, + "ĠVor": 12231, + "ĠVors": 31438, + "ĠVorte": 46968, + "ĠVote": 44354, + "ĠVou": 24361, + "ĠVous": 10802, + "ĠVoy": 25563, + "ĠVu": 37703, + "ĠVul": 41434, + "ĠVä": 45199, + "ĠVÃł": 44851, + "ĠW": 343, + "ĠWA": 26915, + "ĠWAR": 48331, + "ĠWAS": 28984, + "ĠWAT": 36086, + "ĠWAY": 42274, + "ĠWE": 15813, + "ĠWH": 8183, + "ĠWHAT": 18090, + "ĠWHO": 23256, + "ĠWHY": 32720, + "ĠWIL": 32095, + "ĠWILL": 18194, + "ĠWILLIAM": 32613, + "ĠWIN": 32353, + "ĠWITH": 25371, + "ĠWO": 48388, + "ĠWOMAN": 30837, + "ĠWOO": 16864, + "ĠWOODR": 24265, + "ĠWOODRUFF": 24309, + "ĠWOR": 30029, + "ĠWOW": 34728, + "ĠWR": 44175, + "ĠWW": 12040, + "ĠWWE": 15110, + "ĠWY": 46410, + "ĠWa": 15405, + "ĠWaar": 43123, + "ĠWade": 28001, + "ĠWag": 49921, + "ĠWagner": 38146, + "ĠWah": 24598, + "ĠWahl": 27437, + "ĠWahr": 36357, + "ĠWait": 3802, + "ĠWaiting": 37291, + "ĠWak": 45077, + "ĠWake": 21062, + "ĠWal": 9707, + "ĠWald": 29223, + "ĠWales": 16495, + "ĠWalk": 10818, + "ĠWalker": 23974, + "ĠWalking": 26964, + "ĠWall": 9551, + "ĠWallace": 32626, + "ĠWalmart": 25237, + "ĠWalt": 28260, + "ĠWalter": 21572, + "ĠWam": 41226, + "ĠWan": 28932, + "ĠWand": 40772, + "ĠWang": 14499, + "ĠWanna": 24336, + "ĠWant": 11773, + "ĠWar": 3630, + "ĠWard": 23794, + "ĠWare": 49978, + "ĠWarm": 40353, + "ĠWarner": 31769, + "ĠWarning": 45140, + "ĠWarren": 20538, + "ĠWarri": 23385, + "ĠWarrior": 33834, + "ĠWarriors": 40161, + "ĠWars": 9818, + "ĠWarsaw": 41662, + "ĠWarsz": 48479, + "ĠWarum": 25541, + "ĠWas": 3027, + "ĠWash": 28891, + "ĠWashington": 6149, + "ĠWasn": 28782, + "ĠWass": 42998, + "ĠWasser": 17351, + "ĠWat": 12593, + "ĠWatch": 7277, + "ĠWatching": 28482, + "ĠWater": 8772, + "ĠWaters": 46743, + "ĠWatson": 25640, + "ĠWatts": 42933, + "ĠWave": 28530, + "ĠWay": 9558, + "ĠWayne": 22101, + "ĠWe": 492, + "ĠWear": 34514, + "ĠWeather": 34441, + "ĠWeb": 9573, + "ĠWebb": 49649, + "ĠWeber": 42690, + "ĠWebs": 45347, + "ĠWed": 9589, + "ĠWednesday": 10579, + "ĠWeek": 12615, + "ĠWeekly": 35945, + "ĠWeg": 18919, + "ĠWei": 21174, + "ĠWeight": 44464, + "ĠWeihn": 42181, + "ĠWeil": 18665, + "ĠWein": 34477, + "ĠWeird": 32033, + "ĠWeise": 41947, + "ĠWeiter": 48050, + "ĠWel": 3778, + "ĠWelcome": 4027, + "ĠWell": 1042, + "ĠWellington": 45812, + "ĠWellness": 50166, + "ĠWells": 36363, + "ĠWelsh": 27129, + "ĠWelt": 14761, + "ĠWen": 23716, + "ĠWendy": 21850, + "ĠWenn": 7899, + "ĠWent": 31809, + "ĠWer": 14255, + "ĠWere": 12448, + "ĠWerk": 42911, + "ĠWert": 37205, + "ĠWes": 23843, + "ĠWesley": 43908, + "ĠWest": 4055, + "ĠWestern": 8724, + "ĠWestminster": 49714, + "ĠWet": 46046, + "ĠWh": 506, + "ĠWha": 45040, + "ĠWhat": 708, + "ĠWhatever": 8541, + "ĠWhats": 22051, + "ĠWhatsApp": 30513, + "ĠWhe": 17040, + "ĠWheel": 31392, + "ĠWheels": 49372, + "ĠWhen": 1133, + "ĠWhenever": 14159, + "ĠWhere": 2305, + "ĠWhereas": 13813, + "ĠWherever": 30903, + "ĠWhether": 8503, + "ĠWhew": 46029, + "ĠWhich": 3013, + "ĠWhile": 3987, + "ĠWhilst": 45790, + "ĠWhis": 41132, + "ĠWhit": 21693, + "ĠWhite": 5552, + "ĠWhitney": 39466, + "ĠWho": 2102, + "ĠWhoa": 7521, + "ĠWhoever": 24743, + "ĠWhole": 30336, + "ĠWhoo": 23381, + "ĠWhoops": 45263, + "ĠWhose": 28463, + "ĠWhy": 1545, + "ĠWi": 14035, + "ĠWiFi": 32885, + "ĠWick": 47702, + "ĠWid": 28331, + "ĠWide": 42543, + "ĠWie": 9233, + "ĠWieder": 45742, + "ĠWii": 27865, + "ĠWij": 46721, + "ĠWik": 23377, + "ĠWiki": 35892, + "ĠWikipedia": 28999, + "ĠWil": 9483, + "ĠWild": 10904, + "ĠWildlife": 35811, + "ĠWill": 3099, + "ĠWilliam": 6740, + "ĠWilliams": 12929, + "ĠWillie": 39912, + "ĠWilly": 42238, + "ĠWilson": 15388, + "ĠWin": 10427, + "ĠWind": 6320, + "ĠWindow": 44933, + "ĠWindows": 8591, + "ĠWinds": 43082, + "ĠWine": 39253, + "ĠWing": 28785, + "ĠWinston": 33051, + "ĠWinter": 16444, + "ĠWir": 4347, + "ĠWire": 32598, + "ĠWireless": 49962, + "ĠWirtschaft": 29412, + "ĠWis": 34143, + "ĠWisconsin": 17977, + "ĠWise": 46933, + "ĠWish": 27697, + "ĠWissenschaft": 38774, + "ĠWit": 42299, + "ĠWitch": 23522, + "ĠWitcher": 47383, + "ĠWith": 2022, + "ĠWithin": 15996, + "ĠWithout": 9129, + "ĠWitness": 41366, + "ĠWiz": 43490, + "ĠWizard": 37449, + "ĠWiÄĻ": 30127, + "ĠWiÄĻc": 32508, + "ĠWo": 6622, + "ĠWoah": 19668, + "ĠWoche": 24511, + "ĠWochen": 23126, + "ĠWohn": 22741, + "ĠWohnung": 50087, + "ĠWol": 19925, + "ĠWolf": 16634, + "ĠWolver": 49059, + "ĠWoman": 15794, + "ĠWomen": 11065, + "ĠWon": 14710, + "ĠWonder": 13224, + "ĠWonderful": 22768, + "ĠWong": 41638, + "ĠWoo": 10468, + "ĠWood": 11558, + "ĠWoods": 31559, + "ĠWoody": 40618, + "ĠWool": 46307, + "ĠWor": 26363, + "ĠWord": 8725, + "ĠWordPress": 23239, + "ĠWords": 32857, + "ĠWork": 6603, + "ĠWorkers": 42375, + "ĠWorking": 18337, + "ĠWorks": 27914, + "ĠWorkshop": 48366, + "ĠWorld": 3937, + "ĠWorlds": 43003, + "ĠWort": 22748, + "ĠWorth": 37228, + "ĠWould": 6068, + "ĠWouldn": 26291, + "ĠWow": 3153, + "ĠWr": 10159, + "ĠWrap": 41291, + "ĠWrest": 23719, + "ĠWrestle": 34744, + "ĠWrestleMania": 49014, + "ĠWrestling": 43508, + "ĠWright": 25578, + "ĠWrite": 23499, + "ĠWriting": 32774, + "ĠWrong": 28150, + "ĠWu": 17287, + "ĠWuhan": 42101, + "ĠWy": 14458, + "ĠWyatt": 46430, + "ĠWyoming": 30810, + "ĠWäh": 40084, + "ĠWür": 43846, + "ĠX": 1783, + "ĠXD": 32336, + "ĠXL": 37210, + "ĠXML": 43484, + "ĠXP": 33984, + "ĠXV": 44707, + "ĠXX": 27050, + "ĠXY": 48826, + "ĠXavier": 44653, + "ĠXbox": 14544, + "ĠXi": 15712, + "ĠXia": 11956, + "ĠXian": 47581, + "ĠXiang": 37935, + "ĠXiao": 13134, + "ĠXiaomi": 33806, + "ĠXin": 24368, + "ĠXing": 33040, + "ĠXu": 23082, + "ĠXuan": 45292, + "ĠXue": 43999, + "ĠY": 398, + "ĠYA": 40771, + "ĠYE": 21760, + "ĠYEAH": 43549, + "ĠYES": 25268, + "ĠYH": 49389, + "ĠYJ": 49535, + "ĠYO": 33565, + "ĠYOU": 7928, + "ĠYOUR": 25166, + "ĠYT": 49002, + "ĠYU": 33471, + "ĠYa": 6080, + "ĠYah": 19740, + "ĠYahoo": 41757, + "ĠYak": 31484, + "ĠYale": 26711, + "ĠYam": 18992, + "ĠYan": 13633, + "ĠYang": 11978, + "ĠYani": 14262, + "ĠYao": 40575, + "ĠYap": 38724, + "ĠYar": 41554, + "ĠYas": 30557, + "ĠYay": 13268, + "ĠYaz": 44962, + "ĠYe": 835, + "ĠYea": 21145, + "ĠYeah": 865, + "ĠYear": 10289, + "ĠYears": 24569, + "ĠYellow": 17550, + "ĠYemen": 30784, + "ĠYeon": 30892, + "ĠYep": 7010, + "ĠYes": 1079, + "ĠYeshua": 43885, + "ĠYesterday": 19765, + "ĠYet": 10890, + "ĠYi": 16747, + "ĠYin": 33254, + "ĠYing": 28125, + "ĠYo": 7616, + "ĠYoda": 48697, + "ĠYog": 49328, + "ĠYoga": 32983, + "ĠYok": 18480, + "ĠYong": 20085, + "ĠYoo": 22330, + "ĠYoon": 27893, + "ĠYork": 3609, + "ĠYosh": 38949, + "ĠYoshi": 45676, + "ĠYou": 509, + "ĠYouT": 2898, + "ĠYouTube": 3088, + "ĠYouTuber": 23349, + "ĠYouTubers": 30571, + "ĠYoung": 8160, + "ĠYour": 2260, + "ĠYours": 37922, + "ĠYout": 10717, + "ĠYouth": 24312, + "ĠYoutube": 12132, + "ĠYoutuber": 49219, + "ĠYu": 10767, + "ĠYuan": 22730, + "ĠYue": 30166, + "ĠYug": 41949, + "ĠYuk": 27975, + "ĠYum": 29890, + "ĠYummy": 40590, + "ĠYun": 18007, + "ĠYup": 13593, + "ĠYuri": 33901, + "ĠZ": 1176, + "ĠZa": 31440, + "ĠZac": 48082, + "ĠZach": 21028, + "ĠZack": 36034, + "ĠZahl": 42592, + "ĠZahlen": 44096, + "ĠZak": 46546, + "ĠZam": 45492, + "ĠZap": 34018, + "ĠZar": 41580, + "ĠZe": 4853, + "ĠZealand": 13883, + "ĠZeit": 9394, + "ĠZeiten": 48334, + "ĠZel": 20952, + "ĠZelda": 25298, + "ĠZen": 22387, + "ĠZent": 44091, + "ĠZero": 17182, + "ĠZeus": 35003, + "ĠZh": 7790, + "ĠZhan": 49550, + "ĠZhang": 17729, + "ĠZhao": 25132, + "ĠZhen": 27042, + "ĠZheng": 31408, + "ĠZhi": 43835, + "ĠZhong": 41664, + "ĠZhou": 25601, + "ĠZhu": 31680, + "ĠZi": 26190, + "ĠZie": 46340, + "ĠZiel": 25391, + "ĠZig": 50004, + "ĠZimmer": 37243, + "ĠZion": 32240, + "ĠZo": 10337, + "ĠZoe": 38234, + "ĠZomb": 33945, + "ĠZombie": 48952, + "ĠZone": 22800, + "ĠZoo": 34589, + "ĠZoom": 13453, + "ĠZu": 23164, + "ĠZucker": 34032, + "ĠZug": 34722, + "ĠZuk": 20991, + "ĠZukunft": 22782, + "ĠZum": 23906, + "ĠZur": 30518, + "ĠZus": 18742, + "ĠZusammen": 29442, + "ĠZusch": 48333, + "ĠZust": 46322, + "ĠZw": 29385, + "ĠZwe": 32475, + "Ġ[": 542, + "Ġ[\"": 29799, + "Ġ[#": 40726, + "Ġ[(": 9128, + "Ġ[...]": 35467, + "Ġ[?": 16127, + "Ġ[âĻª": 44529, + "Ġ\\": 12033, + "Ġ]": 4183, + "Ġ^": 18956, + "Ġ^^": 35500, + "Ġ_": 26161, + "Ġ__": 49264, + "Ġ`": 28279, + "Ġa": 257, + "Ġaa": 40079, + "Ġaan": 9904, + "Ġab": 410, + "Ġaba": 46981, + "Ġabajo": 30613, + "Ġabandon": 9072, + "Ġabandoned": 13732, + "Ġabb": 16903, + "Ġabbiamo": 22815, + "Ġabbrevi": 35839, + "Ġabdom": 22191, + "Ġabdomen": 36494, + "Ġabdominal": 38701, + "Ġabduct": 46465, + "Ġaber": 4340, + "Ġabge": 37301, + "Ġabges": 49848, + "Ġabi": 17905, + "Ġabide": 39663, + "Ġabilities": 11582, + "Ġability": 3485, + "Ġabla": 43899, + "Ġable": 1075, + "Ġabnorm": 47104, + "Ġabnormal": 32847, + "Ġaboard": 27488, + "Ġabol": 23183, + "Ġabolition": 39999, + "Ġabonn": 40676, + "Ġabord": 48727, + "Ġabort": 38117, + "Ġabortion": 22902, + "Ġabout": 466, + "Ġabove": 3673, + "Ġabra": 33693, + "Ġabras": 37351, + "Ġabre": 41594, + "Ġabrir": 27446, + "Ġabroad": 12637, + "Ġabrupt": 33401, + "Ġabruptly": 49642, + "Ġabs": 1950, + "Ġabsence": 17145, + "Ġabsent": 25185, + "Ġabsol": 7305, + "Ġabsolument": 34508, + "Ġabsolut": 18757, + "Ġabsolutamente": 49285, + "Ġabsolute": 8236, + "Ġabsolutely": 3122, + "Ġabsor": 7672, + "Ġabsorb": 15631, + "Ġabsorbed": 20799, + "Ġabsorbing": 38720, + "Ġabsorbs": 40745, + "Ġabsorption": 27557, + "Ġabst": 10823, + "Ġabstract": 12649, + "Ġabstraction": 37765, + "Ġabsurd": 19774, + "Ġabund": 14809, + "Ġabundance": 23391, + "Ġabundant": 30657, + "Ġabus": 48819, + "Ġabuse": 9852, + "Ġabused": 27075, + "Ġabuses": 47681, + "Ġabusive": 32828, + "Ġaby": 24457, + "Ġac": 696, + "Ġacab": 13281, + "Ġacaba": 23485, + "Ġacabar": 35041, + "Ġacabou": 38043, + "Ġacad": 5558, + "Ġacadem": 19267, + "Ġacademia": 28937, + "Ġacademic": 7778, + "Ġacademically": 48944, + "Ġacademics": 25695, + "Ġacademy": 25525, + "Ġacc": 1317, + "Ġacceler": 10172, + "Ġaccelerate": 21341, + "Ġaccelerated": 29763, + "Ġaccelerating": 34391, + "Ġacceleration": 17162, + "Ġaccelerator": 39889, + "Ġaccent": 11982, + "Ġaccents": 35012, + "Ġaccept": 3241, + "Ġacceptable": 15513, + "Ġacceptance": 20351, + "Ġaccepted": 9035, + "Ġaccepting": 17391, + "Ġaccepts": 33538, + "Ġacces": 35707, + "Ġacceso": 49284, + "Ġaccess": 2105, + "Ġaccessed": 34211, + "Ġaccessibility": 15002, + "Ġaccessible": 9515, + "Ġaccessing": 26440, + "Ġaccessories": 18207, + "Ġaccessory": 30617, + "Ġaccident": 6398, + "Ġaccidental": 38094, + "Ġaccidentally": 15715, + "Ġaccidents": 23875, + "Ġaccom": 4223, + "Ġaccommod": 11713, + "Ġaccommodate": 21410, + "Ġaccommodation": 27363, + "Ġaccommodations": 38907, + "Ġaccomp": 18037, + "Ġaccompan": 19307, + "Ġaccompanied": 24202, + "Ġaccompany": 21627, + "Ġaccompanying": 43648, + "Ġaccompl": 6548, + "Ġaccomplish": 9021, + "Ġaccomplished": 15419, + "Ġaccomplishment": 29144, + "Ġaccomplishments": 25943, + "Ġaccord": 18640, + "Ġaccordance": 31110, + "Ġaccording": 4650, + "Ġaccordingly": 19717, + "Ġaccount": 2696, + "Ġaccountability": 19380, + "Ġaccountable": 18024, + "Ġaccountant": 43898, + "Ġaccounted": 43138, + "Ġaccounting": 19163, + "Ġaccounts": 9402, + "Ġaccred": 33877, + "Ġaccum": 12989, + "Ġaccumulate": 33384, + "Ġaccumulated": 31346, + "Ġaccumulation": 35647, + "Ġaccur": 5771, + "Ġaccuracy": 14170, + "Ġaccurate": 8559, + "Ġaccurately": 20095, + "Ġaccus": 11168, + "Ġaccusations": 38556, + "Ġaccuse": 43610, + "Ġaccused": 17085, + "Ġaccusing": 47436, + "Ġaccustomed": 35980, + "Ġace": 17117, + "Ġaceite": 48913, + "Ġacept": 43568, + "Ġacerca": 46321, + "Ġacesso": 49543, + "Ġacet": 37848, + "Ġach": 2800, + "Ġacha": 37338, + "Ġache": 29677, + "Ġachei": 44961, + "Ġachie": 3538, + "Ġachieve": 4584, + "Ġachieved": 11042, + "Ġachievement": 15838, + "Ġachievements": 21420, + "Ġachieving": 19626, + "Ġacho": 14253, + "Ġacht": 43048, + "Ġachter": 35557, + "Ġacid": 8258, + "Ġacidic": 39514, + "Ġacids": 21667, + "Ġacknow": 7791, + "Ġacknowled": 15195, + "Ġacknowledge": 10692, + "Ġacknowledged": 27262, + "Ġacknowledgement": 47227, + "Ġacknowledging": 30904, + "Ġacne": 26480, + "Ġacom": 22298, + "Ġacompa": 39226, + "Ġacompan": 34839, + "Ġacompañ": 43142, + "Ġaconte": 14888, + "Ġacontec": 35846, + "Ġacontece": 19786, + "Ġacontecendo": 47623, + "Ġacontecer": 35011, + "Ġaconteceu": 34028, + "Ġacord": 38077, + "Ġacordo": 49392, + "Ġacost": 44126, + "Ġacoust": 22740, + "Ġacoustic": 26753, + "Ġacqu": 6667, + "Ġacquaint": 36954, + "Ġacquainted": 50224, + "Ġacquire": 20001, + "Ġacquired": 17554, + "Ġacquiring": 37374, + "Ġacquis": 17883, + "Ġacquisition": 21668, + "Ġacre": 32656, + "Ġacred": 34548, + "Ġacres": 19852, + "Ġacron": 31713, + "Ġacronym": 39195, + "Ġacross": 2108, + "Ġacrylic": 25389, + "Ġact": 605, + "Ġacted": 20359, + "Ġacting": 6577, + "Ġaction": 3069, + "Ġactionable": 45098, + "Ġactions": 5909, + "Ġactiv": 2430, + "Ġactivate": 13615, + "Ġactivated": 18157, + "Ġactivates": 43869, + "Ġactivating": 42481, + "Ġactivation": 24433, + "Ġactive": 4967, + "Ġactively": 13022, + "Ġactivism": 29040, + "Ġactivist": 24836, + "Ġactivists": 23042, + "Ġactivities": 5354, + "Ġactivity": 5191, + "Ġactor": 8747, + "Ġactors": 10037, + "Ġactress": 15410, + "Ġacts": 10672, + "Ġactu": 34964, + "Ġactual": 3539, + "Ġactually": 767, + "Ġacuerdo": 28113, + "Ġacum": 41343, + "Ġacute": 24390, + "Ġacá": 23496, + "Ġad": 614, + "Ġada": 11063, + "Ġadalah": 23555, + "Ġadam": 16368, + "Ġadap": 23169, + "Ġadapt": 6231, + "Ġadaptation": 21549, + "Ġadaptations": 44465, + "Ġadapted": 20871, + "Ġadapter": 22860, + "Ġadapting": 34942, + "Ġadaptive": 27912, + "Ġadd": 909, + "Ġadded": 3869, + "Ġaddict": 22072, + "Ġaddicted": 24629, + "Ġaddiction": 16835, + "Ġaddictive": 36486, + "Ġadding": 5127, + "Ġaddition": 4500, + "Ġadditional": 4497, + "Ġadditionally": 43181, + "Ġadditions": 35113, + "Ġadditive": 45558, + "Ġaddress": 2985, + "Ġaddressed": 13847, + "Ġaddresses": 16862, + "Ġaddressing": 14329, + "Ġadds": 10860, + "Ġadel": 30069, + "Ġadelante": 40214, + "Ġademás": 21251, + "Ġadequ": 15747, + "Ġadequate": 20927, + "Ġadequately": 41822, + "Ġadesso": 39552, + "Ġadher": 30106, + "Ġadhere": 33584, + "Ġadhesive": 25485, + "Ġadjac": 22940, + "Ġadjacent": 24441, + "Ġadject": 29378, + "Ġadjective": 44129, + "Ġadjour": 46236, + "Ġadjust": 4369, + "Ġadjustable": 27804, + "Ġadjusted": 19871, + "Ġadjusting": 23559, + "Ġadjustment": 17132, + "Ġadjustments": 18624, + "Ġadm": 5910, + "Ġadmin": 24236, + "Ġadminist": 4968, + "Ġadminister": 22096, + "Ġadministered": 36123, + "Ġadministr": 9737, + "Ġadministration": 7236, + "Ġadministrative": 17900, + "Ġadministrator": 25529, + "Ġadministrators": 27754, + "Ġadmir": 48252, + "Ġadmiration": 44597, + "Ġadmire": 21951, + "Ġadmired": 39987, + "Ġadmission": 24668, + "Ġadmissions": 29856, + "Ġadmit": 9796, + "Ġadmits": 46682, + "Ġadmitted": 14920, + "Ġadmitting": 44056, + "Ġado": 22450, + "Ġadoles": 21383, + "Ġadolescent": 40193, + "Ġadolescents": 48191, + "Ġadop": 22486, + "Ġadopt": 6878, + "Ġadopted": 12175, + "Ġadopting": 32328, + "Ġadoption": 19215, + "Ġadorable": 18698, + "Ġadore": 32060, + "Ġadrenal": 26511, + "Ġadrenaline": 35649, + "Ġads": 10342, + "Ġadul": 26885, + "Ġadult": 5075, + "Ġadulthood": 42328, + "Ġadults": 8865, + "Ġadv": 1551, + "Ġadvance": 7295, + "Ġadvanced": 7339, + "Ġadvancement": 35764, + "Ġadvances": 25297, + "Ġadvancing": 27267, + "Ġadvant": 14652, + "Ġadvantage": 5002, + "Ġadvantages": 14906, + "Ġadvent": 7045, + "Ġadventure": 9868, + "Ġadventures": 20905, + "Ġadventurous": 46163, + "Ġadvers": 17641, + "Ġadversary": 48222, + "Ġadverse": 27590, + "Ġadversity": 40018, + "Ġadvert": 7756, + "Ġadvertis": 18427, + "Ġadvertise": 35379, + "Ġadvertised": 42310, + "Ġadvertisement": 31370, + "Ġadvertisements": 42897, + "Ġadvertisers": 42679, + "Ġadvertising": 13097, + "Ġadvice": 5192, + "Ġadvis": 10280, + "Ġadvise": 18312, + "Ġadvised": 26269, + "Ġadviser": 43547, + "Ġadvising": 35598, + "Ġadvisor": 19161, + "Ġadvisors": 29136, + "Ġadvisory": 26289, + "Ġadvoc": 7915, + "Ġadvocacy": 22011, + "Ġadvocate": 14608, + "Ġadvocates": 25160, + "Ġadvocating": 32050, + "Ġaer": 11207, + "Ġaerial": 31026, + "Ġaerospace": 46817, + "Ġaest": 14413, + "Ġaesthet": 27837, + "Ġaesthetic": 20092, + "Ġaesthetics": 35517, + "Ġaf": 3238, + "Ġafar": 41795, + "Ġafect": 30626, + "Ġaff": 2096, + "Ġaffair": 22987, + "Ġaffairs": 17478, + "Ġaffect": 3345, + "Ġaffected": 8028, + "Ġaffecting": 17476, + "Ġaffection": 20080, + "Ġaffects": 11807, + "Ġaffili": 14863, + "Ġaffiliate": 23975, + "Ġaffiliated": 42174, + "Ġaffinity": 39703, + "Ġaffir": 36315, + "Ġaffirm": 21260, + "Ġaffirmative": 45270, + "Ġafflict": 48287, + "Ġafford": 6157, + "Ġaffordable": 12028, + "Ġafin": 34709, + "Ġafore": 48927, + "Ġafraid": 4638, + "Ġafter": 934, + "Ġafterlife": 47637, + "Ġaftermath": 34095, + "Ġafternoon": 6499, + "Ġafterward": 40411, + "Ġafterwards": 10543, + "Ġag": 623, + "Ġagain": 797, + "Ġagainst": 1970, + "Ġage": 3205, + "Ġaged": 21213, + "Ġagencies": 9504, + "Ġagency": 7934, + "Ġagenda": 9829, + "Ġagent": 9461, + "Ġagents": 12554, + "Ġages": 12357, + "Ġaggi": 42254, + "Ġaggrav": 47339, + "Ġaggreg": 16743, + "Ġaggregate": 26118, + "Ġaggress": 8939, + "Ġaggression": 30268, + "Ġaggressive": 10762, + "Ġaggressively": 32024, + "Ġagile": 30072, + "Ġagility": 39794, + "Ġaging": 19090, + "Ġago": 2057, + "Ġagony": 46025, + "Ġagora": 9851, + "Ġagrad": 49463, + "Ġagrade": 31469, + "Ġagre": 4554, + "Ġagree": 3986, + "Ġagreed": 9166, + "Ġagreeing": 36900, + "Ġagreement": 8106, + "Ġagreements": 21422, + "Ġagrees": 26383, + "Ġagric": 9682, + "Ġagricultural": 19587, + "Ġagriculture": 14837, + "Ġagu": 34438, + "Ġagua": 19330, + "Ġah": 3716, + "Ġaha": 47340, + "Ġahead": 2286, + "Ġahh": 28612, + "Ġahor": 44249, + "Ġahora": 9923, + "ĠahÃŃ": 12571, + "Ġai": 9783, + "Ġaid": 9418, + "Ġaide": 40890, + "Ġaider": 36669, + "Ġaids": 28447, + "Ġaik": 37537, + "Ġaika": 39704, + "Ġail": 48283, + "Ġaim": 5939, + "Ġaime": 46527, + "Ġaimed": 20540, + "Ġaiming": 20253, + "Ġaims": 24683, + "Ġain": 7862, + "Ġainda": 11804, + "Ġainsi": 26552, + "Ġair": 1988, + "Ġairborne": 49278, + "Ġaircraft": 9465, + "Ġaire": 42885, + "Ġaired": 34503, + "Ġairflow": 45291, + "Ġairl": 18856, + "Ġairline": 29528, + "Ġairlines": 37147, + "Ġairpl": 13781, + "Ġairplane": 17130, + "Ġairplanes": 32947, + "Ġairport": 10155, + "Ġairports": 36561, + "Ġais": 24938, + "Ġaisle": 30916, + "Ġait": 31684, + "Ġaixò": 16312, + "ĠaixÃŃ": 40217, + "Ġaj": 17680, + "Ġaja": 26579, + "Ġajud": 16126, + "Ġajuda": 32842, + "Ġajudar": 28883, + "Ġajust": 41023, + "Ġak": 9308, + "Ġaka": 28042, + "Ġakan": 16281, + "Ġakhir": 49843, + "Ġakin": 47540, + "Ġakkor": 44439, + "Ġakl": 43380, + "Ġako": 43567, + "Ġakt": 13680, + "Ġaktiv": 31658, + "Ġaktuell": 36267, + "Ġaku": 21093, + "Ġal": 419, + "Ġalan": 48146, + "Ġalar": 27597, + "Ġalarm": 14183, + "Ġalarming": 44043, + "Ġalarms": 45039, + "Ġalbeit": 43654, + "Ġalbo": 22622, + "Ġalbum": 6030, + "Ġalbums": 24795, + "Ġalc": 20005, + "Ġalcanz": 50200, + "Ġalcohol": 7658, + "Ġalcoholic": 38075, + "Ġald": 16798, + "Ġale": 6775, + "Ġaleg": 44491, + "Ġalert": 9615, + "Ġalerts": 28061, + "Ġalg": 3501, + "Ġalgae": 32658, + "Ġalgebra": 21989, + "Ġalgo": 8655, + "Ġalgorith": 7028, + "Ġalgorithm": 9284, + "Ġalgorithms": 14642, + "Ġalgu": 16527, + "Ġalguien": 25814, + "Ġalgum": 15468, + "Ġalguma": 20259, + "Ġalgumas": 23207, + "Ġalgun": 9813, + "Ġalguna": 20651, + "Ġalgunas": 27316, + "Ġalgunos": 21078, + "Ġalguns": 20210, + "Ġalguém": 27052, + "Ġalgún": 26300, + "Ġali": 10198, + "Ġalien": 12319, + "Ġaliens": 21594, + "Ġalign": 7975, + "Ġaligned": 17962, + "Ġalignment": 18515, + "Ġalike": 20025, + "Ġaliment": 17043, + "Ġalimentos": 38563, + "Ġalive": 5465, + "Ġalk": 37688, + "Ġalkal": 44220, + "Ġall": 439, + "Ġalla": 11591, + "Ġalle": 5430, + "Ġalleen": 32259, + "Ġalleg": 10364, + "Ġallegations": 29259, + "Ġalleged": 26317, + "Ġallegedly": 26794, + "Ġallegiance": 44706, + "Ġallein": 37673, + "Ġalleine": 37780, + "Ġallem": 17585, + "Ġallemaal": 29352, + "Ġallen": 18440, + "Ġaller": 8722, + "Ġallerdings": 35489, + "Ġallergic": 31606, + "Ġallergies": 37007, + "Ġallergy": 41505, + "Ġalles": 7874, + "Ġallevi": 33201, + "Ġalleviate": 42701, + "Ġalley": 26660, + "Ġallez": 18146, + "Ġalliance": 20995, + "Ġalliances": 45855, + "Ġallied": 41969, + "Ġallies": 14719, + "Ġalligator": 48095, + "Ġalloc": 12660, + "Ġallocate": 35713, + "Ġallocated": 29772, + "Ġallocation": 27599, + "Ġallons": 34405, + "Ġallora": 44141, + "Ġallow": 2089, + "Ġallowance": 30647, + "Ġallowed": 4350, + "Ġallowing": 8293, + "Ġallows": 4045, + "Ġalloy": 37819, + "Ġallt": 23612, + "Ġalltid": 45861, + "ĠalltsÃ¥": 43505, + "Ġalluded": 33919, + "Ġally": 23356, + "Ġallá": 30642, + "ĠallÃŃ": 34294, + "Ġalm": 18667, + "Ġalma": 32634, + "Ġalmighty": 47534, + "Ġalmond": 29506, + "Ġalmonds": 40973, + "Ġalmost": 1920, + "Ġalone": 3312, + "Ġalong": 2051, + "Ġalongside": 12385, + "Ġalors": 11246, + "Ġalot": 37762, + "Ġaloud": 43888, + "Ġalpha": 8961, + "Ġalphabet": 23339, + "Ġalready": 1217, + "Ġalred": 41290, + "Ġalrededor": 43663, + "Ġalright": 5845, + "Ġals": 3907, + "Ġalso": 611, + "Ġalt": 4955, + "Ġalta": 26495, + "Ġaltar": 31435, + "Ġalte": 38973, + "Ġalten": 41217, + "Ġalter": 11337, + "Ġaltered": 28783, + "Ġaltern": 5400, + "Ġalternate": 18873, + "Ġalternating": 40062, + "Ġalternative": 8535, + "Ġalternatives": 20478, + "Ġalthough": 4878, + "Ġaltijd": 29191, + "Ġaltitude": 24003, + "Ġalto": 21275, + "Ġaltogether": 19051, + "Ġaltre": 34983, + "Ġaltri": 33707, + "Ġaltro": 40924, + "Ġaltura": 39398, + "Ġalum": 12064, + "Ġalumin": 12787, + "Ġaluminium": 35239, + "Ġaluminum": 15656, + "Ġalumni": 16347, + "Ġalways": 1009, + "Ġalém": 30388, + "Ġam": 669, + "Ġama": 10889, + "Ġaman": 42943, + "Ġamar": 42171, + "Ġamateur": 29339, + "Ġamazed": 20507, + "Ġamazing": 2243, + "Ġamazingly": 31762, + "Ġamazon": 47010, + "Ġamb": 3913, + "Ġambassador": 25445, + "Ġambassadors": 44235, + "Ġamber": 48304, + "Ġambient": 22997, + "Ġambiente": 34957, + "Ġambigu": 40390, + "Ġambiguity": 46519, + "Ġambiguous": 39465, + "Ġambition": 22814, + "Ġambitions": 34475, + "Ġambitious": 20239, + "Ġambos": 41425, + "Ġambul": 21574, + "Ġambulance": 26744, + "Ġambush": 38143, + "Ġamen": 18497, + "Ġamend": 11704, + "Ġamended": 43641, + "Ġamendment": 17920, + "Ġamendments": 27009, + "Ġamenities": 47260, + "Ġamer": 16116, + "Ġamerican": 31229, + "Ġami": 33206, + "Ġamid": 30153, + "Ġamiga": 45322, + "Ġamigo": 24671, + "Ġamigos": 18243, + "Ġamino": 24674, + "Ġamis": 32929, + "Ġammo": 27340, + "Ġammon": 36431, + "Ġammonia": 46833, + "Ġammunition": 32251, + "Ġamo": 43155, + "Ġamong": 3654, + "Ġamongst": 12918, + "Ġamor": 15543, + "Ġamount": 2372, + "Ġamounts": 11663, + "Ġamp": 18648, + "Ġamph": 40077, + "Ġampl": 9731, + "Ġample": 42857, + "Ġamplified": 49237, + "Ġamplifier": 27439, + "Ġamplify": 41174, + "Ġamplitude": 27433, + "Ġamps": 43970, + "Ġamusement": 39970, + "Ġamusing": 47809, + "Ġaméric": 39902, + "Ġan": 364, + "Ġana": 34178, + "Ġanak": 38042, + "Ġanal": 2624, + "Ġanalog": 16660, + "Ġanalogy": 21663, + "Ġanaly": 6459, + "Ġanalys": 23014, + "Ġanalyse": 37840, + "Ġanalyses": 37560, + "Ġanalysis": 5215, + "Ġanalyst": 19085, + "Ġanalysts": 31388, + "Ġanalyt": 10783, + "Ġanalytic": 40358, + "Ġanalytical": 29579, + "Ġanalytics": 15370, + "Ġanalyze": 12477, + "Ġanalyzed": 28181, + "Ġanalyzing": 23663, + "Ġanar": 37378, + "Ġanarch": 41957, + "Ġanat": 21618, + "Ġanatomy": 31566, + "Ġanc": 9789, + "Ġancest": 11749, + "Ġancestor": 40032, + "Ġancestors": 18069, + "Ġancestral": 40049, + "Ġancestry": 44729, + "Ġanch": 12723, + "Ġanche": 11585, + "Ġanchor": 18487, + "Ġanci": 34856, + "Ġancient": 7832, + "Ġancora": 30656, + "Ġand": 293, + "Ġanda": 21851, + "Ġandar": 50009, + "Ġandare": 42742, + "Ġander": 49466, + "Ġandere": 10490, + "Ġanderen": 11122, + "Ġanderer": 48108, + "Ġanderes": 31426, + "Ġanders": 17999, + "Ġandra": 25299, + "Ġandroid": 36157, + "Ġanecd": 26652, + "Ġanecdote": 49845, + "Ġanest": 31750, + "Ġanf": 33709, + "Ġang": 2562, + "Ġange": 15495, + "Ġangef": 43907, + "Ġangel": 14250, + "Ġangels": 18175, + "Ġanger": 10240, + "Ġanges": 31138, + "Ġangle": 5802, + "Ġangled": 48843, + "Ġangles": 14708, + "Ġangry": 6884, + "Ġangular": 24413, + "Ġanh": 18931, + "Ġani": 40477, + "Ġanim": 2383, + "Ġanimal": 5496, + "Ġanimales": 45102, + "Ġanimals": 4882, + "Ġanimate": 36439, + "Ġanimated": 18947, + "Ġanimation": 9603, + "Ġanimations": 22868, + "Ġanime": 12435, + "Ġank": 30890, + "Ġankle": 21999, + "Ġankles": 40962, + "Ġanlam": 28940, + "Ġanlat": 27691, + "Ġann": 2324, + "Ġannat": 42786, + "Ġanne": 22256, + "Ġannex": 41012, + "Ġanni": 31164, + "Ġannih": 40430, + "Ġanniversary": 12962, + "Ġanno": 46277, + "Ġannot": 25339, + "Ġannotation": 48654, + "Ġannoun": 4262, + "Ġannounce": 7478, + "Ġannounced": 7548, + "Ġannouncement": 12847, + "Ġannouncements": 23785, + "Ġannouncer": 49574, + "Ġannouncing": 28706, + "Ġannoy": 8759, + "Ġannoyed": 25921, + "Ġannoying": 11304, + "Ġannual": 9784, + "Ġannually": 29974, + "Ġannée": 30488, + "Ġannées": 21203, + "Ġano": 19816, + "Ġanom": 24769, + "Ġanomaly": 42737, + "Ġanonym": 37293, + "Ġanonymous": 24932, + "Ġanos": 13592, + "Ġanother": 1071, + "Ġans": 1567, + "Ġansch": 31508, + "Ġanswer": 1867, + "Ġanswered": 10103, + "Ġanswering": 13430, + "Ġanswers": 6338, + "Ġant": 2511, + "Ġantagon": 32590, + "Ġante": 23411, + "Ġanten": 18858, + "Ġantenna": 24573, + "Ġanterior": 22272, + "Ġantes": 11014, + "Ġanth": 25820, + "Ġanthem": 42383, + "Ġanthrop": 22727, + "Ġanthropology": 44518, + "Ġanti": 6061, + "Ġantib": 11533, + "Ġantibiot": 19388, + "Ġantibiotic": 37828, + "Ġantibiotics": 26922, + "Ġantibodies": 28356, + "Ġantibody": 34507, + "Ġantic": 49172, + "Ġanticip": 10416, + "Ġanticipate": 21685, + "Ġanticipated": 23267, + "Ġanticipating": 40568, + "Ġanticipation": 35979, + "Ġantid": 47962, + "Ġantig": 44417, + "Ġantim": 46141, + "Ġantioxid": 33369, + "Ġantioxidants": 48767, + "Ġantiqu": 41036, + "Ġantique": 41220, + "Ġantis": 44474, + "Ġants": 23355, + "Ġanunci": 39350, + "Ġanvänd": 41559, + "Ġanx": 6739, + "Ġanxiety": 9119, + "Ġanxious": 15166, + "Ġany": 604, + "Ġanybody": 4472, + "Ġanyhow": 44995, + "Ġanymore": 3602, + "Ġanyone": 2878, + "Ġanys": 32319, + "Ġanything": 1340, + "Ġanytime": 13038, + "Ġanyway": 4033, + "Ġanyways": 13448, + "Ġanywhere": 4992, + "Ġanál": 44113, + "Ġao": 8130, + "Ġaos": 25458, + "Ġap": 1882, + "Ġapa": 15951, + "Ġapar": 34115, + "Ġapare": 15004, + "Ġaparece": 37863, + "Ġaparecer": 43336, + "Ġapart": 4936, + "Ġapartment": 9587, + "Ġapartments": 29056, + "Ġape": 44315, + "Ġapenas": 18561, + "Ġaper": 43139, + "Ġapert": 22939, + "Ġaperture": 29848, + "Ġapex": 48115, + "Ġapl": 25522, + "Ġaplic": 18221, + "Ġapo": 50165, + "Ġapocalypse": 42600, + "Ġapolog": 9472, + "Ġapologies": 34929, + "Ġapologise": 50128, + "Ġapologize": 12328, + "Ġapologized": 47815, + "Ġapology": 28006, + "Ġapost": 19484, + "Ġapostle": 50244, + "Ġapostles": 39397, + "Ġapoy": 41535, + "Ġapoyo": 46151, + "Ġapp": 724, + "Ġappar": 45914, + "Ġapparat": 36564, + "Ġapparatus": 38573, + "Ġapparent": 18335, + "Ġapparently": 7970, + "Ġappe": 2363, + "Ġappeal": 13668, + "Ġappealing": 23842, + "Ġappeals": 32603, + "Ġappear": 4204, + "Ġappearance": 8967, + "Ġappearances": 29174, + "Ġappeared": 8516, + "Ġappearing": 19870, + "Ġappears": 7038, + "Ġappel": 36332, + "Ġappelle": 34216, + "Ġappend": 34116, + "Ġappet": 16159, + "Ġappetite": 23996, + "Ġappl": 4988, + "Ġapplaud": 9644, + "Ġapplauding": 15865, + "Ġapplauds": 20783, + "Ġapplause": 9969, + "Ġapple": 10606, + "Ġapples": 16814, + "Ġappli": 33330, + "Ġappliance": 45646, + "Ġappliances": 35480, + "Ġapplic": 2580, + "Ġapplicable": 21142, + "Ġapplicant": 30915, + "Ġapplicants": 28767, + "Ġapplication": 3861, + "Ġapplications": 5821, + "Ġapplied": 6456, + "Ġapplies": 13165, + "Ġapply": 3079, + "Ġapplying": 9275, + "Ġappoint": 7602, + "Ġappointed": 17653, + "Ġappointment": 13653, + "Ġappointments": 25084, + "Ġappreci": 3616, + "Ġappreciate": 4449, + "Ġappreciated": 17169, + "Ġappreciation": 18909, + "Ġappreciative": 43239, + "Ġappreh": 38675, + "Ġapprendre": 46609, + "Ġapprent": 21435, + "Ġapprentice": 40207, + "Ġapprentices": 31715, + "Ġapprenticeship": 47070, + "Ġappro": 2075, + "Ġapproach": 3109, + "Ġapproached": 17247, + "Ġapproaches": 11587, + "Ġapproaching": 14908, + "Ġappropri": 5745, + "Ġappropriate": 6854, + "Ġappropriately": 23505, + "Ġapproval": 13317, + "Ġapprove": 18827, + "Ġapproved": 10826, + "Ġapprox": 28080, + "Ġapproxim": 8542, + "Ġapproximate": 30874, + "Ġapproximately": 10447, + "Ġapproximation": 28023, + "Ġapps": 7733, + "Ġapr": 10992, + "Ġaprend": 21003, + "Ġaprender": 24916, + "Ġapresent": 36181, + "Ġapro": 14602, + "Ġapron": 46742, + "Ġaprove": 29015, + "Ġaproxim": 31270, + "Ġaproximadamente": 48892, + "Ġaprès": 13274, + "Ġapt": 29427, + "Ġaqu": 2373, + "Ġaquarium": 30149, + "Ġaquatic": 44020, + "Ġaquela": 25996, + "Ġaquele": 23640, + "Ġaqueles": 49831, + "Ġaquell": 33635, + "Ġaquellos": 49835, + "Ġaquest": 19269, + "Ġaquesta": 24062, + "Ġaqui": 3871, + "Ġaquilo": 32304, + "ĠaquÃŃ": 6661, + "Ġar": 594, + "Ġara": 15186, + "Ġarab": 38557, + "Ġarada": 40479, + "Ġarb": 25613, + "Ġarbe": 40476, + "Ġarbeiten": 23162, + "Ġarbeitet": 49907, + "Ġarbets": 47539, + "Ġarbit": 14931, + "Ġarbitr": 19071, + "Ġarbitrary": 23211, + "Ġarc": 10346, + "Ġarcade": 25664, + "Ġarch": 3912, + "Ġarchae": 21894, + "Ġarchaeological": 42139, + "Ġarche": 37897, + "Ġarchety": 41852, + "Ġarchitect": 6331, + "Ġarchitects": 30491, + "Ġarchitectural": 26621, + "Ġarchitecture": 9482, + "Ġarchive": 23507, + "Ġarchives": 25607, + "Ġard": 44856, + "Ġare": 366, + "Ġarea": 1859, + "Ġareas": 3179, + "Ġaren": 3212, + "Ġarena": 18451, + "Ġarg": 3882, + "Ġargent": 33977, + "Ġargu": 10171, + "Ġarguably": 26771, + "Ġargue": 9695, + "Ġargued": 20219, + "Ġargues": 38218, + "Ġarguing": 19697, + "Ġargument": 6770, + "Ġarguments": 12869, + "Ġarise": 20288, + "Ġarises": 27388, + "Ġarising": 44900, + "Ġarist": 40105, + "Ġarithmetic": 42973, + "Ġark": 14408, + "ĠarkadaÅŁ": 19153, + "ĠarkadaÅŁlar": 27550, + "Ġarm": 3726, + "Ġarma": 46422, + "Ġarmas": 44611, + "Ġarmed": 16297, + "Ġarmies": 28217, + "Ġarmor": 13124, + "Ġarmored": 41879, + "Ġarmour": 36554, + "Ġarmp": 44541, + "Ġarms": 5812, + "Ġarmy": 7267, + "Ġaroma": 28687, + "Ġaromatic": 45831, + "Ġarose": 37192, + "Ġaround": 926, + "Ġarqu": 40258, + "Ġarr": 5539, + "Ġarran": 50235, + "Ġarrange": 9424, + "Ġarranged": 18721, + "Ġarrangement": 17620, + "Ġarrangements": 22435, + "Ġarray": 10225, + "Ġarrays": 41011, + "Ġarrest": 7823, + "Ġarrested": 12469, + "Ġarrests": 48813, + "Ġarri": 3399, + "Ġarrib": 21620, + "Ġarriba": 28469, + "Ġarriv": 30697, + "Ġarrival": 18365, + "Ġarrive": 8881, + "Ġarrived": 6678, + "Ġarriver": 34142, + "Ġarrives": 20116, + "Ġarriving": 22436, + "Ġarrivé": 47112, + "Ġarrog": 22149, + "Ġarrogance": 46444, + "Ġarrogant": 30467, + "Ġarrow": 11610, + "Ġarrows": 19669, + "Ġarsen": 28636, + "Ġarsenal": 42227, + "Ġart": 1523, + "Ġarte": 29159, + "Ġarter": 30455, + "Ġarteries": 44801, + "Ġartery": 38520, + "Ġarth": 31546, + "Ġarthritis": 35956, + "Ġartic": 15228, + "Ġarticle": 7222, + "Ġarticles": 11290, + "Ġarticulate": 30305, + "Ġarticulated": 43322, + "Ġartif": 17851, + "Ġartifact": 34806, + "Ġartifacts": 24617, + "Ġartific": 39905, + "Ġartificial": 11677, + "Ġartillery": 31115, + "Ġartist": 5748, + "Ġartistic": 17090, + "Ġartists": 6910, + "Ġarts": 8609, + "Ġartwork": 15829, + "Ġartık": 22241, + "Ġas": 382, + "Ġasc": 15526, + "Ġascend": 41604, + "Ġaseg": 38174, + "Ġash": 12588, + "Ġashamed": 19489, + "Ġashes": 32942, + "Ġasi": 28644, + "Ġaside": 7359, + "Ġask": 1029, + "Ġasked": 2351, + "Ġasking": 3365, + "Ġasks": 8962, + "Ġasleep": 11039, + "Ġaslında": 34541, + "Ġasp": 16817, + "Ġaspect": 4171, + "Ġaspects": 7270, + "Ġasphalt": 46076, + "Ġaspir": 20003, + "Ġaspiration": 44565, + "Ġaspirations": 32458, + "Ġaspire": 41224, + "Ġaspiring": 45405, + "Ġass": 1256, + "Ġassass": 16475, + "Ġassassin": 36294, + "Ġassassination": 40195, + "Ġassault": 12458, + "Ġassaulted": 44910, + "Ġasse": 5907, + "Ġassemb": 8438, + "Ġassemble": 22364, + "Ġassembled": 24204, + "Ġassembling": 43867, + "Ġassembly": 12103, + "Ġassert": 19810, + "Ġassess": 5877, + "Ġassessed": 36051, + "Ġassessing": 34348, + "Ġassessment": 9687, + "Ġassessments": 24338, + "Ġasset": 11999, + "Ġassets": 9769, + "Ġassez": 15774, + "Ġasshole": 28599, + "Ġassign": 6269, + "Ġassigned": 13279, + "Ġassigning": 49602, + "Ġassignment": 15187, + "Ġassignments": 22546, + "Ġassim": 8249, + "Ġassist": 4255, + "Ġassistance": 9683, + "Ġassistant": 10994, + "Ġassistants": 34949, + "Ġassisted": 30291, + "Ġassisting": 40368, + "Ġassistir": 45983, + "Ġassists": 49416, + "Ġassoci": 4180, + "Ġassociate": 14644, + "Ġassociated": 6615, + "Ġassociates": 36914, + "Ġassociation": 14598, + "Ġassociations": 26597, + "Ġassum": 5339, + "Ġassume": 6552, + "Ġassumed": 15895, + "Ġassumes": 37808, + "Ġassuming": 11926, + "Ġassumption": 15302, + "Ġassumptions": 17695, + "Ġassunto": 50219, + "Ġassurance": 32189, + "Ġassure": 20968, + "Ġassured": 23426, + "Ġast": 5357, + "Ġasta": 43405, + "Ġastero": 24711, + "Ġasteroid": 33833, + "Ġasteroids": 50230, + "Ġasthma": 33409, + "Ġaston": 25687, + "Ġastonishing": 35264, + "Ġastrolog": 30122, + "Ġastrology": 44385, + "Ġastron": 11117, + "Ġastronaut": 18516, + "Ġastronauts": 28273, + "Ġastronom": 26302, + "Ġastronomers": 43151, + "Ġastronomical": 49035, + "Ġastronomy": 37844, + "Ġasylum": 31601, + "Ġasymm": 37277, + "Ġasympt": 35114, + "Ġasynchron": 42642, + "Ġasynchronous": 49174, + "ĠasÃŃ": 8582, + "Ġat": 412, + "Ġata": 48639, + "Ġatac": 41015, + "Ġataque": 46166, + "Ġatau": 22823, + "Ġate": 8468, + "Ġaten": 21723, + "Ġatención": 33488, + "Ġatenção": 39044, + "Ġathe": 27033, + "Ġatheist": 43977, + "Ġathlet": 7650, + "Ġathlete": 18002, + "Ġathletes": 13820, + "Ġathletic": 22496, + "Ġathletics": 37964, + "Ġatm": 22582, + "Ġatmos": 7722, + "Ġatmosphere": 8018, + "Ġatmospheric": 28854, + "Ġatom": 12018, + "Ġatomic": 22275, + "Ġatoms": 16871, + "Ġatra": 44192, + "Ġatrav": 33325, + "Ġatravés": 39941, + "Ġatroc": 43530, + "Ġatrás": 22906, + "Ġatt": 951, + "Ġattach": 5085, + "Ġattached": 8570, + "Ġattaches": 49404, + "Ġattaching": 39074, + "Ġattachment": 19431, + "Ġattachments": 37987, + "Ġattack": 2690, + "Ġattacked": 12692, + "Ġattacker": 35871, + "Ġattackers": 45129, + "Ġattacking": 15010, + "Ġattacks": 8122, + "Ġattain": 23766, + "Ġattained": 46633, + "Ġatte": 42783, + "Ġattempt": 5217, + "Ġattempted": 18997, + "Ġattempting": 22001, + "Ġattempts": 15257, + "Ġattend": 6888, + "Ġattendance": 24337, + "Ġattendant": 39339, + "Ġattended": 15990, + "Ġattendees": 34826, + "Ġattending": 15862, + "Ġattends": 49837, + "Ġattent": 30980, + "Ġattention": 3202, + "Ġattentive": 43661, + "Ġattic": 40766, + "Ġattitude": 10157, + "Ġattitudes": 25853, + "Ġattorney": 13469, + "Ġattorneys": 30019, + "Ġattract": 5049, + "Ġattracted": 15912, + "Ġattracting": 36594, + "Ġattraction": 17672, + "Ġattractions": 35005, + "Ġattractive": 12609, + "Ġattracts": 37026, + "Ġattrib": 9080, + "Ġattribute": 19667, + "Ġattributed": 30976, + "Ġattributes": 17212, + "Ġatual": 39241, + "Ġaté": 8784, + "Ġau": 1609, + "Ġauc": 23788, + "Ġauch": 2168, + "Ġauction": 24139, + "Ġaucun": 35361, + "Ġaucune": 40076, + "Ġaud": 2379, + "Ġaudi": 27435, + "Ġaudible": 41317, + "Ġaudience": 4034, + "Ġaudiences": 15479, + "Ġaudio": 6278, + "Ġaudiobook": 40031, + "Ġaudit": 17748, + "Ġaudition": 20015, + "Ġauditor": 33970, + "Ġauf": 2501, + "Ġaufge": 35031, + "Ġaug": 14501, + "Ġaugment": 29919, + "Ġaugmented": 36155, + "Ġaujourd": 14023, + "Ġaula": 41642, + "Ġaument": 17128, + "Ġaumentar": 43504, + "Ġaumento": 43600, + "Ġaun": 15879, + "Ġaunque": 21962, + "Ġaunt": 15654, + "Ġaur": 19145, + "Ġaura": 18355, + "Ġaurait": 29531, + "Ġaus": 3437, + "Ġausge": 31899, + "Ġauss": 5730, + "Ġaussi": 6212, + "Ġaust": 34916, + "Ġauster": 49867, + "Ġaut": 1476, + "Ġautant": 34081, + "Ġauth": 6979, + "Ġauthent": 9214, + "Ġauthentic": 12466, + "Ġauthentication": 26643, + "Ġauthenticity": 34215, + "Ġauthor": 3793, + "Ġauthoritarian": 37883, + "Ġauthorities": 12076, + "Ġauthority": 8281, + "Ġauthorization": 33697, + "Ġauthorized": 28312, + "Ġauthors": 16552, + "Ġautism": 21471, + "Ġautistic": 33272, + "Ġauto": 8399, + "Ġautobi": 45747, + "Ġautoc": 45833, + "Ġautograph": 36660, + "Ġautom": 3553, + "Ġautomat": 28034, + "Ġautomate": 31605, + "Ġautomated": 18473, + "Ġautomatic": 12509, + "Ġautomatically": 6772, + "Ġautomation": 17769, + "Ġautomobile": 38809, + "Ġautomotive": 32866, + "Ġautonom": 18203, + "Ġautonomous": 23797, + "Ġautonomy": 27278, + "Ġautop": 31090, + "Ġautor": 19510, + "Ġautour": 30249, + "Ġautre": 15081, + "Ġautres": 17093, + "Ġautumn": 24604, + "Ġaux": 7865, + "Ġauxiliary": 43741, + "ĠauÃŁer": 39428, + "Ġav": 1305, + "Ġavaient": 38703, + "Ġavail": 2327, + "Ġavailability": 17945, + "Ġavailable": 2435, + "Ġavait": 11853, + "Ġavant": 13439, + "Ġavanz": 42444, + "Ġavatar": 36205, + "Ġave": 3472, + "Ġavec": 4163, + "Ġaven": 18469, + "Ġavent": 36399, + "Ġavenue": 39230, + "Ġavenues": 43039, + "Ġaver": 18247, + "Ġaverage": 4274, + "Ġaverages": 42257, + "Ġaveraging": 47308, + "Ġavere": 37914, + "Ġavete": 48201, + "Ġavez": 11766, + "Ġaviation": 28831, + "Ġavis": 34588, + "Ġavo": 3641, + "Ġavocado": 27041, + "Ġavoid": 5042, + "Ġavoided": 24890, + "Ġavoiding": 20220, + "Ġavoir": 10853, + "Ġavons": 18990, + "Ġaw": 1714, + "Ġawait": 19670, + "Ġawaiting": 43759, + "Ġawaits": 45955, + "Ġawak": 13726, + "Ġawake": 15994, + "Ġawaken": 43566, + "Ġawakened": 46468, + "Ġawakening": 31550, + "Ġaward": 7130, + "Ġawarded": 19100, + "Ġawards": 15193, + "Ġaware": 3650, + "Ġawareness": 8888, + "Ġaway": 1314, + "Ġawe": 30912, + "Ġawesome": 3476, + "Ġawful": 11232, + "Ġawfully": 47976, + "Ġawhile": 22224, + "Ġawkward": 11411, + "Ġax": 6360, + "Ġaxe": 30195, + "Ġaxes": 35387, + "Ġaxial": 46851, + "Ġaxis": 10298, + "Ġaxle": 31192, + "Ġay": 7494, + "Ġaye": 19259, + "Ġaynı": 30281, + "Ġayr": 35767, + "Ġayud": 20333, + "Ġayuda": 30737, + "Ġayudar": 38759, + "Ġaz": 7883, + "Ġazt": 39566, + "Ġazul": 39580, + "Ġaç": 12930, + "Ġaçık": 33282, + "Ġaçıl": 43236, + "Ġañ": 37837, + "Ġañad": 44980, + "Ġaño": 15984, + "Ġaños": 11424, + "Ġaún": 31676, + "ĠaÃŃ": 7461, + "ĠaÄŁ": 21294, + "Ġaż": 48134, + "ĠaÅŁ": 21002, + "ĠaÅŁk": 36730, + "Ġb": 272, + "Ġba": 4773, + "Ġbab": 7564, + "Ġbaba": 31568, + "Ġbabe": 24655, + "Ġbabies": 10917, + "Ġbaby": 3186, + "Ġbabys": 39764, + "Ġbac": 6857, + "Ġbachelor": 25947, + "Ġback": 646, + "Ġbackbone": 34889, + "Ġbackdrop": 32697, + "Ġbacked": 20391, + "Ġbackend": 38087, + "Ġbackground": 3678, + "Ġbackgrounds": 17336, + "Ġbacking": 19373, + "Ġbackl": 32449, + "Ġbacklash": 37572, + "Ġbacklog": 47364, + "Ġbackpack": 17969, + "Ġbacks": 19513, + "Ġbackside": 35370, + "Ġbackstage": 31764, + "Ġbackstory": 36899, + "Ġbackup": 14807, + "Ġbackups": 50160, + "Ġbackward": 23897, + "Ġbackwards": 12204, + "Ġbackyard": 20036, + "Ġbacon": 16400, + "Ġbacter": 9755, + "Ġbacteria": 11763, + "Ġbacterial": 35632, + "Ġbad": 1578, + "Ġbadass": 33907, + "Ġbadge": 25797, + "Ġbadges": 43894, + "Ġbadly": 13425, + "Ġbag": 3411, + "Ġbaggage": 41567, + "Ġbags": 10405, + "Ġbagus": 48348, + "Ġbah": 12913, + "Ġbaht": 49254, + "Ġbaik": 34867, + "Ġbail": 19313, + "Ġbait": 16865, + "Ġbaix": 40447, + "Ġbaixo": 30934, + "Ġbaj": 23589, + "Ġbaja": 49427, + "Ġbajo": 30139, + "Ġbak": 5657, + "Ġbakalım": 28812, + "Ġbakayım": 42918, + "Ġbake": 16562, + "Ġbaked": 19453, + "Ġbaker": 48148, + "Ġbakery": 37519, + "Ġbaking": 12102, + "Ġbakın": 43307, + "Ġbal": 3119, + "Ġbalance": 4772, + "Ġbalanced": 13902, + "Ġbalances": 33993, + "Ġbalancing": 22495, + "Ġbalcon": 26450, + "Ġbalcony": 29468, + "Ġbald": 21096, + "Ġball": 2594, + "Ġballet": 30512, + "Ġballistic": 44478, + "Ġballoon": 16994, + "Ġballoons": 26193, + "Ġballot": 21880, + "Ġballots": 36410, + "Ġballs": 9803, + "Ġbalm": 42532, + "Ġbam": 18132, + "Ġbamboo": 26156, + "Ġban": 5643, + "Ġbana": 16832, + "Ġbanana": 14194, + "Ġbananas": 22742, + "Ġbanc": 39612, + "Ġbanco": 45498, + "Ġband": 4116, + "Ġbanda": 38727, + "Ġbande": 46836, + "Ġbandits": 49043, + "Ġbands": 13543, + "Ġbandwidth": 23647, + "Ġbang": 8550, + "Ġbanget": 24909, + "Ġbanging": 36982, + "Ġbangs": 32802, + "Ġbank": 3765, + "Ġbanker": 48008, + "Ġbanking": 18261, + "Ġbankrupt": 21780, + "Ġbankruptcy": 33457, + "Ġbanks": 10237, + "Ġbanned": 19564, + "Ġbanner": 24348, + "Ġbanquet": 49796, + "Ġbanyak": 25808, + "Ġbao": 45296, + "Ġbapt": 18222, + "Ġbaptism": 34352, + "Ġbaptized": 34006, + "Ġbar": 2159, + "Ġbara": 19519, + "Ġbarbar": 35822, + "Ġbarbecue": 21877, + "Ġbarber": 49906, + "Ġbard": 7685, + "Ġbardziej": 27209, + "Ġbardzo": 9034, + "Ġbare": 6949, + "Ġbarely": 10268, + "Ġbarg": 22351, + "Ġbargain": 34302, + "Ġbargaining": 42108, + "Ġbark": 16202, + "Ġbarking": 32995, + "Ġbarley": 47761, + "Ġbarn": 18492, + "Ġbarr": 38236, + "Ġbarre": 43834, + "Ġbarrel": 13257, + "Ġbarrels": 33138, + "Ġbarrier": 13357, + "Ġbarriers": 13565, + "Ġbars": 10228, + "Ġbart": 44768, + "Ġbaru": 36171, + "Ġbas": 987, + "Ġbase": 3096, + "Ġbaseball": 14323, + "Ġbased": 2361, + "Ġbaseline": 20518, + "Ġbasement": 16893, + "Ġbases": 17949, + "Ġbash": 46183, + "Ġbasic": 3875, + "Ġbasically": 1936, + "Ġbasics": 14688, + "Ġbasil": 29862, + "Ġbasin": 34863, + "Ġbasis": 5143, + "Ġbask": 34055, + "Ġbasket": 8390, + "Ġbasketball": 11767, + "Ġbaskets": 42853, + "Ġbass": 10136, + "Ġbast": 8414, + "Ġbasta": 45282, + "Ġbastante": 14651, + "Ġbastard": 23569, + "Ġbastards": 49346, + "Ġbat": 7362, + "Ġbatch": 15245, + "Ġbate": 37936, + "Ġbater": 25735, + "Ġbath": 6079, + "Ġbathing": 38948, + "Ġbathroom": 8687, + "Ġbathrooms": 39537, + "Ġbatht": 40708, + "Ġbathtub": 42901, + "Ġbats": 26943, + "Ġbatt": 9591, + "Ġbatter": 4220, + "Ġbatteries": 13070, + "Ġbattery": 5809, + "Ġbattle": 4635, + "Ġbattlefield": 21818, + "Ġbattles": 14648, + "Ġbattling": 33752, + "Ġbauen": 43787, + "Ġbaw": 40463, + "Ġbay": 13642, + "Ġbaz": 27147, + "ĠbaÄŁ": 33071, + "ĠbaÅŁ": 8694, + "ĠbaÅŁka": 27883, + "Ġbe": 312, + "Ġbeach": 7534, + "Ġbeaches": 27560, + "Ġbeacon": 41669, + "Ġbead": 24117, + "Ġbeads": 20369, + "Ġbeak": 48663, + "Ġbeam": 14269, + "Ġbeams": 31040, + "Ġbean": 16230, + "Ġbeans": 12010, + "Ġbear": 6155, + "Ġbeard": 17455, + "Ġbearing": 17350, + "Ġbearings": 36297, + "Ġbears": 17276, + "Ġbeast": 13464, + "Ġbeasts": 37386, + "Ġbeat": 4224, + "Ġbeaten": 17909, + "Ġbeating": 13497, + "Ġbeats": 16447, + "Ġbeau": 29891, + "Ġbeaucoup": 8796, + "Ġbeaut": 1869, + "Ġbeautiful": 2238, + "Ġbeautifully": 16525, + "Ġbeauty": 6643, + "Ġbeb": 35348, + "Ġbeber": 40069, + "Ġbecame": 3062, + "Ġbecause": 570, + "Ġbecom": 2683, + "Ġbecome": 1813, + "Ġbecomes": 3643, + "Ġbecoming": 5617, + "Ġbed": 2901, + "Ġbede": 22466, + "Ġbedeutet": 27018, + "Ġbedroom": 11211, + "Ġbedrooms": 39955, + "Ġbeds": 18068, + "Ġbedtime": 45850, + "Ġbee": 17479, + "Ġbeef": 9256, + "Ġbeen": 668, + "Ġbeep": 28678, + "Ġbeeping": 34800, + "Ġbeeps": 27722, + "Ġbeer": 8795, + "Ġbeers": 34159, + "Ġbees": 17511, + "Ġbeet": 16658, + "Ġbeetje": 27459, + "Ġbeetle": 49735, + "Ġbef": 21312, + "Ġbefore": 949, + "Ġbeforehand": 22893, + "Ġbeg": 4612, + "Ġbegan": 4283, + "Ġbege": 41832, + "Ġbegg": 44914, + "Ġbegged": 47653, + "Ġbegging": 26600, + "Ġbegin": 1841, + "Ġbeginnen": 40326, + "Ġbeginner": 22080, + "Ġbeginners": 26992, + "Ġbeginning": 2863, + "Ġbeginnings": 37281, + "Ġbegins": 7338, + "Ġbegitu": 49707, + "Ġbegr": 38972, + "Ġbegun": 16009, + "Ġbeh": 1540, + "Ġbehalf": 9490, + "Ġbehand": 43122, + "Ġbehav": 3851, + "Ġbehave": 15158, + "Ġbehaved": 48249, + "Ġbehaves": 36896, + "Ġbehavi": 15475, + "Ġbehaving": 35263, + "Ġbehavior": 5223, + "Ġbehavioral": 19124, + "Ġbehaviors": 15501, + "Ġbehaviour": 17229, + "Ġbehind": 2261, + "Ġbehold": 27234, + "Ġbehö": 26187, + "Ġbehöver": 32138, + "Ġbei": 4643, + "Ġbeide": 35831, + "Ġbeiden": 23446, + "Ġbeige": 40274, + "Ġbeim": 13922, + "Ġbeing": 885, + "Ġbeings": 8958, + "Ġbeispiel": 37155, + "Ġbeispielsweise": 40152, + "Ġbek": 9393, + "Ġbekannt": 39167, + "Ġbekommen": 19256, + "Ġbekommt": 33429, + "Ġbel": 989, + "Ġbelang": 33746, + "Ġbelangrijk": 42330, + "Ġbele": 29620, + "Ġbeleza": 46429, + "Ġbelie": 1351, + "Ġbelief": 7107, + "Ġbeliefs": 13585, + "Ġbelieve": 1697, + "Ġbelieved": 7847, + "Ġbeliever": 23892, + "Ġbelievers": 23125, + "Ġbelieves": 12307, + "Ġbelieving": 16594, + "Ġbelki": 44596, + "Ġbell": 4549, + "Ġbelle": 28770, + "Ġbelli": 48006, + "Ġbells": 25474, + "Ġbelly": 11696, + "Ġbelo": 13878, + "Ġbelong": 5784, + "Ġbelonged": 28611, + "Ġbelonging": 22957, + "Ġbelongings": 43554, + "Ġbelongs": 12953, + "Ġbeloved": 14553, + "Ġbelow": 2507, + "Ġbelt": 10750, + "Ġbelts": 33689, + "Ġbelum": 48532, + "Ġbem": 7577, + "Ġben": 3271, + "Ġbench": 10638, + "Ġbenchmark": 18927, + "Ġbenchmarks": 43751, + "Ġbend": 11229, + "Ġbending": 22487, + "Ġbends": 42990, + "Ġbene": 2537, + "Ġbeneath": 17149, + "Ġbenef": 3070, + "Ġbenefic": 10304, + "Ġbenefici": 38534, + "Ġbeneficial": 14072, + "Ġbeneficiaries": 49937, + "Ġbenefit": 5121, + "Ġbenefited": 33605, + "Ġbenefiting": 47515, + "Ġbenefits": 5311, + "Ġbenevol": 48567, + "Ġbeni": 19723, + "Ġbenim": 13818, + "Ġbent": 14075, + "Ġbenut": 38424, + "Ġbenz": 44335, + "Ġber": 5948, + "Ġberaber": 39855, + "Ġbere": 13375, + "Ġbereit": 38758, + "Ġbereits": 23703, + "Ġberm": 50001, + "Ġberries": 29898, + "Ġberry": 44955, + "Ġbers": 32147, + "Ġbert": 50098, + "Ġbes": 4097, + "Ġbesar": 48327, + "Ġbesch": 17498, + "Ġbeschäft": 38768, + "Ġbeside": 15726, + "Ġbesides": 11868, + "Ġbesl": 47118, + "Ġbesoin": 19207, + "Ġbesond": 20114, + "Ġbesonders": 25258, + "Ġbess": 42410, + "Ġbesser": 18021, + "Ġbest": 1151, + "Ġbeste": 22245, + "Ġbesteht": 43680, + "Ġbesten": 30930, + "Ġbestimm": 35180, + "Ġbestimmt": 46871, + "Ġbet": 778, + "Ġbeta": 9861, + "Ġbeter": 45425, + "Ġbetray": 15560, + "Ġbetrayal": 42700, + "Ġbetrayed": 29515, + "Ġbets": 39922, + "Ġbetter": 1101, + "Ġbetting": 34246, + "Ġbetween": 1296, + "Ġbever": 46524, + "Ġbeverage": 35519, + "Ġbeverages": 47401, + "Ġbevor": 37591, + "Ġbew": 17897, + "Ġbewe": 46638, + "Ġbewusst": 46221, + "Ġbey": 39977, + "Ġbeyond": 4399, + "Ġbez": 10782, + "Ġbezel": 37179, + "Ġbezpie": 47153, + "ĠbeÄŁ": 44863, + "ĠbeÅŁ": 39213, + "Ġbh": 41221, + "Ġbi": 3228, + "Ġbias": 12577, + "Ġbiased": 28035, + "Ġbiases": 32152, + "Ġbib": 24557, + "Ġbible": 34956, + "Ġbibli": 34344, + "Ġbiblical": 26083, + "Ġbic": 34472, + "Ġbicy": 16703, + "Ġbicycle": 20888, + "Ġbicycles": 47913, + "Ġbid": 12957, + "Ġbidding": 39702, + "Ġbien": 3610, + "Ġbientôt": 34653, + "Ġbig": 955, + "Ġbigger": 3801, + "Ġbiggest": 3880, + "Ġbij": 10317, + "Ġbijvoorbeeld": 43061, + "Ġbik": 26730, + "Ġbike": 5656, + "Ġbikes": 16035, + "Ġbiking": 40276, + "Ġbil": 8588, + "Ġbilang": 46712, + "Ġbilateral": 38772, + "Ġbild": 22105, + "Ġbile": 18729, + "Ġbili": 20709, + "Ġbilingual": 48757, + "Ġbiliyor": 35424, + "Ġbill": 2961, + "Ġbilling": 35618, + "Ġbillion": 5218, + "Ġbillionaire": 42358, + "Ġbillions": 17375, + "Ġbills": 12433, + "Ġbilmiyorum": 48699, + "Ġbin": 5171, + "Ġbinary": 17434, + "Ġbind": 14786, + "Ġbinder": 45630, + "Ġbinding": 17359, + "Ġbinds": 41515, + "Ġbinge": 41487, + "Ġbinnen": 35958, + "Ġbins": 41275, + "Ġbio": 12198, + "Ġbiod": 26977, + "Ġbiodiversity": 36453, + "Ġbiography": 37062, + "Ġbiological": 13910, + "Ġbiology": 14956, + "Ġbiom": 27450, + "Ġbiomass": 47420, + "Ġbiomedical": 49775, + "Ġbios": 36997, + "Ġbip": 19016, + "Ġbipart": 28741, + "Ġbipartisan": 31954, + "Ġbipolar": 42469, + "Ġbir": 1904, + "Ġbiraz": 19696, + "Ġbird": 5255, + "Ġbirds": 9009, + "Ġbiri": 38530, + "Ġbirl": 37476, + "Ġbirlikte": 44642, + "Ġbirth": 3965, + "Ġbirthday": 6154, + "Ġbirthdays": 48739, + "Ġbis": 7393, + "Ġbisa": 14386, + "Ġbisc": 23261, + "Ġbiscuit": 39327, + "Ġbiscuits": 36301, + "Ġbisexual": 42570, + "Ġbisher": 33598, + "Ġbishop": 34470, + "Ġbisog": 40505, + "Ġbiss": 10627, + "Ġbisschen": 10763, + "Ġbist": 18209, + "Ġbit": 857, + "Ġbitch": 11960, + "Ġbitches": 42094, + "Ġbitcoin": 24973, + "Ġbite": 7988, + "Ġbites": 26030, + "Ġbiting": 32912, + "Ġbits": 9239, + "Ġbitte": 23231, + "Ġbitten": 34608, + "Ġbitter": 13871, + "Ġbitterness": 44224, + "Ġbiz": 7390, + "Ġbizarre": 18265, + "Ġbize": 28825, + "Ġbizi": 36033, + "Ġbizim": 23439, + "Ġbiết": 28432, + "Ġbl": 888, + "Ġbla": 16379, + "Ġblack": 2211, + "Ġblacks": 30720, + "Ġbladder": 37032, + "Ġblade": 10959, + "Ġblades": 20066, + "Ġblah": 12288, + "Ġblame": 10127, + "Ġblamed": 32027, + "Ġblaming": 32364, + "Ġblanc": 34437, + "Ġbland": 29849, + "Ġblank": 8247, + "Ġblanket": 17907, + "Ġblankets": 38710, + "Ġblas": 46409, + "Ġblast": 12035, + "Ġblasting": 47134, + "Ġblat": 42780, + "Ġble": 5408, + "Ġbleach": 39631, + "Ġbleed": 28385, + "Ġbleeding": 19312, + "Ġbleiben": 24912, + "Ġbleibt": 24814, + "Ġblend": 10628, + "Ġblended": 27048, + "Ġblender": 24564, + "Ġblending": 23124, + "Ġblends": 37619, + "Ġbless": 5227, + "Ġblessed": 12351, + "Ġblessing": 13869, + "Ġblessings": 19296, + "Ġblev": 37332, + "Ġblew": 19075, + "Ġbli": 27182, + "Ġblij": 26486, + "Ġblind": 6865, + "Ġblindfold": 44846, + "Ġblindly": 47744, + "Ġblindness": 46101, + "Ġblink": 24667, + "Ġblinking": 45879, + "Ġblir": 19504, + "Ġbliss": 31522, + "Ġbliver": 45329, + "Ġblo": 1749, + "Ġblob": 46115, + "Ġblock": 3461, + "Ġblockchain": 17176, + "Ġblocked": 15470, + "Ġblocking": 17776, + "Ġblocks": 8474, + "Ġblog": 6968, + "Ġblogs": 31038, + "Ġblond": 48537, + "Ġblonde": 30043, + "Ġblood": 3390, + "Ġbloody": 18938, + "Ġbloom": 26899, + "Ġblooming": 45294, + "Ġbloque": 41592, + "Ġbloss": 22956, + "Ġblossom": 38524, + "Ġblossoms": 47789, + "Ġblow": 6327, + "Ġblowing": 15068, + "Ġblown": 16479, + "Ġblows": 18458, + "Ġblue": 3344, + "Ġblueberries": 43722, + "Ġblueberry": 48243, + "Ġblueprint": 35868, + "Ġblues": 24244, + "Ġbluetooth": 48225, + "Ġbluff": 44191, + "Ġblunt": 32246, + "Ġblur": 14257, + "Ġblurred": 43525, + "Ġblurry": 37644, + "Ġblush": 25218, + "Ġbo": 748, + "Ġboa": 22422, + "Ġboard": 3150, + "Ġboarding": 30528, + "Ġboards": 13293, + "Ġboast": 46988, + "Ġboat": 6582, + "Ġboats": 17772, + "Ġbob": 27292, + "Ġboca": 34624, + "Ġbod": 16737, + "Ġbodies": 7510, + "Ġbodily": 39576, + "Ġbody": 1772, + "Ġbog": 26132, + "Ġboil": 13329, + "Ġboiled": 21058, + "Ġboiler": 39228, + "Ġboiling": 16208, + "Ġboils": 35049, + "Ġbois": 44808, + "Ġbok": 41882, + "Ġbol": 8986, + "Ġbola": 41110, + "Ġbolag": 48452, + "Ġbold": 11928, + "Ġboleh": 25835, + "Ġbolt": 13436, + "Ġbolts": 18127, + "Ġbom": 7957, + "Ġbomb": 7851, + "Ġbombard": 42894, + "Ġbomber": 44889, + "Ġbombers": 50055, + "Ġbombing": 31292, + "Ġbombs": 19043, + "Ġbon": 4428, + "Ġbona": 49012, + "Ġbond": 6086, + "Ġbonded": 41194, + "Ġbonding": 28824, + "Ġbonds": 14713, + "Ġbone": 9026, + "Ġbones": 10491, + "Ġbonito": 31209, + "Ġbonne": 20577, + "Ġbons": 33922, + "Ġbonus": 10882, + "Ġbonuses": 33205, + "Ġboo": 23113, + "Ġboobs": 40439, + "Ġbook": 1446, + "Ġbooked": 26735, + "Ġbooking": 34424, + "Ġbooklet": 48469, + "Ġbooks": 3642, + "Ġbookstore": 43478, + "Ġboom": 9351, + "Ġbooming": 45883, + "Ġboost": 9194, + "Ġbooster": 29275, + "Ġboosting": 43117, + "Ġboot": 11450, + "Ġbooth": 20912, + "Ġboots": 15194, + "Ġbooty": 34793, + "Ġbor": 14828, + "Ġbord": 25872, + "Ġborder": 7838, + "Ġborders": 16287, + "Ġbore": 26002, + "Ġbored": 13521, + "Ġboring": 9989, + "Ġborn": 4232, + "Ġborrow": 11172, + "Ġborrowed": 26805, + "Ġborrowing": 35024, + "Ġbos": 30641, + "Ġboss": 5741, + "Ġbosses": 24201, + "Ġbot": 10592, + "Ġboth": 1293, + "Ġbother": 8677, + "Ġbothered": 22996, + "Ġbothering": 31432, + "Ġbothers": 33980, + "Ġbots": 35410, + "Ġbott": 2274, + "Ġbottle": 7817, + "Ġbottlene": 44641, + "Ġbottles": 15923, + "Ġbottom": 2767, + "Ġbottoms": 43413, + "Ġbou": 15345, + "Ġboug": 46553, + "Ġbought": 4243, + "Ġboun": 15521, + "Ġbounce": 15894, + "Ġbounced": 46482, + "Ġbounces": 46901, + "Ġbouncing": 27380, + "Ġbouncy": 49704, + "Ġbound": 5472, + "Ġboundaries": 13180, + "Ġboundary": 12866, + "Ġbounded": 37498, + "Ġbounds": 29905, + "Ġbounty": 40773, + "Ġbour": 32373, + "Ġbout": 15738, + "Ġbow": 4503, + "Ġbowel": 40094, + "Ġbowl": 6571, + "Ġbowling": 35537, + "Ġbowls": 28513, + "Ġbows": 43158, + "Ġbox": 2424, + "Ġboxer": 47252, + "Ġboxes": 9002, + "Ġboxing": 24424, + "Ġboy": 3237, + "Ġboyfriend": 11457, + "Ġboys": 6347, + "Ġboî": 50127, + "ĠboÅŁ": 37636, + "Ġbr": 738, + "Ġbra": 1548, + "Ġbrac": 17848, + "Ġbrace": 38458, + "Ġbracelet": 23021, + "Ġbracelets": 48795, + "Ġbraces": 41537, + "Ġbrack": 12305, + "Ġbracket": 16904, + "Ġbrackets": 26179, + "Ġbrag": 41995, + "Ġbraid": 33109, + "Ġbrain": 3567, + "Ġbrains": 15442, + "Ġbrainstorm": 35245, + "Ġbrake": 13997, + "Ġbrakes": 19950, + "Ġbraking": 32140, + "Ġbran": 12029, + "Ġbranch": 9819, + "Ġbranches": 14770, + "Ġbrand": 3360, + "Ġbranded": 38510, + "Ġbranding": 27279, + "Ġbrands": 11324, + "Ġbras": 19993, + "Ġbrasile": 28435, + "Ġbrass": 26257, + "Ġbrat": 47869, + "Ġbrauch": 45522, + "Ġbrauchen": 19543, + "Ġbraucht": 22623, + "Ġbrave": 12653, + "Ġbravery": 43271, + "Ġbre": 1403, + "Ġbreach": 31086, + "Ġbread": 5961, + "Ġbreadth": 35862, + "Ġbreak": 1821, + "Ġbreakdown": 18188, + "Ġbreaker": 35375, + "Ġbreakfast": 8201, + "Ġbreaking": 7697, + "Ġbreakout": 30067, + "Ġbreaks": 9857, + "Ġbreakthrough": 22397, + "Ġbreakup": 38492, + "Ġbreast": 9934, + "Ġbreasts": 34331, + "Ġbreat": 3656, + "Ġbreath": 6045, + "Ġbreathe": 10192, + "Ġbreathing": 9570, + "Ġbreaths": 33769, + "Ġbreathtaking": 48393, + "Ġbred": 34133, + "Ġbree": 20082, + "Ġbreed": 18971, + "Ġbreeding": 26051, + "Ġbreeds": 41609, + "Ġbreeze": 24532, + "Ġbrethren": 47854, + "Ġbreve": 48517, + "Ġbrew": 34619, + "Ġbrewer": 39440, + "Ġbrewing": 39019, + "Ġbri": 33713, + "Ġbrick": 16725, + "Ġbricks": 25497, + "Ġbrid": 16362, + "Ġbride": 22292, + "Ġbridge": 7283, + "Ġbridges": 21114, + "Ġbrief": 5353, + "Ġbriefing": 28878, + "Ġbriefly": 10515, + "Ġbrig": 30743, + "Ġbrigade": 47501, + "Ġbright": 4730, + "Ġbrighten": 49007, + "Ġbrighter": 19764, + "Ġbrightest": 36271, + "Ġbrightly": 47418, + "Ġbrightness": 21367, + "Ġbrill": 8695, + "Ġbrilliant": 10248, + "Ġbrinc": 46545, + "Ġbring": 1565, + "Ġbringen": 27519, + "Ġbringing": 5062, + "Ġbrings": 5607, + "Ġbringt": 36008, + "Ġbrit": 38389, + "Ġbrittle": 49325, + "Ġbro": 2006, + "Ġbroad": 4152, + "Ġbroadband": 37718, + "Ġbroadcast": 9975, + "Ġbroadcasting": 30024, + "Ġbroaden": 47045, + "Ġbroader": 13227, + "Ġbroadly": 19511, + "Ġbroccoli": 29044, + "Ġbroch": 48147, + "Ġbroke": 6902, + "Ġbroken": 5463, + "Ġbroker": 26502, + "Ġbrokers": 47549, + "Ġbrom": 50134, + "Ġbron": 16586, + "Ġbronze": 25454, + "Ġbroom": 41544, + "Ġbroth": 18872, + "Ġbrother": 3708, + "Ġbrothers": 8452, + "Ġbrought": 3038, + "Ġbrow": 19299, + "Ġbrown": 6292, + "Ġbrows": 8333, + "Ġbrowse": 31442, + "Ġbrowser": 11185, + "Ġbrowsers": 36069, + "Ġbrowsing": 38602, + "Ġbru": 25267, + "Ġbruk": 48316, + "Ġbrunch": 49761, + "Ġbrush": 5287, + "Ġbrushed": 40694, + "Ġbrushes": 23260, + "Ġbrushing": 33130, + "Ġbrut": 12603, + "Ġbrutal": 17878, + "Ġbrutality": 41745, + "Ġbrutally": 48476, + "Ġbrute": 47909, + "Ġbu": 758, + "Ġbuat": 22186, + "Ġbubb": 13045, + "Ġbubble": 12212, + "Ġbubbles": 16295, + "Ġbubbling": 46360, + "Ġbuck": 14894, + "Ġbucket": 13058, + "Ġbuckets": 32191, + "Ġbuckle": 37686, + "Ġbucks": 11829, + "Ġbud": 3265, + "Ġbuddies": 30649, + "Ġbuddy": 10340, + "Ġbudget": 4706, + "Ġbudgeting": 47855, + "Ġbudgets": 26708, + "Ġbuds": 33916, + "Ġbuen": 30037, + "Ġbuena": 25710, + "Ġbuenas": 43852, + "Ġbueno": 11974, + "Ġbuenos": 49617, + "Ġbuff": 9204, + "Ġbuffalo": 39681, + "Ġbuffer": 21762, + "Ġbuffet": 42904, + "Ġbuffs": 50164, + "Ġbug": 7426, + "Ġbugs": 15120, + "Ġbugün": 37141, + "Ġbuild": 1322, + "Ġbuilder": 27377, + "Ġbuilders": 36281, + "Ġbuilding": 2390, + "Ġbuildings": 7446, + "Ġbuilds": 15182, + "Ġbuilt": 3094, + "Ġbukan": 31794, + "Ġbul": 6493, + "Ġbulb": 21122, + "Ġbulbs": 32871, + "Ġbuld": 37134, + "Ġbulk": 16139, + "Ġbulky": 42986, + "Ġbull": 4693, + "Ġbullet": 11632, + "Ġbullets": 20132, + "Ġbullied": 33603, + "Ġbullish": 38692, + "Ġbullshit": 22676, + "Ġbully": 29123, + "Ġbullying": 25633, + "Ġbulun": 48419, + "Ġbum": 13309, + "Ġbump": 9961, + "Ġbumped": 42696, + "Ġbumper": 23992, + "Ġbumps": 27719, + "Ġbumpy": 49400, + "Ġbun": 6702, + "Ġbuna": 44257, + "Ġbunch": 3840, + "Ġbund": 13882, + "Ġbundle": 24438, + "Ġbung": 50045, + "Ġbunk": 25125, + "Ġbunker": 39579, + "Ġbunlar": 37921, + "Ġbunları": 45695, + "Ġbunny": 28588, + "Ġbuns": 33452, + "Ġbunu": 18155, + "Ġbunun": 31697, + "Ġbuoy": 42841, + "Ġbur": 2779, + "Ġburada": 19167, + "Ġburadan": 49443, + "Ġburaya": 33548, + "Ġburden": 12578, + "Ġburdens": 37882, + "Ġbure": 23425, + "Ġbureau": 35343, + "Ġbureauc": 26360, + "Ġbureaucracy": 44671, + "Ġburg": 41000, + "Ġburger": 16393, + "Ġburgers": 28403, + "Ġburial": 35751, + "Ġburied": 14101, + "Ġburn": 5064, + "Ġburned": 13490, + "Ġburner": 36116, + "Ġburning": 9488, + "Ġburnout": 44841, + "Ġburns": 22684, + "Ġburnt": 18901, + "Ġburst": 12712, + "Ġbursting": 45713, + "Ġbursts": 41663, + "Ġbury": 28919, + "Ġbus": 1255, + "Ġbusca": 37492, + "Ġbuscando": 46804, + "Ġbuscar": 26170, + "Ġbuses": 20519, + "Ġbush": 19910, + "Ġbushes": 34303, + "Ġbusiness": 1606, + "Ġbusinesses": 6011, + "Ġbusinessman": 35317, + "Ġbust": 19432, + "Ġbusted": 41074, + "Ġbusy": 5856, + "Ġbut": 457, + "Ġbutcher": 41579, + "Ġbutt": 6660, + "Ġbutter": 5517, + "Ġbutterflies": 31987, + "Ġbutterfly": 22140, + "Ġbutton": 2960, + "Ġbuttons": 9905, + "Ġbutts": 46789, + "Ġbuy": 2256, + "Ġbuyer": 24645, + "Ġbuyers": 23465, + "Ġbuying": 6382, + "Ġbuys": 28153, + "Ġbuzz": 13036, + "Ġbuzzing": 29659, + "Ġby": 538, + "Ġbye": 6543, + "Ġbypass": 24996, + "Ġbyte": 40846, + "Ġbytes": 36088, + "ĠbyÄĩ": 15069, + "ĠbyÅĤ": 16673, + "ĠbyÅĤa": 23936, + "ĠbyÅĤo": 14811, + "ĠbyÅĤy": 26366, + "Ġbzw": 39998, + "Ġbás": 25545, + "Ġbásicamente": 48282, + "Ġbättre": 44842, + "ĠbÃ¥": 32758, + "ĠbÃ¥de": 39845, + "Ġbé": 15807, + "Ġbén": 41249, + "Ġbên": 43730, + "Ġbö": 41715, + "Ġböl": 36413, + "Ġbör": 21175, + "Ġbörjar": 49534, + "Ġböyle": 11018, + "Ġbütün": 27977, + "Ġbüy": 19445, + "Ġbüyük": 24059, + "Ġbı": 19902, + "Ġbırak": 24179, + "ĠbÄĻd": 8218, + "ĠbÄĻdzie": 10562, + "ĠbÄĻdziemy": 31966, + "ĠbÄĻdÄħ": 26239, + "ĠbÄĻdÄĻ": 39240, + "Ġbạn": 14647, + "Ġbá»ĭ": 32113, + "Ġc": 269, + "Ġca": 1335, + "Ġcab": 5487, + "Ġcabbage": 22944, + "Ġcabe": 18893, + "Ġcabeza": 34615, + "Ġcabeça": 33056, + "Ġcabin": 9401, + "Ġcabinet": 15188, + "Ġcabinets": 37427, + "Ġcable": 8220, + "Ġcables": 17555, + "Ġcabo": 41335, + "Ġcach": 32773, + "Ġcache": 19459, + "Ġcactus": 44287, + "Ġcad": 12209, + "Ġcada": 8411, + "Ġcade": 37571, + "Ġcadence": 46109, + "Ġcadre": 39546, + "Ġcaf": 15246, + "Ġcafe": 17773, + "Ġcafes": 48851, + "Ġcafeter": 38719, + "Ġcafeteria": 42230, + "Ġcaffe": 29118, + "Ġcaffeine": 31261, + "Ġcafé": 25118, + "Ġcage": 17302, + "Ġcages": 45888, + "Ġcai": 46523, + "Ġcake": 5908, + "Ġcakes": 19932, + "Ġcal": 2104, + "Ġcalam": 43936, + "Ġcalcium": 20918, + "Ġcalcul": 4322, + "Ġcalculate": 8873, + "Ġcalculated": 15598, + "Ġcalculating": 28258, + "Ġcalculation": 17108, + "Ġcalculations": 20448, + "Ġcalculator": 24993, + "Ġcalculus": 33400, + "Ġcalend": 37022, + "Ġcalendar": 12183, + "Ġcalf": 31893, + "Ġcalib": 21583, + "Ġcaliber": 41946, + "Ġcalibration": 38732, + "Ġcalidad": 42955, + "Ġcall": 818, + "Ġcalle": 45092, + "Ġcalled": 1219, + "Ġcaller": 48324, + "Ġcalling": 5141, + "Ġcalls": 5498, + "Ġcalm": 7151, + "Ġcalming": 39723, + "Ġcalmly": 39740, + "Ġcalor": 31575, + "Ġcalorie": 35004, + "Ġcalories": 14904, + "Ġcalves": 43755, + "Ġcam": 1945, + "Ġcama": 50197, + "Ġcamar": 43764, + "Ġcamb": 18751, + "Ġcambi": 19569, + "Ġcambiar": 37738, + "Ġcambio": 28731, + "Ġcame": 1361, + "Ġcamel": 37755, + "Ġcamer": 38946, + "Ġcamera": 2799, + "Ġcameraman": 46858, + "Ġcameras": 8622, + "Ġcaminho": 37215, + "Ġcamino": 34124, + "Ġcamoufl": 39491, + "Ġcamouflage": 47625, + "Ġcamp": 2255, + "Ġcampa": 37597, + "Ġcampaign": 5129, + "Ġcampaigns": 16840, + "Ġcampe": 48566, + "Ġcamper": 45936, + "Ġcamping": 19470, + "Ġcampo": 29691, + "Ġcamps": 16573, + "Ġcampus": 4828, + "Ġcampuses": 24233, + "Ġcan": 393, + "Ġcanal": 9911, + "Ġcancel": 10373, + "Ġcanceled": 24839, + "Ġcancell": 19114, + "Ġcancellation": 45867, + "Ġcancelled": 25103, + "Ġcancer": 5592, + "Ġcancers": 31063, + "Ġcanción": 41897, + "Ġcand": 3955, + "Ġcandid": 6268, + "Ġcandidate": 11532, + "Ġcandidates": 11255, + "Ġcandies": 43877, + "Ġcandle": 17968, + "Ġcandles": 23774, + "Ġcandy": 11237, + "Ġcane": 27518, + "Ġcann": 12361, + "Ġcannabis": 26066, + "Ġcanned": 36462, + "Ġcannon": 25938, + "Ġcannons": 47649, + "Ġcannot": 2644, + "Ġcanoe": 47650, + "Ġcanon": 21985, + "Ġcanonical": 46491, + "Ġcanopy": 38235, + "Ġcans": 21835, + "Ġcant": 11223, + "Ġcantidad": 33757, + "Ġcanvas": 16267, + "Ġcanvi": 47920, + "Ġcanyon": 45424, + "Ġcanım": 30535, + "Ġcap": 1410, + "Ġcapabilities": 10862, + "Ġcapability": 13759, + "Ġcapable": 8189, + "Ġcapac": 4637, + "Ġcapacidad": 43507, + "Ġcapacit": 38961, + "Ġcapacitance": 50241, + "Ġcapacities": 39396, + "Ġcapacitor": 29372, + "Ġcapacity": 6042, + "Ġcapaz": 35453, + "Ġcape": 30414, + "Ġcapit": 33807, + "Ġcapita": 39727, + "Ġcapital": 4238, + "Ġcapitalism": 19704, + "Ġcapitalist": 31354, + "Ġcapitalize": 48114, + "Ġcaps": 13855, + "Ġcapsule": 29247, + "Ġcapt": 3770, + "Ġcaptain": 14871, + "Ġcaption": 31974, + "Ġcaptions": 44832, + "Ġcaptiv": 40769, + "Ġcaptive": 41762, + "Ġcaptivity": 48607, + "Ġcapture": 7983, + "Ġcaptured": 11828, + "Ġcaptures": 27986, + "Ġcapturing": 23384, + "Ġcar": 1032, + "Ġcara": 10962, + "Ġcaracter": 28760, + "ĠcaracterÃŃst": 34297, + "ĠcaracterÃŃsticas": 47990, + "Ġcaramel": 22793, + "Ġcarb": 12143, + "Ġcarboh": 24429, + "Ġcarbohyd": 26328, + "Ġcarbohydrate": 47048, + "Ġcarbohydrates": 36817, + "Ġcarbon": 5954, + "Ġcarbono": 48491, + "Ġcarbs": 30801, + "Ġcard": 2920, + "Ġcardboard": 22248, + "Ġcardi": 37051, + "Ġcardiac": 32129, + "Ġcardio": 34274, + "Ġcardiovascular": 31786, + "Ġcards": 5632, + "Ġcare": 1127, + "Ġcared": 19779, + "Ġcareer": 3988, + "Ġcareers": 16409, + "Ġcareful": 5026, + "Ġcarefully": 7500, + "Ġcareg": 25087, + "Ġcaregiver": 44305, + "Ġcaregivers": 35440, + "Ġcareless": 46187, + "Ġcares": 12310, + "Ġcarga": 41964, + "Ġcargo": 19449, + "Ġcaric": 45732, + "Ġcaring": 15365, + "Ġcarn": 23796, + "Ġcarne": 30089, + "Ġcarp": 26103, + "Ġcarpet": 18119, + "Ġcarr": 15910, + "Ġcarre": 30919, + "Ġcarriage": 31811, + "Ġcarried": 9094, + "Ġcarrier": 17574, + "Ġcarriers": 28541, + "Ġcarries": 16402, + "Ġcarro": 23428, + "Ġcarrot": 22767, + "Ġcarrots": 21005, + "Ġcarry": 3985, + "Ġcarrying": 9792, + "Ġcars": 5163, + "Ġcart": 5467, + "Ġcarta": 41815, + "Ġcarte": 31483, + "Ġcartoon": 18569, + "Ġcartoons": 34855, + "Ġcartridge": 27753, + "Ġcartridges": 47036, + "Ġcarts": 48128, + "Ġcarve": 33832, + "Ġcarved": 28613, + "Ġcarving": 31872, + "Ġcas": 3058, + "Ġcasa": 9022, + "Ġcascade": 50080, + "Ġcase": 1389, + "Ġcases": 3331, + "Ġcash": 6388, + "Ġcasi": 22567, + "Ġcasing": 45109, + "Ġcasino": 36278, + "Ġcaso": 9666, + "Ġcasos": 25135, + "Ġcass": 21943, + "Ġcassette": 40514, + "Ġcast": 4193, + "Ġcaste": 39262, + "Ġcasting": 17301, + "Ġcastle": 14114, + "Ġcasts": 41921, + "Ġcasual": 13052, + "Ġcasually": 34872, + "Ġcasualties": 35628, + "Ġcat": 3857, + "Ġcatal": 13192, + "Ġcatalog": 19746, + "Ġcatalyst": 23868, + "Ġcatast": 19754, + "Ġcatastroph": 28363, + "Ġcatastrophe": 36043, + "Ġcatastrophic": 34915, + "Ġcatch": 3745, + "Ġcatches": 25496, + "Ġcatching": 16124, + "Ġcatchy": 47168, + "Ġcateg": 4847, + "Ġcategor": 19250, + "Ġcategories": 10479, + "Ġcategory": 7719, + "Ġcater": 21557, + "Ġcaterp": 44982, + "Ġcath": 17763, + "Ġcathedral": 45346, + "Ġcats": 11111, + "Ġcattle": 19992, + "Ġcau": 42951, + "Ġcaucus": 47950, + "Ġcaught": 5415, + "Ġcauliflower": 43125, + "Ġcaus": 3302, + "Ġcausa": 23667, + "Ġcausal": 38755, + "Ġcause": 3082, + "Ġcaused": 7008, + "Ġcauses": 7700, + "Ġcausing": 9853, + "Ġcaut": 21130, + "Ġcaution": 23585, + "Ġcautious": 25278, + "Ġcav": 13971, + "Ġcaval": 32805, + "Ġcavalry": 41010, + "Ġcave": 11730, + "Ġcaveat": 43012, + "Ġcaves": 32288, + "Ġcavity": 32425, + "Ġcay": 45776, + "ĠcaÅĤ": 35224, + "ĠcaÅĤe": 47631, + "ĠcaÅĤy": 35226, + "Ġce": 1769, + "Ġcease": 27887, + "Ġceased": 49917, + "Ġceiling": 13655, + "Ġcel": 9277, + "Ġcela": 15437, + "Ġcele": 43165, + "Ġcelebr": 3886, + "Ġcelebrate": 8098, + "Ġcelebrated": 19366, + "Ġcelebrates": 47182, + "Ġcelebrating": 15252, + "Ġcelebration": 14184, + "Ġcelebrations": 38504, + "Ġcelebrities": 23200, + "Ġcelebrity": 18597, + "Ġcelery": 37643, + "Ġcelestial": 41003, + "Ġcell": 2815, + "Ġcelle": 25722, + "Ġcellphone": 42524, + "Ġcells": 5438, + "Ġcellular": 29267, + "Ġcelui": 22829, + "Ġcelular": 32378, + "Ġcement": 19729, + "Ġcemetery": 31176, + "Ġcen": 27900, + "Ġcena": 41777, + "Ġcens": 19019, + "Ġcensorship": 40985, + "Ġcensus": 23725, + "Ġcent": 1489, + "Ġcenter": 3056, + "Ġcentered": 18988, + "Ġcenters": 10898, + "Ġcentigrade": 44731, + "Ġcentimet": 44755, + "Ġcentimeter": 31914, + "Ġcentimeters": 23300, + "Ġcentr": 32199, + "Ġcentral": 5777, + "Ġcentralized": 32395, + "Ġcentre": 10093, + "Ġcentres": 30096, + "Ġcentrif": 44828, + "Ġcentro": 24607, + "Ġcents": 14941, + "Ġcenturies": 13926, + "Ġcentury": 4901, + "Ġcep": 45026, + "Ġcer": 10146, + "Ġceram": 49678, + "Ġceramic": 29996, + "Ġcerc": 36099, + "Ġcerca": 26770, + "Ġcere": 11643, + "Ġcereal": 26199, + "Ġcerebral": 43561, + "Ġceremon": 25920, + "Ġceremonies": 36176, + "Ġceremony": 12813, + "Ġcert": 5351, + "Ġcerta": 44438, + "Ġcertain": 1629, + "Ġcertaines": 36993, + "Ġcertainly": 3297, + "Ġcertains": 25263, + "Ġcertainty": 27022, + "Ġcerteza": 30424, + "Ġcertific": 12378, + "Ġcertificate": 15953, + "Ġcertificates": 32941, + "Ġcertification": 21775, + "Ġcertified": 18580, + "Ġcerto": 22261, + "Ġcerv": 39543, + "Ġcerve": 33792, + "Ġcervical": 49883, + "Ġces": 7879, + "Ġcess": 47052, + "Ġcet": 8603, + "Ġcetera": 11458, + "Ġcette": 5550, + "Ġceux": 21314, + "Ġcev": 43266, + "Ġch": 417, + "Ġcha": 6294, + "Ġchacun": 42241, + "Ġchain": 5021, + "Ġchains": 12626, + "Ġchair": 6090, + "Ġchairman": 22770, + "Ġchairs": 18299, + "Ġchakra": 46068, + "Ġchalk": 28660, + "Ġchall": 2076, + "Ġchalleng": 3333, + "Ġchallenge": 3430, + "Ġchallenged": 17737, + "Ġchallenges": 4759, + "Ġchallenging": 7595, + "Ġcham": 8268, + "Ġchama": 40954, + "Ġchamado": 43475, + "Ġchamber": 13610, + "Ġchambers": 34513, + "Ġchamp": 5921, + "Ġchampagne": 33336, + "Ġchampion": 10971, + "Ġchampions": 11230, + "Ġchampionship": 19070, + "Ġchampionships": 41433, + "Ġchance": 2931, + "Ġchancellor": 49225, + "Ġchances": 10486, + "Ġchang": 1534, + "Ġchange": 1319, + "Ġchanged": 3105, + "Ġchanger": 22822, + "Ġchanges": 2962, + "Ġchanging": 4473, + "Ġchann": 2078, + "Ġchannel": 2269, + "Ġchannels": 9235, + "Ġchant": 28280, + "Ġchanting": 35775, + "Ġchaos": 14158, + "Ġchaotic": 27013, + "Ġchap": 13223, + "Ġchapel": 42617, + "Ġchapter": 7187, + "Ġchapters": 20013, + "Ġchaque": 18920, + "Ġchar": 1290, + "Ġcharac": 1926, + "Ġcharacter": 2517, + "Ġcharacteristic": 16282, + "Ġcharacteristics": 10891, + "Ġcharacterization": 49246, + "Ġcharacterize": 38463, + "Ġcharacterized": 29361, + "Ġcharacters": 4342, + "Ġcharcoal": 30625, + "Ġcharge": 4602, + "Ġcharged": 11109, + "Ġcharger": 22213, + "Ġcharges": 12235, + "Ġcharging": 11379, + "Ġcharisma": 45969, + "Ġcharismatic": 41109, + "Ġcharitable": 44609, + "Ġcharities": 42006, + "Ġcharity": 16863, + "Ġcharm": 18904, + "Ġcharming": 23387, + "Ġcharms": 41383, + "Ġchart": 6927, + "Ġcharter": 27472, + "Ġcharts": 17767, + "Ġchase": 15359, + "Ġchased": 33091, + "Ġchasing": 17876, + "Ġchassis": 28262, + "Ġchat": 5081, + "Ġchats": 38057, + "Ġchatter": 26929, + "Ġchattering": 37432, + "Ġchatting": 24654, + "Ġchaud": 46548, + "Ġchauff": 49211, + "Ġchaîne": 28036, + "Ġchce": 28928, + "Ġchcia": 26497, + "Ġche": 947, + "Ġcheap": 7084, + "Ġcheaper": 12284, + "Ġcheapest": 29167, + "Ġcheat": 17470, + "Ġcheated": 28079, + "Ġcheating": 18309, + "Ġcheck": 1520, + "Ġchecked": 10033, + "Ġchecking": 8568, + "Ġchecklist": 30357, + "Ġcheckout": 37153, + "Ġcheckpoint": 42269, + "Ġchecks": 13834, + "Ġcheddar": 47435, + "Ġcheek": 12839, + "Ġcheeks": 24135, + "Ġcheer": 12581, + "Ġcheerful": 36942, + "Ġcheering": 11060, + "Ġcheers": 15301, + "Ġcheese": 5399, + "Ġcheesecake": 41348, + "Ġcheesy": 32549, + "Ġchef": 10530, + "Ġchefs": 30191, + "Ġcheg": 22115, + "Ġchega": 40157, + "Ġchegar": 25512, + "Ġchegou": 36799, + "Ġchem": 4771, + "Ġchemical": 7313, + "Ġchemicals": 16152, + "Ġchemin": 46006, + "Ġchemistry": 12558, + "Ġchemotherapy": 39238, + "Ġcher": 12085, + "Ġcherche": 41644, + "Ġchercher": 38747, + "Ġcherish": 38277, + "Ġcherry": 20164, + "Ġchess": 24122, + "Ġchest": 7443, + "Ġchests": 49142, + "Ġchew": 21200, + "Ġchewing": 31444, + "Ġchewy": 28139, + "Ġchez": 17855, + "Ġchi": 13228, + "Ġchia": 45793, + "Ġchiar": 47454, + "Ġchic": 33590, + "Ġchick": 14371, + "Ġchicken": 4662, + "Ġchickens": 22329, + "Ġchicks": 42214, + "Ġchicos": 46070, + "Ġchief": 9588, + "Ġchiff": 37627, + "Ġchil": 38002, + "Ġchild": 1440, + "Ġchildcare": 35330, + "Ġchildhood": 9278, + "Ġchildish": 42203, + "Ġchildren": 2227, + "Ġchili": 15575, + "Ġchill": 11355, + "Ġchilled": 45552, + "Ġchilli": 32523, + "Ġchilling": 31047, + "Ġchills": 48676, + "Ġchilly": 39815, + "Ġchim": 18375, + "Ġchime": 40921, + "Ġchimney": 45920, + "Ġchin": 14210, + "Ġchina": 43668, + "Ġchinese": 47272, + "Ġchip": 11409, + "Ġchips": 11583, + "Ġchir": 23782, + "Ġchirping": 36682, + "Ġchlor": 18178, + "Ġchloride": 35434, + "Ġchlorine": 39888, + "Ġcho": 1586, + "Ġchociaż": 48929, + "Ġchocol": 29792, + "Ġchocolate": 6215, + "Ġchocolates": 42018, + "Ġchodzi": 23998, + "Ġchoice": 3922, + "Ġchoices": 7994, + "Ġchoir": 31244, + "Ġchois": 37827, + "Ġchoix": 32688, + "Ġchoke": 34427, + "Ġchoking": 48540, + "Ġchol": 20961, + "Ġcholesterol": 24716, + "Ġchoose": 2826, + "Ġchooses": 25963, + "Ġchoosing": 10875, + "Ġchop": 7931, + "Ġchopped": 16497, + "Ġchopping": 35205, + "Ġchops": 47514, + "Ġchopsticks": 39443, + "Ġchor": 14965, + "Ġchord": 14137, + "Ġchords": 21733, + "Ġchore": 14625, + "Ġchoreography": 23482, + "Ġchores": 39551, + "Ġchorus": 22632, + "Ġchose": 5111, + "Ġchosen": 8614, + "Ġchoses": 14488, + "Ġchrist": 26586, + "Ġchrom": 16209, + "Ġchrome": 33120, + "Ġchromos": 26824, + "Ġchromosome": 42896, + "Ġchromosomes": 45228, + "Ġchron": 19393, + "Ġchronic": 14493, + "Ġchu": 40215, + "Ġchuck": 20870, + "Ġchuckles": 29151, + "Ġchuckling": 48167, + "Ġchunk": 16635, + "Ġchunks": 24004, + "Ġchunky": 45392, + "Ġchurch": 4128, + "Ġchurches": 15381, + "Ġchut": 45373, + "Ġchuy": 35522, + "Ġchw": 26237, + "Ġchwil": 41941, + "Ġchyba": 31532, + "Ġchúng": 24322, + "ĠchÃŃnh": 42178, + "ĠchÆ°a": 46575, + "Ġchá»": 23579, + "Ġchá»ī": 33566, + "Ġchá»ĭ": 45167, + "Ġci": 6983, + "Ġciao": 42860, + "Ġcic": 27464, + "Ġcidade": 27882, + "Ġcider": 40515, + "Ġcie": 30596, + "Ġciek": 46419, + "Ġciel": 34380, + "Ġcielo": 49549, + "Ġcient": 31590, + "Ġciento": 47361, + "ĠcientÃŃfic": 37053, + "Ġcier": 39769, + "Ġciert": 49252, + "Ġcierto": 28558, + "Ġcig": 13474, + "Ġcigar": 41952, + "Ġcigarette": 26184, + "Ġcigarettes": 29244, + "Ġcilantro": 43626, + "Ġcima": 22586, + "Ġcin": 6539, + "Ġcinco": 21350, + "Ġcine": 45144, + "Ġcinema": 17178, + "Ġcinemat": 43520, + "Ġcinematic": 32250, + "Ġcinnamon": 22969, + "Ġcinq": 43335, + "Ġcioè": 41827, + "Ġcir": 2450, + "Ġcirc": 3510, + "Ġcirca": 45972, + "Ġcircle": 6329, + "Ġcircles": 13040, + "Ġcircuit": 9048, + "Ġcircuits": 26354, + "Ġcircul": 12515, + "Ġcircular": 16476, + "Ġcirculating": 39749, + "Ġcirculation": 23168, + "Ġcircum": 7125, + "Ġcircumst": 7982, + "Ġcircumstance": 27640, + "Ġcircumstances": 9121, + "Ġcircus": 32155, + "Ġcis": 37847, + "Ġcit": 4814, + "Ġcitation": 45590, + "Ġcite": 37771, + "Ġcited": 30134, + "Ġcities": 6486, + "Ġciting": 48749, + "Ġcitiz": 5655, + "Ġcitizen": 13326, + "Ġcitizens": 7180, + "Ġcitizenship": 23808, + "Ġcitoy": 47652, + "Ġcitrus": 37217, + "Ġcity": 2307, + "Ġciud": 18186, + "Ġciudad": 24329, + "Ġciv": 13779, + "Ġcivic": 29089, + "Ġcivil": 5605, + "Ġcivilian": 23386, + "Ġcivilians": 26073, + "Ġcivilization": 18036, + "Ġcivilizations": 40749, + "ĠciÄħ": 42398, + "ĠciÄĻ": 35484, + "Ġcl": 596, + "Ġcla": 3583, + "Ġclaim": 3932, + "Ġclaimed": 12941, + "Ġclaiming": 19232, + "Ġclaims": 9441, + "Ġclair": 41375, + "Ġclairement": 47754, + "Ġclam": 34112, + "Ġclamp": 17690, + "Ġclamps": 44423, + "Ġclams": 46377, + "Ġclan": 25887, + "Ġclap": 20760, + "Ġclapping": 19978, + "Ġclaps": 38542, + "Ġclar": 6093, + "Ġclarification": 34449, + "Ġclarified": 47605, + "Ġclarify": 17594, + "Ġclarity": 16992, + "Ġclaro": 16742, + "Ġclase": 44578, + "Ġclash": 36508, + "Ġclass": 1508, + "Ġclasse": 32400, + "Ġclasses": 5359, + "Ġclassic": 7230, + "Ġclassical": 13735, + "Ġclassics": 36110, + "Ġclassification": 21538, + "Ġclassified": 20627, + "Ġclassify": 33872, + "Ġclassmates": 24964, + "Ġclassroom": 7419, + "Ġclassrooms": 22890, + "Ġclassy": 43989, + "Ġclause": 25925, + "Ġclauses": 49072, + "Ġclaw": 32019, + "Ġclaws": 34258, + "Ġclay": 13517, + "Ġcle": 1233, + "Ġclean": 2541, + "Ġcleaned": 16146, + "Ġcleaner": 16532, + "Ġcleaning": 8924, + "Ġcleans": 16912, + "Ġcleanse": 36085, + "Ġcleansing": 29345, + "Ġcleanup": 40991, + "Ġclear": 1850, + "Ġclearance": 27218, + "Ġcleared": 19725, + "Ġclearer": 26131, + "Ġclearing": 23937, + "Ġclearly": 4448, + "Ġclears": 47033, + "Ġcler": 25902, + "Ġclergy": 45995, + "Ġclerk": 31402, + "Ġclever": 13494, + "Ġclic": 33661, + "Ġclich": 39190, + "Ġcliche": 46705, + "Ġclick": 2052, + "Ġclicked": 23370, + "Ġclicking": 9697, + "Ġclicks": 18521, + "Ġclient": 6423, + "Ġclients": 6982, + "Ġcliff": 22316, + "Ġcliffs": 50039, + "Ġclim": 5644, + "Ġclimate": 5659, + "Ġclimax": 41329, + "Ġclimb": 10724, + "Ġclimbed": 28691, + "Ġclimbing": 14780, + "Ġclimbs": 48439, + "Ġclin": 5538, + "Ġcling": 35986, + "Ġclinic": 14947, + "Ġclinical": 9115, + "Ġclinically": 48392, + "Ġclinician": 45962, + "Ġclinicians": 32862, + "Ġclinics": 27252, + "Ġclip": 7353, + "Ġclipping": 49320, + "Ġclips": 13117, + "Ġclique": 44467, + "Ġclo": 20123, + "Ġcloak": 45004, + "Ġclock": 7830, + "Ġclocks": 41528, + "Ġclockwise": 35790, + "Ġclog": 34455, + "Ġclone": 26506, + "Ġclones": 43803, + "Ġclos": 2611, + "Ġclose": 1998, + "Ġclosed": 5395, + "Ġclosely": 8185, + "Ġcloser": 4966, + "Ġcloses": 24157, + "Ġclosest": 13699, + "Ġcloset": 16669, + "Ġclosing": 10377, + "Ġclosure": 24653, + "Ġclot": 48587, + "Ġcloth": 13619, + "Ġclothes": 5534, + "Ġclothing": 11502, + "Ġcloud": 4588, + "Ġclouds": 12193, + "Ġcloudy": 33060, + "Ġcloves": 39139, + "Ġclown": 22209, + "Ġclub": 6482, + "Ġclubs": 15428, + "Ġclue": 13602, + "Ġclues": 20936, + "Ġclumsy": 44640, + "Ġcluster": 13630, + "Ġclusters": 23313, + "Ġclutch": 20597, + "Ġclutter": 40614, + "Ġclás": 47434, + "Ġcm": 14668, + "Ġco": 598, + "Ġcoach": 6560, + "Ġcoaches": 17503, + "Ġcoaching": 15818, + "Ġcoal": 10209, + "Ġcoalition": 21371, + "Ġcoarse": 39312, + "Ġcoast": 8684, + "Ġcoastal": 25050, + "Ġcoaster": 28442, + "Ġcoat": 10690, + "Ġcoated": 28489, + "Ġcoating": 20163, + "Ġcoats": 30036, + "Ġcob": 39527, + "Ġcobra": 48790, + "Ġcoc": 21047, + "Ġcocaine": 33933, + "Ġcoch": 48599, + "Ġcock": 11241, + "Ġcockpit": 35990, + "Ġcockro": 45927, + "Ġcocktail": 26382, + "Ġcocktails": 49006, + "Ġcoco": 21611, + "Ġcocoa": 30634, + "Ġcocon": 12893, + "Ġcoconut": 13551, + "Ġcod": 17656, + "Ġcode": 3089, + "Ġcoded": 34874, + "Ġcodes": 14211, + "Ġcoding": 17720, + "Ġcoe": 12155, + "Ġcoefficient": 17619, + "Ġcoefficients": 31994, + "Ġcoerc": 49741, + "Ġcoeur": 45781, + "Ġcoexist": 48086, + "Ġcoff": 24768, + "Ġcoffee": 4982, + "Ġcoffin": 38361, + "Ġcog": 46521, + "Ġcogn": 11786, + "Ġcognition": 46905, + "Ġcognitive": 15605, + "Ġcoh": 21683, + "Ġcoher": 26528, + "Ġcoherent": 36239, + "Ġcohesive": 43025, + "Ġcohort": 28902, + "Ġcoil": 22225, + "Ġcoils": 43639, + "Ġcoin": 11464, + "Ġcoinc": 13001, + "Ġcoincidence": 22137, + "Ġcoined": 45222, + "Ġcoins": 13561, + "Ġcoisa": 9614, + "Ġcoisas": 14567, + "Ġcoke": 33659, + "Ġcol": 1173, + "Ġcola": 40495, + "Ġcolabor": 49629, + "Ġcold": 3554, + "Ġcolder": 31020, + "Ġcole": 45139, + "Ġcoll": 1263, + "Ġcollab": 44228, + "Ġcollabor": 5091, + "Ġcollaborate": 18338, + "Ġcollaborated": 42463, + "Ġcollaborating": 30188, + "Ġcollaboration": 9363, + "Ġcollaborations": 36908, + "Ġcollaborative": 16555, + "Ġcollaborators": 39789, + "Ġcollagen": 40444, + "Ġcollaps": 16567, + "Ġcollapse": 15584, + "Ġcollapsed": 24578, + "Ġcollapses": 48765, + "Ġcollapsing": 45339, + "Ġcollar": 20672, + "Ġcollateral": 41875, + "Ġcolle": 5913, + "Ġcolleague": 13532, + "Ġcolleagues": 7734, + "Ġcollect": 2500, + "Ġcollected": 11087, + "Ġcollecting": 12510, + "Ġcollection": 5765, + "Ġcollections": 16641, + "Ġcollective": 12590, + "Ġcollectively": 24341, + "Ġcollector": 23960, + "Ġcollectors": 35384, + "Ġcollects": 39897, + "Ġcolleg": 13300, + "Ġcollege": 3859, + "Ġcolleges": 15272, + "Ġcollide": 49093, + "Ġcollision": 24644, + "Ġcollisions": 46537, + "Ġcoloc": 12327, + "Ġcoloca": 41231, + "Ġcolocar": 17568, + "Ġcolon": 8255, + "Ġcolonial": 19066, + "Ġcolonialism": 50033, + "Ġcolonies": 27981, + "Ġcolony": 23028, + "Ġcolor": 2017, + "Ġcolored": 14332, + "Ġcolorful": 18506, + "Ġcoloring": 23198, + "Ġcolors": 4577, + "Ġcoloss": 48683, + "Ġcolour": 8267, + "Ġcoloured": 42042, + "Ġcolours": 16484, + "Ġcolum": 5970, + "Ġcolumn": 7738, + "Ġcolumns": 13766, + "Ġcom": 395, + "Ġcoma": 35106, + "Ġcomb": 2512, + "Ġcombat": 8361, + "Ġcombien": 48975, + "Ġcombin": 38514, + "Ġcombination": 6562, + "Ġcombinations": 21267, + "Ġcombine": 10432, + "Ġcombined": 9354, + "Ġcombines": 29520, + "Ġcombining": 21928, + "Ġcombo": 16859, + "Ġcombos": 44079, + "Ġcombust": 21161, + "Ġcombustion": 28121, + "Ġcome": 808, + "Ġcomeback": 23464, + "Ġcomed": 18418, + "Ġcomedian": 30212, + "Ġcomedy": 13394, + "Ġcomen": 36222, + "Ġcoment": 14541, + "Ġcomentarios": 36842, + "Ġcomentários": 43739, + "Ġcomenz": 29564, + "Ġcomer": 16510, + "Ġcomercial": 43163, + "Ġcomes": 1487, + "Ġcomet": 33696, + "Ġcomeç": 14596, + "Ġcomeça": 32568, + "Ġcomeçar": 24379, + "Ġcomeço": 48958, + "Ġcomeçou": 37393, + "Ġcomfort": 3400, + "Ġcomfortable": 4619, + "Ġcomfortably": 25101, + "Ġcomforting": 38439, + "Ġcomfy": 34523, + "Ġcomic": 13900, + "Ġcomics": 18756, + "Ġcomida": 30779, + "Ġcomigo": 35696, + "Ġcomin": 35814, + "Ġcoming": 1348, + "Ġcomm": 800, + "Ġcomma": 22117, + "Ġcommand": 5622, + "Ġcommanded": 34359, + "Ġcommander": 17885, + "Ġcommanders": 42932, + "Ġcommandments": 40289, + "Ġcommands": 16901, + "Ġcomme": 5173, + "Ġcommemor": 30461, + "Ġcommen": 29199, + "Ġcommence": 18137, + "Ġcommencement": 34558, + "Ġcommencer": 32817, + "Ġcommencé": 37561, + "Ġcommend": 35987, + "Ġcomment": 2871, + "Ġcommentaires": 46663, + "Ġcommentary": 23527, + "Ġcommented": 26940, + "Ġcommenting": 29590, + "Ġcomments": 3053, + "Ġcommer": 5906, + "Ġcommerce": 26320, + "Ġcommercial": 6841, + "Ġcommercially": 41751, + "Ġcommercials": 33666, + "Ġcommission": 9221, + "Ġcommissioned": 32372, + "Ġcommissioner": 33678, + "Ġcommissions": 38912, + "Ġcommit": 5599, + "Ġcommitment": 8371, + "Ġcommitments": 26230, + "Ġcommits": 48311, + "Ġcommitted": 7784, + "Ġcommittee": 7482, + "Ġcommittees": 25998, + "Ġcommitting": 26659, + "Ġcommod": 19931, + "Ġcommodities": 40777, + "Ġcommodity": 29125, + "Ġcommon": 2689, + "Ġcommonly": 12719, + "Ġcommun": 1199, + "Ġcommunal": 43893, + "Ġcommunaut": 38074, + "Ġcommunauté": 49056, + "Ġcommunic": 3363, + "Ġcommunicate": 7890, + "Ġcommunicated": 34989, + "Ġcommunicating": 17559, + "Ġcommunication": 6101, + "Ġcommunications": 15163, + "Ġcommunion": 42808, + "Ġcommunism": 42160, + "Ġcommunist": 29347, + "Ġcommunities": 4456, + "Ġcommunity": 1768, + "Ġcommute": 36750, + "Ġcomo": 2617, + "Ġcomp": 715, + "Ġcompact": 14679, + "Ġcompan": 3168, + "Ġcompanies": 3431, + "Ġcompanion": 22363, + "Ġcompanions": 28009, + "Ġcompany": 2237, + "Ġcompar": 6311, + "Ġcomparable": 25323, + "Ġcomparative": 39292, + "Ġcompare": 6794, + "Ġcompared": 5347, + "Ġcompares": 38334, + "Ġcomparing": 15763, + "Ġcomparison": 9660, + "Ġcomparisons": 33157, + "Ġcompart": 18113, + "Ġcompartil": 40204, + "Ġcompartir": 40667, + "Ġcompartment": 26505, + "Ġcompass": 10707, + "Ġcompassion": 12601, + "Ġcompassionate": 30531, + "Ġcompat": 13147, + "Ġcompatibility": 34237, + "Ġcompatible": 18218, + "Ġcompañ": 29953, + "Ġcompe": 16291, + "Ġcompelled": 40021, + "Ġcompelling": 20050, + "Ġcompens": 11598, + "Ġcompensate": 29458, + "Ġcompensation": 19644, + "Ġcompet": 2850, + "Ġcompete": 11831, + "Ġcompeted": 43619, + "Ġcompetence": 39965, + "Ġcompetency": 50097, + "Ġcompetent": 29998, + "Ġcompeting": 15439, + "Ġcompetit": 41131, + "Ġcompetition": 6211, + "Ġcompetitions": 26185, + "Ġcompetitive": 10043, + "Ġcompetitor": 27266, + "Ġcompetitors": 18333, + "Ġcompilation": 40261, + "Ġcompile": 31413, + "Ġcompiled": 36548, + "Ġcompiler": 31958, + "Ġcompl": 1209, + "Ġcomplac": 49546, + "Ġcomplain": 11024, + "Ġcomplained": 33951, + "Ġcomplaining": 20740, + "Ġcomplaint": 20100, + "Ġcomplaints": 19585, + "Ġcomple": 44424, + "Ġcomplement": 17103, + "Ġcomplementary": 40705, + "Ġcomplet": 1557, + "Ġcompleta": 46822, + "Ġcompletamente": 28381, + "Ġcomplete": 3566, + "Ġcompleted": 7365, + "Ġcompletely": 2584, + "Ġcompletes": 36362, + "Ġcompleting": 19472, + "Ġcompletion": 19372, + "Ġcompleto": 40135, + "Ġcomplex": 3997, + "Ġcomplexes": 43676, + "Ġcomplexities": 48705, + "Ġcomplexity": 14024, + "Ġcompliance": 15882, + "Ġcompliant": 36248, + "Ġcomplic": 16060, + "Ġcomplicado": 49850, + "Ġcomplicated": 6179, + "Ġcomplications": 26566, + "Ġcompliment": 16250, + "Ġcomplimentary": 47162, + "Ġcompliments": 35468, + "Ġcompliqué": 44290, + "Ġcomply": 27956, + "Ġcomplètement": 31331, + "Ġcompon": 4026, + "Ġcomponent": 6542, + "Ġcomponents": 6677, + "Ġcomport": 25883, + "Ġcompos": 10199, + "Ġcompose": 35925, + "Ġcomposed": 18204, + "Ġcomposer": 26003, + "Ġcomposers": 43872, + "Ġcomposite": 25557, + "Ġcomposition": 12686, + "Ġcompositions": 43401, + "Ġcompost": 20203, + "Ġcompound": 14154, + "Ġcompounds": 21810, + "Ġcompr": 16802, + "Ġcompra": 39323, + "Ġcomprar": 22077, + "Ġcompreh": 10753, + "Ġcomprehend": 38183, + "Ġcomprehension": 44991, + "Ġcomprehensive": 13914, + "Ġcomprend": 30765, + "Ġcomprendre": 26856, + "Ġcompress": 14778, + "Ġcompressed": 30353, + "Ġcompression": 19355, + "Ġcompressor": 28765, + "Ġcompris": 31711, + "Ġcomprised": 38062, + "Ġcomprom": 11482, + "Ġcompromise": 18577, + "Ġcompromised": 32463, + "Ġcompt": 15660, + "Ġcompte": 19424, + "Ġcompuls": 42773, + "Ġcomput": 2807, + "Ġcomputation": 24903, + "Ġcomputational": 28270, + "Ġcompute": 14722, + "Ġcomputed": 40610, + "Ġcomputer": 3820, + "Ġcomputers": 10807, + "Ġcomputing": 15866, + "Ġcomrades": 42249, + "Ġcomum": 44324, + "Ġcomun": 11040, + "Ġcomunic": 31710, + "Ġcomunidad": 35695, + "Ġcomunque": 45736, + "Ġcomún": 45448, + "Ġcon": 416, + "Ġconc": 1588, + "Ġconce": 10413, + "Ġconceal": 40170, + "Ġconcealed": 46305, + "Ġconcealer": 30672, + "Ġconceive": 48605, + "Ġconceived": 34898, + "Ġconcent": 5512, + "Ġconcentrate": 18089, + "Ġconcentrated": 21321, + "Ġconcentrating": 40571, + "Ġconcentration": 9856, + "Ġconcentrations": 33512, + "Ġconcept": 3410, + "Ġconception": 30698, + "Ġconcepts": 10392, + "Ġconceptual": 24106, + "Ġconcer": 16311, + "Ġconcern": 3136, + "Ġconcerned": 5922, + "Ġconcerning": 18087, + "Ġconcerns": 7389, + "Ġconcert": 8543, + "Ġconcerts": 24924, + "Ġconcise": 44882, + "Ġconclud": 9312, + "Ġconclude": 16886, + "Ġconcluded": 22960, + "Ġconcludes": 24643, + "Ġconclus": 18646, + "Ġconclusion": 10063, + "Ġconclusions": 22865, + "Ġconcret": 39481, + "Ġconcrete": 9859, + "Ġconcur": 23702, + "Ġconcurrent": 37702, + "Ġcond": 2224, + "Ġcondem": 18510, + "Ġcondemn": 30733, + "Ġcondemned": 36472, + "Ġcondensed": 36398, + "Ġcondiciones": 45960, + "Ġcondition": 4188, + "Ġconditional": 27708, + "Ġconditioned": 35833, + "Ġconditioner": 33558, + "Ġconditioning": 21901, + "Ġconditions": 4487, + "Ġcondu": 15504, + "Ġconduc": 45095, + "Ġconduct": 6018, + "Ġconducted": 13809, + "Ġconducting": 21749, + "Ġconduction": 43842, + "Ġconductivity": 42982, + "Ġconductor": 29957, + "Ġcone": 19749, + "Ġconect": 30458, + "Ġcones": 40548, + "Ġconex": 49509, + "Ġconf": 1497, + "Ġconfer": 13765, + "Ġconference": 7586, + "Ġconferences": 22032, + "Ġconfess": 19367, + "Ġconfessed": 41428, + "Ġconfession": 29154, + "Ġconfian": 49081, + "Ġconfiance": 43213, + "Ġconfidence": 6687, + "Ġconfident": 6679, + "Ġconfidential": 27054, + "Ġconfidently": 41956, + "Ġconfig": 6662, + "Ġconfigur": 22192, + "Ġconfiguration": 11694, + "Ġconfigurations": 31493, + "Ġconfigure": 22162, + "Ġconfigured": 30538, + "Ġconfined": 31745, + "Ġconfinement": 41064, + "Ġconfir": 9186, + "Ġconfirm": 9064, + "Ġconfirmation": 21871, + "Ġconfirmed": 11341, + "Ġconfirming": 42861, + "Ġconfirms": 39982, + "Ġconfisc": 49868, + "Ġconflict": 6596, + "Ġconflicting": 43784, + "Ġconflicts": 19807, + "Ġconform": 18975, + "Ġconfort": 43392, + "Ġconfront": 12422, + "Ġconfrontation": 35363, + "Ġconfronted": 31257, + "Ġconfronting": 47449, + "Ġconfuse": 28584, + "Ġconfused": 9019, + "Ġconfusing": 13181, + "Ġconfusion": 15075, + "Ġcongest": 31871, + "Ġcongestion": 40816, + "Ġcongr": 8882, + "Ġcongrat": 9774, + "Ġcongratulate": 24353, + "Ġcongratulations": 13568, + "Ġcongreg": 23002, + "Ġcongregation": 34782, + "Ġcongress": 17546, + "Ġcongressional": 32962, + "Ġconhe": 15440, + "Ġconhecer": 46235, + "Ġconj": 20295, + "Ġconjug": 29456, + "Ġconjugate": 45064, + "Ġconjun": 18244, + "Ġconjunction": 27482, + "Ġconjunto": 37776, + "Ġconn": 46264, + "Ġconna": 15477, + "Ġconnais": 45784, + "Ġconnect": 1745, + "Ġconnected": 4582, + "Ġconnecting": 11015, + "Ġconnection": 4984, + "Ġconnections": 9271, + "Ġconnectivity": 21095, + "Ġconnector": 19127, + "Ġconnectors": 31865, + "Ġconnects": 16967, + "Ġconnot": 46371, + "Ġcono": 33029, + "Ġconoc": 15871, + "Ġconocer": 35241, + "Ġconos": 49892, + "Ġconqu": 15592, + "Ġconquer": 24136, + "Ġconquered": 32695, + "Ġconquest": 43241, + "Ġcons": 1014, + "Ġconsci": 39271, + "Ġconscience": 20537, + "Ġconscient": 44507, + "Ġconscious": 6648, + "Ġconsciously": 32538, + "Ġconsciousness": 10081, + "Ġconse": 4425, + "Ġconsec": 40526, + "Ġconsecut": 27154, + "Ġconsecutive": 30497, + "Ġconsegu": 12706, + "Ġconsegue": 27179, + "Ġconseguir": 21229, + "Ġconsensus": 19115, + "Ġconsent": 14546, + "Ġconsequ": 7242, + "Ġconsequence": 18326, + "Ġconsequences": 10098, + "Ġconsequently": 47259, + "Ġconserv": 9704, + "Ġconservation": 16185, + "Ġconservative": 13780, + "Ġconservatives": 39607, + "Ġconserve": 45240, + "Ġconsid": 30376, + "Ġconsider": 1949, + "Ġconsiderable": 24167, + "Ġconsiderably": 31308, + "Ġconsideration": 12381, + "Ġconsiderations": 24070, + "Ġconsidered": 4888, + "Ġconsidering": 8079, + "Ġconsiders": 33095, + "Ġconsig": 40233, + "Ġconsigo": 43688, + "Ġconsist": 4603, + "Ġconsiste": 49066, + "Ġconsisted": 38227, + "Ġconsistency": 14416, + "Ġconsistent": 8398, + "Ġconsistently": 14961, + "Ġconsisting": 33921, + "Ġconsists": 14689, + "Ġconsol": 16054, + "Ġconsole": 11076, + "Ġconsoles": 28948, + "Ġconsolid": 19045, + "Ġconsolidate": 49521, + "Ġconsolidated": 49008, + "Ġconsolidation": 39114, + "Ġconsomm": 47688, + "Ġconson": 30843, + "Ġconsonant": 43647, + "Ġconsort": 38343, + "Ġconspir": 17719, + "Ġconspiracy": 20439, + "Ġconst": 1817, + "Ġconstant": 5754, + "Ġconstante": 47343, + "Ġconstantly": 6460, + "Ġconstants": 35870, + "Ġconstell": 32436, + "Ġconstellation": 42336, + "Ġconstit": 23079, + "Ġconstitu": 16085, + "Ġconstituency": 46146, + "Ġconstituents": 30847, + "Ġconstitute": 41658, + "Ġconstitutes": 44204, + "Ġconstitution": 11937, + "Ġconstitutional": 20176, + "Ġconstra": 11525, + "Ġconstrained": 38901, + "Ġconstraint": 25534, + "Ġconstraints": 18491, + "Ġconstru": 12946, + "Ġconstruct": 7690, + "Ġconstructed": 17083, + "Ġconstructing": 39969, + "Ġconstruction": 6435, + "Ġconstructive": 30223, + "Ġconstructor": 47479, + "Ġconstruir": 38445, + "Ġconsult": 7189, + "Ġconsultant": 24676, + "Ġconsultants": 38935, + "Ġconsultation": 20932, + "Ġconsulted": 47941, + "Ġconsulting": 23682, + "Ġconsum": 3978, + "Ġconsume": 14732, + "Ġconsumed": 21226, + "Ġconsumer": 9711, + "Ġconsumers": 11883, + "Ġconsumes": 48823, + "Ġconsuming": 19867, + "Ġconsumo": 42505, + "Ġconsumption": 12126, + "Ġconséqu": 47648, + "Ġcont": 660, + "Ġconta": 24001, + "Ġcontact": 3385, + "Ġcontacted": 21546, + "Ġcontacting": 41482, + "Ġcontacts": 15836, + "Ġcontag": 28525, + "Ġcontagious": 40666, + "Ġcontain": 5304, + "Ġcontained": 16212, + "Ġcontainer": 10129, + "Ġcontainers": 17089, + "Ġcontaining": 19273, + "Ġcontainment": 44058, + "Ġcontains": 8306, + "Ġcontam": 20463, + "Ġcontamin": 27562, + "Ġcontaminated": 34492, + "Ġcontamination": 33012, + "Ġcontar": 27045, + "Ġconte": 34444, + "Ġcontempl": 19935, + "Ġcontempor": 13046, + "Ġcontemporary": 14878, + "Ġcontempt": 47202, + "Ġconten": 21795, + "Ġcontenido": 47117, + "Ġcontent": 2701, + "Ġcontents": 15768, + "Ġcontest": 10287, + "Ġcontestants": 39676, + "Ġcontext": 4319, + "Ġcontexto": 47685, + "Ġcontexts": 30628, + "Ġcontextual": 35526, + "Ġconteú": 39065, + "Ġconteúdo": 44144, + "Ġcontin": 1421, + "Ġcontinent": 18932, + "Ġcontinental": 42479, + "Ġcontinents": 38598, + "Ġconting": 27820, + "Ġcontinu": 2993, + "Ġcontinua": 40861, + "Ġcontinually": 22277, + "Ġcontinuar": 29980, + "Ġcontinuation": 29357, + "Ġcontinue": 2354, + "Ġcontinued": 7014, + "Ġcontinuer": 35660, + "Ġcontinues": 6515, + "Ġcontinuing": 9289, + "Ġcontinuity": 23807, + "Ġcontinuous": 10957, + "Ġcontinuously": 15684, + "Ġcontinuum": 36120, + "Ġcontour": 21234, + "Ġcontr": 10273, + "Ġcontra": 10742, + "Ġcontrac": 48118, + "Ġcontract": 4364, + "Ġcontracted": 37629, + "Ġcontracting": 36095, + "Ġcontraction": 37372, + "Ġcontractor": 26463, + "Ġcontractors": 28377, + "Ġcontracts": 13952, + "Ġcontrad": 15858, + "Ġcontradict": 28900, + "Ġcontradiction": 34937, + "Ġcontradictory": 49555, + "Ġcontrario": 47642, + "Ġcontrary": 19506, + "Ġcontrast": 8712, + "Ġcontrat": 40944, + "Ġcontre": 14927, + "Ġcontrib": 4226, + "Ġcontribute": 10586, + "Ġcontributed": 18434, + "Ġcontributes": 32035, + "Ġcontributing": 19270, + "Ġcontribution": 13150, + "Ġcontributions": 15725, + "Ġcontributor": 42859, + "Ġcontributors": 45627, + "Ġcontro": 1583, + "Ġcontrol": 1969, + "Ġcontrolar": 47843, + "Ġcontrole": 46215, + "Ġcontroll": 45159, + "Ġcontrolled": 10164, + "Ġcontroller": 10561, + "Ġcontrollers": 26903, + "Ġcontrolling": 14905, + "Ġcontrols": 9003, + "Ġcontrovers": 11542, + "Ġcontroversial": 17323, + "Ġcontroversy": 22976, + "Ġcontrôle": 46518, + "Ġconv": 3754, + "Ġconve": 18053, + "Ġconvection": 49080, + "Ġconven": 7158, + "Ġconvenience": 19283, + "Ġconvenient": 10851, + "Ġconveniently": 44375, + "Ġconvention": 10286, + "Ġconventional": 16011, + "Ġconventions": 33520, + "Ġconver": 9652, + "Ġconverge": 41881, + "Ġconvergence": 32181, + "Ġconvers": 2615, + "Ġconversation": 3761, + "Ġconversations": 7315, + "Ġconversion": 14298, + "Ġconversions": 42256, + "Ġconvert": 7620, + "Ġconverted": 16424, + "Ġconverter": 33905, + "Ġconverting": 29942, + "Ġconverts": 38874, + "Ġconvex": 42432, + "Ġconvey": 16965, + "Ġconveyed": 49340, + "Ġconvicted": 26942, + "Ġconviction": 24837, + "Ġconvictions": 44757, + "Ġconvin": 9854, + "Ġconvince": 13447, + "Ġconvinced": 12561, + "Ġconvincing": 24823, + "Ġconvolution": 45216, + "Ġcook": 2543, + "Ġcooked": 9267, + "Ġcooker": 31476, + "Ġcookie": 14417, + "Ġcookies": 13670, + "Ġcooking": 6361, + "Ġcooks": 30709, + "Ġcool": 1627, + "Ġcooldown": 40782, + "Ġcooled": 27491, + "Ġcooler": 15566, + "Ġcoolest": 22013, + "Ġcooling": 14785, + "Ġcools": 42883, + "Ġcoop": 13215, + "Ġcooper": 13414, + "Ġcooperate": 26667, + "Ġcooperation": 14968, + "Ġcooperative": 31772, + "Ġcoord": 14230, + "Ġcoordin": 8285, + "Ġcoordinate": 15670, + "Ġcoordinated": 29591, + "Ġcoordinates": 21056, + "Ġcoordinating": 37824, + "Ġcoordination": 21252, + "Ġcoordinator": 27394, + "Ġcop": 2971, + "Ġcope": 22598, + "Ġcopied": 25365, + "Ġcopies": 14341, + "Ġcoping": 32893, + "Ġcopper": 15007, + "Ġcops": 19012, + "Ġcopy": 5055, + "Ġcopying": 27976, + "Ġcopyright": 17996, + "Ġcor": 1181, + "Ġcoral": 24955, + "Ġcoraz": 25899, + "Ġcorazón": 34518, + "Ġcoração": 41408, + "Ġcord": 12250, + "Ġcords": 36302, + "Ġcore": 4965, + "Ġcores": 24826, + "Ġcoriander": 34013, + "Ġcorn": 9046, + "Ġcorner": 4538, + "Ġcorners": 12413, + "Ġcoron": 10451, + "Ġcorona": 27103, + "Ġcoronavirus": 13043, + "Ġcorpo": 23257, + "Ġcorpor": 6804, + "Ġcorporate": 10896, + "Ġcorporation": 22197, + "Ġcorporations": 17676, + "Ġcorps": 18271, + "Ġcorpse": 30324, + "Ġcorpses": 46416, + "Ġcorr": 38576, + "Ġcorre": 29731, + "Ġcorrect": 3006, + "Ġcorrected": 31687, + "Ġcorrecting": 47032, + "Ġcorrection": 19984, + "Ġcorrections": 36406, + "Ġcorrectly": 8944, + "Ġcorrel": 13983, + "Ġcorrelate": 48742, + "Ġcorrelated": 38574, + "Ġcorrelation": 20009, + "Ġcorrer": 49568, + "Ġcorrespond": 6805, + "Ġcorrespondence": 38135, + "Ġcorrespondent": 44406, + "Ġcorresponding": 11760, + "Ġcorresponds": 23249, + "Ġcorri": 47908, + "Ġcorrid": 20322, + "Ġcorridor": 25602, + "Ġcorridors": 46920, + "Ġcorro": 45125, + "Ġcorros": 28957, + "Ġcorrosion": 33876, + "Ġcorrupt": 17366, + "Ġcorrupted": 39480, + "Ġcorruption": 17959, + "Ġcors": 46511, + "Ġcort": 11278, + "Ġcortar": 48117, + "Ġcortex": 33312, + "Ġcortisol": 45618, + "Ġcos": 3792, + "Ġcosa": 10163, + "Ġcosas": 12218, + "Ġcose": 30261, + "Ġcoses": 31860, + "Ġcosine": 23565, + "Ġcosm": 22207, + "Ġcosmetic": 35828, + "Ġcosmetics": 37416, + "Ġcosmic": 27614, + "Ġcosmos": 41794, + "Ġcosplay": 39403, + "Ġcost": 2063, + "Ġcosting": 37917, + "Ġcostly": 28328, + "Ġcosts": 5497, + "Ġcostume": 14850, + "Ġcostumes": 22695, + "Ġcosì": 23278, + "Ġcot": 26529, + "Ġcott": 11550, + "Ġcottage": 37209, + "Ġcotton": 13764, + "Ġcou": 1384, + "Ġcouch": 16511, + "Ġcough": 22777, + "Ġcoughing": 39375, + "Ġcould": 727, + "Ġcouldn": 2809, + "Ġcoule": 33644, + "Ġcouleur": 49462, + "Ġcoun": 3465, + "Ġcouncil": 9209, + "Ġcouncils": 39187, + "Ġcounsel": 10351, + "Ġcounseling": 23889, + "Ġcounselor": 27851, + "Ġcounselors": 36925, + "Ġcount": 1207, + "Ġcountdown": 35985, + "Ġcounted": 20150, + "Ġcounter": 5682, + "Ġcounterpart": 22335, + "Ġcounterparts": 33287, + "Ġcounters": 39338, + "Ġcounties": 20583, + "Ġcounting": 13251, + "Ġcountless": 19223, + "Ġcountries": 3517, + "Ġcountry": 1941, + "Ġcountryside": 28252, + "Ġcounts": 14893, + "Ġcounty": 9928, + "Ġcoup": 8682, + "Ġcoupe": 45136, + "Ġcouple": 1916, + "Ġcoupled": 29482, + "Ġcouples": 20368, + "Ġcoupling": 37447, + "Ġcoupon": 33390, + "Ġcour": 1005, + "Ġcourage": 9892, + "Ġcourageous": 33233, + "Ġcours": 25452, + "Ġcourse": 1164, + "Ġcourses": 7712, + "Ġcourt": 4753, + "Ġcourtesy": 41704, + "Ġcourtroom": 44050, + "Ġcourts": 14141, + "Ġcourtyard": 41364, + "Ġcous": 12304, + "Ġcousin": 16207, + "Ġcousins": 29246, + "Ġcovari": 49851, + "Ġcovenant": 26661, + "Ġcover": 2060, + "Ġcoverage": 9645, + "Ġcovered": 5343, + "Ġcovering": 10322, + "Ġcovers": 10538, + "Ġcovert": 45985, + "Ġcovet": 48497, + "Ġcovid": 25616, + "Ġcow": 8408, + "Ġcoward": 30776, + "Ġcowboy": 39174, + "Ġcowork": 31998, + "Ġcoworkers": 43465, + "Ġcows": 19148, + "Ġcoy": 41485, + "Ġcoz": 36747, + "Ġcozy": 29414, + "Ġcoû": 49743, + "ĠcoÅĽ": 19241, + "Ġcr": 941, + "Ġcra": 2094, + "Ġcrab": 17870, + "Ġcrabs": 35147, + "Ġcrack": 6226, + "Ġcracked": 25140, + "Ġcrackers": 41407, + "Ġcracking": 25229, + "Ġcracks": 21770, + "Ġcradle": 48081, + "Ġcraft": 8448, + "Ġcrafted": 36213, + "Ġcrafting": 29048, + "Ġcrafts": 27831, + "Ġcran": 39685, + "Ġcrane": 36345, + "Ġcrank": 21263, + "Ġcrap": 12426, + "Ġcrappy": 36531, + "Ġcrash": 8252, + "Ġcrashed": 24190, + "Ġcrashes": 28642, + "Ġcrashing": 26900, + "Ġcrate": 42426, + "Ġcrater": 38981, + "Ġcrave": 46875, + "Ġcraving": 27320, + "Ġcraw": 13999, + "Ġcrawl": 24767, + "Ġcrawling": 32979, + "Ġcray": 33073, + "Ġcraz": 46348, + "Ġcraziest": 46339, + "Ġcrazy": 3219, + "Ġcre": 1197, + "Ġcream": 4689, + "Ġcreams": 46573, + "Ġcreamy": 23215, + "Ġcrear": 31984, + "Ġcrease": 30098, + "Ġcreat": 1428, + "Ġcreate": 1884, + "Ġcreated": 2942, + "Ġcreates": 7829, + "Ġcreating": 4084, + "Ġcreation": 8016, + "Ġcreations": 37836, + "Ġcreative": 5880, + "Ġcreatively": 43750, + "Ġcreativity": 12915, + "Ġcreator": 14181, + "Ġcreators": 16039, + "Ġcreature": 12797, + "Ġcreatures": 12281, + "Ġcrec": 31668, + "Ġcred": 3864, + "Ġcredential": 22034, + "Ġcredentials": 27404, + "Ġcredibility": 28852, + "Ġcredible": 32757, + "Ġcredit": 5397, + "Ġcredited": 41155, + "Ġcredits": 16816, + "Ġcree": 48895, + "Ġcreek": 41868, + "Ġcreep": 9626, + "Ġcreeping": 47753, + "Ġcreepy": 14717, + "Ġcreo": 14336, + "Ġcres": 20964, + "Ġcrest": 43799, + "Ġcrew": 7260, + "Ġcrews": 31477, + "Ġcri": 12815, + "Ġcrian": 27659, + "Ġcriança": 43300, + "Ġcrianças": 45280, + "Ġcriar": 36882, + "Ġcrib": 47163, + "Ġcricket": 31626, + "Ġcried": 16266, + "Ġcries": 29206, + "Ġcrim": 7857, + "Ġcrime": 7206, + "Ġcrimes": 13916, + "Ġcrimin": 19044, + "Ġcriminal": 8628, + "Ġcriminals": 23474, + "Ġcringe": 47081, + "Ġcripp": 37667, + "Ġcris": 4661, + "Ġcrise": 32398, + "Ġcrises": 31403, + "Ġcrisis": 5869, + "Ġcrisp": 22952, + "Ġcrispy": 17509, + "Ġcrist": 35608, + "Ġcrit": 3113, + "Ġcriter": 9912, + "Ġcriteria": 11101, + "Ġcriterion": 46691, + "Ġcritic": 7850, + "Ġcritical": 4924, + "Ġcritically": 22797, + "Ġcriticism": 15835, + "Ġcriticisms": 48519, + "Ġcriticize": 31010, + "Ġcriticized": 28011, + "Ġcriticizing": 45474, + "Ġcritics": 22503, + "Ġcritique": 25673, + "Ġcro": 4848, + "Ġcroch": 8191, + "Ġcrochet": 9387, + "Ġcrochets": 27115, + "Ġcrocod": 32727, + "Ġcrocodile": 43652, + "Ġcrois": 21724, + "Ġcrooked": 41710, + "Ġcrop": 9086, + "Ġcrops": 16829, + "Ġcros": 28108, + "Ġcross": 3278, + "Ġcrossed": 14622, + "Ġcrosses": 28467, + "Ġcrossing": 14712, + "Ġcrossover": 33837, + "Ġcrouch": 46704, + "Ġcrow": 6401, + "Ġcrowd": 6919, + "Ġcrowded": 21634, + "Ġcrowds": 26070, + "Ġcrown": 11841, + "Ġcru": 5140, + "Ġcruc": 28154, + "Ġcrucial": 11462, + "Ġcrucified": 46846, + "Ġcrude": 30796, + "Ġcruel": 16022, + "Ġcruelty": 40145, + "Ġcruise": 17754, + "Ġcruising": 42180, + "Ġcrumble": 47478, + "Ġcrumbs": 42675, + "Ġcrunch": 13386, + "Ġcrunchy": 24942, + "Ġcrus": 42603, + "Ġcrush": 10321, + "Ġcrushed": 19889, + "Ġcrushing": 31317, + "Ġcrust": 18156, + "Ġcry": 3305, + "Ġcrying": 8554, + "Ġcrypt": 9844, + "Ġcrypto": 17240, + "Ġcryptocur": 22070, + "Ġcryptocurrencies": 44369, + "Ġcryptocurrency": 28809, + "Ġcryst": 17035, + "Ġcrystal": 13662, + "Ġcrystall": 31924, + "Ġcrystals": 23772, + "Ġcré": 15609, + "Ġcréd": 37368, + "Ġcréer": 32062, + "ĠcrÃŃt": 39927, + "Ġcs": 28277, + "Ġcsak": 47927, + "Ġcu": 2702, + "Ġcuad": 34434, + "Ġcual": 10911, + "Ġcuales": 46932, + "Ġcualquier": 21004, + "Ġcuando": 7767, + "Ġcuanto": 36685, + "Ġcuarto": 48368, + "Ġcuatro": 28795, + "Ġcub": 10057, + "Ġcube": 13728, + "Ġcubed": 36510, + "Ġcubes": 25415, + "Ġcubic": 28733, + "Ġcuc": 18488, + "Ġcucumber": 28725, + "Ġcucumbers": 43354, + "Ġcud": 40287, + "Ġcue": 22656, + "Ġcuent": 46414, + "Ġcuenta": 17868, + "Ġcuer": 18363, + "Ġcuerpo": 20264, + "Ġcues": 32192, + "Ġcuest": 36978, + "Ġcuestión": 50216, + "Ġcuff": 35997, + "Ġcui": 22929, + "Ġcuid": 20770, + "Ġcuidado": 31891, + "Ġcuisine": 25257, + "Ġcuk": 37485, + "Ġcul": 11021, + "Ġculinary": 39273, + "Ġculmin": 28583, + "Ġculpa": 44870, + "Ġculprit": 39220, + "Ġcult": 2376, + "Ġcultiv": 15298, + "Ġcultivate": 33341, + "Ġcultivated": 46770, + "Ġcultivation": 45924, + "Ġcultura": 30576, + "Ġcultural": 6988, + "Ġculturally": 28879, + "Ġculture": 3713, + "Ġcultures": 12951, + "Ġcum": 12713, + "Ġcuma": 44630, + "Ġcumin": 40950, + "Ġcumpl": 37483, + "Ġcumulative": 38379, + "Ġcunning": 45891, + "Ġcup": 4414, + "Ġcupboard": 47847, + "Ġcupcake": 42153, + "Ġcupcakes": 44515, + "Ġcups": 13381, + "Ġcur": 1262, + "Ġcurated": 47851, + "Ġcurator": 38519, + "Ġcurb": 33731, + "Ġcurd": 47443, + "Ġcure": 13698, + "Ġcured": 29617, + "Ġcurios": 13625, + "Ġcuriosity": 18769, + "Ġcurious": 6369, + "Ġcurl": 22591, + "Ġcurling": 45085, + "Ġcurls": 36950, + "Ġcurly": 32066, + "Ġcurrencies": 36886, + "Ġcurrency": 13346, + "Ġcurrent": 2190, + "Ġcurrently": 4362, + "Ġcurrents": 30110, + "Ġcurric": 13179, + "Ġcurriculum": 14302, + "Ġcurry": 18123, + "Ġcurs": 13946, + "Ġcurse": 17139, + "Ġcursed": 29498, + "Ġcurso": 31085, + "Ġcursor": 28169, + "Ġcurt": 28087, + "Ġcurtain": 26789, + "Ġcurtains": 36539, + "Ġcurv": 33900, + "Ġcurvature": 37638, + "Ġcurve": 7605, + "Ġcurved": 24991, + "Ġcurves": 19490, + "Ġcush": 18422, + "Ġcushion": 21908, + "Ġcust": 14884, + "Ġcustard": 46972, + "Ġcustody": 26976, + "Ġcustom": 2375, + "Ġcustomer": 5474, + "Ġcustomers": 4581, + "Ġcustomizable": 47922, + "Ġcustomization": 39387, + "Ġcustomize": 19734, + "Ġcustomized": 30581, + "Ġcustoms": 27330, + "Ġcut": 1723, + "Ġcute": 4052, + "Ġcutest": 46582, + "Ġcuts": 9992, + "Ġcutter": 25531, + "Ġcutting": 6492, + "Ġcuz": 11910, + "Ġcuál": 44318, + "Ġcuánt": 44256, + "Ġcuá»Ļc": 50138, + "Ġcy": 3185, + "Ġcyan": 47463, + "Ġcyber": 13411, + "Ġcybersecurity": 38765, + "Ġcyc": 38154, + "Ġcycl": 19474, + "Ġcycle": 6586, + "Ġcycles": 17796, + "Ġcycling": 22425, + "Ġcyl": 13446, + "Ġcylind": 28044, + "Ġcylinder": 17884, + "Ġcylinders": 42166, + "Ġcyn": 28365, + "Ġcynical": 46345, + "Ġcyst": 48915, + "Ġcyt": 40248, + "Ġcz": 6472, + "Ġczas": 13190, + "Ġczasie": 42667, + "Ġczasu": 40860, + "Ġczego": 36559, + "Ġczy": 6430, + "Ġczyli": 16591, + "Ġczym": 31466, + "ĠczÄĻ": 18544, + "ĠczÄĻsto": 34369, + "ĠczÄĻÅĽci": 41314, + "ĠczÄĻÅĽÄĩ": 47149, + "ĠczÅĤ": 31083, + "ĠczÅĤowie": 36282, + "Ġcá": 6476, + "Ġcác": 13250, + "Ġcách": 45762, + "Ġcái": 14830, + "Ġcámara": 44273, + "Ġcâ": 19288, + "Ġcâmera": 43640, + "Ġcé": 30560, + "Ġcél": 29064, + "Ġcélulas": 49092, + "Ġcéu": 50052, + "Ġcòn": 31394, + "Ġcó": 6333, + "Ġcód": 40210, + "Ġcódigo": 44195, + "Ġcómo": 12826, + "Ġcô": 35167, + "Ġcông": 35451, + "Ġcôt": 16857, + "Ġcôté": 18437, + "Ġcùng": 45701, + "ĠcÄĥ": 21957, + "ĠcÅ": 17846, + "ĠcÅ©ng": 22747, + "ĠcÅĵ": 41388, + "ĠcÅĵur": 43207, + "Ġcả": 22227, + "Ġcảm": 47593, + "Ġcần": 47580, + "Ġcá»": 9613, + "Ġcủa": 11990, + "Ġcứ": 46619, + "Ġd": 274, + "ĠdB": 43116, + "Ġda": 1120, + "Ġdaar": 12390, + "Ġdab": 28964, + "Ġdabei": 14967, + "Ġdachte": 39775, + "Ġdad": 3546, + "Ġdaddy": 16785, + "Ġdado": 29568, + "Ġdados": 39915, + "Ġdads": 41798, + "Ġdadurch": 35472, + "Ġdafür": 13747, + "Ġdag": 15460, + "Ġdage": 41557, + "Ġdagegen": 45387, + "Ġdagen": 49638, + "Ġdagger": 36972, + "Ġdah": 16800, + "Ġdaha": 10545, + "Ġdaher": 36971, + "Ġdai": 38586, + "Ġdaily": 5212, + "Ġdairy": 21276, + "Ġdak": 25329, + "Ġdakika": 34323, + "Ġdal": 11702, + "Ġdalam": 23063, + "Ġdale": 27326, + "Ġdalej": 34257, + "Ġdall": 43351, + "Ġdalla": 35566, + "Ġdam": 2422, + "Ġdamage": 4344, + "Ġdamaged": 14080, + "Ġdamages": 28536, + "Ġdamaging": 25342, + "Ġdamals": 26067, + "Ġdamit": 9479, + "Ġdamn": 8151, + "Ġdamned": 46397, + "Ġdamp": 19498, + "Ġdamping": 49588, + "Ġdan": 3277, + "Ġdanach": 37784, + "Ġdance": 4489, + "Ġdanced": 32909, + "Ġdancer": 21621, + "Ġdancers": 25199, + "Ġdances": 28322, + "Ġdancing": 8898, + "Ġdando": 29854, + "Ġdane": 49206, + "Ġdang": 21892, + "Ġdanger": 4330, + "Ġdangerous": 5795, + "Ġdangers": 27701, + "Ġdank": 35121, + "Ġdanke": 46434, + "Ġdann": 3594, + "Ġdans": 2680, + "Ġdapat": 35161, + "Ġdaqui": 30485, + "Ġdar": 4072, + "Ġdaran": 24520, + "Ġdarauf": 18654, + "Ġdare": 8955, + "Ġdared": 44564, + "Ġdares": 50213, + "Ġdarf": 19374, + "Ġdari": 15597, + "Ġdaring": 43128, + "Ġdark": 2877, + "Ġdarker": 12741, + "Ġdarkest": 33460, + "Ġdarkness": 11262, + "Ġdarle": 37666, + "Ġdarling": 22405, + "Ġdarn": 29063, + "Ġdart": 39010, + "Ġdarum": 27313, + "Ġdarüber": 21737, + "Ġdas": 1482, + "Ġdash": 8240, + "Ġdashboard": 18342, + "Ġdass": 2658, + "Ġdat": 1137, + "Ġdata": 1412, + "Ġdatab": 7104, + "Ġdatabase": 8149, + "Ġdatabases": 22380, + "Ġdatas": 20377, + "Ġdataset": 28872, + "Ġdatasets": 42856, + "Ġdate": 4002, + "Ġdated": 23804, + "Ġdates": 11691, + "Ġdating": 10689, + "Ġdato": 46971, + "Ġdatos": 27721, + "Ġdau": 37359, + "Ġdaughter": 4653, + "Ġdaughters": 17070, + "Ġdaunting": 37657, + "Ġdav": 11753, + "Ġdavon": 18574, + "Ġdaw": 43438, + "Ġdawn": 18192, + "Ġday": 786, + "Ġdaylight": 29964, + "Ġdays": 1708, + "Ġdaytime": 31908, + "Ġdazu": 13034, + "Ġdazz": 44078, + "ĠdaÃŃ": 48113, + "Ġde": 368, + "Ġdeactiv": 45428, + "Ġdead": 3116, + "Ġdeadline": 20615, + "Ġdeadlines": 37548, + "Ġdeadly": 18232, + "Ġdeaf": 15559, + "Ġdeal": 2028, + "Ġdealer": 24896, + "Ġdealers": 25955, + "Ġdealing": 6260, + "Ġdeals": 11215, + "Ġdealt": 15991, + "Ġdean": 31120, + "Ġdear": 6875, + "Ġdeath": 2966, + "Ġdeaths": 13027, + "Ġdeb": 3001, + "Ġdebate": 7958, + "Ġdebated": 42212, + "Ġdebates": 24203, + "Ġdebating": 40647, + "Ġdebe": 27422, + "Ġdeben": 49187, + "Ġdeber": 29671, + "Ġdebido": 50003, + "Ġdebit": 39709, + "Ġdebr": 19958, + "Ġdebris": 21942, + "Ġdebt": 7831, + "Ġdebts": 32528, + "Ġdebug": 24083, + "Ġdebugging": 45592, + "Ġdebut": 13828, + "Ġdebuted": 33392, + "Ġdec": 979, + "Ġdecade": 10378, + "Ġdecades": 7878, + "Ġdecay": 21039, + "Ġdece": 14088, + "Ġdeceased": 33156, + "Ġdeceive": 43440, + "Ġdeceived": 41304, + "Ġdecent": 8681, + "Ġdecentral": 26515, + "Ġdecentralized": 32870, + "Ġdeception": 40451, + "Ġdeci": 46358, + "Ġdecid": 21937, + "Ġdecide": 4536, + "Ġdecided": 3047, + "Ġdecides": 14898, + "Ġdeciding": 17990, + "Ġdecimal": 26601, + "Ġdecipher": 49859, + "Ġdecir": 10235, + "Ġdecis": 18206, + "Ġdecision": 3537, + "Ġdecisions": 5327, + "Ġdecisive": 34998, + "Ġdeck": 9341, + "Ġdecks": 32607, + "Ġdecl": 7488, + "Ġdeclar": 16694, + "Ġdeclaration": 27606, + "Ġdeclare": 19710, + "Ġdeclared": 15489, + "Ġdeclaring": 40374, + "Ġdecline": 15635, + "Ġdeclined": 29213, + "Ġdeclining": 34298, + "Ġdecomp": 22867, + "Ġdecomposition": 48356, + "Ġdeconst": 49473, + "Ġdecor": 7919, + "Ġdecorate": 24229, + "Ġdecorated": 28422, + "Ġdecorating": 39172, + "Ġdecoration": 26538, + "Ġdecorations": 32367, + "Ġdecorative": 35185, + "Ġdecre": 6853, + "Ġdecrease": 11514, + "Ġdecreased": 24436, + "Ġdecreases": 24108, + "Ġdecreasing": 23223, + "Ġdecree": 41071, + "ĠdecÃŃa": 37599, + "Ġded": 4172, + "Ġdedans": 48680, + "Ġdedi": 19731, + "Ġdedic": 37071, + "Ġdedicate": 30718, + "Ġdedicated": 8374, + "Ġdedication": 21813, + "Ġdedim": 31848, + "Ġdeduct": 31513, + "Ġdeduction": 46385, + "Ġdeed": 30299, + "Ġdeeds": 24539, + "Ġdeemed": 27637, + "Ġdeep": 2452, + "Ġdeepen": 45806, + "Ġdeeper": 7731, + "Ġdeepest": 28288, + "Ġdeeply": 8760, + "Ġdeer": 17120, + "Ġdef": 1060, + "Ġdefault": 7576, + "Ġdefe": 7486, + "Ġdefeat": 11785, + "Ġdefeated": 15563, + "Ġdefeating": 38381, + "Ġdefect": 16445, + "Ġdefects": 32655, + "Ġdefence": 25913, + "Ġdefend": 8602, + "Ġdefendant": 34053, + "Ġdefended": 34135, + "Ġdefender": 26537, + "Ġdefenders": 36063, + "Ġdefending": 21377, + "Ġdefens": 47746, + "Ġdefense": 7654, + "Ġdefenses": 35989, + "Ġdefensive": 16468, + "Ġdefer": 25704, + "Ġdefic": 19248, + "Ġdeficiency": 37500, + "Ġdeficit": 22132, + "Ġdeficits": 49616, + "Ġdefin": 1561, + "Ġdefine": 6964, + "Ġdefined": 7642, + "Ġdefines": 23122, + "Ġdefining": 17827, + "Ġdefinit": 28781, + "Ġdefinite": 25131, + "Ġdefinitely": 2138, + "Ġdefinition": 7123, + "Ġdefinitions": 21988, + "Ġdefinitive": 28152, + "Ġdeflect": 41373, + "Ġdeform": 36094, + "Ġdeformation": 34364, + "Ġdeg": 2821, + "Ġdegener": 40520, + "Ġdegli": 32079, + "Ġdegrad": 24740, + "Ġdegradation": 40519, + "Ġdegree": 4314, + "Ġdegrees": 5310, + "Ġdeh": 36892, + "Ġdehyd": 32102, + "Ġdei": 13874, + "Ġdein": 25641, + "Ġdeine": 28395, + "Ġdeinen": 49362, + "Ġdeity": 37939, + "Ġdeix": 9963, + "Ġdeixa": 26208, + "Ġdeixar": 19701, + "Ġdej": 21259, + "Ġdeja": 38260, + "Ġdejar": 24391, + "Ġdel": 1103, + "Ġdela": 21820, + "Ġdelay": 8577, + "Ġdelayed": 20268, + "Ġdelays": 28610, + "Ġdele": 16376, + "Ġdeleg": 15824, + "Ġdelegate": 40999, + "Ġdelegates": 45756, + "Ġdelegation": 36602, + "Ġdeles": 30789, + "Ġdelete": 12097, + "Ġdeleted": 22981, + "Ġdeleting": 48946, + "Ġdeliber": 14207, + "Ġdeliberate": 30515, + "Ġdeliberately": 23506, + "Ġdelic": 29831, + "Ġdelicate": 21417, + "Ġdelicious": 4809, + "Ġdelight": 11627, + "Ġdelighted": 18783, + "Ġdelightful": 35194, + "Ġdeliver": 4239, + "Ġdelivered": 10144, + "Ġdeliveries": 46448, + "Ġdelivering": 14666, + "Ġdelivers": 24860, + "Ġdelivery": 8982, + "Ġdell": 19781, + "Ġdella": 11618, + "Ġdelle": 16485, + "Ġdels": 23724, + "Ġdelta": 8289, + "Ġdelve": 43098, + "Ġdem": 1371, + "Ġdemain": 44389, + "Ġdemais": 36879, + "Ġdemand": 4733, + "Ġdemande": 26982, + "Ġdemanded": 28276, + "Ġdemander": 39169, + "Ġdemanding": 19960, + "Ġdemands": 15107, + "Ġdemandé": 48468, + "Ġdemasi": 35259, + "Ġdemasiado": 39820, + "Ġdeme": 35465, + "Ġdemek": 32491, + "Ġdement": 29950, + "Ġdementia": 31734, + "Ġdemi": 42188, + "Ġdemise": 45982, + "ĠdemiÅŁ": 46334, + "Ġdemo": 10723, + "Ġdemocr": 6366, + "Ġdemocracy": 10528, + "Ġdemocrat": 37221, + "Ġdemocratic": 15337, + "Ġdemocrats": 47665, + "Ġdemographic": 26331, + "Ġdemographics": 36884, + "Ġdemokrat": 49432, + "Ġdemol": 26933, + "Ġdemon": 14283, + "Ġdemonic": 41297, + "Ġdemons": 19733, + "Ġdemonst": 5516, + "Ġdemonstrate": 11698, + "Ġdemonstrated": 18772, + "Ġdemonstrates": 31034, + "Ġdemonstrating": 29889, + "Ġdemonstration": 16520, + "Ġdemonstrations": 34714, + "Ġdemos": 33788, + "Ġdemost": 41556, + "Ġdemás": 34682, + "Ġden": 1441, + "Ġdenen": 19998, + "Ġdengan": 13877, + "Ġdenial": 28754, + "Ġdenied": 17774, + "Ġdenim": 43535, + "Ġdenk": 21285, + "Ġdenke": 27245, + "Ġdenken": 28780, + "Ġdenkt": 38658, + "Ġdenn": 10471, + "Ġdenomin": 16244, + "Ġdenominator": 20687, + "Ġdenote": 45708, + "Ġdens": 24505, + "Ġdense": 18011, + "Ġdensity": 10305, + "Ġdent": 7059, + "Ġdental": 24473, + "Ġdentist": 28666, + "Ġdentro": 10856, + "Ġdeny": 15744, + "Ġdenying": 30363, + "Ġdep": 1367, + "Ġdepart": 9110, + "Ġdeparted": 47018, + "Ġdepartment": 5882, + "Ġdepartments": 15326, + "Ġdeparture": 25866, + "Ġdepend": 5672, + "Ġdepende": 47091, + "Ġdependence": 31704, + "Ġdependencies": 36606, + "Ġdependency": 33621, + "Ġdependent": 12334, + "Ġdepending": 5413, + "Ġdepends": 5946, + "Ġdepict": 31553, + "Ġdepicted": 30207, + "Ġdepiction": 47740, + "Ġdepicts": 48949, + "Ġdepl": 37546, + "Ġdeploy": 7274, + "Ġdeployed": 17826, + "Ġdeploying": 34198, + "Ġdeployment": 19317, + "Ġdepois": 13880, + "Ġdeport": 33485, + "Ġdepos": 19930, + "Ġdeposit": 19107, + "Ġdeposited": 42002, + "Ġdeposits": 30958, + "Ġdepreci": 40609, + "Ġdepress": 44248, + "Ġdepressed": 18713, + "Ġdepressing": 36355, + "Ġdepression": 10799, + "Ġdepri": 27095, + "Ġdeprived": 42086, + "Ġdepth": 7161, + "Ġdepths": 28439, + "Ġdepuis": 16062, + "Ġdeputy": 26692, + "Ġder": 1163, + "Ġdere": 15969, + "Ġderecho": 39055, + "Ġderechos": 47508, + "Ġderen": 48300, + "Ġderiv": 10151, + "Ġderivative": 13760, + "Ġderivatives": 33733, + "Ġderive": 28446, + "Ġderived": 18949, + "Ġderm": 33080, + "Ġdermat": 43706, + "Ġderni": 20562, + "Ġdernier": 29332, + "Ġdernière": 29028, + "Ġderrière": 31465, + "Ġders": 39636, + "Ġdes": 730, + "Ġdesaf": 34587, + "Ġdesap": 36546, + "Ġdesapare": 42316, + "Ġdesar": 21464, + "Ġdesarroll": 32501, + "Ġdesarrollo": 38295, + "Ġdesc": 7471, + "Ġdescend": 16333, + "Ġdescendants": 31693, + "Ġdescended": 41311, + "Ġdescending": 40182, + "Ġdescent": 23475, + "Ġdescob": 31700, + "Ġdescobrir": 45900, + "Ġdescon": 49801, + "Ġdescri": 2189, + "Ġdescribe": 6786, + "Ġdescribed": 7619, + "Ġdescribes": 15626, + "Ġdescribing": 16141, + "Ġdescript": 31280, + "Ġdescription": 3855, + "Ġdescriptions": 24406, + "Ġdescriptive": 42585, + "Ġdescrição": 42051, + "Ġdescub": 32592, + "Ġdesde": 10188, + "Ġdese": 27118, + "Ġdesem": 38850, + "Ġdesen": 18291, + "Ġdesenvol": 28683, + "Ġdesenvolv": 47835, + "Ġdesert": 11029, + "Ġdeserted": 47983, + "Ġdeserve": 9948, + "Ġdeserved": 27964, + "Ġdeserves": 17037, + "Ġdeserving": 48781, + "Ġdeshalb": 28457, + "Ġdesign": 1715, + "Ġdesignated": 21688, + "Ġdesignation": 40838, + "Ġdesigned": 4761, + "Ġdesigner": 11795, + "Ġdesigners": 16196, + "Ġdesigning": 14685, + "Ġdesigns": 11347, + "Ġdesirable": 30533, + "Ġdesire": 7516, + "Ġdesired": 14721, + "Ġdesires": 18005, + "Ġdesk": 10026, + "Ġdesktop": 14502, + "Ġdesp": 4887, + "Ġdespair": 25763, + "Ġdesper": 10679, + "Ġdesperate": 17601, + "Ġdesperately": 23726, + "Ġdesperation": 48980, + "Ġdespite": 7228, + "Ġdesprés": 42237, + "Ġdespués": 15283, + "Ġdess": 6874, + "Ġdessa": 18554, + "Ġdessas": 40083, + "Ġdesse": 17864, + "Ġdessert": 14593, + "Ġdesserts": 37913, + "Ġdesses": 36409, + "Ġdessus": 30677, + "Ġdest": 2677, + "Ġdesta": 45943, + "Ġdestac": 46393, + "Ġdeste": 38738, + "Ġdestin": 40254, + "Ġdestination": 12236, + "Ġdestinations": 37787, + "Ġdestined": 33169, + "Ġdestiny": 17893, + "Ġdestro": 15311, + "Ġdestroy": 5293, + "Ġdestroyed": 8937, + "Ġdestroying": 19926, + "Ġdestroys": 36714, + "Ġdestru": 34235, + "Ġdestruction": 13563, + "Ġdestructive": 26960, + "Ġdeswegen": 26482, + "Ġdet": 1141, + "Ġdetach": 43245, + "Ġdetached": 42050, + "Ġdetail": 2607, + "Ġdetailed": 9942, + "Ġdetailing": 42459, + "Ġdetails": 4365, + "Ġdetained": 41452, + "Ġdetal": 33185, + "Ġdetect": 5531, + "Ġdetected": 21896, + "Ġdetecting": 40237, + "Ġdetection": 17784, + "Ġdetective": 25571, + "Ġdetector": 25712, + "Ġdetectors": 46866, + "Ġdetention": 31291, + "Ġdeter": 15092, + "Ġdeterior": 26431, + "Ġdeterm": 3618, + "Ġdetermin": 15957, + "Ġdeterminant": 41296, + "Ġdetermination": 18432, + "Ġdetermine": 6997, + "Ġdetermined": 9540, + "Ġdetermines": 24799, + "Ġdetermining": 23751, + "Ġdeton": 39920, + "Ġdetox": 34904, + "Ġdetriment": 35430, + "Ġdetrimental": 45694, + "Ġdetta": 48888, + "Ġdette": 47126, + "Ġdetto": 41031, + "Ġdeu": 25661, + "Ġdeutlich": 24344, + "Ġdeuts": 23004, + "Ġdeutsche": 47502, + "Ġdeutschen": 39707, + "Ġdeux": 8208, + "Ġdeuxième": 29112, + "Ġdev": 1905, + "Ġdevam": 25645, + "Ġdevant": 28982, + "Ġdevast": 13959, + "Ġdevastated": 34880, + "Ġdevastating": 21280, + "Ġdeve": 17761, + "Ġdevelop": 1499, + "Ġdeveloped": 4743, + "Ġdeveloper": 10754, + "Ġdevelopers": 8849, + "Ġdeveloping": 6416, + "Ġdevelopment": 3250, + "Ġdevelopmental": 30160, + "Ġdevelopments": 20862, + "Ġdevelops": 25453, + "Ġdeven": 43115, + "Ġdevenir": 41271, + "Ġdever": 40739, + "Ġdevi": 31219, + "Ġdeviation": 25163, + "Ġdevice": 4302, + "Ġdevices": 5759, + "Ġdevient": 42100, + "Ġdevil": 13297, + "Ġdevo": 49717, + "Ġdevoir": 48920, + "Ġdevot": 13697, + "Ġdevote": 23184, + "Ġdevoted": 21815, + "Ġdevotees": 46960, + "Ġdevotion": 30671, + "Ġdevrait": 43356, + "Ġdew": 48745, + "Ġdez": 45057, + "Ġdeze": 18040, + "ĠdeÄŁ": 7725, + "ĠdeÄŁer": 47584, + "ĠdeÄŁil": 9920, + "ĠdeÄŁild": 49587, + "ĠdeÄŁiÅŁ": 30435, + "Ġdi": 1026, + "Ġdia": 6801, + "Ġdiab": 33227, + "Ġdiabetes": 13881, + "Ġdiabetic": 50238, + "Ġdiagn": 7234, + "Ġdiagnose": 36238, + "Ġdiagnosed": 16899, + "Ġdiagnosis": 15217, + "Ġdiagnost": 43215, + "Ġdiagnostic": 27897, + "Ġdiagon": 17405, + "Ġdiagonal": 21539, + "Ġdiagram": 10686, + "Ġdiagrams": 36709, + "Ġdial": 5502, + "Ġdialect": 24652, + "Ġdialog": 19308, + "Ġdialogue": 10221, + "Ġdialogues": 45551, + "Ġdiam": 7484, + "Ġdiameter": 14196, + "Ġdiamond": 16059, + "Ġdiamonds": 22612, + "Ġdiaper": 45121, + "Ġdiapers": 48496, + "Ġdiaphrag": 46711, + "Ġdiarr": 37565, + "Ġdiarrhea": 41282, + "Ġdiary": 26492, + "Ġdias": 21084, + "Ġdib": 23064, + "Ġdibuj": 46621, + "Ġdic": 14285, + "Ġdice": 10313, + "Ġdicen": 33816, + "Ġdich": 10390, + "Ġdicho": 27346, + "Ġdicht": 48774, + "Ġdiciendo": 42797, + "Ġdick": 18659, + "Ġdict": 12569, + "Ġdictate": 36071, + "Ġdictator": 42852, + "Ġdictators": 34708, + "Ġdictatorship": 44349, + "Ġdiction": 22352, + "Ġdictionary": 25890, + "Ġdid": 630, + "Ġdidn": 994, + "Ġdidnt": 38634, + "Ġdie": 978, + "Ġdied": 4539, + "Ġdies": 2714, + "Ġdiese": 6705, + "Ġdiesel": 21258, + "Ġdiesem": 10975, + "Ġdiesen": 12862, + "Ġdieser": 9053, + "Ġdieses": 12113, + "Ġdiet": 6339, + "Ġdieta": 37967, + "Ġdietary": 37421, + "Ġdiets": 33867, + "Ġdiez": 48165, + "Ġdif": 679, + "Ġdifer": 10918, + "Ġdiferen": 18959, + "Ġdiferencia": 38844, + "Ġdiferente": 20973, + "Ġdiferentes": 17686, + "Ġdiferença": 38336, + "Ġdiff": 7593, + "Ġdiffer": 743, + "Ġdifference": 2649, + "Ġdifferences": 7300, + "Ġdifferent": 819, + "Ġdifferenti": 27372, + "Ġdifferential": 15756, + "Ġdifferentiate": 23203, + "Ġdifferentiation": 38902, + "Ġdifferently": 7614, + "Ġdiffers": 37761, + "Ġdiffic": 2204, + "Ġdifficile": 26607, + "Ġdifficult": 2252, + "Ġdifficulties": 14399, + "Ġdifficulty": 10360, + "Ġdiffuse": 42165, + "Ġdiffusion": 25242, + "Ġdiffé": 14397, + "Ġdifférence": 45952, + "Ġdifférent": 19384, + "Ġdifférentes": 35438, + "Ġdifférents": 33948, + "Ġdific": 29615, + "ĠdifÃŃ": 16774, + "ĠdifÃŃcil": 17258, + "Ġdig": 2528, + "Ġdigamos": 36430, + "Ġdigest": 13884, + "Ġdigestion": 40560, + "Ġdigestive": 32696, + "Ġdigging": 17343, + "Ġdigit": 14293, + "Ġdigital": 4562, + "Ġdigitally": 36938, + "Ġdigits": 27011, + "Ġdign": 15308, + "Ġdignity": 19672, + "Ġdigo": 22990, + "Ġdij": 47709, + "Ġdije": 39414, + "Ġdijo": 27024, + "Ġdikk": 48926, + "Ġdil": 11504, + "Ġdile": 25623, + "Ġdilemma": 34312, + "Ġdilig": 47646, + "Ġdiligence": 40046, + "Ġdiligent": 50251, + "Ġdiligently": 49013, + "Ġdim": 5013, + "Ġdime": 36330, + "Ġdimension": 10139, + "Ġdimensional": 18795, + "Ġdimensions": 12819, + "Ġdimin": 15739, + "Ġdiminish": 48696, + "Ġdiminished": 40206, + "Ġdin": 3791, + "Ġdinero": 27923, + "Ġding": 21211, + "Ġdingen": 40870, + "Ġdings": 32724, + "Ġdinheiro": 23760, + "Ġdining": 17874, + "Ġdinner": 6148, + "Ġdinosaur": 23627, + "Ġdinosaurs": 25851, + "Ġdio": 31965, + "Ġdiode": 40787, + "Ġdiox": 18982, + "Ġdioxide": 19590, + "Ġdip": 10460, + "Ġdipl": 11432, + "Ġdiplom": 20053, + "Ġdiploma": 35770, + "Ġdiplomacy": 35184, + "Ġdiplomatic": 26553, + "Ġdipped": 45162, + "Ġdipping": 35584, + "Ġdips": 47814, + "Ġdir": 4746, + "Ġdire": 1264, + "Ġdirect": 2047, + "Ġdirectamente": 46230, + "Ġdirected": 12898, + "Ġdirectement": 37297, + "Ġdirecting": 26979, + "Ġdirection": 3513, + "Ġdirectional": 42242, + "Ġdirections": 11095, + "Ġdirective": 45444, + "Ġdirectly": 3838, + "Ġdirector": 5391, + "Ġdirectors": 17307, + "Ġdirectory": 21120, + "Ġdireito": 36601, + "Ġdirekt": 20315, + "Ġdiret": 48196, + "Ġdirig": 35243, + "Ġdirt": 11483, + "Ġdirty": 9360, + "Ġdis": 717, + "Ġdisabilities": 13367, + "Ġdisability": 11090, + "Ġdisable": 28362, + "Ġdisabled": 15191, + "Ġdisad": 15828, + "Ġdisadvant": 26380, + "Ġdisadvantage": 24292, + "Ġdisadvantaged": 46826, + "Ġdisadvantages": 37431, + "Ġdisag": 10414, + "Ġdisagre": 23926, + "Ġdisagree": 14091, + "Ġdisagreement": 38947, + "Ġdisapp": 4518, + "Ġdisappe": 6657, + "Ġdisappear": 11596, + "Ġdisappearance": 37049, + "Ġdisappeared": 13954, + "Ġdisappearing": 34900, + "Ġdisappears": 25527, + "Ġdisappoint": 8505, + "Ġdisappointed": 13856, + "Ġdisappointing": 25054, + "Ġdisappointment": 28175, + "Ġdisast": 42103, + "Ġdisaster": 11293, + "Ġdisasters": 27966, + "Ġdisastrous": 44502, + "Ġdisbel": 36105, + "Ġdisc": 2983, + "Ġdiscard": 31597, + "Ġdiscarded": 45469, + "Ġdiscern": 30868, + "Ġdischarge": 21718, + "Ġdischarged": 37081, + "Ġdisci": 6507, + "Ġdiscipl": 8644, + "Ġdisciple": 32100, + "Ġdisciples": 17209, + "Ġdiscipline": 13635, + "Ġdisciplined": 40061, + "Ġdisciplines": 21919, + "Ġdiscl": 17092, + "Ġdisclaimer": 40896, + "Ġdisclose": 36146, + "Ġdisclosure": 30392, + "Ġdisco": 3622, + "Ġdiscomfort": 28552, + "Ġdisconnect": 14299, + "Ġdisconnected": 29426, + "Ġdiscontin": 31420, + "Ġdiscord": 32989, + "Ġdiscount": 11635, + "Ġdiscounts": 37930, + "Ġdiscour": 21497, + "Ġdiscouraged": 35010, + "Ġdiscours": 43609, + "Ġdiscourse": 23938, + "Ġdiscover": 4411, + "Ġdiscovered": 6941, + "Ġdiscoveries": 28400, + "Ġdiscovering": 24773, + "Ġdiscovers": 44522, + "Ġdiscovery": 12114, + "Ġdiscret": 25656, + "Ġdiscrete": 27706, + "Ġdiscretion": 30140, + "Ġdiscrimin": 20828, + "Ġdiscriminate": 47833, + "Ġdiscrimination": 15973, + "Ġdiscs": 37525, + "Ġdiscuss": 2248, + "Ġdiscussed": 7152, + "Ġdiscussing": 10850, + "Ġdiscussion": 5017, + "Ġdiscussions": 11088, + "Ġdiscut": 42085, + "Ġdise": 3814, + "Ġdisease": 4752, + "Ġdiseases": 11044, + "Ġdisent": 37313, + "Ġdisfr": 37114, + "Ġdisg": 14116, + "Ġdisgr": 32632, + "Ġdisgrace": 41702, + "Ġdisgu": 23333, + "Ġdisguise": 32751, + "Ġdisgusting": 17552, + "Ġdish": 5025, + "Ġdishes": 10814, + "Ġdishon": 37127, + "Ġdishwas": 35992, + "Ġdishwasher": 38009, + "Ġdisinfect": 33334, + "Ġdisintegr": 45354, + "Ġdisk": 12355, + "Ġdisks": 41617, + "Ġdiskut": 36760, + "Ġdisl": 43186, + "Ġdislike": 26006, + "Ġdisloc": 39025, + "Ġdism": 12456, + "Ġdismant": 30506, + "Ġdismiss": 16974, + "Ġdismissed": 29970, + "Ġdisobed": 49171, + "Ġdisorder": 13399, + "Ġdisorders": 20261, + "Ġdisp": 4920, + "Ġdispar": 14548, + "Ġdisparities": 32514, + "Ġdisparity": 47415, + "Ġdispatch": 36729, + "Ġdispers": 24631, + "Ġdispersed": 48059, + "Ġdispl": 14996, + "Ġdisplaced": 33692, + "Ġdisplacement": 21899, + "Ġdisplay": 4674, + "Ġdisplayed": 16372, + "Ġdisplaying": 36834, + "Ġdisplays": 20119, + "Ġdispon": 23311, + "Ġdispos": 15885, + "Ġdisposable": 41578, + "Ġdisposal": 26400, + "Ġdispose": 42537, + "Ġdisposit": 34769, + "Ġdisposition": 40293, + "Ġdisproportion": 28734, + "Ġdisproportionately": 43397, + "Ġdisput": 37669, + "Ġdispute": 25379, + "Ġdisputes": 39666, + "Ġdisreg": 36405, + "Ġdisregard": 44493, + "Ġdisrespect": 27058, + "Ġdisrespectful": 47750, + "Ġdisrupt": 14124, + "Ġdisrupted": 42271, + "Ġdisruption": 28751, + "Ġdisruptive": 37865, + "Ġdiss": 7802, + "Ġdisse": 17581, + "Ġdissect": 48332, + "Ġdissemin": 34585, + "Ġdissert": 36828, + "Ġdissertation": 39555, + "Ġdissip": 29544, + "Ġdisso": 20088, + "Ġdissoci": 44446, + "Ġdissol": 15840, + "Ġdissolve": 30150, + "Ġdissolved": 30651, + "Ġdist": 1483, + "Ġdistance": 4560, + "Ġdistances": 22182, + "Ġdistancing": 18567, + "Ġdistant": 17275, + "Ġdistill": 42923, + "Ġdistinct": 10644, + "Ġdistinction": 16844, + "Ġdistinctive": 27766, + "Ġdistingu": 11365, + "Ġdistinguish": 20206, + "Ġdistinguished": 21702, + "Ġdistint": 31489, + "Ġdistintos": 49337, + "Ġdistort": 37555, + "Ġdistorted": 33431, + "Ġdistortion": 28426, + "Ġdistract": 9945, + "Ġdistracted": 21658, + "Ġdistracting": 36689, + "Ġdistraction": 30217, + "Ġdistractions": 37887, + "Ġdistress": 24516, + "Ġdistrib": 4400, + "Ġdistribute": 20594, + "Ġdistributed": 12631, + "Ġdistributing": 41406, + "Ġdistribution": 7316, + "Ġdistributions": 37870, + "Ġdistributor": 49192, + "Ġdistrict": 6566, + "Ġdistricts": 16815, + "Ġdistur": 10242, + "Ġdisturb": 18071, + "Ġdisturbance": 35684, + "Ġdisturbed": 30558, + "Ġdisturbing": 21903, + "Ġdit": 6176, + "Ġditch": 25325, + "Ġdites": 48291, + "Ġdiu": 40297, + "Ġdiv": 3414, + "Ġdive": 9192, + "Ġdiver": 18558, + "Ġdivergence": 47387, + "Ġdivers": 6111, + "Ġdiverse": 9521, + "Ġdiversion": 49422, + "Ġdiversity": 8811, + "Ġdivert": 23781, + "Ġdivid": 4996, + "Ġdivide": 9845, + "Ġdivided": 6666, + "Ġdividend": 29796, + "Ġdividends": 39675, + "Ġdivides": 41347, + "Ġdividing": 26764, + "Ġdivine": 13678, + "Ġdiving": 20241, + "Ġdivis": 25974, + "Ġdivision": 10044, + "Ġdivisions": 24328, + "Ġdivor": 11861, + "Ġdivorce": 16052, + "Ġdivorced": 27670, + "Ġdivul": 47291, + "Ġdiy": 34275, + "Ġdiye": 12968, + "Ġdiyor": 17587, + "Ġdiyorsun": 38537, + "Ġdiyorum": 37190, + "Ġdiz": 12098, + "Ġdizendo": 47026, + "Ġdizer": 17159, + "Ġdizzy": 31098, + "ĠdiÄŁer": 44525, + "Ġdl": 37873, + "Ġdla": 12285, + "Ġdlatego": 32205, + "Ġdni": 46125, + "Ġdo": 360, + "Ġdoable": 41183, + "Ġdob": 27082, + "Ġdobr": 23067, + "Ġdobre": 41959, + "Ġdobry": 35884, + "Ġdobrze": 28335, + "Ġdoc": 3211, + "Ġdoch": 9243, + "Ġdock": 20929, + "Ġdocs": 45623, + "Ġdoct": 17112, + "Ġdoctor": 4631, + "Ġdoctoral": 41419, + "Ġdoctors": 8778, + "Ġdoctr": 46040, + "Ġdoctrine": 23290, + "Ġdocument": 4166, + "Ġdocumentaries": 41630, + "Ġdocumentary": 15674, + "Ġdocumentation": 14333, + "Ġdocumented": 23007, + "Ġdocumenting": 42360, + "Ġdocuments": 8512, + "Ġdod": 13886, + "Ġdodge": 27238, + "Ġdoe": 35319, + "Ġdoen": 15159, + "Ġdoes": 775, + "Ġdoesn": 1177, + "Ġdoet": 44138, + "Ġdog": 3000, + "Ġdogs": 7197, + "Ġdoin": 23503, + "Ġdoing": 884, + "Ġdois": 11854, + "Ġdoit": 19193, + "Ġdoivent": 44341, + "Ġdok": 25037, + "Ġdokument": 40858, + "ĠdokÅĤad": 45864, + "Ġdol": 17858, + "Ġdoll": 2722, + "Ġdollar": 7241, + "Ġdollars": 3808, + "Ġdolls": 29134, + "Ġdolor": 42416, + "Ġdolph": 29188, + "Ġdolphin": 46759, + "Ġdolphins": 44835, + "Ġdom": 3285, + "Ġdomain": 9274, + "Ġdomains": 25514, + "Ġdome": 27191, + "Ġdomest": 39125, + "Ġdomestic": 10939, + "Ġdomin": 8859, + "Ġdominance": 34987, + "Ġdominant": 15657, + "Ġdominate": 28246, + "Ġdominated": 23755, + "Ġdominating": 43306, + "Ġdomination": 41502, + "Ġdomu": 48465, + "Ġdon": 500, + "Ġdona": 48583, + "Ġdonate": 17751, + "Ġdonated": 23723, + "Ġdonating": 36686, + "Ġdonation": 19724, + "Ġdonations": 22705, + "Ġdonc": 5926, + "Ġdonde": 10488, + "Ġdone": 1096, + "Ġdong": 33079, + "Ġdonkey": 34834, + "Ġdonn": 33258, + "Ġdonne": 21837, + "Ġdonner": 20882, + "Ġdonné": 31165, + "Ġdonnées": 40101, + "Ġdonor": 25493, + "Ġdonors": 25521, + "Ġdont": 9400, + "Ġdonut": 33782, + "Ġdonuts": 36826, + "ĠdonÃŃt": 36311, + "Ġdoo": 27572, + "Ġdoom": 37131, + "Ġdoomed": 33847, + "Ġdoor": 2853, + "Ġdoors": 8077, + "Ġdoorway": 41992, + "Ġdop": 21900, + "Ġdopamine": 37219, + "Ġdope": 23383, + "Ġdopo": 35196, + "Ġdopp": 44862, + "Ġdor": 26313, + "Ġdorm": 12521, + "Ġdormir": 33098, + "Ġdort": 15775, + "Ġdos": 4491, + "Ġdose": 14041, + "Ġdoses": 22576, + "Ġdoss": 47831, + "Ġdost": 20568, + "ĠdostÄĻp": 48209, + "Ġdot": 5893, + "Ġdots": 15026, + "Ġdotted": 37459, + "Ġdou": 2482, + "Ġdoub": 10831, + "Ġdouble": 3834, + "Ġdoubled": 24405, + "Ġdoubles": 31634, + "Ġdoubling": 33651, + "Ġdoubt": 6385, + "Ġdoubts": 22618, + "Ġdough": 7984, + "Ġdoute": 41984, + "Ġdov": 30870, + "Ġdove": 23287, + "Ġdow": 9459, + "Ġdown": 760, + "Ġdownhill": 29929, + "Ġdownload": 5484, + "Ġdownloaded": 21748, + "Ġdownloading": 32529, + "Ġdownloads": 36553, + "Ġdowns": 21554, + "Ġdownside": 25060, + "Ġdownstairs": 20148, + "Ġdownstream": 30621, + "Ġdownt": 11655, + "Ġdowntime": 49648, + "Ġdowntown": 14209, + "Ġdownward": 24805, + "Ġdownwards": 39880, + "Ġdozen": 16654, + "Ġdozens": 18431, + "ĠdoÄŁ": 18557, + "ĠdoÄŁru": 28297, + "ĠdoÅĽwiad": 46661, + "ĠdoÅĽÄĩ": 49333, + "Ġdr": 1224, + "Ġdra": 1617, + "Ġdraft": 11206, + "Ġdrafted": 36288, + "Ġdrafting": 46378, + "Ġdrag": 5286, + "Ġdragged": 25717, + "Ġdragging": 24385, + "Ġdragon": 12165, + "Ġdragons": 27240, + "Ġdrain": 12339, + "Ġdrainage": 32973, + "Ġdrained": 37018, + "Ġdraining": 42916, + "Ġdrains": 47694, + "Ġdram": 7538, + "Ġdrama": 9412, + "Ġdramas": 36739, + "Ġdramat": 42749, + "Ġdramatic": 12023, + "Ġdramatically": 17548, + "Ġdran": 32801, + "Ġdrank": 21011, + "Ġdrastic": 36821, + "Ġdrastically": 29673, + "Ġdrauf": 22763, + "ĠdrauÃŁen": 44602, + "Ġdraw": 2642, + "Ġdrawer": 24039, + "Ġdrawers": 38302, + "Ġdrawing": 6316, + "Ġdrawings": 18618, + "Ġdrawn": 10117, + "Ġdraws": 20045, + "Ġdre": 22540, + "Ġdread": 22236, + "Ġdream": 3055, + "Ġdreamed": 26726, + "Ġdreaming": 21475, + "Ġdreams": 7505, + "Ġdrei": 16809, + "Ġdress": 5231, + "Ġdressed": 12386, + "Ġdresses": 25156, + "Ġdressing": 17211, + "Ġdrew": 12804, + "Ġdri": 1630, + "Ġdrie": 50049, + "Ġdried": 13538, + "Ġdries": 33997, + "Ġdrift": 19699, + "Ġdrifting": 37973, + "Ġdrill": 11392, + "Ġdrilled": 38210, + "Ġdrilling": 26290, + "Ġdrills": 36126, + "Ġdrin": 24534, + "Ġdrink": 2822, + "Ġdrinking": 7583, + "Ġdrinks": 12142, + "Ġdrip": 29376, + "Ġdripping": 37460, + "Ġdrive": 3332, + "Ġdriven": 9555, + "Ġdriver": 6787, + "Ġdrivers": 11590, + "Ġdrives": 11754, + "Ġdriveway": 38276, + "Ġdriving": 4840, + "Ġdrizzle": 48695, + "Ġdro": 3789, + "Ġdroit": 25971, + "Ġdroite": 37321, + "Ġdrone": 13852, + "Ġdrones": 23823, + "Ġdrop": 3270, + "Ġdropdown": 47599, + "Ġdroplets": 41573, + "Ġdropped": 8119, + "Ġdropping": 13601, + "Ġdrops": 11438, + "Ġdrought": 22900, + "Ġdrove": 13226, + "Ġdrown": 20337, + "Ġdrowned": 38233, + "Ġdrowning": 37198, + "Ġdru": 38864, + "Ġdrug": 4110, + "Ġdrugiej": 47373, + "Ġdrugs": 7766, + "Ġdruk": 47995, + "Ġdrum": 10206, + "Ġdrummer": 38535, + "Ġdrums": 20420, + "Ġdrunk": 11192, + "Ġdry": 4016, + "Ġdryer": 29880, + "Ġdrying": 22709, + "Ġdt": 36423, + "Ġdu": 1581, + "Ġdua": 40173, + "Ġdual": 11848, + "Ġduas": 19463, + "Ġdub": 18540, + "Ġdubbed": 43686, + "Ġduck": 12482, + "Ġducks": 34468, + "Ġduct": 25954, + "Ġdud": 38512, + "Ġduda": 43881, + "Ġdude": 6449, + "Ġdudes": 27717, + "Ġdue": 3462, + "Ġduel": 36296, + "Ġdues": 41753, + "Ġdug": 22954, + "Ġduh": 43763, + "Ġdul": 44012, + "Ġdull": 23471, + "Ġdulu": 31643, + "Ġdum": 16784, + "Ġdumb": 10316, + "Ġdumbbell": 39316, + "Ġdummy": 35064, + "Ġdump": 11430, + "Ġdumped": 32131, + "Ġdumping": 42224, + "Ġdumpling": 46517, + "Ġdumplings": 31721, + "Ġdun": 10234, + "Ġdungeon": 27919, + "Ġdungeons": 48347, + "Ġdunk": 33555, + "Ġdunno": 22751, + "Ġduo": 28127, + "Ġduplic": 17154, + "Ġduplicate": 23976, + "Ġdur": 4861, + "Ġdura": 43416, + "Ġdurability": 33664, + "Ġdurable": 22308, + "Ġdurant": 43941, + "Ġdurante": 14427, + "Ġduration": 16365, + "Ġdurch": 7131, + "Ġdurchaus": 42840, + "Ġduring": 1830, + "Ġdurum": 35218, + "Ġdus": 14284, + "Ġdust": 8634, + "Ġdusty": 41973, + "Ġduties": 20910, + "Ġduty": 9776, + "Ġduy": 37385, + "Ġduż": 21783, + "Ġdużo": 26673, + "Ġdw": 27379, + "Ġdwa": 35045, + "Ġdwar": 24524, + "Ġdwarf": 35527, + "Ġdwell": 24355, + "Ġdwelling": 41750, + "Ġdx": 30017, + "Ġdy": 14584, + "Ġdye": 20179, + "Ġdyed": 43199, + "Ġdying": 8639, + "Ġdynam": 5999, + "Ġdynamic": 8546, + "Ġdynamically": 43492, + "Ġdynamics": 15679, + "Ġdynasty": 32841, + "Ġdys": 15243, + "Ġdysfunction": 32002, + "Ġdz": 9758, + "Ġdzi": 31981, + "ĠdziaÅĤ": 27121, + "ĠdziaÅĤa": 37903, + "Ġdzie": 17953, + "Ġdzieci": 38612, + "ĠdzieÅĦ": 47568, + "Ġdzisiaj": 25772, + "ĠdziÄĻki": 45003, + "Ġdá": 14401, + "Ġdär": 12976, + "ĠdÃ¥": 13762, + "Ġdès": 34163, + "Ġdé": 2795, + "Ġdéb": 36529, + "Ġdébut": 22594, + "Ġdéc": 9198, + "Ġdécidé": 43206, + "Ġdécouv": 35687, + "Ġdécouvrir": 47756, + "Ġdéf": 30456, + "Ġdéfin": 40763, + "ĠdéjÃł": 12027, + "Ġdém": 22761, + "Ġdémocr": 47146, + "Ġdép": 27998, + "Ġdépart": 37745, + "Ġdépend": 45768, + "Ġdépl": 47687, + "Ġdés": 18963, + "Ġdét": 22312, + "Ġdévelop": 22558, + "Ġdévelopp": 33379, + "Ġdéveloppement": 45128, + "Ġdó": 18816, + "Ġdólares": 32596, + "Ġdónde": 34264, + "Ġdö": 26089, + "Ġdön": 24782, + "Ġdú": 39299, + "Ġdû": 42300, + "Ġdü": 19378, + "Ġdüny": 32262, + "Ġdür": 23637, + "Ġdürfen": 29493, + "ĠdÃ¼ÅŁ": 12856, + "ĠdÃ¼ÅŁÃ¼n": 21755, + "ĠdÃŃa": 12271, + "ĠdÃŃas": 19527, + "ĠdÄ±ÅŁ": 26602, + "ĠdÅĤ": 44042, + "Ġe": 308, + "ĠeBay": 33803, + "Ġeach": 1184, + "Ġeager": 18259, + "Ġeagle": 30745, + "Ġear": 1273, + "Ġearbuds": 40441, + "Ġearlier": 3071, + "Ġearliest": 20573, + "Ġearly": 2440, + "Ġearn": 6012, + "Ġearned": 12283, + "Ġearnest": 48171, + "Ġearning": 12353, + "Ġearnings": 20548, + "Ġearns": 46936, + "Ġearrings": 31902, + "Ġears": 8798, + "Ġearth": 4120, + "Ġearthly": 46262, + "Ġearthqu": 14814, + "Ġearthquake": 18778, + "Ġearthquakes": 34048, + "Ġeas": 1195, + "Ġease": 12708, + "Ġeasier": 3571, + "Ġeasiest": 12889, + "Ġeasily": 3612, + "Ġeast": 10648, + "Ġeastern": 19346, + "Ġeasy": 1858, + "Ġeat": 1862, + "Ġeaten": 12158, + "Ġeater": 40362, + "Ġeating": 3936, + "Ġeats": 18109, + "Ġeben": 11375, + "Ġebenfalls": 48977, + "Ġec": 11437, + "Ġecc": 29613, + "Ġeccentric": 42629, + "Ġech": 36803, + "Ġecho": 14300, + "Ġechoes": 47051, + "Ġecht": 13972, + "Ġeclipse": 35722, + "Ġeco": 30226, + "Ġecological": 31054, + "Ġecology": 39683, + "Ġecon": 23692, + "Ġeconom": 2520, + "Ġeconomic": 4836, + "Ġeconomical": 42473, + "Ġeconomically": 26811, + "Ġeconomics": 14564, + "Ġeconomies": 23158, + "Ġeconomist": 36696, + "Ġeconomists": 32431, + "Ġeconomy": 5010, + "Ġeconóm": 33537, + "Ġecos": 11007, + "Ġecosystem": 11311, + "Ġecosystems": 32647, + "Ġed": 1257, + "Ġede": 25959, + "Ġeden": 47727, + "Ġeder": 23252, + "Ġederim": 37749, + "Ġedge": 4691, + "Ġedges": 8819, + "Ġedible": 30666, + "Ġedit": 8129, + "Ġedited": 23016, + "Ġediting": 10000, + "Ġedition": 11377, + "Ġeditions": 44840, + "Ġeditor": 9839, + "Ġeditorial": 33412, + "Ġeditors": 31446, + "Ġedits": 41752, + "Ġediyor": 30761, + "Ġediyorum": 39203, + "Ġeduc": 2400, + "Ġeducación": 48861, + "Ġeducate": 16092, + "Ġeducated": 15872, + "Ġeducating": 28835, + "Ġeducation": 3309, + "Ġeducational": 10189, + "Ġeducator": 31237, + "Ġeducators": 22819, + "Ġeel": 47521, + "Ġeen": 3881, + "Ġeens": 31246, + "Ġeer": 25937, + "Ġeerste": 35586, + "Ġef": 31482, + "Ġefect": 22565, + "Ġefecto": 46783, + "Ġefendim": 43556, + "Ġeff": 1244, + "Ġeffect": 1802, + "Ġeffective": 4942, + "Ġeffectively": 8659, + "Ġeffectivement": 40126, + "Ġeffectiveness": 21208, + "Ġeffects": 5065, + "Ġeffet": 30960, + "Ġeffic": 4703, + "Ġefficacy": 33492, + "Ġefficiency": 10493, + "Ġefficient": 7148, + "Ġefficiently": 19621, + "Ġeffort": 4630, + "Ġefforts": 6484, + "Ġefic": 49510, + "Ġefter": 24827, + "Ġeg": 24263, + "Ġegal": 31528, + "Ġegent": 41170, + "Ġegg": 3777, + "Ġeggplant": 43018, + "Ġeggs": 6466, + "Ġego": 14495, + "Ġegy": 16524, + "Ġeh": 7670, + "Ġeher": 24332, + "Ġehkä": 47559, + "Ġehrlich": 40872, + "Ġei": 14020, + "Ġeig": 9728, + "Ġeigen": 10446, + "Ġeigene": 38549, + "Ġeigenen": 28702, + "Ġeigenlijk": 23116, + "Ġeigentlich": 10926, + "Ġeight": 3180, + "Ġeighteen": 31755, + "Ġeighth": 19495, + "Ġeighty": 26348, + "Ġein": 1343, + "Ġeine": 3018, + "Ġeinem": 6827, + "Ġeinen": 4891, + "Ġeiner": 6850, + "Ġeines": 18599, + "Ġeinf": 38627, + "Ġeinfach": 7281, + "Ġeing": 17002, + "Ġeinge": 30061, + "Ġeinges": 49821, + "Ġeinige": 28338, + "Ġeinmal": 11078, + "Ġeins": 21889, + "Ġeinz": 21586, + "Ġeinzel": 36731, + "Ġeinzige": 47743, + "Ġeither": 2139, + "Ġej": 10012, + "Ġeje": 39564, + "Ġeject": 32520, + "Ġejemplo": 13358, + "Ġejerc": 39151, + "Ġek": 13359, + "Ġeks": 30724, + "Ġel": 806, + "Ġela": 7175, + "Ġelabor": 16298, + "Ġelaborate": 20945, + "Ġelas": 23003, + "Ġelastic": 17115, + "Ġelasticity": 46260, + "Ġelbow": 18507, + "Ġelbows": 26620, + "Ġeld": 8912, + "Ġelder": 12995, + "Ġelderly": 19682, + "Ġelders": 22737, + "Ġeldest": 38096, + "Ġele": 1118, + "Ġelect": 2185, + "Ġelected": 11776, + "Ġelection": 6618, + "Ġelections": 12870, + "Ġelector": 45948, + "Ġelectoral": 28633, + "Ġelectr": 7072, + "Ġelectric": 5210, + "Ġelectrical": 12147, + "Ġelectricity": 10356, + "Ġelectro": 16717, + "Ġelectrod": 44216, + "Ġelectrode": 38346, + "Ġelectrodes": 47824, + "Ġelectroly": 39197, + "Ġelectromagn": 27528, + "Ġelectromagnetic": 32214, + "Ġelectron": 6084, + "Ġelectronic": 10092, + "Ġelectronically": 49677, + "Ġelectronics": 20611, + "Ġelectrons": 14265, + "Ġeleg": 14459, + "Ġelegant": 21117, + "Ġelekt": 26991, + "Ġelement": 4478, + "Ġelemental": 39427, + "Ġelementary": 16429, + "Ġelemento": 47961, + "Ġelementos": 35797, + "Ġelements": 4959, + "Ġelephant": 19791, + "Ġelephants": 33015, + "Ġeles": 10244, + "Ġelev": 7701, + "Ġelevate": 33054, + "Ġelevated": 23457, + "Ġelevation": 25827, + "Ġelevator": 18782, + "Ġeleven": 21090, + "Ġelf": 35565, + "Ġeli": 34486, + "Ġelig": 31089, + "Ġeligibility": 32826, + "Ġeligible": 14728, + "Ġelim": 24333, + "Ġelimin": 7892, + "Ġeliminate": 13819, + "Ġeliminated": 20308, + "Ġeliminates": 49893, + "Ġeliminating": 31203, + "Ġelimination": 29224, + "Ġelite": 17801, + "Ġelites": 44678, + "Ġelk": 44818, + "Ġelkaar": 35930, + "Ġell": 8284, + "Ġella": 18823, + "Ġellas": 38397, + "Ġelle": 8404, + "Ġeller": 12519, + "Ġelles": 23576, + "Ġello": 33549, + "Ġellos": 16353, + "Ġelo": 38682, + "Ġelong": 40786, + "Ġels": 10302, + "Ġelse": 1646, + "Ġelsewhere": 14517, + "Ġelves": 43087, + "Ġelét": 36920, + "Ġem": 846, + "Ġemail": 3796, + "Ġemailed": 45460, + "Ġemails": 12524, + "Ġeman": 28211, + "Ġemb": 4605, + "Ġemba": 32660, + "Ġembaixo": 36612, + "Ġembar": 18801, + "Ġembargo": 23955, + "Ġembark": 29832, + "Ġembarrass": 9187, + "Ġembarrassed": 16843, + "Ġembarrassing": 17299, + "Ġembarrassment": 43536, + "Ġembassy": 38012, + "Ġembed": 12240, + "Ġembedded": 16741, + "Ġemblem": 35949, + "Ġembod": 28935, + "Ġembodied": 42046, + "Ġembody": 42575, + "Ġembora": 44681, + "Ġembr": 9392, + "Ġembrace": 14038, + "Ġembraced": 28673, + "Ġembracing": 31596, + "Ġembro": 27925, + "Ġembroider": 29833, + "Ġembroidery": 43762, + "Ġembry": 31588, + "Ġemer": 4345, + "Ġemerge": 21511, + "Ġemerged": 20178, + "Ġemergen": 33983, + "Ġemergence": 36211, + "Ġemergencies": 43483, + "Ġemergency": 7473, + "Ġemerges": 38965, + "Ġemerging": 14989, + "Ġemission": 29513, + "Ġemissions": 14607, + "Ġemit": 32084, + "Ġemitted": 44897, + "Ġemo": 19611, + "Ġemoc": 28283, + "Ġemoji": 31595, + "Ġemot": 3626, + "Ġemotion": 8913, + "Ġemotional": 6863, + "Ġemotionally": 17991, + "Ġemotions": 8462, + "Ġemp": 4012, + "Ġempath": 27155, + "Ġempathy": 18701, + "Ġemperor": 20255, + "Ġempez": 18730, + "Ġempezar": 31168, + "Ġemphas": 7896, + "Ġemphasis": 16271, + "Ġemphasize": 16078, + "Ġemphasized": 34068, + "Ġemphasizes": 48856, + "Ġemphasizing": 45550, + "Ġempieza": 44577, + "Ġempir": 25790, + "Ġempire": 17506, + "Ġempirical": 31886, + "Ġemple": 36820, + "Ġemploy": 3188, + "Ġemployed": 20115, + "Ġemployee": 10738, + "Ġemployees": 6619, + "Ġemployer": 16205, + "Ġemployers": 16744, + "Ġemployment": 11949, + "Ġempower": 11071, + "Ġempowered": 27898, + "Ġempowering": 28261, + "Ġempowerment": 34825, + "Ġempre": 43223, + "Ġempres": 13627, + "Ġempresa": 22682, + "Ġempresas": 26433, + "Ġempt": 6113, + "Ġemptiness": 41993, + "Ġempty": 6707, + "Ġemulate": 45497, + "Ġen": 465, + "Ġenable": 9528, + "Ġenabled": 15172, + "Ġenables": 17077, + "Ġenabling": 23148, + "Ġenact": 25909, + "Ġenacted": 41313, + "Ġenam": 44549, + "Ġenc": 2058, + "Ġenca": 28934, + "Ġencant": 42380, + "Ġencanta": 47597, + "Ġencaps": 38745, + "Ġencara": 47287, + "Ġench": 35213, + "Ġencima": 40265, + "Ġencl": 20987, + "Ġenclosed": 42089, + "Ġenclosure": 34093, + "Ġencoding": 43430, + "Ġencompass": 28268, + "Ġencompasses": 49866, + "Ġencont": 10176, + "Ġencontra": 43621, + "Ġencontramos": 45049, + "Ġencontrar": 17525, + "Ġencore": 10122, + "Ġencoun": 7669, + "Ġencounter": 8593, + "Ġencountered": 20381, + "Ġencounters": 26310, + "Ġencour": 3959, + "Ġencourage": 5373, + "Ġencouraged": 14658, + "Ġencouragement": 25683, + "Ġencourages": 28071, + "Ġencouraging": 14580, + "Ġencry": 17972, + "Ġencrypted": 36663, + "Ġencryption": 29575, + "Ġencuent": 23708, + "Ġencuentra": 43274, + "Ġend": 917, + "Ġendanger": 31975, + "Ġendangered": 37539, + "Ġende": 19099, + "Ġendeavor": 34975, + "Ġendeavors": 49608, + "Ġended": 4590, + "Ġending": 8121, + "Ġendings": 42474, + "Ġendless": 16144, + "Ġendlessly": 44920, + "Ġendlich": 32574, + "Ġendors": 37676, + "Ġendorse": 29228, + "Ġendorsed": 50094, + "Ġendpoint": 35795, + "Ġendroit": 47390, + "Ġends": 5314, + "Ġendurance": 30325, + "Ġendure": 24732, + "Ġendured": 39017, + "Ġenduring": 36562, + "Ġenem": 7255, + "Ġenemies": 7805, + "Ġenemy": 5945, + "Ġener": 2043, + "Ġenerg": 10575, + "Ġenergetic": 24935, + "Ġenergia": 29469, + "Ġenergies": 25737, + "Ġenergized": 49231, + "Ġenergy": 2281, + "ĠenergÃŃa": 34315, + "Ġenf": 10667, + "Ġenfant": 44888, + "Ġenfants": 22649, + "Ġenfer": 27341, + "Ġenfermed": 42695, + "Ġenfim": 48937, + "Ġenfin": 25059, + "Ġenfor": 25495, + "Ġenforce": 24825, + "Ġenforced": 40953, + "Ġenforcement": 11475, + "Ġenfrent": 33771, + "Ġeng": 1741, + "Ġengag": 46730, + "Ġengage": 4683, + "Ġengaged": 8237, + "Ġengagement": 8742, + "Ġengagements": 44978, + "Ġengages": 45576, + "Ġengaging": 11268, + "Ġengine": 2848, + "Ġengineer": 11403, + "Ġengineered": 38648, + "Ġengineering": 7043, + "Ġengineers": 11955, + "Ġengines": 12982, + "Ġenglish": 32169, + "Ġengra": 25842, + "Ġenh": 10944, + "Ġenhan": 15780, + "Ġenhance": 11985, + "Ġenhanced": 21191, + "Ġenhancement": 40776, + "Ġenhances": 46628, + "Ġenhancing": 36579, + "Ġenjo": 27803, + "Ġenjoy": 2103, + "Ġenjoyable": 20305, + "Ġenjoyed": 4626, + "Ġenjoying": 9929, + "Ġenjoyment": 32013, + "Ġenjoys": 29750, + "Ġenlar": 31976, + "Ġenlight": 18690, + "Ġenlightened": 36975, + "Ġenlightenment": 34661, + "Ġenm": 48786, + "Ġenorm": 8473, + "Ġenorme": 33648, + "Ġenormous": 11322, + "Ġenormously": 39669, + "Ġenough": 1547, + "Ġenqu": 21304, + "Ġenquanto": 31749, + "Ġenrich": 18849, + "Ġenriched": 48624, + "Ġenrichment": 49900, + "Ġenroll": 12266, + "Ġenrolled": 25896, + "Ġenrollment": 22420, + "Ġens": 3489, + "Ġense": 12567, + "Ġensemble": 19492, + "Ġenseñ": 31275, + "Ġensl": 30434, + "Ġenslaved": 32119, + "Ġensuite": 25080, + "Ġensure": 5586, + "Ġensures": 28111, + "Ġensuring": 16882, + "Ġent": 948, + "Ġentails": 50133, + "Ġentend": 16612, + "Ġentender": 20054, + "Ġentendeu": 49622, + "Ġentendu": 41489, + "Ġenter": 3242, + "Ġentered": 9065, + "Ġentering": 11104, + "Ġenterprise": 14132, + "Ġenterprises": 29034, + "Ġenters": 18780, + "Ġentertain": 7655, + "Ġentertained": 44783, + "Ġentertaining": 20402, + "Ġentertainment": 12393, + "Ġentfer": 41940, + "Ġenthal": 46475, + "Ġenthalpy": 48869, + "Ġenthus": 12616, + "Ġenthusi": 18076, + "Ġenthusiasm": 23417, + "Ġenthusiastic": 28574, + "Ġenthusiasts": 45873, + "Ġentire": 2302, + "Ġentirely": 7696, + "Ġentirety": 31557, + "Ġentit": 14789, + "Ġentities": 16667, + "Ġentitled": 17838, + "Ġentity": 13977, + "Ġentonces": 13003, + "Ġentr": 8041, + "Ġentra": 22284, + "Ġentrada": 37119, + "Ġentrance": 12014, + "Ġentrar": 20913, + "Ġentre": 3962, + "Ġentreg": 32843, + "Ġentren": 45069, + "Ġentreprene": 8354, + "Ġentrepreneur": 14307, + "Ġentrepreneurial": 33094, + "Ġentrepreneurs": 12639, + "Ġentrepreneurship": 26582, + "Ġentreprises": 41657, + "Ġentrev": 39095, + "Ġentries": 23041, + "Ġentropy": 30867, + "Ġentry": 8729, + "Ġents": 12834, + "Ġentsche": 28398, + "Ġentscheiden": 44560, + "Ġentschieden": 49807, + "Ġentsprech": 29967, + "Ġentsprechend": 47823, + "Ġentste": 35955, + "Ġentwic": 28449, + "Ġentwickelt": 43208, + "Ġentão": 9071, + "Ġenv": 2267, + "Ġenvelop": 33860, + "Ġenvelope": 19989, + "Ġenvie": 24149, + "Ġenviron": 2571, + "Ġenvironment": 2823, + "Ġenvironmental": 8303, + "Ġenvironmentally": 42236, + "Ġenvironments": 12388, + "Ġenvision": 24739, + "Ġenvisioned": 47733, + "Ġenvol": 49995, + "Ġenvoy": 35351, + "Ġenvy": 30530, + "Ġenzy": 16272, + "Ġenzyme": 24521, + "Ġenzymes": 29299, + "Ġep": 2388, + "Ġepic": 13581, + "Ġepid": 13510, + "Ġepidemi": 35761, + "Ġepidemic": 20982, + "Ġepile": 41855, + "Ġepilepsy": 49680, + "Ġepis": 2927, + "Ġepisod": 39200, + "Ġepisode": 3500, + "Ġepisodes": 9313, + "Ġepisód": 42736, + "Ġepisódio": 50056, + "Ġepo": 30992, + "Ġepoxy": 45397, + "Ġepsilon": 17889, + "Ġequ": 1267, + "Ġequal": 2681, + "Ġequality": 14949, + "Ġequally": 12309, + "Ġequals": 6915, + "Ġequation": 5367, + "Ġequations": 11787, + "Ġequator": 45544, + "Ġequilib": 14204, + "Ġequilibrium": 15625, + "Ġequip": 5037, + "Ġequipment": 5927, + "Ġequipo": 30048, + "Ġequipped": 15218, + "Ġequitable": 33730, + "Ġequity": 10769, + "Ġequiv": 48726, + "Ġequival": 9052, + "Ġequivalent": 10344, + "Ġer": 1189, + "Ġera": 4249, + "Ġerad": 33078, + "Ġeram": 34664, + "Ġeran": 32762, + "Ġerase": 23525, + "Ġerased": 38359, + "Ġeraser": 46018, + "Ġere": 25022, + "Ġerect": 34201, + "Ġeres": 30065, + "Ġerf": 20228, + "Ġerfahren": 49472, + "Ġerfolg": 39447, + "Ġerfolgreich": 48270, + "Ġerg": 26585, + "Ġergon": 42735, + "Ġerhalten": 38051, + "Ġerhö": 49058, + "Ġerk": 31879, + "Ġerkennen": 45720, + "Ġerkl": 27570, + "Ġerklären": 46528, + "Ġerle": 26826, + "Ġerlebt": 47372, + "Ġerm": 25253, + "Ġern": 36061, + "Ġernst": 43412, + "Ġerosion": 32173, + "Ġerr": 45267, + "Ġerrado": 48571, + "Ġerrand": 45810, + "Ġerre": 28641, + "Ġerreichen": 39464, + "Ġerreicht": 46250, + "Ġerro": 45935, + "Ġerror": 6713, + "Ġerrors": 13603, + "Ġers": 33743, + "Ġersch": 41673, + "Ġerst": 11301, + "Ġerste": 20951, + "Ġersten": 17324, + "Ġerstmal": 38607, + "Ġeru": 20999, + "Ġeruption": 42584, + "Ġerw": 21715, + "Ġerzäh": 28337, + "Ġerzählt": 47110, + "Ġes": 785, + "Ġesa": 11342, + "Ġesas": 23388, + "Ġesc": 4721, + "Ġesca": 12663, + "Ġescal": 17871, + "Ġescape": 7615, + "Ġescaped": 20397, + "Ġescapes": 43769, + "Ġescaping": 32554, + "Ġescol": 25603, + "Ġescola": 42501, + "Ġescort": 37353, + "Ġescr": 49865, + "Ġescre": 30004, + "Ġescrever": 44909, + "Ġescri": 30598, + "Ġescrito": 49451, + "Ġescuch": 22483, + "Ġescuela": 47817, + "Ġese": 10167, + "Ġesemp": 32340, + "Ġesempio": 33627, + "Ġesf": 41614, + "Ġesfuer": 49213, + "Ġesimerk": 50029, + "Ġeso": 7287, + "Ġesos": 22411, + "Ġesp": 7089, + "Ġespa": 17488, + "Ġespacio": 33845, + "Ġespaço": 34270, + "Ġespañ": 25726, + "Ġespañol": 31177, + "Ġespe": 10049, + "Ġespec": 31620, + "Ġespecial": 15342, + "Ġespecially": 2318, + "Ġespecialmente": 41546, + "Ġespecie": 49368, + "Ġespect": 38244, + "ĠespecÃŃfic": 32741, + "Ġesper": 10045, + "Ġespera": 37862, + "Ġesperando": 46587, + "Ġesperar": 37577, + "Ġespero": 26823, + "Ġespresso": 44140, + "ĠespÃŃ": 48987, + "Ġesqu": 34611, + "Ġesque": 28147, + "Ġesquer": 40428, + "Ġess": 2097, + "Ġessa": 7208, + "Ġessas": 19277, + "Ġessay": 16238, + "Ġessayer": 32421, + "Ġessays": 35123, + "Ġesse": 6755, + "Ġessen": 41749, + "Ġessence": 12801, + "Ġessent": 47056, + "Ġessential": 7115, + "Ġessentially": 4476, + "Ġessentials": 46884, + "Ġessere": 19799, + "Ġesses": 18966, + "Ġest": 871, + "Ġesta": 5283, + "Ġestab": 3947, + "Ġestaba": 17544, + "Ġestaban": 36713, + "Ġestable": 37444, + "Ġestablish": 8327, + "Ġestablished": 7545, + "Ġestablishing": 22494, + "Ġestablishment": 20971, + "Ġestad": 39160, + "Ġestado": 18372, + "Ġestamos": 10382, + "Ġestan": 42058, + "Ġestar": 8755, + "Ġestas": 13897, + "Ġestat": 30883, + "Ġestate": 9749, + "Ġestava": 15662, + "Ġestavam": 43711, + "Ġeste": 4065, + "Ġestem": 50185, + "Ġestilo": 37470, + "Ġestim": 8017, + "Ġestimate": 12539, + "Ġestimated": 14109, + "Ġestimates": 20561, + "Ġestimation": 35701, + "Ġestiver": 46578, + "Ġesto": 7433, + "Ġestos": 12585, + "Ġestou": 17660, + "Ġestoy": 15796, + "Ġestr": 35680, + "Ġestran": 49461, + "Ġestrat": 42746, + "Ġestratég": 46603, + "Ġestre": 36665, + "Ġestrogen": 44754, + "Ġestruct": 43935, + "Ġestrut": 45899, + "Ġestud": 13542, + "Ġestudio": 44286, + "Ġestuv": 49777, + "Ġestá": 3192, + "Ġestán": 10368, + "Ġestás": 24389, + "Ġestão": 14775, + "Ġesté": 34584, + "ĠestÃł": 22093, + "Ġet": 1030, + "Ġeta": 32415, + "Ġetap": 47634, + "Ġetc": 5183, + "Ġetcetera": 22066, + "Ġetern": 10533, + "Ġeternal": 14503, + "Ġeternity": 27162, + "Ġeth": 6468, + "Ġethanol": 43150, + "Ġether": 37096, + "Ġethic": 37820, + "Ġethical": 18890, + "Ġethics": 19769, + "Ġethn": 42589, + "Ġethnic": 14363, + "Ġethnicity": 33774, + "Ġetiqu": 42177, + "Ġetme": 34469, + "Ġetmek": 46005, + "Ġett": 5431, + "Ġetti": 41523, + "Ġettä": 9894, + "Ġetwa": 28369, + "Ġetwas": 9569, + "Ġeu": 2228, + "Ġeuch": 10403, + "Ġeuh": 32678, + "Ġeure": 32845, + "Ġeuro": 14206, + "Ġeurop": 22139, + "Ġeurope": 27207, + "Ġeuropé": 32055, + "Ġeuros": 14160, + "Ġeux": 22648, + "Ġev": 1073, + "Ġevac": 20245, + "Ġevacuate": 48570, + "Ġevacuation": 42740, + "Ġevalu": 6133, + "Ġevaluate": 13059, + "Ġevaluated": 25509, + "Ġevaluating": 27479, + "Ġevaluation": 13344, + "Ġevaluations": 43085, + "Ġevangel": 24546, + "Ġevangelical": 45471, + "Ġevapor": 26315, + "Ġeve": 34225, + "Ġeven": 754, + "Ġevening": 5634, + "Ġevenings": 42835, + "Ġevenly": 17658, + "Ġevent": 2280, + "Ġevento": 40655, + "Ġevents": 3931, + "Ġeventual": 33160, + "Ġeventually": 4728, + "Ġever": 1562, + "Ġeverlasting": 43710, + "Ġevery": 633, + "Ġeverybody": 2201, + "Ġeveryday": 7429, + "Ġeveryone": 1518, + "Ġeverything": 1203, + "Ġeverytime": 46162, + "Ġeverywhere": 5315, + "Ġevet": 38016, + "Ġeviden": 43699, + "Ġevidence": 4467, + "Ġevident": 16371, + "Ġevil": 6724, + "Ġevitar": 31326, + "Ġevol": 7117, + "Ġevolution": 9303, + "Ġevolutionary": 27567, + "Ġevolve": 16693, + "Ġevolved": 14178, + "Ġevolves": 43737, + "Ġevolving": 21085, + "Ġew": 43364, + "Ġex": 454, + "Ġexacer": 38362, + "Ġexacerb": 38819, + "Ġexact": 1900, + "Ġexactamente": 48686, + "Ġexactement": 38111, + "Ġexactly": 2293, + "Ġexagger": 19123, + "Ġexaggerated": 36196, + "Ġexam": 1139, + "Ġexamination": 23874, + "Ġexamine": 17496, + "Ġexamined": 30972, + "Ġexamining": 34662, + "Ġexample": 1365, + "Ġexamples": 5110, + "Ġexams": 20514, + "Ġexatamente": 35937, + "Ġexc": 1624, + "Ġexca": 24933, + "Ġexcav": 34351, + "Ġexceed": 14048, + "Ġexceeded": 38026, + "Ġexceeds": 43305, + "Ġexcel": 24015, + "Ġexcell": 45817, + "Ġexcellence": 21268, + "Ġexcellent": 7103, + "Ġexcept": 3993, + "Ġexception": 11183, + "Ġexceptional": 19279, + "Ġexceptionally": 37807, + "Ġexceptions": 22847, + "Ġexcer": 42760, + "Ġexcess": 9310, + "Ġexcessive": 22704, + "Ġexch": 6210, + "Ġexchange": 7742, + "Ġexchanged": 38378, + "Ġexchanges": 27374, + "Ġexcit": 13101, + "Ġexcited": 2919, + "Ġexcitement": 14755, + "Ġexciting": 4670, + "Ġexclud": 16269, + "Ġexclude": 33536, + "Ġexcluded": 29486, + "Ġexcluding": 49999, + "Ġexclus": 15085, + "Ġexclusion": 33049, + "Ġexclusive": 13005, + "Ġexclusively": 20638, + "Ġexcus": 20974, + "Ġexcuse": 8960, + "Ġexcuses": 24666, + "Ġexec": 4454, + "Ġexecut": 7568, + "Ġexecute": 14483, + "Ġexecuted": 17577, + "Ġexecuting": 32368, + "Ġexecution": 15058, + "Ġexecutive": 10140, + "Ġexecutives": 28485, + "Ġexem": 9659, + "Ġexempel": 34999, + "Ġexempl": 24112, + "Ġexemple": 12223, + "Ġexemplo": 16496, + "Ġexempt": 30425, + "Ġexemption": 43154, + "Ġexerc": 4057, + "Ġexercise": 5380, + "Ġexercises": 11900, + "Ġexercising": 27272, + "Ġexert": 31941, + "Ġexfol": 46935, + "Ġexh": 31052, + "Ġexha": 9059, + "Ġexhale": 19652, + "Ġexhaust": 14687, + "Ġexhausted": 17992, + "Ġexhausting": 34076, + "Ġexhaustion": 47408, + "Ġexhib": 8144, + "Ġexhibit": 20487, + "Ġexhibited": 49446, + "Ġexhibition": 14414, + "Ġexhibitions": 41522, + "Ġexhibits": 39205, + "Ġexile": 37984, + "Ġexist": 2514, + "Ġexiste": 16304, + "Ġexisted": 13135, + "Ġexistem": 44345, + "Ġexistence": 9123, + "Ġexistential": 37133, + "Ġexisting": 6741, + "Ġexists": 8198, + "Ġexit": 11043, + "Ġexiting": 48868, + "Ġexits": 44183, + "Ġexotic": 27063, + "Ġexp": 1278, + "Ġexpand": 5268, + "Ġexpanded": 14342, + "Ġexpanding": 14702, + "Ġexpands": 33706, + "Ġexpans": 9672, + "Ġexpansion": 11260, + "Ġexpansive": 46949, + "Ġexpect": 2066, + "Ġexpectancy": 42574, + "Ġexpectation": 14334, + "Ġexpectations": 9843, + "Ġexpected": 5176, + "Ġexpecting": 9650, + "Ġexpects": 33280, + "Ġexped": 19348, + "Ġexpedition": 30359, + "Ġexpelled": 44368, + "Ġexpend": 24439, + "Ġexpenditure": 40377, + "Ġexpenditures": 46381, + "Ġexpense": 18406, + "Ġexpenses": 15506, + "Ġexpensive": 5124, + "Ġexper": 1086, + "Ġexperi": 33589, + "Ġexperien": 3135, + "Ġexperience": 1752, + "Ġexperienced": 6751, + "Ġexperiences": 5235, + "Ġexperiencia": 36489, + "Ġexperiencing": 11139, + "Ġexperient": 49611, + "Ġexperiment": 5120, + "Ġexperimental": 17069, + "Ġexperimentation": 37142, + "Ġexperimenting": 29070, + "Ġexperiments": 12050, + "Ġexperiência": 41238, + "Ġexpert": 5844, + "Ġexpertise": 11769, + "Ġexperts": 8572, + "Ġexpiration": 39657, + "Ġexpire": 45447, + "Ġexpired": 36587, + "Ġexpl": 1490, + "Ġexplain": 2903, + "Ġexplained": 8825, + "Ġexplaining": 13468, + "Ġexplains": 13948, + "Ġexplan": 9045, + "Ġexplanation": 10835, + "Ġexplanations": 28708, + "Ġexplic": 28021, + "Ġexplicar": 26682, + "Ġexplicit": 13691, + "Ġexplicitly": 20803, + "Ġexplo": 12382, + "Ġexplode": 21411, + "Ġexploded": 27049, + "Ġexplodes": 42610, + "Ġexploding": 35175, + "Ġexploit": 25924, + "Ġexploitation": 33122, + "Ġexploited": 40918, + "Ġexplor": 24765, + "Ġexploration": 16197, + "Ġexplore": 6839, + "Ġexplored": 24016, + "Ġexplorer": 39680, + "Ġexplores": 45473, + "Ġexploring": 12736, + "Ġexplos": 9215, + "Ġexplosion": 15673, + "Ġexplosions": 36872, + "Ġexplosive": 24630, + "Ġexplosives": 46421, + "Ġexpon": 12680, + "Ġexponent": 37871, + "Ġexponential": 21510, + "Ġexponentially": 37330, + "Ġexport": 10725, + "Ġexported": 42055, + "Ġexporting": 44686, + "Ġexports": 31428, + "Ġexpos": 30076, + "Ġexpose": 19219, + "Ġexposed": 9495, + "Ġexposing": 33178, + "Ġexposure": 10420, + "Ġexpres": 33397, + "Ġexpress": 5109, + "Ġexpressed": 12675, + "Ġexpresses": 39204, + "Ġexpressing": 22171, + "Ġexpression": 6114, + "Ġexpressions": 15277, + "Ġexpressive": 40189, + "Ġext": 1279, + "Ġextend": 10101, + "Ġextended": 10913, + "Ġextending": 24360, + "Ġextends": 26448, + "Ġextension": 10320, + "Ġextensions": 25129, + "Ġextensive": 13246, + "Ġextensively": 32636, + "Ġextent": 8396, + "Ġexterior": 20677, + "Ġextermin": 48628, + "Ġextern": 30360, + "Ġexternal": 8320, + "Ġexternally": 40899, + "Ġextinct": 35094, + "Ġextinction": 33163, + "Ġexting": 33829, + "Ġextr": 16455, + "Ġextra": 2857, + "Ġextract": 8947, + "Ġextracted": 34086, + "Ġextracting": 49844, + "Ġextraction": 30197, + "Ġextraord": 10149, + "Ġextraordin": 27396, + "Ġextraordinarily": 34557, + "Ġextraordinary": 10581, + "Ġextrapol": 48224, + "Ġextras": 40961, + "Ġextrater": 43324, + "Ġextrem": 4040, + "Ġextreme": 8084, + "Ġextremely": 4664, + "Ġextremes": 41119, + "Ġextrêmement": 38148, + "Ġey": 9817, + "Ġeye": 3313, + "Ġeyeball": 38868, + "Ġeyeballs": 43758, + "Ġeyebr": 15713, + "Ġeyebrow": 35875, + "Ġeyebrows": 19916, + "Ġeyel": 13197, + "Ġeyelashes": 37017, + "Ġeyelid": 39386, + "Ġeyelids": 42419, + "Ġeyeliner": 30788, + "Ġeyes": 2575, + "Ġeyeshadow": 34174, + "Ġeyesight": 49887, + "Ġez": 25220, + "ĠeÄŁ": 49681, + "ĠeÅŁ": 40600, + "Ġf": 283, + "Ġfa": 2050, + "Ġfab": 5355, + "Ġfabric": 7253, + "Ġfabrication": 44820, + "Ġfabrics": 32424, + "Ġfabulous": 17692, + "Ġfac": 1915, + "Ġfacade": 46261, + "Ġface": 1851, + "Ġfacebook": 23372, + "Ġfaced": 11446, + "Ġfaces": 8475, + "Ġfacets": 49752, + "Ġfacial": 15642, + "Ġfacil": 10217, + "Ġfacile": 23670, + "Ġfacilit": 38770, + "Ġfacilitate": 20207, + "Ġfacilitating": 47558, + "Ġfacilities": 9406, + "Ġfacility": 8973, + "Ġfacing": 7170, + "Ġfact": 1186, + "Ġfaction": 37249, + "Ġfactions": 41252, + "Ġfacto": 42225, + "Ġfactor": 5952, + "Ġfactorial": 36916, + "Ġfactories": 24813, + "Ġfactors": 6771, + "Ġfactory": 9265, + "Ġfacts": 9130, + "Ġfactual": 48029, + "Ġfacult": 44137, + "Ġfaculty": 6389, + "Ġfade": 21626, + "Ġfaded": 36352, + "Ġfades": 32679, + "Ġfading": 38644, + "Ġfahren": 25593, + "Ġfail": 3061, + "Ġfailed": 7612, + "Ġfailing": 18223, + "Ġfails": 18199, + "Ġfailure": 7763, + "Ġfailures": 20774, + "Ġfaint": 21104, + "Ġfair": 3143, + "Ġfaire": 4865, + "Ġfairly": 6457, + "Ġfairness": 29765, + "Ġfairy": 19104, + "Ġfais": 12153, + "Ġfaisait": 42795, + "Ġfait": 3887, + "Ġfaites": 29902, + "Ġfaith": 4522, + "Ġfaithful": 17808, + "Ġfaj": 34001, + "Ġfak": 33647, + "Ġfake": 7592, + "Ġfakt": 21310, + "Ġfaktiskt": 35988, + "Ġfal": 3704, + "Ġfala": 21580, + "Ġfalan": 21474, + "Ġfalando": 21236, + "Ġfalar": 13536, + "Ġfale": 26772, + "Ġfalei": 29800, + "Ġfall": 2100, + "Ġfallait": 49170, + "Ġfallen": 11547, + "Ġfalling": 7440, + "Ġfalls": 8804, + "Ġfalou": 28443, + "Ġfals": 16720, + "Ġfalsch": 43340, + "Ġfalse": 7908, + "Ġfalt": 37108, + "Ġfalta": 22111, + "Ġfam": 1087, + "Ġfame": 16874, + "Ġfamil": 4085, + "Ġfamili": 42155, + "Ġfamilia": 24050, + "Ġfamiliar": 4963, + "Ġfamiliarity": 49828, + "Ġfamilies": 4466, + "Ġfamille": 28123, + "Ġfamily": 1605, + "Ġfamine": 42790, + "Ġfamoso": 49526, + "Ġfamous": 4618, + "Ġfamously": 34360, + "ĠfamÃŃlia": 26716, + "Ġfan": 3429, + "Ġfancy": 10247, + "Ġfand": 38138, + "Ġfandom": 41591, + "Ġfans": 4499, + "Ġfant": 4115, + "Ġfantas": 31255, + "Ġfantast": 30665, + "Ġfantastic": 5456, + "Ġfantasy": 13861, + "Ġfar": 1400, + "Ġfare": 11994, + "Ġfarewell": 35442, + "Ġfark": 27047, + "Ġfarklı": 43953, + "Ġfarm": 5421, + "Ġfarmer": 17891, + "Ġfarmers": 11339, + "Ġfarming": 16557, + "Ġfarms": 20366, + "Ġfart": 24575, + "Ġfarther": 20344, + "Ġfas": 30632, + "Ġfasc": 7184, + "Ġfascinated": 24597, + "Ġfascinating": 10343, + "Ġfase": 33931, + "Ġfashion": 6700, + "Ġfashionable": 40735, + "Ġfashioned": 40646, + "Ġfast": 2370, + "Ġfasten": 38716, + "Ġfaster": 4663, + "Ġfastest": 14573, + "Ġfasting": 22371, + "Ġfat": 4046, + "Ġfatal": 24069, + "Ġfate": 12738, + "Ġfather": 3086, + "Ġfathers": 23450, + "Ġfatigue": 20574, + "Ġfato": 33351, + "Ġfats": 29885, + "Ġfatto": 23228, + "Ġfatty": 24898, + "Ġfauc": 49567, + "Ġfaud": 38694, + "Ġfault": 7441, + "Ġfaults": 36090, + "Ġfaut": 8487, + "Ġfaux": 36659, + "Ġfav": 33801, + "Ġfavor": 2294, + "Ġfavorable": 29557, + "Ġfavored": 44420, + "Ġfavorite": 2954, + "Ġfavorites": 16907, + "Ġfavors": 40554, + "Ġfavour": 8182, + "Ġfavourite": 10696, + "Ġfaz": 4375, + "Ġfazem": 41748, + "Ġfazendo": 20741, + "Ġfazer": 6736, + "Ġfazla": 30611, + "Ġfaço": 38091, + "Ġfaçon": 20725, + "Ġfe": 579, + "Ġfear": 4240, + "Ġfeared": 30629, + "Ġfearful": 33014, + "Ġfearless": 44139, + "Ġfears": 15649, + "Ġfeas": 21781, + "Ġfeasible": 26648, + "Ġfeast": 23707, + "Ġfeat": 15425, + "Ġfeather": 25852, + "Ġfeathers": 27044, + "Ġfeature": 4111, + "Ġfeatured": 13822, + "Ġfeatures": 4122, + "Ġfeaturing": 19742, + "Ġfed": 4636, + "Ġfeder": 38024, + "Ġfederal": 6019, + "Ġfee": 12054, + "Ġfeed": 3154, + "Ġfeedback": 5824, + "Ġfeeder": 48778, + "Ġfeeding": 12919, + "Ġfeeds": 23712, + "Ġfeel": 841, + "Ġfeeling": 2633, + "Ġfeelings": 6640, + "Ġfeels": 3417, + "Ġfees": 13370, + "Ġfeet": 3521, + "Ġfeh": 34741, + "Ġfehlt": 47994, + "Ġfeito": 31243, + "Ġfel": 11094, + "Ġfelic": 49986, + "Ġfeliz": 28544, + "Ġfell": 5696, + "Ġfella": 49820, + "Ġfellas": 47242, + "Ġfellow": 7177, + "Ġfellows": 35595, + "Ġfellowship": 24989, + "Ġfelony": 46255, + "Ġfelt": 2762, + "Ġfem": 4010, + "Ġfemale": 6556, + "Ġfemales": 21529, + "Ġfemin": 11155, + "Ġfeminine": 24648, + "Ġfeminism": 37187, + "Ġfeminist": 26229, + "Ġfemme": 27427, + "Ġfemmes": 27997, + "Ġfen": 26830, + "Ġfence": 15422, + "Ġfences": 45796, + "Ġfender": 49746, + "Ġfent": 39395, + "Ġfer": 7202, + "Ġfera": 50169, + "Ġferm": 26558, + "Ġferment": 38300, + "Ġfermentation": 43161, + "Ġfermented": 38649, + "Ġferry": 32967, + "Ġfert": 10700, + "Ġfertig": 31362, + "Ġfertil": 18512, + "Ġfertile": 43509, + "Ġfertility": 31707, + "Ġfertilizer": 31549, + "Ġfest": 6633, + "Ġfesta": 48080, + "Ġfestival": 12091, + "Ġfestivals": 28040, + "Ġfestive": 42729, + "Ġfet": 15136, + "Ġfetch": 23673, + "Ġfeu": 29539, + "Ġfeud": 36377, + "Ġfever": 18277, + "Ġfew": 1326, + "Ġfewer": 13366, + "Ġfez": 21714, + "Ġfi": 15848, + "Ġfian": 49513, + "Ġfiance": 46552, + "Ġfib": 13116, + "Ġfiber": 12874, + "Ġfibers": 25252, + "Ġfibre": 36738, + "Ġfic": 14591, + "Ġfica": 16868, + "Ġficar": 13646, + "Ġfick": 35368, + "Ġficou": 25518, + "Ġfiction": 13266, + "Ġfictional": 28911, + "Ġfid": 24553, + "Ġfidelity": 46404, + "Ġfield": 2519, + "Ġfields": 7909, + "Ġfier": 16334, + "Ġfierce": 25341, + "Ġfiery": 43897, + "Ġfif": 5782, + "Ġfifteen": 18126, + "Ġfifth": 9266, + "Ġfifty": 13442, + "Ġfig": 2147, + "Ġfight": 2092, + "Ġfighter": 15932, + "Ġfighters": 19714, + "Ġfighting": 5237, + "Ġfights": 14512, + "Ġfigur": 31094, + "Ġfigura": 44691, + "Ġfigure": 2573, + "Ġfigured": 8932, + "Ġfigures": 9624, + "Ġfiguring": 15213, + "Ġfij": 42001, + "Ġfik": 35562, + "Ġfil": 1387, + "Ġfilament": 44280, + "Ġfile": 3991, + "Ġfiled": 18789, + "Ġfiles": 7098, + "Ġfilho": 36919, + "Ġfiling": 26854, + "Ġfill": 2836, + "Ġfille": 39216, + "Ġfilled": 6412, + "Ġfiller": 34676, + "Ġfilling": 10623, + "Ġfills": 22498, + "Ġfilm": 2007, + "Ġfilme": 26488, + "Ġfilmed": 15133, + "Ġfilming": 8869, + "Ġfilmmaker": 34700, + "Ġfilmmakers": 35018, + "Ġfilmmaking": 43133, + "Ġfilms": 7796, + "Ġfilos": 46045, + "Ġfils": 46190, + "Ġfilt": 29148, + "Ġfilter": 6608, + "Ġfiltered": 37111, + "Ġfiltering": 30822, + "Ġfilters": 15995, + "Ġfilthy": 40384, + "Ġfiltration": 43623, + "Ġfim": 31603, + "Ġfin": 962, + "Ġfinal": 2572, + "Ġfinale": 23510, + "Ġfinalement": 28623, + "Ġfinally": 2721, + "Ġfinalmente": 35577, + "Ġfinals": 25526, + "Ġfinan": 3682, + "Ġfinance": 10719, + "Ġfinances": 25123, + "Ġfinanci": 24323, + "Ġfinancial": 4669, + "Ġfinancially": 20469, + "Ġfinancing": 22286, + "Ġfinans": 38843, + "Ġfind": 915, + "Ġfinde": 17841, + "Ġfinden": 20734, + "Ġfindet": 27752, + "Ġfinding": 5006, + "Ġfindings": 16483, + "Ġfinds": 10704, + "Ġfine": 2489, + "Ġfinely": 31529, + "Ġfiner": 39130, + "Ġfines": 37989, + "Ġfinest": 28141, + "Ġfing": 3823, + "Ġfinger": 5984, + "Ġfingerna": 48880, + "Ġfingerprint": 30715, + "Ġfingerprints": 42170, + "Ġfingers": 7350, + "Ġfingert": 25948, + "Ġfingertips": 27715, + "Ġfini": 40634, + "Ġfinish": 2413, + "Ġfinished": 4335, + "Ġfinishes": 23615, + "Ġfinishing": 12693, + "Ġfinite": 19362, + "Ġfinns": 17152, + "Ġfino": 42560, + "Ġfins": 25106, + "Ġfique": 35497, + "Ġfiquei": 49647, + "Ġfir": 12159, + "Ġfire": 2610, + "Ġfirearm": 43253, + "Ġfirearms": 38398, + "Ġfired": 11777, + "Ġfirefight": 25256, + "Ġfirefighters": 37218, + "Ġfireplace": 39511, + "Ġfires": 15044, + "Ġfirewall": 36109, + "Ġfireworks": 28453, + "Ġfiring": 16045, + "Ġfirm": 6174, + "Ġfirmly": 20031, + "Ġfirms": 18055, + "Ġfirmware": 30289, + "Ġfirst": 700, + "Ġfirsthand": 38599, + "Ġfirstly": 27376, + "Ġfis": 36609, + "Ġfiscal": 15897, + "Ġfish": 3506, + "Ġfisher": 20698, + "Ġfisherman": 48657, + "Ġfishermen": 42670, + "Ġfishes": 41734, + "Ġfishing": 10180, + "Ġfishy": 41991, + "Ġfist": 21849, + "Ġfists": 49384, + "Ġfit": 3318, + "Ġfitness": 15303, + "Ġfits": 9001, + "Ġfitt": 48876, + "Ġfitted": 26321, + "Ġfitting": 15669, + "Ġfive": 1732, + "Ġfix": 3191, + "Ġfixed": 6806, + "Ġfixes": 32539, + "Ġfixing": 19442, + "Ġfixture": 47680, + "Ġfiz": 21000, + "Ġfizer": 46627, + "Ġfl": 932, + "Ġfla": 46338, + "Ġflag": 7166, + "Ġflags": 23265, + "Ġflagship": 30400, + "Ġflakes": 35392, + "Ġflame": 13287, + "Ġflames": 23743, + "Ġflaming": 45718, + "Ġflank": 36318, + "Ġflap": 30781, + "Ġflaps": 50065, + "Ġflare": 32446, + "Ġflash": 7319, + "Ġflashes": 39665, + "Ġflashing": 31049, + "Ġflashlight": 30835, + "Ġflashy": 47873, + "Ġflat": 4962, + "Ġflats": 43075, + "Ġflatten": 24183, + "Ġflatter": 41247, + "Ġflattering": 49722, + "Ġflav": 37737, + "Ġflavor": 6813, + "Ġflavored": 37261, + "Ġflavors": 16303, + "Ġflavour": 22190, + "Ġflavours": 49450, + "Ġflaw": 13717, + "Ġflawed": 38823, + "Ġflawless": 45693, + "Ġflaws": 27108, + "Ġfle": 7025, + "Ġfled": 24114, + "Ġflee": 25146, + "Ġfleeing": 41885, + "Ġfleet": 19396, + "Ġflesh": 12497, + "Ġflew": 15728, + "Ġflex": 5896, + "Ġflexibility": 12635, + "Ġflexible": 11358, + "Ġflick": 22774, + "Ġflies": 17414, + "Ġflight": 7018, + "Ġflights": 21089, + "Ġflip": 7929, + "Ġflipped": 26273, + "Ġflipping": 26886, + "Ġflips": 40249, + "Ġflirt": 40532, + "Ġflirting": 45777, + "Ġflo": 2591, + "Ġfloat": 15706, + "Ġfloating": 12607, + "Ġfloats": 37878, + "Ġflock": 34819, + "Ġflood": 10481, + "Ġflooded": 31594, + "Ġflooding": 24132, + "Ġfloods": 35536, + "Ġfloor": 4123, + "Ġfloors": 21008, + "Ġflop": 25343, + "Ġflor": 37342, + "Ġfloral": 38900, + "Ġfloss": 49697, + "Ġflour": 7693, + "Ġflourish": 38311, + "Ġflow": 3095, + "Ġflower": 8617, + "Ġflowers": 8085, + "Ġflowing": 13974, + "Ġflown": 34536, + "Ġflows": 12867, + "Ġflu": 5029, + "Ġfluct": 23448, + "Ġfluctuations": 45276, + "Ġfluent": 40799, + "Ġfluff": 41533, + "Ġfluffy": 22778, + "Ġfluid": 9113, + "Ġfluids": 33033, + "Ġfluor": 40540, + "Ġfluores": 32471, + "Ġfluorescent": 46735, + "Ġflush": 19568, + "Ġflute": 33088, + "Ġflux": 19298, + "Ġfly": 3603, + "Ġflying": 7137, + "Ġfo": 726, + "Ġfoam": 12958, + "Ġfoarte": 46499, + "Ġfocal": 26592, + "Ġfocus": 1879, + "Ġfocused": 5178, + "Ġfocuses": 16109, + "Ġfocusing": 8416, + "Ġfod": 47698, + "Ġfog": 13648, + "Ġfoi": 6901, + "Ġfoil": 22444, + "Ġfois": 9576, + "Ġfol": 3339, + "Ġfold": 4860, + "Ġfolded": 23940, + "Ġfolder": 10820, + "Ġfolders": 31082, + "Ġfolding": 25335, + "Ġfolds": 31341, + "Ġfoliage": 49767, + "Ġfolk": 15748, + "Ġfolklore": 49195, + "Ġfolks": 4024, + "Ġfoll": 25483, + "Ġfollow": 1524, + "Ġfollowed": 6263, + "Ġfollower": 35413, + "Ġfollowers": 13071, + "Ġfollowing": 3480, + "Ġfollows": 10002, + "Ġfon": 17290, + "Ġfonction": 20172, + "Ġfonctionne": 49216, + "Ġfond": 9557, + "Ġfondo": 38101, + "Ġfont": 10703, + "Ġfonts": 35316, + "Ġfood": 1755, + "Ġfoods": 8656, + "Ġfool": 7979, + "Ġfooled": 33372, + "Ġfoolish": 23478, + "Ġfools": 38625, + "Ġfoot": 2671, + "Ġfootage": 9556, + "Ġfootball": 7346, + "Ġfooting": 45959, + "Ġfootprint": 24222, + "Ġfootprints": 45715, + "Ġfootsteps": 26883, + "Ġfor": 337, + "Ġfora": 24530, + "Ġforam": 23102, + "Ġforb": 16603, + "Ġforbid": 34117, + "Ġforbidden": 25990, + "Ġforce": 3464, + "Ġforced": 7579, + "Ġforces": 5874, + "Ġforcing": 19030, + "Ġforcé": 30137, + "Ġforcément": 31358, + "Ġfordi": 47830, + "Ġfore": 2091, + "Ġforearm": 47712, + "Ġforecast": 14330, + "Ġforecasting": 44331, + "Ġforecasts": 49421, + "Ġforefront": 27287, + "Ġforeground": 32058, + "Ġforehead": 20472, + "Ġforeign": 5329, + "Ġforeigner": 42764, + "Ġforeigners": 28201, + "Ġforemost": 18864, + "Ġforens": 32034, + "Ġforensic": 39084, + "Ġforesee": 38736, + "Ġforest": 6719, + "Ġforests": 21700, + "Ġforever": 5680, + "Ġforg": 3667, + "Ġforge": 38741, + "Ġforged": 40226, + "Ġforget": 2870, + "Ġforgetting": 25428, + "Ġforgive": 10718, + "Ġforgiven": 30391, + "Ġforgiveness": 18396, + "Ġforgiving": 37701, + "Ġforgot": 5298, + "Ġforgotten": 11832, + "Ġfork": 17716, + "Ġform": 1254, + "Ġforma": 8366, + "Ġformal": 9860, + "Ġformally": 25983, + "Ġformas": 33463, + "Ġformat": 7877, + "Ġformation": 11723, + "Ġformations": 39652, + "Ġformats": 25879, + "Ġformatting": 39366, + "Ġforme": 28670, + "Ġformed": 8693, + "Ġformer": 5819, + "Ġformerly": 34777, + "Ġformidable": 41246, + "Ġforming": 15745, + "Ġforms": 6422, + "Ġformul": 49990, + "Ġformula": 8513, + "Ġformulas": 30546, + "Ġformulate": 47881, + "Ġformulated": 48936, + "Ġformulation": 37642, + "Ġfors": 32299, + "Ġforsk": 45321, + "Ġfort": 5009, + "Ġforte": 23235, + "Ġforth": 5220, + "Ġfortress": 31826, + "Ġforts": 30589, + "Ġfortun": 10506, + "Ġfortunate": 14096, + "Ġfortunately": 25511, + "Ġfortune": 16531, + "Ġforty": 15815, + "Ġforum": 17542, + "Ġforums": 26998, + "Ġforward": 2128, + "Ġforwards": 30126, + "Ġforça": 32878, + "Ġfoss": 14090, + "Ġfosse": 24528, + "Ġfossil": 18737, + "Ġfossils": 39159, + "Ġfoster": 17114, + "Ġfot": 15418, + "Ġfoto": 19176, + "Ġfotograf": 34341, + "Ġfotos": 32301, + "Ġfou": 32012, + "Ġfought": 11391, + "Ġfoul": 23491, + "Ġfound": 1352, + "Ġfoundation": 7030, + "Ġfoundational": 32195, + "Ġfoundations": 22467, + "Ġfounded": 13234, + "Ġfounder": 14917, + "Ġfounders": 25608, + "Ġfounding": 22223, + "Ġfountain": 29451, + "Ġfour": 1451, + "Ġfourteen": 32253, + "Ġfourth": 6409, + "Ġfout": 41907, + "Ġfox": 21026, + "Ġfps": 44981, + "Ġfr": 431, + "Ġfra": 6600, + "Ġfract": 17948, + "Ġfraction": 14135, + "Ġfractions": 36058, + "Ġfracture": 36877, + "Ġfrag": 9241, + "Ġfragen": 39129, + "Ġfragile": 23847, + "Ġfragment": 26424, + "Ġfragments": 29197, + "Ġfragr": 17599, + "Ġfragrance": 25826, + "Ġfragrant": 37296, + "Ġfram": 21405, + "Ġframe": 3920, + "Ġframed": 30420, + "Ġframes": 12083, + "Ġframework": 8388, + "Ġframeworks": 29834, + "Ġframing": 28971, + "Ġfranc": 30514, + "Ġfranch": 13002, + "Ġfranchise": 16222, + "Ġfrank": 10455, + "Ġfrankly": 11939, + "Ġfrança": 43660, + "Ġfrançais": 21425, + "Ġfrançaise": 43832, + "Ġfrase": 38406, + "Ġfrater": 41168, + "Ġfraud": 14560, + "Ġfre": 2130, + "Ġfreak": 21853, + "Ġfreaked": 37853, + "Ġfreakin": 39571, + "Ġfreaking": 14612, + "Ġfree": 1737, + "Ġfreed": 21796, + "Ġfreedom": 5645, + "Ġfreedoms": 40671, + "Ġfreel": 27931, + "Ġfreelance": 47875, + "Ġfreely": 16433, + "Ġfreestyle": 40910, + "Ġfreeze": 15959, + "Ġfreezer": 20189, + "Ġfreezing": 20200, + "Ġfrei": 32542, + "Ġfreight": 37181, + "Ġfren": 33596, + "Ġfrench": 27598, + "Ġfrente": 19873, + "Ġfrequ": 4459, + "Ġfrequencies": 20250, + "Ġfrequency": 7893, + "Ġfrequent": 18004, + "Ġfrequently": 10374, + "Ġfres": 25235, + "Ġfresh": 4451, + "Ġfreshly": 34412, + "Ġfreshman": 22154, + "Ġfreshmen": 43694, + "Ġfreshwater": 50234, + "Ġfret": 24189, + "Ġfreue": 43195, + "Ġfreuen": 41913, + "Ġfrick": 46756, + "Ġfriction": 17710, + "Ġfridge": 13023, + "Ġfried": 10425, + "Ġfriend": 1277, + "Ġfriendly": 9208, + "Ġfriends": 1855, + "Ġfriendship": 13216, + "Ġfriendships": 30003, + "Ġfries": 20733, + "Ġfrig": 34697, + "Ġfright": 15545, + "Ġfrightened": 28839, + "Ġfrightening": 31043, + "Ġfringe": 38764, + "Ġfro": 9795, + "Ġfrog": 17259, + "Ġfrogs": 37107, + "Ġfrom": 490, + "Ġfront": 1868, + "Ġfrontal": 34647, + "Ġfrontier": 35853, + "Ġfrontline": 38033, + "Ġfronts": 40426, + "Ġfrost": 19623, + "Ġfrosting": 37048, + "Ġfroze": 46077, + "Ġfrozen": 12496, + "Ġfruit": 6773, + "Ġfruitful": 49795, + "Ġfruition": 48738, + "Ġfruits": 12148, + "Ġfrust": 7454, + "Ġfrustrated": 15751, + "Ġfrustrating": 16522, + "Ġfrustration": 20491, + "Ġfry": 13776, + "Ġfrying": 24596, + "ĠfrÃ¥": 13237, + "ĠfrÃ¥gor": 48306, + "ĠfrÃ¥n": 18669, + "Ġfrüh": 45029, + "Ġfrüher": 32349, + "Ġft": 31842, + "Ġfu": 8536, + "Ġfuck": 3275, + "Ġfucked": 22518, + "Ġfuckin": 20022, + "Ġfucking": 5546, + "Ġfue": 9248, + "Ġfuego": 43934, + "Ġfuel": 6616, + "Ġfueled": 45446, + "Ġfuels": 24616, + "Ġfuer": 17669, + "Ġfuera": 24818, + "Ġfueron": 28739, + "Ġfuerte": 37129, + "Ġfuerza": 39730, + "Ġfug": 31838, + "Ġfui": 27863, + "Ġfulf": 8081, + "Ġfulfil": 41054, + "Ġfulfill": 13875, + "Ġfulfilled": 21380, + "Ġfulfilling": 25800, + "Ġfulfillment": 32615, + "Ġfull": 1577, + "Ġfullest": 45154, + "Ġfullness": 45262, + "Ġfully": 4498, + "Ġfum": 43845, + "Ġfun": 1019, + "Ġfuncion": 14186, + "Ġfunciona": 26210, + "Ġfunción": 43735, + "Ġfunction": 2445, + "Ġfunctional": 11745, + "Ġfunctionality": 14980, + "Ġfunctioning": 18483, + "Ġfunctions": 6828, + "Ġfund": 2374, + "Ġfundament": 6073, + "Ġfundamental": 8088, + "Ġfundamentally": 17879, + "Ġfundamentals": 29505, + "Ġfunded": 14385, + "Ġfunding": 6137, + "Ġfundo": 40201, + "Ġfundra": 24844, + "Ġfundraising": 32643, + "Ġfunds": 8271, + "Ġfuneral": 20231, + "Ġfungi": 48772, + "Ġfungus": 39788, + "Ġfunk": 26476, + "Ġfunktion": 20454, + "Ġfunktioniert": 26160, + "Ġfunky": 33499, + "Ġfunnel": 24515, + "Ġfunniest": 42681, + "Ġfunny": 4074, + "Ġfunz": 49345, + "Ġfunção": 37588, + "Ġfur": 2687, + "Ġfurious": 33470, + "Ġfurn": 11433, + "Ġfurnace": 34046, + "Ġfurniture": 15671, + "Ġfurry": 47073, + "Ġfurther": 3052, + "Ġfury": 48887, + "Ġfus": 34326, + "Ġfuse": 31328, + "Ġfusion": 23100, + "Ġfuss": 34792, + "Ġfut": 1877, + "Ġfutur": 25840, + "Ġfuture": 2027, + "Ġfutures": 26071, + "Ġfuturistic": 44932, + "Ġfuturo": 23953, + "Ġfuzzy": 34710, + "Ġfy": 38777, + "Ġfá": 15299, + "Ġfácil": 17474, + "Ġfällt": 42870, + "ĠfÃ¥": 14251, + "ĠfÃ¥r": 14865, + "ĠfÃ¥tt": 43651, + "Ġfé": 34271, + "Ġfö": 25309, + "Ġför": 4816, + "Ġföret": 47099, + "Ġförs": 30864, + "Ġförst": 32864, + "Ġförsta": 44203, + "Ġförsö": 45020, + "Ġfø": 50177, + "Ġfør": 40314, + "Ġfüh": 18813, + "Ġführen": 35498, + "Ġführt": 39671, + "Ġfünf": 28723, + "Ġfür": 2959, + "Ġfürs": 46577, + "ĠfÃŃs": 27538, + "ĠfÃŃsica": 46436, + "Ġfır": 47305, + "Ġg": 290, + "Ġga": 5959, + "Ġgaan": 14118, + "Ġgaat": 17829, + "Ġgab": 17964, + "Ġgad": 21318, + "Ġgadget": 38090, + "Ġgadgets": 37635, + "Ġgag": 34833, + "Ġgagn": 49177, + "Ġgagner": 45343, + "Ġgain": 6052, + "Ġgained": 12634, + "Ġgaining": 19752, + "Ġgains": 16823, + "Ġgak": 30045, + "Ġgal": 7660, + "Ġgalax": 26285, + "Ġgalaxies": 28755, + "Ġgalaxy": 17639, + "Ġgalera": 31912, + "Ġgall": 8527, + "Ġgalleries": 40141, + "Ġgallery": 18378, + "Ġgallon": 30339, + "Ġgallons": 32238, + "Ġgam": 8019, + "Ġgamb": 38871, + "Ġgamble": 44128, + "Ġgambling": 27077, + "Ġgame": 1216, + "Ġgameplay": 11421, + "Ġgamer": 30266, + "Ġgamers": 26774, + "Ġgames": 2813, + "Ġgaming": 9703, + "Ġgamma": 15546, + "Ġgan": 7574, + "Ġgang": 10145, + "Ġgangs": 42834, + "Ġgangster": 50104, + "Ġganhar": 40200, + "Ġganska": 34526, + "Ġganz": 6312, + "Ġganze": 18898, + "Ġganzen": 23966, + "Ġgap": 7417, + "Ġgaps": 15031, + "Ġgar": 3691, + "Ġgarage": 14400, + "Ġgarant": 22251, + "Ġgarbage": 14150, + "Ġgard": 5628, + "Ġgarde": 47903, + "Ġgarden": 7431, + "Ġgardening": 31799, + "Ġgardens": 23803, + "Ġgarder": 47167, + "Ġgarlic": 9168, + "Ġgarment": 35084, + "Ġgarments": 44881, + "Ġgarn": 25067, + "Ġgarnish": 42430, + "Ġgars": 35542, + "Ġgas": 4211, + "Ġgases": 21452, + "Ġgasket": 47671, + "Ġgasoline": 28914, + "Ġgasps": 43035, + "Ġgast": 17898, + "Ġgat": 44092, + "Ġgate": 8539, + "Ġgates": 19792, + "Ġgateway": 28532, + "Ġgather": 5448, + "Ġgathered": 13032, + "Ġgathering": 13519, + "Ġgatherings": 36247, + "Ġgauche": 36724, + "Ġgauge": 17924, + "Ġgave": 2729, + "Ġgay": 9049, + "Ġgaz": 26232, + "Ġgaze": 24294, + "Ġgdy": 28405, + "Ġgdzie": 18922, + "ĠgdzieÅĽ": 41359, + "Ġge": 1519, + "Ġgear": 7394, + "Ġgearbox": 35291, + "Ġgeared": 35924, + "Ġgears": 20915, + "Ġgeb": 21125, + "Ġgebaut": 49203, + "Ġgebe": 29073, + "Ġgeben": 17191, + "Ġgebracht": 40744, + "Ġgebru": 33857, + "Ġgece": 48173, + "Ġged": 19238, + "Ġgedaan": 44419, + "Ġgedacht": 33296, + "Ġgee": 24105, + "Ġgeehr": 40886, + "Ġgeek": 36162, + "Ġgeen": 21773, + "Ġgeez": 46108, + "Ġgef": 11271, + "Ġgefallen": 39935, + "Ġgefragt": 42638, + "Ġgefunden": 36923, + "Ġgefähr": 41484, + "Ġgeg": 23982, + "Ġgegangen": 44415, + "Ġgegeben": 32572, + "Ġgegen": 13953, + "Ġgegenüber": 41830, + "Ġgeh": 13218, + "Ġgehabt": 37092, + "Ġgehe": 34252, + "Ġgehen": 13230, + "Ġgeht": 7095, + "Ġgehört": 21544, + "Ġgeil": 47165, + "Ġgek": 14037, + "Ġgekommen": 32732, + "Ġgel": 4087, + "Ġgelatin": 45174, + "Ġgeld": 25114, + "Ġgeldi": 22121, + "Ġgele": 20234, + "Ġgelecek": 47158, + "Ġgelen": 43353, + "Ġgelernt": 49224, + "Ġgelir": 44011, + "Ġgeliyor": 29776, + "ĠgelmiÅŁ": 45849, + "Ġgels": 39196, + "Ġgem": 7173, + "Ġgema": 46126, + "Ġgemaakt": 49666, + "Ġgemacht": 12293, + "Ġgeme": 18111, + "Ġgemeins": 22971, + "Ġgemeinsam": 29701, + "Ġgems": 29296, + "Ġgen": 1049, + "Ġgenau": 12535, + "Ġgenauso": 37694, + "Ġgender": 7898, + "Ġgene": 12186, + "Ġgener": 1337, + "Ġgeneral": 2674, + "Ġgeneralized": 44498, + "Ġgenerally": 5101, + "Ġgenerals": 41346, + "Ġgenerate": 8460, + "Ġgenerated": 10833, + "Ġgenerates": 23815, + "Ġgenerating": 17746, + "Ġgeneration": 5125, + "Ġgenerational": 48320, + "Ġgenerations": 10593, + "Ġgenerator": 19265, + "Ġgenerators": 38662, + "Ġgenere": 41553, + "Ġgeneric": 19577, + "Ġgenerosity": 30178, + "Ġgenerous": 14537, + "Ġgenerously": 48983, + "Ġgenes": 14424, + "Ġgenetic": 12462, + "Ġgenetically": 37582, + "Ġgenetics": 26516, + "Ġgenial": 48228, + "Ġgenius": 14017, + "Ġgenocide": 31867, + "Ġgenom": 41441, + "Ġgenome": 21953, + "Ġgenommen": 38715, + "Ġgenre": 11022, + "Ġgenres": 30057, + "Ġgens": 10668, + "Ġgent": 16108, + "Ġgente": 3788, + "Ġgentle": 6424, + "Ġgentleman": 15761, + "Ġgentlemen": 11669, + "Ġgently": 13073, + "Ġgenug": 33194, + "Ġgenuine": 16699, + "Ġgenuinely": 17839, + "Ġgeo": 43198, + "Ġgeograph": 25435, + "Ġgeographic": 32318, + "Ġgeographical": 39872, + "Ġgeography": 26695, + "Ġgeology": 48788, + "Ġgeomet": 12956, + "Ġgeometric": 33246, + "Ġgeometry": 18426, + "Ġgeopolit": 46615, + "Ġgep": 30979, + "Ġger": 5713, + "Ġgera": 41289, + "Ġgerade": 12117, + "Ġgeral": 35412, + "Ġgere": 18635, + "Ġgerek": 34736, + "Ġgereki": 45038, + "Ġgeri": 41018, + "Ġgerm": 19858, + "Ġgerman": 46572, + "Ġgerms": 44010, + "Ġgern": 38531, + "Ġgerne": 15689, + "Ġgerçek": 24944, + "Ġgerçekten": 35784, + "Ġges": 5019, + "Ġgesagt": 12260, + "Ġgesam": 39746, + "Ġgesch": 13511, + "Ġgeschafft": 45215, + "Ġgeschrieben": 47397, + "Ġgesehen": 21535, + "Ġgespannt": 47355, + "Ġgesprochen": 42714, + "Ġgest": 7219, + "Ġgestellt": 42259, + "Ġgesture": 22252, + "Ġgestures": 28475, + "Ġgesund": 49176, + "Ġget": 483, + "Ġgetan": 45599, + "Ġgetir": 38610, + "Ġgets": 2170, + "Ġgettin": 34568, + "Ġgetting": 1242, + "Ġgev": 47103, + "Ġgeven": 49437, + "Ġgew": 6906, + "Ġgewe": 45707, + "Ġgewesen": 27653, + "Ġgewoon": 19751, + "Ġgeworden": 26281, + "Ġgez": 18110, + "Ġgezeigt": 48661, + "Ġgeç": 13110, + "Ġgh": 33937, + "Ġghee": 45172, + "Ġghetto": 47371, + "Ġghost": 8359, + "Ġghosts": 21744, + "Ġgi": 1735, + "Ġgia": 39689, + "Ġgiant": 7410, + "Ġgiants": 31894, + "Ġgib": 4553, + "Ġgibi": 11033, + "Ġgibt": 6089, + "Ġgid": 19805, + "Ġgide": 34255, + "Ġgider": 42291, + "Ġgift": 5306, + "Ġgifted": 27104, + "Ġgifts": 11449, + "Ġgig": 8741, + "Ġgigabytes": 42741, + "Ġgigantic": 26800, + "Ġgiggles": 50032, + "Ġgigs": 34586, + "Ġgilt": 29487, + "Ġgim": 27071, + "Ġgimbal": 43667, + "Ġgimm": 37214, + "Ġgin": 36604, + "Ġging": 21924, + "Ġginger": 14966, + "Ġgio": 48508, + "Ġgiorn": 36937, + "Ġgiorno": 42202, + "Ġgir": 14703, + "Ġgiraffe": 49897, + "Ġgird": 48219, + "Ġgirl": 2013, + "Ġgirlfriend": 10369, + "Ġgirlfriends": 46558, + "Ġgirls": 4519, + "Ġgit": 18331, + "Ġgitti": 37700, + "Ġgitu": 20156, + "Ġgive": 976, + "Ġgiveaway": 23508, + "Ġgiven": 2212, + "Ġgives": 2709, + "Ġgiving": 2902, + "ĠgiÃł": 30469, + "Ġgiá»Ŀ": 28689, + "Ġgj": 20249, + "Ġgjorde": 47670, + "Ġgjort": 37420, + "Ġgl": 1563, + "Ġgla": 8771, + "Ġglac": 29700, + "Ġglacier": 48021, + "Ġglad": 5404, + "Ġgladly": 47307, + "Ġglam": 28133, + "Ġglamorous": 48760, + "Ġglance": 21094, + "Ġgland": 43284, + "Ġglands": 49533, + "Ġglare": 49159, + "Ġglass": 4276, + "Ġglasses": 10812, + "Ġglaub": 23210, + "Ġglaube": 13756, + "Ġglauben": 47139, + "Ġglaze": 39390, + "Ġgle": 48956, + "Ġgleich": 11699, + "Ġgleichen": 49069, + "Ġgleichzeitig": 44242, + "Ġgli": 17161, + "Ġglide": 41848, + "Ġglimp": 25727, + "Ġglimpse": 25838, + "Ġglitch": 23552, + "Ġglitter": 18620, + "Ġglo": 3114, + "Ġglob": 16125, + "Ġglobal": 4338, + "Ġglobalization": 40518, + "Ġglobally": 18958, + "Ġglobe": 15371, + "Ġglor": 26623, + "Ġglorious": 24026, + "Ġglory": 11924, + "Ġgloss": 19574, + "Ġglossy": 38285, + "Ġglove": 26928, + "Ġgloves": 14976, + "Ġglow": 17513, + "Ġglowing": 27064, + "Ġgluc": 19636, + "Ġglucose": 23997, + "Ġglue": 8998, + "Ġglued": 28008, + "Ġglut": 33249, + "Ġgluten": 24326, + "Ġgly": 22633, + "Ġgn": 49819, + "Ġgo": 352, + "Ġgoal": 3387, + "Ġgoals": 5493, + "Ġgoat": 23608, + "Ġgoats": 34219, + "Ġgob": 20489, + "Ġgobierno": 29254, + "Ġgod": 3044, + "Ġgoddamn": 32951, + "Ġgoddess": 24508, + "Ġgods": 14049, + "Ġgodt": 35427, + "Ġgoed": 16987, + "Ġgoes": 1709, + "Ġgogg": 36653, + "Ġgoggles": 39808, + "Ġgoin": 21582, + "Ġgoing": 516, + "Ġgol": 9988, + "Ġgold": 3821, + "Ġgolden": 9729, + "Ġgolf": 12880, + "Ġgolpe": 42032, + "Ġgon": 26307, + "Ġgone": 2780, + "Ġgonna": 799, + "Ġgoo": 33192, + "Ġgood": 665, + "Ġgoodbye": 12084, + "Ġgoodies": 44072, + "Ġgoodness": 8387, + "Ġgoods": 10179, + "Ġgoof": 30356, + "Ġgoofy": 42995, + "Ġgoog": 50061, + "Ġgoogle": 20742, + "Ġgoose": 24717, + "Ġgoosebumps": 48305, + "Ġgor": 24012, + "Ġgord": 42443, + "Ġgorgeous": 12291, + "Ġgorilla": 45066, + "Ġgosh": 6502, + "Ġgosp": 37250, + "Ġgospel": 14943, + "Ġgossip": 31788, + "Ġgost": 13188, + "Ġgosta": 39874, + "Ġgosto": 32022, + "Ġgot": 658, + "Ġgotta": 3428, + "Ġgotten": 5768, + "Ġgou": 21301, + "Ġgour": 46651, + "Ġgouvern": 24894, + "Ġgouvernement": 27504, + "Ġgover": 27526, + "Ġgovern": 1980, + "Ġgovernance": 17449, + "Ġgoverned": 35529, + "Ġgoverning": 30054, + "Ġgovernment": 2463, + "Ġgovernmental": 43391, + "Ġgovernments": 11280, + "Ġgoverno": 34685, + "Ġgovernor": 12965, + "Ġgovernors": 36571, + "Ġgown": 34428, + "Ġgr": 677, + "Ġgra": 1295, + "Ġgrab": 4444, + "Ġgrabbed": 18607, + "Ġgrabbing": 23771, + "Ġgrabs": 30028, + "Ġgrac": 11625, + "Ġgrace": 10042, + "Ġgracias": 16611, + "Ġgracious": 36113, + "Ġgrad": 2771, + "Ġgrade": 7204, + "Ġgraders": 46703, + "Ġgrades": 18041, + "Ġgradient": 16235, + "Ġgrading": 35540, + "Ġgradu": 4138, + "Ġgradual": 32890, + "Ġgradually": 13145, + "Ġgraduate": 8080, + "Ġgraduated": 13693, + "Ġgraduates": 13577, + "Ġgraduating": 18843, + "Ġgraduation": 15652, + "Ġgraffiti": 40531, + "Ġgraft": 44767, + "Ġgrain": 12837, + "Ġgrains": 22908, + "Ġgram": 21353, + "Ġgramm": 17570, + "Ġgrammar": 22317, + "Ġgrams": 11899, + "Ġgran": 9370, + "Ġgrand": 2697, + "Ġgrandchildren": 28112, + "Ġgranddaughter": 44411, + "Ġgrande": 8883, + "Ġgrandes": 16640, + "Ġgrandfather": 14754, + "Ġgrandi": 45155, + "Ġgrandma": 15766, + "Ġgrandmother": 14317, + "Ġgrandpa": 24129, + "Ġgrandparents": 21876, + "Ġgrands": 33298, + "Ġgrandson": 31657, + "Ġgranny": 44797, + "Ġgrant": 6386, + "Ġgranted": 12344, + "Ġgranting": 50204, + "Ġgrants": 16101, + "Ġgranular": 39962, + "Ġgrape": 23978, + "Ġgrapes": 28032, + "Ġgraph": 4295, + "Ġgraphic": 14089, + "Ġgraphical": 35942, + "Ġgraphics": 11837, + "Ġgraphs": 24877, + "Ġgrapp": 27165, + "Ġgrappling": 50086, + "Ġgras": 29444, + "Ġgrasp": 21743, + "Ġgrass": 8054, + "Ġgrasses": 49701, + "Ġgrassroots": 39522, + "Ġgrat": 10158, + "Ġgrate": 46214, + "Ġgrated": 43319, + "Ġgrateful": 7941, + "Ġgratitude": 16935, + "Ġgratuit": 38342, + "Ġgrav": 7427, + "Ġgrave": 12525, + "Ġgravel": 30001, + "Ġgraves": 31664, + "Ġgraveyard": 42607, + "Ġgravit": 26048, + "Ġgravitational": 28538, + "Ġgravity": 12110, + "Ġgravy": 31535, + "Ġgray": 10855, + "Ġgrazing": 48112, + "Ġgre": 6066, + "Ġgrease": 24867, + "Ġgreasy": 36401, + "Ġgreat": 869, + "Ġgreater": 5044, + "Ġgreatest": 6636, + "Ġgreatly": 14147, + "Ġgreatness": 31196, + "Ġgreed": 29230, + "Ġgreedy": 28228, + "Ġgreen": 3092, + "Ġgreenhouse": 22126, + "Ġgreens": 22897, + "Ġgreet": 12044, + "Ġgreeted": 38441, + "Ġgreeting": 28174, + "Ġgreetings": 33667, + "Ġgren": 20313, + "Ġgrenade": 31527, + "Ġgrenades": 43529, + "Ġgrew": 6109, + "Ġgrey": 16578, + "Ġgri": 17865, + "Ġgrid": 10748, + "Ġgrief": 18998, + "Ġgriev": 49260, + "Ġgrieving": 48454, + "Ġgrill": 16492, + "Ġgrille": 49011, + "Ġgrilled": 25183, + "Ġgrilling": 49961, + "Ġgrim": 36010, + "Ġgrin": 49179, + "Ġgrind": 16700, + "Ġgrinder": 41424, + "Ġgrinding": 25300, + "Ġgrip": 12007, + "Ġgrips": 38037, + "Ġgrit": 30133, + "Ġgro": 4634, + "Ġgroans": 44657, + "Ġgrocer": 11884, + "Ġgroceries": 31391, + "Ġgrocery": 14410, + "Ġgroo": 42156, + "Ġgroom": 22198, + "Ġgrooming": 49700, + "Ġgroot": 41906, + "Ġgroove": 26910, + "Ġgrooves": 49359, + "Ġgros": 18638, + "Ġgross": 11367, + "Ġgrosse": 40009, + "Ġgrote": 39928, + "Ġground": 2727, + "Ġgroundbreaking": 42491, + "Ġgrounded": 23535, + "Ġgrounding": 46727, + "Ġgrounds": 19196, + "Ġgroundwater": 40511, + "Ġgroup": 1594, + "Ġgroupe": 32980, + "Ġgrouped": 41877, + "Ġgrouping": 40149, + "Ġgroups": 3935, + "Ġgrow": 1852, + "Ġgrowers": 45946, + "Ġgrowing": 4194, + "Ġgrown": 7709, + "Ġgrows": 13156, + "Ġgrowth": 4599, + "ĠgroÃŁ": 17253, + "ĠgroÃŁe": 19691, + "ĠgroÃŁen": 23076, + "ĠgroÃŁer": 46220, + "ĠgroÃŁes": 48875, + "Ġgrues": 48238, + "Ġgrund": 30886, + "Ġgrup": 12740, + "Ġgrupo": 20190, + "Ġgrupos": 33758, + "Ġgrupp": 47477, + "Ġgry": 41974, + "Ġgráfic": 34613, + "Ġgrâce": 31180, + "ĠgrÃ¶ÃŁ": 20691, + "Ġgu": 695, + "Ġgua": 30081, + "Ġguar": 7498, + "Ġguarante": 14203, + "Ġguarantee": 10815, + "Ġguaranteed": 18031, + "Ġguarantees": 32567, + "Ġguard": 6290, + "Ġguarded": 44157, + "Ġguardian": 30355, + "Ġguardians": 40525, + "Ġguarding": 44077, + "Ġguards": 17652, + "Ġgucken": 33135, + "Ġgue": 13987, + "Ġguer": 14486, + "Ġguerra": 27542, + "Ġguerre": 31400, + "Ġguess": 2041, + "Ġguessed": 21852, + "Ġguesses": 42703, + "Ġguessing": 17939, + "Ġguest": 8341, + "Ġguests": 9804, + "Ġguid": 6489, + "Ġguidance": 10056, + "Ġguide": 5934, + "Ġguided": 19663, + "Ġguideline": 41653, + "Ġguidelines": 12470, + "Ġguides": 17007, + "Ġguiding": 25061, + "Ġguild": 37435, + "Ġguilt": 20421, + "Ġguilty": 12341, + "Ġguit": 31108, + "Ġguitar": 7531, + "Ġguitars": 36809, + "Ġgum": 19973, + "Ġgummy": 45617, + "Ġgun": 3874, + "Ġguns": 10153, + "Ġgur": 40642, + "Ġguru": 29949, + "Ġgust": 9679, + "Ġgusta": 20576, + "Ġgustado": 45221, + "ĠgustarÃŃa": 45896, + "Ġgusto": 38723, + "Ġgut": 5228, + "Ġgute": 21476, + "Ġguten": 31277, + "Ġgutes": 45859, + "Ġguts": 28560, + "Ġguy": 2146, + "Ġguys": 1074, + "Ġgw": 29255, + "Ġgy": 15823, + "Ġgym": 9222, + "Ġgymn": 35760, + "Ġgymnastics": 48461, + "Ġgä": 37612, + "Ġgäller": 48771, + "ĠgÃ¥": 22098, + "ĠgÃ¥ng": 36528, + "ĠgÃ¥r": 19831, + "Ġgé": 38462, + "Ġgén": 14575, + "Ġgénér": 45622, + "Ġgénéral": 27796, + "Ġgì": 22804, + "Ġgö": 7105, + "Ġgör": 8362, + "Ġgöra": 20541, + "Ġgörd": 27407, + "Ġgöre": 21032, + "Ġgörün": 49676, + "ĠgörÃ¼ÅŁ": 38488, + "Ġgöst": 42594, + "Ġgöster": 40968, + "Ġgöt": 39630, + "Ġgöz": 23234, + "Ġgü": 18148, + "Ġgün": 14472, + "Ġgüzel": 14746, + "Ġgüç": 48015, + "ĠgÅĤ": 18117, + "ĠgÅĤos": 43767, + "Ġh": 276, + "Ġha": 324, + "Ġhaar": 39371, + "Ġhab": 3025, + "Ġhabe": 6015, + "Ġhaben": 3084, + "Ġhaber": 15811, + "Ġhabil": 36565, + "Ġhabit": 7164, + "Ġhabitat": 20110, + "Ġhabitats": 42159, + "Ġhabits": 14100, + "Ġhabitual": 46883, + "Ġhabl": 26280, + "Ġhabla": 42135, + "Ġhablando": 29369, + "Ġhablar": 21014, + "Ġhabr": 32794, + "Ġhabt": 23660, + "ĠhabÃŃa": 16395, + "ĠhabÃŃan": 44466, + "Ġhac": 46093, + "Ġhace": 10032, + "Ġhacemos": 33839, + "Ġhacen": 27434, + "Ġhacer": 6720, + "Ġhacerlo": 32039, + "Ġhacia": 21365, + "Ġhaciendo": 20509, + "Ġhack": 10339, + "Ġhacked": 36218, + "Ġhacker": 38155, + "Ġhackers": 39766, + "Ġhacking": 31422, + "Ġhacks": 33617, + "Ġhad": 632, + "Ġhade": 25027, + "Ġhadi": 25789, + "Ġhadn": 8782, + "Ġhaft": 32329, + "Ġhag": 42386, + "Ġhaga": 46726, + "Ġhago": 38721, + "Ġhah": 17206, + "Ġhaha": 17236, + "Ġhahaha": 28142, + "Ġhai": 21822, + "Ġhail": 38157, + "Ġhair": 2578, + "Ġhaircut": 30328, + "Ġhaird": 41954, + "Ġhairs": 26525, + "Ġhairst": 30658, + "Ġhairstyle": 32770, + "Ġhairy": 42346, + "Ġhak": 35720, + "Ġhakk": 37949, + "Ġhal": 7523, + "Ġhalf": 1922, + "Ġhalfway": 15461, + "Ġhall": 6500, + "Ġhalls": 26177, + "Ġhalluc": 35212, + "Ġhallway": 23903, + "Ġhalo": 46268, + "Ġhalt": 12479, + "Ġhalten": 27184, + "Ġhalves": 38490, + "Ġham": 7852, + "Ġhamb": 25172, + "Ġhamburger": 34575, + "Ġhamm": 36600, + "Ġhammer": 13017, + "Ġhan": 7276, + "Ġhand": 1011, + "Ġhandc": 46175, + "Ġhanded": 16013, + "Ġhandful": 16458, + "Ġhandheld": 37634, + "Ġhandic": 31369, + "Ġhandicap": 45975, + "Ġhanding": 34774, + "Ġhandlar": 42572, + "Ġhandle": 4813, + "Ġhandled": 18033, + "Ġhandler": 41967, + "Ġhandles": 18722, + "Ġhandling": 13175, + "Ġhandmade": 39446, + "Ġhandout": 48785, + "Ġhands": 2377, + "Ġhandsome": 13421, + "Ġhandwriting": 39179, + "Ġhandy": 13239, + "Ġhang": 3967, + "Ġhanger": 48034, + "Ġhanging": 8345, + "Ġhangs": 35947, + "Ġhani": 45108, + "Ġhanno": 26595, + "Ġhanya": 46291, + "Ġhapp": 782, + "Ġhappen": 1051, + "Ġhappened": 2011, + "Ġhappening": 2737, + "Ġhappens": 2314, + "Ġhappier": 20423, + "Ġhappiest": 37584, + "Ġhappily": 19909, + "Ġhappiness": 8324, + "Ġhappy": 2055, + "Ġhar": 2233, + "Ġharass": 16910, + "Ġharassment": 25836, + "Ġharbor": 36947, + "Ġhard": 1152, + "Ġhardcore": 28196, + "Ġharden": 50203, + "Ġhardened": 42605, + "Ġharder": 6081, + "Ġhardest": 13158, + "Ġhardly": 13572, + "Ġhardness": 44019, + "Ġhardship": 24172, + "Ġhardships": 41351, + "Ġhardware": 8837, + "Ġhare": 39921, + "Ġhari": 33264, + "Ġharm": 6491, + "Ġharmed": 41478, + "Ġharmful": 19727, + "Ġharmless": 40160, + "Ġharmon": 14750, + "Ġharmonic": 32270, + "Ġharmony": 19410, + "Ġharms": 48505, + "Ġharness": 19700, + "Ġharp": 50093, + "Ġharsh": 14897, + "Ġhart": 36644, + "Ġharus": 28219, + "Ġharvest": 11917, + "Ġharvested": 40994, + "Ġharvesting": 35679, + "Ġhas": 575, + "Ġhash": 22019, + "Ġhasht": 17462, + "Ġhashtag": 20379, + "Ġhashtags": 50016, + "Ġhasn": 6132, + "Ġhass": 33690, + "Ġhassle": 39526, + "Ġhast": 6581, + "Ġhasta": 10764, + "Ġhat": 2385, + "Ġhatch": 17387, + "Ġhate": 4700, + "Ġhated": 17398, + "Ġhaters": 43675, + "Ġhates": 23000, + "Ġhating": 45082, + "Ġhatred": 21890, + "Ġhats": 20549, + "Ġhatte": 13299, + "Ġhatten": 20441, + "Ġhatır": 47323, + "Ġhaul": 21167, + "Ġhaunted": 24878, + "Ġhaunting": 44512, + "Ġhaut": 29032, + "Ġhav": 26139, + "Ġhave": 362, + "Ġhaven": 2378, + "Ġhaver": 41912, + "Ġhavia": 28855, + "Ġhaving": 1419, + "Ġhavoc": 47367, + "Ġhaw": 33634, + "Ġhay": 4842, + "Ġhaya": 24693, + "Ġhayat": 26918, + "Ġhayır": 40148, + "Ġhaz": 11008, + "Ġhazard": 20790, + "Ġhazardous": 40020, + "Ġhazards": 34516, + "Ġhazır": 29573, + "Ġhe": 415, + "Ġhead": 1378, + "Ġheadache": 23520, + "Ġheadaches": 35046, + "Ġheaded": 12798, + "Ġheader": 23117, + "Ġheaders": 45101, + "Ġheading": 9864, + "Ġheadlights": 38487, + "Ġheadline": 28380, + "Ġheadlines": 23867, + "Ġheadphone": 35028, + "Ġheadphones": 16278, + "Ġheadquarters": 21052, + "Ġheads": 8050, + "Ġheadset": 26850, + "Ġheal": 10526, + "Ġhealed": 20482, + "Ġhealing": 9745, + "Ġheals": 45653, + "Ġhealth": 1585, + "Ġhealthcare": 8884, + "Ġhealthier": 19580, + "Ġhealthy": 4627, + "Ġheap": 33591, + "Ġhear": 1568, + "Ġheard": 2198, + "Ġhearing": 4763, + "Ġhearings": 34052, + "Ġhears": 25688, + "Ġheart": 1917, + "Ġheartbeat": 34851, + "Ġheartbreaking": 41030, + "Ġheartfelt": 49332, + "Ġhearts": 8852, + "Ġheat": 3738, + "Ġheated": 18806, + "Ġheater": 30408, + "Ġheating": 15082, + "Ġheats": 41035, + "Ġheav": 3577, + "Ġheaven": 7162, + "Ġheavenly": 29406, + "Ġheavens": 26011, + "Ġheavier": 18279, + "Ġheavily": 10950, + "Ġheavy": 4676, + "Ġheb": 8007, + "Ġhebben": 12116, + "Ġhebt": 28339, + "Ġhecho": 13064, + "Ġheck": 12872, + "Ġhect": 37358, + "Ġhed": 33653, + "Ġhedge": 25304, + "Ġheed": 49781, + "Ġheeft": 17425, + "Ġheel": 9430, + "Ġheels": 19502, + "Ġheft": 43674, + "Ġheh": 37791, + "Ġhehe": 42683, + "Ġheight": 6681, + "Ġheightened": 46154, + "Ġheights": 25930, + "Ġhein": 16464, + "Ġheir": 30038, + "ĠheiÃŁ": 39124, + "ĠheiÃŁt": 13139, + "Ġhel": 801, + "Ġhela": 30158, + "Ġheld": 5167, + "Ġhele": 16812, + "Ġhelemaal": 33595, + "Ġhelfen": 29966, + "Ġhelicop": 16061, + "Ġhelicopter": 19803, + "Ġhelicopters": 39016, + "Ġhelium": 40175, + "Ġhell": 4921, + "Ġhello": 7751, + "Ġhelm": 29554, + "Ġhelmet": 15922, + "Ġhelmets": 42022, + "Ġhelp": 854, + "Ġhelped": 4254, + "Ġhelper": 36133, + "Ġhelpful": 4961, + "Ġhelping": 4315, + "Ġhelpless": 27596, + "Ġhelps": 3665, + "Ġhelt": 24821, + "Ġhem": 8636, + "Ġhemen": 32466, + "Ġhemisphere": 38453, + "Ġhemos": 15396, + "Ġhemp": 48266, + "Ġhen": 22253, + "Ġhence": 16678, + "Ġhep": 26299, + "Ġhepat": 48372, + "Ġheps": 38341, + "Ġher": 720, + "Ġheraus": 25089, + "Ġherb": 22662, + "Ġherbal": 44255, + "Ġherbs": 21426, + "Ġherd": 29484, + "Ġhere": 510, + "Ġheritage": 16040, + "Ġherkes": 42122, + "Ġherman": 39458, + "Ġhero": 5316, + "Ġheroes": 12332, + "Ġheroic": 32915, + "Ġheroin": 35551, + "Ġherramient": 38271, + "Ġhers": 6820, + "Ġherself": 7530, + "Ġhertz": 45830, + "Ġherum": 49675, + "Ġherzlich": 45919, + "Ġhes": 10453, + "Ġhesit": 28336, + "Ġhesitant": 36290, + "Ġhesitate": 20842, + "Ġhesitation": 36125, + "Ġhet": 3639, + "Ġheter": 20789, + "Ġheure": 30027, + "Ġheures": 28509, + "Ġheut": 42793, + "Ġheute": 9801, + "Ġhex": 23291, + "Ġhey": 4177, + "Ġhi": 4879, + "Ġhic": 23697, + "Ġhice": 50026, + "Ġhid": 16253, + "Ġhidden": 7633, + "Ġhide": 6479, + "Ġhides": 35953, + "Ġhiding": 10596, + "Ġhier": 3296, + "Ġhierarch": 35250, + "Ġhierarchy": 22333, + "Ġhigh": 1090, + "Ġhigher": 2946, + "Ġhighest": 6343, + "Ġhighlight": 5078, + "Ġhighlighted": 17173, + "Ġhighlighter": 40455, + "Ġhighlighting": 26551, + "Ġhighlights": 14254, + "Ġhighly": 5405, + "Ġhighness": 49235, + "Ġhighs": 29687, + "Ġhighway": 17205, + "Ġhighways": 43747, + "Ġhij": 10625, + "Ġhijo": 38390, + "Ġhijos": 42590, + "Ġhike": 23282, + "Ġhiking": 23784, + "Ġhil": 28315, + "Ġhilar": 18661, + "Ġhilarious": 19796, + "Ġhilft": 42493, + "Ġhill": 10997, + "Ġhills": 21379, + "Ġhim": 796, + "Ġhimself": 3647, + "Ġhin": 14102, + "Ġhina": 41844, + "Ġhinaus": 46056, + "Ġhind": 20138, + "Ġhindsight": 44357, + "Ġhine": 47551, + "Ġhing": 24895, + "Ġhinge": 28822, + "Ġhinges": 46686, + "Ġhint": 12075, + "Ġhinten": 36417, + "Ġhinter": 23219, + "Ġhints": 27271, + "Ġhip": 8103, + "Ġhipp": 27745, + "Ġhips": 15233, + "Ġhire": 11158, + "Ġhired": 13144, + "Ġhiring": 15335, + "Ġhis": 702, + "Ġhiss": 33182, + "Ġhist": 1758, + "Ġhistogram": 49816, + "Ġhistoire": 31202, + "Ġhistor": 4058, + "Ġhistoria": 18385, + "Ġhistorian": 25139, + "Ġhistorians": 26442, + "Ġhistoric": 13236, + "Ġhistorical": 8584, + "Ġhistorically": 16180, + "Ġhistories": 30631, + "Ġhistory": 2503, + "Ġhistó": 33196, + "Ġhistória": 20670, + "Ġhit": 2045, + "Ġhitch": 33259, + "Ġhits": 8664, + "Ġhitting": 8850, + "Ġhive": 42523, + "Ġhizo": 28803, + "Ġhiç": 15169, + "Ġhiçbir": 31151, + "Ġhiá»ĩn": 48079, + "Ġhj": 23731, + "Ġhjäl": 42822, + "Ġhm": 35481, + "Ġhmm": 16478, + "Ġho": 1106, + "Ġhoard": 45940, + "Ġhob": 12959, + "Ġhobbies": 35750, + "Ġhobby": 18240, + "Ġhoc": 16708, + "Ġhoch": 19783, + "Ġhockey": 22449, + "Ġhoe": 19709, + "Ġhoffe": 34903, + "Ġhog": 24855, + "Ġhogy": 14601, + "Ġhoje": 13458, + "Ġhol": 4091, + "Ġhold": 1797, + "Ġholder": 20349, + "Ġholders": 29274, + "Ġholding": 5061, + "Ġholds": 9190, + "Ġhole": 5458, + "Ġholes": 8118, + "Ġholiday": 9960, + "Ġholidays": 15734, + "Ġholiness": 44867, + "Ġholistic": 30334, + "Ġhollow": 23972, + "Ġholog": 38541, + "Ġholy": 10622, + "Ġhom": 3655, + "Ġhomage": 44073, + "Ġhombre": 26102, + "Ġhombres": 37988, + "Ġhome": 1280, + "Ġhomeland": 32494, + "Ġhomeless": 12294, + "Ġhomelessness": 28791, + "Ġhomem": 30798, + "Ġhomemade": 23336, + "Ġhomeowners": 39868, + "Ġhomepage": 31301, + "Ġhomes": 7388, + "Ġhometown": 22112, + "Ġhomework": 14578, + "Ġhomicide": 49411, + "Ġhomme": 35794, + "Ġhommes": 34795, + "Ġhomogeneous": 42632, + "Ġhomosexual": 30490, + "Ġhon": 2157, + "Ġhone": 43212, + "Ġhonest": 3245, + "Ġhonestly": 6095, + "Ġhonesty": 26839, + "Ġhoney": 8330, + "Ġhoneymoon": 48004, + "Ġhonor": 5968, + "Ġhonorable": 36322, + "Ġhonorary": 49365, + "Ġhonored": 14556, + "Ġhonoring": 38254, + "Ġhonors": 26884, + "Ġhonour": 20631, + "Ġhoo": 30663, + "Ġhood": 13376, + "Ġhoodie": 41191, + "Ġhoof": 44974, + "Ġhook": 6328, + "Ġhooked": 20410, + "Ġhooks": 26485, + "Ġhoop": 29749, + "Ġhoor": 43330, + "Ġhop": 3818, + "Ġhope": 1454, + "Ġhoped": 19737, + "Ġhopeful": 20531, + "Ġhopefully": 4696, + "Ġhopeless": 27317, + "Ġhopes": 13681, + "Ġhoping": 7159, + "Ġhopping": 47199, + "Ġhops": 47579, + "Ġhor": 2569, + "Ġhora": 15098, + "Ġhoras": 19548, + "Ġhoriz": 7937, + "Ġhorizon": 18046, + "Ġhorizont": 10908, + "Ġhorizontal": 12750, + "Ġhorizontally": 33796, + "Ġhorm": 11876, + "Ġhormone": 24211, + "Ġhormones": 22453, + "Ġhorn": 13482, + "Ġhorns": 28818, + "Ġhorr": 17582, + "Ġhorrend": 49520, + "Ġhorrible": 9263, + "Ġhorribly": 45028, + "Ġhorrific": 29248, + "Ġhorrifying": 40227, + "Ġhorror": 11501, + "Ġhors": 11912, + "Ġhorse": 6832, + "Ġhorsepower": 25250, + "Ġhorses": 13112, + "Ġhose": 20061, + "Ġhosp": 3872, + "Ġhospital": 4530, + "Ġhospitality": 31207, + "Ġhospitalized": 42340, + "Ġhospitals": 13014, + "Ġhost": 3975, + "Ġhostage": 38434, + "Ġhosted": 19204, + "Ġhostel": 48879, + "Ġhostile": 27312, + "Ġhosting": 16058, + "Ġhosts": 21573, + "Ġhot": 2368, + "Ġhotel": 7622, + "Ġhotels": 22718, + "Ġhots": 36121, + "Ġhott": 30749, + "Ġhotter": 32149, + "Ġhottest": 32780, + "Ġhou": 36621, + "Ġhour": 1773, + "Ġhourly": 48364, + "Ġhours": 2496, + "Ġhous": 4407, + "Ġhouse": 1782, + "Ġhoused": 36084, + "Ġhousehold": 9888, + "Ġhouseholds": 22850, + "Ġhousekeeping": 48033, + "Ġhouses": 8078, + "Ġhousing": 6849, + "Ġhover": 20076, + "Ġhovering": 44923, + "Ġhow": 577, + "Ġhowever": 4461, + "Ġhoy": 13775, + "ĠhoÅŁ": 37063, + "Ġhp": 34064, + "Ġhtt": 22881, + "Ġhttp": 37428, + "Ġhttps": 34426, + "Ġhu": 2137, + "Ġhub": 11838, + "Ġhubs": 46870, + "Ġhue": 24967, + "Ġhug": 8777, + "Ġhuge": 2603, + "Ġhugely": 27417, + "Ġhugging": 41706, + "Ġhugs": 42149, + "Ġhuh": 7020, + "Ġhuis": 46526, + "Ġhull": 32335, + "Ġhum": 1484, + "Ġhuman": 1952, + "Ġhumanitarian": 25096, + "Ġhumanities": 36140, + "Ġhumanity": 10243, + "Ġhumano": 30985, + "Ġhumanos": 34555, + "Ġhumans": 6255, + "Ġhumble": 16735, + "Ġhumbled": 46199, + "Ġhumid": 34649, + "Ġhumidity": 24751, + "Ġhumili": 29981, + "Ġhumility": 27106, + "Ġhumming": 34965, + "Ġhumor": 14318, + "Ġhumour": 45138, + "Ġhump": 47093, + "Ġhun": 7396, + "Ġhunch": 47630, + "Ġhundred": 3262, + "Ġhundreds": 6779, + "Ġhung": 5753, + "Ġhunger": 19229, + "Ġhungry": 8067, + "Ġhunt": 12454, + "Ġhunted": 44943, + "Ġhunter": 22970, + "Ġhunters": 29509, + "Ġhunting": 12599, + "Ġhur": 2756, + "Ġhurdle": 47423, + "Ġhurdles": 48387, + "Ġhurricane": 27136, + "Ġhurricanes": 48026, + "Ġhurry": 11025, + "Ġhurt": 4607, + "Ġhurting": 17744, + "Ġhurts": 11051, + "Ġhus": 4788, + "Ġhusband": 5213, + "Ġhusbands": 37835, + "Ġhust": 25822, + "Ġhustle": 34639, + "Ġhut": 36755, + "Ġhvad": 48160, + "Ġhvis": 45427, + "Ġhvor": 31459, + "Ġhy": 2477, + "Ġhybrid": 13051, + "Ġhyd": 5796, + "Ġhydrated": 44960, + "Ġhydration": 43631, + "Ġhydraul": 27510, + "Ġhydraulic": 32134, + "Ġhydro": 15435, + "Ġhydrogen": 12697, + "Ġhyg": 24470, + "Ġhygiene": 29541, + "Ġhyp": 7420, + "Ġhype": 24144, + "Ġhyped": 43172, + "Ġhyper": 9848, + "Ġhypert": 37488, + "Ġhypertension": 46172, + "Ġhypnot": 42944, + "Ġhypoc": 50207, + "Ġhypocr": 39419, + "Ġhypoth": 24371, + "Ġhypothes": 14276, + "Ġhypotheses": 49969, + "Ġhypothesis": 17291, + "Ġhypothetical": 33053, + "Ġhyster": 35915, + "Ġhyung": 33216, + "Ġhyvin": 36180, + "Ġhyvä": 38526, + "Ġhá": 16448, + "Ġhä": 24054, + "Ġhält": 40751, + "Ġhär": 6533, + "Ġhät": 15344, + "Ġhätte": 20041, + "Ġhätten": 33278, + "Ġhäuf": 39735, + "Ġhäufig": 47543, + "ĠhÃ¥": 24367, + "Ġhè": 49243, + "Ġhé": 32537, + "Ġhö": 13531, + "Ġhöher": 48045, + "Ġhör": 42651, + "Ġhören": 38681, + "Ġhört": 42243, + "ĠhÃłng": 48373, + "ĠhÆ¡n": 34335, + "Ġhết": 44414, + "Ġhá»į": 27700, + "Ġhá»įc": 46786, + "Ġi": 741, + "ĠiOS": 17430, + "ĠiP": 5180, + "ĠiPad": 12945, + "ĠiPh": 42048, + "ĠiPhone": 7252, + "ĠiPhones": 43793, + "ĠiT": 30882, + "ĠiTunes": 33017, + "Ġia": 20721, + "Ġib": 39073, + "Ġiba": 33423, + "Ġic": 4376, + "Ġice": 4435, + "Ġiceberg": 38880, + "Ġiced": 46091, + "Ġich": 1893, + "Ġici": 11575, + "Ġicing": 30086, + "Ġicon": 6528, + "Ġiconic": 15762, + "Ġicons": 23308, + "Ġicy": 42015, + "Ġid": 4496, + "Ġidag": 43334, + "Ġide": 1153, + "Ġidea": 1558, + "Ġideal": 7157, + "Ġideally": 22915, + "Ġideals": 30956, + "Ġideas": 3487, + "Ġidee": 49742, + "Ġideia": 26409, + "Ġident": 2473, + "Ġidentical": 14800, + "Ġidentific": 49456, + "Ġidentification": 22065, + "Ġidentified": 9234, + "Ġidentifier": 45690, + "Ġidentifies": 34597, + "Ġidentify": 5876, + "Ġidentifying": 16696, + "Ġidentities": 24239, + "Ġidentity": 6575, + "Ġideological": 35341, + "Ġideology": 23101, + "Ġidi": 18014, + "Ġidiot": 14270, + "Ġidiots": 36454, + "Ġidle": 30650, + "Ġido": 47771, + "Ġidol": 13060, + "Ġidols": 29959, + "Ġidé": 39227, + "Ġidée": 34832, + "Ġie": 43203, + "Ġiedereen": 47529, + "Ġiemand": 48687, + "Ġiets": 24791, + "Ġif": 498, + "Ġig": 8508, + "Ġigen": 31305, + "Ġign": 5335, + "Ġignite": 49609, + "Ġignition": 37031, + "Ġignor": 14698, + "Ġignorance": 25390, + "Ġignorant": 29374, + "Ġignore": 11200, + "Ġignored": 19735, + "Ġignoring": 26258, + "Ġigual": 10953, + "Ġih": 5096, + "Ġihan": 36131, + "Ġihm": 16021, + "Ġihn": 14534, + "Ġihnen": 24623, + "Ġihr": 5553, + "Ġihre": 14280, + "Ġihrem": 30859, + "Ġihren": 22347, + "Ġihrer": 23990, + "Ġiht": 36737, + "Ġik": 4320, + "Ġiki": 20739, + "Ġikke": 13076, + "Ġil": 1930, + "Ġile": 15465, + "Ġilgili": 43542, + "Ġilk": 28912, + "Ġill": 3171, + "Ġilleg": 9976, + "Ġillegal": 11905, + "Ġillegally": 39585, + "Ġillness": 10152, + "Ġillnesses": 30791, + "Ġillum": 30579, + "Ġillumin": 28593, + "Ġilluminated": 48577, + "Ġillusion": 18854, + "Ġillusions": 49836, + "Ġillust": 8490, + "Ġillustrate": 23221, + "Ġillustrated": 33875, + "Ġillustrates": 41718, + "Ġillustration": 22645, + "Ġillustrations": 34540, + "Ġils": 9047, + "Ġim": 566, + "Ġimag": 2576, + "Ġimage": 3256, + "Ġimagem": 43824, + "Ġimagen": 40652, + "Ġimagery": 24340, + "Ġimages": 5267, + "Ġimagin": 23427, + "Ġimaginar": 49048, + "Ġimaginary": 26164, + "Ġimagination": 12938, + "Ġimagine": 3811, + "Ġimagined": 16590, + "Ġimaging": 25036, + "Ġimagining": 27798, + "Ġimbalance": 43007, + "Ġimitate": 35556, + "Ġimitation": 47624, + "Ġimm": 3397, + "Ġimmature": 49539, + "Ġimmedi": 3640, + "Ġimmediate": 11629, + "Ġimmediately": 4258, + "Ġimmens": 36893, + "Ġimmense": 22920, + "Ġimmensely": 38674, + "Ġimmer": 5578, + "Ġimmers": 16787, + "Ġimmersed": 35416, + "Ġimmersion": 40348, + "Ġimmersive": 35409, + "Ġimmig": 7730, + "Ġimmigrant": 23873, + "Ġimmigrants": 16598, + "Ġimmigration": 13554, + "Ġimmin": 40728, + "Ġimminent": 44339, + "Ġimmort": 44817, + "Ġimmortal": 31414, + "Ġimmun": 13154, + "Ġimmune": 11992, + "Ġimmunity": 22701, + "Ġimp": 704, + "Ġimpact": 2712, + "Ġimpacted": 15653, + "Ġimpactful": 30842, + "Ġimpacting": 29963, + "Ġimpacto": 49687, + "Ġimpacts": 11606, + "Ġimpair": 30256, + "Ġimpaired": 36762, + "Ġimpairment": 42025, + "Ġimpart": 32177, + "Ġimpat": 31156, + "Ġimpatient": 36895, + "Ġimpe": 19643, + "Ġimpeachment": 33663, + "Ġimped": 22584, + "Ġimpedance": 36264, + "Ġimper": 10100, + "Ġimperative": 32490, + "Ġimperfect": 26714, + "Ġimperial": 21143, + "Ġimperson": 38147, + "Ġimpl": 8484, + "Ġimplant": 28309, + "Ġimplants": 43032, + "Ġimplement": 4445, + "Ġimplementation": 11420, + "Ġimplemented": 12270, + "Ġimplementing": 18114, + "Ġimplic": 10629, + "Ġimplication": 37814, + "Ġimplications": 16602, + "Ġimplicit": 26947, + "Ġimplied": 32614, + "Ġimplies": 18779, + "Ġimply": 33616, + "Ġimport": 974, + "Ġimporta": 33218, + "Ġimportance": 7379, + "Ġimportant": 1021, + "Ġimportante": 9416, + "Ġimportantes": 27963, + "Ġimportantly": 8906, + "Ġimported": 25524, + "Ġimporting": 43866, + "Ġimports": 41596, + "Ġimpos": 38396, + "Ġimpose": 26952, + "Ġimposed": 26491, + "Ġimposing": 40288, + "Ġimposs": 38802, + "Ġimpossible": 6243, + "Ġimpost": 47804, + "Ġimpres": 35672, + "Ġimpress": 6729, + "Ġimpressed": 11679, + "Ġimpression": 9995, + "Ġimpressions": 24245, + "Ġimpressive": 8992, + "Ġimprint": 44615, + "Ġimprison": 24146, + "Ġimprisoned": 35332, + "Ġimpro": 2530, + "Ġimproper": 40651, + "Ġimprov": 29424, + "Ġimprove": 3470, + "Ġimproved": 9689, + "Ġimprovement": 10444, + "Ġimprovements": 13797, + "Ġimproves": 24771, + "Ġimproving": 11470, + "Ġimprovis": 39784, + "Ġimpul": 41767, + "Ġimpulse": 26857, + "Ġin": 294, + "Ġinability": 33162, + "Ġinac": 33230, + "Ġinacc": 37957, + "Ġinaccurate": 46443, + "Ġinad": 42148, + "Ġinadequ": 35441, + "Ġinadequate": 42107, + "Ġinadvert": 49152, + "Ġinan": 33113, + "Ġinappropri": 24728, + "Ġinappropriate": 26723, + "Ġinaug": 23541, + "Ġinaugural": 48741, + "Ġinbox": 35067, + "Ġinc": 834, + "Ġincap": 30399, + "Ġincapable": 44174, + "Ġincar": 23694, + "Ġincarcer": 24650, + "Ġincarcerated": 39059, + "Ġincarceration": 41603, + "Ġincarn": 30938, + "Ġincarnation": 49988, + "Ġincense": 50202, + "Ġincent": 11903, + "Ġincentiv": 35328, + "Ġincentive": 22346, + "Ġincentives": 23374, + "Ġinception": 49834, + "Ġinch": 7227, + "Ġinches": 8478, + "Ġincidence": 41726, + "Ġincident": 9348, + "Ġincidents": 21139, + "Ġincl": 37070, + "Ġinclined": 28173, + "Ġinclu": 25520, + "Ġinclud": 1637, + "Ġinclude": 4090, + "Ġincluded": 5556, + "Ġincludes": 5974, + "Ġincluding": 3009, + "Ġinclus": 17204, + "Ġinclusion": 15874, + "Ġinclusive": 13429, + "Ġincluso": 24018, + "Ġincom": 14036, + "Ġincome": 5742, + "Ġincomes": 42458, + "Ġincoming": 22341, + "Ġincomp": 40393, + "Ġincompet": 41602, + "Ġincomplete": 31709, + "Ġincon": 20972, + "Ġincons": 22039, + "Ġinconsistent": 36891, + "Ġinconven": 28752, + "Ġinconvenient": 46196, + "Ġincor": 7121, + "Ġincorpor": 8788, + "Ġincorporate": 16091, + "Ġincorporated": 21654, + "Ġincorporates": 50193, + "Ġincorporating": 33613, + "Ġincorrect": 18424, + "Ġincorrectly": 42892, + "Ġincr": 42211, + "Ġincre": 1946, + "Ġincrease": 3488, + "Ġincreased": 6505, + "Ġincreases": 8637, + "Ġincreasing": 5662, + "Ġincreasingly": 12980, + "Ġincred": 3267, + "Ġincredible": 4651, + "Ġincredibly": 6252, + "Ġincrement": 26200, + "Ġincremental": 35759, + "ĠincreÃŃ": 46202, + "Ġincub": 33345, + "Ġincumb": 39854, + "Ġincumbent": 45539, + "Ġincur": 35774, + "Ġind": 1016, + "Ġinde": 24162, + "Ġindeed": 6451, + "Ġindem": 37185, + "Ġindent": 44494, + "Ġindepend": 4819, + "Ġindependence": 14640, + "Ġindependent": 6695, + "Ġindependently": 21761, + "Ġindex": 8186, + "Ġindic": 4694, + "Ġindicate": 13330, + "Ġindicated": 16176, + "Ġindicates": 16203, + "Ġindicating": 25604, + "Ġindication": 18877, + "Ġindications": 44450, + "Ġindicative": 47513, + "Ġindicator": 16961, + "Ġindicators": 22176, + "Ġindices": 43840, + "Ġindict": 49981, + "Ġindie": 33184, + "Ġindifferent": 48502, + "Ġindigenous": 15511, + "Ġindirect": 19523, + "Ġindirectly": 37779, + "Ġindisp": 40637, + "Ġindispens": 42937, + "Ġindispensable": 47940, + "Ġindivid": 2461, + "Ġindividual": 2609, + "Ġindividually": 16652, + "Ġindividuals": 5346, + "Ġindo": 13770, + "Ġindoor": 24029, + "Ġindoors": 29655, + "Ġindu": 13716, + "Ġinduce": 41263, + "Ġinduced": 33991, + "Ġinduct": 31612, + "Ġinduction": 33371, + "Ġindul": 28626, + "Ġindust": 2735, + "Ġindustri": 49005, + "Ġindustrial": 9987, + "Ġindustries": 13284, + "Ġindustry": 3518, + "Ġine": 7167, + "Ġineffective": 48836, + "Ġinefficient": 43495, + "Ġinequ": 25099, + "Ġinequalities": 41874, + "Ġinequality": 16970, + "Ġinert": 25832, + "Ġinertia": 37234, + "Ġinevit": 14481, + "Ġinevitable": 21451, + "Ġinevitably": 28171, + "Ġinex": 29961, + "Ġinexpensive": 28382, + "Ġinf": 1536, + "Ġinfamous": 30769, + "Ġinfant": 16757, + "Ġinfantry": 30887, + "Ġinfants": 38829, + "Ġinfect": 5888, + "Ġinfected": 15414, + "Ġinfection": 11764, + "Ġinfections": 19478, + "Ġinfectious": 26780, + "Ġinfer": 13596, + "Ġinference": 38253, + "Ġinferior": 24249, + "Ġinfilt": 29085, + "Ġinfin": 7193, + "Ġinfinite": 13785, + "Ġinfinitely": 36227, + "Ġinfinity": 13202, + "Ġinfl": 9922, + "Ġinflam": 15987, + "Ġinflamm": 16782, + "Ġinflammation": 21613, + "Ġinflammatory": 38199, + "Ġinflation": 15860, + "Ġinflict": 38137, + "Ġinflu": 4015, + "Ġinfluen": 9024, + "Ġinfluence": 6503, + "Ġinfluenced": 15269, + "Ġinfluencer": 39503, + "Ġinfluencers": 38646, + "Ġinfluences": 21222, + "Ġinfluencing": 40396, + "Ġinfluential": 22215, + "Ġinfluenza": 36408, + "Ġinfo": 13614, + "Ġinform": 1356, + "Ġinformación": 21660, + "Ġinformal": 24342, + "Ġinformation": 1589, + "Ġinformational": 49391, + "Ġinformations": 38855, + "Ġinformative": 27759, + "Ġinformação": 48403, + "Ġinformações": 42542, + "Ġinformed": 11740, + "Ġinforming": 43969, + "Ġinforms": 45320, + "Ġinfra": 23654, + "Ġinfrared": 30361, + "Ġinfrast": 6534, + "Ġinfrastructure": 6896, + "Ġinfring": 45205, + "Ġinfused": 50083, + "Ġing": 3957, + "Ġingen": 21600, + "Ġingl": 35511, + "Ġinglés": 49766, + "Ġingred": 5621, + "Ġingredient": 14751, + "Ġingredients": 6952, + "Ġinh": 47707, + "Ġinhab": 16934, + "Ġinhabit": 21863, + "Ġinhabitants": 27740, + "Ġinhabited": 47538, + "Ġinhal": 43157, + "Ġinhale": 22071, + "Ġinher": 9484, + "Ġinherent": 26387, + "Ġinherently": 27993, + "Ġinherit": 21389, + "Ġinheritance": 32122, + "Ġinherited": 27091, + "Ġinhib": 20406, + "Ġinhibit": 49858, + "Ġini": 7408, + "Ġinic": 40380, + "Ġinici": 43043, + "Ġinicial": 44076, + "Ġinim": 45945, + "Ġinit": 3157, + "Ġiniti": 6265, + "Ġinitial": 5883, + "Ġinitially": 9105, + "Ġinitiate": 31574, + "Ġinitiated": 28578, + "Ġinitiation": 43569, + "Ġinitiative": 11552, + "Ġinitiatives": 16194, + "Ġinj": 5580, + "Ġinject": 10711, + "Ġinjected": 36967, + "Ġinjection": 22873, + "Ġinjections": 47178, + "Ġinjured": 13408, + "Ġinjuries": 14799, + "Ġinjury": 10454, + "Ġinjust": 19336, + "Ġinjustice": 24750, + "Ġink": 11276, + "Ġinland": 47009, + "Ġinlet": 36961, + "Ġinm": 41052, + "Ġinmates": 39479, + "Ġinn": 7714, + "Ġinnate": 41766, + "Ġinne": 24170, + "Ġinner": 7284, + "Ġinnerhalb": 48460, + "Ġinning": 49989, + "Ġinnoc": 10843, + "Ġinnocence": 35796, + "Ġinnocent": 13171, + "Ġinnov": 5083, + "Ġinnovate": 33444, + "Ġinnovation": 8504, + "Ġinnovations": 24283, + "Ġinnovative": 12999, + "Ġinnych": 36286, + "Ġinom": 44839, + "Ġinput": 4846, + "Ġinputs": 15743, + "Ġinqu": 13570, + "Ġinquiry": 25736, + "Ġins": 1028, + "Ġinsan": 11513, + "Ġinsane": 10838, + "Ġinsanely": 40965, + "Ġinsanity": 47505, + "Ġinsanlar": 36130, + "Ġinsbesondere": 48694, + "Ġinscre": 27824, + "Ġinscription": 49882, + "Ġinse": 33874, + "Ġinsec": 18851, + "Ġinsect": 13261, + "Ġinsects": 20201, + "Ġinsecure": 32215, + "Ġinsecurity": 35058, + "Ġinsert": 8969, + "Ġinserted": 27992, + "Ġinserting": 46567, + "Ġinserts": 49163, + "Ġinsgesamt": 41438, + "Ġinside": 1854, + "Ġinsider": 40990, + "Ġinsight": 11269, + "Ġinsightful": 46401, + "Ġinsights": 14310, + "Ġinsign": 34261, + "Ġinsignificant": 43685, + "Ġinsist": 13466, + "Ġinsisted": 28456, + "Ġinsists": 50137, + "Ġinsp": 3741, + "Ġinspect": 15018, + "Ġinspection": 22085, + "Ġinspections": 46544, + "Ġinspector": 34564, + "Ġinspir": 17432, + "Ġinspiration": 10249, + "Ġinspirational": 33554, + "Ġinspire": 15638, + "Ġinspired": 7547, + "Ġinspires": 32566, + "Ġinspiring": 15883, + "Ġinst": 1058, + "Ġinstability": 34379, + "Ġinstagram": 22102, + "Ġinstal": 34059, + "Ġinstall": 3625, + "Ġinstallation": 13260, + "Ġinstallations": 41932, + "Ġinstalled": 8899, + "Ġinstaller": 46620, + "Ġinstalling": 20762, + "Ġinstallment": 39413, + "Ġinstance": 5197, + "Ġinstances": 14519, + "Ġinstant": 9836, + "Ġinstantaneous": 45596, + "Ġinstantly": 13518, + "Ġinstead": 2602, + "Ġinstinct": 16556, + "Ġinstincts": 38997, + "Ġinstit": 4348, + "Ġinstitute": 26860, + "Ġinstitution": 7818, + "Ġinstitutional": 18391, + "Ġinstitutions": 8142, + "Ġinstr": 5488, + "Ġinstruct": 7232, + "Ġinstructed": 36384, + "Ġinstruction": 10951, + "Ġinstructional": 35716, + "Ġinstructions": 9415, + "Ġinstructor": 18499, + "Ġinstructors": 28367, + "Ġinstrument": 7198, + "Ġinstrumental": 17388, + "Ġinstruments": 12190, + "Ġinsufficient": 41709, + "Ġinsulation": 30508, + "Ġinsulin": 21587, + "Ġinsult": 15285, + "Ġinsulted": 49063, + "Ġinsulting": 44463, + "Ġinsurance": 7214, + "Ġint": 560, + "Ġintact": 23493, + "Ġintake": 18060, + "Ġinte": 2830, + "Ġinteg": 16200, + "Ġinteger": 24922, + "Ġintegers": 41674, + "Ġintegr": 3572, + "Ġintegral": 11573, + "Ġintegrate": 13365, + "Ġintegrated": 10919, + "Ġintegrating": 26889, + "Ġintegration": 10980, + "Ġintegrity": 16000, + "Ġinteiro": 45633, + "Ġintel": 24777, + "Ġintelig": 44300, + "Ġintell": 4359, + "Ġintellect": 10058, + "Ġintellectual": 12576, + "Ġintellectually": 46481, + "Ġintellig": 5613, + "Ġintelligence": 7599, + "Ġintelligent": 13232, + "Ġinten": 43094, + "Ġintend": 19759, + "Ġintended": 10226, + "Ġintens": 14056, + "Ġintense": 9447, + "Ġintensely": 43235, + "Ġintensity": 13749, + "Ġintensive": 18957, + "Ġintent": 8446, + "Ġintentar": 46596, + "Ġintention": 7789, + "Ġintentional": 21935, + "Ġintentionally": 22062, + "Ġintentions": 19354, + "Ġinter": 728, + "Ġinteract": 4648, + "Ġinteracted": 49621, + "Ġinteracting": 18017, + "Ġinteraction": 9285, + "Ġinteractions": 13280, + "Ġinteractive": 15141, + "Ġinteracts": 43582, + "Ġintercept": 24700, + "Ġinterchange": 30358, + "Ġinterconnect": 26253, + "Ġinterconnected": 36611, + "Ġinterdisciplinary": 38280, + "Ġinteres": 20157, + "Ġinteresante": 36396, + "Ġinteress": 12478, + "Ġinteressant": 37748, + "Ġinteressante": 24372, + "Ġinterest": 1179, + "Ġinterested": 3102, + "Ġinteresting": 1880, + "Ġinterestingly": 25873, + "Ġinterests": 8847, + "Ġinterf": 14510, + "Ġinterface": 9226, + "Ġinterfaces": 28416, + "Ġinterfer": 25799, + "Ġinterfere": 23946, + "Ġinterference": 24497, + "Ġinterfering": 48721, + "Ġinterim": 33500, + "Ġinterior": 10636, + "Ġinterject": 46787, + "Ġintermedi": 15184, + "Ġintermediate": 19376, + "Ġintermitt": 38548, + "Ġintermittent": 44084, + "Ġintern": 2154, + "Ġinternacional": 37382, + "Ġinternal": 6920, + "Ġinternally": 19501, + "Ġinternation": 19257, + "Ġinternational": 5058, + "Ġinternationally": 24422, + "Ġinternet": 4705, + "Ġinterns": 46145, + "Ġinternship": 16861, + "Ġinternships": 35712, + "Ġinterpersonal": 47102, + "Ġinterpol": 44902, + "Ġinterpre": 17489, + "Ġinterpret": 7302, + "Ġinterpretation": 14174, + "Ġinterpretations": 37547, + "Ġinterpreted": 26749, + "Ġinterpreter": 34132, + "Ġinterpreting": 37395, + "Ġinterrog": 24871, + "Ġinterrupt": 12729, + "Ġinterrupted": 30329, + "Ġinterrupting": 49455, + "Ġintersect": 27815, + "Ġintersection": 15236, + "Ġintersections": 47664, + "Ġintertw": 44400, + "Ġinterval": 15035, + "Ġintervals": 26651, + "Ġinterven": 17104, + "Ġintervene": 30407, + "Ġintervention": 13176, + "Ġinterventions": 20924, + "Ġinterview": 4049, + "Ġinterviewed": 19770, + "Ġinterviewing": 26524, + "Ġinterviews": 12318, + "Ġintest": 21098, + "Ġintestine": 42446, + "Ġintestines": 44429, + "Ġintim": 13148, + "Ġintimacy": 34450, + "Ġintimate": 20215, + "Ġintimid": 17042, + "Ġintimidated": 40234, + "Ġintimidating": 29714, + "Ġinto": 666, + "Ġintoler": 35278, + "Ġintox": 40809, + "Ġintr": 17467, + "Ġintra": 43358, + "Ġintric": 30242, + "Ġintricate": 38015, + "Ġintrig": 17934, + "Ġintrigued": 35140, + "Ġintriguing": 32503, + "Ġintrins": 28621, + "Ġintrinsic": 35698, + "Ġintro": 12897, + "Ġintrodu": 2814, + "Ġintroduce": 5366, + "Ġintroduced": 7268, + "Ġintroduces": 31472, + "Ġintroducing": 15424, + "Ġintroduction": 9339, + "Ġintroductions": 48032, + "Ġintroductory": 39048, + "Ġintuit": 16224, + "Ġintuition": 24002, + "Ġintuitive": 21769, + "Ġintuitively": 46506, + "Ġinté": 18555, + "Ġintéress": 23243, + "Ġintéressant": 34358, + "Ġinv": 1048, + "Ġinvade": 39171, + "Ġinvaded": 35882, + "Ġinvalid": 34702, + "Ġinvaluable": 40367, + "Ġinvari": 33270, + "Ġinvasion": 21575, + "Ġinvasive": 30894, + "Ġinve": 32957, + "Ġinvece": 36344, + "Ġinvent": 7962, + "Ġinvented": 14479, + "Ġinvention": 22265, + "Ġinventions": 43748, + "Ġinventor": 41593, + "Ġinventory": 14228, + "Ġinver": 28653, + "Ġinvers": 21378, + "Ġinverse": 17340, + "Ġinversion": 43576, + "Ġinvert": 33966, + "Ġinverted": 38969, + "Ġinverter": 47201, + "Ġinvest": 1963, + "Ġinvested": 13104, + "Ġinvestig": 4557, + "Ġinvestigación": 48919, + "Ġinvestigate": 15013, + "Ġinvestigated": 30070, + "Ġinvestigating": 22858, + "Ġinvestigation": 9627, + "Ġinvestigations": 25582, + "Ġinvestigative": 45495, + "Ġinvestigator": 38330, + "Ġinvestigators": 27079, + "Ġinvesting": 10978, + "Ġinvestir": 49646, + "Ġinvestment": 6078, + "Ġinvestments": 13784, + "Ġinvestor": 18479, + "Ġinvestors": 11519, + "Ġinvinci": 42807, + "Ġinvincible": 48514, + "Ġinvis": 13308, + "Ġinvisible": 14603, + "Ġinvit": 43714, + "Ġinvitation": 17890, + "Ġinvite": 7980, + "Ġinvited": 9185, + "Ġinvites": 35719, + "Ġinviting": 18202, + "Ġinvoice": 47919, + "Ġinvoke": 41117, + "Ġinvol": 2499, + "Ġinvolve": 9494, + "Ġinvolved": 3288, + "Ġinvolvement": 17447, + "Ġinvolves": 11626, + "Ġinvolving": 17030, + "Ġinward": 29876, + "ĠinÃŃcio": 45979, + "Ġio": 19785, + "Ġiod": 44422, + "Ġion": 17437, + "Ġions": 27362, + "Ġip": 28501, + "Ġir": 3418, + "Ġirgend": 11093, + "Ġirgendw": 26455, + "Ġirgendwann": 34313, + "Ġirgendwas": 47090, + "Ġirgendwie": 20759, + "Ġirgendwo": 40865, + "Ġirm": 33842, + "Ġiron": 6497, + "Ġironic": 33719, + "Ġironically": 41082, + "Ġirony": 35365, + "Ġirr": 29413, + "Ġirrational": 39914, + "Ġirre": 16014, + "Ġirregular": 29349, + "Ġirrelevant": 28682, + "Ġirrespons": 38626, + "Ġirresponsible": 46320, + "Ġirrig": 26129, + "Ġirrigation": 31753, + "Ġirrit": 16029, + "Ġirritated": 43650, + "Ġirritating": 45971, + "Ġirritation": 50031, + "Ġis": 307, + "Ġise": 40912, + "Ġisland": 6077, + "Ġislands": 17402, + "Ġisn": 1943, + "Ġisol": 7381, + "Ġisolate": 25660, + "Ġisolated": 14621, + "Ġisolating": 48912, + "Ġisolation": 16001, + "Ġisot": 38018, + "Ġiss": 1620, + "Ġisso": 4616, + "Ġissue": 2734, + "Ġissued": 14379, + "Ġissues": 2663, + "Ġissuing": 43214, + "Ġist": 1418, + "Ġiste": 49920, + "Ġistedi": 40058, + "Ġistem": 42785, + "Ġister": 40366, + "Ġistiyorum": 36699, + "Ġisto": 35835, + "Ġit": 309, + "Ġital": 22366, + "Ġitaliano": 48486, + "Ġitchy": 47360, + "Ġitem": 3174, + "Ġitems": 4754, + "Ġiter": 17138, + "Ġiterate": 44497, + "Ġiteration": 24784, + "Ġiterations": 36540, + "Ġits": 1080, + "Ġitself": 2564, + "Ġitt": 47786, + "Ġitu": 9032, + "ĠitÃŃs": 30924, + "Ġiv": 32412, + "Ġivory": 49218, + "Ġiy": 29861, + "Ġiyi": 16173, + "Ġiz": 14736, + "Ġizquier": 46428, + "Ġiç": 6058, + "Ġiçer": 33913, + "Ġiçin": 8457, + "Ġiçinde": 34283, + "ĠiÅŁ": 8690, + "ĠiÅŁi": 45377, + "ĠiÅŁte": 19804, + "Ġj": 361, + "Ġja": 2784, + "Ġjaar": 22579, + "Ġjab": 33475, + "Ġjack": 7109, + "Ġjacket": 11781, + "Ġjackets": 34612, + "Ġjadi": 19399, + "Ġjag": 6368, + "Ġjail": 10511, + "Ġjak": 4207, + "Ġjakby": 28976, + "Ġjaki": 24492, + "Ġjakie": 22124, + "ĠjakieÅĽ": 31163, + "Ġjakim": 49410, + "ĠjakiÅĽ": 34721, + "Ġjako": 17123, + "ĠjakÄħ": 46719, + "Ġjal": 43089, + "Ġjam": 7872, + "Ġjamais": 14540, + "Ġjan": 25442, + "Ġjangan": 45107, + "Ġjap": 48330, + "Ġjapanese": 49508, + "Ġjar": 15181, + "Ġjard": 46153, + "Ġjars": 38239, + "Ġjaw": 18162, + "Ġjaws": 44942, + "Ġjazz": 15066, + "Ġje": 1506, + "Ġjealous": 13805, + "Ġjealousy": 36103, + "Ġjeans": 18880, + "Ġjed": 5232, + "Ġjede": 34039, + "Ġjedem": 36538, + "Ġjeden": 12906, + "Ġjeder": 19610, + "Ġjedes": 36119, + "Ġjednak": 25897, + "Ġjedoch": 46311, + "Ġjeg": 10610, + "Ġjego": 26542, + "Ġjeito": 31478, + "Ġjej": 28924, + "Ġjelly": 17186, + "Ġjemand": 21717, + "Ġjeopard": 44295, + "Ġjer": 20160, + "Ġjerk": 25197, + "Ġjersey": 40700, + "Ġjest": 3492, + "Ġjeste": 25255, + "Ġjestem": 29627, + "ĠjesteÅĽmy": 35928, + "Ġjeszcze": 14168, + "Ġjet": 14452, + "Ġjets": 35124, + "Ġjetzt": 4354, + "Ġjeu": 16748, + "Ġjeune": 35610, + "Ġjeunes": 32830, + "Ġjeux": 35093, + "Ġjew": 13149, + "Ġjewe": 46534, + "Ġjewel": 16010, + "Ġjewelry": 19982, + "Ġjewels": 43256, + "Ġjeżeli": 23001, + "ĠjeÅĽli": 25630, + "Ġji": 32606, + "Ġjig": 43716, + "Ġjij": 28002, + "Ġjin": 43528, + "Ġjingle": 49495, + "Ġjo": 1488, + "Ġjob": 1691, + "Ġjobbar": 42965, + "Ġjobs": 4782, + "Ġjog": 9464, + "Ġjogar": 39248, + "Ġjogo": 20068, + "Ġjogos": 39307, + "Ġjohn": 35097, + "Ġjoin": 3917, + "Ġjoined": 6869, + "Ġjoining": 5549, + "Ġjoins": 24397, + "Ġjoint": 7225, + "Ġjointly": 46557, + "Ġjoints": 19949, + "Ġjoka": 33793, + "Ġjoke": 7647, + "Ġjokes": 14439, + "Ġjoking": 17396, + "Ġjon": 49151, + "Ġjong": 38678, + "Ġjorn": 40345, + "Ġjos": 29217, + "Ġjot": 27873, + "Ġjotka": 47005, + "Ġjou": 11110, + "Ġjoue": 46209, + "Ġjouer": 30823, + "Ġjour": 2827, + "Ġjourn": 17598, + "Ġjournal": 6708, + "Ġjournalism": 23191, + "Ġjournalist": 17277, + "Ġjournalists": 19535, + "Ġjournals": 29621, + "Ġjourney": 4671, + "Ġjourneys": 36736, + "Ġjournée": 34277, + "Ġjours": 20724, + "Ġjoy": 6258, + "Ġjoyful": 33090, + "Ġjoystick": 48074, + "Ġjs": 42713, + "Ġjsem": 47784, + "Ġju": 3649, + "Ġjud": 3747, + "Ġjudge": 6995, + "Ġjudged": 27485, + "Ġjudgement": 33473, + "Ġjudges": 14449, + "Ġjudging": 23587, + "Ġjudgment": 12216, + "Ġjudgments": 40337, + "Ġjudicial": 26581, + "Ġjudiciary": 49987, + "Ġjue": 27833, + "Ġjuego": 21344, + "Ġjuegos": 43411, + "Ġjug": 9568, + "Ġjuga": 14462, + "Ġjugar": 37692, + "Ġjuice": 8544, + "Ġjuices": 37027, + "Ġjuicy": 24696, + "Ġjul": 30764, + "Ġjullie": 29633, + "Ġjum": 29067, + "Ġjump": 3012, + "Ġjumped": 13864, + "Ġjumper": 44061, + "Ġjumping": 11233, + "Ġjumps": 16704, + "Ġjun": 8156, + "Ġjunction": 33718, + "Ġjung": 14202, + "Ġjunge": 47877, + "Ġjungle": 18228, + "Ġjunior": 16195, + "Ġjunk": 19109, + "Ġjunt": 22739, + "Ġjunto": 24663, + "Ġjuntos": 33868, + "Ġjur": 12721, + "Ġjuris": 17785, + "Ġjurisd": 19078, + "Ġjurisdiction": 27285, + "Ġjurisdictions": 37958, + "Ġjury": 19516, + "Ġjus": 17217, + "Ġjusqu": 20340, + "Ġjust": 445, + "Ġjustamente": 41056, + "Ġjuste": 13016, + "Ġjustement": 27807, + "Ġjustice": 6118, + "Ġjustification": 31591, + "Ġjustified": 27808, + "Ġjustify": 20833, + "Ġjusto": 40534, + "Ġjut": 42079, + "Ġjuven": 32641, + "Ġjuvenile": 38486, + "Ġjuż": 10678, + "Ġjá": 6242, + "Ġjätte": 46752, + "Ġjó": 31390, + "Ġjóvenes": 45110, + "ĠjÄħ": 35692, + "ĠjÄĻ": 42309, + "ĠjÄĻzy": 49055, + "Ġk": 350, + "Ġka": 6799, + "Ġkab": 27835, + "Ġkabul": 46925, + "Ġkad": 8064, + "Ġkadar": 10456, + "Ġkadın": 39421, + "Ġkaf": 35426, + "Ġkah": 21651, + "Ġkahkaha": 37357, + "Ġkaik": 30381, + "Ġkaikki": 46992, + "Ġkal": 7788, + "Ġkalau": 20218, + "Ġkald": 27110, + "Ġkale": 34699, + "Ġkali": 41690, + "Ġkalian": 34531, + "Ġkalk": 34960, + "Ġkalo": 40257, + "Ġkam": 9727, + "Ġkamera": 43246, + "Ġkami": 34502, + "Ġkamp": 45369, + "Ġkamu": 20705, + "Ġkan": 4608, + "Ġkana": 42372, + "Ġkang": 47898, + "Ġkann": 4028, + "Ġkannst": 20853, + "Ġkans": 16030, + "Ġkanske": 24487, + "Ġkanssa": 49054, + "Ġkant": 44055, + "Ġkap": 13816, + "Ġkar": 7917, + "Ġkara": 29555, + "Ġkaraoke": 41629, + "Ġkarate": 48464, + "ĠkardeÅŁ": 24073, + "ĠkardeÅŁim": 38070, + "Ġkarena": 27173, + "Ġkarma": 28396, + "Ġkart": 29120, + "ĠkarÄ±ÅŁ": 36716, + "ĠkarÅŁ": 21742, + "ĠkarÅŁÄ±": 31653, + "Ġkas": 19173, + "Ġkasih": 35894, + "Ġkat": 16536, + "Ġkau": 36273, + "Ġkaufen": 42083, + "Ġkaum": 36443, + "Ġkav": 39039, + "Ġkay": 12446, + "Ġkayak": 22438, + "Ġkaz": 30623, + "Ġkaç": 23916, + "Ġkaż": 21912, + "Ġkażdy": 31615, + "Ġke": 803, + "Ġked": 42472, + "Ġkeen": 20297, + "Ġkeep": 1066, + "Ġkeeper": 38709, + "Ġkeeping": 5145, + "Ġkeeps": 5965, + "Ġkeer": 31531, + "Ġkeh": 39616, + "Ġkein": 13424, + "Ġkeine": 9252, + "Ġkeinen": 20624, + "Ġkeiner": 37767, + "Ġkel": 31332, + "Ġkell": 41892, + "Ġkelu": 40559, + "Ġkeluar": 43365, + "Ġken": 18787, + "Ġkend": 17016, + "Ġkendi": 29723, + "Ġkenn": 36272, + "Ġkennen": 28445, + "Ġkennt": 37682, + "Ġkep": 36428, + "Ġkepada": 45598, + "Ġkept": 4305, + "Ġker": 19377, + "Ġkern": 23434, + "Ġkernel": 28256, + "Ġkes": 16050, + "Ġket": 14979, + "Ġketchup": 29301, + "Ġketo": 44299, + "Ġkettle": 39088, + "Ġkey": 2141, + "Ġkeyboard": 10186, + "Ġkeyboards": 47808, + "Ġkeynote": 33896, + "Ġkeys": 9317, + "Ġkeyword": 20428, + "Ġkeywords": 21009, + "Ġkg": 15696, + "Ġkh": 7168, + "Ġkhi": 23526, + "Ġkho": 49627, + "Ġkhác": 43713, + "Ġkhông": 11415, + "Ġki": 6315, + "Ġkick": 4437, + "Ġkicked": 14609, + "Ġkicking": 19137, + "Ġkicks": 21293, + "Ġkid": 1636, + "Ġkidding": 9287, + "Ġkidna": 20673, + "Ġkidnapped": 29300, + "Ġkidnapping": 47868, + "Ġkidney": 19000, + "Ġkidneys": 35994, + "Ġkids": 2301, + "Ġkiedy": 18777, + "Ġkier": 38767, + "Ġkij": 26106, + "Ġkijken": 30446, + "Ġkil": 5128, + "Ġkilka": 36466, + "Ġkill": 1961, + "Ġkilled": 4652, + "Ġkiller": 13364, + "Ġkillers": 39369, + "Ġkilling": 8011, + "Ġkills": 14563, + "Ġkilo": 21112, + "Ġkilogram": 21741, + "Ġkilograms": 30690, + "Ġkilomet": 9677, + "Ġkilometer": 33795, + "Ġkilometers": 13904, + "Ġkilometres": 30489, + "Ġkilos": 30000, + "Ġkilow": 41295, + "Ġkim": 10776, + "Ġkimchi": 21656, + "Ġkimse": 42005, + "Ġkin": 15784, + "Ġkind": 733, + "Ġkinda": 4144, + "Ġkinderen": 48935, + "Ġkinderg": 24514, + "Ġkindergarten": 26671, + "Ġkindly": 29736, + "Ġkindness": 18171, + "Ġkinds": 3685, + "Ġkinetic": 27135, + "Ġking": 4867, + "Ġkingdom": 10231, + "Ġkingdoms": 44171, + "Ġkings": 21581, + "Ġkir": 33497, + "Ġkiss": 7704, + "Ġkissed": 33027, + "Ġkisses": 35850, + "Ġkissing": 29495, + "Ġkit": 8260, + "Ġkita": 8965, + "Ġkitchen": 6525, + "Ġkite": 38867, + "Ġkits": 22095, + "Ġkitten": 39696, + "Ġkittens": 47363, + "Ġkitty": 33026, + "ĠkiÅŁ": 28212, + "ĠkiÅŁi": 47462, + "Ġkl": 9671, + "Ġkla": 33337, + "Ġklar": 14743, + "Ġklass": 42917, + "Ġkle": 9318, + "Ġklein": 29231, + "Ġkleine": 22278, + "Ġkleinen": 26512, + "Ġkleiner": 39496, + "Ġklim": 36816, + "Ġkm": 10698, + "Ġkn": 444, + "Ġknapp": 40979, + "Ġkne": 32704, + "Ġknead": 28602, + "Ġknee": 9434, + "Ġknees": 10546, + "Ġknew": 2586, + "Ġknife": 7976, + "Ġknight": 26054, + "Ġknights": 48218, + "Ġknit": 15594, + "Ġknitting": 25498, + "Ġknives": 26279, + "Ġknob": 26759, + "Ġknobs": 46999, + "Ġknock": 6728, + "Ġknocked": 16914, + "Ġknocking": 24085, + "Ġknocks": 40815, + "Ġknot": 16966, + "Ġknots": 27426, + "Ġknow": 458, + "Ġknowing": 5276, + "Ġknowledge": 3601, + "Ġknowledgeable": 33800, + "Ġknown": 2570, + "Ġknows": 3255, + "Ġko": 8384, + "Ġkob": 43057, + "Ġkok": 28376, + "Ġkol": 17818, + "Ġkolay": 44999, + "Ġkole": 18303, + "Ġkolej": 23749, + "Ġkoll": 44693, + "Ġkom": 5207, + "Ġkomb": 42925, + "Ġkomen": 27190, + "Ġkomm": 6669, + "Ġkomma": 41808, + "Ġkomme": 31194, + "Ġkommen": 11729, + "Ġkommer": 12589, + "Ġkommt": 10047, + "Ġkommun": 26275, + "Ġkompl": 24526, + "Ġkomplett": 32261, + "Ġkomt": 27760, + "Ġkomun": 45359, + "Ġkon": 5897, + "Ġkonk": 21428, + "Ġkonkret": 36500, + "Ġkonnte": 24058, + "Ġkonnten": 38216, + "Ġkons": 27896, + "Ġkonse": 47020, + "Ġkonst": 34208, + "Ġkont": 14373, + "Ġkontroll": 47107, + "ĠkonuÅŁ": 17311, + "Ġkop": 28920, + "Ġkor": 14784, + "Ġkork": 33445, + "Ġkort": 46980, + "Ġkos": 19532, + "Ġkoska": 49139, + "Ġkost": 27183, + "Ġkosten": 44115, + "Ġkot": 43029, + "Ġkoy": 22674, + "ĠkoÅĦ": 26470, + "ĠkoÅŁ": 49251, + "Ġkr": 15913, + "Ġkra": 28248, + "Ġkrie": 25766, + "Ġkriegen": 46882, + "Ġkrij": 27027, + "Ġkrijgen": 43460, + "Ġkrit": 42825, + "Ġkro": 45909, + "Ġkry": 34847, + "Ġkró": 42366, + "Ġksi": 35952, + "ĠksiÄħż": 39311, + "Ġkto": 23780, + "ĠktoÅĽ": 32982, + "Ġktó": 4695, + "Ġktóra": 19456, + "Ġktóre": 8864, + "Ġktórego": 46951, + "Ġktórej": 36023, + "Ġktóry": 9913, + "Ġktórych": 30382, + "Ġktórym": 30120, + "Ġktórzy": 25382, + "ĠktórÄħ": 37415, + "Ġku": 17807, + "Ġkuin": 31032, + "Ġkul": 27576, + "Ġkull": 22511, + "Ġkullan": 27443, + "Ġkun": 8215, + "Ġkung": 49304, + "Ġkunna": 32074, + "Ġkunne": 45335, + "Ġkunnen": 18377, + "Ġkunt": 34199, + "Ġkup": 37534, + "Ġkur": 10072, + "Ġkurt": 34701, + "Ġkurz": 20465, + "Ġkuv": 49275, + "Ġkw": 23846, + "Ġkwest": 42035, + "Ġky": 28740, + "Ġkys": 35573, + "Ġkä": 16563, + "Ġkän": 48293, + "Ġkäyt": 49313, + "Ġkäytt": 49811, + "Ġkö": 15881, + "Ġkön": 4798, + "Ġkönnen": 6310, + "Ġkönnt": 22541, + "Ġkönnte": 17646, + "Ġkönnten": 37411, + "Ġkör": 42889, + "Ġköt": 32629, + "Ġkötü": 38456, + "Ġkü": 24572, + "Ġküç": 39959, + "Ġküçük": 45704, + "Ġkı": 25470, + "Ġkır": 33414, + "Ġkız": 15225, + "Ġkızım": 37013, + "Ġl": 287, + "Ġla": 635, + "Ġlaat": 32769, + "Ġlab": 2715, + "Ġlabel": 7645, + "Ġlabeled": 21335, + "Ġlabeling": 40244, + "Ġlabels": 16949, + "Ġlabor": 5938, + "Ġlaboratories": 41013, + "Ġlaboratory": 16523, + "Ġlabour": 22572, + "Ġlabs": 20339, + "Ġlac": 28027, + "Ġlace": 33469, + "Ġlack": 5011, + "Ġlacked": 41481, + "Ġlacking": 20889, + "Ġlacks": 31132, + "Ġlact": 34042, + "Ġlad": 6632, + "Ġladder": 18325, + "Ġladies": 9974, + "Ġlado": 11631, + "Ġlados": 40301, + "Ġlady": 7262, + "Ġlag": 8953, + "Ġlagi": 17742, + "Ġlah": 26532, + "Ġlaid": 9897, + "Ġlain": 29272, + "Ġlaisse": 30969, + "Ġlaisser": 34463, + "Ġlake": 11001, + "Ġlakes": 25595, + "Ġlakh": 33314, + "Ġlam": 24688, + "Ġlama": 45423, + "Ġlamb": 10097, + "Ġlambda": 13607, + "Ġlame": 27635, + "Ġlament": 35888, + "Ġlamp": 12684, + "Ġlamps": 34887, + "Ġlan": 9326, + "Ġlance": 39234, + "Ġland": 2117, + "Ġlanded": 15336, + "Ġlandfill": 47031, + "Ġlanding": 11202, + "Ġlandlord": 32654, + "Ġlandlords": 48787, + "Ġlandmark": 26962, + "Ġlands": 5949, + "Ġlandsca": 23865, + "Ġlandscape": 9661, + "Ġlandscapes": 29822, + "Ġlane": 12705, + "Ġlanes": 25397, + "Ġlang": 2265, + "Ġlange": 18131, + "Ġlangsam": 39597, + "Ġlangu": 2510, + "Ġlanguage": 2856, + "Ġlanguages": 8650, + "Ġlangue": 40318, + "Ġlantern": 34031, + "Ġlanz": 38363, + "Ġlanç": 36251, + "Ġlap": 13214, + "Ġlaps": 24971, + "Ġlapse": 49757, + "Ġlapt": 9183, + "Ġlaptop": 10732, + "Ġlaptops": 27642, + "Ġlaquelle": 35668, + "Ġlar": 1613, + "Ġlarg": 11034, + "Ġlarge": 2416, + "Ġlargely": 11611, + "Ġlarger": 4833, + "Ġlargest": 6443, + "Ġlargo": 31245, + "Ġlarva": 42290, + "Ġlas": 2439, + "Ġlasci": 48451, + "Ġlaser": 12530, + "Ġlasers": 37948, + "Ġlash": 35275, + "Ġlashes": 25552, + "Ġlass": 45829, + "Ġlassen": 16168, + "Ġlast": 1036, + "Ġlasted": 21116, + "Ġlasting": 20714, + "Ġlastly": 16386, + "Ġlasts": 20669, + "Ġlat": 4465, + "Ġlata": 46722, + "Ġlatch": 31837, + "Ġlate": 3469, + "Ġlately": 12881, + "Ġlaten": 36335, + "Ġlatency": 27043, + "Ġlatent": 48994, + "Ġlater": 1780, + "Ġlateral": 25128, + "Ġlatest": 6792, + "Ġlatitude": 45436, + "Ġlatt": 29025, + "Ġlatte": 37854, + "Ġlatter": 18481, + "Ġlattice": 34011, + "Ġlaude": 48248, + "Ġlaufen": 41647, + "Ġlaugh": 5801, + "Ġlaughed": 20881, + "Ġlaughing": 5059, + "Ġlaughs": 6197, + "Ġlaughter": 13092, + "Ġlaunch": 4025, + "Ġlaunched": 8730, + "Ġlauncher": 36805, + "Ġlaunches": 31841, + "Ġlaunching": 18354, + "Ġlaund": 17245, + "Ġlaundry": 19811, + "Ġlaure": 49469, + "Ġlaut": 44330, + "Ġlav": 20923, + "Ġlava": 22097, + "Ġlavender": 43757, + "Ġlavor": 29241, + "Ġlavoro": 42060, + "Ġlaw": 2101, + "Ġlawmakers": 40988, + "Ġlawn": 19915, + "Ġlaws": 6064, + "Ġlawsuit": 22504, + "Ġlawsuits": 39493, + "Ġlawyer": 11613, + "Ġlawyers": 16219, + "Ġlay": 2360, + "Ġlayer": 4583, + "Ġlayered": 34666, + "Ġlayering": 40754, + "Ġlayers": 7914, + "Ġlaying": 14903, + "Ġlayout": 13333, + "Ġlayouts": 46100, + "Ġlays": 32714, + "Ġlaz": 19320, + "Ġlazy": 14847, + "Ġlazım": 23951, + "Ġle": 476, + "Ġlead": 1477, + "Ġleader": 5263, + "Ġleaders": 3523, + "Ġleadership": 5848, + "Ġleading": 5775, + "Ġleads": 6689, + "Ġleaf": 10871, + "Ġleague": 14957, + "Ġleagues": 48429, + "Ġleak": 17143, + "Ġleakage": 47799, + "Ġleaked": 31779, + "Ġleaking": 32856, + "Ġleaks": 28885, + "Ġlean": 11659, + "Ġleaned": 48874, + "Ġleaning": 23390, + "Ġleap": 19438, + "Ġlearn": 1466, + "Ġlearned": 3264, + "Ġlearner": 33347, + "Ġlearners": 23655, + "Ġlearning": 2539, + "Ġlearns": 27152, + "Ġlearnt": 18991, + "Ġlease": 24961, + "Ġleash": 41616, + "Ġleast": 1935, + "Ġleather": 12821, + "Ġleav": 3236, + "Ġleave": 1856, + "Ġleaves": 5510, + "Ġleaving": 5012, + "Ġleb": 17111, + "Ġleben": 26392, + "Ġlebih": 20451, + "Ġleche": 50047, + "Ġlect": 5899, + "Ġlecture": 7991, + "Ġlecturer": 49881, + "Ġlectures": 16564, + "Ġled": 4684, + "Ġledge": 47109, + "Ġlee": 46571, + "Ġleer": 34172, + "Ġleft": 1411, + "Ġleftover": 27373, + "Ġleftovers": 43011, + "Ġleg": 1676, + "Ġlegacy": 11711, + "Ġlegal": 5089, + "Ġlegally": 21106, + "Ġlegen": 48315, + "Ġlegend": 9451, + "Ġlegendary": 16698, + "Ġlegends": 27695, + "Ġlegg": 30991, + "Ġleggings": 42733, + "Ġlegisl": 6593, + "Ġlegislation": 11329, + "Ġlegislative": 21331, + "Ġlegislators": 39264, + "Ġlegislature": 21631, + "Ġlegit": 10275, + "Ġlegitim": 29754, + "Ġlegitimacy": 41339, + "Ġlegitimate": 17956, + "Ġlegitimately": 44431, + "Ġlegs": 5668, + "Ġlei": 32791, + "Ġleicht": 28333, + "Ġleider": 29115, + "Ġleisten": 47013, + "Ġleisure": 31339, + "Ġlek": 30863, + "Ġlekker": 44125, + "Ġlem": 7495, + "Ġlemon": 11356, + "Ġlemonade": 44374, + "Ġlemons": 47098, + "Ġlen": 40116, + "Ġlend": 21774, + "Ġlender": 47500, + "Ġlending": 29823, + "Ġleng": 35044, + "Ġlength": 4641, + "Ġlengths": 26329, + "Ġlengthy": 35374, + "Ġlens": 6765, + "Ġlenses": 18059, + "Ġlent": 23556, + "Ġleopard": 47161, + "Ġlequel": 39439, + "Ġler": 32068, + "Ġlernen": 36082, + "Ġles": 1512, + "Ġlesbian": 30253, + "Ġless": 1570, + "Ġlesser": 22043, + "Ġlesson": 6898, + "Ġlessons": 8820, + "Ġlet": 718, + "Ġlethal": 34562, + "Ġlets": 6653, + "Ġlett": 20689, + "Ġletter": 5063, + "Ġletters": 7825, + "Ġletting": 8295, + "Ġlettuce": 25542, + "Ġletz": 14027, + "Ġletzt": 35262, + "Ġletzte": 35236, + "Ġletzten": 18226, + "Ġleuk": 32665, + "Ġleuke": 45970, + "Ġleur": 9580, + "Ġleurs": 18341, + "Ġlev": 20445, + "Ġleva": 43410, + "Ġlevant": 30612, + "Ġlevar": 34538, + "Ġleve": 33076, + "Ġlevel": 1496, + "Ġleveling": 40617, + "Ġlevels": 4358, + "Ġleven": 45542, + "Ġlever": 12451, + "Ġleverage": 13982, + "Ġleveraging": 32666, + "Ġlevers": 45571, + "Ġley": 27786, + "Ġli": 375, + "Ġliability": 25196, + "Ġliaison": 49431, + "Ġliar": 27323, + "Ġlib": 22854, + "Ġliber": 6774, + "Ġliberal": 13767, + "Ġliberals": 48617, + "Ġliberated": 43304, + "Ġliberation": 27736, + "Ġlibert": 18058, + "Ġliberties": 47241, + "Ġliberty": 22849, + "Ġliberté": 49158, + "Ġlibr": 4939, + "Ġlibrarian": 42558, + "Ġlibrarians": 48803, + "Ġlibraries": 15148, + "Ġlibrary": 6405, + "Ġlibre": 29976, + "Ġlibro": 29354, + "Ġlic": 6169, + "Ġlicence": 49047, + "Ġlicense": 10476, + "Ġlicensed": 25225, + "Ġlicenses": 32821, + "Ġlicensing": 29759, + "Ġlick": 30940, + "Ġlid": 10252, + "Ġlider": 45341, + "Ġlidt": 40574, + "Ġlie": 4544, + "Ġliebe": 31623, + "Ġlieber": 38252, + "Ġlied": 20101, + "Ġliegen": 35100, + "Ġliegt": 22421, + "Ġlien": 32553, + "Ġlies": 9134, + "Ġlieu": 26036, + "Ġlieutenant": 45521, + "Ġlif": 4545, + "Ġlife": 993, + "Ġlifecycle": 45722, + "Ġlifelong": 27232, + "Ġlifes": 33321, + "Ġlifespan": 40361, + "Ġlifestyle": 11716, + "Ġlifetime": 11364, + "Ġlift": 5533, + "Ġlifted": 17854, + "Ġlifting": 15798, + "Ġlifts": 30501, + "Ġlig": 11742, + "Ġlige": 35450, + "Ġligger": 43187, + "Ġlight": 1442, + "Ġlighter": 11546, + "Ġlighthouse": 47481, + "Ġlighting": 9577, + "Ġlightly": 16695, + "Ġlightning": 16589, + "Ġlights": 5811, + "Ġlightweight": 22052, + "Ġligne": 34207, + "Ġlihat": 45153, + "Ġlij": 42158, + "Ġlik": 2913, + "Ġlike": 411, + "Ġliked": 4501, + "Ġlikelihood": 22119, + "Ġlikely": 3700, + "Ġliken": 36946, + "Ġlikes": 5902, + "Ġlikewise": 32407, + "Ġliking": 16933, + "Ġliksom": 35308, + "Ġlil": 36532, + "Ġlim": 2364, + "Ġlimb": 30390, + "Ġlimbs": 29315, + "Ġlime": 22035, + "Ġlimit": 4948, + "Ġlimitation": 27432, + "Ġlimitations": 15705, + "Ġlimite": 39946, + "Ġlimited": 5567, + "Ġlimiting": 22083, + "Ġlimits": 10406, + "Ġlimp": 33174, + "Ġlin": 22896, + "Ġlindo": 48436, + "Ġline": 1622, + "Ġlineage": 38257, + "Ġlinear": 8213, + "Ġlinearly": 43586, + "Ġlined": 17189, + "Ġlinen": 46602, + "Ġliner": 24468, + "Ġlines": 3876, + "Ġlineup": 26461, + "Ġling": 22949, + "Ġlinger": 45657, + "Ġlingering": 49542, + "Ġlingu": 21766, + "Ġlinguistic": 43002, + "Ġlinha": 33768, + "Ġlining": 19628, + "Ġlink": 2113, + "Ġlinkage": 49118, + "Ġlinked": 9408, + "Ġlinking": 25775, + "Ġlinks": 6123, + "Ġlion": 17226, + "Ġlions": 32564, + "Ġlip": 8280, + "Ġlips": 10118, + "Ġlipstick": 22543, + "Ġliqu": 5664, + "Ġliquid": 6553, + "Ġliquidity": 33131, + "Ġliquids": 38960, + "Ġliquor": 29162, + "Ġlira": 47723, + "Ġlire": 43254, + "Ġlis": 32670, + "Ġlist": 1329, + "Ġlista": 27764, + "Ġlisted": 10052, + "Ġlisten": 2140, + "Ġlistened": 13207, + "Ġlistener": 31569, + "Ġlisteners": 23274, + "Ġlistening": 4764, + "Ġlistens": 35959, + "Ġlisting": 22161, + "Ġlistings": 45615, + "Ġlists": 14511, + "Ġlit": 7997, + "Ġlite": 15100, + "Ġliter": 2733, + "Ġliteracy": 23166, + "Ġliteral": 20411, + "Ġliterally": 3736, + "Ġliterary": 24194, + "Ġliterature": 10394, + "Ġliters": 32323, + "Ġlith": 26324, + "Ġlithium": 32180, + "Ġlitigation": 33359, + "Ġlitres": 49259, + "Ġlitt": 30267, + "Ġlitter": 26540, + "Ġlittle": 707, + "Ġliv": 11477, + "Ġlive": 1621, + "Ġlived": 5152, + "Ġlivel": 31876, + "Ġlivelihood": 34343, + "Ġlively": 30866, + "Ġliver": 15019, + "Ġlives": 2909, + "Ġlivest": 19531, + "Ġlivestock": 31768, + "Ġlivestream": 29782, + "Ġliving": 2647, + "Ġlivre": 24735, + "Ġlivres": 50020, + "Ġlivro": 33545, + "Ġliz": 28632, + "Ġlizard": 39215, + "Ġll": 4849, + "Ġllam": 16848, + "Ġllama": 23272, + "Ġllamado": 47055, + "Ġlle": 12038, + "Ġlleg": 11234, + "Ġllega": 40423, + "Ġllegar": 24892, + "Ġllegó": 46182, + "Ġllev": 27124, + "Ġlleva": 37681, + "Ġllevar": 30374, + "Ġln": 44166, + "Ġlo": 450, + "Ġload": 3677, + "Ġloaded": 13210, + "Ġloading": 15114, + "Ġloads": 12668, + "Ġloaf": 40743, + "Ġloan": 10529, + "Ġloans": 15443, + "Ġlob": 14366, + "Ġlobb": 35673, + "Ġlobby": 21067, + "Ġlobbying": 47142, + "Ġlobster": 33198, + "Ġloc": 1628, + "Ġloca": 47965, + "Ġlocal": 2654, + "Ġlocalized": 44574, + "Ġlocally": 16143, + "Ġlocals": 23335, + "Ġlocate": 22370, + "Ġlocated": 6870, + "Ġlocation": 4914, + "Ġlocations": 9253, + "Ġlock": 4017, + "Ġlockdown": 17267, + "Ġlocked": 9376, + "Ġlocker": 25707, + "Ġlocking": 23954, + "Ġlocks": 20703, + "Ġlocom": 36369, + "Ġlod": 33311, + "Ġlodge": 47706, + "Ġloft": 34419, + "Ġlog": 3565, + "Ġlogar": 41473, + "Ġlogged": 27231, + "Ġlogging": 27991, + "Ġlogic": 9952, + "Ġlogical": 14978, + "Ġlogically": 38887, + "Ġlogin": 24276, + "Ġlogistics": 27420, + "Ġlogo": 9699, + "Ġlogos": 40654, + "Ġlogr": 31013, + "Ġlogs": 20820, + "Ġloh": 46957, + "Ġloi": 34607, + "Ġloin": 25048, + "Ġlok": 43578, + "Ġlol": 10065, + "Ġlon": 9155, + "Ġlone": 35314, + "Ġloneliness": 28144, + "Ġlonely": 14236, + "Ġlong": 938, + "Ġlonge": 26052, + "Ġlonger": 2854, + "Ġlongest": 15438, + "Ġlongevity": 36556, + "Ġlonging": 35050, + "Ġlongitud": 39596, + "Ġlongitudinal": 48250, + "Ġlongo": 40558, + "Ġlongtemps": 32437, + "Ġlongtime": 44363, + "Ġlongue": 44445, + "Ġlook": 574, + "Ġlooked": 2956, + "Ġlookin": 36186, + "Ġlooking": 1237, + "Ġlookout": 41025, + "Ġlooks": 1542, + "Ġloop": 6367, + "Ġloops": 16121, + "Ġloos": 40454, + "Ġloose": 9612, + "Ġloosely": 37966, + "Ġloosen": 26169, + "Ġloot": 26206, + "Ġlord": 15448, + "Ġlore": 27258, + "Ġloro": 28810, + "Ġlors": 20653, + "Ġlorsqu": 46581, + "Ġlorsque": 40629, + "Ġlos": 1750, + "Ġlose": 3624, + "Ġloser": 24606, + "Ġlosers": 37713, + "Ġloses": 18293, + "Ġlosing": 7027, + "Ġloss": 4470, + "Ġlosses": 15352, + "Ġlost": 2731, + "Ġlot": 688, + "Ġlotion": 41044, + "Ġlots": 3195, + "Ġlotta": 38144, + "Ġlottery": 27391, + "Ġlotus": 39105, + "Ġlou": 15185, + "Ġloud": 6588, + "Ġlouder": 22717, + "Ġloudly": 22958, + "Ġlounge": 33408, + "Ġlove": 959, + "Ġloved": 4333, + "Ġlovely": 7496, + "Ġlover": 18009, + "Ġlovers": 22697, + "Ġloves": 6752, + "Ġloving": 9344, + "Ġlow": 2295, + "Ġlower": 3126, + "Ġlowered": 28466, + "Ġlowering": 28124, + "Ġlowers": 44936, + "Ġlowest": 12437, + "Ġlows": 34794, + "Ġloyal": 12682, + "Ġloyalty": 22831, + "Ġlt": 37818, + "Ġlu": 10438, + "Ġlub": 15980, + "Ġlubric": 31116, + "Ġluc": 21296, + "Ġluck": 3668, + "Ġluckily": 22880, + "Ġlucky": 6356, + "Ġlud": 15946, + "Ġludzi": 29586, + "Ġludzie": 37025, + "Ġluego": 17222, + "Ġlug": 23025, + "Ġlugar": 11467, + "Ġlugares": 33105, + "Ġluggage": 27744, + "Ġlui": 8783, + "Ġlum": 24635, + "Ġlumber": 41686, + "Ġlumin": 32476, + "Ġlumière": 43193, + "Ġlump": 25551, + "Ġlumps": 44948, + "Ġlun": 19039, + "Ġlunar": 32581, + "Ġlunch": 6349, + "Ġlung": 16730, + "Ġlungs": 19467, + "Ġlur": 35583, + "Ġlure": 32350, + "Ġlush": 49729, + "Ġlust": 24672, + "Ġlut": 38319, + "Ġlux": 11363, + "Ġluxurious": 30840, + "Ġluxury": 15558, + "Ġluz": 20671, + "Ġluôn": 35690, + "Ġly": 17293, + "Ġlying": 8493, + "Ġlymph": 31070, + "Ġlyn": 46137, + "Ġlyric": 42409, + "Ġlyrics": 12189, + "Ġlys": 48670, + "Ġlá": 7453, + "Ġlâ": 48835, + "Ġlä": 8235, + "Ġläh": 49383, + "Ġläng": 22566, + "Ġlänger": 40935, + "Ġlässt": 29335, + "Ġläuft": 31807, + "ĠlÃ¥": 33939, + "ĠlÃ¥ng": 39756, + "Ġlæ": 44584, + "Ġlég": 27122, + "Ġlên": 33368, + "Ġlóg": 48475, + "Ġlö": 25209, + "ĠlÃł": 3684, + "ĠlÃłm": 22319, + "ĠlÃŃ": 16118, + "ĠlÃŃder": 44190, + "ĠlÃŃnea": 37452, + "Ġlại": 23017, + "ĠlỼ": 47864, + "Ġm": 275, + "ĠmRNA": 50103, + "Ġma": 463, + "Ġmaar": 10314, + "Ġmac": 7912, + "Ġmacam": 44921, + "Ġmacaron": 49686, + "Ġmach": 2246, + "Ġmache": 28289, + "Ġmachen": 7069, + "Ġmachine": 3479, + "Ġmachinery": 27302, + "Ġmachines": 8379, + "Ġmachst": 43350, + "Ġmacht": 10857, + "Ġmacro": 18887, + "Ġmad": 5244, + "Ġmadam": 28882, + "Ġmade": 1027, + "Ġmadness": 28736, + "Ġmadre": 32966, + "Ġmae": 43783, + "Ġmafia": 36412, + "Ġmag": 2258, + "Ġmagari": 49932, + "Ġmagaz": 9044, + "Ġmagazine": 11332, + "Ġmagazines": 22975, + "Ġmagg": 44639, + "Ġmagic": 5585, + "Ġmagical": 12066, + "Ġmagically": 39763, + "Ġmagician": 38614, + "Ġmagist": 48894, + "Ġmagn": 4944, + "Ġmagnes": 28860, + "Ġmagnesium": 32950, + "Ġmagnet": 15211, + "Ġmagnetic": 12688, + "Ġmagnets": 33022, + "Ġmagnific": 21623, + "Ġmagnificent": 23690, + "Ġmagnitude": 15668, + "Ġmah": 29926, + "Ġmahd": 44194, + "Ġmahdoll": 45158, + "Ġmai": 12698, + "Ġmaid": 30410, + "Ġmaiden": 48515, + "Ġmail": 10071, + "Ġmailbox": 43602, + "Ġmailing": 41612, + "Ġmain": 2135, + "Ġmainland": 32365, + "Ġmainly": 8704, + "Ġmains": 32519, + "Ġmainstream": 15960, + "Ġmaint": 3604, + "Ġmaintain": 6909, + "Ġmaintained": 17578, + "Ġmaintaining": 14916, + "Ġmaintains": 33385, + "Ġmainten": 7780, + "Ġmaintenance": 11258, + "Ġmaintenant": 14817, + "Ġmaior": 15859, + "Ġmaioria": 44384, + "Ġmais": 2420, + "Ġmaison": 28511, + "Ġmaj": 13673, + "Ġmajestic": 49561, + "Ġmajesty": 32146, + "Ġmajor": 2563, + "Ġmajority": 6286, + "Ġmajors": 31770, + "ĠmajÄħ": 26064, + "Ġmak": 963, + "Ġmakan": 46616, + "Ġmake": 652, + "Ġmaken": 24703, + "Ġmaker": 17127, + "Ġmakers": 19323, + "Ġmakes": 1669, + "Ġmakeup": 6567, + "Ġmaking": 1455, + "Ġmal": 2806, + "Ġmala": 37508, + "Ġmalad": 39500, + "Ġmalaria": 45182, + "Ġmale": 7133, + "Ġmales": 20776, + "Ġmalf": 41318, + "Ġmalfunction": 50229, + "Ġmalicious": 33496, + "Ġmall": 16026, + "Ġmalt": 45654, + "Ġmalware": 40747, + "Ġmam": 13524, + "Ġmama": 18775, + "Ġmamm": 19033, + "Ġmammal": 49312, + "Ġmammals": 35408, + "Ġmamy": 17335, + "Ġman": 587, + "Ġmana": 21225, + "Ġmanage": 3067, + "Ġmanageable": 38798, + "Ġmanaged": 6453, + "Ġmanagement": 4592, + "Ġmanager": 6598, + "Ġmanagers": 14084, + "Ġmanages": 22489, + "Ġmanaging": 11642, + "Ġmanchmal": 32092, + "Ġmand": 7411, + "Ġmandar": 48689, + "Ġmandate": 23885, + "Ġmandated": 47563, + "Ġmandates": 48662, + "Ġmandatory": 22173, + "Ġmane": 12743, + "Ġmaneira": 30255, + "Ġmanera": 13913, + "Ġmaneu": 22474, + "Ġmaneuver": 25976, + "Ġmang": 32432, + "Ġmanga": 23316, + "Ġmange": 30465, + "Ġmanger": 34372, + "Ġmango": 23481, + "Ġmaniac": 47193, + "Ġmanic": 48139, + "Ġmanif": 8173, + "Ġmanifest": 10067, + "Ġmanifestation": 29550, + "Ġmanifestations": 46931, + "Ġmanifested": 42775, + "Ġmanifests": 50252, + "Ġmanifold": 47138, + "Ġmanip": 9258, + "Ġmanipulate": 20459, + "Ġmanipulated": 37161, + "Ġmanipulating": 40805, + "Ġmanipulation": 26475, + "Ġmanière": 22267, + "Ġmankind": 21220, + "Ġmanne": 49815, + "Ġmanner": 9060, + "Ġmanners": 34672, + "Ġmano": 18384, + "Ġmanos": 36650, + "Ġmanque": 48124, + "Ġmans": 18868, + "Ġmansion": 25599, + "Ġmant": 10845, + "Ġmanten": 38417, + "Ġmantener": 42759, + "Ġmanter": 48170, + "Ġmantle": 45031, + "Ġmantra": 32094, + "Ġmanual": 9688, + "Ġmanually": 16945, + "Ġmanufact": 5793, + "Ġmanufacture": 27400, + "Ġmanufactured": 25738, + "Ġmanufacturer": 18022, + "Ġmanufacturers": 18455, + "Ġmanufacturing": 11096, + "Ġmanure": 48020, + "Ġmanus": 21550, + "Ġmanuscript": 23928, + "Ġmanuscripts": 42849, + "Ġmany": 867, + "Ġmap": 4471, + "Ġmapa": 44025, + "Ġmaple": 31191, + "Ġmapped": 33318, + "Ġmapping": 18350, + "Ġmaps": 11317, + "Ġmar": 1849, + "Ġmarathon": 27601, + "Ġmaravil": 41009, + "Ġmarble": 26844, + "Ġmarc": 42365, + "Ġmarca": 30582, + "Ġmarch": 8368, + "Ġmarche": 32631, + "Ġmarched": 43565, + "Ġmarching": 30523, + "Ġmarché": 37441, + "Ġmare": 31471, + "Ġmargin": 10270, + "Ġmarginal": 16885, + "Ġmarginalized": 32522, + "Ġmargins": 30317, + "Ġmari": 35555, + "Ġmarijuana": 24956, + "Ġmarin": 34652, + "Ġmarinade": 49386, + "Ġmarine": 20246, + "Ġmaritime": 43892, + "Ġmark": 1491, + "Ġmarked": 12658, + "Ġmarker": 15247, + "Ġmarkers": 19175, + "Ġmarket": 2142, + "Ġmarketed": 49089, + "Ġmarketers": 48003, + "Ġmarketing": 6370, + "Ġmarketplace": 19455, + "Ġmarkets": 8383, + "Ġmarking": 25482, + "Ġmarkings": 39087, + "Ġmarks": 10640, + "Ġmarque": 41024, + "Ġmarriage": 7194, + "Ġmarriages": 39760, + "Ġmarried": 5259, + "Ġmarrow": 47739, + "Ġmarry": 9747, + "Ġmarrying": 36376, + "Ġmars": 30517, + "Ġmarsh": 21653, + "Ġmarshm": 29817, + "Ġmarshmallow": 43896, + "Ġmart": 12396, + "Ġmartial": 20755, + "Ġmartyr": 41005, + "Ġmarvel": 23893, + "Ġmarvelous": 34920, + "Ġmas": 2300, + "Ġmasa": 29216, + "Ġmasala": 35614, + "Ġmasc": 18792, + "Ġmascara": 26016, + "Ġmascot": 42339, + "Ġmascul": 19255, + "Ġmasculine": 28992, + "Ġmasculinity": 45195, + "Ġmash": 31344, + "Ġmashed": 38964, + "Ġmasih": 31510, + "Ġmask": 6094, + "Ġmasked": 45249, + "Ġmasking": 31226, + "Ġmasks": 11830, + "Ġmass": 2758, + "Ġmassa": 26689, + "Ġmassacre": 41076, + "Ġmassage": 16145, + "Ġmasse": 42313, + "Ġmasses": 23935, + "Ġmassive": 5994, + "Ġmassively": 29379, + "Ġmast": 27055, + "Ġmaster": 4505, + "Ġmastered": 38686, + "Ġmastering": 49382, + "Ġmasterpiece": 32208, + "Ġmasters": 19294, + "Ġmastery": 37951, + "Ġmasturb": 48921, + "Ġmasuk": 42364, + "Ġmat": 3803, + "Ġmata": 46106, + "Ġmatar": 39208, + "Ġmatch": 2995, + "Ġmatched": 21447, + "Ġmatches": 10676, + "Ġmatching": 14324, + "Ġmate": 11709, + "Ġmateix": 42770, + "Ġmater": 2389, + "Ġmateria": 34083, + "Ġmaterial": 2527, + "Ġmaterials": 5319, + "Ġmaternal": 37944, + "Ġmates": 31488, + "Ġmath": 5221, + "Ġmathemat": 11619, + "Ġmathematic": 32811, + "Ġmathematical": 18894, + "Ġmathematically": 44003, + "Ġmathematician": 48281, + "Ġmathematics": 18666, + "Ġmaths": 36287, + "Ġmatin": 33389, + "Ġmating": 49955, + "Ġmatière": 46600, + "Ġmatrices": 32284, + "Ġmatrix": 8141, + "Ġmats": 43366, + "Ġmatt": 16539, + "Ġmatte": 21592, + "Ġmatter": 1871, + "Ġmattered": 44282, + "Ġmatters": 7001, + "Ġmattress": 20625, + "Ġmature": 14442, + "Ġmaturity": 28874, + "Ġmatéri": 45731, + "Ġmau": 22074, + "Ġmauv": 49631, + "Ġmauvais": 50018, + "Ġmax": 11469, + "Ġmaxim": 5138, + "Ġmaximal": 49336, + "Ġmaximize": 19874, + "Ġmaximum": 6674, + "Ġmay": 815, + "Ġmaybe": 1310, + "Ġmayo": 38485, + "Ġmayonnaise": 34406, + "Ġmayor": 10120, + "ĠmayorÃŃa": 35342, + "Ġmaze": 33032, + "Ġmañana": 33573, + "Ġme": 385, + "Ġmeal": 6791, + "Ġmeals": 12832, + "Ġmean": 914, + "Ġmeaning": 3620, + "Ġmeaningful": 10995, + "Ġmeaningless": 33232, + "Ġmeanings": 28138, + "Ġmeans": 1355, + "Ġmeant": 4140, + "Ġmeantime": 14991, + "Ġmeanwhile": 29252, + "Ġmeas": 5731, + "Ġmeasurable": 43615, + "Ġmeasure": 3481, + "Ġmeasured": 12690, + "Ġmeasurement": 13160, + "Ġmeasurements": 15383, + "Ġmeasures": 8000, + "Ġmeasuring": 13389, + "Ġmeat": 4615, + "Ġmeatballs": 44741, + "Ġmeats": 38106, + "Ġmec": 25186, + "Ġmechan": 4236, + "Ġmechanic": 23860, + "Ġmechanical": 12070, + "Ġmechanics": 12939, + "Ġmechanism": 7513, + "Ġmechanisms": 15902, + "Ġmed": 1205, + "Ġmedal": 21364, + "Ġmedals": 38647, + "Ġmedi": 17269, + "Ġmedia": 3021, + "Ġmedian": 26779, + "Ġmedic": 4355, + "Ġmedical": 4625, + "Ġmedically": 49230, + "Ġmedication": 13851, + "Ġmedications": 17504, + "Ġmedicinal": 46073, + "Ġmedicine": 7195, + "Ġmedicines": 24251, + "Ġmedida": 32984, + "Ġmedidas": 37295, + "Ġmedieval": 24078, + "Ġmedio": 22123, + "Ġmediocre": 45415, + "Ġmedios": 46017, + "Ġmeditate": 29989, + "Ġmeditating": 46850, + "Ġmeditation": 12537, + "Ġmedium": 6399, + "Ġmedo": 37144, + "Ġmee": 24442, + "Ġmeer": 16318, + "Ġmeet": 1677, + "Ġmeeting": 3440, + "Ġmeetings": 8410, + "Ġmeets": 13961, + "Ġmeg": 10816, + "Ġmega": 17986, + "Ġmegap": 34733, + "Ġmeget": 36411, + "Ġmeglio": 48911, + "Ġmehr": 5417, + "Ġmehrere": 44677, + "Ġmeidän": 44751, + "Ġmeille": 25039, + "Ġmeilleur": 41457, + "Ġmeillä": 45211, + "Ġmein": 10777, + "Ġmeine": 10946, + "Ġmeinem": 24171, + "Ġmeinen": 22738, + "Ġmeiner": 20529, + "Ġmeio": 17706, + "Ġmeist": 36894, + "Ġmeisten": 29708, + "Ġmej": 37758, + "Ġmejor": 11479, + "Ġmejorar": 48858, + "Ġmejores": 42284, + "Ġmel": 4795, + "Ġmelan": 47969, + "Ġmelee": 35810, + "Ġmelhor": 13714, + "Ġmelhores": 46807, + "Ġmellan": 46494, + "Ġmelod": 32834, + "Ġmelodies": 47085, + "Ġmelody": 17997, + "Ġmelon": 41722, + "Ġmelt": 10083, + "Ġmelted": 19057, + "Ġmelting": 20493, + "Ġmelts": 30136, + "Ġmem": 1334, + "Ġmemang": 39290, + "Ġmemb": 27942, + "Ġmember": 4006, + "Ġmembers": 2679, + "Ġmembership": 16560, + "Ġmembr": 15595, + "Ġmembrane": 19651, + "Ġmeme": 21701, + "Ġmemes": 29730, + "Ġmemo": 35900, + "Ġmemoir": 38306, + "Ġmemor": 10560, + "Ġmemorable": 20723, + "Ġmemorial": 24089, + "Ġmemories": 8495, + "Ġmemorize": 27478, + "Ġmemorized": 46677, + "Ġmemory": 4675, + "Ġmen": 1706, + "Ġmencion": 37030, + "Ġmend": 31161, + "Ġmeng": 15330, + "Ġmening": 46890, + "Ġmenjadi": 39964, + "Ġmeno": 40236, + "Ġmenor": 26343, + "Ġmenos": 8902, + "Ġmens": 10923, + "Ġmensen": 18062, + "Ġmenstru": 38827, + "Ġment": 3074, + "Ġmental": 4973, + "Ġmentality": 21976, + "Ġmentally": 17072, + "Ġmente": 26577, + "Ġmention": 2152, + "Ġmentioned": 2835, + "Ġmentioning": 18315, + "Ġmentions": 23844, + "Ġmentor": 14478, + "Ġmentoring": 30257, + "Ġmentors": 21798, + "Ġmentorship": 40422, + "Ġmentre": 49601, + "Ġmenu": 6510, + "Ġmenus": 30347, + "Ġmeny": 46975, + "Ġmeow": 45132, + "Ġmer": 3551, + "Ġmerak": 39668, + "Ġmerc": 10811, + "Ġmercado": 24775, + "Ġmerch": 12618, + "Ġmerchand": 30234, + "Ġmerchandise": 34485, + "Ġmerchant": 32267, + "Ġmerchants": 36253, + "Ġmerci": 30532, + "Ġmerciful": 48756, + "Ġmercury": 33307, + "Ġmercy": 13174, + "Ġmerde": 45772, + "Ġmere": 8401, + "Ġmereka": 23171, + "Ġmerely": 17003, + "Ġmerge": 22183, + "Ġmerged": 36427, + "Ġmerger": 48002, + "Ġmerging": 44559, + "Ġmering": 46643, + "Ġmeringue": 50044, + "Ġmerit": 24527, + "Ġmerits": 40923, + "Ġmerk": 43541, + "Ġmermaid": 43146, + "Ġmerry": 41545, + "Ġmes": 3813, + "Ġmesa": 37024, + "Ġmesela": 45814, + "Ġmeses": 23922, + "Ġmesh": 17407, + "Ġmesma": 21921, + "Ġmesmo": 9082, + "Ġmess": 2082, + "Ġmessage": 3636, + "Ġmessages": 7897, + "Ġmessaging": 21812, + "Ġmessed": 16507, + "Ġmessenger": 26599, + "Ġmessing": 23258, + "Ġmessy": 16191, + "Ġmest": 35621, + "Ġmesure": 37981, + "Ġmesures": 42265, + "Ġmet": 1131, + "Ġmeta": 19616, + "Ġmetabol": 19110, + "Ġmetabolic": 36464, + "Ġmetabolism": 31190, + "Ġmetabolismo": 47889, + "Ġmetadata": 26603, + "Ġmetal": 5760, + "Ġmetall": 20866, + "Ġmetallic": 25759, + "Ġmetals": 22548, + "Ġmetaph": 30946, + "Ġmetaphor": 19157, + "Ġmete": 21245, + "Ġmeteor": 25313, + "Ġmeter": 9255, + "Ġmeters": 8146, + "Ġmeth": 23416, + "Ġmethane": 32521, + "Ġmethod": 3170, + "Ġmethodology": 24850, + "Ġmethods": 7150, + "Ġmethy": 36599, + "Ġmethyl": 48441, + "Ġmetic": 41566, + "Ġmetre": 42431, + "Ġmetres": 23861, + "Ġmetric": 20678, + "Ġmetrics": 16367, + "Ġmetro": 27334, + "Ġmetropolitan": 44645, + "Ġmetros": 34761, + "Ġmets": 37231, + "Ġmett": 27812, + "Ġmettre": 14997, + "Ġmeu": 9230, + "Ġmeus": 28033, + "Ġmeva": 40530, + "Ġmex": 28759, + "Ġmez": 28966, + "Ġmg": 49566, + "Ġmi": 2752, + "Ġmia": 21290, + "ĠmiaÅĤ": 27989, + "Ġmic": 3123, + "Ġmica": 32483, + "Ġmice": 22257, + "Ġmich": 6031, + "Ġmicro": 4532, + "Ġmicrob": 49713, + "Ġmicrobes": 35996, + "Ġmicrobi": 33234, + "Ġmicrof": 42763, + "Ġmicron": 45094, + "Ġmicroorgan": 49129, + "Ġmicrophone": 10952, + "Ġmicrophones": 30495, + "Ġmicros": 15547, + "Ġmicroscop": 30483, + "Ġmicroscope": 29753, + "Ġmicroscopic": 47897, + "Ġmicrow": 17177, + "Ġmicrowave": 19025, + "Ġmics": 45481, + "Ġmid": 2062, + "Ġmiddle": 2808, + "Ġmidnight": 19006, + "Ġmidst": 18629, + "Ġmie": 12597, + "Ġmiedo": 40383, + "Ġmiej": 18522, + "Ġmiejsc": 32754, + "Ġmiejsce": 38122, + "Ġmiel": 41392, + "Ġmieli": 41214, + "Ġmientras": 26010, + "Ġmier": 47448, + "Ġmies": 41543, + "Ġmiesz": 33039, + "Ġmieux": 20401, + "ĠmieÄĩ": 35612, + "Ġmig": 6186, + "Ġmight": 1062, + "Ġmighty": 21556, + "Ġmigrant": 38547, + "Ġmigrants": 31263, + "Ġmigrate": 31821, + "Ġmigrated": 48329, + "Ġmigration": 17011, + "Ġmij": 22953, + "Ġmijn": 19884, + "Ġmik": 23959, + "Ġmike": 43357, + "Ġmikä": 48482, + "Ġmil": 1962, + "Ġmild": 15154, + "Ġmile": 12620, + "Ġmileage": 43121, + "Ġmiles": 6193, + "Ġmilestone": 28048, + "Ġmilestones": 42038, + "Ġmilhões": 39252, + "Ġmilieu": 34276, + "Ġmilit": 19142, + "Ġmilitar": 30653, + "Ġmilitary": 4632, + "Ġmilj": 41128, + "Ġmilk": 5392, + "Ġmilks": 48773, + "Ġmill": 1728, + "Ġmillenn": 21362, + "Ġmillennials": 45543, + "Ġmillet": 47722, + "Ġmilli": 26176, + "Ġmilliards": 47382, + "Ġmilligram": 38298, + "Ġmilligrams": 45147, + "Ġmillimeter": 17942, + "Ġmillimeters": 24388, + "Ġmillion": 2459, + "Ġmillionaire": 41114, + "Ġmillions": 6803, + "Ġmillise": 27940, + "Ġmilliseconds": 34184, + "Ġmillones": 22416, + "Ġmillor": 48638, + "Ġmily": 38728, + "Ġmim": 12247, + "Ġmimic": 31075, + "Ġmin": 923, + "Ġmina": 48412, + "Ġminced": 36442, + "Ġmind": 1575, + "Ġminded": 36707, + "Ġminder": 44146, + "Ġmindful": 14618, + "Ġmindfulness": 25655, + "Ġminds": 9634, + "Ġmindset": 12543, + "Ġmine": 3892, + "Ġminer": 18746, + "Ġmineral": 21630, + "Ġminerals": 22959, + "Ġminers": 35640, + "Ġmines": 25398, + "Ġminha": 11720, + "Ġmini": 8382, + "Ġminiature": 34674, + "Ġminim": 4464, + "Ġminimal": 13206, + "Ġminimalist": 50192, + "Ġminimize": 17522, + "Ġminimizing": 46608, + "Ġminimum": 7285, + "Ġmining": 15512, + "Ġminion": 49361, + "Ġminions": 39288, + "Ġminist": 16182, + "Ġminister": 10563, + "Ġministers": 26220, + "Ġministre": 31122, + "Ġministry": 15024, + "Ġminor": 6696, + "Ġminorities": 30373, + "Ġminority": 16166, + "Ġmins": 31539, + "Ġmint": 18189, + "Ġminus": 3175, + "Ġminut": 13951, + "Ġminute": 3456, + "Ġminutes": 2077, + "Ġminutos": 19421, + "Ġmio": 29908, + "Ġmir": 3149, + "Ġmira": 30286, + "Ġmirac": 30686, + "Ġmiracle": 14660, + "Ġmiracles": 24685, + "Ġmiraculous": 41101, + "Ġmirror": 8013, + "Ġmirrors": 24238, + "Ġmis": 3346, + "Ġmiscon": 27631, + "Ġmisconception": 41350, + "Ġmisconceptions": 50012, + "Ġmise": 36845, + "Ġmiser": 17725, + "Ġmiserable": 22321, + "Ġmisery": 32309, + "Ġmisf": 47351, + "Ġmisin": 32333, + "Ġmisinformation": 34238, + "Ġmisleading": 36429, + "Ġmism": 23220, + "Ġmisma": 24946, + "Ġmismo": 12461, + "Ġmismos": 47458, + "Ġmiss": 1713, + "Ġmisschien": 42047, + "Ġmissed": 6721, + "Ġmisses": 29394, + "Ġmissile": 19321, + "Ġmissiles": 23133, + "Ġmissing": 5361, + "Ġmission": 4447, + "Ġmissionary": 45418, + "Ġmissions": 13744, + "Ġmist": 3544, + "Ġmistake": 6146, + "Ġmistaken": 21333, + "Ġmistakes": 8038, + "Ġmister": 26562, + "Ġmistress": 46635, + "Ġmisunder": 15736, + "Ġmisunderstand": 35736, + "Ġmisunderstanding": 29227, + "Ġmisunderstood": 33870, + "Ġmit": 2194, + "Ġmitad": 46895, + "Ġmite": 36190, + "Ġmiteinander": 43127, + "Ġmiten": 43265, + "Ġmitig": 15699, + "Ġmitigate": 27336, + "Ġmitigation": 32649, + "Ġmitochond": 41008, + "Ġmitt": 19130, + "Ġmittlerweile": 41999, + "Ġmitä": 30451, + "Ġmix": 2890, + "Ġmixed": 7467, + "Ġmixer": 24063, + "Ġmixes": 37121, + "Ġmixing": 11983, + "Ġmixture": 9925, + "ĠmiÄĻdzy": 33964, + "Ġml": 23271, + "Ġmm": 11169, + "Ġmmm": 26159, + "Ġmnie": 17661, + "Ġmniej": 39513, + "Ġmo": 705, + "Ġmob": 4298, + "Ġmobil": 15891, + "Ġmobile": 6013, + "Ġmobility": 16199, + "Ġmobilize": 48637, + "Ġmoc": 34962, + "Ġmock": 17362, + "Ġmocking": 49792, + "Ġmod": 1072, + "Ġmodal": 39745, + "Ġmode": 4391, + "Ġmodel": 2316, + "Ġmodeled": 37140, + "Ġmodeling": 15983, + "Ġmodelling": 42253, + "Ġmodelo": 27825, + "Ġmodels": 5245, + "Ġmoder": 10494, + "Ġmoderate": 18174, + "Ġmoderation": 49471, + "Ġmoderator": 37778, + "Ġmodern": 4363, + "Ġmodes": 14068, + "Ġmodest": 25403, + "Ġmodification": 26747, + "Ġmodifications": 26881, + "Ġmodified": 15873, + "Ġmodifier": 38011, + "Ġmodify": 16927, + "Ġmodifying": 42626, + "Ġmodo": 16664, + "Ġmods": 30899, + "Ġmodular": 31111, + "Ġmodulation": 42288, + "Ġmodule": 10088, + "Ġmodules": 16679, + "Ġmodulus": 42287, + "Ġmodèle": 45631, + "Ġmoet": 12677, + "Ġmoeten": 26175, + "Ġmog": 13172, + "Ġmogelijk": 46617, + "ĠmogÄħ": 34123, + "ĠmogÄĻ": 41737, + "Ġmoi": 7748, + "Ġmoim": 48569, + "Ġmoins": 13099, + "Ġmois": 19230, + "Ġmoist": 8641, + "Ġmoistur": 21531, + "Ġmoisture": 13814, + "Ġmoisturizer": 47588, + "Ġmoisturizing": 44134, + "Ġmoje": 36383, + "Ġmol": 8015, + "Ġmolar": 45712, + "Ġmold": 11102, + "Ġmolds": 48257, + "Ġmole": 6353, + "Ġmolec": 10646, + "Ġmolecular": 19046, + "Ġmolecule": 15582, + "Ġmolecules": 13093, + "Ġmoles": 34286, + "Ġmolt": 10739, + "Ġmolta": 48564, + "Ġmolten": 44845, + "Ġmolto": 16394, + "Ġmolé": 49300, + "Ġmom": 1225, + "Ġmomencie": 40883, + "Ġmoment": 1623, + "Ġmomento": 9333, + "Ġmomentos": 34583, + "Ġmoments": 6065, + "Ġmomentum": 11244, + "Ġmommy": 25606, + "Ġmoms": 25399, + "Ġmon": 1108, + "Ġmonarch": 33658, + "Ġmonaster": 31412, + "Ġmonastery": 37821, + "Ġmond": 17606, + "Ġmonde": 10431, + "Ġmondo": 40499, + "Ġmonet": 15556, + "Ġmonetary": 26388, + "Ġmoney": 1460, + "Ġmonit": 32001, + "Ġmonitor": 6002, + "Ġmonitored": 36255, + "Ġmonitoring": 11028, + "Ġmonitors": 26518, + "Ġmonk": 27698, + "Ġmonkey": 17847, + "Ġmonkeys": 29534, + "Ġmonks": 32201, + "Ġmono": 35624, + "Ġmonopol": 47721, + "Ġmonopoly": 37061, + "Ġmonsieur": 36507, + "Ġmonster": 10090, + "Ġmonsters": 15785, + "Ġmonstr": 47137, + "Ġmont": 8143, + "Ġmontage": 40184, + "Ġmonte": 35437, + "Ġmonter": 47945, + "Ġmonth": 1618, + "Ġmonthly": 12878, + "Ġmonths": 2493, + "Ġmontre": 44132, + "Ġmontrer": 33116, + "Ġmontón": 45259, + "Ġmonument": 20289, + "Ġmonumental": 43105, + "Ġmonuments": 36864, + "Ġmoo": 37284, + "Ġmood": 9268, + "Ġmooi": 38583, + "Ġmoon": 7135, + "Ġmoonlight": 48058, + "Ġmoons": 34139, + "Ġmop": 48106, + "Ġmor": 1896, + "Ġmoral": 9723, + "Ġmorale": 37455, + "Ġmorality": 29106, + "Ġmorally": 38622, + "Ġmorals": 46849, + "Ġmorb": 46510, + "Ġmore": 544, + "Ġmorgen": 36593, + "Ġmorning": 2446, + "Ġmornings": 37143, + "Ġmorph": 25778, + "Ġmort": 6599, + "Ġmortal": 27624, + "Ġmortality": 23330, + "Ġmortar": 33956, + "Ġmorte": 37392, + "Ġmortgage": 20236, + "Ġmos": 13659, + "Ġmosque": 31501, + "Ġmosquito": 23970, + "Ġmosquitoes": 39394, + "Ġmoss": 36193, + "Ġmost": 881, + "Ġmostly": 5240, + "Ġmostra": 43101, + "Ġmostrar": 21487, + "Ġmot": 2184, + "Ġmote": 49071, + "Ġmother": 2895, + "Ġmotherboard": 32916, + "Ġmotherf": 29537, + "Ġmotherfucker": 47069, + "Ġmothers": 17941, + "Ġmotif": 39478, + "Ġmotion": 5394, + "Ġmotions": 27500, + "Ġmotiv": 5426, + "Ġmotivate": 28497, + "Ġmotivated": 14515, + "Ġmotivates": 42569, + "Ġmotivating": 41066, + "Ġmotivation": 12335, + "Ġmotivational": 48186, + "Ġmotivations": 39034, + "Ġmotive": 28827, + "Ġmotives": 39812, + "Ġmotivo": 35804, + "Ġmoto": 42192, + "Ġmotor": 5932, + "Ġmotorcycle": 20554, + "Ġmotorcycles": 46813, + "Ġmotors": 25035, + "Ġmots": 34009, + "Ġmotto": 32680, + "Ġmould": 34803, + "Ġmound": 49034, + "Ġmount": 3746, + "Ġmountain": 6937, + "Ġmountains": 10233, + "Ġmounted": 19138, + "Ġmounting": 22986, + "Ġmounts": 40982, + "Ġmour": 22235, + "Ġmourning": 42947, + "Ġmouse": 9719, + "Ġmouth": 4525, + "Ġmouths": 33171, + "Ġmouve": 33415, + "Ġmouvement": 41219, + "Ġmov": 2402, + "Ġmove": 1286, + "Ġmoved": 4259, + "Ġmovement": 3963, + "Ġmovements": 9981, + "Ġmover": 39945, + "Ġmoves": 6067, + "Ġmovie": 3169, + "Ġmovies": 6233, + "Ġmovimento": 40798, + "Ġmovimiento": 43180, + "Ġmoving": 2684, + "Ġmoy": 32018, + "Ġmoyen": 42009, + "Ġmoyens": 47040, + "Ġmozzarella": 44135, + "Ġmoż": 10697, + "Ġmoże": 12034, + "Ġmożemy": 26500, + "Ġmożli": 30854, + "Ġmożna": 17790, + "Ġmph": 46351, + "Ġmr": 33660, + "Ġmu": 2992, + "Ġmuch": 709, + "Ġmucha": 25248, + "Ġmuchas": 16072, + "Ġmucho": 9824, + "Ġmuchos": 17061, + "ĠmuchÃŃs": 29353, + "ĠmuchÃŃsimo": 44722, + "Ġmud": 8933, + "Ġmudar": 42281, + "Ġmuddy": 38540, + "Ġmue": 49532, + "Ġmuerte": 38497, + "Ġmuff": 22635, + "Ġmuffin": 48400, + "Ġmug": 23610, + "Ġmuit": 4146, + "Ġmuita": 21025, + "Ġmuitas": 25705, + "Ġmuito": 4945, + "Ġmuitos": 28918, + "Ġmuj": 30008, + "Ġmujer": 32032, + "Ġmujeres": 31683, + "Ġmuk": 31475, + "Ġmul": 14077, + "Ġmulher": 33211, + "Ġmulheres": 43244, + "Ġmult": 2120, + "Ġmulti": 4825, + "Ġmultic": 30608, + "Ġmulticultural": 47684, + "Ġmultif": 39824, + "Ġmultim": 32972, + "Ġmultimedia": 49202, + "Ġmultin": 45872, + "Ġmultip": 3311, + "Ġmultipl": 12788, + "Ġmultiplayer": 27325, + "Ġmultiple": 3866, + "Ġmultiples": 46099, + "Ġmultiplic": 17596, + "Ġmultiplication": 27290, + "Ġmultiplied": 17207, + "Ġmultiplier": 44106, + "Ġmultiply": 12972, + "Ġmultiplying": 30955, + "Ġmultit": 42338, + "Ġmultitude": 36358, + "Ġmum": 14697, + "Ġmummy": 45295, + "Ġmun": 11864, + "Ġmund": 23175, + "Ġmundane": 43497, + "Ġmundial": 41740, + "Ġmundo": 7968, + "Ġmungkin": 32633, + "Ġmunicip": 14998, + "Ġmunicipal": 27177, + "Ġmunicipalities": 39748, + "Ġmunicipality": 44186, + "Ġmur": 5257, + "Ġmural": 40595, + "Ġmurder": 6568, + "Ġmurdered": 18486, + "Ġmurderer": 28703, + "Ġmurders": 30479, + "Ġmurm": 39729, + "Ġmus": 1038, + "Ġmuscle": 8679, + "Ġmuscles": 9530, + "Ġmuscular": 31641, + "Ġmuse": 39138, + "Ġmuseum": 8441, + "Ġmuseums": 23248, + "Ġmush": 11559, + "Ġmushroom": 12094, + "Ġmushrooms": 17973, + "Ġmusi": 37587, + "Ġmusic": 1318, + "Ġmusical": 9165, + "Ġmusician": 19570, + "Ġmusicians": 16916, + "Ġmusimy": 43449, + "Ġmusique": 34108, + "Ġmuss": 6425, + "Ġmusst": 31716, + "Ġmusste": 34497, + "Ġmust": 1633, + "Ġmustache": 37798, + "Ġmustard": 23659, + "Ġmustn": 42818, + "Ġmusun": 25447, + "Ġmut": 5839, + "Ġmutant": 47198, + "Ġmutation": 27960, + "Ġmutations": 29243, + "Ġmute": 24523, + "Ġmuted": 32808, + "Ġmutta": 26265, + "Ġmutual": 16917, + "Ġmutually": 39144, + "Ġmuut": 46785, + "Ġmuy": 5323, + "Ġmuá»ijn": 42453, + "Ġmy": 452, + "Ġmycket": 16780, + "Ġmyself": 2059, + "Ġmyst": 9111, + "Ġmyster": 11010, + "Ġmysteries": 30785, + "Ġmysterious": 13831, + "Ġmystery": 11422, + "Ġmystical": 40565, + "Ġmyth": 9474, + "Ġmythical": 40843, + "Ġmythology": 30871, + "Ġmyths": 28205, + "Ġmyös": 23623, + "ĠmyÅĽ": 48633, + "ĠmyÅĽlÄĻ": 37730, + "Ġmá": 12228, + "Ġmáqu": 39701, + "Ġmáquina": 49360, + "Ġmár": 40331, + "Ġmás": 3573, + "Ġmáxim": 31031, + "Ġmáximo": 38876, + "Ġmã": 22410, + "Ġmãe": 29392, + "Ġmão": 31639, + "Ġmä": 25117, + "Ġmänn": 39550, + "Ġmännisk": 45220, + "Ġmänniskor": 48091, + "ĠmÃ¥": 10254, + "ĠmÃ¥nga": 25068, + "ĠmÃ¥ste": 23958, + "Ġmère": 35935, + "Ġmé": 13191, + "Ġméd": 16978, + "Ġmédi": 42436, + "Ġmédia": 49503, + "Ġmédico": 44853, + "Ġmég": 43510, + "Ġmél": 41953, + "Ġmés": 12545, + "Ġmét": 20275, + "Ġméth": 45404, + "Ġmême": 5698, + "Ġmêmes": 42588, + "Ġmês": 41400, + "Ġmình": 14526, + "Ġmó": 32515, + "Ġmón": 37803, + "Ġmów": 13489, + "Ġmówi": 24592, + "ĠmówiÄħ": 46591, + "Ġmö": 7667, + "Ġmöchte": 14570, + "Ġmöchten": 49699, + "Ġmöglich": 16294, + "Ġmöglichst": 44850, + "Ġmöj": 37606, + "Ġmús": 38886, + "Ġmúsica": 20091, + "Ġmü": 6047, + "Ġmüs": 28802, + "Ġmüssen": 9013, + "Ġmüsst": 49481, + "Ġmüsste": 42962, + "ĠmÃł": 13901, + "ĠmÃły": 45464, + "ĠmÃŃ": 14692, + "ĠmÃŃn": 33656, + "ĠmÃŃnimo": 47393, + "Ġmı": 9251, + "ĠmÅĤ": 40770, + "Ġmá»Ļt": 15486, + "ĠmỼi": 37328, + "Ġn": 297, + "Ġna": 1667, + "Ġnaar": 12762, + "Ġnac": 42071, + "Ġnach": 5168, + "Ġnacional": 29836, + "Ġnad": 12617, + "Ġnada": 8096, + "Ġnadie": 28060, + "Ġnadzie": 43693, + "ĠnadziejÄĻ": 48881, + "Ġnag": 17096, + "Ġnagyon": 46259, + "Ġnah": 17170, + "Ġnail": 10173, + "Ġnailed": 30790, + "Ġnails": 15394, + "Ġnaive": 29052, + "Ġnaj": 11212, + "Ġnajbardziej": 41857, + "Ġnajle": 41903, + "ĠnajwiÄĻ": 48636, + "Ġnak": 20332, + "Ġnaked": 15791, + "Ġnam": 8835, + "Ġname": 1315, + "Ġnamed": 4926, + "Ġnamely": 20926, + "Ġnames": 5288, + "Ġnaming": 25290, + "Ġnan": 14067, + "Ġnano": 30129, + "Ġnap": 9296, + "ĠnaprawdÄĻ": 20970, + "Ġnar": 6714, + "Ġnarc": 21328, + "Ġnarciss": 25771, + "Ġnarcissist": 49130, + "Ġnarr": 6397, + "Ġnarration": 43299, + "Ġnarrative": 9977, + "Ġnarratives": 28016, + "Ġnarrator": 32646, + "Ġnarrow": 9432, + "Ġnarrower": 46751, + "Ġnas": 5382, + "Ġnasal": 41575, + "Ġnast": 26088, + "Ġnasty": 17923, + "ĠnastÄĻp": 39662, + "Ġnasze": 43394, + "Ġnaszego": 44517, + "Ġnaszej": 42946, + "Ġnaszych": 45002, + "Ġnaszym": 48094, + "Ġnasıl": 16963, + "Ġnat": 2249, + "Ġnation": 4790, + "Ġnational": 4048, + "Ġnationale": 49974, + "Ġnationalism": 39186, + "Ġnationalist": 49654, + "Ġnationally": 27652, + "Ġnations": 11035, + "Ġnationwide": 29102, + "Ġnative": 8470, + "Ġnatives": 47964, + "Ġnatomiast": 43169, + "Ġnatur": 26389, + "Ġnatural": 3303, + "Ġnaturale": 40877, + "Ġnaturally": 8195, + "Ġnature": 3687, + "Ġnatuur": 24414, + "Ġnatuurlijk": 26892, + "Ġnatürlich": 8762, + "Ġnau": 35616, + "Ġnauc": 49103, + "Ġnaught": 13138, + "Ġnaughty": 32154, + "Ġnause": 34735, + "Ġnav": 5947, + "Ġnaval": 33050, + "Ġnave": 39376, + "Ġnavig": 7407, + "Ġnavigate": 12350, + "Ġnavigating": 32054, + "Ġnavigation": 17346, + "Ġnavy": 31319, + "Ġnaw": 18969, + "Ġnawet": 22696, + "Ġnay": 34227, + "Ġnaz": 20151, + "Ġne": 408, + "Ġnear": 2651, + "Ġnearby": 11184, + "Ġnearest": 23831, + "Ġnearly": 6217, + "Ġneat": 10654, + "Ġneatly": 36634, + "Ġneben": 36098, + "Ġneces": 11909, + "Ġnecesario": 44095, + "Ġnecesit": 38661, + "Ġnecesita": 45485, + "Ġnecess": 2688, + "Ġnecessarily": 4725, + "Ġnecessary": 4818, + "Ġnecessity": 24217, + "Ġneck": 6189, + "Ġnecklace": 24563, + "Ġnectar": 49943, + "Ġned": 25614, + "Ġneden": 34828, + "Ġnee": 41694, + "Ġneed": 643, + "Ġneeded": 2978, + "Ġneeding": 18006, + "Ġneedle": 11037, + "Ġneedles": 24792, + "Ġneeds": 2203, + "Ġneg": 2485, + "Ġnegative": 3671, + "Ġnegatively": 29519, + "Ġnegatives": 40019, + "Ġnegativity": 39297, + "Ġneglect": 17745, + "Ġneglected": 32701, + "Ġneglig": 32570, + "Ġnego": 26722, + "Ġnegoti": 9542, + "Ġnegotiate": 21713, + "Ġnegotiated": 39028, + "Ġnegotiating": 30396, + "Ġnegotiation": 27573, + "Ġnegotiations": 20476, + "Ġnegro": 40008, + "Ġnegó": 31008, + "Ġnegócio": 35532, + "Ġneh": 40857, + "Ġnehme": 48276, + "Ġnehmen": 19905, + "Ġnei": 34517, + "Ġneigh": 4168, + "Ġneighb": 7888, + "Ġneighbor": 5987, + "Ġneighborhood": 7630, + "Ġneighborhoods": 20052, + "Ġneighboring": 31521, + "Ġneighbors": 12512, + "Ġneighbour": 19755, + "Ġneighbourhood": 30471, + "Ġneighbours": 35548, + "Ġnein": 40041, + "Ġneither": 9662, + "Ġnel": 15373, + "Ġnell": 44666, + "Ġnella": 23878, + "Ġnelle": 46350, + "Ġnem": 9939, + "Ġnen": 16399, + "Ġnenhum": 32584, + "Ġnenhuma": 43273, + "Ġneo": 41977, + "Ġneol": 49512, + "Ġneon": 30820, + "Ġnep": 24901, + "Ġnephew": 30799, + "Ġner": 18219, + "Ġnerd": 23229, + "Ġnered": 28085, + "Ġnerede": 44906, + "Ġnerv": 5724, + "Ġnerve": 16355, + "Ġnerves": 23078, + "Ġnervous": 6296, + "Ġness": 39787, + "Ġnessa": 23246, + "Ġnesse": 18270, + "Ġnest": 15646, + "Ġneste": 34739, + "Ġnet": 2533, + "Ġnets": 36170, + "Ġnett": 42084, + "Ġnetwork": 3209, + "Ġnetworking": 17985, + "Ġnetworks": 9590, + "Ġneu": 22510, + "Ġneue": 16842, + "Ġneuen": 21387, + "Ġneues": 43979, + "Ġneur": 12087, + "Ġneural": 18161, + "Ġneuro": 16499, + "Ġneurolog": 28351, + "Ġneurological": 48185, + "Ġneuron": 34090, + "Ġneurons": 22027, + "Ġneuros": 28813, + "Ġneuroscience": 42762, + "Ġneurot": 43286, + "Ġneut": 7989, + "Ġneutr": 39913, + "Ġneutral": 10598, + "Ġneutron": 44362, + "Ġnever": 1128, + "Ġnevertheless": 26924, + "Ġnew": 777, + "Ġnewborn": 32928, + "Ġnewcom": 40014, + "Ġnewer": 17628, + "Ġnewest": 17569, + "Ġnewly": 15109, + "Ġnews": 2583, + "Ġnewsletter": 26469, + "Ġnewsp": 10202, + "Ġnewspaper": 13669, + "Ġnewspapers": 20781, + "Ġnext": 958, + "Ġng": 6415, + "Ġnggak": 28631, + "Ġngh": 29338, + "Ġnghi": 46889, + "ĠnghÄ©": 41077, + "Ġngo": 45843, + "ĠngÃły": 34481, + "ĠngÆ°á»Ŀi": 15898, + "Ġnh": 6245, + "Ġnhi": 20575, + "Ġnhiá»ģu": 28272, + "Ġnhân": 47931, + "ĠnhÃł": 35398, + "ĠnhÆ°": 16228, + "ĠnhÆ°ng": 37504, + "Ġnhất": 41081, + "Ġnhững": 20136, + "Ġni": 3867, + "Ġnib": 38956, + "Ġnic": 6201, + "Ġnice": 1481, + "Ġnicely": 9594, + "Ġnicer": 22842, + "Ġnicest": 45516, + "Ġnich": 25570, + "Ġniche": 19956, + "Ġnicht": 1979, + "Ġnichts": 13004, + "Ġnick": 15416, + "Ġnickel": 30542, + "Ġnickname": 21641, + "Ġnie": 2838, + "Ġniece": 39991, + "Ġnied": 32488, + "Ġniego": 49615, + "Ġniemand": 32390, + "Ġnies": 48100, + "Ġniet": 6899, + "Ġnieu": 26829, + "Ġnieuwe": 37029, + "Ġniew": 43622, + "Ġniez": 33511, + "Ġnig": 26996, + "Ġnigga": 41626, + "Ġnight": 1818, + "Ġnightmare": 18724, + "Ġnightmares": 36911, + "Ġnights": 13249, + "Ġnighttime": 38595, + "Ġnih": 27438, + "Ġniin": 16077, + "Ġnik": 44336, + "Ġnim": 24887, + "Ġnimmt": 38891, + "Ġnin": 9616, + "Ġnine": 4949, + "Ġninete": 26286, + "Ġnineteen": 31555, + "Ġninety": 25063, + "Ġning": 17210, + "Ġninguna": 36073, + "Ġninguém": 30091, + "Ġningún": 30394, + "Ġninja": 31604, + "Ġninth": 28207, + "Ġnit": 10900, + "Ġnitrogen": 17903, + "Ġnive": 11461, + "Ġniveau": 19144, + "Ġnivel": 24423, + "Ġniye": 30493, + "Ġniño": 42307, + "Ġniños": 30712, + "Ġniż": 28502, + "Ġno": 572, + "Ġnoble": 20171, + "Ġnobody": 5079, + "Ġnoch": 3514, + "Ġnoche": 29735, + "Ġnochmal": 26509, + "Ġnod": 15224, + "Ġnode": 9984, + "Ġnodes": 13891, + "Ġnodig": 43409, + "Ġnog": 9638, + "Ġnoget": 34574, + "Ġnogle": 48713, + "Ġnoi": 22447, + "Ġnoir": 39359, + "Ġnoise": 5658, + "Ġnoises": 14620, + "Ġnoisy": 24518, + "Ġnoite": 34429, + "Ġnok": 33811, + "Ġnom": 5369, + "Ġnombre": 13000, + "Ġnombreux": 43260, + "Ġnome": 19003, + "Ġnominal": 41641, + "Ġnominated": 25159, + "Ġnomination": 30375, + "Ġnominations": 46331, + "Ġnominee": 37170, + "Ġnominees": 49774, + "Ġnomés": 40052, + "Ġnon": 2107, + "Ġnone": 6022, + "Ġnonetheless": 26756, + "Ġnonprofit": 23348, + "Ġnonprofits": 42851, + "Ġnonsense": 14925, + "Ġnood": 8422, + "Ġnoodle": 21873, + "Ġnoodles": 10480, + "Ġnooit": 48286, + "Ġnoon": 24040, + "Ġnope": 23444, + "Ġnor": 6051, + "Ġnord": 39284, + "Ġnorm": 2026, + "Ġnormal": 2710, + "Ġnormale": 43646, + "Ġnormalized": 48704, + "Ġnormally": 5646, + "Ġnormalmente": 38217, + "Ġnorms": 24357, + "Ġnorte": 41966, + "Ġnorth": 6830, + "Ġnortheast": 40984, + "Ġnorthern": 14197, + "Ġnorthwest": 36930, + "Ġnos": 3269, + "Ġnosaltres": 49100, + "Ġnose": 6690, + "Ġnosotros": 13863, + "Ġnoss": 24970, + "Ġnossa": 15821, + "Ġnossas": 44041, + "Ġnosso": 14347, + "Ġnossos": 35378, + "Ġnost": 10397, + "Ġnostalgia": 34618, + "Ġnostalgic": 40240, + "Ġnostra": 34311, + "Ġnostro": 35779, + "Ġnot": 406, + "Ġnota": 36192, + "Ġnotable": 22556, + "Ġnotably": 31357, + "Ġnotamment": 26165, + "Ġnotation": 24657, + "Ġnotch": 26109, + "Ġnote": 3637, + "Ġnotebook": 21060, + "Ġnotebooks": 43782, + "Ġnoted": 12964, + "Ġnotes": 5570, + "Ġnothin": 47562, + "Ġnothing": 1825, + "Ġnotice": 3449, + "Ġnoticeable": 26041, + "Ġnoticed": 5694, + "Ġnotices": 32978, + "Ġnoticing": 21814, + "Ġnotification": 11554, + "Ġnotifications": 13426, + "Ġnotified": 18013, + "Ġnotify": 36560, + "Ġnoting": 26801, + "Ġnotion": 10710, + "Ġnotions": 35799, + "Ġnotor": 46772, + "Ġnotorious": 38045, + "Ġnotre": 10349, + "Ġnotwend": 41308, + "Ġnou": 23641, + "Ġnoun": 23307, + "Ġnouns": 48184, + "Ġnour": 22683, + "Ġnous": 4666, + "Ġnouve": 11456, + "Ġnouveau": 23326, + "Ġnouveaux": 44952, + "Ġnouvelle": 24156, + "Ġnouvelles": 37172, + "Ġnov": 23883, + "Ġnova": 28265, + "Ġnovamente": 49960, + "Ġnove": 26972, + "Ġnovel": 7613, + "Ġnovels": 24574, + "Ġnovelty": 44805, + "Ġnovo": 18246, + "Ġnow": 586, + "Ġnowadays": 13434, + "Ġnowhere": 11159, + "Ġnozzle": 28998, + "Ġnp": 33808, + "Ġnu": 3822, + "Ġnuance": 42625, + "Ġnuanced": 45115, + "Ġnuances": 38775, + "Ġnuc": 6304, + "Ġnucle": 14962, + "Ġnuclear": 8179, + "Ġnuclei": 49919, + "Ġnucleus": 28055, + "Ġnud": 40045, + "Ġnude": 36505, + "Ġnue": 10412, + "Ġnuest": 7717, + "Ġnuestra": 16825, + "Ġnuestras": 32809, + "Ġnuestro": 14726, + "Ġnuestros": 24099, + "Ġnueva": 28963, + "Ġnuevas": 42817, + "Ġnuevo": 18591, + "Ġnuevos": 42010, + "Ġnug": 30279, + "Ġnuggets": 42663, + "Ġnuit": 38467, + "Ġnull": 18184, + "Ġnum": 1031, + "Ġnuma": 29080, + "Ġnumb": 32200, + "Ġnumber": 1230, + "Ġnumbered": 40936, + "Ġnumbers": 3547, + "Ġnumer": 7866, + "Ġnumerator": 30380, + "Ġnumerical": 29054, + "Ġnumero": 46839, + "Ġnumerous": 12546, + "Ġnuméro": 49525, + "Ġnun": 8905, + "Ġnunca": 13768, + "Ġnuo": 37802, + "Ġnuovo": 49348, + "Ġnur": 4343, + "Ġnurs": 9070, + "Ġnurse": 14012, + "Ġnursery": 37538, + "Ġnurses": 17446, + "Ġnursing": 15423, + "Ġnurt": 23705, + "Ġnurture": 41451, + "Ġnurturing": 48116, + "Ġnut": 5393, + "Ġnutr": 12289, + "Ġnutri": 13242, + "Ġnutrient": 32694, + "Ġnutrients": 17617, + "Ġnutrit": 37972, + "Ġnutrition": 14718, + "Ġnutritional": 34707, + "Ġnutritious": 40850, + "Ġnuts": 10483, + "Ġnutshell": 37711, + "Ġnutzen": 36905, + "Ġny": 18052, + "Ġnya": 24450, + "Ġnylon": 43503, + "Ġnyt": 21508, + "Ġnão": 2431, + "Ġnä": 6433, + "Ġnäch": 13201, + "Ġnächste": 30661, + "Ġnächsten": 19101, + "Ġnäm": 17534, + "Ġnämlich": 21219, + "Ġnär": 15457, + "ĠnÃ¥": 11594, + "ĠnÃ¥gon": 25418, + "ĠnÃ¥gonting": 43998, + "ĠnÃ¥got": 36586, + "ĠnÃ¥gra": 40842, + "ĠnÃ¥r": 36522, + "Ġné": 7024, + "Ġnécess": 31956, + "Ġnécessaire": 46396, + "Ġnên": 40606, + "Ġnó": 6604, + "Ġnói": 27508, + "Ġnós": 9738, + "Ġnú": 11908, + "Ġnúmer": 12803, + "Ġnúmero": 14959, + "Ġnúmeros": 36545, + "ĠnÃło": 29069, + "ĠnÃły": 12542, + "ĠnÃŃvel": 41747, + "ĠnÄĥm": 38098, + "ĠnÄĽ": 46911, + "ĠnÆ°á»Ľc": 30728, + "Ġnữa": 35047, + "Ġo": 277, + "Ġoak": 31322, + "Ġoat": 36792, + "Ġoath": 29450, + "Ġoatmeal": 47223, + "Ġoats": 43095, + "Ġob": 1111, + "Ġobe": 36346, + "Ġobec": 49141, + "Ġobed": 24330, + "Ġobedience": 36585, + "Ġobedient": 42541, + "Ġoben": 21279, + "Ġobes": 26395, + "Ġobese": 50060, + "Ġobesity": 29744, + "Ġobey": 19297, + "Ġobject": 2657, + "Ġobjection": 35756, + "Ġobjections": 44649, + "Ġobjective": 10024, + "Ġobjectively": 46067, + "Ġobjectives": 15961, + "Ġobjects": 6565, + "Ġobjet": 14964, + "Ġobjetivo": 29809, + "Ġobjeto": 40438, + "Ġobjetos": 49605, + "Ġobl": 23740, + "Ġoblig": 9270, + "Ġobligation": 20326, + "Ġobligations": 26234, + "Ġobliged": 47194, + "Ġobliv": 47039, + "Ġobra": 22798, + "Ġobras": 47618, + "Ġobrig": 29126, + "Ġobrigado": 41774, + "Ġobs": 3181, + "Ġobsc": 22082, + "Ġobscure": 34443, + "Ġobser": 12887, + "Ġobserv": 9951, + "Ġobservation": 14816, + "Ġobservations": 18163, + "Ġobserve": 11441, + "Ġobserved": 13095, + "Ġobserver": 27878, + "Ġobservers": 48090, + "Ġobserving": 22107, + "Ġobsess": 35803, + "Ġobsessed": 16923, + "Ġobsession": 30521, + "Ġobsol": 43053, + "Ġobsolete": 46333, + "Ġobst": 9579, + "Ġobstacle": 23112, + "Ġobstacles": 17735, + "Ġobstruct": 45579, + "Ġobstruction": 49711, + "Ġobt": 7464, + "Ġobtain": 12701, + "Ġobtained": 14879, + "Ġobtaining": 36749, + "Ġobten": 28326, + "Ġobviamente": 36325, + "Ġobvious": 6322, + "Ġobviously": 2745, + "Ġobwohl": 48428, + "Ġoc": 10409, + "Ġocas": 44534, + "Ġocc": 2678, + "Ġoccas": 15319, + "Ġoccasion": 9674, + "Ġoccasional": 31644, + "Ġoccasionally": 16895, + "Ġoccasions": 20641, + "Ġoccup": 8073, + "Ġoccupation": 24482, + "Ġoccupational": 43544, + "Ġoccupied": 19629, + "Ġoccupy": 30645, + "Ġoccur": 5160, + "Ġoccurred": 11068, + "Ġoccurrence": 36122, + "Ġoccurring": 18386, + "Ġoccurs": 11843, + "Ġocean": 7810, + "Ġoceans": 25004, + "Ġoch": 3795, + "ĠocksÃ¥": 13312, + "Ġoct": 13350, + "Ġoctave": 44441, + "Ġoctopus": 27962, + "Ġocup": 37305, + "Ġocur": 26430, + "ĠoczywiÅĽcie": 23862, + "Ġod": 3611, + "Ġodc": 36471, + "Ġodd": 7401, + "Ġoddly": 46083, + "Ġodds": 17439, + "Ġode": 45711, + "Ġoder": 4513, + "Ġodor": 41176, + "Ġodpow": 24314, + "Ġodpowied": 36574, + "Ġof": 295, + "Ġofere": 47084, + "Ġoff": 766, + "Ġoffen": 35253, + "Ġoffend": 41836, + "Ġoffended": 26776, + "Ġoffenders": 49079, + "Ġoffense": 17834, + "Ġoffenses": 49765, + "Ġoffensive": 15710, + "Ġoffer": 2626, + "Ġoffered": 8059, + "Ġoffering": 8745, + "Ġofferings": 25898, + "Ġoffers": 7736, + "Ġoffic": 2832, + "Ġoffice": 3398, + "Ġofficer": 8456, + "Ġofficers": 9199, + "Ġoffices": 14434, + "Ġofficial": 4783, + "Ġofficially": 12053, + "Ġofficials": 9798, + "Ġoffline": 21857, + "Ġoffs": 39457, + "Ġoffset": 18687, + "Ġoffshore": 34567, + "Ġoffspring": 36857, + "Ġoficial": 37189, + "Ġoft": 11649, + "Ġoften": 2049, + "Ġoftentimes": 18349, + "Ġog": 5360, + "Ġoggi": 34768, + "Ġogl": 49424, + "Ġogni": 33189, + "Ġogr": 34416, + "ĠogsÃ¥": 23864, + "Ġogóle": 29229, + "Ġoh": 1954, + "Ġohh": 50101, + "Ġohne": 15716, + "Ġoike": 38432, + "Ġoil": 3184, + "Ġoils": 22177, + "Ġoily": 27693, + "Ġojos": 39519, + "Ġok": 3133, + "Ġokay": 1392, + "Ġoke": 40043, + "Ġoko": 45730, + "Ġol": 2545, + "Ġolabilir": 38049, + "Ġolacak": 23172, + "Ġolan": 17771, + "Ġolar": 17318, + "Ġolarak": 17728, + "Ġold": 1331, + "Ġolder": 4906, + "Ġoldest": 14026, + "Ġolds": 41972, + "Ġoldu": 9761, + "ĠolduÄŁ": 15049, + "ĠolduÄŁu": 30588, + "ĠolduÄŁunu": 28619, + "Ġole": 18726, + "Ġoleh": 50051, + "Ġolha": 23550, + "Ġolhar": 37446, + "Ġolho": 50147, + "Ġolhos": 47944, + "Ġoli": 24072, + "Ġolika": 26025, + "Ġolive": 15981, + "Ġolives": 46746, + "Ġoll": 37995, + "Ġolla": 26876, + "Ġollut": 41851, + "Ġolm": 13583, + "Ġolmak": 45535, + "Ġolmas": 40307, + "Ġolması": 47528, + "Ġolmay": 35954, + "Ġolmaz": 31593, + "ĠolmuÅŁ": 32548, + "Ġolsa": 44655, + "Ġolsun": 17632, + "Ġolun": 38084, + "Ġolur": 16538, + "Ġolurs": 41607, + "Ġoluyor": 23597, + "ĠoluÅŁ": 49849, + "Ġolv": 43851, + "Ġolvid": 43194, + "Ġom": 3406, + "Ġomdat": 34982, + "Ġomega": 10498, + "Ġomin": 46812, + "Ġomn": 36874, + "Ġon": 322, + "Ġona": 20325, + "Ġonboard": 24033, + "Ġonc": 40592, + "Ġonce": 1564, + "Ġonda": 45671, + "Ġondan": 49228, + "Ġonde": 14396, + "Ġonder": 20756, + "Ġone": 472, + "Ġones": 2306, + "Ġoneself": 32265, + "Ġongoing": 10452, + "Ġoni": 36317, + "Ġonion": 10916, + "Ġonions": 13146, + "Ġonlar": 43179, + "Ġonline": 2950, + "Ġonly": 787, + "Ġons": 18818, + "Ġonset": 34948, + "Ġont": 6592, + "Ġonto": 3911, + "Ġonu": 20801, + "Ġonun": 27295, + "Ġonwards": 34230, + "Ġonze": 29460, + "Ġoo": 32685, + "Ġooh": 17024, + "Ġook": 7839, + "Ġoops": 34166, + "Ġop": 999, + "Ġopacity": 41693, + "Ġopaque": 42687, + "Ġopen": 1269, + "Ġopened": 5625, + "Ġopener": 43850, + "Ġopening": 5193, + "Ġopenings": 35941, + "Ġopenly": 23109, + "Ġopenness": 36200, + "Ġopens": 9870, + "Ġoper": 2208, + "Ġopera": 22202, + "Ġoperate": 9651, + "Ġoperated": 20826, + "Ġoperates": 22577, + "Ġoperating": 7447, + "Ġoperation": 6916, + "Ġoperational": 16607, + "Ġoperations": 7705, + "Ġoperator": 12973, + "Ġoperators": 19077, + "Ġopin": 3980, + "Ġopini": 46784, + "Ġopinion": 4800, + "Ġopinions": 11819, + "Ġopio": 24434, + "Ġopioid": 32837, + "Ġopioids": 47845, + "Ġopis": 45477, + "Ġoportun": 24237, + "Ġoportunidad": 42794, + "Ġopp": 1458, + "Ġoppon": 8292, + "Ġopponent": 10620, + "Ġopponents": 19001, + "Ġopportun": 2070, + "Ġopportunities": 4786, + "Ġopportunity": 2650, + "Ġoppos": 4665, + "Ġoppose": 28355, + "Ġopposed": 8851, + "Ġopposing": 27890, + "Ġopposite": 6182, + "Ġopposition": 13504, + "Ġoppress": 50240, + "Ġoppressed": 39640, + "Ġoppression": 27337, + "Ġops": 44663, + "Ġopt": 2427, + "Ġopted": 40768, + "Ġoptic": 48269, + "Ġoptical": 20674, + "Ġoptics": 42599, + "Ġoptim": 5028, + "Ġoptimal": 16252, + "Ġoptimism": 31074, + "Ġoptimistic": 19397, + "Ġoptimization": 19618, + "Ġoptimize": 19719, + "Ġoptimized": 26941, + "Ġoptimizing": 40425, + "Ġoptimum": 39326, + "Ġoption": 3614, + "Ġoptional": 17312, + "Ġoptions": 3956, + "Ġor": 420, + "Ġora": 33714, + "Ġorada": 33570, + "Ġoral": 19338, + "Ġorang": 17481, + "Ġorange": 7671, + "Ġoranges": 35474, + "Ġoraz": 28905, + "Ġorb": 14715, + "Ġorbit": 13991, + "Ġorbital": 27677, + "Ġorbitals": 50015, + "Ġorbiting": 48985, + "Ġorbits": 43522, + "Ġorch": 34850, + "Ġorchest": 14161, + "Ġorchestra": 25280, + "Ġorchestral": 36244, + "Ġord": 4792, + "Ġorden": 28615, + "Ġorder": 1668, + "Ġordered": 8866, + "Ġordering": 21739, + "Ġorders": 9470, + "Ġordin": 25376, + "Ġordinance": 40260, + "Ġordinary": 10547, + "Ġore": 20865, + "Ġorg": 14045, + "Ġorgan": 1798, + "Ġorganic": 10220, + "Ġorganis": 15223, + "Ġorganisation": 18641, + "Ġorganisations": 22270, + "Ġorganise": 50110, + "Ġorganised": 36866, + "Ġorganism": 24128, + "Ġorganisms": 22110, + "Ġorganiz": 4645, + "Ġorganization": 4475, + "Ġorganizational": 24730, + "Ġorganizations": 6150, + "Ġorganize": 13859, + "Ġorganized": 9983, + "Ġorganizer": 41363, + "Ġorganizers": 35071, + "Ġorganizing": 17608, + "Ġorgans": 20659, + "Ġorgas": 44834, + "Ġorient": 8579, + "Ġorientation": 14764, + "Ġoriented": 21841, + "Ġorig": 2349, + "Ġorigin": 4957, + "Ġoriginal": 3380, + "Ġoriginally": 7993, + "Ġoriginated": 31129, + "Ġorigins": 22721, + "Ġornament": 35689, + "Ġornaments": 47233, + "Ġoro": 45150, + "Ġorph": 23896, + "Ġorphan": 28711, + "Ġort": 23564, + "Ġorth": 19052, + "Ġorthog": 38130, + "Ġorthogonal": 41488, + "Ġos": 3003, + "Ġoscill": 18225, + "Ġoscillator": 43859, + "Ġoso": 19116, + "Ġosob": 41518, + "Ġosoby": 39737, + "Ġoss": 19508, + "Ġost": 32946, + "Ġostat": 32686, + "Ġoste": 42804, + "Ġostr": 44024, + "Ġosób": 32089, + "Ġot": 4337, + "Ġother": 661, + "Ġothers": 2357, + "Ġotherwise": 5911, + "Ġotra": 13623, + "Ġotras": 20244, + "Ġotro": 11921, + "Ġotros": 16422, + "Ġott": 42772, + "Ġotur": 41598, + "Ġou": 2820, + "Ġouais": 30570, + "Ġought": 13416, + "Ġoui": 14367, + "Ġounce": 29860, + "Ġounces": 27343, + "Ġour": 527, + "Ġours": 11896, + "Ġourselves": 4175, + "Ġout": 484, + "Ġoutbreak": 20963, + "Ġoutbreaks": 39097, + "Ġoutcome": 9700, + "Ġoutcomes": 10070, + "Ġoutdated": 36313, + "Ġoutdoor": 15942, + "Ġoutdoors": 20980, + "Ġouter": 10847, + "Ġoutfit": 11263, + "Ġoutfits": 22331, + "Ġoutgoing": 41565, + "Ġoutlet": 20656, + "Ġoutlets": 27416, + "Ġoutline": 16387, + "Ġoutlined": 27412, + "Ġoutlines": 40125, + "Ġoutlook": 26650, + "Ġoutput": 5598, + "Ġoutputs": 23930, + "Ġoutra": 12301, + "Ġoutrage": 25933, + "Ġoutrageous": 38685, + "Ġoutras": 22221, + "Ġoutreach": 19638, + "Ġoutright": 35189, + "Ġoutro": 13170, + "Ġoutros": 18282, + "Ġouts": 14758, + "Ġoutset": 44618, + "Ġoutside": 2380, + "Ġoutsider": 40484, + "Ġoutsiders": 49825, + "Ġoutstanding": 14485, + "Ġoutta": 21327, + "Ġoutward": 26914, + "Ġouv": 21157, + "Ġouvert": 47683, + "Ġov": 14187, + "Ġoval": 37175, + "Ġovat": 31802, + "Ġoven": 9090, + "Ġover": 670, + "Ġoverall": 4787, + "Ġoverarching": 45501, + "Ġoverboard": 49480, + "Ġoverc": 40027, + "Ġovercome": 10473, + "Ġovercoming": 38047, + "Ġoverd": 19853, + "Ġoverdose": 42206, + "Ġovere": 38657, + "Ġoverflow": 37772, + "Ġoverhe": 29807, + "Ġoverhead": 19922, + "Ġoverl": 15986, + "Ġoverlap": 19959, + "Ġoverlapping": 33535, + "Ġoverlay": 31741, + "Ġoverload": 28777, + "Ġoverlook": 37826, + "Ġoverlooked": 32269, + "Ġoverly": 24324, + "Ġovernight": 13935, + "Ġoverride": 42321, + "Ġovers": 15488, + "Ġoverse": 11916, + "Ġoverseas": 16274, + "Ġoversee": 46543, + "Ġoversight": 29146, + "Ġoversized": 49408, + "Ġoverst": 48834, + "Ġovert": 17038, + "Ġoverth": 30998, + "Ġoverthrow": 46924, + "Ġovertime": 29863, + "Ġoverturn": 42865, + "Ġoverview": 12492, + "Ġoverweight": 40523, + "Ġoverwhel": 9103, + "Ġoverwhelmed": 19042, + "Ġoverwhelming": 13373, + "Ġoverwhelmingly": 42926, + "Ġow": 11492, + "Ġowe": 16655, + "Ġowed": 41262, + "Ġowes": 50028, + "Ġowl": 34488, + "Ġown": 1065, + "Ġowned": 11684, + "Ġowner": 7289, + "Ġowners": 7710, + "Ġownership": 15279, + "Ġowning": 29820, + "Ġowns": 19143, + "Ġox": 5976, + "Ġoxid": 19924, + "Ġoxidation": 36767, + "Ġoxide": 28421, + "Ġoxygen": 9169, + "Ġoy": 15376, + "Ġoyn": 42753, + "Ġoyster": 32005, + "Ġoysters": 42296, + "Ġoyun": 41773, + "Ġozone": 46769, + "Ġoù": 9068, + "ĠoÄŁlum": 26984, + "Ġp": 280, + "ĠpH": 21677, + "Ġpa": 2502, + "Ġpaar": 16509, + "Ġpac": 15165, + "Ġpace": 11638, + "Ġpacing": 43285, + "Ġpack": 2844, + "Ġpackage": 7372, + "Ġpackaged": 38162, + "Ġpackages": 17401, + "Ġpackaging": 16836, + "Ġpacked": 13265, + "Ġpacket": 20300, + "Ġpackets": 30364, + "Ġpacking": 20815, + "Ġpacks": 19403, + "Ġpact": 38104, + "Ġpad": 6887, + "Ġpada": 26069, + "Ġpadding": 39562, + "Ġpaddle": 31834, + "Ġpadre": 34781, + "Ġpadres": 48295, + "Ġpads": 19179, + "Ġpag": 11812, + "Ġpagan": 38238, + "Ġpagar": 28024, + "Ġpage": 3028, + "Ġpages": 7183, + "Ġpai": 32227, + "Ġpaid": 4835, + "Ġpain": 1822, + "Ġpainful": 11697, + "Ġpains": 29774, + "Ġpaint": 4225, + "Ġpainted": 11797, + "Ġpainter": 26619, + "Ġpainters": 48643, + "Ġpainting": 5370, + "Ġpaintings": 14880, + "Ġpaints": 28076, + "Ġpair": 6119, + "Ġpaired": 25699, + "Ġpairing": 32735, + "Ġpairs": 15494, + "Ġpais": 34955, + "Ġpaj": 33819, + "Ġpajamas": 43625, + "Ġpak": 20843, + "Ġpakai": 49062, + "Ġpal": 3984, + "Ġpalab": 21119, + "Ġpalabra": 31702, + "Ġpalabras": 35240, + "Ġpalace": 15207, + "Ġpalate": 48247, + "Ġpalav": 27069, + "Ġpalavra": 40960, + "Ġpalavras": 46169, + "Ġpale": 19546, + "Ġpalette": 15851, + "Ġpaling": 49626, + "Ġpaljon": 34824, + "Ġpall": 24075, + "Ġpalm": 17018, + "Ġpalms": 30819, + "Ġpals": 43806, + "Ġpam": 30738, + "ĠpamiÄĻ": 31088, + "Ġpan": 2462, + "Ġpana": 47296, + "Ġpancake": 28916, + "Ġpancakes": 27859, + "Ġpand": 4565, + "Ġpanda": 46685, + "Ġpandemia": 33245, + "Ġpandemic": 5388, + "Ġpane": 32605, + "Ġpanel": 4831, + "Ġpanelists": 20162, + "Ġpanels": 13419, + "Ġpani": 43916, + "Ġpanic": 14783, + "Ġpans": 32905, + "Ġpant": 14869, + "Ġpantalla": 44449, + "Ġpantry": 40689, + "Ġpants": 10082, + "Ġpap": 5806, + "Ġpapa": 31015, + "Ġpapel": 24710, + "Ġpaper": 3035, + "Ġpapers": 10577, + "Ġpaperwork": 27953, + "Ġpapier": 37410, + "Ġpaprika": 46781, + "Ġpar": 971, + "Ġpara": 1690, + "Ġparab": 45729, + "Ġparach": 33927, + "Ġparachute": 44665, + "Ġparad": 13480, + "Ġparade": 26128, + "Ġparadigm": 24709, + "Ġparadise": 25919, + "Ġparadox": 26221, + "Ġparag": 17372, + "Ġparagraph": 18865, + "Ġparagraphs": 48910, + "Ġparal": 26009, + "Ġparall": 8069, + "Ġparallel": 8952, + "Ġparallels": 44223, + "Ġparaly": 32645, + "Ġparalysis": 49507, + "Ġparalyzed": 41919, + "Ġparam": 6220, + "Ġparameter": 13075, + "Ġparameters": 9834, + "Ġparan": 32369, + "Ġparano": 31416, + "Ġparanoid": 43948, + "Ġparanormal": 37125, + "Ġparap": 36992, + "Ġparar": 37193, + "Ġparas": 21012, + "Ġparasite": 49756, + "Ġparasites": 45289, + "Ġparc": 30511, + "Ġparce": 6992, + "Ġparcel": 34082, + "Ġparch": 35765, + "Ġparchment": 37208, + "Ġpardon": 22440, + "Ġpare": 7448, + "Ġparece": 14120, + "Ġparecer": 44885, + "Ġpareil": 46020, + "Ġparent": 2596, + "Ġparental": 41113, + "Ġparenth": 23350, + "Ġparentheses": 34153, + "Ġparenting": 30896, + "Ġparents": 3152, + "Ġparf": 19743, + "Ġparfait": 36102, + "Ġparfois": 30125, + "Ġparish": 45325, + "Ġparity": 44747, + "Ġpark": 3884, + "Ġparked": 28491, + "Ġparking": 9893, + "Ġparks": 16213, + "Ġparl": 13734, + "Ġparlament": 46024, + "Ġparlar": 45803, + "Ġparle": 18508, + "Ġparler": 16421, + "Ġparliament": 19520, + "Ġparliamentary": 43067, + "Ġparlé": 38570, + "Ġparody": 43386, + "Ġparole": 26783, + "Ġparrot": 42462, + "Ġpars": 21156, + "Ġparse": 48377, + "Ġparsley": 33632, + "Ġpart": 644, + "Ġpartager": 44006, + "Ġparte": 6975, + "Ġpartes": 31210, + "Ġparti": 24408, + "Ġpartial": 14641, + "Ġpartially": 18886, + "Ġpartic": 1276, + "Ġparticip": 3421, + "Ġparticipant": 24950, + "Ġparticipants": 10503, + "Ġparticipar": 48703, + "Ġparticipate": 8197, + "Ġparticipated": 17978, + "Ġparticipating": 13950, + "Ġparticipation": 13487, + "Ġparticle": 12359, + "Ġparticles": 10007, + "Ġparticul": 21861, + "Ġparticular": 1729, + "Ġparticularly": 4098, + "Ġparticulier": 40400, + "Ġpartido": 41310, + "Ġpartie": 17465, + "Ġparties": 8265, + "Ġparting": 46607, + "Ġpartir": 13906, + "Ġpartis": 44634, + "Ġpartisan": 37721, + "Ġpartition": 24808, + "Ġpartly": 17031, + "Ġpartner": 4975, + "Ġpartnered": 29865, + "Ġpartnering": 31290, + "Ġpartners": 4462, + "Ġpartnership": 9982, + "Ġpartnerships": 18245, + "Ġpartout": 32955, + "Ġparts": 3166, + "Ġparty": 3595, + "Ġpas": 1736, + "Ġpasa": 20260, + "Ġpasado": 24794, + "Ġpasando": 45412, + "Ġpasar": 25344, + "Ġpase": 47125, + "Ġpaso": 29212, + "Ġpass": 1320, + "Ġpassa": 23880, + "Ġpassado": 42490, + "Ġpassage": 11497, + "Ġpassages": 31589, + "Ġpassar": 20630, + "Ġpassat": 50050, + "Ġpasse": 14530, + "Ġpassed": 4678, + "Ġpassenger": 18707, + "Ġpassengers": 18436, + "Ġpasser": 18509, + "Ġpasses": 11335, + "Ġpassieren": 46223, + "Ġpassiert": 21671, + "Ġpassing": 8437, + "Ġpassion": 5418, + "Ġpassionate": 11410, + "Ġpassions": 30640, + "Ġpassive": 14975, + "Ġpasso": 38159, + "Ġpassou": 44740, + "Ġpassport": 24694, + "Ġpasst": 37154, + "Ġpassword": 11524, + "Ġpasswords": 33149, + "Ġpassé": 24093, + "Ġpast": 1791, + "Ġpasta": 13296, + "Ġpaste": 9163, + "Ġpastel": 38100, + "Ġpasti": 48145, + "Ġpastor": 21193, + "Ġpastors": 42452, + "Ġpastry": 29198, + "Ġpasture": 48423, + "Ġpasó": 41382, + "Ġpat": 1947, + "Ġpatch": 9972, + "Ġpatches": 26531, + "Ġpatent": 20495, + "Ġpatents": 38142, + "Ġpater": 42302, + "Ġpath": 3100, + "Ġpathetic": 35506, + "Ġpathogens": 44760, + "Ġpaths": 14518, + "Ġpathway": 18590, + "Ġpathways": 22988, + "Ġpatience": 14826, + "Ġpatient": 4537, + "Ġpatiently": 49001, + "Ġpatients": 4209, + "Ġpatio": 42924, + "Ġpatreon": 33161, + "Ġpatri": 18311, + "Ġpatriarch": 46012, + "Ġpatrim": 48369, + "Ġpatriot": 44210, + "Ġpatrol": 26305, + "Ġpatron": 21843, + "Ġpatrons": 27559, + "Ġpatt": 49916, + "Ġpatter": 3829, + "Ġpattern": 5102, + "Ġpatterns": 8294, + "Ġpau": 34221, + "Ġpause": 10465, + "Ġpaused": 46860, + "Ġpave": 28870, + "Ġpaved": 42989, + "Ġpavement": 38305, + "Ġpaw": 38959, + "Ġpawn": 30905, + "Ġpaws": 46768, + "Ġpay": 1689, + "Ġpaycheck": 35639, + "Ġpayer": 38230, + "Ġpaying": 6229, + "Ġpayload": 30918, + "Ġpayment": 10224, + "Ġpayments": 14348, + "Ġpayoff": 46547, + "Ġpayroll": 36873, + "Ġpays": 10604, + "Ġpaz": 30032, + "ĠpaÃŃs": 10572, + "ĠpaÃŃses": 23070, + "ĠpaÅĦst": 21868, + "ĠpaÅĦstwa": 43289, + "ĠpaÅĦstwo": 42233, + "Ġpc": 43451, + "Ġpe": 520, + "Ġpea": 49178, + "Ġpeac": 43370, + "Ġpeace": 4336, + "Ġpeaceful": 13962, + "Ġpeacefully": 36485, + "Ġpeach": 25917, + "Ġpeak": 10651, + "Ġpeaks": 26897, + "Ġpean": 14882, + "Ġpeanut": 19209, + "Ġpeanuts": 32895, + "Ġpear": 37320, + "Ġpearl": 20287, + "Ġpearls": 35111, + "Ġpeas": 24494, + "Ġpec": 42451, + "Ġpeculiar": 27149, + "Ġped": 5670, + "Ġpedal": 19122, + "Ġpedals": 35217, + "Ġpedest": 20497, + "Ġpedestrian": 33947, + "Ġpedestrians": 48339, + "Ġpediatric": 27477, + "Ġpedir": 33533, + "Ġpee": 21343, + "Ġpeek": 19604, + "Ġpeel": 13889, + "Ġpeeled": 39033, + "Ġpeeling": 39926, + "Ġpeer": 15108, + "Ġpeers": 16739, + "Ġpeg": 17199, + "Ġpega": 43005, + "Ġpegar": 22418, + "Ġpeine": 46655, + "Ġpel": 6178, + "Ġpela": 14820, + "Ġpele": 41615, + "Ġpelig": 43839, + "Ġpell": 33836, + "Ġpelo": 12167, + "Ġpelos": 38304, + "Ġpelvic": 40959, + "Ġpelvis": 34617, + "ĠpelÃŃcul": 31810, + "ĠpelÃŃcula": 40154, + "Ġpem": 47690, + "Ġpen": 3435, + "Ġpena": 29222, + "Ġpenal": 13661, + "Ġpenalties": 35389, + "Ġpenalty": 16263, + "Ġpencil": 10985, + "Ġpencils": 30857, + "Ġpend": 12179, + "Ġpendant": 17338, + "Ġpending": 32110, + "Ġpendulum": 44103, + "Ġpenet": 16183, + "Ġpenetrate": 36307, + "Ġpenetration": 35187, + "Ġpeng": 17289, + "Ġpenguin": 45752, + "Ġpeninsula": 45065, + "Ġpenis": 28282, + "Ġpenn": 34911, + "Ġpenny": 24178, + "Ġpens": 6099, + "Ġpensa": 46909, + "Ġpensando": 34525, + "Ġpensar": 18321, + "Ġpense": 11209, + "Ġpenser": 38940, + "Ġpension": 21927, + "Ġpenso": 48005, + "Ġpent": 16834, + "Ġpentru": 31718, + "Ġpeople": 561, + "Ġpeoples": 16915, + "Ġpepp": 39759, + "Ġpepper": 8532, + "Ġpeppers": 21345, + "Ġpept": 41781, + "Ġpequ": 26758, + "Ġpeque": 19132, + "Ġpequeña": 47177, + "Ġpequeño": 38181, + "Ġper": 680, + "Ġperce": 9016, + "Ġperceber": 49376, + "Ġperceive": 20281, + "Ġperceived": 19049, + "Ġpercent": 3043, + "Ġpercentage": 9668, + "Ġpercentages": 42270, + "Ġpercept": 43276, + "Ġperception": 12860, + "Ġperceptions": 35258, + "Ġperch": 29240, + "Ġperché": 14303, + "Ġpercussion": 44430, + "Ġperd": 12611, + "Ġperde": 44182, + "Ġperder": 26971, + "Ġperdre": 46254, + "Ġperdu": 44759, + "Ġperf": 13826, + "Ġperfect": 2176, + "Ġperfection": 19708, + "Ġperfectly": 6239, + "Ġperfekt": 49134, + "Ġperform": 2042, + "Ġperformance": 3389, + "Ġperformances": 16087, + "Ġperformed": 10332, + "Ġperformer": 30248, + "Ġperformers": 30768, + "Ġperforming": 10205, + "Ġperforms": 26213, + "Ġperfume": 28464, + "Ġpergi": 46857, + "Ġpergunt": 31060, + "Ġpergunta": 34908, + "Ġperhaps": 4317, + "Ġperil": 46118, + "Ġperimeter": 32404, + "Ġperiod": 2896, + "Ġperiodic": 27790, + "Ġperiodically": 38916, + "Ġperiods": 13804, + "Ġperipher": 26807, + "Ġperipheral": 40235, + "Ġperish": 41586, + "Ġperk": 38839, + "Ġperks": 36991, + "Ġperlu": 39779, + "Ġperm": 4784, + "Ġperman": 8105, + "Ġpermanent": 10996, + "Ġpermanently": 24042, + "Ġperme": 30287, + "Ġpermet": 20696, + "Ġpermett": 21540, + "Ġpermettre": 37350, + "Ġpermis": 44744, + "Ġpermission": 11226, + "Ġpermissions": 32723, + "Ġpermit": 13423, + "Ġpermite": 31105, + "Ġpermitir": 46865, + "Ġpermits": 30990, + "Ġpermitted": 28658, + "Ġpernah": 41136, + "Ġpero": 4768, + "Ġperpend": 26095, + "Ġperpendicular": 26734, + "Ġperpet": 16211, + "Ġperpetual": 48216, + "Ġperquè": 16839, + "Ġpers": 868, + "Ġperse": 20607, + "Ġpersec": 23783, + "Ġpersecuted": 49903, + "Ġpersecution": 36878, + "Ġpersever": 29917, + "Ġperseverance": 39674, + "Ġpersist": 13233, + "Ġpersistence": 37617, + "Ġpersistent": 24315, + "Ġperson": 954, + "Ġpersona": 12184, + "Ġpersonagem": 49502, + "Ġpersonaje": 41746, + "Ġpersonajes": 43960, + "Ġpersonal": 2973, + "Ġpersonalities": 25308, + "Ġpersonality": 9033, + "Ġpersonalized": 28415, + "Ġpersonally": 5665, + "Ġpersonas": 12019, + "Ġpersone": 29944, + "Ġpersones": 46232, + "Ġpersonn": 30194, + "Ġpersonnage": 43952, + "Ġpersonne": 17219, + "Ġpersonnel": 14988, + "Ġpersonnes": 16246, + "Ġpersons": 14453, + "Ġperspect": 4096, + "Ġperspective": 4585, + "Ġperspectives": 16766, + "Ġpersu": 16336, + "Ġpersuade": 31781, + "Ġpersuaded": 47693, + "Ġpersön": 31228, + "Ġpersönlich": 42699, + "Ġpert": 13269, + "Ġpertaining": 49582, + "Ġpertama": 49109, + "Ġperto": 42855, + "Ġperturb": 40468, + "Ġperò": 12673, + "ĠperÃŃ": 38933, + "ĠperÃŃodo": 44699, + "Ġpes": 9262, + "Ġpesar": 41951, + "Ġpeso": 28149, + "Ġpesos": 33204, + "Ġpess": 35895, + "Ġpessim": 37399, + "Ġpesso": 6818, + "Ġpessoa": 16366, + "Ġpessoal": 24811, + "Ġpessoas": 10021, + "Ġpest": 31068, + "Ġpestic": 28904, + "Ġpesticides": 39015, + "Ġpests": 47645, + "Ġpet": 3817, + "Ġpetals": 31530, + "Ġpetit": 9686, + "Ġpetite": 18319, + "Ġpetites": 34063, + "Ġpetition": 22661, + "Ġpetits": 26487, + "Ġpetrol": 32377, + "Ġpetroleum": 47641, + "Ġpets": 19897, + "Ġpetty": 39334, + "Ġpeu": 5604, + "Ġpeuple": 49186, + "Ġpeur": 30071, + "Ġpeut": 5977, + "Ġpeuvent": 24335, + "Ġpeux": 14844, + "Ġpew": 25889, + "Ġpewn": 47160, + "Ġpewno": 33002, + "ĠpeÅĤ": 43205, + "Ġph": 903, + "Ġpharm": 13105, + "Ġpharmac": 31818, + "Ġpharmaceutical": 27130, + "Ġpharmacy": 30639, + "Ġphase": 5574, + "Ġphases": 18764, + "Ġphen": 7279, + "Ġphenomen": 9388, + "Ġphenomena": 22004, + "Ġphenomenal": 17778, + "Ġphenomenon": 14029, + "Ġphi": 13107, + "Ġphilan": 28797, + "Ġphilanthrop": 28941, + "Ġphilanthropy": 47180, + "Ġphilos": 7012, + "Ġphilosop": 9237, + "Ġphilosoph": 14529, + "Ġphilosopher": 29805, + "Ġphilosophers": 36839, + "Ġphilosophical": 25066, + "Ġphilosophy": 10675, + "Ġphon": 30754, + "Ġphone": 2593, + "Ġphones": 10216, + "Ġphosph": 19775, + "Ġphosphate": 46542, + "Ġphosphorus": 46741, + "Ġphot": 2409, + "Ġphoto": 5052, + "Ġphotograph": 8348, + "Ġphotographed": 45067, + "Ġphotographer": 19494, + "Ġphotographers": 33835, + "Ġphotographs": 17649, + "Ġphotography": 13865, + "Ġphoton": 37443, + "Ġphotons": 40209, + "Ġphotos": 5787, + "Ġphr": 7636, + "Ġphrase": 9535, + "Ġphrases": 20312, + "Ġphys": 2529, + "Ġphysi": 21265, + "Ġphysic": 27903, + "Ġphysical": 4001, + "Ġphysically": 9762, + "Ġphysician": 16456, + "Ġphysicians": 21966, + "Ġphysicist": 42466, + "Ġphysicists": 48716, + "Ġphysics": 10649, + "Ġphysiological": 41234, + "Ġphysiology": 43585, + "Ġphysique": 37058, + "Ġphải": 23394, + "Ġpi": 3895, + "Ġpiace": 50062, + "Ġpian": 32198, + "Ġpiano": 9211, + "Ġpic": 13363, + "Ġpick": 1888, + "Ġpicked": 6183, + "Ġpicking": 8867, + "Ġpickle": 31433, + "Ġpickled": 38076, + "Ġpickles": 38910, + "Ġpicks": 16137, + "Ġpickup": 25328, + "Ġpicky": 41099, + "Ġpicnic": 32137, + "Ġpics": 46690, + "Ġpict": 2317, + "Ġpicture": 3036, + "Ġpictured": 49896, + "Ġpictures": 5242, + "Ġpid": 44540, + "Ġpie": 1730, + "Ġpiece": 2522, + "Ġpieces": 3755, + "Ġpied": 24186, + "Ġpiel": 46065, + "Ġpien": 26274, + "Ġpier": 9766, + "Ġpiercing": 42972, + "Ġpierws": 27623, + "Ġpierwsze": 45994, + "Ġpierwszy": 34016, + "Ġpies": 29640, + "Ġpig": 8120, + "Ġpige": 26704, + "Ġpigeon": 37886, + "Ġpigeons": 48297, + "Ġpiggy": 39349, + "Ġpigment": 31325, + "Ġpigs": 24380, + "Ġpik": 49928, + "Ġpike": 36242, + "Ġpil": 6429, + "Ġpile": 14375, + "Ġpiles": 34861, + "Ġpilgr": 30760, + "Ġpilgrimage": 49954, + "Ġpill": 8100, + "Ġpillar": 27592, + "Ġpillars": 26729, + "Ġpillow": 18581, + "Ġpillows": 38630, + "Ġpills": 23871, + "Ġpilot": 9691, + "Ġpilots": 21506, + "Ġpim": 33917, + "Ġpin": 5447, + "Ġpinch": 14614, + "Ġpine": 15113, + "Ġpineapple": 25740, + "Ġping": 26151, + "Ġpink": 7022, + "Ġpinky": 42616, + "Ġpinned": 33802, + "Ġpinpoint": 40837, + "Ġpins": 16392, + "Ġpint": 23924, + "Ġpione": 19761, + "Ġpioneer": 37668, + "Ġpioneers": 47381, + "Ġpior": 45974, + "Ġpip": 8489, + "Ġpipe": 11240, + "Ġpipeline": 15517, + "Ġpipelines": 40168, + "Ġpipes": 21882, + "Ġpiping": 35204, + "Ġpir": 13528, + "Ġpirate": 27424, + "Ġpirates": 33859, + "Ġpis": 26584, + "Ġpiss": 15171, + "Ġpissed": 23795, + "Ġpist": 12273, + "Ġpista": 49516, + "Ġpistol": 25385, + "Ġpiston": 30002, + "Ġpit": 10147, + "Ġpitch": 7293, + "Ġpitched": 32994, + "Ġpitcher": 42147, + "Ġpitches": 43110, + "Ġpitching": 37499, + "Ġpits": 40312, + "Ġpity": 21103, + "Ġpivot": 14538, + "Ġpivotal": 39078, + "Ġpix": 11273, + "Ġpixel": 19261, + "Ġpixels": 18668, + "Ġpizz": 36075, + "Ġpizza": 8298, + "Ġpizzas": 44037, + "Ġpiù": 10589, + "ĠpiÄĻ": 32677, + "ĠpiÄĻk": 48085, + "ĠpiÅŁ": 47461, + "Ġpl": 499, + "Ġpla": 15256, + "Ġplac": 20831, + "Ġplace": 1081, + "Ġplacebo": 42779, + "Ġplaced": 7074, + "Ġplacement": 17257, + "Ġplaces": 3190, + "Ġplacing": 17221, + "Ġplag": 33756, + "Ġplague": 28185, + "Ġplain": 11121, + "Ġplains": 47362, + "Ġplaint": 39112, + "Ġplais": 29286, + "Ġplaisir": 32756, + "Ġplan": 1393, + "Ġplane": 5720, + "Ġplanes": 14952, + "Ġplanet": 5054, + "Ġplaneta": 34186, + "Ġplanetary": 35788, + "Ġplanets": 15126, + "Ġplank": 27861, + "Ġplanned": 8589, + "Ġplanner": 31268, + "Ġplanners": 49674, + "Ġplanning": 5038, + "Ġplano": 40259, + "Ġplans": 5482, + "Ġplant": 3709, + "Ġplantation": 45328, + "Ġplante": 36829, + "Ġplanted": 17395, + "Ġplanting": 20585, + "Ġplants": 5972, + "Ġplaque": 36542, + "Ġplasma": 22564, + "Ġplast": 35636, + "Ġplaster": 34467, + "Ġplastic": 5900, + "Ġplastics": 34356, + "Ġplat": 3403, + "Ġplata": 30780, + "Ġplataform": 36448, + "Ġplataforma": 46243, + "Ġplate": 5924, + "Ġplateau": 39885, + "Ġplates": 14231, + "Ġplatform": 3663, + "Ġplatforms": 9473, + "Ġplatinum": 37475, + "Ġplats": 48328, + "Ġplaus": 34946, + "Ġplausible": 39925, + "Ġplay": 862, + "Ġplayable": 37146, + "Ġplayback": 37223, + "Ġplayed": 3737, + "Ġplayer": 4256, + "Ġplayers": 4150, + "Ġplayful": 30730, + "Ġplayground": 24646, + "Ġplaying": 2433, + "Ġplaylist": 16788, + "Ġplayoffs": 41142, + "Ġplays": 5749, + "Ġplaythrough": 48752, + "Ġple": 3362, + "Ġplea": 42152, + "Ġplead": 48642, + "Ġpleas": 35122, + "Ġpleasant": 16232, + "Ġplease": 1767, + "Ġpleased": 10587, + "Ġpleasing": 32798, + "Ġpleasure": 6834, + "Ġpleasures": 48627, + "Ġpled": 34263, + "Ġpledge": 26819, + "Ġplein": 21088, + "Ġplenty": 7140, + "Ġpliers": 33982, + "Ġplot": 7542, + "Ġplots": 28609, + "Ġplotted": 43288, + "Ġplotting": 41178, + "Ġplu": 44373, + "Ġpluck": 41514, + "Ġplug": 5452, + "Ġplugged": 25679, + "Ġplugging": 42975, + "Ġplugin": 23407, + "Ġplugins": 33759, + "Ġplugs": 33899, + "Ġplum": 25854, + "Ġplumbing": 39993, + "Ġplung": 37663, + "Ġplup": 45312, + "Ġplupart": 45403, + "Ġplural": 25377, + "Ġplus": 1804, + "Ġplusieurs": 20208, + "Ġplut": 18419, + "Ġplutôt": 20856, + "Ġply": 35318, + "Ġplywood": 43633, + "Ġplötzlich": 49033, + "Ġpm": 23023, + "Ġpne": 26710, + "Ġpneum": 30039, + "Ġpneumonia": 43097, + "Ġpo": 714, + "Ġpobl": 30548, + "Ġpoblación": 42769, + "Ġpobre": 40819, + "Ġpocket": 8963, + "Ġpockets": 16491, + "Ġpoco": 10639, + "Ġpocz": 26423, + "ĠpoczÄħt": 34397, + "ĠpoczÄħtku": 43959, + "Ġpod": 2497, + "Ġpodcast": 7367, + "Ġpodcasts": 24045, + "Ġpode": 7468, + "Ġpodem": 20934, + "Ġpodemos": 12234, + "Ġpoder": 8152, + "Ġpoderia": 33674, + "Ġpodia": 46689, + "Ġpodium": 26827, + "Ġpodob": 43024, + "Ġpodr": 15305, + "ĠpodrÃŃa": 27246, + "Ġpods": 31925, + "Ġpodstaw": 43443, + "Ġpodéis": 45728, + "ĠpodÃŃa": 45588, + "Ġpoem": 13065, + "Ġpoems": 24014, + "Ġpoet": 20874, + "Ġpoetic": 41080, + "Ġpoetry": 15155, + "Ġpoets": 38364, + "Ġpog": 32037, + "Ġpoi": 19260, + "Ġpoint": 935, + "Ġpointed": 10932, + "Ġpointer": 23918, + "Ġpointers": 44548, + "Ġpointing": 12166, + "Ġpointless": 32824, + "Ġpoints": 2793, + "Ġpois": 31014, + "Ġpoison": 10836, + "Ġpoisoned": 36677, + "Ġpoisoning": 36778, + "Ġpoisonous": 37376, + "Ġpojaw": 30655, + "Ġpok": 13010, + "Ġpoke": 19712, + "Ġpokemon": 41161, + "Ġpoker": 36863, + "Ġpoking": 42684, + "Ġpol": 1180, + "Ġpolar": 12367, + "Ġpolarization": 37736, + "Ġpolarized": 48623, + "Ġpole": 13208, + "Ġpoles": 24760, + "Ġpolic": 6285, + "Ġpolice": 3804, + "Ġpoliceman": 42658, + "Ġpolicies": 7657, + "Ġpolicing": 28799, + "Ġpolicy": 3897, + "Ġpolicymakers": 47325, + "Ġpolish": 20452, + "Ġpolished": 29079, + "Ġpolishing": 47258, + "Ġpolit": 2453, + "Ġpolite": 25171, + "Ġpolitic": 48044, + "Ġpolitical": 3905, + "Ġpolitically": 21154, + "Ġpolitician": 26453, + "Ġpoliticians": 14756, + "Ġpolitics": 7341, + "Ġpolitique": 26115, + "Ġpolitiques": 46267, + "Ġpolity": 36066, + "Ġpoll": 6418, + "Ġpollen": 42482, + "Ġpolling": 29518, + "Ġpolls": 24264, + "Ġpollut": 43415, + "Ġpollution": 16727, + "Ġpolsk": 28757, + "Ġpoly": 6754, + "Ġpolygon": 48242, + "Ġpolymer": 20073, + "Ġpolynom": 22560, + "Ġpolynomial": 26110, + "ĠpolÃŃt": 14482, + "ĠpolÃŃtica": 25029, + "ĠpolÃŃticas": 45931, + "ĠpolÃŃtico": 48641, + "Ġpom": 12991, + "Ġpomoc": 48962, + "Ġpomp": 44275, + "Ġpon": 9224, + "Ġpond": 17384, + "Ġpone": 40192, + "Ġponer": 19149, + "Ġpong": 36164, + "Ġponieważ": 32426, + "Ġpont": 18770, + "Ġponto": 17936, + "Ġpontos": 30676, + "Ġpony": 27342, + "Ġponytail": 49138, + "Ġpoo": 36743, + "Ġpool": 7005, + "Ġpools": 28688, + "Ġpoop": 17153, + "Ġpoor": 4716, + "Ġpoorer": 49740, + "Ġpoorest": 44925, + "Ġpoorly": 22271, + "Ġpop": 1665, + "Ġpopcorn": 25334, + "Ġpope": 42248, + "Ġpopped": 21545, + "Ġpopping": 18374, + "Ġpops": 16795, + "Ġpopul": 24017, + "Ġpopula": 32166, + "Ġpopular": 3743, + "Ġpopularity": 19301, + "Ġpopulated": 32998, + "Ġpopulation": 4415, + "Ġpopulations": 12822, + "Ġpoquito": 28229, + "Ġpor": 1515, + "Ġporch": 35513, + "Ġpore": 41459, + "Ġpores": 30082, + "Ġpork": 10208, + "Ġporn": 19444, + "Ġpornography": 49936, + "Ġporque": 4021, + "Ġporridge": 38872, + "Ġport": 2436, + "Ġporta": 28598, + "Ġportable": 21800, + "Ġportal": 14982, + "Ġporte": 26658, + "Ġporter": 41628, + "Ġportfol": 11688, + "Ġportfolio": 12583, + "Ġportion": 8044, + "Ġportions": 25070, + "Ġportrait": 17126, + "Ġportraits": 31880, + "Ġportray": 15676, + "Ġportrayed": 29845, + "Ġports": 18160, + "Ġpos": 1366, + "Ġpose": 10774, + "Ġposed": 31399, + "Ġposer": 39355, + "Ġposes": 26059, + "Ġposible": 26644, + "Ġposición": 46595, + "Ġposing": 40378, + "Ġposit": 11218, + "Ġposition": 2535, + "Ġpositioned": 24889, + "Ġpositioning": 26381, + "Ġpositions": 8432, + "Ġpositiv": 40806, + "Ġpositive": 3353, + "Ġpositively": 25795, + "Ġpositives": 35127, + "Ġpositivity": 35198, + "Ġpositivo": 44710, + "Ġposição": 49842, + "Ġposs": 1402, + "Ġpossa": 41564, + "Ġpossess": 17490, + "Ġpossessed": 29608, + "Ġpossession": 20935, + "Ġpossessions": 40623, + "Ġpossiamo": 44758, + "Ġpossibil": 24145, + "Ġpossibile": 50184, + "Ġpossibilities": 12178, + "Ġpossibility": 7959, + "Ġpossible": 1944, + "Ġpossibly": 6264, + "Ġposso": 22501, + "Ġpossono": 43857, + "ĠpossÃŃvel": 29322, + "Ġpost": 2183, + "Ġpostal": 49645, + "Ġposted": 9437, + "Ġposter": 17171, + "Ġposterior": 33529, + "Ġposters": 28172, + "Ġposting": 15978, + "Ġpostp": 28973, + "Ġpostponed": 49023, + "Ġposts": 12300, + "Ġposture": 18502, + "Ġpot": 1847, + "Ġpotassium": 29547, + "Ġpotato": 7445, + "Ġpotatoes": 11811, + "Ġpotem": 36513, + "Ġpotencial": 48265, + "Ġpotent": 27073, + "Ġpotential": 3995, + "Ġpotentially": 7263, + "Ġpotion": 39113, + "Ġpotrze": 28577, + "Ġpotrzeb": 37595, + "Ġpots": 22022, + "Ġpottery": 45272, + "Ġpou": 5043, + "Ġpouch": 27781, + "Ġpouco": 13920, + "Ġpound": 12013, + "Ġpounding": 40034, + "Ġpounds": 8319, + "Ġpouquinho": 31114, + "Ġpour": 2016, + "Ġpoured": 23270, + "Ġpouring": 20450, + "Ġpourquoi": 19934, + "Ġpourra": 37753, + "Ġpourrait": 25590, + "Ġpourtant": 47856, + "Ġpous": 39140, + "Ġpouv": 29663, + "Ġpouvait": 45913, + "Ġpouvez": 18248, + "Ġpouvoir": 14874, + "Ġpoverty": 10958, + "Ġpovo": 46388, + "Ġpow": 3388, + "Ġpowder": 6341, + "Ġpowdered": 35615, + "Ġpower": 1347, + "Ġpowered": 17786, + "Ġpowerful": 4005, + "Ġpowerless": 47926, + "Ġpowers": 8674, + "Ġpowiedz": 27617, + "ĠpowiedziaÅĤ": 48539, + "ĠpowiedzieÄĩ": 27886, + "Ġpowin": 27310, + "Ġpoz": 21281, + "Ġpozi": 38503, + "Ġpozw": 40557, + "Ġpozy": 49358, + "Ġpr": 582, + "Ġpra": 3206, + "Ġprac": 22404, + "Ġpract": 1927, + "Ġpractical": 8496, + "Ġpractically": 15667, + "Ġpractice": 3124, + "Ġpracticed": 19268, + "Ġpractices": 7525, + "Ġpracticing": 11350, + "Ġpractise": 38208, + "Ġpractition": 18064, + "Ġpractitioner": 32125, + "Ġpractitioners": 25742, + "Ġpracy": 35591, + "Ġprag": 33394, + "Ġpragmatic": 46904, + "Ġpraise": 13286, + "Ġpraised": 31003, + "Ġpraising": 42941, + "Ġprakt": 33721, + "Ġprank": 19794, + "Ġprat": 28844, + "Ġprata": 45895, + "Ġpratic": 33852, + "Ġpraticamente": 45734, + "Ġpratique": 43740, + "Ġpraw": 22508, + "Ġprawd": 41175, + "Ġprawda": 43607, + "Ġprawn": 37047, + "Ġpray": 3690, + "Ġprayed": 22532, + "Ġprayer": 8767, + "Ġprayers": 16860, + "Ġpraying": 15611, + "Ġpre": 659, + "Ġpreach": 21552, + "Ġpreached": 40001, + "Ġpreacher": 42078, + "Ġpreaching": 25381, + "Ġprec": 4346, + "Ġpreca": 25651, + "Ġprecautions": 34684, + "Ġpreced": 16969, + "Ġprecedent": 37388, + "Ġprecio": 46916, + "Ġprecious": 12406, + "Ġprecip": 23354, + "Ġprecipitation": 37662, + "Ġprecis": 7974, + "Ġprecisa": 18861, + "Ġprecisamente": 44901, + "Ġprecise": 13600, + "Ġprecisely": 13402, + "Ġprecision": 18356, + "Ġpreciso": 30109, + "Ġprecon": 47473, + "Ġprecurs": 41736, + "Ġpred": 3852, + "Ġpredator": 35377, + "Ġpredators": 29194, + "Ġprede": 24874, + "Ġpredecessor": 34991, + "Ġpredic": 47336, + "Ġpredict": 6069, + "Ġpredictable": 27737, + "Ġpredicted": 19147, + "Ġpredicting": 32884, + "Ġprediction": 17630, + "Ġpredictions": 21264, + "Ġpredictive": 35521, + "Ġpredomin": 21456, + "Ġpredominantly": 29893, + "Ġpref": 18417, + "Ġprefer": 4382, + "Ġpreferably": 45916, + "Ġpreference": 17502, + "Ġpreferences": 21910, + "Ġpreferred": 16494, + "Ġprefers": 44334, + "Ġprefix": 46969, + "Ġpregn": 7681, + "Ġpregnancy": 16120, + "Ġpregnant": 10435, + "Ġpregunt": 19860, + "Ġpregunta": 24252, + "Ġpreguntas": 39722, + "Ġprehe": 35528, + "Ġprejud": 23121, + "Ġprejudice": 34260, + "Ġprelim": 26414, + "Ġpreliminary": 28817, + "Ġprem": 5624, + "Ġpremature": 34877, + "Ġpremi": 11222, + "Ġpremier": 12689, + "Ġpremiere": 28372, + "Ġpremiers": 45166, + "Ġpremise": 22045, + "Ġpremises": 34266, + "Ġpremium": 12049, + "Ġpremière": 17872, + "Ġpren": 43149, + "Ġprend": 9866, + "Ġprendre": 16566, + "Ġprends": 46750, + "Ġpreoc": 18250, + "Ġpreoccup": 44388, + "Ġpreocup": 23080, + "Ġprep": 2666, + "Ġprepar": 8231, + "Ġpreparation": 13081, + "Ġpreparations": 34122, + "Ġprepare": 5940, + "Ġprepared": 4927, + "Ġpreparedness": 48445, + "Ġprepares": 39418, + "Ġpreparing": 10075, + "Ġprere": 38333, + "Ġpres": 1183, + "Ġpreschool": 39809, + "Ġprescribe": 49292, + "Ġprescribed": 29099, + "Ġprescription": 22456, + "Ġpresence": 6814, + "Ġpresent": 1974, + "Ġpresentation": 5860, + "Ġpresentations": 18964, + "Ġpresente": 28709, + "Ġpresented": 8212, + "Ġpresenter": 35594, + "Ġpresenters": 36987, + "Ġpresenting": 15578, + "Ġpresents": 13533, + "Ġpreserv": 45905, + "Ġpreservation": 27257, + "Ġpreserve": 15665, + "Ġpreserved": 22242, + "Ġpreserving": 33173, + "Ġpreset": 32081, + "Ġpresets": 41865, + "Ġpresidency": 26702, + "Ġpresident": 3868, + "Ġpresidente": 23852, + "Ġpresidential": 16902, + "Ġpresidents": 27611, + "Ġpresque": 37843, + "Ġpress": 1886, + "Ġpressed": 17355, + "Ġpresses": 40892, + "Ġpressing": 12417, + "Ġpressure": 3321, + "Ġpressured": 45306, + "Ġpressures": 23573, + "Ġprest": 16305, + "Ġprestige": 42531, + "Ġprestigious": 33510, + "Ġpresum": 18028, + "Ġpresumably": 26742, + "Ġpresume": 43283, + "Ġpresup": 47640, + "Ġpret": 1162, + "Ġpretend": 11865, + "Ġpretended": 45056, + "Ġpretending": 22106, + "Ġprett": 45421, + "Ġprettier": 36825, + "Ġpretty": 1238, + "Ġprev": 12642, + "Ġprevail": 46059, + "Ġpreval": 22239, + "Ġprevalence": 42583, + "Ġprevalent": 30652, + "Ġprevent": 4871, + "Ġprevented": 27314, + "Ġpreventing": 19965, + "Ġprevention": 14630, + "Ġprevents": 22367, + "Ġpreview": 14281, + "Ġprevious": 3894, + "Ġpreviously": 8046, + "Ġprey": 21107, + "Ġpreço": 42295, + "Ġpri": 1790, + "Ġprice": 3218, + "Ġpriced": 30349, + "Ġprices": 7901, + "Ġpricing": 17621, + "Ġprick": 43986, + "Ġpride": 10936, + "Ġpriest": 15703, + "Ġpriests": 27192, + "Ġprim": 2886, + "Ġprima": 19507, + "Ġprimarily": 10029, + "Ġprimary": 6194, + "Ġprime": 5835, + "Ġprimeira": 21158, + "Ġprimeiro": 18314, + "Ġprimer": 12595, + "Ġprimera": 17382, + "Ġprimero": 21289, + "Ġprimitive": 28540, + "Ġprimo": 38671, + "Ġprin": 3024, + "Ġprince": 16467, + "Ġprinces": 41536, + "Ġprincess": 14742, + "Ġprinci": 3681, + "Ġprincip": 6959, + "Ġprincipal": 9716, + "Ġprincipalmente": 32258, + "Ġprincipals": 45333, + "Ġprincipe": 47656, + "Ġprincipio": 34308, + "Ġprinciple": 8665, + "Ġprinciples": 9156, + "Ġprint": 4482, + "Ġprinted": 13567, + "Ġprinter": 16671, + "Ġprinters": 40007, + "Ġprinting": 14699, + "Ġprints": 22305, + "Ġprior": 4059, + "Ġpriorit": 14846, + "Ġpriorities": 15503, + "Ġprioritize": 25164, + "Ġpriority": 9365, + "Ġpris": 16163, + "Ġprise": 49468, + "Ġprison": 6168, + "Ġprisoner": 28114, + "Ġprisoners": 20417, + "Ġprisons": 31396, + "Ġpriv": 2915, + "Ġprivacy": 11427, + "Ġprivat": 31856, + "Ġprivate": 4551, + "Ġprivately": 31919, + "Ġprivile": 8670, + "Ġprivilege": 12122, + "Ġprivileged": 25293, + "Ġprivileges": 32588, + "Ġprix": 31061, + "Ġprize": 12818, + "Ġprizes": 27350, + "Ġpro": 447, + "Ġproactive": 28028, + "Ġprob": 1239, + "Ġprobabil": 31959, + "Ġprobabilities": 33783, + "Ġprobability": 8482, + "Ġprobable": 21759, + "Ġprobably": 1391, + "Ġprobation": 41821, + "Ġprobe": 22715, + "Ġprobiot": 45710, + "Ġprobl": 15201, + "Ġproblem": 1154, + "Ġproblema": 12395, + "Ġproblemas": 20720, + "Ġproblematic": 19011, + "Ġproblems": 2740, + "Ġproblème": 21111, + "Ġproblèmes": 37317, + "Ġproc": 9510, + "Ġproced": 6682, + "Ġprocedural": 43951, + "Ġprocedure": 10747, + "Ġprocedures": 13846, + "Ġproceed": 8991, + "Ġproceeded": 39053, + "Ġproceeding": 41163, + "Ġproceedings": 37254, + "Ġproceeds": 32280, + "Ġprocent": 38826, + "Ġproces": 17565, + "Ġproceso": 29314, + "Ġprocess": 1399, + "Ġprocessed": 18846, + "Ġprocesses": 7555, + "Ġprocessing": 9007, + "Ġprocesso": 27939, + "Ġprocessor": 15321, + "Ġprocessors": 27751, + "Ġproch": 31847, + "Ġprochain": 39389, + "Ġprochaine": 35306, + "Ġproclaim": 34604, + "Ġproclaimed": 49091, + "Ġprocrast": 39306, + "Ġprocure": 26846, + "Ġprocurement": 35183, + "Ġprod": 15792, + "Ġprodu": 1082, + "Ġproducción": 48586, + "Ġproduce": 5258, + "Ġproduced": 7126, + "Ġproducer": 12314, + "Ġproducers": 16080, + "Ġproduces": 14725, + "Ġproducing": 10501, + "Ġproduct": 1674, + "Ġproduction": 4265, + "Ġproductions": 32612, + "Ġproductive": 13304, + "Ġproductivity": 15604, + "Ġproducto": 47583, + "Ġproductos": 46363, + "Ġproducts": 3383, + "Ġproduit": 35703, + "Ġproduits": 38866, + "Ġproduk": 33699, + "Ġprodukt": 42816, + "Ġproduto": 45823, + "Ġproduz": 28093, + "Ġprodução": 49147, + "Ġprof": 1740, + "Ġprofes": 22912, + "Ġprofesional": 42882, + "Ġprofess": 2668, + "Ġprofession": 7032, + "Ġprofessional": 4843, + "Ġprofessionally": 27941, + "Ġprofessionals": 11954, + "Ġprofessions": 38129, + "Ġprofessor": 8304, + "Ġprofessors": 15924, + "Ġprofile": 7964, + "Ġprofiles": 23693, + "Ġprofit": 7475, + "Ġprofitability": 46249, + "Ġprofitable": 21608, + "Ġprofits": 17982, + "Ġprofound": 14382, + "Ġprofoundly": 39954, + "Ġprofund": 40958, + "Ġprogram": 1461, + "Ġprograma": 21846, + "Ġprogramm": 37648, + "Ġprogramme": 14001, + "Ġprogrammed": 31092, + "Ġprogrammer": 32116, + "Ġprogrammers": 41504, + "Ġprogrammes": 31097, + "Ġprogramming": 9410, + "Ġprograms": 4268, + "Ġprogress": 4205, + "Ġprogressed": 36789, + "Ġprogresses": 41929, + "Ġprogressing": 36305, + "Ġprogression": 18733, + "Ġprogressive": 16131, + "Ġprogressively": 46667, + "Ġprohib": 16015, + "Ġprohibited": 32069, + "Ġproject": 1716, + "Ġprojected": 26231, + "Ġprojecting": 43001, + "Ġprojection": 22743, + "Ġprojections": 32371, + "Ġprojector": 39792, + "Ġprojects": 4455, + "Ġprojekt": 26261, + "Ġprojet": 17929, + "Ġprojeto": 40679, + "Ġprojets": 49830, + "Ġprol": 24398, + "Ġprolong": 27224, + "Ġprolonged": 41237, + "Ġprom": 2234, + "Ġpromet": 37786, + "Ġpromin": 39225, + "Ġprominent": 17034, + "Ġpromise": 6228, + "Ġpromised": 10768, + "Ġpromises": 16403, + "Ġpromising": 20257, + "Ġpromo": 26750, + "Ġpromot": 6609, + "Ġpromote": 9773, + "Ġpromoted": 21162, + "Ġpromotes": 36015, + "Ġpromoting": 16383, + "Ġpromotion": 15783, + "Ġpromotional": 41790, + "Ġpromotions": 42127, + "Ġprompt": 12391, + "Ġprompted": 31042, + "Ġpromptly": 48594, + "Ġprompts": 41095, + "Ġpron": 7569, + "Ġprone": 25806, + "Ġpronoun": 14144, + "Ġpronounce": 19567, + "Ġpronounced": 23155, + "Ġpronouns": 35883, + "Ġpronto": 26194, + "Ġpronunciation": 23338, + "Ġproof": 8177, + "Ġprop": 2365, + "Ġpropag": 12425, + "Ġpropaganda": 22968, + "Ġpropagate": 48256, + "Ġpropagation": 38377, + "Ġprope": 25577, + "Ġproper": 2296, + "Ġproperly": 6108, + "Ġproperties": 7221, + "Ġproperty": 4707, + "Ġproph": 17051, + "Ġprophe": 19944, + "Ġprophecy": 23945, + "Ġprophet": 18566, + "Ġprophetic": 46174, + "Ġprophets": 27297, + "Ġpropia": 40464, + "Ġpropio": 40098, + "Ġpropor": 41516, + "Ġproport": 17762, + "Ġproportion": 16068, + "Ġproportional": 24969, + "Ġproportions": 32482, + "Ġpropos": 7532, + "Ġproposal": 11494, + "Ġproposals": 20198, + "Ġpropose": 17421, + "Ġproposed": 10348, + "Ġproposing": 29939, + "Ġproposition": 24830, + "Ġpropre": 35221, + "Ġpropri": 40465, + "Ġpropriet": 27881, + "Ġproprietary": 38992, + "Ġproprio": 28203, + "Ġprops": 26173, + "Ġpropulsion": 49375, + "Ġpros": 6267, + "Ġprose": 12505, + "Ġprosec": 22382, + "Ġprosecut": 21015, + "Ġprosecution": 37106, + "Ġprosecutor": 32836, + "Ġprosecutors": 40030, + "Ġprospect": 15005, + "Ġprospective": 39377, + "Ġprospects": 32933, + "Ġprosper": 14381, + "Ġprosperity": 22434, + "Ġprosperous": 38928, + "Ġpross": 48794, + "Ġprost": 10293, + "Ġprostate": 36108, + "Ġprosth": 39976, + "Ġprostu": 19518, + "ĠproszÄĻ": 39677, + "Ġprot": 1742, + "Ġprotagon": 17232, + "Ġprotagonist": 24506, + "Ġprote": 5631, + "Ġprotect": 2371, + "Ġprotected": 10594, + "Ġprotecting": 12316, + "Ġprotection": 6334, + "Ġprotections": 29031, + "Ġprotective": 16314, + "Ġprotector": 34986, + "Ġprotects": 22583, + "Ġproteg": 49157, + "Ġprotein": 7944, + "Ġproteins": 15577, + "Ġprotest": 11281, + "Ġprotesters": 34509, + "Ġprotesting": 40171, + "Ġprotests": 20174, + "Ġproto": 47896, + "Ġprotocol": 10336, + "Ġprotocols": 20618, + "Ġproton": 31728, + "Ġprotons": 40270, + "Ġprototy": 46219, + "Ġprototype": 19475, + "Ġprototypes": 42197, + "Ġprotr": 45468, + "Ġproud": 4570, + "Ġproudly": 33522, + "Ġprov": 1439, + "Ġprova": 28959, + "Ġprove": 7081, + "Ġproved": 14617, + "Ġproven": 12785, + "Ġproverb": 49923, + "Ġproves": 25019, + "Ġprovide": 2893, + "Ġprovided": 5649, + "Ġprovider": 12398, + "Ġproviders": 11330, + "Ġprovides": 6417, + "Ġproviding": 6530, + "Ġprovin": 17629, + "Ġprovince": 16705, + "Ġprovinces": 32873, + "Ġprovincial": 33293, + "Ġproving": 27221, + "Ġprovision": 17225, + "Ġprovisions": 25034, + "Ġprovoc": 24568, + "Ġprovocative": 47663, + "Ġprovoke": 47015, + "Ġprow": 45553, + "Ġprowad": 36590, + "Ġproxim": 21932, + "Ġproximity": 27632, + "Ġproxy": 29690, + "Ġproyect": 23832, + "Ġproyecto": 32285, + "Ġprue": 32820, + "Ġprueba": 48241, + "Ġpry": 41902, + "Ġprz": 6541, + "Ġprze": 8325, + "Ġprzeci": 39622, + "Ġprzed": 18334, + "Ġprzede": 44786, + "ĠprzedsiÄĻbior": 43477, + "Ġprzedstaw": 45616, + "Ġprzek": 29785, + "Ġprzep": 30829, + "Ġprzest": 44264, + "Ġprzew": 39758, + "Ġprzez": 14064, + "Ġprzy": 6501, + "Ġprzygot": 35914, + "ĠprzykÅĤad": 23144, + "Ġprzyp": 41780, + "Ġprzypad": 33100, + "Ġprzypadku": 41955, + "Ġprzysz": 44018, + "Ġprá": 27300, + "Ġprès": 25350, + "Ġpré": 11127, + "Ġpréc": 23107, + "Ġprécis": 49436, + "Ġprécéd": 48653, + "Ġpréf": 31139, + "Ġprépar": 38286, + "Ġprés": 11761, + "Ġprésent": 26056, + "Ġprésident": 29654, + "Ġprêt": 44393, + "Ġpró": 8565, + "Ġpróp": 21431, + "Ġprópria": 39608, + "Ġpróprio": 36394, + "Ġpróxim": 12389, + "Ġpróxima": 24096, + "Ġpróximo": 21177, + "Ġps": 18815, + "Ġpse": 25505, + "Ġpseudo": 35899, + "Ġpsi": 20304, + "Ġpsic": 38609, + "Ġpsy": 31673, + "Ġpsych": 4681, + "Ġpsyche": 50223, + "Ġpsychedel": 47732, + "Ġpsychiat": 26347, + "Ġpsychiatric": 40123, + "Ġpsychiatrist": 41287, + "Ġpsychic": 35406, + "Ġpsycho": 33355, + "Ġpsychological": 14346, + "Ġpsychologically": 41387, + "Ġpsychologist": 29514, + "Ġpsychologists": 41562, + "Ġpsychology": 15105, + "Ġpsychopath": 47577, + "Ġpu": 2362, + "Ġpub": 1535, + "Ġpubl": 11227, + "Ġpubli": 49804, + "Ġpublic": 1908, + "Ġpublication": 19953, + "Ġpublications": 25618, + "Ġpublicity": 37264, + "Ġpublicly": 14843, + "Ġpublish": 11374, + "Ġpublished": 6572, + "Ġpublisher": 25088, + "Ġpublishers": 30421, + "Ġpublishing": 17832, + "Ġpuck": 47181, + "Ġpud": 14166, + "Ġpudding": 29149, + "Ġpue": 26990, + "Ġpueblo": 33764, + "Ġpued": 10947, + "Ġpueda": 31907, + "Ġpuedan": 41241, + "Ġpuede": 8919, + "Ġpueden": 14714, + "Ġpuedes": 19010, + "Ġpuedo": 21612, + "Ġpuerta": 48597, + "Ġpues": 11059, + "Ġpuesto": 35136, + "Ġpuff": 19613, + "Ġpug": 47900, + "Ġpuis": 9093, + "Ġpuisqu": 43459, + "Ġpuisque": 28090, + "Ġpuisse": 42363, + "Ġpul": 8331, + "Ġpull": 2235, + "Ġpulled": 7373, + "Ġpulley": 48399, + "Ġpulling": 8407, + "Ġpulls": 16982, + "Ġpulp": 37489, + "Ġpuls": 32295, + "Ġpulse": 17709, + "Ġpulses": 45279, + "Ġpum": 48842, + "Ġpump": 5889, + "Ġpumped": 27774, + "Ġpumping": 27131, + "Ġpumpkin": 17537, + "Ġpumpkins": 49053, + "Ġpumps": 27648, + "Ġpun": 4468, + "Ġpunch": 8135, + "Ġpunched": 37842, + "Ġpunches": 34103, + "Ġpunching": 34866, + "Ġpunct": 27006, + "Ġpunish": 9842, + "Ġpunished": 22365, + "Ġpunishing": 49824, + "Ġpunishment": 14133, + "Ġpunk": 25188, + "Ġpunkt": 39561, + "Ġpunt": 18212, + "Ġpunto": 14326, + "Ġpuntos": 34375, + "Ġpunya": 32781, + "Ġpup": 19784, + "Ġpupil": 44533, + "Ġpupils": 38404, + "Ġpupp": 17014, + "Ġpuppet": 32107, + "Ġpuppies": 33734, + "Ġpuppy": 18196, + "Ġpur": 1864, + "Ġpurch": 5270, + "Ġpurchase": 8110, + "Ġpurchased": 14734, + "Ġpurchases": 26762, + "Ġpurchasing": 20906, + "Ġpure": 6075, + "Ġpuree": 49407, + "Ġpurely": 17491, + "Ġpurity": 34382, + "Ġpurl": 48943, + "Ġpurp": 3527, + "Ġpurple": 9656, + "Ġpurpose": 4334, + "Ġpurposely": 41840, + "Ġpurposes": 9932, + "Ġpurs": 7088, + "Ġpurse": 28345, + "Ġpursue": 12392, + "Ġpursued": 34893, + "Ġpursuing": 20222, + "Ġpursuit": 23365, + "Ġpus": 31252, + "Ġpush": 2944, + "Ġpushed": 9152, + "Ġpushes": 21020, + "Ġpushing": 7380, + "Ġpussy": 40169, + "Ġput": 829, + "Ġputa": 46681, + "Ġputs": 8137, + "Ġputting": 3372, + "Ġpuzz": 18741, + "Ġpuzzle": 12805, + "Ġpuzzles": 24138, + "Ġpuò": 26526, + "Ġpy": 10664, + "Ġpyram": 20543, + "Ġpyramid": 25950, + "Ġpyt": 25878, + "Ġpytanie": 36610, + "Ġpython": 38797, + "Ġpá": 40639, + "Ġpágina": 36960, + "Ġpä": 32232, + "Ġpää": 32764, + "ĠpÃ¥": 4170, + "Ġpère": 37653, + "Ġpé": 29507, + "Ġpén": 49880, + "Ġpéri": 36321, + "Ġpériode": 44703, + "Ġpó": 28157, + "Ġpóźniej": 36968, + "ĠpóÅĤ": 47907, + "Ġpúblic": 15392, + "Ġpública": 38905, + "Ġpúblico": 26557, + "ĠpÅĤ": 28695, + "ĠpÅĻ": 31631, + "Ġq": 9505, + "Ġqu": 421, + "Ġqua": 24159, + "Ġquad": 10787, + "Ġquadrant": 46856, + "Ġquadratic": 37262, + "Ġquais": 44075, + "Ġqual": 4101, + "Ġqualc": 32101, + "Ġqualche": 38737, + "Ġqualcosa": 42400, + "Ġqualidade": 41501, + "Ġqualification": 37425, + "Ġqualifications": 33223, + "Ġqualified": 15904, + "Ġqualify": 20276, + "Ġqualifying": 41793, + "Ġqualitative": 31312, + "Ġqualities": 16477, + "Ġquality": 3125, + "Ġqualité": 42106, + "Ġqualquer": 20437, + "Ġquan": 19068, + "Ġquand": 6932, + "Ġquando": 7770, + "Ġquant": 4426, + "Ġquantidade": 39639, + "Ġquantify": 40421, + "Ġquantitative": 27778, + "Ġquantities": 22927, + "Ġquantity": 11275, + "Ġquanto": 17820, + "Ġquantum": 13018, + "Ġquar": 4723, + "Ġquarant": 41240, + "Ġquarantine": 18138, + "Ġquart": 20837, + "Ġquarter": 6555, + "Ġquarterback": 31952, + "Ġquarterly": 38633, + "Ġquarters": 20612, + "Ġquarto": 50109, + "Ġquartz": 48280, + "Ġquas": 49625, + "Ġquase": 28875, + "Ġquasi": 20954, + "Ġquatre": 31334, + "Ġquatro": 30583, + "Ġque": 631, + "Ġqued": 13617, + "Ġqueda": 23314, + "Ġquedar": 39244, + "Ġqueen": 12206, + "Ġqueens": 42017, + "Ġqueer": 20323, + "Ġquel": 7178, + "Ġquella": 32234, + "Ġquelle": 29237, + "Ġquello": 22813, + "Ġquelqu": 25283, + "Ġquelque": 14448, + "Ġquelques": 16597, + "Ġquem": 13026, + "Ġquer": 7083, + "Ġqueremos": 26813, + "Ġquerer": 39318, + "Ġqueria": 27955, + "Ġqueries": 24109, + "Ġquero": 18738, + "Ġquery": 14581, + "ĠquerÃŃa": 37869, + "Ġquest": 866, + "Ġquesta": 16540, + "Ġqueste": 35455, + "Ġquesti": 29729, + "Ġquestion": 1168, + "Ġquestionable": 37158, + "Ġquestioned": 28146, + "Ġquestioning": 21257, + "Ġquestionnaire": 44702, + "Ġquestions": 1651, + "Ġquesto": 10263, + "Ġquests": 34247, + "Ġquestão": 28477, + "Ġqueue": 18639, + "Ġqui": 1956, + "Ġquick": 1702, + "Ġquicker": 16255, + "Ġquickest": 49403, + "Ġquickly": 2661, + "Ġquien": 20108, + "Ġquienes": 43091, + "Ġquier": 23572, + "Ġquiere": 23877, + "Ġquieren": 36706, + "Ġquieres": 29839, + "Ġquiero": 16811, + "Ġquiet": 5677, + "Ġquieter": 43339, + "Ġquietly": 19141, + "Ġquil": 31619, + "Ġquilt": 27566, + "Ġquin": 42215, + "Ġquindi": 15727, + "Ġquint": 40006, + "Ġquir": 35645, + "Ġquirky": 49515, + "Ġquis": 37945, + "Ġquiser": 28753, + "Ġquit": 10366, + "Ġquite": 1596, + "Ġquitting": 42789, + "Ġquiz": 15450, + "Ġquizz": 43425, + "Ġquizzes": 48955, + "Ġquién": 35327, + "Ġquo": 28425, + "Ġquoi": 11714, + "Ġquot": 9641, + "Ġquota": 45171, + "Ġquotation": 47312, + "Ġquote": 6513, + "Ġquoted": 30047, + "Ġquotes": 19963, + "Ġquotid": 44017, + "Ġquoting": 41552, + "Ġquy": 44088, + "Ġquá": 38338, + "Ġquè": 17802, + "Ġqué": 8057, + "Ġquê": 28605, + "Ġr": 367, + "Ġra": 3342, + "Ġrab": 14085, + "Ġrabb": 28179, + "Ġrabbit": 19509, + "Ġrabbits": 38752, + "Ġrac": 4129, + "Ġrace": 4569, + "Ġraces": 15484, + "Ġracial": 12131, + "Ġracing": 12553, + "Ġracism": 12664, + "Ġracist": 16419, + "Ġrack": 14788, + "Ġracket": 41130, + "Ġracks": 47063, + "Ġrad": 2843, + "Ġradar": 16544, + "Ġradi": 16335, + "Ġradial": 38783, + "Ġradiant": 49430, + "Ġradiation": 12420, + "Ġradiator": 41345, + "Ġradical": 12001, + "Ġradically": 35508, + "Ġradio": 6477, + "Ġradioactive": 35844, + "Ġradish": 31136, + "Ġradius": 15845, + "Ġraft": 43863, + "Ġrag": 17539, + "Ġrage": 20133, + "Ġraging": 44173, + "Ġrah": 23490, + "Ġrahat": 43066, + "Ġraid": 26936, + "Ġraids": 45740, + "Ġrail": 8765, + "Ġrailroad": 30073, + "Ġrails": 27649, + "Ġrailway": 25812, + "Ġrain": 4830, + "Ġrainbow": 18526, + "Ġrained": 47533, + "Ġrainfall": 29382, + "Ġrainforest": 48531, + "Ġraining": 18441, + "Ġrains": 27805, + "Ġrainy": 27181, + "Ġrais": 4000, + "Ġraise": 5300, + "Ġraised": 6005, + "Ġraises": 19658, + "Ġraising": 11225, + "Ġraison": 28402, + "Ġraj": 36007, + "Ġrak": 35544, + "Ġrall": 31552, + "Ġrallies": 48169, + "Ġrally": 17584, + "Ġram": 10211, + "Ġramen": 20948, + "Ġramp": 12428, + "Ġran": 5872, + "Ġranch": 22883, + "Ġrandom": 4974, + "Ġrandomized": 38513, + "Ġrandomly": 16979, + "Ġrang": 32434, + "Ġrange": 3613, + "Ġranged": 45570, + "Ġranges": 22526, + "Ġranging": 25532, + "Ġrank": 6181, + "Ġranked": 20197, + "Ġranking": 17833, + "Ġrankings": 36550, + "Ġranks": 21406, + "Ġrans": 33481, + "Ġransom": 38279, + "Ġrant": 45332, + "Ġrap": 5099, + "Ġrape": 22846, + "Ġraped": 37506, + "Ġrapid": 7558, + "Ġrapidement": 37757, + "Ġrapidly": 12910, + "Ġrapp": 8125, + "Ġrappelle": 43736, + "Ġrapper": 26457, + "Ġrappers": 45025, + "Ġrapping": 44333, + "Ġrapport": 18018, + "Ġrapt": 40142, + "Ġrare": 5892, + "Ġrarely": 13752, + "Ġras": 26815, + "Ġrasa": 41493, + "Ġrash": 40357, + "Ġrasp": 49399, + "Ġraspberry": 41468, + "Ġrat": 5937, + "Ġratchet": 45885, + "Ġrate": 3314, + "Ġrated": 22103, + "Ġrates": 6846, + "Ġrather": 2831, + "Ġrating": 10990, + "Ġratings": 24603, + "Ġratio": 8509, + "Ġration": 24258, + "Ġrational": 15090, + "Ġrationale": 41989, + "Ġratios": 32435, + "Ġrats": 25691, + "Ġratt": 27081, + "Ġrattling": 48822, + "Ġraus": 17202, + "Ġrav": 32987, + "Ġraw": 8936, + "Ġray": 18592, + "Ġrays": 24417, + "Ġraz": 9639, + "Ġrazem": 40225, + "Ġrazor": 30478, + "Ġrazón": 38310, + "Ġre": 319, + "Ġreach": 2524, + "Ġreached": 6488, + "Ġreaches": 14235, + "Ġreaching": 9906, + "Ġreact": 4515, + "Ġreacted": 34037, + "Ġreacting": 25817, + "Ġreaction": 5480, + "Ġreactions": 12215, + "Ġreactive": 28897, + "Ġreactor": 20628, + "Ġreactors": 41649, + "Ġreacts": 33305, + "Ġread": 1401, + "Ġreadable": 49857, + "Ġreader": 15149, + "Ġreaders": 17147, + "Ġreadily": 26336, + "Ġreadiness": 34954, + "Ġreading": 3760, + "Ġreadings": 27319, + "Ġreads": 15700, + "Ġready": 1919, + "Ġreag": 26949, + "Ġreais": 34823, + "Ġreal": 957, + "Ġrealidad": 25635, + "Ġrealidade": 48292, + "Ġrealise": 18809, + "Ġrealised": 21337, + "Ġrealism": 38484, + "Ġrealistic": 12465, + "Ġrealistically": 40734, + "Ġrealities": 27785, + "Ġreality": 4103, + "Ġrealiz": 22828, + "Ġrealizar": 36461, + "Ġrealization": 25138, + "Ġrealize": 4325, + "Ġrealized": 5334, + "Ġrealizes": 29316, + "Ġrealizing": 16734, + "Ġreally": 534, + "Ġrealm": 15355, + "Ġrealmente": 14446, + "Ġrealms": 42824, + "Ġrealt": 41133, + "ĠrealtÃł": 47512, + "Ġreap": 39178, + "Ġreapp": 35638, + "Ġrear": 8250, + "Ġrearr": 29875, + "Ġrearrange": 39568, + "Ġreason": 1778, + "Ġreasonable": 10585, + "Ġreasonably": 23551, + "Ġreasoning": 21577, + "Ġreasons": 4112, + "Ġreass": 19486, + "Ġreb": 12970, + "Ġrebel": 28293, + "Ġrebell": 22260, + "Ġrebellion": 29793, + "Ġrebels": 37919, + "Ġrebirth": 49445, + "Ġrebo": 26802, + "Ġreboot": 33818, + "Ġreborn": 48899, + "Ġrebound": 31850, + "Ġrebuild": 16877, + "Ġrebuilding": 36717, + "Ġrebuilt": 38532, + "Ġrec": 850, + "Ġreca": 43086, + "Ġrecall": 9901, + "Ġrecalled": 39301, + "Ġrecap": 20928, + "Ġrece": 2268, + "Ġreceber": 42748, + "Ġreceipt": 33882, + "Ġreceive": 4774, + "Ġreceived": 4613, + "Ġreceiver": 20086, + "Ġreceivers": 49196, + "Ġreceives": 20717, + "Ġreceiving": 10040, + "Ġrecent": 5162, + "Ġrecently": 3938, + "Ġrecept": 15263, + "Ġreception": 21682, + "Ġreceptive": 45838, + "Ġreceptor": 32264, + "Ġreceptors": 34102, + "Ġrecess": 16417, + "Ġrecession": 24828, + "Ġrecharge": 31366, + "Ġrecher": 27788, + "Ġrecherche": 38501, + "Ġrecht": 24261, + "Ġrechts": 34305, + "Ġreci": 4214, + "Ġrecib": 46387, + "Ġrecibir": 49703, + "Ġrecip": 17325, + "Ġrecipe": 6782, + "Ġrecipes": 13035, + "Ġrecipient": 26216, + "Ġrecipients": 32440, + "Ġrecipro": 28961, + "Ġreciprocal": 46948, + "Ġrecite": 39434, + "Ġreck": 16374, + "Ġreckless": 38884, + "Ġreckon": 29548, + "Ġreclaim": 40074, + "Ġreco": 7759, + "Ġrecogn": 3068, + "Ġrecognise": 23991, + "Ġrecognised": 36802, + "Ġrecognition": 11150, + "Ġrecognizable": 40757, + "Ġrecognize": 5521, + "Ġrecognized": 9823, + "Ġrecognizes": 26564, + "Ġrecognizing": 18538, + "Ġrecoil": 42053, + "Ġrecoll": 39495, + "Ġrecom": 23334, + "Ġrecomend": 40292, + "Ġrecomm": 2616, + "Ġrecommend": 2748, + "Ġrecommendation": 11879, + "Ġrecommendations": 10434, + "Ġrecommended": 9628, + "Ġrecommending": 30559, + "Ġrecommends": 34556, + "Ġrecomp": 48000, + "Ġrecon": 9993, + "Ġreconcile": 41059, + "Ġreconciliation": 31281, + "Ġreconna": 31073, + "Ġreconnect": 30095, + "Ġreconoc": 43838, + "Ġreconsider": 40497, + "Ġreconst": 16891, + "Ġreconstruct": 31499, + "Ġreconstruction": 31565, + "Ġrecord": 2136, + "Ġrecorded": 8287, + "Ġrecorder": 37744, + "Ġrecording": 6613, + "Ġrecordings": 25162, + "Ġrecords": 7724, + "Ġrecount": 43997, + "Ġrecover": 8114, + "Ġrecovered": 19542, + "Ġrecovering": 29180, + "Ġrecovery": 8597, + "Ġrecre": 14261, + "Ġrecreate": 25833, + "Ġrecreation": 31573, + "Ġrecreational": 37554, + "Ġrecru": 9372, + "Ġrecruit": 15119, + "Ġrecruited": 33004, + "Ġrecruiting": 25987, + "Ġrecruitment": 28240, + "Ġrect": 11048, + "Ġrectang": 24077, + "Ġrectangle": 21930, + "Ġrectangular": 31167, + "Ġrecuer": 39092, + "Ġrecuper": 25692, + "Ġrecur": 18680, + "Ġrecurring": 32279, + "Ġrecurs": 20560, + "Ġrecursos": 30409, + "Ġrecy": 12036, + "Ġrecycle": 32162, + "Ġrecycled": 30674, + "Ġrecycling": 23363, + "Ġred": 2182, + "Ġrede": 14328, + "Ġredeem": 37715, + "Ġredef": 38818, + "Ġredemption": 35644, + "Ġreden": 26447, + "Ġredes": 16762, + "Ġredesign": 39853, + "Ġredirect": 29066, + "Ġredist": 36198, + "Ġredo": 29956, + "Ġredu": 2783, + "Ġreduce": 5407, + "Ġreduced": 9212, + "Ġreduces": 18081, + "Ġreducing": 12245, + "Ġreduction": 11004, + "Ġreductions": 40296, + "Ġredund": 27830, + "Ġredundant": 40997, + "Ġreduz": 40674, + "Ġree": 43060, + "Ġreef": 25345, + "Ġreefs": 50054, + "Ġreel": 34973, + "Ġref": 1895, + "Ġrefer": 2864, + "Ġrefere": 33048, + "Ġreferee": 43096, + "Ġreference": 6408, + "Ġreferenced": 32734, + "Ġreferences": 15400, + "Ġreferencing": 40582, + "Ġreferendum": 31957, + "Ġreferral": 33494, + "Ġreferrals": 47444, + "Ġreferred": 10839, + "Ġreferring": 13761, + "Ġrefers": 14942, + "Ġrefill": 42533, + "Ġrefin": 44395, + "Ġrefine": 33906, + "Ġrefined": 26201, + "Ġrefle": 36549, + "Ġreflect": 5031, + "Ġreflected": 15502, + "Ġreflecting": 23543, + "Ġreflection": 12914, + "Ġreflections": 30679, + "Ġreflective": 28931, + "Ġreflects": 18926, + "Ġreflex": 23802, + "Ġreform": 8290, + "Ġreforms": 24897, + "Ġrefr": 13334, + "Ġrefract": 45353, + "Ġrefrain": 46177, + "Ġrefres": 17368, + "Ġrefresh": 15134, + "Ġrefreshed": 46330, + "Ġrefreshing": 19772, + "Ġrefriger": 14162, + "Ġrefrigerator": 19655, + "Ġrefuge": 10991, + "Ġrefugee": 25622, + "Ġrefugees": 18301, + "Ġrefund": 29384, + "Ġrefusal": 48948, + "Ġrefuse": 16791, + "Ġrefused": 14654, + "Ġrefuses": 33222, + "Ġrefusing": 37289, + "Ġreg": 1121, + "Ġregain": 35336, + "Ġregard": 3843, + "Ġregarde": 33357, + "Ġregarded": 26047, + "Ġregarder": 31468, + "Ġregardez": 49841, + "Ġregarding": 8595, + "Ġregardless": 10060, + "Ġregards": 14258, + "Ġregel": 40504, + "Ġregen": 33909, + "Ġregener": 26358, + "Ġregeneration": 43813, + "Ġregime": 13120, + "Ġregiment": 47888, + "Ġregimes": 45738, + "Ġregion": 4458, + "Ġregional": 10964, + "Ġregions": 10682, + "Ġregist": 11376, + "Ġregister": 7280, + "Ġregistered": 13968, + "Ġregistering": 47329, + "Ġregisters": 38351, + "Ġregistration": 16847, + "Ġregistry": 36468, + "Ġregião": 45697, + "Ġregión": 45163, + "Ġregres": 47108, + "Ġregression": 24590, + "Ġregret": 10879, + "Ġregrets": 31214, + "Ġregul": 9837, + "Ġregular": 3890, + "Ġregularly": 11672, + "Ġregulate": 24475, + "Ġregulated": 26243, + "Ġregulating": 46715, + "Ġregulation": 15062, + "Ġregulations": 12563, + "Ġregulator": 36250, + "Ġregulators": 37311, + "Ġregulatory": 18260, + "Ġreh": 22355, + "Ġrehab": 32414, + "Ġrehabil": 26043, + "Ġrehabilitation": 33700, + "Ġrehe": 14369, + "Ġrehears": 17052, + "Ġrehearsal": 24884, + "Ġreicht": 47000, + "Ġreign": 20350, + "Ġreim": 33433, + "Ġreimburse": 41685, + "Ġrein": 6561, + "Ġreincarn": 48343, + "Ġreindeer": 49992, + "Ġreinfor": 20520, + "Ġreinforce": 22634, + "Ġreinforced": 31365, + "Ġreinforcement": 29280, + "Ġreinforcing": 48262, + "Ġreins": 47200, + "Ġreinst": 35056, + "Ġreinvent": 33477, + "Ġreiter": 25211, + "Ġreiterate": 33528, + "Ġreject": 8248, + "Ġrejected": 15749, + "Ġrejecting": 45401, + "Ġrejection": 26044, + "Ġrejo": 22087, + "Ġrejoice": 42397, + "Ġrek": 33881, + "Ġrel": 1039, + "Ġrela": 5195, + "Ġrelacion": 27189, + "Ġrelación": 37247, + "Ġrelat": 22441, + "Ġrelatable": 42355, + "Ġrelate": 10961, + "Ġrelated": 4077, + "Ġrelates": 16155, + "Ġrelating": 23968, + "Ġrelation": 9721, + "Ġrelational": 38444, + "Ġrelations": 2299, + "Ġrelationship": 2480, + "Ġrelationships": 6159, + "Ġrelativ": 21960, + "Ġrelative": 4972, + "Ġrelatively": 7226, + "Ġrelatives": 18201, + "Ġrelativity": 45675, + "Ġrelax": 5789, + "Ġrelaxation": 30315, + "Ġrelaxed": 14628, + "Ġrelaxing": 20103, + "Ġrelay": 24214, + "Ġrelação": 28177, + "Ġrele": 2951, + "Ġrelease": 4374, + "Ġreleased": 4736, + "Ġreleases": 16952, + "Ġreleasing": 16327, + "Ġrelent": 34045, + "Ġrelentless": 46136, + "Ġrelev": 25916, + "Ġrelevance": 32684, + "Ġrelevant": 7340, + "Ġreli": 19653, + "Ġreliability": 24550, + "Ġreliable": 12924, + "Ġreliably": 49927, + "Ġrelie": 21680, + "Ġrelied": 35463, + "Ġrelief": 10915, + "Ġrelies": 30910, + "Ġrelieve": 30450, + "Ġrelieved": 27972, + "Ġrelig": 4039, + "Ġreligion": 7561, + "Ġreligions": 21212, + "Ġreligious": 7185, + "Ġreload": 25628, + "Ġreloc": 26981, + "Ġreluct": 25149, + "Ġreluctant": 33677, + "Ġrely": 10687, + "Ġrelying": 24140, + "Ġrem": 890, + "Ġrema": 28986, + "Ġremain": 6222, + "Ġremainder": 29837, + "Ġremained": 12780, + "Ġremaining": 8877, + "Ġremains": 7023, + "Ġremake": 28582, + "Ġremar": 34329, + "Ġremark": 7942, + "Ġremarkable": 12802, + "Ġremarkably": 37381, + "Ġremarks": 19151, + "Ġremed": 28718, + "Ġremedies": 47133, + "Ġremedy": 31648, + "Ġremem": 20648, + "Ġremember": 1604, + "Ġremembered": 13745, + "Ġremembering": 20719, + "Ġremembers": 26228, + "Ġremembrance": 48083, + "Ġremind": 4160, + "Ġreminded": 15920, + "Ġreminder": 13548, + "Ġreminders": 43458, + "Ġreminding": 27639, + "Ġreminds": 12025, + "Ġreminis": 33765, + "Ġreminiscent": 44304, + "Ġremix": 47788, + "Ġremnants": 44652, + "Ġremo": 4595, + "Ġremot": 19896, + "Ġremote": 8607, + "Ġremotely": 20824, + "Ġremovable": 44060, + "Ġremoval": 17933, + "Ġremove": 4159, + "Ġremoved": 7261, + "Ġremoves": 30445, + "Ġremoving": 12720, + "Ġrempl": 36576, + "Ġren": 8124, + "Ġrename": 36741, + "Ġrenamed": 40949, + "Ġrencont": 28038, + "Ġrend": 6125, + "Ġrender": 15529, + "Ġrendered": 28748, + "Ġrendering": 22407, + "Ġrendez": 40026, + "Ġrendre": 36256, + "Ġrenew": 10162, + "Ġrenewable": 20938, + "Ġrenewal": 35516, + "Ġrenewed": 30228, + "Ġrenov": 18845, + "Ġrenovation": 39973, + "Ġrenowned": 34065, + "Ġrent": 6214, + "Ġrental": 21468, + "Ġrented": 32381, + "Ġrenting": 40598, + "Ġreop": 28994, + "Ġreopen": 33861, + "Ġreopening": 39542, + "Ġreorgan": 41203, + "Ġrep": 1085, + "Ġrepair": 10535, + "Ġrepaired": 36551, + "Ġrepairing": 46158, + "Ġrepairs": 28823, + "Ġrepar": 33291, + "Ġrepay": 27522, + "Ġrepe": 4301, + "Ġrepeat": 7149, + "Ġrepeated": 10477, + "Ġrepeatedly": 18227, + "Ġrepeating": 18617, + "Ġrepeats": 35038, + "Ġrepent": 19994, + "Ġrepentance": 37593, + "Ġrepente": 42884, + "Ġreper": 28946, + "Ġrepertoire": 49604, + "Ġrepet": 13645, + "Ġrepetition": 30432, + "Ġrepetitive": 29404, + "Ġrepl": 3248, + "Ġreplace": 7406, + "Ġreplaced": 10772, + "Ġreplacement": 14419, + "Ġreplaces": 46734, + "Ġreplacing": 19139, + "Ġreplay": 23836, + "Ġreplen": 43532, + "Ġreplica": 35456, + "Ġreplicate": 25356, + "Ġreplicated": 46365, + "Ġreplication": 39911, + "Ġreplied": 20345, + "Ġreplies": 42289, + "Ġreply": 16972, + "Ġrepo": 49040, + "Ġreport": 2275, + "Ġreported": 7055, + "Ġreportedly": 23989, + "Ġreporter": 19152, + "Ġreporters": 26249, + "Ġreporting": 10031, + "Ġreports": 7122, + "Ġreposit": 22283, + "Ġrepository": 25841, + "Ġrepres": 2556, + "Ġrepresent": 2906, + "Ġrepresenta": 49823, + "Ġrepresentation": 10290, + "Ġrepresentations": 33358, + "Ġrepresentative": 12424, + "Ġrepresentatives": 18628, + "Ġrepresented": 10379, + "Ġrepresenting": 13460, + "Ġrepresents": 8855, + "Ġrepro": 35257, + "Ġreprodu": 11408, + "Ġreproduce": 29501, + "Ġreproduction": 33934, + "Ġreproductive": 33569, + "Ġreprés": 27961, + "Ġreprésent": 40509, + "Ġreps": 27007, + "Ġrept": 29143, + "Ġrepublic": 18535, + "Ġrepublican": 39286, + "Ġreputation": 13061, + "Ġrequ": 1724, + "Ġrequest": 5308, + "Ġrequested": 16436, + "Ġrequesting": 31937, + "Ġrequests": 12475, + "Ġrequire": 3651, + "Ġrequired": 4739, + "Ġrequirement": 11695, + "Ġrequirements": 7728, + "Ġrequires": 7029, + "Ġrequiring": 24165, + "Ġrequis": 49878, + "Ġrer": 43819, + "Ġrere": 46453, + "Ġres": 725, + "Ġresc": 9610, + "Ġrescue": 13283, + "Ġrescued": 31757, + "Ġrese": 2025, + "Ġresearch": 2132, + "Ġresearched": 37098, + "Ġresearcher": 21751, + "Ġresearchers": 10309, + "Ġresearching": 24176, + "Ġresemb": 20695, + "Ġresemble": 36870, + "Ġresembles": 34433, + "Ġresent": 28773, + "Ġresentment": 43131, + "Ġreserv": 16454, + "Ġreservation": 28922, + "Ġreservations": 40222, + "Ġreserve": 17824, + "Ġreserved": 24819, + "Ġreserves": 27483, + "Ġreservoir": 26316, + "Ġreset": 14322, + "Ġresid": 13141, + "Ġreside": 40134, + "Ġresidence": 19607, + "Ġresidency": 34014, + "Ġresident": 10832, + "Ġresidential": 17389, + "Ġresidents": 9630, + "Ġresides": 47157, + "Ġresidual": 27980, + "Ġresidue": 34799, + "Ġresign": 27471, + "Ġresignation": 49494, + "Ġresigned": 41180, + "Ġresil": 12227, + "Ġresilience": 19980, + "Ġresiliency": 48712, + "Ġresilient": 23699, + "Ġresin": 26365, + "Ġresist": 4597, + "Ġresistance": 7335, + "Ġresistant": 20383, + "Ġresisting": 43940, + "Ġresistor": 37672, + "Ġresize": 50069, + "Ġresol": 7923, + "Ġresolution": 8669, + "Ġresolutions": 32179, + "Ġresolve": 14151, + "Ġresolved": 20772, + "Ġresolver": 34480, + "Ġresolving": 49940, + "Ġreson": 12544, + "Ġresonance": 30944, + "Ġresonate": 34285, + "Ġresonated": 47957, + "Ġresonates": 41051, + "Ġresort": 19606, + "Ġresource": 7684, + "Ġresources": 3593, + "Ġresp": 1597, + "Ġrespe": 40792, + "Ġrespect": 3104, + "Ġrespectable": 44279, + "Ġrespected": 20020, + "Ġrespectful": 26205, + "Ġrespectfully": 45201, + "Ġrespecting": 41968, + "Ġrespective": 23649, + "Ġrespectively": 25009, + "Ġrespecto": 35694, + "Ġrespects": 24126, + "Ġrespir": 18412, + "Ġrespiratory": 27038, + "Ġrespond": 4196, + "Ġresponded": 15806, + "Ġrespondents": 48275, + "Ġresponder": 36416, + "Ġresponders": 37542, + "Ġresponding": 16670, + "Ġresponds": 27331, + "Ġrespons": 2914, + "Ġresponsabil": 29829, + "Ġresponse": 4134, + "Ġresponses": 13019, + "Ġresponsibilities": 16190, + "Ġresponsibility": 6357, + "Ġresponsible": 6250, + "Ġresponsive": 21826, + "Ġresposta": 42126, + "Ġrespuesta": 40585, + "Ġress": 24689, + "Ġrest": 1472, + "Ġrestart": 21022, + "Ġrestaur": 4793, + "Ġrestaurant": 6383, + "Ġrestaurants": 11486, + "Ġreste": 20694, + "Ġrested": 43090, + "Ġrester": 37197, + "Ġresting": 21221, + "Ġrestless": 45451, + "Ġresto": 28247, + "Ġrestor": 46594, + "Ġrestoration": 23722, + "Ġrestore": 15227, + "Ġrestored": 23143, + "Ġrestoring": 36349, + "Ġrestra": 25508, + "Ġrestraint": 49281, + "Ġrestrict": 7694, + "Ġrestricted": 20608, + "Ġrestriction": 29529, + "Ġrestrictions": 14191, + "Ġrestrictive": 43220, + "Ġrestroom": 41286, + "Ġrests": 39755, + "Ġresult": 1874, + "Ġresultado": 28047, + "Ġresultados": 36796, + "Ġresulted": 18753, + "Ġresulting": 16505, + "Ġresults": 3542, + "Ġresume": 15358, + "Ġresumes": 48068, + "Ġresur": 16042, + "Ġresurrect": 34338, + "Ġresurrected": 48825, + "Ġresurrection": 24150, + "Ġret": 1533, + "Ġretail": 10800, + "Ġretailer": 45467, + "Ġretailers": 33519, + "Ġretain": 18340, + "Ġretained": 33438, + "Ġretaining": 34936, + "Ġretali": 37924, + "Ġretard": 42073, + "Ġretention": 22871, + "Ġrethink": 34595, + "Ġretir": 34906, + "Ġretire": 10731, + "Ġretired": 16776, + "Ġretirement": 15189, + "Ġretiring": 45770, + "Ġretour": 28873, + "Ġretr": 23106, + "Ġretra": 49356, + "Ġretract": 41107, + "Ġretreat": 15505, + "Ġretrie": 19817, + "Ġretrieve": 30254, + "Ġretro": 18820, + "Ġretrospect": 34997, + "Ġretrou": 26311, + "Ġretrouve": 30909, + "Ġretrouver": 36511, + "Ġreturn": 2736, + "Ġreturned": 8752, + "Ġreturning": 12678, + "Ġreturns": 11247, + "Ġreun": 14480, + "Ġreunion": 34720, + "Ġreunited": 50036, + "Ġreus": 38860, + "Ġreusable": 41807, + "Ġreuse": 26225, + "Ġrev": 3698, + "Ġreve": 5174, + "Ġreveal": 10658, + "Ġrevealed": 9599, + "Ġrevealing": 23983, + "Ġreveals": 20893, + "Ġrevel": 15262, + "Ġrevelation": 23456, + "Ġreven": 6158, + "Ġrevenge": 16711, + "Ġrevenir": 44899, + "Ġrevenue": 9324, + "Ġrevenues": 27299, + "Ġrever": 18438, + "Ġreverb": 41829, + "Ġrevers": 14582, + "Ġreversal": 42778, + "Ġreverse": 9943, + "Ġreversed": 30563, + "Ġreversible": 44788, + "Ġreview": 3131, + "Ġreviewed": 18429, + "Ġreviewers": 45837, + "Ġreviewing": 19576, + "Ġreviews": 10229, + "Ġrevis": 20767, + "Ġrevise": 44252, + "Ġrevised": 35228, + "Ġrevision": 34218, + "Ġrevisit": 32676, + "Ġrevital": 42457, + "Ġrevival": 33207, + "Ġrevive": 36292, + "Ġrevived": 48358, + "Ġrevol": 16908, + "Ġrevolt": 42568, + "Ġrevolution": 8894, + "Ġrevolutionary": 22687, + "Ġrevolves": 47934, + "Ġrevving": 49739, + "Ġreward": 7782, + "Ġrewarded": 29105, + "Ġrewarding": 20063, + "Ġrewards": 17203, + "Ġrewind": 41458, + "Ġrework": 48376, + "Ġrewrite": 28132, + "Ġrez": 48060, + "Ġrh": 33418, + "Ġrhe": 50100, + "Ġrhet": 24182, + "Ġrhetoric": 29604, + "Ġrhin": 49030, + "Ġrho": 20293, + "Ġrhy": 8740, + "Ġrhyme": 34753, + "Ġrhymes": 47917, + "Ġrhythm": 11801, + "Ġrhythmic": 46967, + "Ġrhythms": 44892, + "Ġri": 19739, + "Ġrib": 9162, + "Ġribbon": 20921, + "Ġribs": 21400, + "Ġric": 21040, + "Ġrice": 5090, + "Ġrich": 4593, + "Ġricher": 29021, + "Ġriches": 35777, + "Ġrichest": 35098, + "Ġrichness": 44506, + "Ġricht": 22136, + "Ġrichtig": 13129, + "Ġrichtige": 41569, + "Ġrico": 41529, + "Ġrid": 3973, + "Ġride": 5077, + "Ġrider": 25419, + "Ġriders": 23303, + "Ġrides": 20773, + "Ġridge": 34651, + "Ġridic": 9276, + "Ġridiculous": 11083, + "Ġridiculously": 41358, + "Ġriding": 9546, + "Ġrien": 13355, + "Ġries": 23932, + "Ġrif": 13203, + "Ġriff": 36798, + "Ġrifle": 18008, + "Ġrifles": 34058, + "Ġrig": 8329, + "Ġright": 558, + "Ġrighteous": 16153, + "Ġrighteousness": 26407, + "Ġrightly": 32879, + "Ġrights": 4601, + "Ġrigid": 22195, + "Ġrigor": 42191, + "Ġrigorous": 29882, + "Ġrigt": 46159, + "Ġrij": 47237, + "Ġrikt": 38420, + "Ġrim": 15982, + "Ġring": 4875, + "Ġringing": 18423, + "Ġrings": 11136, + "Ġrinse": 27026, + "Ġriot": 32211, + "Ġriots": 43802, + "Ġrip": 12782, + "Ġripe": 31421, + "Ġripped": 22780, + "Ġripping": 38776, + "Ġripple": 40688, + "Ġris": 2253, + "Ġrise": 6272, + "Ġrisen": 28614, + "Ġrises": 21373, + "Ġrising": 11636, + "Ġrisk": 3148, + "Ġrisking": 45235, + "Ġrisks": 10888, + "Ġrisky": 21137, + "Ġrisque": 37574, + "Ġrit": 11289, + "Ġritual": 13792, + "Ġrituals": 29082, + "Ġriv": 28745, + "Ġrival": 16286, + "Ġrivalry": 42352, + "Ġrivals": 33303, + "Ġriver": 6810, + "Ġrivers": 18361, + "Ġro": 744, + "Ġroad": 3060, + "Ġroadmap": 35738, + "Ġroads": 11344, + "Ġroam": 40474, + "Ġroaming": 42680, + "Ġroar": 40347, + "Ġroaring": 36231, + "Ġroast": 12904, + "Ġroasted": 24766, + "Ġroasting": 45227, + "Ġrob": 3870, + "Ġrobbed": 35772, + "Ġrobbery": 37418, + "Ġrobe": 37213, + "Ġrobi": 47380, + "ĠrobiÄĩ": 46900, + "Ġrobot": 7881, + "Ġrobotic": 30468, + "Ġrobotics": 34145, + "Ġrobots": 14733, + "Ġrobust": 13956, + "Ġrock": 3727, + "Ġrocket": 13012, + "Ġrockets": 28361, + "Ġrocking": 30929, + "Ġrocks": 10989, + "Ġrocky": 33301, + "Ġrod": 8685, + "Ġrode": 21602, + "Ġrods": 32761, + "Ġrodz": 28607, + "Ġrogue": 39100, + "Ġrok": 35135, + "Ġroku": 19451, + "Ġrol": 34109, + "Ġrole": 3090, + "Ġroles": 9604, + "Ġroll": 3373, + "Ġrolled": 14306, + "Ġroller": 15948, + "Ġrollers": 46642, + "Ġrolling": 9439, + "Ġrolls": 15767, + "Ġrom": 7438, + "Ġroman": 41362, + "Ġromance": 19064, + "Ġromantic": 13590, + "Ġrond": 39353, + "Ġroof": 8418, + "Ġroofs": 48555, + "Ġrooft": 34460, + "Ġrooftop": 41027, + "Ġrook": 24692, + "Ġrookie": 36299, + "Ġroom": 1808, + "Ġroomm": 23929, + "Ġroommate": 31692, + "Ġroommates": 46886, + "Ġrooms": 9396, + "Ġroot": 5593, + "Ġrooted": 25277, + "Ġrooting": 41572, + "Ġroots": 10669, + "Ġrope": 13540, + "Ġropes": 32964, + "Ġros": 18953, + "Ġrose": 10895, + "Ġroses": 28620, + "Ġroster": 29892, + "Ġrot": 4297, + "Ġrotary": 45811, + "Ġrotate": 13121, + "Ġrotated": 42146, + "Ġrotates": 42133, + "Ġrotating": 19627, + "Ġrotation": 12447, + "Ġrotational": 45420, + "Ġrotations": 44796, + "Ġrotor": 26847, + "Ġrotten": 31977, + "Ġrou": 18450, + "Ġrouge": 40605, + "Ġrough": 5903, + "Ġroughly": 9810, + "Ġround": 3098, + "Ġrounded": 23382, + "Ġrounding": 48237, + "Ġrounds": 13757, + "Ġroup": 48485, + "Ġrout": 4020, + "Ġroute": 7955, + "Ġrouter": 22492, + "Ġroutes": 18242, + "Ġroutine": 9927, + "Ġroutinely": 40443, + "Ġroutines": 33827, + "Ġrouting": 32722, + "Ġrover": 45767, + "Ġrow": 5386, + "Ġrows": 13241, + "Ġroy": 36364, + "Ġroyal": 13351, + "Ġroyalty": 40929, + "Ġroz": 9544, + "Ġrozm": 35234, + "Ġrozp": 47576, + "Ġrozum": 48797, + "Ġrpm": 47071, + "Ġru": 5420, + "Ġrua": 49467, + "Ġrub": 5915, + "Ġrubber": 11593, + "Ġrubbing": 29770, + "Ġrubbish": 29978, + "Ġrud": 32109, + "Ġrude": 18895, + "Ġrue": 43919, + "Ġrug": 18329, + "Ġrugby": 43895, + "Ġrugged": 42662, + "Ġruh": 36614, + "Ġruim": 33871, + "Ġruin": 15514, + "Ġruined": 17013, + "Ġruining": 38938, + "Ġruins": 24747, + "Ġrul": 8551, + "Ġrule": 4978, + "Ġruled": 20077, + "Ġruler": 19661, + "Ġrulers": 35009, + "Ġrules": 4474, + "Ġruling": 21437, + "Ġrum": 8347, + "Ġrumah": 44988, + "Ġrumor": 29639, + "Ġrumors": 21201, + "Ġrun": 1190, + "Ġrund": 23096, + "Ġrunner": 24376, + "Ġrunners": 33892, + "Ġrunning": 2614, + "Ġruns": 6676, + "Ġrunt": 49435, + "Ġrunter": 33295, + "Ġruntime": 34474, + "Ġrunway": 26642, + "Ġrupees": 24638, + "Ġrural": 11165, + "Ġrus": 38684, + "Ġrush": 9300, + "Ġrushed": 24421, + "Ġrushing": 25876, + "Ġrust": 15259, + "Ġrusty": 45394, + "Ġrut": 41324, + "Ġruth": 38225, + "Ġruthless": 47096, + "Ġry": 20791, + "Ġrze": 16081, + "Ġrzecz": 36833, + "Ġrzeczy": 26297, + "ĠrzeczywiÅĽcie": 44922, + "Ġráp": 18213, + "Ġrápido": 24893, + "Ġrä": 39442, + "Ġrätt": 38494, + "Ġrèg": 43659, + "Ġré": 3960, + "Ġréal": 18911, + "Ġréalité": 35677, + "Ġrécup": 43113, + "Ġrédu": 46369, + "Ġréf": 30170, + "Ġréfl": 48438, + "Ġrég": 17563, + "Ġrégion": 42669, + "Ġrép": 14243, + "Ġrépond": 26027, + "Ġrépondre": 40139, + "Ġréponse": 40967, + "Ġrés": 14415, + "Ġrése": 34044, + "Ġrésult": 33671, + "Ġréuss": 28099, + "Ġréussi": 46171, + "Ġrév": 38357, + "Ġrê": 38240, + "Ġró": 11416, + "Ġrównież": 20532, + "Ġróż": 19637, + "Ġróżne": 47760, + "Ġróżnych": 42602, + "Ġrôle": 41681, + "ĠrÄĻ": 41197, + "Ġrất": 25147, + "Ġrằng": 45019, + "Ġrá»ĵi": 19908, + "Ġs": 262, + "Ġsa": 601, + "Ġsaat": 23369, + "Ġsab": 5560, + "Ġsabe": 12275, + "Ġsabem": 46128, + "Ġsabemos": 27200, + "Ġsaben": 36670, + "Ġsaber": 12489, + "Ġsabes": 37790, + "Ġsabia": 36388, + "Ġsabor": 48648, + "Ġsabot": 37167, + "Ġsac": 4899, + "Ġsacar": 43823, + "Ġsach": 42510, + "Ġsack": 33209, + "Ġsacr": 7480, + "Ġsacred": 15757, + "Ġsacrific": 14108, + "Ġsacrifice": 11521, + "Ġsacrificed": 32021, + "Ġsacrifices": 25094, + "Ġsacrificing": 42294, + "Ġsad": 4227, + "Ġsaddle": 30459, + "Ġsadece": 32945, + "Ġsadly": 22023, + "Ġsadness": 22462, + "Ġsaf": 3597, + "Ġsafe": 3273, + "Ġsafeg": 32358, + "Ġsafeguard": 40153, + "Ġsafely": 11750, + "Ġsafer": 15856, + "Ġsafest": 37558, + "Ġsafety": 4514, + "Ġsag": 15274, + "Ġsaga": 34250, + "Ġsage": 19721, + "Ġsagen": 8360, + "Ġsagt": 15764, + "Ġsagte": 36771, + "Ġsah": 19292, + "Ġsai": 32417, + "Ġsaid": 848, + "Ġsail": 15758, + "Ġsailed": 49339, + "Ġsailing": 27452, + "Ġsailors": 42036, + "Ġsaint": 28374, + "Ġsaints": 29546, + "Ġsair": 29157, + "Ġsais": 11757, + "Ġsait": 23146, + "Ġsaja": 32617, + "Ġsak": 23366, + "Ġsake": 9717, + "Ġsaker": 40416, + "Ġsal": 1845, + "Ġsala": 37596, + "Ġsalad": 12604, + "Ġsalads": 48025, + "Ġsalah": 41688, + "Ġsalaries": 35057, + "Ġsalary": 15360, + "Ġsale": 8680, + "Ġsales": 5763, + "Ġsalir": 31514, + "Ġsaliva": 43540, + "Ġsalmon": 18518, + "Ġsalon": 27768, + "Ġsalsa": 32428, + "Ġsalt": 5139, + "Ġsalted": 39783, + "Ġsalts": 50191, + "Ġsalty": 18443, + "Ġsalud": 23933, + "Ġsalut": 45184, + "Ġsalute": 33673, + "Ġsalv": 26858, + "Ġsalvar": 48873, + "Ġsalvation": 17456, + "Ġsam": 3247, + "Ġsama": 17768, + "Ġsamb": 47822, + "Ġsame": 912, + "Ġsamen": 39405, + "Ġsamh": 49864, + "Ġsamma": 43407, + "Ġsamo": 36422, + "Ġsamp": 34098, + "Ġsampai": 38569, + "Ġsample": 6889, + "Ġsamples": 10938, + "Ġsampling": 21179, + "Ġsamurai": 48144, + "Ġsan": 6645, + "Ġsana": 15490, + "Ġsanct": 21794, + "Ġsanction": 39830, + "Ġsanctions": 21342, + "Ġsanctuary": 34390, + "Ġsand": 4932, + "Ġsandbox": 42115, + "Ġsanding": 44338, + "Ġsandwich": 11141, + "Ġsandwiches": 29022, + "Ġsandy": 47122, + "Ġsane": 45610, + "Ġsang": 9980, + "Ġsangat": 31917, + "Ġsangre": 45878, + "Ġsanit": 24533, + "Ġsanitation": 50146, + "Ġsanitizer": 47080, + "Ġsanity": 47892, + "Ġsank": 43746, + "Ġsano": 46942, + "Ġsans": 12177, + "Ġsant": 23044, + "Ġsanté": 30068, + "Ġsao": 33108, + "Ġsap": 18985, + "Ġsapp": 46938, + "Ġsar": 13782, + "Ġsarc": 36836, + "Ġsare": 38706, + "ĠsarÃł": 41338, + "Ġsash": 43780, + "Ġsat": 3227, + "Ġsatell": 11997, + "Ġsatellite": 16016, + "Ġsatellites": 24960, + "Ġsatisf": 5519, + "Ġsatisfaction": 18715, + "Ġsatisfactory": 48614, + "Ġsatisfied": 11239, + "Ġsatisfies": 44271, + "Ġsatisfy": 19319, + "Ġsatisfying": 18348, + "Ġsatu": 27679, + "Ġsatur": 21160, + "Ġsaturated": 25408, + "Ġsaturation": 27090, + "Ġsau": 17828, + "Ġsauc": 49181, + "Ġsauce": 4880, + "Ġsauces": 41447, + "Ġsaud": 47863, + "Ġsauna": 46654, + "Ġsaus": 16534, + "Ġsausage": 20526, + "Ġsausages": 41157, + "Ġsaute": 41223, + "Ġsav": 11163, + "Ġsava": 44908, + "Ġsavage": 42512, + "Ġsave": 3155, + "Ġsaved": 6624, + "Ġsaves": 19155, + "Ġsavez": 30503, + "Ġsaving": 6816, + "Ġsavings": 13454, + "Ġsavior": 41327, + "Ġsavoir": 19345, + "Ġsavory": 33944, + "Ġsavvy": 47506, + "Ġsaw": 1866, + "Ġsax": 42119, + "Ġsay": 584, + "Ġsaya": 9160, + "Ġsayin": 44364, + "Ġsaying": 1566, + "Ġsays": 1619, + "Ġsaç": 48679, + "Ġsaúde": 39937, + "ĠsaÄŁ": 30318, + "Ġsc": 795, + "Ġsca": 4216, + "Ġscaff": 40889, + "Ġscaffold": 44094, + "Ġscal": 15664, + "Ġscalable": 38481, + "Ġscalar": 39684, + "Ġscale": 4373, + "Ġscaled": 36039, + "Ġscales": 17408, + "Ġscaling": 21589, + "Ġscall": 30509, + "Ġscalp": 31972, + "Ġscam": 26917, + "Ġscan": 11049, + "Ġscand": 40273, + "Ġscandal": 27922, + "Ġscanned": 45089, + "Ġscanner": 30211, + "Ġscanning": 27019, + "Ġscans": 35116, + "Ġscar": 10569, + "Ġscarce": 41340, + "Ġscarcity": 44181, + "Ġscare": 17185, + "Ġscared": 5338, + "Ġscares": 35721, + "Ġscarf": 29086, + "Ġscariest": 47755, + "Ġscars": 31353, + "Ġscary": 6958, + "Ġscatter": 34951, + "Ġscattered": 21986, + "Ġscattering": 42314, + "Ġscen": 4191, + "Ġscenario": 9005, + "Ġscenarios": 15077, + "Ġscene": 4145, + "Ġscenery": 25805, + "Ġscenes": 8026, + "Ġscent": 19040, + "Ġsch": 956, + "Ġschaffen": 30888, + "Ġschauen": 25672, + "Ġschaut": 46064, + "Ġsche": 25690, + "Ġsched": 5292, + "Ġschedul": 12000, + "Ġschedule": 7567, + "Ġscheduled": 15678, + "Ġschedules": 28078, + "Ġscheduling": 29055, + "Ġscheint": 47906, + "Ġschem": 22627, + "Ġschema": 34078, + "Ġschematic": 44739, + "Ġscheme": 12232, + "Ġschemes": 26954, + "Ġschizophren": 41532, + "Ġschizophrenia": 49022, + "Ġschle": 22664, + "Ġschlecht": 32427, + "Ġschlim": 37260, + "Ġschlimm": 48821, + "Ġschme": 46459, + "Ġschne": 28643, + "Ġschnell": 17589, + "Ġschneller": 43865, + "Ġschol": 6946, + "Ġscholar": 17912, + "Ġscholarly": 39589, + "Ġscholars": 8553, + "Ġscholarship": 16178, + "Ġscholarships": 28474, + "Ġschon": 4981, + "Ġschool": 1395, + "Ġschooling": 41677, + "Ġschools": 4656, + "Ġschreiben": 48546, + "Ġschw": 17932, + "Ġschwer": 23809, + "Ġschwier": 27546, + "Ġschwierig": 37845, + "Ġschö": 25032, + "Ġschön": 13527, + "Ġschöne": 41152, + "Ġsci": 2180, + "Ġscience": 3497, + "Ġsciences": 17677, + "Ġscient": 3989, + "Ġscientific": 8134, + "Ġscientifically": 39719, + "Ġscientist": 12662, + "Ġscientists": 7708, + "Ġscissors": 16066, + "Ġscold": 26437, + "Ġscolded": 49283, + "Ġscoop": 19555, + "Ġscoot": 21375, + "Ġscooter": 30441, + "Ġscope": 11923, + "Ġscor": 38629, + "Ġscore": 6175, + "Ġscored": 18139, + "Ġscores": 13444, + "Ġscoring": 22358, + "Ġscorp": 46092, + "Ġscout": 34392, + "Ġscr": 5918, + "Ġscra": 13943, + "Ġscrambled": 49127, + "Ġscrap": 23138, + "Ġscrape": 32827, + "Ġscraping": 43738, + "Ġscraps": 45204, + "Ġscratch": 8459, + "Ġscratched": 40513, + "Ġscratches": 33695, + "Ġscratching": 29699, + "Ġscream": 7291, + "Ġscreamed": 41069, + "Ġscreaming": 12636, + "Ġscreams": 22832, + "Ġscree": 38323, + "Ġscreen": 2568, + "Ġscreening": 17732, + "Ġscreens": 11171, + "Ġscreenshot": 27712, + "Ġscreenshots": 40661, + "Ġscrew": 5630, + "Ġscrewdriver": 27282, + "Ġscrewed": 20331, + "Ġscrews": 13050, + "Ġscri": 5545, + "Ġscrib": 39435, + "Ġscript": 5755, + "Ġscripts": 23294, + "Ġscripture": 24783, + "Ġscriptures": 29969, + "Ġscroll": 11369, + "Ġscrolling": 29053, + "Ġscrub": 24163, + "Ġscrut": 28949, + "Ġscrutiny": 38615, + "Ġsculpt": 12613, + "Ġsculpture": 22972, + "Ġsculptures": 37544, + "Ġscène": 42424, + "Ġse": 369, + "Ġsea": 4158, + "Ġseafood": 23206, + "Ġseal": 12185, + "Ġsealed": 21514, + "Ġsealing": 48678, + "Ġseals": 32031, + "Ġseam": 12337, + "Ġseamless": 28677, + "Ġseamlessly": 38083, + "Ġseams": 33547, + "Ġsean": 37670, + "Ġsearch": 3164, + "Ġsearched": 22961, + "Ġsearches": 26701, + "Ġsearching": 10808, + "Ġseas": 22535, + "Ġseason": 3196, + "Ġseasonal": 27421, + "Ġseasoned": 30111, + "Ġseasoning": 23421, + "Ġseasons": 15050, + "Ġseat": 6121, + "Ġseated": 20959, + "Ġseating": 32430, + "Ġseats": 11069, + "Ġseaweed": 29449, + "Ġseb": 48049, + "Ġsebagai": 48246, + "Ġsebel": 46122, + "Ġseben": 46031, + "Ġsec": 907, + "Ġsechs": 41945, + "Ġsecond": 1150, + "Ġsecondary": 11396, + "Ġsecondly": 26246, + "Ġsecondo": 41601, + "Ġseconds": 3949, + "Ġsecre": 34432, + "Ġsecret": 4054, + "Ġsecretary": 15691, + "Ġsecretly": 22611, + "Ġsecrets": 14093, + "Ġsect": 22610, + "Ġsection": 3541, + "Ġsections": 10863, + "Ġsector": 6977, + "Ġsectors": 18373, + "Ġsecular": 25734, + "Ġsecure": 7144, + "Ġsecured": 22905, + "Ġsecurely": 38348, + "Ġsecuring": 33640, + "Ġsecurities": 38597, + "Ġsecurity": 3825, + "Ġsed": 9643, + "Ġsedan": 29344, + "Ġsediment": 32362, + "Ġsee": 536, + "Ġseed": 8871, + "Ġseeds": 9203, + "Ġseeing": 2577, + "Ġseek": 8075, + "Ġseekers": 47915, + "Ġseeking": 11670, + "Ġseeks": 28840, + "Ġseem": 1643, + "Ġseemed": 6576, + "Ġseemingly": 18709, + "Ġseems": 2544, + "Ġseen": 1612, + "Ġsees": 8194, + "Ġseg": 3896, + "Ġsegment": 9469, + "Ġsegments": 19904, + "Ġsegreg": 37630, + "Ġsegregated": 47370, + "Ġsegregation": 34317, + "Ġsegu": 8878, + "Ġsegue": 33850, + "Ġseguinte": 32433, + "Ġseguir": 18584, + "Ġsegunda": 21978, + "Ġsegundo": 17954, + "Ġsegundos": 40108, + "Ġsegur": 22179, + "Ġsegurança": 49538, + "Ġseguridad": 35415, + "Ġseguro": 31424, + "Ġsegún": 36570, + "Ġsehe": 35995, + "Ġsehen": 11333, + "Ġsehr": 5499, + "Ġsei": 10842, + "Ġseid": 38041, + "Ġsein": 6195, + "Ġseine": 15925, + "Ġseinem": 29187, + "Ġseinen": 24427, + "Ġseiner": 23114, + "Ġseis": 28233, + "Ġseism": 40159, + "Ġseit": 16452, + "Ġseiz": 27610, + "Ġseize": 33413, + "Ġseized": 33912, + "Ġseizure": 42522, + "Ġseizures": 44215, + "Ġseja": 13459, + "Ġsek": 17215, + "Ġsekali": 45016, + "Ġsekarang": 29047, + "Ġsel": 5851, + "Ġselber": 23888, + "Ġselbst": 13053, + "Ġseldom": 47717, + "Ġsele": 23264, + "Ġselect": 3048, + "Ġselected": 8209, + "Ġselecting": 18182, + "Ġselection": 9450, + "Ġselections": 47829, + "Ġselective": 33930, + "Ġself": 2698, + "Ġselfie": 22147, + "Ġselfies": 34814, + "Ġselfish": 19074, + "Ġsell": 3607, + "Ġseller": 23600, + "Ġsellers": 31276, + "Ġselling": 6511, + "Ġsells": 20897, + "Ġselon": 37391, + "Ġselv": 33277, + "Ġselves": 41900, + "Ġsem": 4361, + "Ġsemaine": 28681, + "Ġsemaines": 40715, + "Ġsemana": 20205, + "Ġsemanas": 42507, + "Ġsemantic": 47982, + "Ġsemb": 20775, + "Ġsembla": 49277, + "Ġsemble": 38328, + "Ġsemester": 11894, + "Ġsemi": 12909, + "Ġsemic": 27515, + "Ġsemicondu": 36924, + "Ġsemiconductor": 45310, + "Ġsemin": 18288, + "Ġseminar": 29235, + "Ġseminars": 43112, + "Ġsempre": 9553, + "Ġsemua": 28195, + "Ġsen": 3151, + "Ġsenate": 33609, + "Ġsenator": 24664, + "Ġsenators": 32221, + "Ġsencill": 46749, + "Ġsend": 2845, + "Ġsending": 7750, + "Ġsendiri": 39536, + "Ġsendo": 22589, + "Ġsends": 14790, + "Ġsenhor": 46464, + "Ġseni": 21897, + "Ġsenin": 19402, + "Ġsenior": 7965, + "Ġseniors": 21069, + "Ġsens": 2923, + "Ġsensation": 20069, + "Ġsensational": 47507, + "Ġsensations": 36642, + "Ġsense": 2020, + "Ġsenses": 17057, + "Ġsensible": 25380, + "Ġsensing": 30654, + "Ġsensit": 17039, + "Ġsensitive": 9477, + "Ġsensitivity": 19392, + "Ġsensor": 10200, + "Ġsensors": 14840, + "Ġsensory": 27233, + "Ġsent": 2279, + "Ġsente": 47214, + "Ġsentence": 8174, + "Ġsentenced": 30954, + "Ġsentences": 16579, + "Ġsentido": 19850, + "Ġsentiment": 16149, + "Ġsentimental": 42823, + "Ġsentiments": 41146, + "Ġsentir": 23963, + "Ġsenza": 36208, + "Ġsepar": 3128, + "Ġseparate": 4994, + "Ġseparated": 12005, + "Ġseparately": 14759, + "Ġseparates": 34149, + "Ġseparating": 29279, + "Ġseparation": 14634, + "Ġseper": 24418, + "Ġseperti": 28693, + "Ġsept": 23891, + "Ġsequ": 5123, + "Ġsequel": 20622, + "Ġsequence": 8310, + "Ġsequences": 22978, + "Ġsequencing": 32693, + "Ġsequential": 42881, + "Ġser": 816, + "Ġsera": 15021, + "Ġserait": 23139, + "Ġseres": 44721, + "Ġserge": 46463, + "Ġseria": 20809, + "Ġserial": 17436, + "Ġserie": 23030, + "Ġseries": 2638, + "Ġserio": 49531, + "Ġserious": 3156, + "Ġseriously": 6638, + "Ġseriousness": 44880, + "Ġsermon": 34610, + "Ġseront": 39400, + "Ġserpent": 38315, + "Ġsert": 38806, + "Ġserum": 32755, + "Ġserv": 1658, + "Ġservant": 17896, + "Ġservants": 21705, + "Ġserve": 4596, + "Ġserved": 7584, + "Ġserver": 7154, + "Ġservers": 15909, + "Ġserves": 13451, + "Ġservi": 37076, + "Ġservice": 2643, + "Ġservices": 3328, + "Ġservicio": 43078, + "Ġservicios": 42722, + "Ġserving": 8148, + "Ġservir": 29463, + "Ġserá": 16502, + "ĠserÃŃa": 23679, + "Ġses": 5385, + "Ġsesame": 21994, + "Ġsesi": 13315, + "Ġsesleri": 35700, + "Ġsession": 5481, + "Ġsessions": 11081, + "Ġset": 992, + "Ġsets": 6352, + "Ġsett": 5584, + "Ġsetting": 3287, + "Ġsettings": 6257, + "Ġsettle": 11852, + "Ġsettled": 14819, + "Ġsettlement": 18130, + "Ġsettlements": 35558, + "Ġsettlers": 43798, + "Ġsettling": 33841, + "Ġsetup": 8657, + "Ġsetups": 46832, + "Ġsetzen": 35877, + "Ġsetzt": 49099, + "Ġseu": 7986, + "Ġseul": 24448, + "Ġseule": 18800, + "Ġseulement": 27772, + "Ġseus": 17004, + "Ġsev": 15340, + "Ġseva": 42465, + "Ġseven": 3407, + "Ġsevent": 12100, + "Ġseventeen": 39532, + "Ġseventh": 17875, + "Ġseventy": 25662, + "Ġsever": 2802, + "Ġseveral": 2940, + "Ġsevere": 8922, + "Ġseverely": 26271, + "Ġseverity": 35179, + "Ġsevi": 43812, + "Ġsew": 15472, + "Ġsewer": 37079, + "Ġsewing": 19311, + "Ġsewn": 46946, + "Ġsex": 3260, + "Ġsext": 42826, + "Ġsexual": 6701, + "Ġsexuality": 25426, + "Ġsexually": 26791, + "Ġsexy": 13701, + "Ġseç": 43065, + "Ġseñ": 13830, + "Ġseñor": 22188, + "Ġseñora": 41094, + "Ġsf": 47095, + "Ġsh": 402, + "Ġsha": 3230, + "Ġshack": 40369, + "Ġshad": 5744, + "Ġshade": 11466, + "Ġshaded": 48067, + "Ġshades": 20639, + "Ġshading": 30556, + "Ġshadow": 8576, + "Ġshadows": 14740, + "Ġshady": 41853, + "Ġshaft": 18467, + "Ġshake": 10283, + "Ġshaken": 40971, + "Ġshakes": 37891, + "Ġshaking": 15415, + "Ġshaky": 44785, + "Ġshall": 4393, + "Ġshallow": 20488, + "Ġsham": 29758, + "Ġshame": 10069, + "Ġshameful": 49600, + "Ġshameless": 40164, + "Ġshampoo": 27484, + "Ġshap": 6706, + "Ġshape": 3909, + "Ġshaped": 13475, + "Ġshapes": 10854, + "Ġshaping": 25945, + "Ġshar": 16768, + "Ġshare": 2073, + "Ġshared": 5507, + "Ġshareholders": 33294, + "Ġshares": 12182, + "Ġsharing": 5414, + "Ġshark": 13327, + "Ġsharks": 26312, + "Ġsharp": 8199, + "Ġsharpen": 31570, + "Ġsharper": 44670, + "Ġsharply": 42893, + "Ġshattered": 35209, + "Ġshave": 25544, + "Ġshaved": 37980, + "Ġshaving": 36481, + "Ġshe": 750, + "Ġshear": 24082, + "Ġshed": 14951, + "Ġshedding": 49934, + "Ġsheep": 14213, + "Ġsheer": 23061, + "Ġsheet": 8193, + "Ġsheets": 15421, + "Ġshel": 9180, + "Ġshelf": 15222, + "Ġshell": 8720, + "Ġshells": 22523, + "Ġshelter": 13341, + "Ġshelters": 36643, + "Ġshelves": 24349, + "Ġshepherd": 40317, + "Ġsher": 29855, + "Ġsheriff": 37103, + "Ġshield": 10257, + "Ġshields": 33466, + "Ġshift": 5513, + "Ġshifted": 18892, + "Ġshifting": 17573, + "Ġshifts": 19201, + "Ġshimmer": 35088, + "Ġshin": 37124, + "Ġshine": 12207, + "Ġshines": 28056, + "Ġshining": 18269, + "Ġshiny": 16997, + "Ġship": 5374, + "Ġshipment": 49991, + "Ġshipped": 25312, + "Ġshipping": 14122, + "Ġships": 11434, + "Ġshirt": 8336, + "Ġshirts": 20832, + "Ġshit": 4611, + "Ġshitty": 30748, + "Ġsho": 2223, + "Ġshock": 5588, + "Ġshocked": 12763, + "Ġshocking": 18776, + "Ġshocks": 37066, + "Ġshoe": 12796, + "Ġshoes": 6654, + "Ġshook": 28438, + "Ġshoot": 3076, + "Ġshooter": 24680, + "Ġshooters": 45526, + "Ġshooting": 5942, + "Ġshootings": 44314, + "Ġshoots": 20704, + "Ġshop": 3945, + "Ġshopping": 8688, + "Ġshops": 14457, + "Ġshore": 17805, + "Ġshores": 44247, + "Ġshort": 2099, + "Ġshortage": 24708, + "Ġshortages": 46765, + "Ġshortcut": 24822, + "Ġshortcuts": 34620, + "Ġshorten": 39632, + "Ġshortened": 45183, + "Ġshorter": 11639, + "Ġshortest": 31875, + "Ġshortly": 13392, + "Ġshorts": 19848, + "Ġshot": 3347, + "Ġshotgun": 24734, + "Ġshots": 8305, + "Ġshould": 820, + "Ġshoulder": 7948, + "Ġshoulders": 10245, + "Ġshouldn": 4659, + "Ġshout": 8043, + "Ġshouted": 37310, + "Ġshouting": 20382, + "Ġshove": 35648, + "Ġshovel": 29789, + "Ġshow": 855, + "Ġshowc": 29794, + "Ġshowcase": 20388, + "Ġshowed": 4712, + "Ġshower": 10128, + "Ġshowers": 29499, + "Ġshowing": 4099, + "Ġshown": 4898, + "Ġshows": 3110, + "Ġshr": 9884, + "Ġshred": 21567, + "Ġshredded": 39091, + "Ġshrim": 13958, + "Ġshrimp": 15600, + "Ġshrine": 37812, + "Ġshrink": 23060, + "Ġshrinking": 41684, + "Ġshroud": 50077, + "Ġshuffle": 39426, + "Ġshut": 5309, + "Ġshutdown": 34927, + "Ġshuts": 48590, + "Ġshutter": 25517, + "Ġshutting": 36057, + "Ġshuttle": 26728, + "Ġshy": 12685, + "Ġsi": 1511, + "Ġsia": 25176, + "Ġsiamo": 33459, + "Ġsib": 35505, + "Ġsibling": 39409, + "Ġsiblings": 20571, + "Ġsic": 33579, + "Ġsich": 3041, + "Ġsicher": 18623, + "Ġsick": 4998, + "Ġsickness": 25611, + "Ġsid": 20822, + "Ġside": 1252, + "Ġsided": 41651, + "Ġsides": 4881, + "Ġsidewalk": 25360, + "Ġsideways": 26092, + "Ġsido": 14444, + "Ġsie": 2804, + "Ġsiebie": 39137, + "Ġsiege": 34147, + "Ġsieht": 14289, + "Ġsiellä": 42771, + "Ġsiempre": 12758, + "Ġsiendo": 31423, + "Ġsiento": 40340, + "Ġsiete": 40719, + "Ġsig": 4556, + "Ġsigh": 29472, + "Ġsighs": 44705, + "Ġsight": 7860, + "Ġsights": 29363, + "Ġsiglo": 48578, + "Ġsigma": 12771, + "Ġsign": 1465, + "Ġsignal": 6358, + "Ġsignaling": 38639, + "Ġsignals": 12354, + "Ġsignature": 13397, + "Ġsignatures": 32322, + "Ġsigned": 8175, + "Ġsignific": 3350, + "Ġsignifica": 19957, + "Ġsignificance": 17687, + "Ġsignificant": 4776, + "Ġsignificantly": 10591, + "Ġsigning": 13393, + "Ġsigns": 7880, + "Ġsigu": 21152, + "Ġsigue": 34532, + "Ġsigui": 39578, + "Ġsiguiente": 25666, + "Ġsih": 25821, + "Ġsiihen": 40581, + "Ġsiinä": 41464, + "Ġsiis": 47590, + "Ġsiitä": 32705, + "Ġsil": 3425, + "Ġsilence": 12239, + "Ġsilent": 12784, + "Ġsilently": 40087, + "Ġsilhouette": 38275, + "Ġsilic": 26484, + "Ġsilicon": 22848, + "Ġsilicone": 28778, + "Ġsilk": 24395, + "Ġsill": 37160, + "Ġsilly": 11774, + "Ġsilos": 48893, + "Ġsilver": 8753, + "Ġsim": 1034, + "Ġsimilar": 2531, + "Ġsimilarities": 24197, + "Ġsimilarity": 32194, + "Ġsimilarly": 14138, + "Ġsimmer": 29835, + "Ġsimpl": 6883, + "Ġsimple": 2199, + "Ġsimplement": 24208, + "Ġsimplemente": 33190, + "Ġsimpler": 18587, + "Ġsimples": 21730, + "Ġsimplesmente": 44482, + "Ġsimplest": 22811, + "Ġsimplicity": 25632, + "Ġsimplified": 26335, + "Ġsimplify": 20460, + "Ġsimplistic": 44199, + "Ġsimply": 2935, + "Ġsimulate": 27817, + "Ġsimulated": 41713, + "Ġsimulation": 16575, + "Ġsimulations": 35138, + "Ġsimulator": 32974, + "Ġsimult": 13899, + "Ġsimultaneous": 46218, + "Ġsimultaneously": 16561, + "Ġsin": 3343, + "Ġsina": 43400, + "Ġsince": 1670, + "Ġsincer": 30220, + "Ġsincere": 16941, + "Ġsincerely": 30694, + "Ġsincerity": 44040, + "Ġsind": 3290, + "Ġsine": 18609, + "Ġsinful": 41861, + "Ġsing": 1522, + "Ġsinger": 11564, + "Ġsingers": 24275, + "Ġsinging": 6726, + "Ġsingle": 2167, + "Ġsingles": 36334, + "Ġsings": 23250, + "Ġsingular": 20010, + "Ġsini": 30368, + "Ġsinister": 45727, + "Ġsink": 9500, + "Ġsinking": 28148, + "Ġsinks": 43162, + "Ġsinn": 47066, + "Ġsinner": 41293, + "Ġsinners": 41004, + "Ġsino": 18108, + "Ġsinon": 46035, + "Ġsins": 13815, + "Ġsint": 41259, + "Ġsinus": 41503, + "Ġsip": 29668, + "Ġsir": 4735, + "Ġsis": 26288, + "Ġsist": 10555, + "Ġsistem": 45758, + "Ġsistema": 13245, + "Ġsistemas": 48720, + "Ġsister": 4892, + "Ġsisters": 11589, + "Ġsit": 1394, + "Ġsitcom": 49530, + "Ġsite": 3621, + "Ġsites": 7533, + "Ġsitio": 40621, + "Ġsits": 12696, + "Ġsitt": 43709, + "Ġsitten": 23186, + "Ġsitter": 47335, + "Ġsitting": 3798, + "Ġsitu": 2054, + "Ġsituación": 29343, + "Ġsituated": 30143, + "Ġsituation": 2590, + "Ġsituations": 6851, + "Ġsituação": 36768, + "Ġsitzen": 44998, + "Ġsitzt": 49734, + "Ġsitä": 26838, + "Ġsix": 2309, + "Ġsixt": 13074, + "Ġsixteen": 27847, + "Ġsixth": 15102, + "Ġsixty": 21390, + "Ġsiz": 13723, + "Ġsize": 2744, + "Ġsized": 20004, + "Ġsizes": 11602, + "Ġsizi": 45327, + "Ġsizin": 36312, + "Ġsizing": 45435, + "Ġsizz": 43828, + "Ġsiè": 31302, + "Ġsiècle": 40830, + "ĠsiÄĻ": 3244, + "Ġsj": 20601, + "Ġsjäl": 30700, + "Ġsjälv": 39298, + "Ġsk": 1110, + "Ġska": 9958, + "Ġskal": 16890, + "Ġskate": 18237, + "Ġskateboard": 32204, + "Ġskating": 29103, + "Ġske": 8756, + "Ġskelet": 32321, + "Ġskeleton": 25204, + "Ġskeletons": 45538, + "Ġskept": 19128, + "Ġskeptical": 28601, + "Ġsket": 32804, + "Ġsketch": 12325, + "Ġsketches": 34547, + "Ġski": 14274, + "Ġskies": 25861, + "Ġskiing": 32326, + "Ġskill": 5389, + "Ġskilled": 19690, + "Ġskills": 3942, + "Ġskin": 3178, + "Ġskincare": 29461, + "Ġskinny": 25193, + "Ġskins": 27888, + "Ġskip": 10023, + "Ġskipped": 30193, + "Ġskipping": 31533, + "Ġskirt": 20134, + "Ġskirts": 48734, + "Ġskull": 11743, + "Ġskulle": 20750, + "Ġsky": 5443, + "Ġskys": 48227, + "Ġsl": 1061, + "Ġsla": 8039, + "Ġslab": 38616, + "Ġslack": 29767, + "Ġslam": 25617, + "Ġslammed": 50196, + "Ġslang": 42517, + "Ġslap": 21075, + "Ġslapped": 43309, + "Ġslash": 17330, + "Ġslate": 39118, + "Ġslaughter": 26609, + "Ġslave": 14777, + "Ġslavery": 15641, + "Ġslaves": 18394, + "Ġsle": 2426, + "Ġsled": 46242, + "Ġslee": 12931, + "Ġsleek": 43464, + "Ġsleep": 2817, + "Ġsleeping": 8296, + "Ġsleeps": 37991, + "Ġsleepy": 24908, + "Ġsleeve": 21138, + "Ġsleeves": 24555, + "Ġslept": 17400, + "Ġslic": 12377, + "Ġslice": 13153, + "Ġsliced": 27098, + "Ġslices": 19793, + "Ġslicing": 46586, + "Ġslick": 37406, + "Ġslide": 4137, + "Ġslider": 26046, + "Ġslides": 9788, + "Ġsliding": 21169, + "Ġslight": 4036, + "Ġslightest": 41040, + "Ġslightly": 4748, + "Ġslim": 25357, + "Ġslime": 20650, + "Ġslip": 11140, + "Ġslipp": 20129, + "Ġslipped": 28989, + "Ġslippers": 45670, + "Ġslippery": 28100, + "Ġslipping": 36779, + "Ġslips": 44690, + "Ġslit": 43182, + "Ġslog": 49760, + "Ġslogan": 33052, + "Ġslop": 21254, + "Ġslope": 13525, + "Ġslopes": 37725, + "Ġsloppy": 43684, + "Ġslot": 14747, + "Ġslots": 24266, + "Ġslow": 2964, + "Ġslowed": 32057, + "Ġslower": 14009, + "Ġslowing": 26958, + "Ġslowly": 5692, + "Ġslows": 35789, + "Ġslut": 41496, + "Ġsm": 899, + "Ġsmack": 36348, + "Ġsmall": 1359, + "Ġsmaller": 4356, + "Ġsmallest": 16998, + "Ġsmart": 4069, + "Ġsmarter": 20294, + "Ġsmartest": 41491, + "Ġsmartphone": 13307, + "Ġsmartphones": 26782, + "Ġsmash": 17960, + "Ġsmashed": 33269, + "Ġsmashing": 43316, + "Ġsme": 41818, + "Ġsmell": 4316, + "Ġsmelled": 40453, + "Ġsmelling": 35471, + "Ġsmells": 10036, + "Ġsmile": 7563, + "Ġsmiled": 35132, + "Ġsmiles": 28083, + "Ġsmiling": 16005, + "Ġsmo": 24101, + "Ġsmok": 32073, + "Ġsmoke": 8439, + "Ġsmoked": 27205, + "Ġsmokes": 49592, + "Ġsmoking": 14055, + "Ġsmooth": 5508, + "Ġsmoother": 28640, + "Ġsmoothie": 36328, + "Ġsmoothly": 19565, + "Ġsn": 2406, + "Ġsna": 14528, + "Ġsnack": 13288, + "Ġsnacks": 16160, + "Ġsnail": 42555, + "Ġsnake": 12650, + "Ġsnakes": 21817, + "Ġsnap": 13650, + "Ġsnapped": 41396, + "Ġsnapping": 42727, + "Ġsnaps": 19206, + "Ġsnapshot": 30163, + "Ġsnare": 45018, + "Ġsnatch": 46328, + "Ġsne": 9244, + "Ġsneak": 13164, + "Ġsneakers": 35331, + "Ġsneaking": 48525, + "Ġsneaky": 39518, + "Ġsneez": 49299, + "Ġsneeze": 50076, + "Ġsnel": 42582, + "Ġsniff": 31101, + "Ġsnip": 37482, + "Ġsniper": 32441, + "Ġsnipp": 35623, + "Ġsno": 43287, + "Ġsnow": 5756, + "Ġsnowball": 46143, + "Ġsnowfl": 44124, + "Ġsnug": 37069, + "Ġso": 370, + "Ġsoak": 22769, + "Ġsoaked": 27368, + "Ġsoaking": 40580, + "Ġsoap": 14587, + "Ġsob": 18253, + "Ġsober": 26212, + "Ġsobie": 13652, + "Ġsobre": 5473, + "Ġsoc": 13598, + "Ġsoccer": 15469, + "Ġsoci": 3075, + "Ġsociais": 45179, + "Ġsocial": 2093, + "Ġsociale": 41889, + "Ġsociales": 29623, + "Ġsocialism": 36112, + "Ġsocialist": 33981, + "Ġsocially": 21397, + "Ġsociaux": 47460, + "Ġsocied": 26445, + "Ġsociedad": 42306, + "Ġsociedade": 45789, + "Ġsociet": 14051, + "Ġsocietal": 33472, + "Ġsocieties": 19329, + "Ġsociety": 4086, + "Ġsocio": 44303, + "Ġsocioe": 46327, + "Ġsociology": 41744, + "Ġsociété": 32120, + "Ġsock": 35302, + "Ġsocket": 19741, + "Ġsocks": 17564, + "Ġsod": 15047, + "Ġsoda": 17192, + "Ġsodium": 20265, + "Ġsof": 37259, + "Ġsofa": 28668, + "Ġsofort": 33168, + "Ġsoft": 2787, + "Ġsoften": 31356, + "Ġsofter": 23119, + "Ġsoftly": 30832, + "Ġsoftware": 4722, + "Ġsog": 38440, + "Ġsogar": 19485, + "Ġsogen": 36479, + "Ġsogenan": 37467, + "Ġsoi": 46098, + "Ġsoient": 42711, + "Ġsoil": 6704, + "Ġsoils": 31324, + "Ġsoir": 27105, + "Ġsoit": 12703, + "Ġsok": 41513, + "Ġsol": 1404, + "Ġsola": 34162, + "Ġsolamente": 27814, + "Ġsolar": 7936, + "Ġsolche": 29813, + "Ġsolchen": 46281, + "Ġsold": 3718, + "Ġsolder": 38128, + "Ġsoldier": 15632, + "Ġsoldiers": 8892, + "Ġsole": 12321, + "Ġsolely": 23309, + "Ġsolem": 43519, + "Ġsolemn": 46694, + "Ġsolic": 23665, + "Ġsolid": 5100, + "Ġsolidarity": 27220, + "Ġsolids": 38536, + "Ġsolitary": 44155, + "Ġsoll": 7114, + "Ġsollen": 24713, + "Ġsollte": 18042, + "Ġsollten": 29096, + "Ġsolo": 6944, + "Ġsolu": 24807, + "Ġsolution": 3827, + "Ġsolutions": 6547, + "Ġsolve": 5039, + "Ġsolved": 13041, + "Ġsolvent": 33575, + "Ġsolves": 39890, + "Ġsolving": 12606, + "Ġsom": 3307, + "Ġsome": 512, + "Ġsomebody": 2618, + "Ġsomeday": 19412, + "Ġsomehow": 6063, + "Ġsomeone": 1580, + "Ġsomeplace": 37126, + "Ġsomet": 692, + "Ġsomethin": 39374, + "Ġsomething": 746, + "Ġsometime": 15053, + "Ġsometimes": 2171, + "Ġsomewhat": 8344, + "Ġsomewhere": 4079, + "Ġsomm": 41854, + "Ġsommes": 25232, + "Ġsomos": 25244, + "Ġson": 1872, + "Ġsondern": 11465, + "Ġsong": 2153, + "Ġsongs": 5781, + "Ġsonic": 48725, + "Ġsono": 9259, + "Ġsonra": 13800, + "Ġsons": 13476, + "Ġsonst": 26309, + "Ġsont": 4900, + "Ġsoon": 2321, + "Ġsooner": 15324, + "Ġsoort": 43168, + "Ġsoothing": 40704, + "Ġsoph": 12582, + "Ġsophistic": 15572, + "Ġsophisticated": 16950, + "Ġsophom": 32931, + "Ġsophomore": 35798, + "Ġsopr": 37375, + "Ġsoprattutto": 50002, + "Ġsor": 9359, + "Ġsorcer": 41349, + "Ġsore": 22468, + "Ġsorgen": 47972, + "Ġsorrow": 23027, + "Ġsorry": 2597, + "Ġsort": 1333, + "Ġsorta": 33425, + "Ġsorte": 25559, + "Ġsorted": 25462, + "Ġsortie": 45662, + "Ġsorting": 32411, + "Ġsortir": 26906, + "Ġsorts": 7527, + "Ġsos": 27226, + "Ġsost": 41585, + "Ġsotto": 43754, + "Ġsou": 6926, + "Ġsouff": 36966, + "Ġsought": 17532, + "Ġsouha": 45214, + "Ġsoul": 5133, + "Ġsouls": 16588, + "Ġsound": 1626, + "Ġsounded": 17714, + "Ġsounding": 24931, + "Ġsounds": 3263, + "Ġsoundtrack": 27029, + "Ġsoup": 7884, + "Ġsour": 11006, + "Ġsource": 4009, + "Ġsources": 7139, + "Ġsous": 16686, + "Ġsout": 29350, + "Ġsouth": 7377, + "Ġsoutheast": 39014, + "Ġsouthern": 13456, + "Ġsouthwest": 34363, + "Ġsouven": 46509, + "Ġsouvenir": 44361, + "Ġsouvent": 20847, + "Ġsovere": 17894, + "Ġsovereign": 28756, + "Ġsovereignty": 27862, + "Ġsow": 19766, + "Ġsowie": 35874, + "Ġsoy": 8812, + "Ġsoybean": 44227, + "Ġsoybeans": 46706, + "Ġsozial": 31541, + "Ġsozusagen": 33762, + "Ġsp": 637, + "Ġspa": 32543, + "Ġspac": 39404, + "Ġspace": 1901, + "Ġspacecraft": 22910, + "Ġspaced": 43766, + "Ġspaces": 7673, + "Ġspaceship": 39185, + "Ġspacing": 27739, + "Ġspacious": 36801, + "Ġspaghetti": 28556, + "Ġspam": 24028, + "Ġspan": 16174, + "Ġspann": 33360, + "Ġspannend": 49027, + "Ġspanning": 47626, + "Ġspans": 44086, + "Ġspar": 45954, + "Ġspare": 13798, + "Ġspared": 49577, + "Ġspark": 9908, + "Ġsparked": 39653, + "Ġsparkle": 48558, + "Ġsparkling": 39967, + "Ġsparks": 44102, + "Ġspat": 15000, + "Ġspatial": 23598, + "Ġspatula": 33072, + "Ġspawn": 17088, + "Ġspe": 768, + "Ġspeak": 1710, + "Ġspeaker": 8145, + "Ġspeakers": 9518, + "Ġspeaking": 4124, + "Ġspeaks": 10789, + "Ġspear": 26993, + "Ġspec": 1608, + "Ġspecial": 2121, + "Ġspecialist": 17008, + "Ġspecialists": 25476, + "Ġspecialize": 37938, + "Ġspecialized": 19813, + "Ġspecially": 22549, + "Ġspecialty": 22000, + "Ġspecies": 6172, + "Ġspecific": 2685, + "Ġspecifically": 4682, + "Ġspecification": 31256, + "Ġspecifications": 29448, + "Ġspecifics": 28454, + "Ġspecified": 22206, + "Ġspecify": 16500, + "Ġspecimen": 34204, + "Ġspecimens": 41007, + "Ġspecjal": 46433, + "Ġspecs": 27911, + "Ġspect": 6177, + "Ġspectacle": 37303, + "Ġspectacular": 18149, + "Ġspectral": 42761, + "Ġspectrum": 11143, + "Ġspeculate": 40775, + "Ġspeculation": 27696, + "Ġspeculative": 49415, + "Ġspeech": 6218, + "Ġspeeches": 29982, + "Ġspeechless": 48450, + "Ġspeed": 3073, + "Ġspeeding": 35593, + "Ġspeeds": 16411, + "Ġspel": 46486, + "Ġspell": 9827, + "Ġspelled": 34388, + "Ġspelling": 22254, + "Ġspells": 25053, + "Ġspend": 3496, + "Ġspending": 6434, + "Ġspends": 25620, + "Ġspent": 4418, + "Ġsper": 24152, + "Ġsperm": 32899, + "Ġspezie": 48682, + "Ġsphere": 16687, + "Ġspheres": 41225, + "Ġspherical": 37300, + "Ġspic": 41418, + "Ġspice": 19436, + "Ġspices": 19608, + "Ġspicy": 9127, + "Ġspider": 17614, + "Ġspiders": 32171, + "Ġspielen": 30950, + "Ġspielt": 39778, + "Ġspies": 45858, + "Ġspike": 21053, + "Ġspikes": 28997, + "Ġspill": 22044, + "Ġspilled": 37833, + "Ġspin": 6060, + "Ġspinach": 27784, + "Ġspinal": 28022, + "Ġspind": 44169, + "Ġspine": 15395, + "Ġspinner": 44849, + "Ġspinning": 15640, + "Ġspins": 31587, + "Ġspir": 10733, + "Ġspiral": 25165, + "Ġspirit": 3797, + "Ġspirits": 16388, + "Ġspiritual": 6960, + "Ġspirituality": 30637, + "Ġspiritually": 33430, + "Ġspit": 22127, + "Ġspite": 22794, + "Ġspl": 4732, + "Ġsplash": 25757, + "Ġsplashing": 45981, + "Ġsplend": 34350, + "Ġsplendid": 47575, + "Ġsplit": 7472, + "Ġsplits": 37741, + "Ġsplitting": 30348, + "Ġspo": 8243, + "Ġspoil": 18630, + "Ġspoiled": 32439, + "Ġspoiler": 26927, + "Ġspoilers": 32237, + "Ġspoke": 7179, + "Ġspoken": 10759, + "Ġspokes": 25378, + "Ġspokesperson": 45775, + "Ġspong": 50013, + "Ġsponge": 23134, + "Ġspons": 7330, + "Ġsponsor": 16198, + "Ġsponsored": 16621, + "Ġsponsoring": 30311, + "Ġsponsors": 22593, + "Ġsponsorship": 42922, + "Ġspont": 20795, + "Ġspontaneous": 32744, + "Ġspontaneously": 47632, + "Ġspooky": 30510, + "Ġspool": 48884, + "Ġspoon": 12453, + "Ġspoonful": 47114, + "Ġspoons": 36316, + "Ġspor": 43729, + "Ġsport": 7282, + "Ġsporting": 32366, + "Ġsports": 6573, + "Ġsporty": 45804, + "Ġspos": 20443, + "Ġsposób": 22904, + "Ġspot": 4008, + "Ġspotlight": 24656, + "Ġspots": 10681, + "Ġspotted": 21010, + "Ġspouse": 23013, + "Ġspouses": 49784, + "ĠspoÅĤec": 36851, + "Ġspr": 6103, + "Ġspraw": 22734, + "Ġsprawd": 46192, + "Ġspray": 8519, + "Ġsprayed": 40330, + "Ġspraying": 36658, + "Ġspre": 22269, + "Ġspread": 3974, + "Ġspreading": 15232, + "Ġspreads": 25728, + "Ġspreadshe": 23651, + "Ġspreadsheet": 27733, + "Ġsprechen": 27853, + "Ġspricht": 42088, + "Ġspring": 5587, + "Ġsprings": 24647, + "Ġsprink": 30885, + "Ġsprinkle": 24745, + "Ġsprint": 25075, + "Ġsprite": 43848, + "Ġsprout": 43728, + "Ġsprouts": 34628, + "Ġspun": 37038, + "Ġspur": 35657, + "Ġspy": 20752, + "Ġspäter": 24196, + "Ġspé": 31198, + "Ġspécial": 34141, + "Ġsqu": 2339, + "Ġsquad": 15310, + "Ġsquare": 3732, + "Ġsquared": 8889, + "Ġsquares": 19368, + "Ġsquash": 30725, + "Ġsquat": 24305, + "Ġsquats": 45055, + "Ġsque": 8447, + "Ġsqueez": 22390, + "Ġsqueeze": 13578, + "Ġsqueezed": 39470, + "Ġsqueezing": 36645, + "Ġsquid": 28015, + "Ġsquirrel": 28565, + "Ġsquish": 31379, + "Ġsquishy": 45402, + "Ġst": 342, + "Ġsta": 11135, + "Ġstaan": 38055, + "Ġstaat": 28836, + "Ġstab": 16343, + "Ġstabbed": 35726, + "Ġstabil": 11652, + "Ġstability": 11826, + "Ġstabilization": 35476, + "Ġstabilize": 31870, + "Ġstabilized": 48384, + "Ġstable": 8351, + "Ġstack": 8630, + "Ġstacked": 28867, + "Ġstacking": 41376, + "Ġstacks": 30792, + "Ġstad": 38408, + "Ġstadium": 18585, + "Ġstaff": 3525, + "Ġstaffing": 38918, + "Ġstage": 3233, + "Ġstaged": 45178, + "Ġstages": 10232, + "Ġstagger": 29656, + "Ġstaggering": 42974, + "Ġstaging": 41085, + "Ġstagn": 32853, + "Ġstain": 16441, + "Ġstained": 39924, + "Ġstainless": 24048, + "Ġstains": 40733, + "Ġstair": 22273, + "Ġstaircase": 35359, + "Ġstairs": 13471, + "Ġstake": 10407, + "Ġstakeholder": 43406, + "Ġstakeholders": 17779, + "Ġstakes": 28429, + "Ġstal": 49875, + "Ġstalk": 21789, + "Ġstall": 19633, + "Ġstalls": 50248, + "Ġstam": 29682, + "Ġstamina": 36690, + "Ġstamp": 9921, + "Ġstamped": 39111, + "Ġstamping": 41792, + "Ġstamps": 30800, + "Ġstan": 27984, + "Ġstance": 21033, + "Ġstand": 1463, + "Ġstandalone": 37454, + "Ġstandard": 3832, + "Ġstandardized": 31677, + "Ġstandards": 7787, + "Ġstandby": 50170, + "Ġstanding": 4877, + "Ġstandpoint": 15827, + "Ġstands": 7382, + "Ġstanie": 40013, + "Ġstap": 27284, + "Ġstaple": 32361, + "Ġstar": 3543, + "Ġstarch": 24748, + "Ġstare": 22432, + "Ġstared": 44738, + "Ġstaring": 18043, + "Ġstark": 17417, + "Ġstarred": 39438, + "Ġstarring": 30701, + "Ġstars": 6105, + "Ġstart": 722, + "Ġstarted": 1409, + "Ġstarter": 22465, + "Ġstarters": 35131, + "Ġstarting": 2891, + "Ġstartled": 48898, + "Ġstarts": 3719, + "Ġstartup": 18578, + "Ġstartups": 28041, + "Ġstarve": 46755, + "Ġstarving": 28420, + "Ġstat": 2219, + "Ġstata": 49554, + "Ġstate": 1785, + "Ġstated": 11323, + "Ġstatement": 5629, + "Ġstatements": 12363, + "Ġstates": 4368, + "Ġstatewide": 34487, + "Ġstatic": 13437, + "Ġstating": 26688, + "Ġstation": 5214, + "Ġstationary": 30452, + "Ġstationed": 46228, + "Ġstations": 13390, + "Ġstatist": 16012, + "Ġstatistic": 29588, + "Ġstatistical": 22820, + "Ġstatistically": 36478, + "Ġstatistics": 12523, + "Ġstato": 29657, + "Ġstats": 18152, + "Ġstatt": 25675, + "Ġstatue": 17385, + "Ġstatues": 29480, + "Ġstatus": 6558, + "Ġstatut": 35907, + "Ġstatute": 24774, + "Ġstatutory": 42037, + "Ġstay": 1754, + "Ġstayed": 9181, + "Ġstaying": 7939, + "Ġstays": 10834, + "Ġste": 2126, + "Ġstead": 23721, + "Ġsteadily": 36129, + "Ġsteady": 13211, + "Ġsteak": 17009, + "Ġsteal": 11009, + "Ġstealing": 19757, + "Ġsteals": 46962, + "Ġstealth": 25756, + "Ġsteam": 11952, + "Ġsteamed": 32375, + "Ġsteeds": 43603, + "Ġsteel": 8269, + "Ġsteep": 16841, + "Ġsteer": 30814, + "Ġsteering": 14823, + "Ġstehen": 19777, + "Ġsteht": 16361, + "Ġstell": 30787, + "Ġstellar": 42333, + "Ġstellen": 24407, + "Ġstellt": 38582, + "Ġstem": 12312, + "Ġstems": 27600, + "Ġsten": 28031, + "Ġstencil": 38670, + "Ġstep": 1823, + "Ġstepped": 15251, + "Ġstepping": 16821, + "Ġsteps": 4439, + "Ġster": 18924, + "Ġstere": 12730, + "Ġstereo": 29029, + "Ġstereoty": 41182, + "Ġstereotype": 38229, + "Ġstereotypes": 30853, + "Ġsteril": 41477, + "Ġstern": 38312, + "Ġstero": 36407, + "Ġsteroids": 45717, + "Ġstesso": 44413, + "Ġstew": 22654, + "Ġstewards": 36270, + "Ġstewardship": 50092, + "Ġstick": 2897, + "Ġsticker": 20400, + "Ġstickers": 21019, + "Ġsticking": 13465, + "Ġsticks": 12518, + "Ġsticky": 14470, + "Ġstiff": 15451, + "Ġstiffness": 37759, + "Ġstigma": 27880, + "Ġstill": 920, + "Ġstim": 8983, + "Ġstimmt": 37799, + "Ġstimul": 14572, + "Ġstimulate": 31269, + "Ġstimulating": 43671, + "Ġstimulation": 37405, + "Ġstimuli": 47752, + "Ġstimulus": 21366, + "Ġsting": 27175, + "Ġstink": 35843, + "Ġstinks": 50114, + "Ġstinky": 46449, + "Ġstip": 37001, + "Ġstir": 8946, + "Ġstirred": 49409, + "Ġstirring": 28650, + "Ġstitch": 5635, + "Ġstitched": 48992, + "Ġstitches": 13184, + "Ġstitching": 30714, + "Ġsto": 22784, + "Ġstock": 4127, + "Ġstocks": 12966, + "Ġstoked": 49145, + "Ġstol": 43553, + "Ġstole": 16326, + "Ġstolen": 15900, + "Ġstom": 9036, + "Ġstomach": 9665, + "Ġstone": 7581, + "Ġstones": 14083, + "Ġstood": 9371, + "Ġstool": 35086, + "Ġstop": 1590, + "Ġstopped": 5936, + "Ġstopping": 12767, + "Ġstops": 10094, + "Ġstor": 5967, + "Ġstora": 43323, + "Ġstorage": 6725, + "Ġstore": 3531, + "Ġstored": 12187, + "Ġstores": 9512, + "Ġstories": 3676, + "Ġstoring": 26085, + "Ġstorm": 7679, + "Ġstorms": 23288, + "Ġstory": 1657, + "Ġstoryline": 30828, + "Ġstoryt": 17541, + "Ġstorytelling": 21479, + "Ġstos": 43581, + "Ġstove": 19263, + "Ġstr": 1056, + "Ġstra": 2148, + "Ġstraight": 2997, + "Ġstraighten": 32777, + "Ġstraightforward": 15325, + "Ġstrain": 14249, + "Ġstrains": 39110, + "Ġstrand": 14955, + "Ġstranded": 44394, + "Ġstrands": 29664, + "Ġstrang": 24404, + "Ġstrange": 5861, + "Ġstrangely": 39851, + "Ġstranger": 18834, + "Ġstrangers": 22724, + "Ġstrap": 18359, + "Ġstraps": 26654, + "Ġstrat": 23674, + "Ġstrate": 5187, + "Ġstrateg": 5464, + "Ġstrategic": 10924, + "Ġstrategically": 38061, + "Ġstrategies": 9029, + "Ġstrategy": 5206, + "Ġstratég": 45023, + "Ġstraw": 10099, + "Ġstrawberries": 26873, + "Ġstrawberry": 20440, + "Ġstray": 36219, + "Ġstre": 2242, + "Ġstreak": 35634, + "Ġstream": 4309, + "Ġstreaming": 11791, + "Ġstreamline": 47141, + "Ġstreamlined": 48155, + "Ġstreams": 15842, + "Ġstreet": 4838, + "Ġstreets": 8481, + "Ġstrength": 3800, + "Ġstrengthen": 17045, + "Ġstrengthened": 38942, + "Ġstrengthening": 28224, + "Ġstrengths": 16986, + "Ġstress": 4244, + "Ġstressed": 14471, + "Ġstresses": 27732, + "Ġstressful": 19108, + "Ġstressing": 48233, + "Ġstret": 27678, + "Ġstretch": 5985, + "Ġstretched": 23563, + "Ġstretches": 29058, + "Ġstretching": 19632, + "Ġstretchy": 48865, + "Ġstri": 3575, + "Ġstrict": 10910, + "Ġstrictly": 20792, + "Ġstrike": 9302, + "Ġstrikes": 16750, + "Ġstriking": 18559, + "Ġstring": 6798, + "Ġstrings": 13985, + "Ġstrip": 12828, + "Ġstripe": 42957, + "Ġstripes": 27308, + "Ġstripped": 33221, + "Ġstrips": 19842, + "Ġstrive": 23829, + "Ġstriving": 36582, + "Ġstro": 8959, + "Ġstroke": 12403, + "Ġstrokes": 24493, + "Ġstroll": 42812, + "Ġstron": 45766, + "Ġstrong": 2068, + "Ġstronger": 7249, + "Ġstrongest": 16595, + "Ġstrongly": 10613, + "Ġstrony": 32406, + "Ġstruck": 13159, + "Ġstruct": 6594, + "Ġstructural": 15067, + "Ġstructure": 3877, + "Ġstructured": 18519, + "Ġstructures": 9227, + "Ġstrugg": 4312, + "Ġstruggle": 7799, + "Ġstruggled": 19023, + "Ġstruggles": 17592, + "Ġstruggling": 9314, + "Ġstrum": 47338, + "Ġstub": 20266, + "Ġstubborn": 24137, + "Ġstuck": 5541, + "Ġstud": 972, + "Ġstudent": 3107, + "Ġstudents": 1731, + "Ġstudied": 9454, + "Ġstudies": 5313, + "Ġstudio": 6811, + "Ġstudios": 24593, + "Ġstudy": 2979, + "Ġstudying": 7601, + "Ġstuff": 1507, + "Ġstuffed": 24092, + "Ġstuffing": 36046, + "Ġstuffs": 48719, + "Ġstuk": 46042, + "Ġstumble": 41302, + "Ġstumbled": 36668, + "Ġstump": 43164, + "Ġstun": 11885, + "Ġstunned": 35394, + "Ġstunning": 18550, + "Ġstunt": 33391, + "Ġstupid": 6631, + "Ġstur": 29249, + "Ġsturdy": 31506, + "Ġsty": 7952, + "Ġstyl": 23736, + "Ġstyle": 3758, + "Ġstyles": 13273, + "Ġstyling": 27944, + "Ġstylish": 30301, + "Ġstylist": 48544, + "Ġstär": 33527, + "ĠstÃ¥r": 37019, + "Ġstör": 42554, + "Ġsu": 459, + "Ġsua": 8233, + "Ġsuas": 23410, + "Ġsub": 1422, + "Ġsubconscious": 27389, + "Ġsubd": 31662, + "Ġsubdiv": 45331, + "Ġsubir": 34785, + "Ġsubject": 3983, + "Ġsubjected": 32153, + "Ġsubjective": 25972, + "Ġsubjects": 13066, + "Ġsubm": 8286, + "Ġsubmar": 23638, + "Ġsubmarine": 33995, + "Ġsubmarines": 48138, + "Ġsubmer": 36751, + "Ġsubmerged": 46985, + "Ġsubmission": 23689, + "Ġsubmissions": 40429, + "Ġsubmit": 10315, + "Ġsubmitted": 14405, + "Ġsubmitting": 31836, + "Ġsubs": 2090, + "Ġsubscri": 2325, + "Ġsubscribe": 3022, + "Ġsubscribed": 16665, + "Ġsubscriber": 26122, + "Ġsubscribers": 11092, + "Ġsubscribing": 19981, + "Ġsubscription": 17231, + "Ġsubscriptions": 44951, + "Ġsubsequ": 13924, + "Ġsubsequent": 19962, + "Ġsubsequently": 26514, + "Ġsubset": 25993, + "Ġsubsid": 20051, + "Ġsubsidi": 48296, + "Ġsubsidies": 38523, + "Ġsubsidy": 49636, + "Ġsubst": 4594, + "Ġsubstance": 12961, + "Ġsubstances": 25455, + "Ġsubstant": 11889, + "Ġsubstantial": 16726, + "Ġsubstantially": 30797, + "Ġsubstantive": 47113, + "Ġsubstit": 26441, + "Ġsubstitute": 15802, + "Ġsubstitution": 35827, + "Ġsubstrate": 27585, + "Ġsubt": 7257, + "Ġsubtit": 30706, + "Ġsubtitles": 42045, + "Ġsubtle": 13743, + "Ġsubtract": 16390, + "Ġsubur": 23519, + "Ġsuburban": 40138, + "Ġsuburbs": 34185, + "Ġsubway": 24953, + "Ġsuc": 1965, + "Ġsucc": 21578, + "Ġsucceed": 7754, + "Ġsucceeded": 20263, + "Ġsucceeding": 47912, + "Ġsucceeds": 49263, + "Ġsuccess": 2245, + "Ġsuccesses": 26101, + "Ġsuccessful": 4406, + "Ġsuccessfully": 10727, + "Ġsuccession": 36624, + "Ġsuccessive": 48043, + "Ġsuccessor": 31864, + "Ġsuced": 41928, + "Ġsuch": 1270, + "Ġsuchen": 44470, + "Ġsuck": 9967, + "Ġsucked": 26503, + "Ġsucker": 43259, + "Ġsucking": 38669, + "Ġsucks": 15846, + "Ġsuction": 40431, + "Ġsud": 3707, + "Ġsudah": 24940, + "Ġsudden": 3990, + "Ġsuddenly": 5800, + "Ġsue": 20416, + "Ġsued": 33864, + "Ġsuf": 46282, + "Ġsuff": 3889, + "Ġsuffer": 9753, + "Ġsuffered": 12770, + "Ġsuffering": 7755, + "Ġsuffers": 33776, + "Ġsufficient": 11563, + "Ġsufficiently": 31868, + "Ġsuficiente": 33958, + "Ġsug": 22802, + "Ġsugar": 5076, + "Ġsugars": 37551, + "Ġsugg": 3395, + "Ġsuggest": 3402, + "Ġsuggested": 10945, + "Ġsuggesting": 18094, + "Ġsuggestion": 16541, + "Ġsuggestions": 13396, + "Ġsuggests": 13409, + "Ġsuic": 28419, + "Ġsuicidal": 43243, + "Ġsuicide": 12308, + "Ġsuis": 7624, + "Ġsuit": 5722, + "Ġsuitable": 12873, + "Ġsuitcase": 34545, + "Ġsuite": 14205, + "Ġsuited": 24736, + "Ġsuits": 15278, + "Ġsuiv": 20751, + "Ġsuivre": 43404, + "Ġsujet": 23634, + "Ġsuk": 46432, + "Ġsuka": 39076, + "Ġsul": 17603, + "Ġsulf": 22925, + "Ġsulfur": 33831, + "Ġsulla": 33625, + "Ġsulph": 47286, + "Ġsum": 2408, + "Ġsumm": 8367, + "Ġsummar": 14611, + "Ġsummarize": 20858, + "Ġsummary": 12691, + "Ġsummation": 28811, + "Ġsummer": 4266, + "Ġsummers": 46474, + "Ġsummertime": 43785, + "Ġsummit": 21564, + "Ġsummon": 18714, + "Ġsummoned": 40791, + "Ġsums": 34499, + "Ġsun": 3295, + "Ġsund": 33047, + "Ġsunflower": 48215, + "Ġsung": 18829, + "Ġsunglasses": 28675, + "Ġsunk": 40564, + "Ġsunlight": 18379, + "Ġsunny": 20412, + "Ġsunrise": 33675, + "Ġsunscreen": 30304, + "Ġsunset": 20142, + "Ġsunshine": 25219, + "Ġsunt": 35171, + "Ġsuo": 34197, + "Ġsup": 9331, + "Ġsuper": 1687, + "Ġsuperb": 36617, + "Ġsupercom": 27839, + "Ġsupercomputer": 36708, + "Ġsuperfic": 23881, + "Ġsuperficial": 34622, + "Ġsuperhero": 19428, + "Ġsuperheroes": 45417, + "Ġsuperintendent": 38834, + "Ġsuperior": 13028, + "Ġsuperiority": 48668, + "Ġsupermarket": 25180, + "Ġsupernatural": 25678, + "Ġsuperpower": 45765, + "Ġsupers": 37906, + "Ġsuperst": 29423, + "Ġsuperstar": 38953, + "Ġsuperv": 37971, + "Ġsupervis": 34409, + "Ġsupervised": 46533, + "Ġsupervision": 32675, + "Ġsupervisor": 24610, + "Ġsupervisors": 42218, + "Ġsupp": 1003, + "Ġsupper": 44185, + "Ġsuppl": 9386, + "Ġsupplement": 15436, + "Ġsupplemental": 48604, + "Ġsupplements": 26645, + "Ġsupplied": 27625, + "Ġsupplier": 31909, + "Ġsuppliers": 29467, + "Ġsupplies": 11768, + "Ġsupply": 5847, + "Ġsupplying": 46815, + "Ġsupport": 1406, + "Ġsupported": 8104, + "Ġsupporter": 28600, + "Ġsupporters": 17683, + "Ġsupporting": 7231, + "Ġsupportive": 14435, + "Ġsupports": 9346, + "Ġsuppose": 7297, + "Ġsupposed": 3442, + "Ġsupposedly": 20581, + "Ġsuppress": 26835, + "Ġsuppressed": 42645, + "Ġsuppression": 36807, + "Ġsupre": 27283, + "Ġsuprem": 23710, + "Ġsupremacy": 35572, + "Ġsupreme": 27756, + "Ġsupuesto": 34177, + "Ġsur": 1022, + "Ġsure": 988, + "Ġsurely": 11468, + "Ġsurf": 9684, + "Ġsurface": 3753, + "Ġsurfaces": 16130, + "Ġsurfing": 34181, + "Ġsurg": 19560, + "Ġsurge": 18989, + "Ġsurgeon": 22913, + "Ġsurgeons": 42354, + "Ġsurgeries": 33455, + "Ġsurgery": 7930, + "Ġsurgical": 26646, + "Ġsurn": 39270, + "Ġsurname": 50152, + "Ġsurpass": 27650, + "Ġsurplus": 31019, + "Ġsurpr": 3083, + "Ġsurprise": 6365, + "Ġsurprised": 6100, + "Ġsurprises": 22655, + "Ġsurprising": 8830, + "Ġsurprisingly": 17600, + "Ġsurreal": 32513, + "Ġsurrend": 36862, + "Ġsurrender": 22185, + "Ġsurrendered": 48802, + "Ġsurround": 6262, + "Ġsurrounded": 13221, + "Ġsurrounding": 11498, + "Ġsurroundings": 25314, + "Ġsurrounds": 44576, + "Ġsurt": 18622, + "Ġsurtout": 19903, + "Ġsurv": 3940, + "Ġsurve": 11463, + "Ġsurveillance": 18475, + "Ġsurvey": 8984, + "Ġsurveys": 22711, + "Ġsurviv": 12324, + "Ġsurvival": 12559, + "Ġsurvive": 7867, + "Ġsurvived": 14433, + "Ġsurvives": 46231, + "Ġsurviving": 24948, + "Ġsurvivor": 25953, + "Ġsurvivors": 18369, + "Ġsus": 3291, + "Ġsuscept": 26104, + "Ġsusceptible": 31249, + "Ġsuscri": 40405, + "Ġsushi": 23022, + "Ġsusp": 6535, + "Ġsuspect": 9091, + "Ġsuspected": 26439, + "Ġsuspects": 35667, + "Ġsuspend": 42546, + "Ġsuspended": 23437, + "Ġsuspense": 47803, + "Ġsuspension": 15771, + "Ġsuspicion": 32020, + "Ġsuspicious": 17931, + "Ġsust": 5402, + "Ġsustain": 6769, + "Ġsustainability": 16360, + "Ġsustainable": 11235, + "Ġsustained": 23389, + "Ġsustaining": 49097, + "Ġsut": 43489, + "Ġsv": 17342, + "Ġsven": 48208, + "Ġsw": 1693, + "Ġswab": 49840, + "Ġswag": 42064, + "Ġswallow": 20099, + "Ġswallowed": 41769, + "Ġswamp": 31724, + "Ġswap": 18135, + "Ġswapped": 50011, + "Ġswarm": 49839, + "Ġswatch": 42362, + "Ġsway": 27555, + "Ġswe": 2484, + "Ġswear": 11902, + "Ġsweat": 11872, + "Ġsweater": 26550, + "Ġsweating": 25438, + "Ġsweats": 38712, + "Ġsweaty": 36044, + "Ġsweep": 22169, + "Ġsweeping": 33285, + "Ġsweet": 3844, + "Ġsweeter": 44323, + "Ġsweetheart": 36633, + "Ġsweetie": 40508, + "Ġsweetness": 25702, + "Ġsweets": 28680, + "Ġswell": 34251, + "Ġswelling": 33127, + "Ġswept": 31791, + "Ġswift": 29184, + "Ġswiftly": 49891, + "Ġswim": 7110, + "Ġswimming": 11989, + "Ġswims": 42357, + "Ġswing": 11173, + "Ġswinging": 29500, + "Ġswings": 32386, + "Ġswipe": 28170, + "Ġswirl": 30310, + "Ġswitch": 3679, + "Ġswitched": 16858, + "Ġswitches": 19458, + "Ġswitching": 16493, + "Ġswo": 13291, + "Ġswoje": 29489, + "ĠswojÄħ": 49194, + "Ġswollen": 37559, + "Ġsword": 10576, + "Ġswords": 26474, + "Ġsworn": 40068, + "Ġsy": 943, + "Ġsyll": 20223, + "Ġsyllable": 40151, + "Ġsyllables": 45364, + "Ġsyllabus": 48077, + "Ġsym": 6697, + "Ġsymb": 43700, + "Ġsymbol": 5986, + "Ġsymbolic": 25755, + "Ġsymbolism": 47061, + "Ġsymbols": 16944, + "Ġsymm": 14232, + "Ġsymmetric": 32330, + "Ġsymmetrical": 40360, + "Ġsymmetry": 25440, + "Ġsymp": 13240, + "Ġsympath": 22276, + "Ġsympathetic": 36032, + "Ġsympathy": 33240, + "Ġsympt": 7266, + "Ġsymptom": 29370, + "Ġsymptoms": 8332, + "Ġsyn": 5451, + "Ġsynagogue": 49169, + "Ġsync": 20271, + "Ġsynchron": 19331, + "Ġsynchronous": 44743, + "Ġsynd": 15198, + "Ġsyndrome": 19371, + "Ġsyner": 33781, + "Ġsynergy": 50163, + "Ġsynt": 23980, + "Ġsyntax": 28431, + "Ġsynth": 10657, + "Ġsynthes": 26617, + "Ġsynthesis": 30252, + "Ġsynthetic": 23420, + "Ġsyrup": 17852, + "Ġsyst": 20274, + "Ġsystem": 1185, + "Ġsystematic": 27249, + "Ġsystematically": 39531, + "Ġsystemic": 23789, + "Ġsystems": 3652, + "Ġsystème": 25142, + "Ġsytu": 28275, + "Ġsz": 7870, + "Ġszcz": 22090, + "Ġszczegól": 49624, + "Ġszer": 36160, + "Ġszy": 30526, + "Ġszyb": 36456, + "Ġsão": 8364, + "Ġsä": 15316, + "Ġsäga": 28013, + "Ġsäger": 37607, + "Ġsätt": 29503, + "ĠsÃ¥": 4719, + "ĠsÃ¥dan": 40989, + "Ġsé": 7910, + "Ġsécur": 32384, + "Ġsécurité": 37600, + "Ġsérie": 18416, + "Ġsì": 49267, + "Ġsó": 6238, + "Ġsólo": 22885, + "Ġsón": 25421, + "Ġsö": 12643, + "Ġsöy": 27543, + "Ġsöyl": 31222, + "Ġsöyle": 16928, + "Ġsöyled": 35909, + "Ġsöyleye": 35881, + "Ġsöz": 31667, + "Ġsú": 33075, + "Ġsúper": 43282, + "Ġsû": 15998, + "Ġsûr": 18143, + "Ġsü": 21218, + "Ġsür": 48014, + "ĠsÃŃ": 8600, + "Ġsı": 30201, + "Ġsık": 30046, + "Ġsır": 38572, + "ĠsÄĥ": 15446, + "ĠsÄħ": 9015, + "ĠsÅĤ": 15116, + "ĠsÅĤu": 48459, + "Ġsẽ": 17208, + "Ġsá»±": 33602, + "Ġsá»ij": 44983, + "Ġt": 256, + "Ġta": 1846, + "Ġtab": 4421, + "Ġtabii": 31430, + "Ġtable": 3199, + "Ġtables": 8020, + "Ġtablespoon": 22398, + "Ġtablespoons": 21615, + "Ġtablet": 14136, + "Ġtablets": 27622, + "Ġtabs": 20743, + "Ġtac": 25018, + "Ġtack": 9426, + "Ġtackle": 14896, + "Ġtackling": 34415, + "Ġtaco": 34101, + "Ġtacos": 34776, + "Ġtact": 9959, + "Ġtactic": 31012, + "Ġtactical": 26323, + "Ġtactics": 19454, + "Ġtactile": 47319, + "Ġtad": 29622, + "Ġtadi": 42953, + "Ġtag": 6162, + "Ġtagged": 40239, + "Ġtags": 18632, + "Ġtah": 23059, + "Ġtahu": 27294, + "Ġtahun": 34656, + "Ġtai": 20499, + "Ġtail": 6838, + "Ġtailor": 33068, + "Ġtailored": 34858, + "Ġtails": 28537, + "Ġtak": 991, + "Ġtaka": 28017, + "Ġtake": 747, + "Ġtakeaway": 30681, + "Ġtakeaways": 45584, + "Ġtaken": 2726, + "Ġtakes": 2516, + "Ġtaki": 20065, + "Ġtakich": 29607, + "Ġtakie": 15963, + "Ġtakiego": 32296, + "Ġtakiej": 38941, + "Ġtakim": 31732, + "Ġtaking": 1940, + "ĠtakÄħ": 31069, + "Ġtakże": 23306, + "Ġtal": 4023, + "Ġtale": 17172, + "Ġtalent": 8301, + "Ġtalented": 13467, + "Ġtalents": 19933, + "Ġtales": 27254, + "Ġtalk": 751, + "Ġtalked": 2825, + "Ġtalkin": 39243, + "Ġtalking": 1417, + "Ġtalks": 6686, + "Ġtall": 6764, + "Ġtaller": 22406, + "Ġtallest": 42075, + "Ġtalvez": 32320, + "Ġtam": 7677, + "Ġtama": 45342, + "Ġtamam": 18536, + "Ġtaman": 41500, + "Ġtamanho": 45645, + "Ġtamb": 3629, + "Ġtambién": 6407, + "Ġtambé": 22562, + "Ġtambém": 6274, + "Ġtame": 45774, + "Ġtamp": 21424, + "Ġtampoco": 36838, + "Ġtan": 7603, + "Ġtand": 35274, + "Ġtandem": 48120, + "Ġtane": 23233, + "Ġtang": 10266, + "Ġtangent": 27747, + "Ġtangible": 27094, + "Ġtangled": 47192, + "Ġtank": 5466, + "Ġtanks": 14022, + "Ġtant": 12095, + "Ġtanta": 40864, + "Ġtanto": 10331, + "Ġtao": 44292, + "Ġtap": 5119, + "Ġtapa": 42097, + "Ġtape": 7314, + "Ġtaped": 45673, + "Ġtaper": 36277, + "Ġtapes": 31349, + "Ġtapi": 23901, + "Ġtapped": 38693, + "Ġtapping": 21444, + "Ġtaps": 42536, + "Ġtar": 3112, + "Ġtara": 23837, + "Ġtaraf": 32536, + "Ġtard": 21057, + "Ġtarde": 27367, + "Ġtare": 49423, + "Ġtarget": 3779, + "Ġtargeted": 15045, + "Ġtargeting": 17918, + "Ġtargets": 12911, + "Ġtariffs": 39661, + "Ġtark": 44777, + "Ġtart": 22491, + "Ġtas": 8023, + "Ġtask": 5633, + "Ġtasked": 38621, + "Ġtasks": 9608, + "Ġtast": 2700, + "Ġtaste": 3939, + "Ġtasted": 25003, + "Ġtastes": 8666, + "Ġtasting": 26223, + "Ġtasty": 11535, + "Ġtat": 9600, + "Ġtatsächlich": 20796, + "Ġtatto": 12096, + "Ġtattoo": 15080, + "Ġtattoos": 28662, + "Ġtau": 17842, + "Ġtaught": 5928, + "Ġtav": 23214, + "Ġtava": 26777, + "Ġtavalla": 50132, + "Ġtax": 3366, + "Ġtaxation": 47072, + "Ġtaxes": 10041, + "Ġtaxi": 18984, + "Ġtaxpayer": 43204, + "Ġtaxpayers": 38205, + "Ġtay": 39224, + "ĠtaÅŁ": 37276, + "Ġtbsp": 25110, + "Ġte": 535, + "Ġtea": 5817, + "Ġteach": 2924, + "Ġteacher": 5027, + "Ġteachers": 6023, + "Ġteaches": 16876, + "Ġteaching": 4571, + "Ġteachings": 21037, + "Ġteam": 1469, + "Ġteamed": 47426, + "Ġteammate": 25467, + "Ġteammates": 20461, + "Ġteams": 5491, + "Ġteamwork": 30015, + "Ġtear": 12556, + "Ġtearing": 29401, + "Ġtears": 10462, + "Ġteas": 11488, + "Ġtease": 30444, + "Ġteaser": 35326, + "Ġteasing": 37720, + "Ġteaspoon": 17237, + "Ġteaspoons": 43996, + "Ġtech": 7553, + "Ġtechn": 1537, + "Ġtechnical": 6191, + "Ġtechnically": 12120, + "Ġtechnician": 38247, + "Ġtechnicians": 40885, + "Ġtechnique": 6532, + "Ġtechniques": 7512, + "Ġtechno": 36728, + "Ġtechnological": 18439, + "Ġtechnologies": 7943, + "Ġtechnology": 2899, + "Ġtecn": 20105, + "Ġtecnologia": 44905, + "ĠtecnologÃŃa": 48055, + "Ġted": 22337, + "Ġteddy": 45116, + "Ġtedious": 38284, + "Ġtee": 33863, + "Ġteen": 8921, + "Ġteenage": 26866, + "Ġteenager": 21440, + "Ġteenagers": 23618, + "Ġteens": 24849, + "Ġteeny": 48232, + "Ġteeth": 7798, + "Ġtegen": 30945, + "Ġtego": 8627, + "Ġteh": 32991, + "Ġtehd": 44812, + "Ġteil": 33200, + "Ġteilweise": 46748, + "Ġtej": 12573, + "Ġtek": 16624, + "Ġtekn": 32533, + "Ġtekrar": 45847, + "Ġtel": 15284, + "Ġtela": 29203, + "Ġtele": 4304, + "Ġtelef": 40616, + "Ġtelefon": 26812, + "Ġtelephone": 19800, + "Ġteleport": 28050, + "Ġteles": 18273, + "Ġtelescop": 37085, + "Ġtelescope": 26114, + "Ġtelescopes": 46051, + "Ġtelev": 49492, + "Ġtelevis": 40638, + "Ġtelevision": 8815, + "Ġtell": 980, + "Ġtellement": 28906, + "Ġtelling": 3585, + "Ġtells": 5112, + "Ġtem": 1383, + "Ġtema": 15854, + "Ġtemas": 40284, + "Ġtemat": 32954, + "Ġtemos": 14247, + "Ġtemp": 18274, + "Ġtemper": 3393, + "Ġtemperatura": 36903, + "Ġtemperature": 4292, + "Ġtemperatures": 12633, + "Ġtempl": 9100, + "Ġtemplate": 12379, + "Ġtemplates": 21165, + "Ġtemple": 10184, + "Ġtemples": 27431, + "Ġtempo": 8972, + "Ġtempor": 8219, + "Ġtemporada": 41983, + "Ġtemporal": 30881, + "Ġtemporarily": 23750, + "Ġtemporary": 13413, + "Ġtemps": 8827, + "Ġtempt": 13794, + "Ġtemptation": 30423, + "Ġtempted": 29941, + "Ġtempting": 37900, + "Ġtemu": 33346, + "Ġten": 2064, + "Ġtenant": 31000, + "Ġtenants": 31216, + "Ġtend": 3928, + "Ġtended": 34732, + "Ġtendencies": 45488, + "Ġtendency": 18187, + "Ġtender": 15036, + "Ġtendon": 46479, + "Ġtends": 12258, + "Ġtenemos": 9914, + "Ġtener": 11640, + "Ġteng": 10370, + "Ġtenga": 36031, + "Ġtengan": 46874, + "Ġtengo": 13989, + "Ġtenha": 28834, + "Ġtenho": 14291, + "Ġtenido": 33104, + "Ġtenim": 36012, + "Ġtenir": 30593, + "Ġtennis": 18118, + "Ġtens": 10688, + "Ġtense": 18760, + "Ġtension": 8980, + "Ġtensions": 28303, + "Ġtensor": 40863, + "Ġtent": 7054, + "Ġtentang": 43575, + "Ġtentar": 33572, + "Ġtenth": 27269, + "Ġtents": 39283, + "Ġtenure": 32256, + "ĠtenÃŃa": 23718, + "ĠtenÃŃan": 47596, + "Ġteor": 40238, + "Ġter": 1796, + "Ġteraz": 16854, + "Ġterce": 41385, + "Ġtercer": 38103, + "Ġteria": 45530, + "Ġterm": 1433, + "Ġterme": 36285, + "Ġtermin": 10761, + "Ġterminal": 14709, + "Ġterminals": 38579, + "Ġterminar": 36246, + "Ġterminology": 27575, + "Ġterms": 2115, + "Ġterr": 7245, + "Ġterra": 26298, + "Ġterrace": 47232, + "Ġterrain": 17674, + "Ġterre": 31815, + "Ġterrible": 6237, + "Ġterribly": 22903, + "Ġterrific": 20899, + "Ġterrified": 23051, + "Ġterrifying": 18106, + "Ġterrit": 8673, + "Ġterritor": 23484, + "Ġterritorial": 34888, + "Ġterritories": 25195, + "Ġterritory": 11360, + "Ġterror": 8127, + "Ġterrorism": 23917, + "Ġterrorist": 20342, + "Ġterrorists": 28330, + "Ġtert": 38726, + "Ġterug": 35020, + "Ġterus": 35977, + "Ġtes": 20018, + "Ġtest": 1500, + "Ġtestament": 35499, + "Ġteste": 49586, + "Ġtested": 8246, + "Ġtester": 36101, + "Ġtestified": 47639, + "Ġtestify": 31381, + "Ġtestim": 12600, + "Ġtestimon": 30963, + "Ġtestimony": 15634, + "Ġtesting": 4997, + "Ġtestoster": 29841, + "Ġtestosterone": 33417, + "Ġtests": 6921, + "Ġtet": 23319, + "Ġteu": 35280, + "Ġteve": 26628, + "Ġtext": 2487, + "Ġtextbook": 25591, + "Ġtextbooks": 33587, + "Ġtexted": 42553, + "Ġtextile": 42069, + "Ġtexting": 29897, + "Ġtexto": 35503, + "Ġtexts": 15765, + "Ġtexture": 8091, + "Ġtextured": 48656, + "Ġtextures": 24501, + "Ġteż": 9516, + "ĠteÅŁekkür": 44002, + "Ġth": 258, + "Ġtha": 43614, + "Ġthan": 813, + "Ġthank": 1309, + "Ġthanked": 48137, + "Ġthankful": 13611, + "Ġthankfully": 27352, + "Ġthanking": 30830, + "Ġthanks": 3231, + "Ġthat": 300, + "Ġthats": 16777, + "ĠthatÃŃs": 46493, + "Ġthe": 264, + "ĠtheCUBE": 40906, + "Ġtheat": 30982, + "Ġtheater": 10612, + "Ġtheaters": 28887, + "Ġtheatre": 18711, + "Ġtheatrical": 42806, + "Ġthee": 24800, + "Ġtheft": 28508, + "Ġtheir": 641, + "Ġtheirs": 22760, + "Ġthem": 552, + "Ġtheme": 6314, + "Ġthemed": 33920, + "Ġthemes": 13544, + "Ġthemselves": 2969, + "Ġthen": 550, + "Ġtheo": 40594, + "Ġtheological": 40725, + "Ġtheology": 27927, + "Ġtheor": 27423, + "Ġtheore": 10299, + "Ġtheorem": 20904, + "Ġtheoret": 14308, + "Ġtheoretical": 20864, + "Ġtheoretically": 29400, + "Ġtheories": 13667, + "Ġtheory": 5261, + "Ġtherap": 6793, + "Ġtherapeut": 26126, + "Ġtherapeutic": 30395, + "Ġtherapies": 32814, + "Ġtherapist": 19830, + "Ġtherapists": 36509, + "Ġtherapy": 9492, + "Ġthere": 456, + "Ġthereafter": 38729, + "Ġthereby": 28281, + "Ġtherefore": 4412, + "Ġtheres": 42551, + "Ġtherm": 8810, + "Ġthermal": 15070, + "Ġthermometer": 42539, + "Ġthese": 613, + "Ġthesis": 22288, + "Ġtheta": 9725, + "Ġthey": 436, + "Ġthi": 30994, + "Ġthick": 5060, + "Ġthicken": 33821, + "Ġthicker": 18142, + "Ġthickness": 14855, + "Ġthief": 23176, + "Ġthieves": 37057, + "Ġthigh": 27871, + "Ġthighs": 29207, + "Ġthin": 5862, + "Ġthing": 551, + "Ġthings": 721, + "Ġthink": 519, + "Ġthinkers": 37895, + "Ġthinking": 1953, + "Ġthinks": 7309, + "Ġthinly": 47337, + "Ġthinner": 21905, + "Ġthird": 2636, + "Ġthirds": 34552, + "Ġthirst": 34846, + "Ġthirsty": 28115, + "Ġthirteen": 31534, + "Ġthirty": 11790, + "Ġthis": 341, + "Ġtho": 27899, + "Ġthor": 11588, + "Ġthorough": 12934, + "Ġthoroughly": 17987, + "Ġthose": 729, + "Ġthou": 24757, + "Ġthough": 1673, + "Ġthought": 1194, + "Ġthoughtful": 21566, + "Ġthoughts": 4598, + "Ġthous": 3118, + "Ġthousand": 4714, + "Ġthousands": 5383, + "Ġthr": 739, + "Ġthread": 7207, + "Ġthreaded": 47493, + "Ġthreads": 19314, + "Ġthreat": 4734, + "Ġthreaten": 29864, + "Ġthreatened": 18268, + "Ġthreatening": 20768, + "Ġthreatens": 47511, + "Ġthreats": 14909, + "Ġthree": 1045, + "Ġthreshold": 14678, + "Ġthrew": 11918, + "Ġthri": 23949, + "Ġthrill": 32935, + "Ġthrilled": 18744, + "Ġthriller": 43009, + "Ġthrilling": 39347, + "Ġthrive": 21233, + "Ġthriving": 30643, + "Ġthroat": 12394, + "Ġthrone": 17678, + "Ġthrottle": 24235, + "Ġthrough": 807, + "Ġthroughout": 3710, + "Ġthroughput": 44629, + "Ġthrow": 3507, + "Ġthrowing": 10238, + "Ġthrown": 11732, + "Ġthrows": 19251, + "Ġthrust": 24030, + "Ġthu": 40295, + "Ġthumb": 9298, + "Ġthumbna": 21313, + "Ġthumbnail": 26746, + "Ġthumbnails": 46987, + "Ġthumbs": 8838, + "Ġthunder": 19898, + "Ġthunderstorm": 39618, + "Ġthus": 8807, + "Ġthy": 15196, + "Ġthyroid": 32332, + "Ġthé": 30448, + "Ġthì": 17510, + "Ġthôi": 34772, + "ĠthÃłnh": 39953, + "Ġthấy": 27793, + "Ġthế": 27100, + "Ġthứ": 47269, + "Ġthá»±c": 50183, + "Ġthá»ĥ": 24491, + "Ġthá»Ŀi": 49506, + "Ġti": 8757, + "Ġtick": 5204, + "Ġticket": 10550, + "Ġtickets": 12628, + "Ġticking": 33999, + "Ġticks": 42475, + "Ġtid": 9422, + "Ġtidak": 18943, + "Ġtide": 24662, + "Ġtiden": 44302, + "Ġtidy": 34646, + "Ġtie": 7582, + "Ġtied": 9601, + "Ġtief": 45100, + "Ġtiempo": 11772, + "Ġtien": 4902, + "Ġtiene": 7066, + "Ġtienen": 12536, + "Ġtienes": 20716, + "Ġtier": 12362, + "Ġtierra": 33416, + "Ġtiers": 40563, + "Ġties": 14039, + "Ġtiet": 37709, + "Ġtiger": 21432, + "Ġtigers": 47949, + "Ġtight": 4524, + "Ġtighten": 17041, + "Ġtightened": 49673, + "Ġtightening": 42217, + "Ġtighter": 30443, + "Ġtightly": 21952, + "Ġtijd": 26966, + "Ġtik": 44994, + "Ġtil": 8440, + "Ġtilde": 45046, + "Ġtile": 20590, + "Ġtiles": 21982, + "Ġtill": 4288, + "Ġtills": 46729, + "Ġtilt": 18446, + "Ġtilted": 43229, + "Ġtim": 524, + "Ġtimber": 34671, + "Ġtime": 565, + "Ġtimed": 44696, + "Ġtimeframe": 34830, + "Ġtimeless": 41200, + "Ġtimeline": 12933, + "Ġtimelines": 45886, + "Ġtimely": 25150, + "Ġtimer": 19247, + "Ġtimes": 1413, + "Ġtimest": 49108, + "Ġtiming": 10822, + "Ġtin": 15935, + "Ġtinc": 43240, + "Ġting": 17922, + "Ġtinha": 13574, + "Ġtinham": 47257, + "Ġtint": 28738, + "Ġtiny": 5870, + "Ġtio": 44735, + "Ġtip": 4125, + "Ġtipo": 9746, + "Ġtipos": 37105, + "Ġtipping": 41625, + "Ġtips": 6082, + "Ġtir": 13807, + "Ġtirar": 29239, + "Ġtire": 11756, + "Ġtired": 5868, + "Ġtires": 13885, + "Ġtiring": 35182, + "Ġtiro": 44188, + "Ġtiss": 10080, + "Ġtissue": 12404, + "Ġtissues": 27353, + "Ġtit": 3459, + "Ġtitanium": 35289, + "Ġtitle": 4876, + "Ġtitled": 19841, + "Ġtitles": 12992, + "Ġtitre": 44161, + "Ġtitt": 37419, + "Ġtive": 39242, + "Ġtiver": 31417, + "Ġtiế": 34923, + "Ġtiếp": 48667, + "Ġto": 281, + "Ġtoast": 15354, + "Ġtoasted": 48951, + "Ġtob": 20676, + "Ġtobacco": 22994, + "Ġtoc": 42565, + "Ġtoca": 43514, + "Ġtocar": 35631, + "Ġtoch": 22587, + "Ġtod": 4352, + "Ġtoda": 11687, + "Ġtodas": 10906, + "ĠtodavÃŃa": 28388, + "Ġtoday": 965, + "Ġtodd": 33268, + "Ġtoddler": 44348, + "Ġtodo": 5149, + "Ġtodos": 6321, + "Ġtoe": 13976, + "Ġtoen": 29911, + "Ġtoes": 14681, + "Ġtofu": 21419, + "Ġtoget": 1213, + "Ġtogether": 1214, + "Ġtogg": 26911, + "Ġtoggle": 31225, + "Ġtoi": 15648, + "Ġtoil": 9499, + "Ġtoilet": 11137, + "Ġtoilets": 37691, + "Ġtoim": 35590, + "Ġtok": 19164, + "Ġtoken": 14862, + "Ġtokens": 22667, + "Ġtold": 1907, + "Ġtoler": 11125, + "Ġtolerance": 23368, + "Ġtolerant": 45525, + "Ġtolerate": 25773, + "Ġtoll": 16629, + "Ġtom": 2916, + "Ġtoma": 39728, + "Ġtomar": 22048, + "Ġtomato": 9288, + "Ġtomatoes": 15135, + "Ġtomb": 18712, + "Ġtomorrow": 4153, + "Ġton": 2952, + "Ġtone": 8027, + "Ġtoner": 40403, + "Ġtones": 19995, + "Ġtong": 9124, + "Ġtongue": 10601, + "Ġtongues": 37490, + "Ġtonight": 4440, + "Ġtonnes": 41402, + "Ġtons": 9131, + "Ġtoo": 886, + "Ġtook": 1890, + "Ġtool": 2290, + "Ġtoolbar": 47715, + "Ġtoolbox": 44593, + "Ġtooling": 46593, + "Ġtoolkit": 40167, + "Ġtools": 3873, + "Ġtooth": 11680, + "Ġtoothbrush": 37568, + "Ġtoothp": 27003, + "Ġtoothpaste": 39956, + "Ġtop": 1192, + "Ġtopic": 4829, + "Ġtopics": 8378, + "Ġtopl": 41017, + "Ġtopp": 48433, + "Ġtopped": 38781, + "Ġtopping": 36676, + "Ġtoppings": 43052, + "Ġtops": 22836, + "Ġtor": 3930, + "Ġtorch": 27822, + "Ġtore": 37341, + "Ġtorment": 36662, + "Ġtorn": 10885, + "Ġtornado": 27935, + "Ġtornar": 41283, + "Ġtorpedo": 46764, + "Ġtorque": 16437, + "Ġtorso": 34917, + "Ġtort": 10806, + "Ġtortilla": 48857, + "Ġtorto": 50159, + "Ġtorture": 20711, + "Ġtortured": 36166, + "Ġtoss": 14432, + "Ġtossed": 42768, + "Ġtot": 1993, + "Ġtota": 40066, + "Ġtotal": 3217, + "Ġtotalement": 45203, + "Ġtotally": 3879, + "Ġtotalmente": 30865, + "Ġtote": 49019, + "Ġtots": 31661, + "Ġtou": 10095, + "Ġtouch": 2557, + "Ġtouchdown": 34459, + "Ġtouched": 9828, + "Ġtouches": 17431, + "Ġtouching": 11175, + "Ġtouchscreen": 46775, + "Ġtough": 4930, + "Ġtougher": 30298, + "Ġtoughest": 35037, + "Ġtoujours": 11936, + "Ġtour": 3512, + "Ġtouring": 32487, + "Ġtourism": 21832, + "Ġtourist": 19806, + "Ġtourists": 20273, + "Ġtournament": 13713, + "Ġtournaments": 32004, + "Ġtours": 22911, + "Ġtous": 8317, + "Ġtout": 3486, + "Ġtoute": 14953, + "Ġtoutes": 14437, + "Ġtow": 10966, + "Ġtoward": 7361, + "Ġtowards": 3030, + "Ġtowel": 15755, + "Ġtowels": 32819, + "Ġtower": 10567, + "Ġtowers": 25045, + "Ġtown": 3954, + "Ġtowns": 18104, + "Ġtox": 10357, + "Ġtoxic": 12786, + "Ġtoxicity": 45866, + "Ġtoxins": 36104, + "Ġtoy": 12058, + "Ġtoys": 13753, + "Ġtr": 504, + "Ġtra": 944, + "Ġtrabaj": 9618, + "Ġtrabajando": 40473, + "Ġtrabajar": 30793, + "Ġtrabajo": 18099, + "Ġtrabal": 12067, + "Ġtrabalh": 48180, + "Ġtrabalhar": 35531, + "Ġtrabalho": 20834, + "Ġtrace": 13508, + "Ġtraced": 38141, + "Ġtraces": 26076, + "Ġtracing": 25262, + "Ġtrack": 2837, + "Ġtracked": 31703, + "Ġtracker": 37516, + "Ġtracking": 11603, + "Ġtracks": 10218, + "Ġtract": 24207, + "Ġtraction": 23558, + "Ġtractor": 31857, + "Ġtrad": 2479, + "Ġtrade": 4923, + "Ġtraded": 27157, + "Ġtrademark": 31361, + "Ġtrader": 31961, + "Ġtraders": 26014, + "Ġtrades": 21287, + "Ġtradicional": 47956, + "Ġtrading": 9529, + "Ġtradition": 6994, + "Ġtraditional": 5164, + "Ġtraditionally": 19067, + "Ġtraditions": 15643, + "Ġtraff": 21073, + "Ġtraffic": 6419, + "Ġtrafficking": 25843, + "Ġtrag": 38282, + "Ġtraged": 16019, + "Ġtragedy": 18563, + "Ġtragen": 44737, + "Ġtragic": 20385, + "Ġtrail": 9924, + "Ġtrailer": 11724, + "Ġtrailers": 37698, + "Ġtrails": 23024, + "Ġtrain": 3847, + "Ġtrained": 8895, + "Ġtrainee": 40350, + "Ġtrainees": 41316, + "Ġtrainer": 21110, + "Ġtrainers": 35393, + "Ġtraining": 3097, + "Ġtrainings": 33856, + "Ġtrains": 16329, + "Ġtrait": 22538, + "Ġtraitor": 39819, + "Ġtraits": 19526, + "Ġtraject": 18257, + "Ġtrajectory": 21512, + "Ġtram": 25749, + "Ġtramp": 38605, + "Ġtran": 14404, + "Ġtranqu": 17640, + "Ġtranquil": 35337, + "Ġtrans": 1145, + "Ġtransact": 46688, + "Ġtransaction": 14425, + "Ġtransactions": 16856, + "Ġtransc": 43800, + "Ġtranscend": 28535, + "Ġtranscript": 24444, + "Ġtranscription": 35288, + "Ġtransf": 22666, + "Ġtransfer": 5003, + "Ġtransferred": 15809, + "Ġtransferring": 31437, + "Ġtransfers": 29137, + "Ġtransform": 4088, + "Ġtransformation": 9887, + "Ġtransformations": 34852, + "Ġtransformative": 36070, + "Ġtransformed": 16894, + "Ġtransformer": 31782, + "Ġtransforming": 27210, + "Ġtransforms": 35592, + "Ġtransgender": 27470, + "Ġtransient": 41998, + "Ġtransistor": 34750, + "Ġtransit": 17976, + "Ġtransition": 6034, + "Ġtransitional": 46452, + "Ġtransitioned": 47346, + "Ġtransitioning": 33777, + "Ġtransitions": 23767, + "Ġtransl": 5105, + "Ġtranslate": 13799, + "Ġtranslated": 16805, + "Ġtranslates": 28468, + "Ġtranslating": 35030, + "Ġtranslation": 12853, + "Ġtranslations": 37578, + "Ġtranslator": 35223, + "Ġtransluc": 45266, + "Ġtranslucent": 48236, + "Ġtransm": 7715, + "Ġtransmission": 11574, + "Ġtransmit": 17831, + "Ġtransmitted": 25355, + "Ġtransmitter": 40121, + "Ġtransp": 7132, + "Ġtransparen": 16165, + "Ġtransparency": 17131, + "Ġtransparent": 12737, + "Ġtransplant": 20662, + "Ġtransport": 5495, + "Ġtransportation": 11328, + "Ġtransported": 29373, + "Ġtransporting": 49302, + "Ġtranspose": 25167, + "Ġtrap": 11487, + "Ġtrapped": 14994, + "Ġtraps": 24173, + "Ġtras": 22507, + "Ġtrash": 11321, + "Ġtrat": 21507, + "Ġtrata": 31920, + "Ġtratar": 42549, + "Ġtraum": 16790, + "Ġtrauma": 11407, + "Ġtraumat": 35099, + "Ġtraumatic": 26456, + "Ġtrav": 11783, + "Ġtrava": 16020, + "Ġtravail": 18047, + "Ġtravaill": 38222, + "Ġtravaille": 41072, + "Ġtravailler": 30968, + "Ġtrave": 13938, + "Ġtravel": 3147, + "Ġtraveled": 16147, + "Ġtraveler": 46138, + "Ġtravelers": 35283, + "Ġtraveling": 9712, + "Ġtravelled": 31844, + "Ġtravelling": 20515, + "Ġtravels": 19863, + "Ġtravers": 23149, + "Ġtraverse": 45674, + "Ġtravés": 24463, + "Ġtray": 16027, + "Ġtrays": 47496, + "Ġtraz": 37481, + "Ġtrazer": 44776, + "Ġtre": 2192, + "Ġtread": 28286, + "Ġtreadmill": 46374, + "Ġtreasure": 12985, + "Ġtreasures": 31548, + "Ġtreasury": 47213, + "Ġtreat": 2387, + "Ġtreated": 8668, + "Ġtreaties": 48552, + "Ġtreating": 15083, + "Ġtreatment": 5032, + "Ġtreatments": 15795, + "Ġtreats": 19566, + "Ġtreaty": 24772, + "Ġtreball": 37999, + "Ġtreble": 43715, + "Ġtree": 4230, + "Ġtrees": 5852, + "Ġtreffen": 37620, + "Ġtrek": 33646, + "Ġtrem": 7813, + "Ġtremb": 37708, + "Ġtrembling": 47354, + "Ġtremend": 8706, + "Ġtremendous": 10048, + "Ġtremendously": 27985, + "Ġtren": 23136, + "Ġtrench": 39052, + "Ġtrenches": 48245, + "Ġtrend": 6028, + "Ġtrending": 28692, + "Ġtrends": 13892, + "Ġtrendy": 38596, + "Ġtres": 15890, + "Ġtresp": 46347, + "Ġtri": 1376, + "Ġtrial": 7308, + "Ġtrials": 12450, + "Ġtriang": 19335, + "Ġtriangle": 13369, + "Ġtriangles": 29896, + "Ġtriangular": 38190, + "Ġtrib": 15039, + "Ġtribal": 20958, + "Ġtribe": 17625, + "Ġtribes": 19035, + "Ġtribute": 24722, + "Ġtrick": 4282, + "Ġtricked": 39345, + "Ġtricks": 11733, + "Ġtricky": 12414, + "Ġtried": 3031, + "Ġtries": 9898, + "Ġtrif": 36956, + "Ġtrig": 35386, + "Ġtrigger": 7875, + "Ġtriggered": 21710, + "Ġtriggering": 40406, + "Ġtriggers": 22827, + "Ġtril": 26120, + "Ġtrillion": 18723, + "Ġtrilogy": 34030, + "Ġtrim": 10445, + "Ġtrimmed": 44563, + "Ġtrimming": 47212, + "Ġtrio": 37274, + "Ġtrip": 4931, + "Ġtriple": 15508, + "Ġtripod": 28020, + "Ġtrips": 16051, + "Ġtriste": 33526, + "Ġtriumph": 29156, + "Ġtrivia": 48770, + "Ġtrivial": 26703, + "Ġtro": 4495, + "ĠtrochÄĻ": 24926, + "Ġtrois": 19758, + "Ġtroisième": 47582, + "Ġtroll": 20680, + "Ġtrolls": 47749, + "Ġtrong": 18826, + "Ġtroop": 46400, + "Ġtroops": 11522, + "Ġtrop": 9006, + "Ġtroph": 45583, + "Ġtrophy": 28639, + "Ġtropical": 22857, + "Ġtror": 22109, + "Ġtros": 45692, + "Ġtrotzdem": 28325, + "Ġtrou": 3455, + "Ġtrouble": 5253, + "Ġtroubled": 29402, + "Ġtroubles": 15379, + "Ġtroublesome": 46838, + "Ġtroubling": 38080, + "Ġtrous": 34156, + "Ġtrousers": 41463, + "Ġtrout": 43978, + "Ġtrouve": 19359, + "Ġtrouver": 23546, + "Ġtrouvé": 37742, + "Ġtrov": 35449, + "Ġtruc": 14805, + "Ġtruck": 5898, + "Ġtrucks": 16156, + "Ġtrucs": 33505, + "Ġtrud": 32007, + "Ġtrue": 2074, + "Ġtruly": 4908, + "Ġtrump": 21779, + "Ġtrumpet": 35160, + "Ġtrunk": 19849, + "Ġtrust": 3361, + "Ġtrusted": 16034, + "Ġtrustees": 43234, + "Ġtrusting": 28235, + "Ġtrusts": 45358, + "Ġtrustworthy": 39714, + "Ġtruth": 3494, + "Ġtruthful": 44669, + "Ġtruths": 30079, + "Ġtry": 853, + "Ġtryin": 47452, + "Ġtrying": 1382, + "Ġtryna": 49597, + "Ġtrze": 22266, + "Ġtrzeba": 25860, + "Ġtrzy": 34573, + "Ġtrás": 46189, + "Ġträ": 33367, + "Ġtrès": 5732, + "Ġtrên": 33187, + "Ġtrês": 20779, + "ĠtrÆ°á»Ľc": 44860, + "Ġts": 35492, + "Ġtsp": 21438, + "Ġtsun": 34550, + "Ġtsunami": 39032, + "Ġtteokbokki": 47025, + "Ġtu": 2604, + "Ġtua": 33578, + "Ġtub": 10809, + "Ġtube": 9917, + "Ġtuber": 39847, + "Ġtubes": 21458, + "Ġtubing": 43349, + "Ġtuck": 18457, + "Ġtucked": 36089, + "Ġtud": 32602, + "Ġtudo": 9379, + "Ġtug": 33543, + "Ġtuh": 26849, + "Ġtuition": 23925, + "Ġtul": 30210, + "Ġtule": 27954, + "Ġtulee": 40038, + "Ġtum": 13102, + "Ġtumb": 42994, + "Ġtummy": 36974, + "Ġtumor": 22512, + "Ġtumors": 38466, + "Ġtun": 4267, + "Ġtuna": 26670, + "Ġtune": 10864, + "Ġtuned": 10870, + "Ġtunes": 38498, + "Ġtung": 41880, + "Ġtuning": 15164, + "Ġtunnel": 13186, + "Ġtunnels": 30804, + "Ġtuo": 45352, + "Ġtur": 3243, + "Ġturb": 18252, + "Ġturbine": 27536, + "Ġturbines": 44947, + "Ġturbo": 20902, + "Ġturbul": 27462, + "Ġturbulence": 48612, + "Ġturbulent": 41697, + "Ġturf": 42756, + "Ġturkey": 21551, + "Ġturmeric": 36774, + "Ġturmoil": 44554, + "Ġturn": 1261, + "Ġturnaround": 46114, + "Ġturned": 3574, + "Ġturning": 6246, + "Ġturnout": 42497, + "Ġturnover": 37137, + "Ġturns": 4523, + "Ġturret": 34544, + "Ġturtle": 22866, + "Ġturtles": 32422, + "Ġtus": 20647, + "Ġtussen": 50119, + "Ġtut": 3672, + "Ġtutaj": 12749, + "Ġtutor": 35613, + "Ġtutorial": 7073, + "Ġtutorials": 17616, + "Ġtutoring": 44410, + "Ġtutte": 38632, + "Ġtutti": 19822, + "Ġtutto": 23048, + "Ġtuv": 38177, + "Ġtuvo": 43718, + "Ġtv": 16364, + "ĠtvÃ¥": 34600, + "Ġtw": 683, + "Ġtwe": 6986, + "Ġtweak": 29879, + "Ġtweaks": 46664, + "Ġtwee": 30660, + "Ġtweet": 15258, + "Ġtweeted": 25646, + "Ġtweeting": 40090, + "Ġtweets": 25671, + "Ġtwelve": 14390, + "Ġtwent": 34041, + "Ġtwenties": 49398, + "Ġtwenty": 7699, + "Ġtwice": 6091, + "Ġtwin": 18397, + "Ġtwins": 22555, + "Ġtwist": 8203, + "Ġtwisted": 23057, + "Ġtwisting": 34491, + "Ġtwists": 35290, + "Ġtwitch": 34167, + "Ġtwitter": 21439, + "Ġtwo": 732, + "Ġtwor": 46288, + "Ġty": 1104, + "Ġtych": 15180, + "Ġtycker": 31053, + "Ġtying": 32405, + "Ġtyl": 13103, + "Ġtyle": 39293, + "Ġtylko": 13219, + "Ġtym": 8107, + "Ġtyp": 2125, + "Ġtype": 2010, + "Ġtyped": 33941, + "Ġtypes": 3467, + "Ġtypical": 7476, + "Ġtypically": 5850, + "Ġtyping": 18444, + "Ġtyr": 41108, + "Ġtyre": 44087, + "Ġtyres": 42564, + "Ġtys": 38156, + "Ġtyö": 43448, + "Ġtá": 7737, + "Ġtão": 18012, + "Ġtä": 14619, + "Ġtähän": 49580, + "Ġtäll": 37728, + "Ġtämä": 29962, + "Ġtän": 19790, + "Ġtänker": 43431, + "Ġtässä": 29934, + "Ġtät": 37039, + "Ġtätä": 50187, + "Ġtää": 38350, + "Ġté": 19809, + "Ġtéc": 25564, + "Ġtécnica": 45411, + "Ġtélé": 24254, + "Ġtéléphone": 47159, + "Ġtér": 39324, + "Ġtérmin": 45198, + "Ġtêm": 24277, + "Ġtête": 24661, + "Ġtô": 20683, + "Ġtôi": 22336, + "Ġtö": 37064, + "Ġtú": 15056, + "Ġtür": 39219, + "ĠtÃŃtulo": 43399, + "ĠtÄħ": 32294, + "ĠtÄĻ": 32489, + "Ġtại": 37773, + "Ġtừ": 26834, + "ĠtỼi": 47679, + "Ġu": 344, + "Ġub": 26709, + "Ġubiqu": 43868, + "Ġucz": 35403, + "Ġud": 11727, + "Ġuda": 44544, + "Ġudah": 25231, + "Ġug": 10743, + "Ġugh": 38560, + "Ġugly": 12246, + "Ġuh": 2232, + "Ġuhh": 29256, + "Ġuhhh": 38594, + "Ġuhm": 35007, + "Ġuit": 12528, + "Ġuk": 26769, + "Ġul": 20352, + "Ġult": 3725, + "Ġultimate": 9705, + "Ġultimately": 6284, + "Ġultra": 14808, + "Ġultras": 37072, + "Ġultrasound": 40895, + "Ġum": 1105, + "Ġuma": 2772, + "Ġumas": 46010, + "Ġumbre": 20158, + "Ġumbrella": 21925, + "Ġumm": 28397, + "Ġun": 517, + "Ġuna": 2002, + "Ġunable": 11299, + "Ġunacceptable": 31812, + "Ġunanim": 29710, + "Ġunanimously": 48733, + "Ġunas": 25405, + "Ġunatt": 47316, + "Ġunav": 36541, + "Ġunaware": 32065, + "Ġunbedingt": 41211, + "Ġunbel": 46063, + "Ġunbelievable": 16605, + "Ġunbelievably": 43593, + "Ġunbox": 20242, + "Ġunboxing": 26266, + "Ġunc": 6219, + "Ġuncertain": 11308, + "Ġuncertainty": 15697, + "Ġunch": 33686, + "Ġunchanged": 44553, + "Ġuncheck": 46672, + "Ġuncle": 9153, + "Ġunclear": 25636, + "Ġuncles": 47662, + "Ġuncom": 8585, + "Ġuncomfortable": 10532, + "Ġuncommon": 29289, + "Ġuncon": 35847, + "Ġuncond": 34959, + "Ġunconditional": 47916, + "Ġunconscious": 18900, + "Ġuncont": 36019, + "Ġuncover": 21694, + "Ġuncovered": 37729, + "Ġund": 674, + "Ġunde": 40981, + "Ġunder": 833, + "Ġundercover": 48099, + "Ġunderest": 24612, + "Ġunderestimate": 35826, + "Ġundergo": 26426, + "Ġundergoing": 40033, + "Ġundergrad": 14295, + "Ġundergraduate": 19113, + "Ġunderground": 14977, + "Ġunderlying": 14217, + "Ġunderm": 24188, + "Ġundermine": 39257, + "Ġunderneath": 7223, + "Ġunders": 16692, + "Ġunderscore": 37556, + "Ġunderside": 49511, + "Ġunderstand": 1223, + "Ġunderstandable": 25648, + "Ġunderstanding": 3701, + "Ġunderstands": 15146, + "Ġunderstood": 7320, + "Ġundert": 15564, + "Ġundertake": 37010, + "Ġundertaken": 40313, + "Ġundertaking": 39250, + "Ġunderwater": 20967, + "Ġunderway": 27534, + "Ġunderwear": 24941, + "Ġunderworld": 49607, + "Ġundes": 45667, + "Ġundo": 23779, + "Ġundocumented": 40472, + "Ġundoubtedly": 35211, + "Ġune": 2251, + "Ġuneasy": 48589, + "Ġunemploy": 14015, + "Ġunemployed": 34411, + "Ġunemployment": 17438, + "Ġuneven": 34022, + "Ġunex": 11572, + "Ġunexpected": 13106, + "Ġunexpectedly": 40452, + "Ġunf": 3971, + "Ġunfair": 17019, + "Ġunfamiliar": 29415, + "Ġunfinished": 41037, + "Ġunfold": 17980, + "Ġunfolding": 44586, + "Ġunfor": 31411, + "Ġunforgettable": 46194, + "Ġunfortunate": 17843, + "Ġunfortunately": 7015, + "Ġung": 29038, + "Ġungef": 31831, + "Ġungefähr": 41285, + "Ġunglaub": 49087, + "Ġunhappy": 22172, + "Ġunhealthy": 29147, + "Ġuni": 36435, + "Ġunicorn": 28122, + "Ġunified": 26787, + "Ġuniform": 9452, + "Ġuniformly": 48806, + "Ġuniforms": 37235, + "Ġunin": 43456, + "Ġunint": 29466, + "Ġunintended": 49902, + "Ġunintention": 45514, + "Ġuninter": 49234, + "Ġunion": 11671, + "Ġunions": 24914, + "Ġuniqu": 20763, + "Ġunique": 3845, + "Ġuniquely": 31474, + "Ġuniqueness": 48294, + "Ġunit": 4985, + "Ġunite": 29320, + "Ġunited": 18883, + "Ġunits": 6815, + "Ġunity": 18205, + "Ġunivers": 5950, + "Ġuniversal": 11455, + "Ġuniversally": 43995, + "Ġuniverse": 6445, + "Ġuniverses": 50168, + "Ġuniversities": 11779, + "Ġuniversity": 5454, + "Ġuniverso": 42332, + "Ġunjust": 37046, + "Ġunknown": 9841, + "Ġunknowns": 46048, + "Ġunl": 32118, + "Ġunle": 25272, + "Ġunleash": 49814, + "Ġunless": 5969, + "Ġunlike": 8343, + "Ġunlikely": 17518, + "Ġunlimited": 21950, + "Ġunload": 32165, + "Ġunlock": 11634, + "Ġunlocked": 30180, + "Ġunlocking": 49620, + "Ġunlucky": 38838, + "Ġunm": 19334, + "Ġunmute": 41445, + "Ġunnatural": 43470, + "Ġunnecess": 16799, + "Ġunnecessary": 19350, + "Ġunnie": 49665, + "Ġuno": 8526, + "Ġunos": 17780, + "Ġunp": 20994, + "Ġunpack": 26699, + "Ġunpl": 32816, + "Ġunpleasant": 29128, + "Ġunplug": 39456, + "Ġunpre": 19237, + "Ġunprecedented": 21555, + "Ġunpredict": 28341, + "Ġunpredictable": 31160, + "Ġunquote": 37557, + "Ġunravel": 40507, + "Ġunre": 20584, + "Ġunreal": 25754, + "Ġunrealistic": 42867, + "Ġunreasonable": 41730, + "Ġunrelated": 38967, + "Ġunrest": 35103, + "Ġuns": 2693, + "Ġunsafe": 35948, + "Ġunscrew": 42579, + "Ġunseen": 40608, + "Ġunser": 12977, + "Ġunsere": 14339, + "Ġunserem": 26792, + "Ġunseren": 25305, + "Ġunserer": 20965, + "Ġunsett": 43964, + "Ġunst": 18799, + "Ġunstable": 23742, + "Ġunstoppable": 48261, + "Ġunsuccess": 40501, + "Ġunsuccessful": 46258, + "Ġunsure": 32486, + "Ġunt": 1701, + "Ġunten": 25693, + "Ġunter": 8662, + "Ġunters": 20983, + "Ġunterschied": 30058, + "Ġunterstüt": 30007, + "Ġunterstützen": 43081, + "Ġunterwegs": 36258, + "Ġuntil": 1826, + "Ġunto": 16521, + "Ġuntuk": 12711, + "Ġunus": 10054, + "Ġunused": 44383, + "Ġunusual": 10901, + "Ġunut": 37997, + "Ġunve": 31009, + "Ġunveiled": 47430, + "Ġunw": 14853, + "Ġunwanted": 33745, + "Ġunwilling": 38246, + "Ġup": 493, + "Ġupbeat": 23593, + "Ġupbringing": 47268, + "Ġupcoming": 11500, + "Ġupd": 3460, + "Ġupdate": 5623, + "Ġupdated": 10588, + "Ġupdates": 9205, + "Ġupdating": 25113, + "Ġupfront": 30264, + "Ġupgrad": 17789, + "Ġupgrade": 11484, + "Ġupgraded": 24133, + "Ġupgrades": 24868, + "Ġupgrading": 36249, + "Ġuphill": 39132, + "Ġuphold": 34451, + "Ġuplift": 45407, + "Ġupload": 6580, + "Ġuploaded": 17135, + "Ġuploading": 27301, + "Ġuploads": 48611, + "Ġupon": 3564, + "Ġupp": 11775, + "Ġupper": 6597, + "Ġupright": 27405, + "Ġuprising": 49144, + "Ġups": 15497, + "Ġupset": 8340, + "Ġupsetting": 44109, + "Ġupside": 14119, + "Ġupstairs": 16462, + "Ġupstream": 33915, + "Ġupward": 23452, + "Ġupwards": 22167, + "Ġur": 4038, + "Ġuranium": 36830, + "Ġurban": 9681, + "Ġurg": 40199, + "Ġurge": 19029, + "Ġurged": 44206, + "Ġurgency": 29734, + "Ġurgent": 19022, + "Ġurgently": 49390, + "Ġurging": 48489, + "Ġurine": 27638, + "Ġus": 505, + "Ġusa": 29909, + "Ġusability": 46878, + "Ġusable": 29975, + "Ġusage": 14924, + "Ġusando": 29798, + "Ġusar": 14745, + "Ġuse": 764, + "Ġused": 1143, + "Ġuseful": 4420, + "Ġuseless": 14115, + "Ġuser": 4195, + "Ġusername": 30351, + "Ġusers": 5022, + "Ġuses": 4960, + "Ġusing": 1228, + "Ġuso": 22728, + "Ġust": 26189, + "Ġusted": 10467, + "Ġustedes": 17110, + "Ġusu": 32247, + "Ġusual": 7713, + "Ġusually": 2673, + "Ġut": 2839, + "Ġutan": 29011, + "Ġutens": 47294, + "Ġutil": 4976, + "Ġutilis": 33643, + "Ġutilise": 39475, + "Ġutiliser": 34535, + "Ġutilities": 30482, + "Ġutility": 14877, + "Ġutiliz": 19906, + "Ġutilizar": 24060, + "Ġutilization": 37074, + "Ġutilize": 16117, + "Ġutilized": 28158, + "Ġutilizing": 26775, + "Ġutilizz": 40355, + "Ġutmost": 42777, + "Ġutter": 17567, + "Ġutterly": 30251, + "Ġutveck": 39807, + "Ġuw": 23147, + "ĠuwagÄĻ": 43696, + "Ġuważ": 48089, + "Ġuy": 28266, + "Ġuz": 16851, + "ĠuÄŁ": 43222, + "Ġuży": 34097, + "Ġuž": 46803, + "Ġv": 371, + "Ġva": 2773, + "Ġvaak": 49644, + "Ġvaan": 47948, + "Ġvac": 2842, + "Ġvacant": 38890, + "Ġvacation": 12830, + "Ġvacc": 3900, + "Ġvaccin": 44931, + "Ġvaccinated": 14686, + "Ġvaccination": 16498, + "Ġvaccinations": 39333, + "Ġvaccine": 7007, + "Ġvaccines": 12164, + "Ġvacun": 38581, + "Ġvacuum": 14224, + "Ġvad": 16684, + "Ġvag": 13501, + "Ġvagina": 38963, + "Ġvague": 24247, + "Ġvagy": 32970, + "Ġvai": 4405, + "Ġvaig": 26571, + "Ġvain": 22240, + "Ġvais": 9369, + "Ġvak": 31647, + "Ġval": 1323, + "Ġvale": 15474, + "Ġvaleur": 45255, + "Ġvalid": 7363, + "Ġvalidate": 29562, + "Ġvalidated": 40693, + "Ġvalidation": 24071, + "Ġvalidity": 40943, + "Ġvallahi": 45338, + "Ġvalle": 40699, + "Ġvalley": 17636, + "Ġvalleys": 45614, + "Ġvalor": 15367, + "Ġvalores": 38790, + "Ġvalt": 45912, + "Ġvalu": 7332, + "Ġvaluable": 8263, + "Ġvaluation": 38546, + "Ġvalue": 2158, + "Ġvalued": 22608, + "Ġvalues": 4190, + "Ġvalve": 15294, + "Ġvalves": 34950, + "Ġvam": 41864, + "Ġvamos": 5295, + "Ġvamp": 20017, + "Ġvampire": 28592, + "Ġvampires": 45771, + "Ġvan": 3161, + "Ġvandaag": 41901, + "Ġvanilla": 17528, + "Ġvanish": 43584, + "Ġvanished": 37518, + "Ġvanity": 44622, + "Ġvantage": 46206, + "Ġvap": 29393, + "Ġvapor": 20358, + "Ġvar": 1374, + "Ġvara": 17234, + "Ġvard": 23065, + "Ġvardı": 36339, + "Ġvardır": 41312, + "Ġvari": 3034, + "Ġvariability": 35709, + "Ġvariable": 7006, + "Ġvariables": 9102, + "Ġvariance": 21977, + "Ġvariant": 17501, + "Ġvariants": 21669, + "Ġvarias": 37496, + "Ġvariation": 12990, + "Ġvariations": 17840, + "Ġvaried": 22877, + "Ġvaries": 21716, + "Ġvarieties": 22092, + "Ġvariety": 5673, + "Ġvarios": 33665, + "Ġvarious": 3683, + "Ġvarit": 31289, + "Ġvars": 46130, + "Ġvarsa": 48440, + "Ġvary": 10559, + "Ġvarying": 22984, + "Ġvas": 11481, + "Ġvase": 44065, + "Ġvast": 8369, + "Ġvastly": 41426, + "Ġvault": 27134, + "Ġvaya": 47682, + "Ġvaz": 37533, + "Ġve": 1241, + "Ġvec": 42021, + "Ġveces": 17054, + "Ġvector": 8062, + "Ġvectors": 18875, + "Ġved": 14267, + "Ġvedere": 35373, + "Ġveel": 16550, + "Ġveg": 24366, + "Ġvegan": 12824, + "Ġveget": 5764, + "Ġvegetable": 16356, + "Ġvegetables": 9320, + "Ġvegetarian": 25739, + "Ġvegetation": 28769, + "Ġvegg": 22644, + "Ġveggies": 27889, + "Ġveh": 4221, + "Ġvehicle": 5864, + "Ġvehicles": 8948, + "Ġveil": 30705, + "Ġvein": 30669, + "Ġveins": 29390, + "Ġveio": 41164, + "Ġvel": 14610, + "Ġveloc": 7806, + "Ġvelocidad": 50143, + "Ġvelocidade": 45181, + "Ġvelocity": 9269, + "Ġvelvet": 41905, + "Ġvem": 19053, + "Ġvemos": 20909, + "Ġven": 6138, + "Ġvend": 10169, + "Ġvender": 44281, + "Ġvendo": 33152, + "Ġvendor": 24321, + "Ġvendors": 22056, + "Ġvenge": 38008, + "Ġvengeance": 43818, + "Ġvenir": 20817, + "Ġvenom": 34322, + "Ġvent": 6931, + "Ġventil": 27498, + "Ġventilation": 29553, + "Ġvents": 40048, + "Ġventure": 18474, + "Ġvenue": 21645, + "Ġvenues": 32882, + "Ġveo": 41319, + "Ġver": 1306, + "Ġveramente": 50079, + "Ġverb": 9595, + "Ġverbal": 24781, + "Ġverbally": 48162, + "Ġverbess": 49112, + "Ġverbs": 30051, + "Ġverd": 6387, + "Ġverdad": 13692, + "Ġverdade": 15203, + "Ġverde": 29653, + "Ġverder": 47196, + "Ġverdi": 40243, + "Ġverdict": 33957, + "Ġvere": 16443, + "Ġverein": 49162, + "Ġverf": 40660, + "Ġverg": 20209, + "Ġverge": 37164, + "Ġvergessen": 42418, + "Ġverification": 30206, + "Ġverified": 31197, + "Ġverify": 16888, + "Ġverk": 22328, + "Ġverkl": 43403, + "Ġverl": 19441, + "Ġverlier": 49331, + "Ġverloren": 44884, + "Ġverm": 26319, + "Ġverme": 40064, + "Ġvern": 35793, + "Ġverr": 45923, + "Ġvers": 1774, + "Ġversa": 25650, + "Ġversatile": 25057, + "Ġversch": 20563, + "Ġverschied": 22263, + "Ġverschiedene": 35411, + "Ġverschiedenen": 41043, + "Ġverse": 7996, + "Ġverses": 17316, + "Ġversion": 3037, + "Ġversions": 9606, + "Ġversión": 47248, + "Ġverso": 49786, + "Ġverst": 48960, + "Ġverste": 22442, + "Ġverstehen": 37352, + "Ġversuchen": 34749, + "Ġversucht": 36064, + "Ġversus": 5717, + "Ġversão": 41471, + "Ġvert": 6509, + "Ġverte": 16167, + "Ġvertex": 28162, + "Ġvertical": 9429, + "Ġvertically": 28450, + "Ġvertices": 32053, + "Ġverw": 24615, + "Ġvery": 588, + "Ġverz": 43945, + "Ġverändert": 45990, + "Ġves": 28274, + "Ġvess": 11800, + "Ġvessel": 18098, + "Ġvessels": 20117, + "Ġvest": 15814, + "Ġvested": 49317, + "Ġvet": 12423, + "Ġveter": 8901, + "Ġveteran": 18324, + "Ġveterans": 14343, + "Ġveterinar": 47574, + "Ġveto": 42910, + "Ġveulent": 41826, + "Ġveure": 26060, + "Ġveut": 14873, + "Ġveux": 16389, + "Ġveya": 49223, + "Ġvez": 5715, + "Ġvezes": 12925, + "Ġvi": 1932, + "Ġvia": 5766, + "Ġviable": 22024, + "Ġviaje": 48932, + "Ġvib": 11666, + "Ġvibe": 14606, + "Ġvibes": 27636, + "Ġvibr": 11599, + "Ġvibrant": 21571, + "Ġvibrating": 47748, + "Ġvibration": 20006, + "Ġvibrations": 32339, + "Ġvic": 26031, + "Ġvice": 11964, + "Ġvicinity": 42387, + "Ġvicious": 30093, + "Ġvict": 4403, + "Ġvictim": 6760, + "Ġvictims": 11448, + "Ġvictories": 38259, + "Ġvictorious": 42557, + "Ġvictory": 9812, + "Ġvid": 7217, + "Ġvida": 7644, + "Ġvidare": 49324, + "Ġvide": 838, + "Ġvideo": 960, + "Ġvideog": 46801, + "Ġvideos": 2145, + "Ġvidé": 9543, + "Ġvidéo": 11660, + "Ġvidéos": 25417, + "Ġvie": 4941, + "Ġviel": 5891, + "Ġviele": 9693, + "Ġvielen": 19885, + "Ġvielleicht": 12547, + "Ġvielä": 36470, + "Ġviendo": 34506, + "Ġviene": 19561, + "Ġvienen": 49298, + "Ġviennent": 44458, + "Ġviens": 36421, + "Ġvient": 22876, + "Ġvier": 17634, + "Ġview": 1910, + "Ġviewed": 19174, + "Ġviewer": 16767, + "Ġviewers": 8499, + "Ġviewing": 17480, + "Ġviewpoint": 35248, + "Ġviews": 6809, + "Ġvig": 15366, + "Ġvigil": 39093, + "Ġvigilant": 45737, + "Ġvigor": 42396, + "Ġvikt": 26737, + "Ġviktig": 49706, + "Ġviktigt": 46150, + "Ġvil": 15349, + "Ġvill": 4284, + "Ġvilla": 46473, + "Ġvillage": 7288, + "Ġvillagers": 32080, + "Ġvillages": 20444, + "Ġvillain": 17906, + "Ġvillains": 31368, + "Ġville": 23019, + "Ġvimos": 49266, + "Ġvin": 27037, + "Ġvind": 20168, + "Ġvinden": 46089, + "Ġvine": 12755, + "Ġvinegar": 18030, + "Ġvino": 48841, + "Ġvintage": 23050, + "Ġvinyl": 25226, + "Ġviol": 3448, + "Ġviolate": 37478, + "Ġviolated": 33239, + "Ġviolating": 42201, + "Ġviolation": 22840, + "Ġviolations": 30405, + "Ġviolence": 6270, + "Ġviolent": 11867, + "Ġviolently": 46728, + "Ġviolet": 46480, + "Ġviolin": 22878, + "Ġvir": 4107, + "Ġviral": 16132, + "Ġvirgin": 26404, + "Ġvirt": 4480, + "Ġvirtual": 6374, + "Ġvirtually": 14103, + "Ġvirtue": 20816, + "Ġvirtues": 41106, + "Ġvirtuous": 48918, + "Ġvirus": 5752, + "Ġviruses": 21785, + "Ġvis": 1452, + "Ġvisa": 18589, + "Ġvisas": 45922, + "Ġviscos": 38297, + "Ġviscosity": 39744, + "Ġvisibility": 19883, + "Ġvisible": 8974, + "Ġvision": 5201, + "Ġvisionary": 49442, + "Ġvisions": 30746, + "Ġvisit": 3441, + "Ġvisited": 11220, + "Ġvisiting": 11700, + "Ġvisitor": 28222, + "Ġvisitors": 14315, + "Ġvisits": 17753, + "Ġvist": 40247, + "Ġvista": 22553, + "Ġvisto": 17558, + "Ġvisual": 5056, + "Ġvisualization": 25801, + "Ġvisualize": 23273, + "Ġvisually": 19622, + "Ġvisuals": 26035, + "Ġvisão": 49949, + "Ġvit": 9467, + "Ġvita": 32712, + "Ġvital": 11707, + "Ġvitam": 23617, + "Ġvitamin": 17163, + "Ġvitamins": 27920, + "Ġvite": 24462, + "Ġvitesse": 49573, + "Ġviu": 28383, + "Ġviv": 11005, + "Ġvive": 28927, + "Ġviver": 46280, + "Ġvivid": 23603, + "Ġvivir": 39656, + "Ġvivo": 30689, + "Ġvivre": 34248, + "Ġviá»ĩc": 38628, + "Ġvlog": 8917, + "Ġvlogging": 39117, + "Ġvlogs": 30575, + "Ġvo": 1650, + "Ġvoc": 2329, + "Ġvocabulary": 19864, + "Ġvocal": 11657, + "Ġvocals": 28441, + "Ġvocê": 2723, + "Ġvocês": 10522, + "Ġvodka": 35710, + "Ġvog": 31273, + "Ġvoi": 20931, + "Ġvoice": 3177, + "Ġvoiced": 42246, + "Ġvoices": 9802, + "Ġvoid": 22009, + "Ġvoila": 45565, + "ĠvoilÃł": 14624, + "Ġvoir": 10695, + "Ġvois": 18297, + "Ġvoit": 18164, + "Ġvoiture": 38859, + "Ġvoix": 37188, + "Ġvol": 1996, + "Ġvolatile": 34377, + "Ġvolatility": 25877, + "Ġvolcan": 31117, + "Ġvolcanic": 35813, + "Ġvolcano": 21979, + "Ġvolcanoes": 48221, + "Ġvole": 49877, + "Ġvoll": 15593, + "Ġvolley": 30951, + "Ġvolleyball": 35887, + "Ġvolont": 40005, + "Ġvolt": 5962, + "Ġvolta": 18765, + "Ġvoltage": 8352, + "Ġvoltages": 49614, + "Ġvoltar": 36291, + "Ġvolte": 37801, + "Ġvolts": 22322, + "Ġvolume": 5523, + "Ġvolumes": 22219, + "Ġvolunt": 17911, + "Ġvoluntarily": 41782, + "Ġvoluntary": 28563, + "Ġvolunte": 7662, + "Ġvolunteer": 13835, + "Ġvolunteered": 41213, + "Ġvolunteering": 33237, + "Ġvolunteers": 14352, + "Ġvolver": 33998, + "Ġvom": 10135, + "Ġvomit": 42374, + "Ġvomiting": 46234, + "Ġvon": 2957, + "Ġvont": 14362, + "Ġvontade": 47708, + "Ġvoor": 7358, + "Ġvor": 4245, + "Ġvorbei": 38881, + "Ġvorbere": 48391, + "Ġvorher": 29195, + "Ġvorne": 32025, + "Ġvors": 48432, + "Ġvorstellen": 34346, + "Ġvortex": 49113, + "Ġvos": 13845, + "Ġvost": 28944, + "Ġvot": 3478, + "Ġvote": 4740, + "Ġvoted": 13415, + "Ġvoter": 21722, + "Ġvoters": 14073, + "Ġvotes": 12068, + "Ġvoting": 10419, + "Ġvotre": 10087, + "Ġvou": 6008, + "Ġvouch": 31007, + "Ġvoud": 39520, + "Ġvoulais": 37242, + "Ġvoulez": 29072, + "Ġvous": 2630, + "Ġvow": 17033, + "Ġvowel": 29410, + "Ġvowels": 44972, + "Ġvoy": 7552, + "Ġvoyage": 30729, + "Ġvoyez": 31503, + "Ġvoz": 30005, + "Ġvra": 6070, + "Ġvraag": 46485, + "Ġvrai": 17815, + "Ġvraiment": 8322, + "Ġvrij": 45547, + "Ġvs": 12041, + "Ġvu": 9732, + "Ġvue": 32859, + "Ġvuel": 20126, + "Ġvuelta": 41542, + "Ġvul": 7452, + "Ġvull": 45977, + "Ġvulner": 8184, + "Ġvulnerabilities": 37633, + "Ġvulnerability": 24210, + "Ġvulnerable": 10955, + "Ġvur": 40797, + "Ġvy": 44766, + "Ġvá": 36625, + "Ġvárias": 30235, + "Ġvários": 29830, + "Ġvão": 18766, + "Ġvä": 12099, + "Ġvähän": 42702, + "Ġväl": 22974, + "Ġväldigt": 19888, + "Ġvär": 28187, + "ĠvÃ¥": 27748, + "ĠvÃ¥r": 26477, + "ĠvÃ¥ra": 41042, + "Ġvæ": 18836, + "Ġvære": 27458, + "Ġvé": 19050, + "Ġvéhic": 49438, + "Ġvér": 46919, + "Ġvérit": 30678, + "Ġvéritable": 47492, + "Ġvê": 30384, + "Ġvì": 37902, + "Ġvöllig": 35670, + "ĠvÃł": 10274, + "ĠvÃło": 24995, + "ĠvÃŃ": 6153, + "ĠvÃŃde": 6951, + "ĠvÃŃdeo": 8071, + "ĠvÃŃdeos": 20617, + "Ġvẫn": 49004, + "ĠváºŃy": 29738, + "Ġvá»ģ": 25652, + "Ġvá»ĭ": 45186, + "ĠvỼi": 18916, + "Ġw": 261, + "Ġwa": 5406, + "Ġwaar": 16618, + "Ġwack": 42138, + "Ġwaffle": 44328, + "Ġwag": 36854, + "Ġwage": 15444, + "Ġwages": 20097, + "Ġwagon": 34453, + "Ġwah": 31979, + "Ġwahr": 21628, + "Ġwahrscheinlich": 30957, + "Ġwai": 32883, + "Ġwaist": 15732, + "Ġwait": 1699, + "Ġwaited": 15240, + "Ġwaiter": 45389, + "Ġwaiting": 3806, + "Ġwaits": 40597, + "Ġwaiver": 42143, + "Ġwake": 6634, + "Ġwakes": 29610, + "Ġwaking": 20447, + "Ġwaktu": 44782, + "Ġwal": 21346, + "Ġwalk": 1792, + "Ġwalked": 7628, + "Ġwalking": 4494, + "Ġwalks": 12896, + "Ġwall": 2929, + "Ġwallet": 16599, + "Ġwallpaper": 43293, + "Ġwalls": 7920, + "Ġwalnut": 50136, + "Ġwam": 39104, + "Ġwan": 46930, + "Ġwand": 14304, + "Ġwander": 27541, + "Ġwandering": 26396, + "Ġwann": 38064, + "Ġwanna": 1948, + "Ġwant": 528, + "Ġwanted": 1415, + "Ġwanting": 7935, + "Ġwants": 2738, + "Ġwar": 1516, + "Ġward": 15234, + "Ġwardrobe": 29065, + "Ġware": 17464, + "Ġwarehouse": 22244, + "Ġwaren": 11931, + "Ġwarfare": 24490, + "Ġwarm": 4561, + "Ġwarmed": 38201, + "Ġwarmer": 21599, + "Ġwarming": 17983, + "Ġwarmth": 24737, + "Ġwarn": 12286, + "Ġwarned": 21284, + "Ġwarning": 9164, + "Ġwarnings": 30009, + "Ġwarp": 36030, + "Ġwarrant": 16354, + "Ġwarranty": 26852, + "Ġwarri": 13940, + "Ġwarrior": 20173, + "Ġwarriors": 25303, + "Ġwars": 13718, + "Ġwart": 45124, + "Ġwarten": 46907, + "Ġwarto": 31830, + "Ġwarum": 24331, + "Ġwary": 46585, + "Ġwas": 390, + "Ġwash": 5675, + "Ġwashed": 16300, + "Ġwasher": 29304, + "Ġwashes": 48616, + "Ġwashing": 13836, + "Ġwasn": 2067, + "Ġwast": 49075, + "Ġwaste": 5964, + "Ġwasted": 19496, + "Ġwastewater": 46418, + "Ġwasting": 20457, + "Ġwat": 6858, + "Ġwatch": 1159, + "Ġwatched": 6337, + "Ġwatches": 17062, + "Ġwatching": 1976, + "Ġwater": 1281, + "Ġwatercolor": 31727, + "Ġwaterfall": 27848, + "Ġwatering": 33028, + "Ġwatermelon": 26097, + "Ġwaterproof": 27974, + "Ġwaters": 12975, + "Ġwatershed": 49728, + "Ġwatery": 43015, + "Ġwatt": 31556, + "Ġwatts": 31247, + "Ġwave": 5772, + "Ġwaveform": 36512, + "Ġwavel": 22144, + "Ġwavelength": 22907, + "Ġwavelengths": 47424, + "Ġwaves": 9417, + "Ġwaving": 35347, + "Ġwax": 17352, + "Ġway": 636, + "Ġways": 2098, + "Ġważ": 27777, + "Ġważne": 46110, + "Ġwcze": 38533, + "ĠwczeÅĽniej": 40785, + "Ġwe": 321, + "Ġweak": 5336, + "Ġweaken": 48576, + "Ġweakened": 42613, + "Ġweaker": 24286, + "Ġweakest": 44001, + "Ġweakness": 12772, + "Ġweaknesses": 24381, + "Ġwealth": 7203, + "Ġwealthy": 17707, + "Ġweap": 4528, + "Ġweapon": 7463, + "Ġweapons": 7278, + "Ġwear": 3728, + "Ġwearing": 4769, + "Ġwears": 20877, + "Ġweary": 47853, + "Ġweather": 5503, + "Ġweave": 29145, + "Ġweaving": 40028, + "Ġweb": 3670, + "Ġwebcam": 39490, + "Ġwebinar": 10942, + "Ġwebinars": 26065, + "Ġwebpage": 37852, + "Ġwebs": 2859, + "Ġwebsite": 3144, + "Ġwebsites": 12891, + "Ġwed": 6393, + "Ġwedding": 8523, + "Ġweddings": 39617, + "Ġwedge": 34530, + "Ġwee": 32753, + "Ġweed": 20852, + "Ġweeds": 26370, + "Ġweek": 1243, + "Ġweekend": 6711, + "Ġweekends": 23595, + "Ġweekly": 12460, + "Ġweeks": 3259, + "Ġweer": 19662, + "Ġweet": 28991, + "Ġweg": 15565, + "Ġwegen": 32855, + "Ġweigh": 13843, + "Ġweighed": 32844, + "Ġweighing": 31986, + "Ġweighs": 24911, + "Ġweight": 3364, + "Ġweighted": 32807, + "Ġweights": 17443, + "Ġweil": 7689, + "Ġweird": 3657, + "Ġweirdest": 44807, + "Ġweirdly": 48931, + "Ġweit": 15306, + "Ġweiter": 8988, + "Ġweitere": 30020, + "Ġweiteren": 44036, + "Ġweiterhin": 42480, + "ĠweiÃŁ": 13385, + "Ġwel": 2214, + "Ġwelche": 24311, + "Ġwelcome": 2928, + "Ġwelcomed": 23668, + "Ġwelcoming": 17378, + "Ġweld": 13964, + "Ġwelded": 49227, + "Ġwelding": 25393, + "Ġwelfare": 17788, + "Ġwell": 731, + "Ġwellbeing": 29508, + "Ġwellness": 23913, + "Ġwells": 30984, + "Ġwelt": 43119, + "Ġwen": 11472, + "Ġwenig": 20911, + "Ġweniger": 23224, + "Ġwenn": 4797, + "Ġwent": 1437, + "Ġwer": 2612, + "Ġwerd": 37258, + "Ġwerde": 24866, + "Ġwerden": 4604, + "Ġwere": 645, + "Ġweren": 4999, + "Ġwerk": 37585, + "Ġwert": 47659, + "Ġwes": 38384, + "Ġwest": 7009, + "Ġwestern": 13231, + "Ġwet": 6630, + "Ġweten": 40759, + "Ġwh": 315, + "Ġwhack": 42877, + "Ġwhale": 25370, + "Ġwhales": 32403, + "Ġwhat": 437, + "Ġwhatever": 2035, + "Ġwhatnot": 25882, + "Ġwhats": 29625, + "Ġwhatsoever": 17076, + "Ġwhe": 3966, + "Ġwheat": 16691, + "Ġwheel": 5589, + "Ġwheelchair": 22945, + "Ġwheels": 10046, + "Ġwhen": 562, + "Ġwhenever": 5699, + "Ġwhere": 689, + "Ġwhereas": 9735, + "Ġwhereby": 36998, + "Ġwherein": 43531, + "Ġwherever": 8660, + "Ġwhether": 1968, + "Ġwhich": 597, + "Ġwhichever": 24123, + "Ġwhile": 1339, + "Ġwhilst": 18534, + "Ġwhim": 47271, + "Ġwhip": 22377, + "Ġwhipped": 27918, + "Ġwhipping": 45476, + "Ġwhirl": 35706, + "Ġwhirring": 36861, + "Ġwhis": 13641, + "Ġwhisk": 24485, + "Ġwhiskey": 34648, + "Ġwhisper": 26018, + "Ġwhispering": 42445, + "Ġwhistle": 23470, + "Ġwhistles": 49282, + "Ġwhit": 47548, + "Ġwhite": 2418, + "Ġwhites": 21909, + "Ġwho": 567, + "Ġwhoa": 13310, + "Ġwhoever": 11387, + "Ġwhole": 1379, + "Ġwholes": 34228, + "Ġwholesale": 43982, + "Ġwholly": 45157, + "Ġwhom": 7101, + "Ġwhooshing": 44825, + "Ġwhopping": 50043, + "Ġwhose": 6104, + "Ġwhy": 983, + "Ġwi": 26393, + "Ġwicht": 26244, + "Ġwichtig": 13621, + "Ġwichtige": 46276, + "Ġwichtiger": 48840, + "Ġwicked": 22663, + "Ġwid": 5274, + "Ġwide": 4874, + "Ġwidely": 13371, + "Ġwiden": 32552, + "Ġwider": 11842, + "Ġwides": 21516, + "Ġwidespread": 22679, + "Ġwidget": 34047, + "Ġwidgets": 43355, + "Ġwidow": 37207, + "Ġwidth": 11402, + "Ġwidz": 27486, + "Ġwie": 3355, + "Ġwied": 46894, + "Ġwieder": 6216, + "Ġwiel": 20570, + "Ġwield": 35982, + "Ġwiele": 33137, + "Ġwielu": 40437, + "Ġwiem": 26522, + "Ġwife": 3836, + "Ġwifi": 35246, + "Ġwig": 24094, + "Ġwiggle": 33377, + "Ġwij": 24770, + "Ġwil": 20501, + "Ġwild": 4868, + "Ġwilderness": 27613, + "Ġwildlife": 19199, + "Ġwildly": 34731, + "Ġwill": 486, + "Ġwillen": 35830, + "Ġwilling": 4950, + "Ġwillingly": 44675, + "Ġwillingness": 25069, + "Ġwillkommen": 46439, + "Ġwillst": 48355, + "Ġwilt": 45357, + "Ġwin": 1942, + "Ġwind": 2468, + "Ġwinding": 29775, + "Ġwindow": 4910, + "Ġwindows": 9309, + "Ġwinds": 17765, + "Ġwindshield": 39996, + "Ġwindy": 30330, + "Ġwine": 7209, + "Ġwines": 35970, + "Ġwing": 11162, + "Ġwings": 11405, + "Ġwink": 44212, + "Ġwinner": 8507, + "Ġwinners": 17193, + "Ġwinning": 8224, + "Ġwins": 10641, + "Ġwinter": 6355, + "Ġwip": 15887, + "Ġwipe": 14082, + "Ġwiped": 26879, + "Ġwipes": 41228, + "Ġwiping": 40611, + "Ġwir": 1987, + "Ġwird": 4578, + "Ġwire": 6234, + "Ġwired": 27415, + "Ġwireless": 14720, + "Ġwires": 15537, + "Ġwiring": 27520, + "Ġwirklich": 9696, + "Ġwis": 9074, + "Ġwisdom": 10712, + "Ġwise": 10829, + "Ġwisely": 37632, + "Ġwish": 3172, + "Ġwished": 25811, + "Ġwishes": 15065, + "Ġwishing": 30049, + "Ġwissen": 16331, + "Ġwit": 32161, + "Ġwitch": 14867, + "Ġwitches": 43467, + "Ġwith": 365, + "Ġwithd": 12483, + "Ġwithdraw": 14999, + "Ġwithdrawal": 30646, + "Ġwithdrawn": 48151, + "Ġwithhold": 48867, + "Ġwithin": 1951, + "Ġwithout": 1553, + "Ġwithstand": 31311, + "Ġwitness": 7286, + "Ġwitnessed": 21519, + "Ġwitnesses": 20217, + "Ġwitnessing": 39233, + "Ġwives": 24936, + "Ġwiz": 40808, + "Ġwizard": 25807, + "ĠwiÄĻ": 10469, + "ĠwiÄĻc": 16677, + "ĠwiÄĻcej": 26004, + "ĠwiÄĻks": 29968, + "Ġwn": 45368, + "Ġwo": 6020, + "Ġwoah": 37116, + "Ġwob": 33775, + "Ġwod": 47751, + "Ġwoh": 48471, + "Ġwohl": 24531, + "Ġwoj": 40758, + "Ġwok": 40022, + "Ġwoke": 12852, + "Ġwol": 20960, + "Ġwolf": 19216, + "Ġwoll": 8181, + "Ġwollen": 11253, + "Ġwollt": 45826, + "Ġwollte": 24509, + "Ġwollten": 46019, + "Ġwolves": 30404, + "Ġwom": 1579, + "Ġwoman": 3059, + "Ġwomb": 34310, + "Ġwomen": 2266, + "Ġwon": 1582, + "Ġwond": 2046, + "Ġwonder": 2441, + "Ġwondered": 17055, + "Ġwonderful": 3715, + "Ġwonderfully": 38917, + "Ġwondering": 6359, + "Ġwonders": 27348, + "Ġwont": 27524, + "Ġwoo": 21657, + "Ġwood": 4576, + "Ġwooden": 14744, + "Ġwoods": 15296, + "Ġwool": 24181, + "Ġwor": 469, + "Ġword": 1349, + "Ġworden": 14054, + "Ġwording": 47602, + "Ġwords": 2283, + "Ġwordt": 20365, + "Ġwore": 13857, + "Ġwork": 589, + "Ġworked": 2732, + "Ġworker": 11346, + "Ġworkers": 5600, + "Ġworkflow": 20993, + "Ġworkflows": 43461, + "Ġworkforce": 14201, + "Ġworking": 1364, + "Ġworkload": 20139, + "Ġworkloads": 32452, + "Ġworkout": 12169, + "Ġworkouts": 28300, + "Ġworkplace": 15328, + "Ġworks": 1985, + "Ġworksheet": 49890, + "Ġworkshop": 13541, + "Ġworkshops": 19162, + "Ġworkspace": 32706, + "Ġworld": 1002, + "Ġworldly": 40397, + "Ġworlds": 13401, + "Ġworldview": 41141, + "Ġworldwide": 13485, + "Ġworm": 23835, + "Ġworms": 28271, + "Ġworn": 15254, + "Ġworried": 5804, + "Ġworries": 16340, + "Ġworry": 3292, + "Ġworrying": 18788, + "Ġwors": 47567, + "Ġworse": 5324, + "Ġworsh": 35366, + "Ġworship": 9965, + "Ġworst": 5855, + "Ġworth": 3163, + "Ġworthless": 34857, + "Ġworthwhile": 28159, + "Ġworthy": 14829, + "Ġwould": 576, + "Ġwouldn": 2759, + "Ġwound": 10999, + "Ġwounded": 21906, + "Ġwounds": 21969, + "Ġwoven": 39221, + "Ġwow": 6076, + "Ġwp": 32444, + "Ġwprowad": 46733, + "Ġwr": 928, + "Ġwra": 7843, + "Ġwrap": 7019, + "Ġwrapped": 14226, + "Ġwrapper": 46906, + "Ġwrapping": 21993, + "Ġwraps": 25831, + "Ġwrath": 35496, + "Ġwre": 46674, + "Ġwreck": 21478, + "Ġwrench": 25406, + "Ġwrest": 12591, + "Ġwrestle": 43251, + "Ġwrestler": 47557, + "Ġwrestling": 19274, + "Ġwrinkles": 34822, + "Ġwrist": 15043, + "Ġwrists": 41876, + "Ġwrit": 10912, + "Ġwrite": 2464, + "Ġwriter": 9936, + "Ġwriters": 13491, + "Ġwrites": 13657, + "Ġwriting": 3579, + "Ġwritings": 30083, + "Ġwritten": 3720, + "Ġwrong": 2085, + "Ġwrote": 4114, + "Ġws": 37647, + "Ġwsp": 17757, + "Ġwspól": 47148, + "ĠwspóÅĤ": 39069, + "Ġwsz": 38322, + "Ġwszyscy": 44232, + "Ġwszyst": 10998, + "Ġwszystk": 14615, + "Ġwszystkich": 34234, + "Ġwszystkie": 31723, + "Ġwszystkim": 30481, + "Ġwszystko": 22607, + "Ġwt": 23105, + "Ġwtedy": 26959, + "Ġwunder": 47736, + "Ġwur": 8818, + "Ġwurde": 11191, + "Ġwurden": 21105, + "Ġwus": 42571, + "Ġwww": 12520, + "Ġwy": 4628, + "Ġwyb": 45780, + "Ġwyd": 25984, + "Ġwydaje": 49165, + "Ġwygl": 27947, + "ĠwyglÄħda": 32015, + "Ġwyk": 39287, + "Ġwykon": 46702, + "Ġwykor": 43606, + "Ġwym": 29764, + "Ġwyn": 31936, + "Ġwyp": 46392, + "Ġwys": 27062, + "Ġwyst": 48255, + "Ġwz": 24809, + "Ġwzgl": 48538, + "Ġwäh": 24787, + "Ġwährend": 33624, + "Ġwär": 45779, + "Ġwäre": 14558, + "Ġwären": 43933, + "Ġwün": 30841, + "Ġwür": 9195, + "Ġwürde": 11942, + "Ġwürden": 27621, + "ĠwÅĤ": 34696, + "ĠwÅĤa": 12326, + "ĠwÅĤas": 43572, + "ĠwÅĤaÅĽci": 40112, + "ĠwÅĤaÅĽciwie": 50108, + "ĠwÅĤaÅĽnie": 14234, + "Ġx": 2031, + "Ġxem": 47852, + "Ġxen": 49773, + "Ġxi": 36800, + "Ġxu": 41104, + "Ġy": 288, + "Ġya": 2478, + "Ġyacht": 39629, + "Ġyah": 38642, + "Ġyak": 18603, + "Ġyan": 17700, + "Ġyang": 5581, + "Ġyani": 11654, + "ĠyanlÄ±ÅŁ": 46763, + "Ġyap": 6143, + "ĠyapmÄ±ÅŁ": 47527, + "Ġyapt": 15799, + "Ġyapıl": 37009, + "Ġyapıyor": 46427, + "Ġyapıyorsun": 36964, + "Ġyar": 23793, + "Ġyard": 11682, + "Ġyards": 18685, + "Ġyardım": 38875, + "Ġyarn": 11400, + "Ġyat": 42734, + "Ġyay": 23986, + "Ġyaz": 20819, + "ĠyaÄŁ": 49210, + "ĠyaÅŁ": 16098, + "Ġye": 606, + "Ġyea": 24796, + "Ġyeah": 1338, + "Ġyear": 1064, + "Ġyearly": 39102, + "Ġyears": 924, + "Ġyeast": 21629, + "Ġyell": 20525, + "Ġyelled": 38023, + "Ġyelling": 18381, + "Ġyellow": 5566, + "Ġyells": 48543, + "Ġyem": 32525, + "Ġyemek": 41145, + "Ġyen": 21570, + "Ġyeni": 34320, + "Ġyep": 18633, + "Ġyer": 12954, + "Ġyerde": 45857, + "Ġyere": 42044, + "Ġyes": 2086, + "Ġyesterday": 5186, + "Ġyet": 1939, + "Ġyeter": 48398, + "Ġyeux": 36163, + "Ġyht": 48342, + "Ġyhte": 44876, + "Ġyield": 11257, + "Ġyields": 32168, + "Ġyine": 29088, + "Ġyn": 17861, + "Ġyo": 5290, + "Ġyog": 16570, + "Ġyoga": 15128, + "Ġyogurt": 20997, + "Ġyok": 9229, + "Ġyol": 16290, + "Ġyolk": 32464, + "Ġyolks": 47191, + "Ġyou": 291, + "Ġyoung": 2037, + "Ġyounger": 7037, + "Ġyoungest": 17747, + "Ġyoungsters": 49068, + "Ġyour": 428, + "Ġyours": 6342, + "Ġyourself": 1803, + "Ġyourselves": 14791, + "Ġyout": 11325, + "Ġyouth": 7503, + "Ġyoutube": 12487, + "Ġyoutuber": 37901, + "Ġyoutubers": 46325, + "Ġyr": 37739, + "Ġyuan": 28370, + "Ġyum": 26420, + "Ġyummy": 18576, + "Ġyup": 40073, + "Ġyêu": 49107, + "Ġyön": 42315, + "Ġyük": 37531, + "Ġyüz": 16162, + "Ġyüzden": 33454, + "Ġyıl": 31491, + "Ġz": 710, + "Ġza": 7949, + "Ġzab": 24838, + "Ġzac": 34430, + "Ġzach": 29303, + "Ġzaczy": 43811, + "Ġzad": 42788, + "Ġzag": 27001, + "Ġzaj": 33729, + "Ġzak": 23810, + "Ġzal": 29599, + "Ġzam": 19876, + "Ġzaman": 12180, + "Ġzap": 14223, + "Ġzar": 22675, + "Ġzas": 26530, + "Ġzasad": 44585, + "Ġzast": 36746, + "Ġzat": 35802, + "Ġzaten": 22089, + "Ġzaw": 28165, + "Ġzawsze": 30964, + "Ġzd": 16221, + "Ġzde": 49749, + "ĠzdjÄĻ": 49026, + "Ġzdrow": 49745, + "Ġze": 5277, + "Ġzebra": 47060, + "Ġzeg": 23631, + "Ġzeggen": 31633, + "Ġzehn": 33975, + "Ġzeigen": 24687, + "Ġzeigt": 29250, + "Ġzeit": 49367, + "Ġzeker": 43844, + "Ġzelf": 26172, + "Ġzen": 37097, + "Ġzer": 44746, + "Ġzero": 4018, + "Ġzeros": 35193, + "Ġzest": 37889, + "Ġzg": 40948, + "Ġzich": 31820, + "Ġzie": 16503, + "Ġziehen": 40645, + "Ġziem": 25986, + "Ġziemlich": 28901, + "Ġzien": 23735, + "Ġziet": 39827, + "Ġzig": 38290, + "Ġzij": 49311, + "Ġzijn": 8004, + "Ġzinc": 29062, + "Ġzip": 20730, + "Ġzipper": 29887, + "Ġzit": 25013, + "Ġzitten": 35242, + "Ġzm": 17020, + "Ġzmian": 43591, + "Ġzn": 15397, + "Ġznaczy": 36584, + "Ġznaj": 27318, + "Ġznajdu": 47570, + "Ġzo": 5721, + "Ġzoals": 40040, + "Ġzob": 25100, + "Ġzobaczy": 37273, + "Ġzod": 39979, + "Ġzomb": 13374, + "Ġzombie": 20310, + "Ġzombies": 24230, + "Ġzona": 24848, + "Ġzone": 6668, + "Ġzones": 16025, + "Ġzoning": 37184, + "Ġzoo": 25347, + "Ġzoom": 8863, + "Ġzooming": 48226, + "Ġzor": 22304, + "Ġzost": 31873, + "Ġzosta": 23154, + "Ġzou": 22934, + "Ġzrob": 44399, + "Ġzrobi": 24483, + "ĠzrobiÄĩ": 31785, + "Ġzu": 2164, + "Ġzucch": 36748, + "Ġzucchini": 44781, + "Ġzug": 33507, + "Ġzuk": 50151, + "Ġzul": 43238, + "Ġzum": 5919, + "Ġzumindest": 38082, + "ĠzupeÅĤnie": 49922, + "Ġzur": 7147, + "Ġzurück": 15089, + "Ġzus": 11548, + "Ġzusammen": 14311, + "Ġzust": 45034, + "Ġzw": 11873, + "Ġzwar": 19054, + "Ġzwe": 8733, + "Ġzwei": 12002, + "Ġzweite": 37456, + "Ġzweiten": 39943, + "Ġzwischen": 19875, + "ĠzwiÄħz": 27741, + "Ġzwr": 49111, + "Ġzwy": 43436, + "ĠzÅĤ": 31614, + "Ġ{": 10929, + "Ġ{\\": 18128, + "Ġ|": 18362, + "Ġ}": 49870, + "Ġ~": 11938, + "ĠÂ": 1815, + "Ġ¡": 6514, + "Ġ£": 14378, + "Ġ§": 49803, + "Ġ«": 4657, + "Ġ°": 31462, + "Ġ»": 8793, + "Ġ»,": 34319, + "Ġ».": 28082, + "Ġ»:": 40795, + "Ġ½": 32653, + "Ġ¿": 3841, + "ĠÃ": 690, + "Ġá": 7352, + "Ġágua": 23824, + "Ġár": 35349, + "Ġárea": 25701, + "Ġáreas": 48088, + "Ġâ": 20621, + "Ġä": 3078, + "Ġähnlich": 49696, + "Ġän": 26072, + "Ġänd": 24981, + "Ġändern": 47775, + "Ġär": 3775, + "Ġäven": 32669, + "ĠÃ¥": 8841, + "ĠÃ¥r": 19525, + "ĠÃ¥t": 39502, + "Ġç": 1844, + "Ġça": 2788, + "Ġçal": 16210, + "ĠçalÄ±ÅŁ": 18107, + "Ġçek": 22559, + "Ġçev": 45921, + "Ġçoc": 19156, + "Ġçocuk": 25216, + "ĠçocuÄŁ": 38914, + "Ġçok": 7343, + "Ġçünkü": 36336, + "Ġçık": 12208, + "Ġçıkar": 41097, + "Ġçıkt": 34462, + "Ġçıktı": 48378, + "Ġè": 4873, + "Ġé": 1136, + "Ġéc": 15175, + "Ġéch": 39310, + "Ġéconom": 31171, + "Ġéconomique": 49915, + "Ġécrit": 41700, + "Ġégal": 19540, + "Ġégalement": 20503, + "Ġél": 11810, + "Ġélect": 30996, + "Ġélé": 46502, + "Ġéléments": 49977, + "Ġén": 39315, + "Ġéner": 45045, + "Ġénorm": 27982, + "Ġénormément": 41595, + "Ġép": 21018, + "Ġépisode": 47285, + "Ġépo": 21354, + "Ġépoca": 25024, + "Ġéqu": 25830, + "Ġés": 5960, + "Ġét": 4823, + "Ġéta": 21325, + "Ġétaient": 25999, + "Ġétait": 11806, + "Ġétant": 41144, + "Ġété": 8862, + "Ġév": 20090, + "Ġévidemment": 24724, + "Ġéén": 39133, + "Ġê": 6203, + "Ġêtes": 18935, + "Ġêtre": 7418, + "Ġî": 11300, + "Ġîn": 15351, + "Ġînt": 43990, + "Ġñ": 34110, + "Ġó": 11857, + "Ġór": 44083, + "Ġót": 44490, + "Ġô": 24107, + "Ġông": 34835, + "Ġö": 4044, + "Ġöffentlich": 34603, + "Ġöl": 31854, + "Ġöld": 35419, + "Ġön": 12253, + "Ġönce": 22353, + "Ġönem": 31652, + "Ġönemli": 35154, + "Ġör": 39249, + "Ġöver": 23026, + "Ġöyle": 16528, + "Ġöz": 27010, + "ĠÃ¶ÄŁ": 24411, + "ĠÃ¶ÄŁren": 40283, + "Ġø": 43008, + "Ġú": 6991, + "Ġúlt": 11499, + "Ġúltima": 28118, + "Ġúltimo": 21013, + "Ġúltimos": 33013, + "Ġún": 17524, + "Ġúnica": 30104, + "Ġúnico": 26113, + "Ġútil": 49191, + "Ġü": 3304, + "Ġüber": 4502, + "Ġüberall": 38035, + "Ġüberhaupt": 20023, + "Ġübers": 45022, + "Ġüberzeug": 48598, + "Ġübrig": 32343, + "Ġübrigens": 38215, + "Ġül": 35073, + "Ġüst": 28816, + "Ġüz": 32145, + "Ġüzer": 25813, + "Ġüzerine": 43816, + "Ġüç": 29630, + "Ġý": 49291, + "Ġþ": 43219, + "ĠÃĢ": 19018, + "ĠÃģ": 24205, + "ĠÃĦ": 13700, + "ĠÃĦr": 34403, + "ĠÃħ": 43360, + "ĠÃĩ": 6256, + "ĠÃĩa": 11527, + "ĠÃĩok": 19243, + "ĠÃĩünkü": 26763, + "ĠÃĪ": 34495, + "ĠÃī": 4922, + "ĠÃīl": 34325, + "ĠÃīs": 16243, + "ĠÃīt": 40567, + "ĠÃītats": 44444, + "ĠÃİ": 46104, + "ĠÃĵ": 35232, + "ĠÃĶ": 40732, + "ĠÃĸ": 9158, + "ĠÃĸsterreich": 41423, + "ĠÃĸyle": 34883, + "ĠÃĸz": 47498, + "ĠÃľ": 10713, + "ĠÃľber": 18086, + "ĠÃł": 1531, + "ĠÃłs": 23763, + "ĠÃŃ": 18645, + "ĠÄ": 2127, + "ĠÄ°": 6601, + "ĠÄ°n": 47673, + "ĠÄ°ns": 45379, + "ĠÄ°s": 45053, + "ĠÄ°stanbul": 45822, + "ĠÄ°yi": 30786, + "ĠÄ°ÅŁ": 26605, + "ĠÄ°ÅŁte": 34757, + "ĠÄĥ": 26790, + "ĠÄĥn": 28657, + "ĠÄĩ": 45854, + "ĠÄį": 22392, + "ĠÄIJ": 13055, + "ĠÄIJây": 45672, + "ĠÄij": 2934, + "ĠÄijang": 30723, + "ĠÄiji": 13264, + "ĠÄijiá»ģu": 42082, + "ĠÄijâu": 35433, + "ĠÄijây": 20199, + "ĠÄijã": 17283, + "ĠÄijó": 17647, + "ĠÄijược": 15832, + "ĠÄijấy": 39370, + "ĠÄijầu": 32573, + "ĠÄijến": 26353, + "ĠÄijá»ĥ": 20081, + "ĠÄijá»ĭ": 42063, + "ĠÄijá»Ļ": 29075, + "ĠÄijá»Ļng": 46880, + "ĠÅ": 4423, + "ĠÅ¡": 22552, + "Ġź": 50212, + "ĠÅ»": 29804, + "ĠÅ»e": 46864, + "Ġż": 19625, + "Ġżad": 39628, + "Ġże": 3561, + "Ġżeby": 11316, + "Ġży": 16136, + "Ġżycia": 44343, + "Ġżycie": 43202, + "Ġž": 17305, + "Ġže": 25178, + "ĠÅģ": 36901, + "ĠÅĤ": 25387, + "ĠÅĤad": 47910, + "ĠÅĤat": 47759, + "ĠÅĵ": 48360, + "ĠÅļ": 27933, + "ĠÅĽ": 8299, + "ĠÅĽm": 46991, + "ĠÅĽrod": 28580, + "ĠÅĽwi": 21485, + "ĠÅĽwiat": 36425, + "ĠÅĽwie": 40078, + "ĠÅŀ": 7918, + "ĠÅŀey": 43171, + "ĠÅŀimdi": 17734, + "ĠÅŀu": 33583, + "ĠÅŁ": 3382, + "ĠÅŁeh": 49755, + "ĠÅŁek": 18850, + "ĠÅŁekilde": 23537, + "ĠÅŁey": 6517, + "ĠÅŁeyi": 31735, + "ĠÅŁeyler": 28863, + "ĠÅŁimdi": 16391, + "ĠÅŁu": 17235, + "ĠÅŁunu": 45821, + "ĠÅŁur": 49420, + "ĠÅŁÃ¶yle": 26712, + "ĠÅł": 49039, + "ĠÆ¡i": 43144, + "ĠÈ": 36726, + "ĠÈĺ": 38127, + "ĠÈĺi": 41820, + "ĠÈĻ": 15318, + "ĠÈĻi": 17060, + "ĠÍ": 28451, + "ĠÍ¡": 38040, + "Ġ͡°": 40130, + "ĠÎ": 1158, + "ĠΣ": 26408, + "ĠΤ": 20838, + "ĠΤο": 44524, + "ĠΧ": 48924, + "Ġά": 22554, + "Ġάλλ": 41370, + "Ġή": 24841, + "ĠήÏĦαν": 47768, + "Ġα": 5691, + "Ġακ": 40822, + "Ġαλλά": 44716, + "Ġαν": 25715, + "Ġανα": 49931, + "ĠαÏĢ": 45787, + "ĠαÏĢο": 44313, + "ĠαÏĢÏĮ": 19821, + "ĠαÏħÏĦ": 18679, + "ĠαÏħÏĦÏĮ": 26865, + "Ġβ": 15787, + "Ġγ": 10643, + "Ġγια": 17321, + "Ġδ": 8715, + "Ġδεν": 23295, + "Ġδια": 38744, + "Ġε": 5958, + "Ġεί": 25090, + "Ġείναι": 15974, + "ĠεδÏİ": 44440, + "Ġεκ": 44009, + "Ġεν": 42958, + "ĠεÏĢ": 26752, + "ĠεÏĢι": 49185, + "Ġζ": 36544, + "Ġη": 18231, + "Ġθ": 12622, + "Ġθα": 18828, + "Ġι": 47467, + "Ġκ": 4903, + "Ġκά": 26751, + "Ġκάν": 31492, + "Ġκα": 14832, + "Ġκαι": 8839, + "Ġκι": 47328, + "Ġλ": 15015, + "ĠλÎŃ": 36148, + "Ġμ": 5337, + "Ġμα": 36759, + "ĠμαÏĤ": 25287, + "Ġμε": 13769, + "Ġμια": 38170, + "ĠμοÏħ": 23449, + "ĠμÎŃ": 27730, + "ĠμÏĢο": 33904, + "Ġν": 8066, + "Ġνα": 9083, + "Ġξ": 33179, + "Ġο": 11383, + "Ġοι": 33908, + "ĠοÏĢο": 44035, + "ĠÎĪ": 38161, + "ĠÎĮ": 43692, + "ĠÎij": 18793, + "ĠÎĵ": 30350, + "ĠÎĵια": 48575, + "ĠÎĶ": 27556, + "ĠÎķ": 18236, + "ĠÎĹ": 45836, + "ĠÎĺ": 30128, + "ĠÎļ": 19233, + "ĠÎļαι": 32619, + "ĠÎľ": 24834, + "ĠÎĿ": 38854, + "ĠÎŁ": 34650, + "ĠÎł": 20894, + "ĠÎŃ": 10541, + "ĠÎŃνα": 26117, + "ĠÎŃÏĩ": 21807, + "ĠÎŃÏĩει": 42940, + "ĠÏ": 2467, + "ĠÏĢ": 4654, + "ĠÏĢά": 31967, + "ĠÏĢα": 23380, + "ĠÏĢε": 28465, + "ĠÏĢεÏģι": 46618, + "ĠÏĢο": 39099, + "ĠÏĢολ": 30403, + "ĠÏĢολÏį": 36047, + "ĠÏĢοÏħ": 15878, + "ĠÏĢÏģο": 26017, + "ĠÏģ": 40750, + "ĠÏĥ": 5532, + "ĠÏĥαÏĤ": 34981, + "ĠÏĥε": 23814, + "ĠÏĥοÏħ": 43455, + "ĠÏĥÏĦα": 45391, + "ĠÏĥÏĦη": 23502, + "ĠÏĥÏĦην": 31766, + "ĠÏĥÏĦο": 20702, + "ĠÏĥÏħ": 23415, + "ĠÏĥÏħν": 49025, + "ĠÏĦ": 3596, + "ĠÏĦα": 16900, + "ĠÏĦη": 10013, + "ĠÏĦην": 17309, + "ĠÏĦηÏĤ": 22409, + "ĠÏĦι": 25962, + "ĠÏĦιÏĤ": 35816, + "ĠÏĦο": 8335, + "ĠÏĦον": 24022, + "ĠÏĦοÏħ": 13380, + "ĠÏĦοÏħÏĤ": 30320, + "ĠÏĦÏīν": 39575, + "ĠÏħ": 28049, + "ĠÏĨ": 17579, + "ĠÏĩ": 17319, + "ĠÏī": 46653, + "ĠÏĮ": 12485, + "ĠÏĮÏĦι": 27841, + "ĠÐ": 333, + "ĠС": 2933, + "ĠСШÐIJ": 35448, + "ĠСам": 31152, + "ĠСв": 48536, + "ĠСегоднÑı": 35913, + "ĠСейÑĩаÑģ": 23590, + "ĠСеÑĢ": 46779, + "ĠСеÑĢг": 38393, + "ĠСк": 22965, + "ĠСлед": 48301, + "ĠСо": 40156, + "ĠСов": 45680, + "ĠСп": 19349, + "ĠСпаÑģибо": 29219, + "ĠСÑĤ": 17483, + "ĠТ": 3200, + "ĠТак": 8770, + "ĠТакже": 38751, + "ĠТам": 27451, + "ĠТем": 44064, + "ĠТепеÑĢÑĮ": 25238, + "ĠТо": 16047, + "ĠТогда": 46357, + "ĠТолÑĮко": 36021, + "ĠТÑĥÑĤ": 35358, + "ĠТÑĭ": 14509, + "ĠУ": 6523, + "ĠУкÑĢаÑĹ": 34817, + "ĠФ": 13196, + "ĠÐ¥": 9456, + "ĠХоÑĢоÑĪо": 37564, + "ĠХоÑĤ": 35886, + "ĠХоÑĤÑı": 43963, + "ĠЦ": 18545, + "ĠЦе": 36263, + "ĠЧ": 7099, + "ĠЧеÑĢ": 39659, + "ĠЧÑĤо": 13169, + "ĠЧÑĤобÑĭ": 36026, + "ĠШ": 18428, + "ĠЩ": 42373, + "ĠЮ": 27002, + "ĠЯ": 4857, + "ĠЯк": 46116, + "Ġа": 2559, + "Ġаб": 25600, + "ĠабÑģолÑİÑĤ": 32078, + "ĠабÑģолÑİÑĤно": 35060, + "Ġав": 14376, + "ĠавÑĤом": 27669, + "ĠавÑĤомоб": 37122, + "Ġад": 27705, + "Ġак": 13790, + "ĠаккÑĥ": 49381, + "ĠакÑĤив": 30239, + "Ġал": 39336, + "Ġале": 46923, + "ĠамеÑĢик": 34958, + "ĠамеÑĢикан": 46263, + "Ġан": 17086, + "Ġанглий": 46611, + "Ġап": 29356, + "ĠаÑĢ": 16643, + "ĠаÑĤ": 46998, + "Ġб": 1268, + "Ġбаб": 37783, + "Ġбаг": 45165, + "Ġбаз": 39798, + "Ġбал": 37683, + "Ġбан": 29049, + "ĠбаÑĢ": 36766, + "ĠбаÑĤ": 47697, + "Ġбег": 49942, + "Ġбез": 10969, + "ĠбезопаÑģ": 45015, + "Ġбел": 29430, + "ĠбеÑĢ": 24562, + "ĠбеÑģ": 37658, + "ĠбеÑģп": 32971, + "Ġби": 47334, + "ĠбизнеÑģ": 47054, + "Ġбл": 16709, + "Ġблаг": 31971, + "ĠблагодаÑĢ": 38979, + "Ġбли": 21747, + "Ġблиз": 37060, + "Ġблок": 42222, + "Ġбо": 20462, + "Ġбог": 33001, + "Ġбой": 41029, + "Ġбок": 45156, + "Ġбол": 11993, + "Ġболее": 15103, + "ĠболÑĮ": 7351, + "ĠболÑĮÑĪ": 12457, + "ĠболÑĮÑĪе": 12846, + "ĠболÑĮÑĪое": 46843, + "ĠболÑĮÑĪой": 35533, + "ĠбоÑĢ": 30101, + "ĠбÑĢ": 19603, + "ĠбÑĢаÑĤ": 43333, + "ĠбÑĢоÑģ": 47718, + "ĠбÑĥ": 21646, + "ĠбÑĥд": 4529, + "ĠбÑĥде": 47438, + "ĠбÑĥдем": 23213, + "ĠбÑĥдеÑĤ": 7306, + "ĠбÑĥдеÑĤе": 46872, + "ĠбÑĥдÑĤо": 45239, + "ĠбÑĥдÑĥ": 21407, + "ĠбÑĥдÑĥÑĤ": 20393, + "ĠбÑĥдÑĥÑī": 44327, + "ĠбÑĥк": 36761, + "ĠбÑĥкв": 42587, + "ĠбÑĥло": 41981, + "ĠбÑĥм": 49721, + "ĠбÑĭ": 2768, + "ĠбÑĭв": 28951, + "ĠбÑĭваеÑĤ": 48972, + "ĠбÑĭл": 10059, + "ĠбÑĭла": 13640, + "ĠбÑĭли": 14355, + "ĠбÑĭло": 8060, + "ĠбÑĭÑģÑĤÑĢ": 37283, + "ĠбÑĭÑģÑĤÑĢо": 31874, + "ĠбÑĭÑĤÑĮ": 11510, + "ĠбÑĸлÑĮ": 47692, + "Ġв": 740, + "Ġваж": 19491, + "Ġважно": 38851, + "Ġвал": 42187, + "Ġвам": 10448, + "Ġвами": 24166, + "ĠваÑĢи": 32382, + "ĠваÑĢианÑĤ": 42442, + "ĠваÑģ": 10655, + "ĠваÑĪ": 14536, + "ĠваÑĪи": 48375, + "Ġвд": 25507, + "ĠвдÑĢÑĥг": 45926, + "Ġвед": 35126, + "ĠведÑĮ": 28026, + "Ġвел": 29328, + "ĠвеÑĢ": 10544, + "ĠвеÑĢÑģ": 35285, + "ĠвеÑĢÑħ": 47758, + "ĠвеÑģ": 28244, + "ĠвеÑģÑĮ": 29225, + "ĠвеÑĤ": 45010, + "ĠвеÑĩ": 31943, + "ĠвеÑī": 27046, + "ĠвеÑīи": 43050, + "Ġвже": 40738, + "Ġвз": 11892, + "ĠвзÑıÑĤÑĮ": 44101, + "Ġви": 28570, + "Ġвид": 6504, + "Ġвиде": 12921, + "Ġвидел": 40718, + "Ġвидели": 49998, + "Ġвидео": 15589, + "Ġвидим": 38273, + "ĠвидиÑĤе": 41904, + "Ġвидно": 41239, + "ĠвижÑĥ": 47813, + "Ġвик": 49233, + "Ġвин": 49847, + "ĠвклÑİÑĩ": 31251, + "ĠвкÑĥÑģ": 28295, + "Ġвлад": 46458, + "Ġвли": 45689, + "Ġвм": 20307, + "ĠвмеÑģÑĤе": 26905, + "Ġвн": 17958, + "ĠвнеÑĪ": 50025, + "Ġвниз": 46697, + "Ġвним": 24762, + "Ġвнимание": 33267, + "ĠвнÑĥÑĤ": 25282, + "ĠвнÑĥÑĤÑĢи": 39145, + "Ġво": 7900, + "Ġвод": 14545, + "ĠводÑĭ": 44391, + "Ġвоз": 8918, + "Ġвозв": 39797, + "ĠвозвÑĢаÑī": 45503, + "ĠвоздÑĥ": 47396, + "Ġвозм": 18077, + "Ġвозмож": 31544, + "Ġвозможно": 26740, + "ĠвозможноÑģÑĤÑĮ": 41233, + "ĠвозÑĮ": 45097, + "Ġвой": 26055, + "Ġвок": 39277, + "ĠвокÑĢÑĥг": 45247, + "Ġвол": 22211, + "Ġвони": 40727, + "ĠвообÑīе": 14345, + "ĠвопÑĢоÑģ": 17611, + "ĠвопÑĢоÑģÑĭ": 48418, + "ĠвоÑģ": 18867, + "ĠвоÑģп": 31143, + "ĠвоÑĤ": 5505, + "Ġвп": 27163, + "ĠвпеÑĢ": 32560, + "Ġвполне": 46780, + "ĠвÑĢ": 35705, + "ĠвÑĢем": 8951, + "ĠвÑĢемени": 26436, + "ĠвÑĢемÑı": 12039, + "ĠвÑĢоде": 41079, + "ĠвÑģ": 2852, + "ĠвÑģе": 4640, + "ĠвÑģегда": 19087, + "ĠвÑģего": 15520, + "ĠвÑģей": 43419, + "ĠвÑģем": 21042, + "ĠвÑģеÑħ": 17260, + "ĠвÑģп": 35944, + "ĠвÑģÑĤÑĢ": 20569, + "ĠвÑģÑĤÑĢеÑĤ": 47647, + "ĠвÑģÑĤÑĢеÑĩ": 25669, + "ĠвÑģÑİ": 32341, + "ĠвÑģÑı": 24614, + "ĠвÑģÑij": 9649, + "ĠвÑĤоÑĢ": 19823, + "ĠвÑĤоÑĢой": 36128, + "ĠвÑħод": 45746, + "ĠвÑĩ": 49102, + "ĠвÑĭ": 2840, + "ĠвÑĭб": 18061, + "ĠвÑĭглÑıд": 30449, + "ĠвÑĭглÑıдиÑĤ": 40670, + "ĠвÑĭд": 47535, + "ĠвÑĭз": 31572, + "ĠвÑĭй": 42132, + "ĠвÑĭп": 21188, + "ĠвÑĭпол": 34771, + "ĠвÑĭпÑĥÑģк": 48777, + "ĠвÑĭÑģ": 19361, + "ĠвÑĭÑģок": 35998, + "ĠвÑĭÑģÑĤÑĥп": 48828, + "ĠвÑĭÑħод": 27142, + "ĠвÑĭÑĪ": 33994, + "ĠвÑĭÑĪе": 47281, + "ĠвÑĸд": 16947, + "ĠвÑĸн": 40756, + "Ġг": 2342, + "Ġгаз": 36936, + "ĠгаÑĢ": 38470, + "Ġгде": 11418, + "ĠгеÑĢо": 35279, + "Ġгл": 10735, + "Ġглав": 18539, + "Ġглавное": 39940, + "Ġглаз": 27634, + "Ġглаза": 49664, + "ĠглÑĥб": 41863, + "Ġго": 6778, + "ĠговоÑĢ": 8180, + "ĠговоÑĢил": 39801, + "ĠговоÑĢиÑĤ": 25083, + "ĠговоÑĢиÑĤÑĮ": 32460, + "ĠговоÑĢÑİ": 34931, + "ĠговоÑĢÑı": 42210, + "ĠговоÑĢÑıÑĤ": 33374, + "Ġгод": 9182, + "Ġгода": 18411, + "ĠгодÑĥ": 22688, + "Ġгол": 14932, + "Ġголов": 24721, + "ĠголоÑģ": 42390, + "ĠгоÑĢ": 26493, + "ĠгоÑĢаз": 45386, + "ĠгоÑĢаздо": 45607, + "ĠгоÑĢод": 18750, + "ĠгоÑĢода": 45853, + "ĠгоÑģÑĥдаÑĢ": 42950, + "ĠгоÑĤов": 17137, + "ĠгÑĢ": 11726, + "ĠгÑĢад": 47547, + "ĠгÑĢаÑĦ": 45799, + "ĠгÑĢом": 41765, + "ĠгÑĢÑĥ": 47553, + "ĠгÑĢÑĥп": 27530, + "ĠгÑĢÑĥпп": 29311, + "Ġд": 1070, + "Ġда": 8995, + "Ġдав": 12472, + "Ġдавай": 28869, + "ĠдавайÑĤе": 30412, + "Ġдавно": 40086, + "Ġдаже": 11210, + "Ġдал": 22500, + "Ġдалее": 38978, + "ĠдалÑĮ": 22428, + "ĠдалÑĮÑĪе": 26814, + "Ġдан": 19582, + "Ġдв": 7196, + "Ġдва": 18505, + "Ġдве": 32183, + "Ġдвиг": 30618, + "Ġдвиж": 30473, + "ĠдвÑĥÑħ": 32360, + "Ġде": 36397, + "Ġдев": 20572, + "ĠдейÑģÑĤв": 17136, + "ĠдейÑģÑĤвиÑĤелÑĮно": 27208, + "Ġдел": 6649, + "Ġдела": 46157, + "ĠделаеÑĤ": 43109, + "ĠделаÑĤÑĮ": 19284, + "ĠделаÑİÑĤ": 48732, + "Ġделе": 23845, + "Ġдело": 26444, + "Ġден": 33773, + "Ġденег": 40957, + "ĠденÑĮ": 13509, + "ĠденÑĮги": 27087, + "ĠдеÑĢ": 27620, + "ĠдеÑĢев": 29662, + "ĠдеÑĢж": 27565, + "ĠдеÑģÑı": 32233, + "ĠдеÑģÑıÑĤ": 45884, + "ĠдеÑĤ": 15079, + "ĠдеÑĤей": 38668, + "ĠдеÑĤи": 48941, + "Ġди": 28255, + "Ġдив": 49829, + "ĠдиÑģ": 37929, + "ĠдлÑı": 5561, + "Ġдней": 47678, + "ĠднÑı": 36115, + "Ġдо": 5865, + "Ġдоб": 16991, + "Ġдобав": 23856, + "ĠдобÑĢ": 35620, + "Ġдов": 20124, + "ĠдоволÑĮно": 31777, + "Ġдог": 36056, + "Ġдок": 22992, + "ĠдокÑĥм": 43031, + "Ġдол": 8300, + "Ġдолго": 37515, + "Ġдолж": 12220, + "Ġдолжен": 25718, + "Ġдолжна": 40129, + "Ġдолжно": 40475, + "ĠдолжнÑĭ": 27581, + "ĠдоллаÑĢ": 26124, + "ĠдоллаÑĢов": 35902, + "Ġдом": 13049, + "Ġдома": 29012, + "Ġдомой": 46319, + "Ġдоп": 23562, + "Ġдополн": 45120, + "ĠдоÑĢ": 18478, + "ĠдоÑĢог": 24365, + "ĠдоÑģ": 41126, + "ĠдоÑģÑĤ": 34543, + "ĠдоÑģÑĤаÑĤоÑĩно": 28562, + "ĠдоÑģÑĤи": 46630, + "ĠдоÑģÑĤÑĥп": 41057, + "ĠдÑĢ": 37928, + "ĠдÑĢÑĥг": 8435, + "ĠдÑĢÑĥга": 47392, + "ĠдÑĢÑĥгие": 32108, + "ĠдÑĢÑĥгиÑħ": 31211, + "ĠдÑĢÑĥгой": 27823, + "ĠдÑĢÑĥз": 23577, + "ĠдÑĢÑĥзÑĮÑı": 28366, + "ĠдÑĥже": 39919, + "ĠдÑĥм": 13082, + "ĠдÑĥмаÑİ": 23479, + "ĠдÑĥÑħ": 35535, + "ĠдÑĥÑħов": 46373, + "ĠдÑĥÑĪ": 39096, + "Ġе": 1997, + "Ġев": 42402, + "Ġего": 6448, + "Ġед": 20686, + "Ġедин": 33791, + "Ġее": 14803, + "Ġей": 30075, + "ĠемÑĥ": 18220, + "ĠеÑģли": 8042, + "ĠеÑģÑĤе": 43775, + "ĠеÑģÑĤÑĮ": 5640, + "ĠеÑīе": 9910, + "ĠеÑīÑij": 13993, + "ĠеÑij": 18346, + "Ġж": 2989, + "Ġжд": 27020, + "Ġже": 6151, + "Ġжел": 21788, + "Ġжен": 21349, + "ĠженÑī": 28393, + "ĠжеÑģÑĤ": 48111, + "Ġжив": 15156, + "ĠживоÑĤ": 38029, + "Ġжиз": 13505, + "Ġжизни": 21415, + "ĠжизнÑĮ": 25362, + "ĠжиÑĤÑĮ": 40124, + "Ġз": 1423, + "Ġза": 4396, + "Ġзаб": 13890, + "Ġзав": 13388, + "ĠзавиÑģ": 39673, + "Ġзаг": 25770, + "Ġзад": 14787, + "ĠзадаÑĩ": 38793, + "Ġзай": 40133, + "Ġзак": 10264, + "ĠзаклÑİÑĩ": 49613, + "Ġзакон": 25206, + "ĠзаконÑĩ": 39641, + "ĠзакÑĢÑĭ": 43993, + "Ġзал": 32897, + "Ġзам": 13597, + "ĠзамеÑĤ": 36124, + "ĠзамеÑĩ": 41618, + "Ġзан": 18596, + "Ġзаним": 25396, + "Ġзап": 10333, + "ĠзапиÑģ": 36426, + "ĠзаÑĢ": 17821, + "ĠзаÑģ": 27819, + "ĠзаÑĤ": 25880, + "ĠзаÑĤем": 45288, + "ĠзаÑħ": 28701, + "ĠзаÑĩ": 34004, + "ĠзаÑĩем": 41521, + "ĠзаÑī": 31107, + "ĠзаÑıв": 38158, + "Ġзв": 13591, + "Ġзвон": 45832, + "ĠзвÑĥÑĩ": 48031, + "Ġзд": 7608, + "ĠздеÑģÑĮ": 9087, + "ĠздоÑĢов": 29638, + "Ġзем": 27230, + "Ġзм": 48979, + "Ġзн": 15309, + "Ġзна": 6766, + "Ġзнаем": 45491, + "ĠзнаеÑĤ": 39986, + "ĠзнаеÑĤе": 29868, + "ĠзнаеÑĪÑĮ": 38423, + "Ġзнак": 31949, + "Ġзнаком": 40909, + "ĠзнаÑĤÑĮ": 49997, + "ĠзнаÑĩ": 27605, + "ĠзнаÑĩиÑĤ": 24013, + "ĠзнаÑİ": 16315, + "Ġзов": 38893, + "ĠзовÑĥÑĤ": 46376, + "ĠзÑĢ": 27589, + "Ġи": 1006, + "Ġиг": 20713, + "ĠигÑĢ": 14568, + "ĠигÑĢа": 37120, + "ĠигÑĢÑĭ": 36183, + "Ġид": 17255, + "Ġиде": 26547, + "ĠидеÑĤ": 40029, + "Ġиз": 3943, + "Ġизб": 38995, + "Ġизв": 22599, + "ĠизвеÑģÑĤ": 37073, + "Ġизмен": 30345, + "ĠизÑĥÑĩ": 43264, + "Ġили": 8101, + "Ġим": 7604, + "Ġиме": 19539, + "ĠимееÑĤ": 33761, + "Ġименно": 20290, + "Ġин": 6635, + "Ġинд": 47106, + "Ġиногда": 43749, + "ĠинÑģÑĤÑĢÑĥменÑĤ": 44572, + "ĠинÑĤ": 44673, + "ĠинÑĤеÑĢ": 12073, + "ĠинÑĤеÑĢеÑģ": 15033, + "ĠинÑĤеÑĢеÑģно": 33333, + "ĠинÑĦоÑĢм": 29117, + "ĠиÑģ": 12410, + "ĠиÑģк": 20284, + "ĠиÑģп": 11265, + "ĠиÑģполÑĮз": 15552, + "ĠиÑģполÑĮзоваÑĤÑĮ": 33728, + "ĠиÑģпÑĭÑĤ": 46212, + "ĠиÑģÑģлед": 40299, + "ĠиÑģÑĤоÑĢ": 18950, + "ĠиÑģÑĤоÑĢии": 40203, + "ĠиÑģÑĤоÑĢиÑı": 41531, + "ĠиÑĤ": 32388, + "ĠиÑĤог": 36745, + "ĠиÑĤоге": 44063, + "ĠиÑħ": 9642, + "Ġй": 24540, + "Ġйого": 44123, + "Ġк": 981, + "Ġкаб": 46186, + "Ġкад": 42650, + "Ġкаж": 22129, + "Ġкажд": 15698, + "ĠкаждÑĭй": 27628, + "ĠкажеÑĤÑģÑı": 26147, + "Ġказ": 37408, + "Ġкак": 3014, + "ĠкакаÑı": 29334, + "Ġкакие": 19971, + "Ġкаким": 49190, + "ĠкакиÑħ": 44178, + "Ġкакое": 37932, + "Ġкакой": 16898, + "ĠкакÑĥÑİ": 45244, + "Ġкам": 21477, + "Ġкан": 18276, + "Ġканал": 28597, + "Ġканале": 47677, + "Ġкап": 31507, + "ĠкаÑĢ": 13560, + "ĠкаÑĢÑĤ": 34692, + "ĠкаÑģ": 43218, + "ĠкаÑĤ": 33780, + "ĠкаÑĩе": 28595, + "Ġкв": 35350, + "ĠкваÑĢ": 33619, + "ĠкваÑĢÑĤи": 37084, + "Ġкил": 37028, + "Ġкино": 49874, + "Ġкл": 14815, + "ĠклаÑģÑģ": 26197, + "Ġкли": 33504, + "ĠклÑİÑĩ": 43398, + "Ġкни": 32178, + "Ġкноп": 40450, + "Ġко": 3898, + "Ġкогда": 8874, + "Ġкого": 28985, + "Ġкож": 40107, + "Ġкол": 10706, + "Ġколи": 49672, + "ĠколиÑĩе": 25816, + "ĠколиÑĩеÑģÑĤво": 33442, + "Ġком": 7761, + "Ġкоман": 46180, + "Ġкоманд": 35991, + "ĠкомменÑĤ": 32469, + "ĠкомменÑĤаÑĢ": 36558, + "Ġкомна": 43418, + "Ġкомп": 14380, + "Ġкомпании": 44231, + "ĠкомпÑĮÑİÑĤ": 48488, + "ĠкомÑĥ": 40158, + "Ġкон": 6184, + "ĠконеÑĩно": 15271, + "ĠконÑĤ": 43064, + "ĠконÑĤÑĢ": 33271, + "ĠконÑĦ": 45751, + "ĠконÑĨ": 33495, + "ĠконÑĨе": 38769, + "Ġкоп": 42399, + "ĠкоÑĢ": 11384, + "ĠкоÑĢаб": 42830, + "ĠкоÑĢп": 45284, + "ĠкоÑģ": 31839, + "ĠкоÑĤ": 39535, + "ĠкоÑĤоÑĢ": 4388, + "ĠкоÑĤоÑĢаÑı": 19032, + "ĠкоÑĤоÑĢого": 36438, + "ĠкоÑĤоÑĢое": 32000, + "ĠкоÑĤоÑĢой": 29452, + "ĠкоÑĤоÑĢом": 39818, + "ĠкоÑĤоÑĢÑĥÑİ": 32355, + "ĠкоÑĤоÑĢÑĭе": 10381, + "ĠкоÑĤоÑĢÑĭй": 11897, + "ĠкоÑĤоÑĢÑĭÑħ": 28700, + "ĠкоÑĪ": 46774, + "ĠкÑĢ": 7502, + "ĠкÑĢа": 38585, + "ĠкÑĢай": 39584, + "ĠкÑĢаÑģ": 15826, + "ĠкÑĢаÑģив": 26679, + "ĠкÑĢеп": 46584, + "ĠкÑĢов": 31679, + "ĠкÑĢÑĥ": 26970, + "ĠкÑĢÑĥг": 43543, + "ĠкÑĢÑĥп": 39207, + "ĠкÑĢÑĥÑĤ": 43217, + "ĠкÑģÑĤаÑĤи": 35304, + "ĠкÑĤо": 12278, + "ĠкÑĥда": 27509, + "ĠкÑĥп": 25078, + "ĠкÑĥÑĢ": 28975, + "ĠкÑĥÑģ": 48431, + "Ġл": 2344, + "Ġладно": 44107, + "Ġлай": 35475, + "Ġлег": 22311, + "Ġлегко": 39995, + "Ġлеж": 41803, + "ĠлеÑģ": 42548, + "ĠлеÑĤ": 13088, + "Ġли": 7444, + "Ġлибо": 31100, + "ĠлиÑĩ": 29936, + "ĠлиÑĪ": 42637, + "ĠлиÑĪÑĮ": 29179, + "Ġлож": 48048, + "ĠлÑĥÑĩ": 15525, + "ĠлÑĥÑĩÑĪе": 21569, + "ĠлÑİ": 5716, + "ĠлÑİб": 9875, + "ĠлÑİбим": 36973, + "ĠлÑİблÑİ": 44683, + "ĠлÑİбов": 45356, + "ĠлÑİбой": 42803, + "ĠлÑİд": 8836, + "ĠлÑİдей": 16810, + "ĠлÑİди": 15850, + "ĠлÑİдÑıм": 45930, + "Ġм": 1084, + "Ġмаг": 27120, + "Ġмагаз": 39771, + "Ġмай": 41860, + "ĠмакÑģим": 35564, + "Ġмал": 19499, + "ĠмаленÑĮ": 26284, + "Ġмало": 37450, + "Ġмам": 40631, + "Ġмама": 47101, + "ĠмаÑĢ": 31609, + "ĠмаÑģ": 21466, + "ĠмаÑģÑģ": 31384, + "ĠмаÑĤ": 20908, + "ĠмаÑĤеÑĢи": 32835, + "ĠмаÑĪ": 19820, + "Ġмед": 24465, + "ĠмеждÑĥ": 24098, + "Ġмел": 44651, + "Ġмен": 6046, + "Ġменее": 38264, + "ĠменÑĮ": 31752, + "ĠменÑĮÑĪе": 35115, + "ĠменÑı": 6885, + "ĠмеÑĢ": 48231, + "ĠмеÑģÑĤ": 16470, + "ĠмеÑģÑĤа": 43956, + "ĠмеÑģÑĤе": 36534, + "ĠмеÑģÑĤо": 26241, + "ĠмеÑģÑı": 29329, + "ĠмеÑĤ": 18791, + "ĠмеÑħ": 48182, + "ĠмеÑĩ": 42721, + "ĠмеÑĪ": 44874, + "Ġми": 13803, + "Ġмик": 43712, + "Ġмилли": 26349, + "Ġмин": 19073, + "Ġминим": 45754, + "ĠминÑĥÑĤ": 24498, + "ĠмиÑĢ": 20536, + "ĠмиÑĢа": 41454, + "ĠмиÑĢе": 36822, + "Ġмн": 16338, + "Ġмне": 8531, + "Ġмног": 22287, + "Ġмногие": 37343, + "Ġмного": 13347, + "Ġмной": 39199, + "Ġмо": 9971, + "Ġмог": 9962, + "Ġмогли": 37118, + "ĠмогÑĥ": 22951, + "ĠмогÑĥÑĤ": 23461, + "Ġмод": 24104, + "Ġмоей": 46270, + "Ġмож": 4710, + "Ġможем": 28815, + "ĠможеÑĤ": 8689, + "ĠможеÑĤе": 23578, + "ĠможеÑĪÑĮ": 46442, + "Ġможно": 8885, + "Ġмоз": 48140, + "Ġмои": 39822, + "Ġмой": 23400, + "Ġмол": 25634, + "Ġмолод": 28801, + "Ġмом": 17655, + "ĠмоменÑĤ": 17825, + "Ġмон": 32457, + "ĠмоÑĢ": 24127, + "ĠмоÑī": 39218, + "ĠмоÑı": 33691, + "ĠмÑĥж": 22081, + "ĠмÑĥжÑĩ": 40051, + "ĠмÑĥз": 26843, + "ĠмÑĥзÑĭ": 34249, + "ĠмÑĭ": 4777, + "ĠмÑĭÑĪ": 45009, + "ĠмÑıÑģ": 40966, + "ĠмÑĸ": 23895, + "Ġн": 757, + "Ġна": 1470, + "Ġнаб": 22499, + "ĠнаблÑİд": 47147, + "Ġнав": 14192, + "ĠнавеÑĢ": 23237, + "ĠнавеÑĢное": 31159, + "Ġнаг": 30584, + "Ġнад": 8469, + "Ġнадо": 13256, + "Ġнаж": 35675, + "Ġназ": 15006, + "Ġназад": 28724, + "Ġназв": 27161, + "ĠназÑĭв": 20922, + "ĠназÑĭваеÑĤÑģÑı": 40659, + "Ġнай": 19235, + "Ġнайд": 41805, + "ĠнайÑĤи": 31993, + "Ġнак": 20955, + "ĠнаконеÑĨ": 49154, + "Ġнал": 32750, + "Ġнам": 11401, + "Ġнами": 44552, + "Ġнап": 9011, + "ĠнапиÑģ": 30442, + "ĠнапÑĢ": 18296, + "ĠнапÑĢав": 36437, + "ĠнапÑĢимеÑĢ": 24044, + "ĠнаÑĢ": 34316, + "ĠнаÑĢод": 32583, + "ĠнаÑģ": 6519, + "ĠнаÑģколÑĮко": 49635, + "ĠнаÑģÑĤ": 35397, + "ĠнаÑģÑĤолÑĮко": 47779, + "ĠнаÑģÑĤоÑıÑī": 35048, + "ĠнаÑģÑĤÑĢо": 47842, + "ĠнаÑĤ": 48290, + "ĠнаÑĥÑĩ": 38019, + "ĠнаÑħод": 19363, + "ĠнаÑħодиÑĤÑģÑı": 34366, + "ĠнаÑĩ": 8970, + "ĠнаÑĩал": 44800, + "ĠнаÑĩала": 40551, + "ĠнаÑĩина": 21995, + "ĠнаÑĪ": 8253, + "ĠнаÑĪа": 48513, + "ĠнаÑĪего": 45309, + "ĠнаÑĪей": 34670, + "ĠнаÑĪем": 48181, + "ĠнаÑĪи": 36314, + "ĠнаÑĪиÑħ": 41525, + "Ġне": 1725, + "Ġнеб": 22783, + "ĠнеболÑĮÑĪ": 32692, + "Ġнев": 21224, + "Ġнего": 15052, + "Ġнед": 15704, + "Ġнее": 33518, + "Ġнез": 34691, + "Ġней": 23227, + "Ġнек": 39269, + "ĠнекоÑĤоÑĢ": 26666, + "ĠнекоÑĤоÑĢÑĭе": 43876, + "ĠнелÑĮзÑı": 33813, + "Ġнем": 13166, + "Ġнемного": 26583, + "Ġнемнож": 39844, + "Ġнемножко": 44382, + "Ġнеоб": 27864, + "ĠнеобÑħод": 31360, + "ĠнеобÑħодимо": 41432, + "Ġнеп": 17005, + "ĠнеÑģ": 30825, + "ĠнеÑģколÑĮко": 21902, + "ĠнеÑĤ": 9916, + "ĠнеÑij": 44527, + "Ġни": 13686, + "Ġниз": 48019, + "Ġник": 11295, + "Ġникак": 23127, + "ĠникакиÑħ": 47357, + "Ġникогда": 29375, + "ĠникÑĤо": 31666, + "Ġним": 25793, + "Ġними": 42371, + "ĠниÑħ": 14319, + "ĠниÑĩего": 16630, + "Ġно": 6035, + "Ġнов": 10022, + "ĠновÑĭе": 39232, + "ĠновÑĭй": 38121, + "ĠновÑĭÑħ": 46308, + "Ġног": 31538, + "Ġнож": 46718, + "Ġном": 36847, + "ĠноÑĢм": 24068, + "ĠноÑĢмалÑĮно": 39601, + "ĠноÑģ": 37245, + "ĠноÑĩ": 38237, + "ĠнÑĢав": 27564, + "ĠнÑĢавиÑĤÑģÑı": 33652, + "ĠнÑĥ": 13087, + "ĠнÑĥж": 9353, + "ĠнÑĥжен": 47867, + "ĠнÑĥжно": 12264, + "ĠнÑĸ": 46645, + "Ġо": 1000, + "Ġоб": 3348, + "ĠобнаÑĢÑĥж": 47841, + "ĠобÑĢаз": 17938, + "ĠобÑĢазом": 29916, + "ĠобÑĢаÑĤ": 29851, + "ĠобÑģ": 47963, + "ĠобÑī": 17224, + "ĠобÑīе": 48078, + "ĠобÑīем": 26842, + "ĠобÑĬ": 16646, + "ĠобÑĬÑıÑģ": 36712, + "ĠобÑĭÑĩ": 32291, + "ĠобÑĭÑĩно": 41878, + "ĠобÑıз": 27945, + "ĠобÑıзаÑĤелÑĮно": 35515, + "Ġог": 33309, + "ĠогÑĢ": 21517, + "ĠогÑĢом": 28107, + "Ġод": 5693, + "Ġодин": 13319, + "Ġодна": 26985, + "Ġодним": 50096, + "Ġодно": 30387, + "Ġодного": 33828, + "Ġодной": 29281, + "Ġодном": 48635, + "ĠоднÑĥ": 37885, + "Ġож": 35666, + "Ġожид": 47136, + "Ġоз": 29176, + "ĠознаÑĩ": 49994, + "Ġок": 11423, + "Ġоказ": 28833, + "Ġоколо": 40573, + "Ġон": 5345, + "Ġона": 8826, + "Ġони": 7515, + "Ġоно": 25369, + "Ġоп": 7683, + "ĠопаÑģ": 39393, + "ĠопеÑĢ": 36742, + "ĠопиÑģ": 32190, + "ĠопиÑģании": 48303, + "ĠопÑĢед": 26961, + "ĠопÑĢедел": 39305, + "ĠопÑĭÑĤ": 48530, + "ĠопÑıÑĤÑĮ": 31545, + "ĠоÑĢ": 18448, + "ĠоÑĢг": 24443, + "ĠоÑĢганиз": 34254, + "ĠоÑĢÑĥж": 46802, + "ĠоÑģ": 8940, + "ĠоÑģв": 46403, + "ĠоÑģнов": 19217, + "ĠоÑģоб": 21244, + "ĠоÑģобенно": 35817, + "ĠоÑģÑĤ": 12574, + "ĠоÑģÑĤав": 25969, + "ĠоÑģÑĤан": 41633, + "ĠоÑģÑĤанов": 44367, + "ĠоÑģÑĤÑĢ": 42710, + "ĠоÑĤ": 2943, + "ĠоÑĤв": 29642, + "ĠоÑĤвеÑĤ": 25284, + "ĠоÑĤвеÑĩ": 47859, + "ĠоÑĤд": 22243, + "ĠоÑĤдел": 50176, + "ĠоÑĤделÑĮ": 41199, + "ĠоÑĤк": 12799, + "ĠоÑĤкÑĢÑĭ": 27085, + "ĠоÑĤкÑĢÑĭв": 44543, + "ĠоÑĤлиÑĩ": 26902, + "ĠоÑĤмеÑĤ": 47318, + "ĠоÑĤно": 22079, + "ĠоÑĤноÑģ": 44539, + "ĠоÑĤноÑĪ": 30708, + "ĠоÑĤп": 22344, + "ĠоÑĤпÑĢав": 38427, + "ĠоÑĤÑģ": 29870, + "ĠоÑĦ": 31950, + "ĠоÑħ": 28871, + "ĠоÑĩ": 5875, + "ĠоÑĩенÑĮ": 6730, + "ĠоÑĩеÑĢ": 33102, + "ĠоÑĪиб": 40253, + "ĠоÑī": 40065, + "ĠоÑīÑĥÑī": 44966, + "Ġп": 713, + "Ġпад": 44149, + "Ġпал": 40415, + "ĠпалÑĮ": 47226, + "Ġпам": 39164, + "Ġпап": 39322, + "ĠпаÑĢ": 11813, + "ĠпаÑĢÑĥ": 44163, + "ĠпеÑĢ": 4321, + "ĠпеÑĢв": 11922, + "ĠпеÑĢвÑĭй": 30025, + "ĠпеÑĢе": 29641, + "ĠпеÑĢев": 28106, + "ĠпеÑĢед": 15621, + "ĠпеÑĢеж": 46450, + "ĠпеÑĢек": 38924, + "ĠпеÑĢем": 35903, + "ĠпеÑĢеп": 48702, + "ĠпеÑĢеÑħод": 46888, + "ĠпеÑĢи": 45602, + "ĠпеÑĢÑģон": 33399, + "ĠпеÑĢÑģонаж": 38063, + "ĠпеÑģ": 37280, + "ĠпеÑĩ": 44875, + "ĠпиÑģ": 39739, + "ĠпиÑĤ": 33615, + "ĠпиÑĪ": 37979, + "Ġпл": 9283, + "Ġплан": 23443, + "ĠплаÑĤ": 34160, + "Ġпло": 22402, + "ĠплоÑħ": 29938, + "ĠплоÑħо": 45210, + "ĠплоÑī": 44633, + "ĠплÑİÑģ": 43342, + "Ġпо": 2801, + "Ġпоб": 20024, + "Ġпобед": 39281, + "Ġпов": 10499, + "ĠповеÑĢÑħ": 44397, + "ĠповÑĤоÑĢ": 42221, + "Ġпог": 17724, + "ĠпоговоÑĢ": 38858, + "Ġпод": 4095, + "ĠподаÑĢ": 43564, + "ĠподгоÑĤов": 49914, + "ĠподдеÑĢж": 30756, + "Ġподоб": 35229, + "ĠподпиÑģ": 27386, + "ĠподÑĤ": 46103, + "ĠподÑĥм": 38664, + "ĠподÑħод": 44617, + "ĠпоеÑħ": 49519, + "Ġпож": 38587, + "ĠпожалÑĥйÑģÑĤа": 32518, + "Ġпоз": 12188, + "Ġпозвол": 28805, + "Ġпой": 31671, + "Ġпойд": 41207, + "Ġпок": 7240, + "Ġпока": 17770, + "Ġпоказ": 21147, + "ĠпоказÑĭв": 34614, + "ĠпокÑĥп": 34005, + "Ġпол": 4692, + "Ġполез": 40191, + "ĠполиÑĤ": 45330, + "ĠполноÑģÑĤÑĮÑİ": 36392, + "Ġполов": 39884, + "Ġполож": 29408, + "ĠполÑĥÑĩ": 9478, + "ĠполÑĥÑĩаеÑĤÑģÑı": 33451, + "ĠполÑĥÑĩилоÑģÑĮ": 44405, + "ĠполÑĥÑĩиÑĤÑģÑı": 49579, + "ĠполÑĥÑĩиÑĤÑĮ": 41725, + "ĠполÑĮз": 30419, + "ĠполÑĮзов": 44803, + "Ġпом": 8613, + "Ġпомог": 27097, + "ĠпомоÑī": 22301, + "ĠпомоÑīÑĮÑİ": 36387, + "Ġпон": 7903, + "Ġпонад": 49581, + "Ġпоним": 15084, + "ĠпонимаÑİ": 35112, + "ĠпонÑĢав": 34752, + "ĠпонÑıл": 37975, + "ĠпонÑıÑĤно": 39718, + "ĠпонÑıÑĤÑĮ": 44403, + "Ġпоп": 10694, + "Ġпопад": 43613, + "ĠпопÑĢоб": 34089, + "ĠпопÑĥлÑıÑĢ": 46732, + "ĠпопÑĭÑĤ": 46047, + "ĠпоÑĢ": 11948, + "ĠпоÑĢÑıд": 36681, + "ĠпоÑģ": 5810, + "ĠпоÑģле": 16107, + "ĠпоÑģлед": 19253, + "ĠпоÑģмоÑĤÑĢ": 19240, + "ĠпоÑģмоÑĤÑĢеÑĤÑĮ": 38482, + "ĠпоÑģмоÑĤÑĢим": 42293, + "ĠпоÑģÑĤ": 27877, + "ĠпоÑģÑĤав": 28072, + "ĠпоÑģÑĤо": 31299, + "ĠпоÑģÑĤоÑıн": 33212, + "ĠпоÑģÑĤоÑıнно": 41548, + "ĠпоÑģÑĤÑĢо": 47526, + "ĠпоÑģÑĤÑĥп": 43829, + "ĠпоÑĤ": 6364, + "ĠпоÑĤеÑĢ": 39363, + "ĠпоÑĤом": 16873, + "ĠпоÑĤомÑĥ": 11919, + "ĠпоÑĤÑĢ": 26146, + "ĠпоÑĤÑĢеб": 40529, + "ĠпоÑħ": 23052, + "ĠпоÑħож": 38862, + "ĠпоÑĩ": 12079, + "ĠпоÑĩемÑĥ": 21513, + "ĠпоÑĩÑĤи": 30529, + "ĠпоÑĪ": 27148, + "ĠпоÑįÑĤомÑĥ": 19698, + "ĠпоÑıв": 20011, + "ĠпÑĢ": 1285, + "ĠпÑĢав": 10615, + "ĠпÑĢавда": 37136, + "ĠпÑĢавилÑĮно": 39321, + "ĠпÑĢакÑĤи": 27109, + "ĠпÑĢакÑĤиÑĩеÑģки": 38086, + "ĠпÑĢе": 43228, + "ĠпÑĢев": 34393, + "ĠпÑĢед": 8048, + "ĠпÑĢедлаг": 46841, + "ĠпÑĢедлож": 40373, + "ĠпÑĢедÑģÑĤав": 27167, + "ĠпÑĢедÑģÑĤавлÑı": 39412, + "ĠпÑĢез": 39838, + "ĠпÑĢезид": 49529, + "ĠпÑĢек": 28939, + "ĠпÑĢекÑĢаÑģ": 33620, + "ĠпÑĢеп": 47510, + "ĠпÑĢеÑģÑĤ": 44481, + "ĠпÑĢеÑģÑĤÑĥп": 48991, + "ĠпÑĢи": 5082, + "ĠпÑĢиб": 31436, + "ĠпÑĢив": 13398, + "ĠпÑĢивеÑĤ": 33879, + "ĠпÑĢиг": 42619, + "ĠпÑĢигоÑĤов": 49630, + "ĠпÑĢид": 21255, + "ĠпÑĢидÑĥм": 45234, + "ĠпÑĢиеÑħ": 38567, + "ĠпÑĢиз": 26724, + "ĠпÑĢик": 25492, + "ĠпÑĢил": 34770, + "ĠпÑĢилож": 47251, + "ĠпÑĢим": 31806, + "ĠпÑĢимеÑĢ": 22545, + "ĠпÑĢимеÑĢно": 37424, + "ĠпÑĢин": 16003, + "ĠпÑĢиним": 44396, + "ĠпÑĢинÑĨип": 30147, + "ĠпÑĢинÑĨипе": 39086, + "ĠпÑĢиÑĢ": 41640, + "ĠпÑĢиÑģ": 26686, + "ĠпÑĢиÑħод": 26641, + "ĠпÑĢиÑĩ": 26472, + "ĠпÑĢиÑĪ": 22448, + "ĠпÑĢо": 4178, + "ĠпÑĢоб": 15122, + "ĠпÑĢоблем": 20920, + "ĠпÑĢоблема": 48264, + "ĠпÑĢоблемÑĭ": 44340, + "ĠпÑĢов": 13422, + "ĠпÑĢовеÑĢ": 30901, + "ĠпÑĢовод": 33924, + "ĠпÑĢог": 20192, + "ĠпÑĢогÑĢам": 29043, + "ĠпÑĢод": 11354, + "ĠпÑĢодолж": 24519, + "ĠпÑĢодÑĥк": 33873, + "ĠпÑĢоекÑĤ": 32275, + "ĠпÑĢоиз": 16769, + "ĠпÑĢоизвод": 28685, + "ĠпÑĢоизоÑĪ": 41476, + "ĠпÑĢоиÑģ": 21482, + "ĠпÑĢоиÑģÑħодиÑĤ": 28548, + "ĠпÑĢок": 37225, + "ĠпÑĢом": 42988, + "ĠпÑĢоп": 23497, + "ĠпÑĢоÑģ": 21109, + "ĠпÑĢоÑģÑĤ": 27959, + "ĠпÑĢоÑģÑĤо": 8221, + "ĠпÑĢоÑĤ": 15602, + "ĠпÑĢоÑĤив": 22534, + "ĠпÑĢоÑĦ": 33011, + "ĠпÑĢоÑĦеÑģÑģ": 43624, + "ĠпÑĢоÑħод": 39782, + "ĠпÑĢоÑĨ": 20640, + "ĠпÑĢоÑĨеÑģÑģ": 30965, + "ĠпÑĢоÑĩ": 38828, + "ĠпÑĢоÑĪ": 20567, + "ĠпÑĢоÑĪл": 48596, + "ĠпÑĢÑĭ": 50236, + "ĠпÑĢÑıм": 18449, + "ĠпÑĢÑıмо": 28547, + "ĠпÑģ": 40163, + "ĠпÑģиÑħ": 44159, + "ĠпÑĥ": 30836, + "ĠпÑĥÑĤ": 37581, + "ĠпÑĭÑĤ": 28806, + "ĠпÑıÑĤ": 41367, + "ĠпÑıÑĤÑĮ": 43618, + "ĠпÑĸд": 26419, + "ĠÐĨ": 23297, + "ĠÐIJ": 3450, + "ĠÐIJв": 50175, + "ĠÐIJл": 43104, + "ĠÐIJле": 45043, + "ĠÐIJлекÑģ": 32228, + "ĠÐIJлекÑģанд": 44938, + "ĠÐIJн": 20802, + "ĠÐIJнд": 39583, + "ĠÐIJÑĢ": 32091, + "ĠÐij": 5697, + "ĠÐijог": 34008, + "ĠÐijÑĥд": 40208, + "ĠÐijÑĭ": 44804, + "ĠÐĴ": 2348, + "ĠÐĴам": 43670, + "ĠÐĴаÑģ": 37055, + "ĠÐĴедÑĮ": 42612, + "ĠÐĴид": 42888, + "ĠÐĴлад": 41022, + "ĠÐĴо": 24334, + "ĠÐĴоÑĤ": 9756, + "ĠÐĴÑģ": 10779, + "ĠÐĴÑģе": 18029, + "ĠÐĴÑģем": 37367, + "ĠÐĴÑģÑij": 29661, + "ĠÐĴÑĤоÑĢ": 49732, + "ĠÐĴÑĭ": 11886, + "ĠÐĵ": 7247, + "ĠÐĵде": 41996, + "ĠÐĵоÑģ": 47206, + "ĠÐĶ": 3401, + "ĠÐĶа": 9149, + "ĠÐĶав": 17853, + "ĠÐĶавай": 29196, + "ĠÐĶавайÑĤе": 30487, + "ĠÐĶаже": 42900, + "ĠÐĶж": 23792, + "ĠÐĶлÑı": 21324, + "ĠÐĶо": 31695, + "ĠÐķ": 6538, + "ĠÐķв": 34019, + "ĠÐķго": 32908, + "ĠÐķÑģли": 12412, + "ĠÐķÑģÑĤÑĮ": 30547, + "ĠÐķÑīе": 44122, + "ĠÐĸ": 18977, + "ĠÐĹ": 5841, + "ĠÐĹа": 22391, + "ĠÐĹап": 49612, + "ĠÐĹд": 17613, + "ĠÐĹдеÑģÑĮ": 23367, + "ĠÐĹем": 42604, + "ĠÐĹна": 30869, + "ĠÐĹнаÑĩиÑĤ": 44827, + "ĠÐĺ": 3272, + "ĠÐĺз": 24588, + "ĠÐĺли": 34361, + "ĠÐĺм": 34759, + "ĠÐĺн": 27222, + "ĠÐĺÑĤак": 28793, + "ĠÐļ": 3422, + "ĠÐļак": 11011, + "ĠÐļаÑĢ": 43923, + "ĠÐļогда": 23128, + "ĠÐļол": 45363, + "ĠÐļон": 23827, + "ĠÐļонеÑĩно": 35108, + "ĠÐļоÑĢ": 29635, + "ĠÐļÑĢаÑģ": 49491, + "ĠÐļÑģÑĤаÑĤи": 39883, + "ĠÐļÑĤо": 33953, + "ĠÐĽ": 7853, + "ĠÐĽÑİ": 25968, + "ĠÐĽÑİб": 47369, + "ĠÐľ": 3493, + "ĠÐľÐ£": 24143, + "ĠÐľÐ£ÐĹЫÐļÐIJ": 25007, + "ĠÐľÐ°ÑĢ": 26182, + "ĠÐľÐµÐ½Ñı": 47311, + "ĠÐľÐ¸": 47250, + "ĠÐľÐ¸Ñħ": 50150, + "ĠÐľÐ½Ðµ": 23204, + "ĠÐľÐ¾Ð¶ÐµÑĤ": 32786, + "ĠÐľÐ¾Ð¶Ð½Ð¾": 34423, + "ĠÐľÐ¾Ñģ": 32327, + "ĠÐľÐ¾Ñģкв": 38842, + "ĠÐľÑĭ": 12726, + "ĠÐĿ": 2410, + "ĠÐĿа": 11245, + "ĠÐĿав": 46929, + "ĠÐĿад": 29637, + "ĠÐĿадо": 48562, + "ĠÐĿам": 46147, + "ĠÐĿап": 28167, + "ĠÐĿапÑĢ": 36552, + "ĠÐĿапÑĢимеÑĢ": 39645, + "ĠÐĿаÑĩ": 48493, + "ĠÐĿе": 11512, + "ĠÐĿеÑĤ": 21249, + "ĠÐĿик": 28448, + "ĠÐĿо": 7264, + "ĠÐĿов": 36062, + "ĠÐĿÐIJ": 44416, + "ĠÐĿÑĥ": 7571, + "ĠÐŀ": 3688, + "ĠÐŀб": 22853, + "ĠÐŀд": 20125, + "ĠÐŀднако": 39757, + "ĠÐŀй": 42724, + "ĠÐŀк": 48984, + "ĠÐŀн": 12409, + "ĠÐŀна": 20280, + "ĠÐŀни": 18973, + "ĠÐŀп": 45246, + "ĠÐŀÑģ": 38590, + "ĠÐŀÑĤ": 18611, + "ĠÐŀÑĩ": 30352, + "ĠÐŀÑĩенÑĮ": 34062, + "ĠÐŁ": 2608, + "ĠÐŁÐµÑĢ": 20426, + "ĠÐŁÐµÑĢв": 34182, + "ĠÐŁÐ¾": 12121, + "ĠÐŁÐ¾Ð´": 23120, + "ĠÐŁÐ¾ÐºÐ°": 38401, + "ĠÐŁÐ¾Ð»": 28183, + "ĠÐŁÐ¾Ð¼": 43030, + "ĠÐŁÐ¾Ð½": 36067, + "ĠÐŁÐ¾Ñģ": 18689, + "ĠÐŁÐ¾Ñģле": 32747, + "ĠÐŁÐ¾ÑĤ": 17993, + "ĠÐŁÐ¾ÑĤом": 45941, + "ĠÐŁÐ¾ÑĤомÑĥ": 23671, + "ĠÐŁÐ¾ÑĩемÑĥ": 32823, + "ĠÐŁÐ¾ÑįÑĤомÑĥ": 22318, + "ĠÐŁÑĢ": 8567, + "ĠÐŁÑĢав": 39793, + "ĠÐŁÑĢед": 46825, + "ĠÐŁÑĢи": 22059, + "ĠÐŁÑĢивеÑĤ": 38932, + "ĠÐŁÑĢо": 38529, + "ĠÐŁÑĢоÑģÑĤо": 34751, + "ĠÐł": 6325, + "ĠÐłÐ°Ð·": 28972, + "ĠÐłÐ¾ÑģÑģ": 21997, + "ĠÐłÐ¾ÑģÑģии": 29007, + "ĠÐŃ": 5381, + "ĠÐŃÑĤо": 6684, + "ĠÐŃÑĤоÑĤ": 42054, + "ĠÑ": 1015, + "ĠÑĢ": 1475, + "ĠÑĢаб": 41499, + "ĠÑĢабоÑĤ": 9197, + "ĠÑĢабоÑĤаеÑĤ": 30162, + "ĠÑĢабоÑĤаÑĤÑĮ": 33637, + "ĠÑĢабоÑĤÑĥ": 39382, + "ĠÑĢабоÑĤÑĭ": 35402, + "ĠÑĢав": 19353, + "ĠÑĢавно": 27354, + "ĠÑĢад": 26622, + "ĠÑĢади": 34748, + "ĠÑĢаз": 4203, + "ĠÑĢаза": 49578, + "ĠÑĢазб": 26868, + "ĠÑĢазв": 20019, + "ĠÑĢазвиÑĤ": 47359, + "ĠÑĢазг": 39901, + "ĠÑĢаздел": 45414, + "ĠÑĢазлиÑĩ": 40140, + "ĠÑĢазм": 47075, + "ĠÑĢазмеÑĢ": 41813, + "ĠÑĢазнÑĭе": 43059, + "ĠÑĢазнÑĭÑħ": 40644, + "ĠÑĢазÑĢ": 24051, + "ĠÑĢазÑĢабоÑĤ": 38976, + "ĠÑĢай": 37590, + "ĠÑĢан": 36463, + "ĠÑĢанÑĮÑĪе": 40442, + "ĠÑĢаÑģ": 7459, + "ĠÑĢаÑģк": 46666, + "ĠÑĢаÑģп": 26588, + "ĠÑĢаÑģÑģ": 23345, + "ĠÑĢаÑģÑģк": 17399, + "ĠÑĢаÑģÑģказ": 34760, + "ĠÑĢаÑģÑģказÑĭв": 33446, + "ĠÑĢаÑģÑĤ": 31274, + "ĠÑĢе": 15492, + "ĠÑĢеалÑĮно": 38001, + "ĠÑĢеб": 18902, + "ĠÑĢебен": 41417, + "ĠÑĢебÑıÑĤа": 37678, + "ĠÑĢег": 31235, + "ĠÑĢед": 42845, + "ĠÑĢеж": 28418, + "ĠÑĢежим": 37710, + "ĠÑĢез": 17749, + "ĠÑĢезÑĥлÑĮÑĤаÑĤ": 28476, + "ĠÑĢек": 22801, + "ĠÑĢеÑģ": 39836, + "ĠÑĢеÑĪ": 14025, + "ĠÑĢеÑĪил": 44240, + "ĠÑĢиÑģ": 31393, + "ĠÑĢо": 49493, + "ĠÑĢоб": 30971, + "ĠÑĢод": 17925, + "ĠÑĢоз": 20681, + "ĠÑĢок": 31833, + "ĠÑĢол": 26725, + "ĠÑĢолÑĮ": 49189, + "ĠÑĢоÑģ": 44935, + "ĠÑĢоÑģÑģ": 43809, + "ĠÑĢоÑģÑģий": 48971, + "ĠÑĢÑĥ": 17292, + "ĠÑĢÑĥб": 27371, + "ĠÑĢÑĥблей": 40851, + "ĠÑĢÑĥк": 36765, + "ĠÑĢÑĥки": 39304, + "ĠÑĢÑĥÑģ": 27198, + "ĠÑĢÑĭ": 22791, + "ĠÑĢÑĭн": 37314, + "ĠÑĢÑıд": 32921, + "ĠÑĢÑıдом": 43190, + "ĠÑģ": 776, + "ĠÑģам": 5602, + "ĠÑģама": 40517, + "ĠÑģами": 34085, + "ĠÑģамо": 43745, + "ĠÑģамого": 42264, + "ĠÑģамое": 25676, + "ĠÑģамой": 49560, + "ĠÑģамом": 22108, + "ĠÑģамÑĭе": 44253, + "ĠÑģамÑĭй": 30688, + "ĠÑģамÑĭÑħ": 37241, + "ĠÑģб": 29014, + "ĠÑģв": 4155, + "ĠÑģвеÑĤ": 28492, + "ĠÑģвид": 43666, + "ĠÑģво": 6989, + "ĠÑģвобод": 39021, + "ĠÑģвое": 42666, + "ĠÑģвоего": 32325, + "ĠÑģвоей": 25346, + "ĠÑģвои": 25375, + "ĠÑģвоим": 37337, + "ĠÑģвоиÑħ": 30316, + "ĠÑģвой": 25190, + "ĠÑģвоÑİ": 23069, + "ĠÑģвÑıз": 22430, + "ĠÑģд": 48001, + "ĠÑģдел": 10326, + "ĠÑģделал": 40653, + "ĠÑģделали": 44780, + "ĠÑģделаÑĤÑĮ": 18695, + "ĠÑģе": 27383, + "ĠÑģеб": 9968, + "ĠÑģебе": 16683, + "ĠÑģебÑı": 15403, + "ĠÑģегоднÑı": 17413, + "ĠÑģейÑĩаÑģ": 10241, + "ĠÑģек": 22869, + "ĠÑģем": 20933, + "ĠÑģемÑĮ": 36735, + "ĠÑģеÑĢ": 14490, + "ĠÑģеÑĢд": 38479, + "ĠÑģеÑĢÑĮ": 35178, + "ĠÑģеÑĢÑĮез": 47065, + "ĠÑģиг": 48805, + "ĠÑģид": 27360, + "ĠÑģил": 24776, + "ĠÑģилÑĮ": 34158, + "ĠÑģилÑĮно": 31350, + "ĠÑģим": 38994, + "ĠÑģин": 47079, + "ĠÑģиÑģÑĤ": 21351, + "ĠÑģиÑģÑĤем": 24067, + "ĠÑģиÑģÑĤема": 48123, + "ĠÑģиÑĤÑĥ": 27840, + "ĠÑģк": 5239, + "ĠÑģкаж": 21938, + "ĠÑģказ": 10867, + "ĠÑģказал": 24980, + "ĠÑģказала": 48179, + "ĠÑģказаÑĤÑĮ": 20636, + "ĠÑģклад": 46185, + "ĠÑģколÑĮко": 28838, + "ĠÑģкоÑĢ": 17575, + "ĠÑģкоÑĢее": 41420, + "ĠÑģкоÑĢо": 44971, + "ĠÑģл": 4766, + "ĠÑģлед": 15363, + "ĠÑģледÑĥÑİÑī": 26045, + "ĠÑģлиÑĪком": 40576, + "ĠÑģлов": 20319, + "ĠÑģлова": 39002, + "ĠÑģлово": 43272, + "ĠÑģлож": 30858, + "ĠÑģложно": 41016, + "ĠÑģлÑĥж": 35459, + "ĠÑģлÑĥÑĩ": 14002, + "ĠÑģлÑĥÑĩа": 23775, + "ĠÑģлÑĥÑĩае": 26425, + "ĠÑģлÑĥÑĩай": 40181, + "ĠÑģлÑĥÑĪ": 41839, + "ĠÑģлÑĭÑĪ": 31814, + "ĠÑģм": 6871, + "ĠÑģмеÑĢ": 39997, + "ĠÑģмог": 32139, + "ĠÑģмож": 47044, + "ĠÑģмоÑĤÑĢ": 17726, + "ĠÑģмоÑĤÑĢеÑĤÑĮ": 43922, + "ĠÑģмоÑĤÑĢиÑĤе": 46441, + "ĠÑģмÑĭÑģ": 44045, + "ĠÑģн": 42864, + "ĠÑģнаÑĩала": 44437, + "ĠÑģним": 28098, + "ĠÑģнова": 36114, + "ĠÑģо": 7425, + "ĠÑģоб": 10450, + "ĠÑģобиÑĢ": 41534, + "ĠÑģобой": 32474, + "ĠÑģобÑģÑĤвен": 44177, + "ĠÑģобÑģÑĤвенно": 49863, + "ĠÑģобÑĭÑĤи": 42654, + "ĠÑģов": 11030, + "ĠÑģовеÑĢÑĪ": 26227, + "ĠÑģовеÑĢÑĪенно": 37075, + "ĠÑģовеÑĤ": 35282, + "ĠÑģовÑĢем": 42880, + "ĠÑģовÑģем": 27711, + "ĠÑģог": 33255, + "ĠÑģоглаÑģ": 40587, + "ĠÑģод": 45744, + "ĠÑģодеÑĢж": 48206, + "ĠÑģожал": 45999, + "ĠÑģожалениÑİ": 48018, + "ĠÑģоз": 14729, + "ĠÑģозд": 20247, + "ĠÑģозн": 41334, + "ĠÑģок": 38419, + "ĠÑģол": 36059, + "ĠÑģолн": 49685, + "ĠÑģообÑī": 40626, + "ĠÑģооÑĤвеÑĤ": 36815, + "ĠÑģоп": 39135, + "ĠÑģоÑĢ": 43992, + "ĠÑģоÑģ": 33165, + "ĠÑģоÑģÑĤав": 41772, + "ĠÑģоÑģÑĤо": 25631, + "ĠÑģоÑģÑĤоÑıни": 36017, + "ĠÑģоÑĤ": 32206, + "ĠÑģоÑĤÑĢÑĥд": 50233, + "ĠÑģоÑħ": 38696, + "ĠÑģоÑħÑĢан": 41571, + "ĠÑģп": 5307, + "ĠÑģпаÑģ": 41895, + "ĠÑģпаÑģибо": 37536, + "ĠÑģпеÑĨи": 25665, + "ĠÑģпиÑģ": 49918, + "ĠÑģпокой": 47471, + "ĠÑģпоÑĢÑĤ": 49941, + "ĠÑģпоÑģоб": 23677, + "ĠÑģпÑĢав": 31853, + "ĠÑģпÑĢоÑģ": 44312, + "ĠÑģÑĢав": 42987, + "ĠÑģÑĢазÑĥ": 22014, + "ĠÑģÑĢед": 20446, + "ĠÑģÑģÑĭл": 41480, + "ĠÑģÑĤ": 3266, + "ĠÑģÑĤав": 25709, + "ĠÑģÑĤал": 28980, + "ĠÑģÑĤала": 44503, + "ĠÑģÑĤали": 39029, + "ĠÑģÑĤало": 39633, + "ĠÑģÑĤан": 27214, + "ĠÑģÑĤанов": 32003, + "ĠÑģÑĤановиÑĤÑģÑı": 44799, + "ĠÑģÑĤаÑĢ": 17241, + "ĠÑģÑĤаÑĤÑĮ": 36415, + "ĠÑģÑĤен": 48357, + "ĠÑģÑĤо": 13552, + "ĠÑģÑĤоиÑĤ": 23675, + "ĠÑģÑĤол": 24053, + "ĠÑģÑĤолÑĮко": 50156, + "ĠÑģÑĤоÑĢ": 16632, + "ĠÑģÑĤоÑĢон": 17635, + "ĠÑģÑĤоÑĢонÑĥ": 44205, + "ĠÑģÑĤоÑĢонÑĭ": 28360, + "ĠÑģÑĤÑĢ": 18425, + "ĠÑģÑĤÑĢан": 18057, + "ĠÑģÑĤÑĢаÑħ": 50190, + "ĠÑģÑĤÑĢаÑĪ": 35611, + "ĠÑģÑĤÑĢо": 35860, + "ĠÑģÑĤÑĥд": 44322, + "ĠÑģÑĥ": 18272, + "ĠÑģÑĥд": 30103, + "ĠÑģÑĥм": 31372, + "ĠÑģÑĥп": 32453, + "ĠÑģÑĥÑīеÑģÑĤв": 30447, + "ĠÑģÑħ": 42755, + "ĠÑģÑĨен": 40436, + "ĠÑģÑĩ": 23812, + "ĠÑģÑĩиÑĤ": 22413, + "ĠÑģÑĬ": 27223, + "ĠÑģÑĭ": 21811, + "ĠÑģÑİ": 19172, + "ĠÑģÑİда": 25306, + "ĠÑģÑİж": 49785, + "ĠÑĤ": 1069, + "ĠÑĤа": 18752, + "ĠÑĤай": 50074, + "ĠÑĤак": 2936, + "ĠÑĤакаÑı": 22075, + "ĠÑĤакже": 16584, + "ĠÑĤакие": 20113, + "ĠÑĤаким": 31584, + "ĠÑĤакиÑħ": 28572, + "ĠÑĤакого": 31158, + "ĠÑĤакое": 18292, + "ĠÑĤакой": 13452, + "ĠÑĤакÑĥÑİ": 42456, + "ĠÑĤам": 8223, + "ĠÑĤан": 33344, + "ĠÑĤво": 25144, + "ĠÑĤвоÑĢ": 42767, + "ĠÑĤе": 18445, + "ĠÑĤеб": 8458, + "ĠÑĤебе": 14656, + "ĠÑĤебÑı": 12644, + "ĠÑĤел": 15619, + "ĠÑĤелеÑĦ": 33356, + "ĠÑĤелеÑĦон": 44485, + "ĠÑĤем": 12532, + "ĠÑĤемпеÑĢ": 45609, + "ĠÑĤеп": 38923, + "ĠÑĤепеÑĢÑĮ": 16983, + "ĠÑĤеÑĢ": 21168, + "ĠÑĤеÑĢÑĢи": 49634, + "ĠÑĤеÑģÑĤ": 41699, + "ĠÑĤеÑħ": 16615, + "ĠÑĤеÑħнолог": 42709, + "ĠÑĤи": 39317, + "ĠÑĤип": 26264, + "ĠÑĤипа": 35443, + "ĠÑĤо": 4572, + "ĠÑĤоб": 32046, + "ĠÑĤобой": 38068, + "ĠÑĤов": 35838, + "ĠÑĤогда": 21696, + "ĠÑĤого": 11283, + "ĠÑĤоже": 12251, + "ĠÑĤой": 38509, + "ĠÑĤол": 36038, + "ĠÑĤолÑĮко": 9008, + "ĠÑĤом": 13294, + "ĠÑĤомÑĥ": 23644, + "ĠÑĤон": 37089, + "ĠÑĤоп": 41637, + "ĠÑĤоÑĢ": 25594, + "ĠÑĤоÑĤ": 23900, + "ĠÑĤоÑĩ": 23045, + "ĠÑĤоÑĩки": 47880, + "ĠÑĤоÑĩно": 25311, + "ĠÑĤÑĢ": 7550, + "ĠÑĤÑĢав": 46647, + "ĠÑĤÑĢади": 48098, + "ĠÑĤÑĢан": 45454, + "ĠÑĤÑĢеб": 31525, + "ĠÑĤÑĢеÑĤÑĮ": 45305, + "ĠÑĤÑĢи": 22068, + "ĠÑĤÑĢÑĥ": 36310, + "ĠÑĤÑĢÑĥд": 36853, + "ĠÑĤÑĥ": 30480, + "ĠÑĤÑĥда": 30433, + "ĠÑĤÑĥÑĢ": 49248, + "ĠÑĤÑĥÑĤ": 12848, + "ĠÑĤÑĭ": 5991, + "ĠÑĤÑĭÑģÑıÑĩ": 25025, + "ĠÑĤÑıж": 34641, + "ĠÑĥ": 1595, + "ĠÑĥб": 13853, + "ĠÑĥбий": 40636, + "ĠÑĥв": 13247, + "ĠÑĥвелиÑĩ": 41511, + "ĠÑĥвеÑĢ": 32838, + "ĠÑĥвид": 21974, + "ĠÑĥвидеÑĤÑĮ": 46095, + "ĠÑĥг": 20392, + "ĠÑĥд": 11927, + "ĠÑĥдаÑĢ": 39047, + "ĠÑĥдив": 36459, + "ĠÑĥдоб": 35943, + "ĠÑĥж": 25261, + "ĠÑĥжаÑģ": 44973, + "ĠÑĥже": 7520, + "ĠÑĥз": 20940, + "ĠÑĥзна": 33562, + "ĠÑĥк": 32546, + "ĠÑĥкÑĢаÑĹ": 48350, + "ĠÑĥкÑĢаÑĹн": 49454, + "ĠÑĥли": 36639, + "ĠÑĥм": 17497, + "ĠÑĥп": 16036, + "ĠÑĥпÑĢав": 44080, + "ĠÑĥÑĢов": 25200, + "ĠÑĥÑģ": 26732, + "ĠÑĥÑģл": 24636, + "ĠÑĥÑģлов": 34974, + "ĠÑĥÑģп": 23944, + "ĠÑĥÑģÑĤ": 21204, + "ĠÑĥÑģÑĤанов": 31866, + "ĠÑĥÑģÑĤÑĢой": 48582, + "ĠÑĥÑĤ": 25448, + "ĠÑĥÑĩ": 13774, + "ĠÑĥÑĩаÑģÑĤ": 40970, + "ĠÑĥÑĪ": 38521, + "ĠÑĦ": 4394, + "ĠÑĦак": 31953, + "ĠÑĦиз": 44662, + "ĠÑĦилÑĮ": 16172, + "ĠÑĦилÑĮм": 22506, + "ĠÑĦилÑĮма": 36293, + "ĠÑĦин": 42020, + "ĠÑĦоÑĢм": 22817, + "ĠÑĦоÑĤ": 35896, + "ĠÑĦоÑĤогÑĢаÑĦ": 40855, + "ĠÑĦÑĥнк": 39484, + "ĠÑħ": 3490, + "ĠÑħаÑĢ": 38795, + "ĠÑħаÑĢакÑĤеÑĢ": 46144, + "ĠÑħваÑĤ": 32985, + "ĠÑħл": 45566, + "ĠÑħод": 23571, + "ĠÑħозÑı": 49791, + "ĠÑħолод": 39726, + "ĠÑħоÑĢоÑĪ": 11436, + "ĠÑħоÑĢоÑĪий": 48917, + "ĠÑħоÑĢоÑĪо": 16977, + "ĠÑħоÑĤ": 11515, + "ĠÑħоÑĤел": 27688, + "ĠÑħоÑĤиÑĤе": 39268, + "ĠÑħоÑĤÑĮ": 39605, + "ĠÑħоÑĤÑı": 30988, + "ĠÑħоÑĩ": 13057, + "ĠÑħоÑĩеÑĤ": 42175, + "ĠÑħоÑĩеÑĤÑģÑı": 48453, + "ĠÑħоÑĩеÑĪÑĮ": 45656, + "ĠÑħоÑĩÑĥ": 22168, + "ĠÑħÑĥд": 48609, + "ĠÑĨ": 5188, + "ĠÑĨвеÑĤ": 24937, + "ĠÑĨе": 18404, + "ĠÑĨел": 22750, + "ĠÑĨен": 39821, + "ĠÑĨенÑĤ": 26845, + "ĠÑĨенÑĤÑĢ": 46536, + "ĠÑĩ": 1358, + "ĠÑĩа": 15369, + "ĠÑĩаÑģ": 13562, + "ĠÑĩаÑģов": 44477, + "ĠÑĩаÑģÑĤ": 33107, + "ĠÑĩаÑģÑĤи": 29168, + "ĠÑĩаÑģÑĤо": 26549, + "ĠÑĩаÑģÑĤÑĮ": 24544, + "ĠÑĩего": 19275, + "ĠÑĩелов": 10347, + "ĠÑĩеловек": 11326, + "ĠÑĩеловека": 25109, + "ĠÑĩеловеÑĩ": 41365, + "ĠÑĩем": 12056, + "ĠÑĩеÑĢ": 12360, + "ĠÑĩеÑĢез": 17341, + "ĠÑĩеÑĤ": 38140, + "ĠÑĩеÑĤÑĭ": 39644, + "ĠÑĩи": 46660, + "ĠÑĩиÑģ": 23201, + "ĠÑĩиÑģÑĤ": 44459, + "ĠÑĩиÑĤ": 38522, + "ĠÑĩÑĤо": 2143, + "ĠÑĩÑĤоб": 48647, + "ĠÑĩÑĤобÑĭ": 7887, + "ĠÑĩÑĥв": 22472, + "ĠÑĩÑĥвÑģÑĤв": 29269, + "ĠÑĩÑĥд": 43332, + "ĠÑĩÑĥÑĤÑĮ": 30422, + "ĠÑĪ": 5941, + "ĠÑĪиÑĢ": 44583, + "ĠÑĪкол": 33009, + "ĠÑĪÑĤ": 28826, + "ĠÑī": 9427, + "ĠÑīе": 35547, + "ĠÑīо": 14309, + "ĠÑīоб": 42899, + "ĠÑį": 1704, + "ĠÑįк": 13817, + "ĠÑįконом": 41800, + "ĠÑįкÑĢан": 41643, + "ĠÑįкÑģп": 29030, + "ĠÑįкÑģпеÑĢ": 40404, + "ĠÑįлекÑĤ": 31314, + "ĠÑįлем": 44509, + "ĠÑįн": 31037, + "ĠÑįнеÑĢг": 40804, + "ĠÑįп": 43985, + "ĠÑįÑĤ": 4030, + "ĠÑįÑĤа": 21396, + "ĠÑįÑĤи": 11012, + "ĠÑįÑĤим": 23094, + "ĠÑįÑĤиÑħ": 23296, + "ĠÑįÑĤо": 2691, + "ĠÑįÑĤого": 10751, + "ĠÑįÑĤой": 14907, + "ĠÑįÑĤом": 10755, + "ĠÑįÑĤомÑĥ": 31500, + "ĠÑįÑĤоÑĤ": 11508, + "ĠÑįÑĤÑĥ": 18763, + "ĠÑįÑĦÑĦ": 33607, + "ĠÑİ": 29488, + "ĠÑı": 2552, + "ĠÑıв": 19028, + "ĠÑıвлÑıеÑĤÑģÑı": 29755, + "ĠÑıзÑĭ": 29364, + "ĠÑıк": 14760, + "ĠÑıкÑĸ": 35110, + "ĠÑıÑĢ": 44016, + "ĠÑĶ": 28669, + "ĠÑĸ": 8934, + "ĠÑĸз": 49973, + "ĠÑĸн": 29858, + "ĠÑĹ": 27902, + "ĠÑĹÑħ": 49084, + "ĠÕ": 14822, + "Ġ×": 877, + "Ġס": 19713, + "Ġ×¢": 7535, + "Ġ×¢×ľ": 15929, + "Ġ×¢×Ŀ": 31464, + "Ġפ": 13323, + "Ġפ×Ķ": 40833, + "Ġצ": 24803, + "Ġצר": 43563, + "Ġק": 14831, + "Ġר": 12926, + "Ġרק": 44918, + "Ġר×ķצ": 41927, + "Ġש": 4113, + "Ġש×IJ×": 39360, + "Ġש×Ķ": 19208, + "Ġש×Ķ×ķ×IJ": 47862, + "Ġש׾": 8817, + "Ġש׾×Ļ": 48982, + "Ġש×ŀ×": 36327, + "Ġש׳": 30222, + "Ġת": 13965, + "Ġ×IJ": 8428, + "Ġ×IJ×": 4142, + "Ġ×IJפ": 40784, + "Ġ×IJת": 9625, + "Ġ×IJת×Ķ": 41254, + "Ġ×IJ×ij׾": 30186, + "Ġ×IJ×ķ": 33038, + "Ġ×IJ×ķת": 23601, + "Ġ×IJ×ķת×ķ": 46725, + "Ġ×IJ×ķ×ŀר": 38272, + "Ġ×IJ×ĸ": 25624, + "Ġ×IJ×Ĺ": 20505, + "Ġ×IJ×Ĺ×ĵ": 42205, + "Ġ×IJ׾": 28379, + "Ġ×IJ×Ŀ": 36517, + "Ġ×IJ׳": 49553, + "Ġ×IJ׳×Ĺ׳×ķ": 30948, + "Ġ×IJ׳×Ļ": 16707, + "Ġ×ij": 11473, + "Ġ×ij×": 6044, + "Ġ×ijס": 40188, + "Ġ×ij×¢": 24464, + "Ġ×ijר": 36981, + "Ġ×ijש": 34561, + "Ġ×ijת": 37613, + "Ġ×ij×IJ": 38400, + "Ġ×ij×IJ×": 33167, + "Ġ×ij×ĵ": 49959, + "Ġ×ij×Ķ": 40435, + "Ġ×ij×Ĺ": 47017, + "Ġ×ij׼": 39150, + "Ġ×ij×ŀ×": 31776, + "Ġ×Ĵ": 15413, + "Ġ×Ĵ×Ŀ": 26611, + "Ġ×ĵ": 17433, + "Ġ×Ķ": 2922, + "Ġ×Ķ×": 3723, + "Ġ×Ķס": 32559, + "Ġ×Ķ×¢": 26507, + "Ġ×Ķפ": 31175, + "Ġ×Ķצ": 43691, + "Ġ×Ķק": 33866, + "Ġ×Ķר": 22706, + "Ġ×Ķש": 22537, + "Ġ×Ķת": 25579, + "Ġ×Ķ×IJ": 42876, + "Ġ×Ķ×IJ×": 20079, + "Ġ×Ķ×IJ׾": 46747, + "Ġ×Ķ×ij": 49052, + "Ġ×Ķ×ij×": 43974, + "Ġ×Ķ×Ĵ": 36386, + "Ġ×Ķ×ĵ": 32740, + "Ġ×Ķ×Ķ": 37203, + "Ġ×Ķ×ķ×IJ": 23666, + "Ġ×Ķ×ĸ": 32888, + "Ġ×Ķ×ĸ×Ķ": 28776, + "Ġ×Ķ×Ĺ": 26224, + "Ġ×Ķ×Ļ": 29526, + "Ġ×Ķ×Ļ×IJ": 35422, + "Ġ×Ķ×Ļ×Ķ": 32132, + "Ġ×Ķ׼": 29561, + "Ġ×Ķ×Ŀ": 44775, + "Ġ×Ķ×ŀ": 32357, + "Ġ×Ķ×ŀ×": 17270, + "Ġ×Ķ׳": 35743, + "Ġ×ķ": 7666, + "Ġ×ķ×IJ×": 40298, + "Ġ×ķ×Ķ": 28628, + "Ġ×ĸ": 25412, + "Ġ×ĸ×Ķ": 12173, + "Ġ×Ĺ": 12400, + "Ġ×ĺ": 27265, + "Ġ×ĺ×ķ×ij": 48606, + "Ġ×Ļ": 8128, + "Ġ×Ļש": 20592, + "Ġ×Ļ×Ķ": 49854, + "Ġ×Ļ×ķתר": 36555, + "Ġ×Ļ×ķ×ĵ×¢": 45764, + "Ġ×Ļ׼×ķ׾": 37608, + "Ġ׼": 7127, + "Ġ׼×Ļ": 44826, + "Ġ׼׾": 21547, + "Ġ׼ף": 44644, + "Ġ׾": 3883, + "Ġ׾×": 5001, + "Ġ×ľ×¢": 30377, + "Ġ׾פ": 33954, + "Ġ׾ק": 45904, + "Ġ׾ש": 35769, + "Ġ׾×IJ": 12471, + "Ġ׾×IJ×": 45087, + "Ġ׾×Ķ": 13995, + "Ġ׾×Ķ×Ļ×ķת": 49695, + "Ġ׾×ķ": 47669, + "Ġ׾×Ĺ": 42485, + "Ġ׾×Ļ": 29948, + "Ġ׾׼": 32872, + "Ġ׾×ŀ×": 31383, + "Ġ׾׳×ķ": 44946, + "Ġ×ŀ": 9148, + "Ġ×ŀ×": 5641, + "Ġ×ŀס": 32904, + "Ġ×ŀ×¢": 34413, + "Ġ×ŀצ": 44015, + "Ġ×ŀק": 39598, + "Ġ×ŀש": 23950, + "Ġ×ŀת": 30221, + "Ġ×ŀ×IJ": 26295, + "Ġ×ŀ×IJ×": 45686, + "Ġ×ŀ×IJ×ķ×ĵ": 31056, + "Ġ×ŀ×ĵ": 36631, + "Ġ×ŀ×Ķ": 16929, + "Ġ×ŀ×Ĺ": 42644, + "Ġ×ŀ׼": 44698, + "Ġ×ŀ×ŀ×": 41764, + "Ġ׳": 11302, + "ĠØ": 1357, + "ĠØ¢": 19753, + "Ġآپ": 46201, + "ĠØ£": 5551, + "ĠØ£ÙĨ": 14739, + "ĠØ£ÙĨا": 41850, + "ĠØ£ÙĪ": 34051, + "ĠØ£ÙĬ": 36632, + "ĠØ¥": 11933, + "ĠØ¥ÙĦÙī": 30731, + "ĠØ¥ÙĨ": 36145, + "Ġا": 1975, + "Ġاب": 48127, + "Ġاس": 24525, + "Ġاست": 44713, + "ĠاÙĦ": 2423, + "ĠاÙĦØ": 6024, + "ĠاÙĦØ£": 16247, + "ĠاÙĦØ¥": 33688, + "ĠاÙĦا": 42963, + "ĠاÙĦب": 29739, + "ĠاÙĦت": 16712, + "ĠاÙĦتÙĬ": 38392, + "ĠاÙĦج": 25724, + "ĠاÙĦØ®": 33962, + "ĠاÙĦد": 32748, + "ĠاÙĦØ°": 32545, + "ĠاÙĦØ°ÙĬ": 43527, + "ĠاÙĦر": 34892, + "ĠاÙĦس": 21136, + "ĠاÙĦØ´": 25124, + "ĠاÙĦص": 31767, + "ĠاÙĦØ·": 41950, + "ĠاÙĦع": 18863, + "ĠاÙĦØŃ": 21542, + "ĠاÙĦÙģ": 27188, + "ĠاÙĦÙĤ": 25062, + "ĠاÙĦÙĥ": 33251, + "ĠاÙĦÙĦ": 13672, + "ĠاÙĦÙĦÙĩ": 21984, + "ĠاÙĦÙħ": 9673, + "ĠاÙĦÙĨ": 28239, + "ĠاÙĦÙĬ": 45595, + "ĠاÙĨ": 16472, + "ĠاÙĪر": 32930, + "Ġب": 4724, + "ĠباÙĦ": 20666, + "Ġبت": 39894, + "Ġبد": 47525, + "Ġبع": 45030, + "Ġبعد": 39182, + "ĠبÙĨ": 44945, + "ĠبÙĩ": 39627, + "ĠبÙĬÙĨ": 49374, + "Ġت": 6055, + "Ġتع": 37279, + "ĠتÙħ": 46811, + "ĠتÙĪ": 33427, + "Ġتھ": 41924, + "ĠØ«": 38637, + "Ġج": 10874, + "ĠØ®": 16490, + "Ġد": 11778, + "ĠØ°": 29910, + "Ġر": 12602, + "Ġز": 30767, + "Ġس": 8608, + "ĠسÛĴ": 34190, + "ĠØ´": 13412, + "ĠØ´ÙĬ": 44049, + "Ġص": 20328, + "Ġض": 48812, + "ĠØ·": 23032, + "Ġع": 6225, + "ĠعÙĦ": 11203, + "ĠعÙĦÙī": 15844, + "ĠعÙĦÙĬ": 25894, + "ĠعÙĦÙĬÙĩ": 47356, + "ĠعÙĨ": 18871, + "ĠعÙĨد": 43242, + "Ġغ": 32771, + "ĠØĮ": 24637, + "ĠØŁ": 45520, + "ĠØŃ": 11331, + "ĠÙ": 1447, + "ĠÙ¾": 21453, + "ĠÙģ": 6156, + "ĠÙģÙĬ": 8978, + "ĠÙĤ": 12174, + "ĠÙĤاÙĦ": 50239, + "ĠÙĥ": 9122, + "ĠÙĥاÙĨ": 25961, + "ĠÙĥÙĦ": 28242, + "ĠÙĦ": 5296, + "ĠÙĦا": 20193, + "ĠÙĦÙĥÙĨ": 44381, + "ĠÙĦÙĦ": 24976, + "ĠÙĦÙħ": 32767, + "ĠÙĦÙĩ": 46740, + "ĠÙĦÙĪ": 45164, + "ĠÙĦÙĬ": 32239, + "ĠÙħ": 3714, + "ĠÙħا": 19446, + "ĠÙħت": 44650, + "ĠÙħØ«": 50113, + "ĠÙħس": 47524, + "ĠÙħØ´": 37893, + "ĠÙħع": 20449, + "ĠÙħÙĨ": 9154, + "ĠÙħÛĮ": 48478, + "ĠÙħÛĮÚº": 27875, + "ĠÙĨ": 8717, + "ĠÙĨÛģ": 43596, + "ĠÙĨÛģÛĮÚº": 50194, + "ĠÙĨÛĴ": 43947, + "ĠÙĩ": 8032, + "ĠÙĩذا": 23758, + "ĠÙĩØ°Ùĩ": 29538, + "ĠÙĩÙĨا": 34105, + "ĠÙĩÙĪ": 31439, + "ĠÙĩÙĬ": 39896, + "ĠÙĪ": 4032, + "ĠÙĪØ£": 36725, + "ĠÙĪا": 36764, + "ĠÙĪاÙĦ": 16070, + "ĠÙĪب": 46599, + "ĠÙĪت": 34683, + "ĠÙĪج": 49610, + "ĠÙĪس": 46952, + "ĠÙĪÙĦ": 35525, + "ĠÙĪÙĦا": 49429, + "ĠÙĪÙĩ": 37037, + "ĠÙĪÛģ": 44291, + "ĠÙĬ": 7251, + "ĠÙĬا": 35186, + "ĠÙĬع": 37495, + "ĠÚ©": 7565, + "Ġکا": 39893, + "Ġکر": 29688, + "ĠÚ©ÙĪ": 31561, + "ĠÚ©Ûģ": 33491, + "ĠÚ©ÛĮ": 23180, + "ĠÚ©ÛĴ": 24049, + "ĠÚ¯": 28697, + "ĠÚĨ": 34766, + "ĠÛģ": 12138, + "ĠÛģÙĪ": 45509, + "ĠÛģÛĮÚº": 38904, + "ĠÛģÛĴ": 23905, + "ĠÛĮ": 25429, + "ĠÛĮÛģ": 35324, + "Ġà¤": 8485, + "Ġम": 48449, + "Ġस": 49316, + "Ġह": 37139, + "Ġà¤ķ": 31970, + "Ġà®": 2548, + "Ġத": 18198, + "Ġந": 12669, + "Ġப": 12008, + "Ġà®®": 16504, + "Ġவ": 13535, + "Ġà®ħ": 12776, + "Ġà®ħத": 35718, + "Ġà®Ĩ": 33586, + "Ġà®ĩ": 12894, + "Ġà®ĩà®°": 26277, + "Ġà®ĩல": 49465, + "Ġà®ī": 23656, + "Ġà®İ": 12814, + "Ġà®İன": 17337, + "Ġà®Ĵ": 37240, + "Ġà®ķ": 13786, + "Ġà®ļ": 14337, + "Ġà²": 34725, + "Ġà¶": 35139, + "Ġà¸ģ": 44579, + "Ġà¹Ģà¸": 32922, + "Ġá": 21879, + "Ġấy": 43966, + "Ġá»": 40132, + "Ġợ": 19272, + "Ġá¼": 34519, + "Ġâ": 672, + "ĠâĢ": 1059, + "ĠâĢ¢": 13937, + "ĠâĢ¦": 5799, + "ĠâĢ«": 4738, + "ĠâĢĭ": 6107, + "ĠâĢĭâĢĭ": 8701, + "ĠâĢĭâĢĭâĢĭ": 16644, + "ĠâĢij": 41395, + "ĠâĢijâĢij": 45217, + "ĠâĢĵ": 1662, + "ĠâĢĶ": 3466, + "ĠâĤ¬": 17450, + "ĠâĨ": 35265, + "ĠâĨĴ": 41600, + "ĠâĪ": 28462, + "ĠâĪĴ": 48554, + "Ġâĸ": 29405, + "Ġâĺ": 38660, + "ĠâĻ": 873, + "ĠâĻ¥": 43385, + "ĠâĻ©": 36865, + "ĠâĻª": 931, + "ĠâĻªâĻª": 9061, + "ĠâĻªâĻªâĻª": 31650, + "ĠâĻ«": 3846, + "ĠâĻ¬": 22520, + "ĠãĢĮ": 21675, + "ĠãĢIJ": 26308, + "Ġãģ": 2605, + "Ġãģ¡": 44692, + "Ġãģ¦": 23822, + "Ġãģ§": 21376, + "Ġãģ§ãģĻ": 26063, + "Ġãģ¨": 16746, + "Ġãģ©": 34994, + "Ġãģª": 16647, + "Ġãģ«": 24873, + "Ġãģ®": 21171, + "Ġãģ¯": 20785, + "Ġãģ¯ãģĦ": 48159, + "Ġãģ¾": 20979, + "Ġãģ¾ãģĻ": 45194, + "ĠãģĤ": 15131, + "ĠãģĤãĤĬ": 49444, + "ĠãģĦ": 30155, + "ĠãģĨ": 42504, + "ĠãģĬ": 25223, + "Ġãģĭ": 25295, + "ĠãģĮ": 29697, + "Ġãģĵ": 14384, + "Ġãģĵãģ®": 35421, + "ĠãģĵãĤĮ": 33732, + "Ġãģķ": 47231, + "ĠãģĹ": 26974, + "ĠãģĻ": 41068, + "ĠãģĿ": 18421, + "ĠãģĿãģĨ": 36165, + "ĠãģĿãĤĮ": 47765, + "ĠãģŁ": 25581, + "Ġãģł": 37656, + "ĠãģŃ": 35757, + "ĠãĤĤ": 32505, + "ĠãĤĦ": 43938, + "ĠãĤĪ": 49879, + "ĠãĤĴ": 30181, + "ĠãĤĵ": 42961, + "Ġãĥ": 15096, + "Ġãħ": 40978, + "Ġãħĭãħĭãħĭ": 49249, + "Ġãħĭãħĭãħĭãħĭ": 38032, + "Ġãħİãħİ": 45824, + "Ġä¸Ģ": 26923, + "Ġä¸į": 19021, + "Ġä¸įæĺ¯": 43906, + "Ġä¸įè¦ģ": 50181, + "Ġä»ĸ": 35414, + "Ġä½ł": 10930, + "Ġä¾Ĩ": 33742, + "Ġ大": 28589, + "Ġ好": 12202, + "Ġ对": 30275, + "Ġå°±": 32609, + "Ġå°±æĺ¯": 31526, + "Ġå°į": 8748, + "Ġå°įä¸įå°į": 35164, + "Ġå°įåķĬ": 49155, + "Ġå°ı": 43454, + "Ġå¾Ī": 26029, + "Ġå¿«": 42598, + "ĠåĪĨ": 45903, + "Ġåı¯ä»¥": 43269, + "Ġåľ¨": 37286, + "Ġæ²Ĵæľī": 40183, + "ĠæĢĿ": 47968, + "ĠæĪij": 8624, + "ĠæĪijåĢij": 27338, + "ĠæĪijæĺ¯": 34625, + "ĠæīĢ以": 45168, + "Ġæĺ¯": 11947, + "Ġæľī": 21461, + "ĠçĦ¶å¾Į": 49078, + "ĠçļĦ": 27949, + "Ġ羣çļĦ": 32790, + "Ġè¬Ŀè¬Ŀ": 30999, + "ĠéĢĻ": 45286, + "ĠéĢĻåĢĭ": 36888, + "ĠéĤ£": 18625, + "Ġê": 711, + "Ġê°": 1777, + "Ġê°Ģ": 4147, + "Ġê°Ģ격": 41162, + "Ġê°Ģê¹Į": 44913, + "Ġê°Ģë": 10583, + "Ġê°ĢëĬ¥": 25732, + "Ġê°ĢëĬĶ": 37407, + "Ġê°Ģ족": 46008, + "Ġê°Ģì§Ģ": 26569, + "Ġê°Ģì§Ģê³ł": 21361, + "Ġê°ĢìĦľ": 35312, + "Ġê°Ģìļ´ëį°": 44627, + "Ġê°Ģìŀ¥": 20283, + "Ġê°ĢìŀIJ": 40115, + "Ġê°Ģìł¸": 36434, + "Ġê°ģ": 28378, + "Ġê°Ħ": 17190, + "Ġê°Ħëĭ¨": 50102, + "Ġê°Ī": 23616, + "Ġê°IJ": 10892, + "Ġê°IJë": 41398, + "Ġê°IJìĤ¬": 19538, + "Ġê°IJìĤ¬íķ©ëĭĪëĭ¤": 24399, + "Ġê°ij": 23108, + "Ġê°ijìŀIJ기": 31307, + "Ġê°Ķ": 28676, + "Ġê°ķ": 14623, + "Ġê°ĸ": 27668, + "Ġê°ĸê³ł": 37912, + "Ġê°Ļ": 4385, + "Ġê°ĻìĬµëĭĪëĭ¤": 31297, + "Ġê°ĻìķĦ": 23396, + "Ġê°ĻìķĦìĦľ": 48084, + "Ġê°ĻìķĦìļĶ": 12196, + "Ġê°ĻìĿ´": 16358, + "Ġê°ĻìĿĢ": 10005, + "Ġê°ĻìĿĢëį°": 21864, + "Ġê°ľ": 14552, + "Ġê°ľë": 30185, + "Ġê°ľìĿ¸": 36734, + "Ġê±": 4925, + "Ġê±°": 3675, + "Ġ거기": 25191, + "Ġê±°ë": 15805, + "Ġê±°ëĬĶ": 46821, + "Ġê±°ì£ł": 26957, + "Ġê±°ì§Ģ": 42435, + "Ġê±°ìķ¼": 15928, + "Ġê±°ìĺĪìļĶ": 14050, + "Ġê±°ìĿĺ": 27872, + "Ġê±±": 39365, + "Ġê±±ìłķ": 45315, + "Ġê±´": 13507, + "Ġê±´ê°ķ": 46058, + "Ġê±´ë": 39626, + "Ġê±´ëį°": 29201, + "Ġê±´ì": 46855, + "Ġ걸": 14240, + "Ġ걸ë": 37248, + "Ġê±¸ë¡ľ": 41636, + "Ġê²": 2525, + "Ġê²°": 15561, + "Ġê²°ê³¼": 46310, + "Ġê²°êµŃ": 42335, + "Ġê²½": 9537, + "Ġ경찰": 37102, + "Ġê²½ìļ°": 20591, + "Ġê²½ìļ°ìĹIJëĬĶ": 45745, + "Ġê²Ģ": 20282, + "Ġê²Ģì°°": 45433, + "Ġê²ģ": 23178, + "Ġê²ģëĭĪëĭ¤": 27146, + "Ġê²ĥ": 4431, + "Ġê²ĥëıĦ": 25942, + "Ġê²ĥì²ĺëŁ¼": 44052, + "Ġê²ĥìľ¼ë¡ľ": 34071, + "Ġê²ĥìĿ´": 29665, + "Ġê²ĥìĿĢ": 33825, + "Ġê²ĥìĿĦ": 32746, + "Ġê²Į": 7845, + "Ġê²ĮìŀĦ": 23927, + "Ġê³": 3352, + "Ġ곡": 34895, + "Ġ골ë": 42142, + "Ġê³³": 25177, + "Ġê³µ": 9273, + "Ġê³¼": 17590, + "Ġê³Ħ": 10603, + "Ġê³ĦìĨį": 17551, + "Ġê³ł": 9161, + "Ġê³łë": 18556, + "Ġê³łë¯¼": 41936, + "Ġê³łìĸij": 48105, + "Ġê´": 8214, + "Ġê´Ģ": 21061, + "Ġê´Ģë": 25201, + "Ġê´Ģ볨": 42660, + "Ġê´Ģìĭ¬": 47229, + "Ġê´ij": 26517, + "Ġê´ľ": 17327, + "Ġê´ľì°®": 18286, + "Ġê´ľì°®ìķĦ": 45058, + "Ġêµ": 4946, + "Ġ구": 15197, + "Ġ구ë": 17386, + "Ġ구ëıħ": 32800, + "Ġêµ°": 45644, + "Ġêµīìŀ¥": 15286, + "Ġêµīìŀ¥íŀĪ": 15509, + "ĠêµIJ": 24915, + "ĠêµŃ": 13858, + "ĠêµŃ민": 37336, + "Ġê¶ģ": 29342, + "Ġê¶ģê¸Ī": 32886, + "Ġê·": 1510, + "Ġê·¸": 4296, + "Ġ그거": 23075, + "Ġ그건": 41058, + "Ġ그걸": 35225, + "Ġê·¸ê²ĥ": 32565, + "Ġê·¸ê²Į": 21833, + "Ġê·¸ë": 2003, + "Ġê·¸ë¦¬ê³ł": 8785, + "Ġ그림": 43170, + "Ġê·¸ë§Į": 39067, + "Ġê·¸ëĥ¥": 11208, + "Ġê·¸ëĭ¤ìĿĮ": 36918, + "Ġê·¸ëĭ¤ìĿĮìĹIJ": 45137, + "Ġê·¸ëĮĢë¡ľ": 41711, + "Ġê·¸ëķĮ": 26788, + "Ġê·¸ëŀ": 18158, + "Ġê·¸ëŀ¬": 36185, + "Ġê·¸ëŀĺ": 7080, + "Ġê·¸ëŀĺëıĦ": 27449, + "Ġê·¸ëŀĺìĦľ": 8844, + "Ġê·¸ëŀĺìļĶ": 47453, + "Ġê·¸ëŁ": 4167, + "Ġê·¸ëŁ¬": 14019, + "Ġê·¸ëŁ¬ë": 13725, + "Ġê·¸ëŁ¬ë©´": 16645, + "Ġê·¸ëŁ¬ëĭĪê¹Į": 20855, + "Ġê·¸ëŁ°": 9306, + "Ġê·¸ëŁ°ëį°": 16610, + "Ġê·¸ëŁ´": 45372, + "Ġê·¸ëŁ¼": 13929, + "Ġê·¸ëłĩ": 13773, + "Ġê·¸ëłĩê²Į": 16104, + "Ġê·¸ëłĩì£ł": 34410, + "Ġê·¸ëłĩì§Ģ": 32667, + "Ġê·¼": 42476, + "Ġê·¼ë": 9564, + "Ġê·¼ëį°": 9907, + "Ġê·Ģ": 19112, + "Ġê·ĢìŬ": 36083, + "Ġê¸": 4291, + "Ġ기": 7047, + "Ġ기ë": 12503, + "Ġ기본": 40456, + "Ġ기ë¶Ħ": 37149, + "Ġ기ëĭ¤ë": 31431, + "Ġ기ëĮĢ": 41055, + "Ġ기ìĸµ": 30935, + "Ġ기ìŀIJ": 41483, + "Ġ길": 25222, + "Ġê¸Ī": 34120, + "Ġê¸ī": 44728, + "Ġê¹": 8394, + "Ġê¹Ģ": 17376, + "Ġê¹Ģë": 43629, + "Ġê¹Į": 49124, + "Ġê¹Ķë": 48693, + "Ġêº": 34505, + "Ġê¼": 17264, + "Ġê¼Ń": 25881, + "Ġê½": 24378, + "Ġê½ĥ": 45703, + "Ġê¾": 37006, + "Ġê¿": 28529, + "Ġê¿Ī": 43487, + "Ġë": 531, + "Ġë¡ľ": 26142, + "Ġ루ë": 48512, + "Ġ리": 28227, + "Ġ리ë": 31427, + "Ġ립": 44930, + "Ġë§": 1747, + "Ġ맡": 49132, + "Ġ매": 17591, + "Ġ매ë": 34638, + "Ġë§Ī": 6437, + "Ġë§Īë": 25847, + "Ġë§Ī무ë": 43797, + "Ġë§Īì§Ģë§ī": 22722, + "Ġë§ĪìĬ¤íģ": 47872, + "Ġë§ĪìĿĮ": 20477, + "Ġë§ĪìĿĮìĹIJ": 43093, + "Ġë§ī": 14438, + "Ġë§Į": 14671, + "Ġë§Įë": 8165, + "Ġë§ĮëĤĺ": 38841, + "Ġë§Įëĵ¤": 12922, + "Ġë§Įëĵ¤ìĸ´": 39001, + "Ġë§Įëĵł": 40628, + "Ġë§Įìķ½": 42195, + "Ġë§Įíģ¼": 50215, + "Ġë§İ": 5671, + "Ġë§İìĿ´": 8358, + "Ġë§İìĿĢ": 18494, + "Ġë§IJ": 7058, + "Ġë§IJê³ł": 35145, + "Ġë§IJë": 31336, + "Ġë§IJìĶ": 20797, + "Ġë§IJìĶĢ": 35665, + "Ġë§IJìĶĢë": 41112, + "Ġë§IJìĶĢëĵľë": 45345, + "Ġë§IJìĿ´": 44276, + "Ġë§IJìĿĦ": 39692, + "Ġ맼": 9508, + "Ġ맼ìĿ´": 47003, + "Ġ맼ìŀĪ": 13441, + "Ġ맼ìŀĪëĬĶ": 49051, + "Ġ맼ìŀĪìĸ´ìļĶ": 46778, + "Ġë§Ŀ": 46490, + "Ġë§ŀ": 9172, + "Ġë§ŀëĬĶ": 49953, + "Ġë§ŀìķĦ": 29417, + "Ġë§ŀìķĦìļĶ": 35273, + "Ġë¨": 5108, + "Ġ머ë": 37856, + "Ġ머리": 27089, + "Ġ먹": 6554, + "Ġë¨¹ê³ł": 26077, + "Ġ먹ëĬĶ": 30616, + "Ġ먹ìĸ´": 46317, + "Ġ먹ìĸ´ë": 28428, + "Ġ먹ìĿĦ": 28130, + "Ġ먼": 19326, + "Ġ먼ìłĢ": 20749, + "Ġë©": 8514, + "Ġ멤ë": 32303, + "Ġë©ĭ": 29260, + "Ġë©ĭìŀĪ": 46344, + "Ġë©Ķ": 34810, + "Ġë©Ķë": 42873, + "Ġë©ĶìĿ´íģ¬ìĹħ": 31923, + "Ġëª": 3491, + "Ġ모": 11722, + "Ġ모ë": 8941, + "Ġ모르": 20502, + "Ġ모ëijIJ": 27615, + "Ġ모ëĵł": 27714, + "Ġ모ìĬµ": 27780, + "Ġ모ìĸij": 45254, + "Ġ목": 20433, + "Ġ몰ë": 24833, + "Ġ몰ëĿ¼": 41733, + "Ġ몸": 30205, + "Ġ못": 10239, + "Ġëªħ": 18284, + "Ġëªĩ": 23628, + "Ġë¬": 4509, + "Ġ무": 27387, + "Ġ무ë": 19327, + "Ġ무ëĮĢ": 46650, + "Ġ무ì": 12540, + "Ġ무ìĦľ": 45072, + "Ġ무ìĬ¨": 22712, + "Ġ무ìĹ": 45613, + "Ġ무ìĹĩ": 47384, + "Ġ문": 13086, + "Ġë¬¸ìłľ": 24290, + "Ġë¬¸ìłľê°Ģ": 48748, + "Ġ묻": 39399, + "Ġ물": 14403, + "Ġ물ë": 26561, + "Ġë¬¼ë¡ł": 41251, + "Ġ물ìĸ´ë": 44558, + "Ġë®": 45388, + "Ġë¯": 17472, + "Ġ미": 10795, + "Ġ미êµŃ": 28667, + "Ġ미ë": 29004, + "Ġ미ìķĪ": 40241, + "Ġ민": 21509, + "Ġ민주": 49000, + "Ġ믿": 40365, + "Ġë°": 2391, + "Ġë°¤": 38093, + "Ġë°¥": 26479, + "Ġë°©": 10006, + "Ġë°©ë²ķ": 31656, + "Ġë°©ìĨ¡": 35429, + "Ġë°°": 14155, + "Ġë°±": 20710, + "Ġë°±ìĭł": 31551, + "Ġë°Ģ": 38813, + "Ġë°ij": 37734, + "Ġë°Ķ": 12704, + "Ġë°Ķê¿": 45795, + "Ġë°Ķë": 9040, + "Ġë°Ķë¡ľ": 15965, + "Ġë°ĶëĢ": 43841, + "Ġë°ķ": 21140, + "Ġë°ĸìĹIJ": 48652, + "Ġë°ĺ": 16396, + "Ġë°ĺë": 23142, + "Ġë°Ľ": 12152, + "Ġë°Ľê³ł": 48130, + "Ġë°ĽìķĦ": 41561, + "Ġë°ľ": 13825, + "Ġë°ľë": 20414, + "Ġë°ľëĿ¼": 37861, + "Ġë°ľìĥĿ": 47532, + "Ġë°Ŀ": 26499, + "Ġë°ĿíĺĶ": 48437, + "Ġë²": 7307, + "Ġë²Ħ": 22076, + "Ġë²Ħë": 34214, + "Ġë²Ī": 10212, + "Ġë²Ī째": 25055, + "Ġë²Į": 25846, + "Ġë²Įìį¨": 49175, + "Ġë²ķ": 31461, + "Ġë²ł": 28672, + "Ġë³": 2818, + "Ġë³´": 6330, + "Ġë³´ê³ł": 18942, + "Ġë³´ë": 10035, + "Ġë³´ë©´": 19443, + "Ġë³´ëĤ": 39833, + "Ġë³´ëĬĶ": 40891, + "Ġë³´ëĭĪê¹Į": 25612, + "Ġë³´ì": 7842, + "Ġë³´ìĦ¸ìļĶ": 49790, + "Ġë³´ìĭ": 23531, + "Ġë³´ìĭľ": 44771, + "Ġë³´ìĭľë©´": 42872, + "Ġë³´ìĹ": 16519, + "Ġë³´ìŬ": 21918, + "Ġë³´ìŬë": 33820, + "Ġë³´ìŬëĵľë": 47414, + "Ġë³´ìĿ´": 48189, + "Ġë³´ìĿ´ëĬĶ": 47793, + "Ġë³´íĨµ": 41701, + "Ġë³µ": 30696, + "Ġ본": 19387, + "Ġë³¼": 18001, + "Ġë³Ģ": 25575, + "Ġë³Ħ": 47442, + "Ġë³Ħë¡ľ": 45513, + "Ġë³ij": 32245, + "Ġë´": 8649, + "Ġë´¤": 20727, + "Ġë´IJ": 15507, + "Ġë´IJìļĶ": 45639, + "Ġë¶": 3658, + "Ġë¶Ģ": 11351, + "Ġë¶Ģë": 10201, + "Ġë¶Ģë¶Ħ": 18805, + "Ġë¶Ģë¶ĦìĿ´": 47820, + "Ġë¶Ģëĵľë": 47358, + "Ġë¶Ģíĥģ": 37056, + "Ġë¶ģ": 33215, + "Ġë¶ģíķľ": 45319, + "Ġë¶Ħ": 15361, + "Ġë¶Ħë": 21735, + "Ġë¶Ħëĵ¤": 20147, + "Ġë¶Ħëĵ¤ìĿ´": 36029, + "Ġë¶Ħëĵ¤ìĿĢ": 40821, + "Ġë¶ĦìľĦ": 49712, + "Ġë¶Ī": 16285, + "Ġë¶Īë": 25746, + "Ġë¶Ļ": 24618, + "Ġë¸": 13947, + "Ġë¸Įë": 21886, + "Ġë¸Ķë": 25576, + "Ġë¹": 5005, + "Ġ빨": 46954, + "Ġ빨리": 23077, + "Ġë¹µ": 48397, + "Ġë¹¼": 38112, + "Ġë¹Ħ": 10079, + "Ġë¹Ħë": 24241, + "Ġë¹ĦìĬ·": 36156, + "Ġë¹ł": 28117, + "Ġë¹łë": 36351, + "Ġë»": 48557, + "Ġë½": 28744, + "Ġë½ij": 38473, + "Ġë¿": 25829, + "Ġë¿Įë": 41582, + "Ġëģ": 9770, + "Ġëģ¼": 46809, + "ĠëģĿ": 13932, + "ĠëģĿëĤ": 34907, + "ĠëģĿëĤĺ": 48626, + "ĠëĤ": 2079, + "ĠëĤ¨": 11689, + "ĠëĤ¨ìŀIJ": 35266, + "ĠëĤ®": 38601, + "ĠëĤ´": 6918, + "ĠëĤ´ê°Ģ": 10474, + "ĠëĤ´ë": 15139, + "ĠëĤ´ëł¤": 33428, + "ĠëĤ´ì": 25097, + "ĠëĤ´ìļ©": 36898, + "ĠëĤ´ìĿ¼": 42831, + "ĠëĤĺ": 3948, + "ĠëĤĺê°Ģ": 37011, + "ĠëĤĺë": 12623, + "ĠëĤĺëĪ": 44263, + "ĠëĤĺëĬĶ": 17955, + "ĠëĤĺëıĦ": 31057, + "ĠëĤĺì¤ijìĹIJ": 44865, + "ĠëĤĺìģ": 48744, + "ĠëĤĺìĦľ": 43156, + "ĠëĤĺìĺ": 19370, + "ĠëĤĺìĺ¤": 19857, + "ĠëĤĺìĺ¤ë": 49397, + "ĠëĤĺìĺ¤ëĬĶ": 40137, + "ĠëĤĺìĺ¨": 34396, + "ĠëĤĺìĺ¬": 49599, + "ĠëĤĺìĻĢ": 27704, + "ĠëĤĺìĻĶ": 26374, + "ĠëĤĺíĥĢë": 49406, + "ĠëĤľ": 19252, + "ĠëĤł": 16316, + "Ġëĥ": 26218, + "ĠëĥĦ": 43250, + "ĠëĥĦìĥĪ": 49985, + "ĠëĦ": 3214, + "ĠëĦ£": 14948, + "ĠëĦ£ê³ł": 49201, + "ĠëĦ¤": 8808, + "ĠëĦ¤ê°Ģ": 41714, + "ĠëĦĪ": 12963, + "ĠëĦĪ무": 6924, + "ĠëĦĺ": 20237, + "Ġëħ": 8727, + "Ġëħ¸": 29158, + "Ġëħ¸ë": 13262, + "Ġëħ¸ëŀĺ": 24678, + "Ġëħ¸ëŀĺë": 42461, + "Ġëħ¸ëł¥": 49388, + "Ġëħ¹": 36906, + "ĠëĨ": 10091, + "ĠëĨĢë": 29873, + "ĠëĨį": 47379, + "ĠëĨĴ": 25015, + "ĠëĨĵ": 28747, + "ĠëĪ": 7508, + "ĠëĪĦ": 15647, + "ĠëĪĦê°Ģ": 33851, + "ĠëĪĦ구": 36385, + "ĠëĪĦë": 30225, + "ĠëĪĪ": 15333, + "ĠëĪĮ룬": 45934, + "Ġëī": 32086, + "Ġëī´ì": 36036, + "Ġëī´ìĬ¤": 45828, + "ĠëĬ": 7707, + "ĠëĬIJ": 34378, + "ĠëĬIJê»": 41667, + "ĠëĬIJë": 10749, + "ĠëĬIJëĤ": 11796, + "ĠëĬIJëĤĮ": 12652, + "ĠëĬIJëĤĮìĿ´": 29459, + "ĠëĬĺ": 33684, + "Ġëĭ": 2515, + "Ġëĭ¤": 4279, + "Ġëĭ¤ë": 9586, + "Ġëĭ¤ë¥¸": 16435, + "Ġëĭ¤ëĭĪ": 46240, + "Ġëĭ¤ëĵ¤": 47660, + "Ġëĭ¤ìĭľ": 15463, + "Ġëĭ¤ìĸij": 40553, + "Ġëĭ¤ìĸijíķľ": 49679, + "Ġëĭ¤ìĿĮ": 13526, + "Ġëĭ¤ìĿĮìĹIJ": 28232, + "Ġëĭ¨": 16818, + "Ġëĭ¬": 21166, + "Ġëĭ¬ë": 20738, + "Ġëĭ¬ëĿ¼": 42407, + "Ġëĭ´": 39700, + "Ġëĭµ": 41918, + "Ġëĭ¹": 12047, + "Ġëĭ¹ìĭľ": 49559, + "Ġëĭ¹ìĭł": 45594, + "Ġëĭ¹ìĹ°": 43424, + "ĠëĭĪ": 35362, + "Ġëĭĺ": 45054, + "ĠëĮ": 28088, + "ĠëĮĢ": 5971, + "ĠëĮĢë": 17691, + "ĠëĮĢë°ķ": 38017, + "ĠëĮĢíĨµëł¹": 39567, + "ĠëĮĢíijľ": 37970, + "ĠëĮĢíķ´": 48374, + "ĠëĮĢíķ´ìĦľ": 27382, + "ĠëĮĢíķľ": 23358, + "ĠëĮĵ": 39765, + "Ġëį": 5596, + "Ġëį°": 20883, + "Ġëį°ë": 39267, + "ĠëįĶ": 6990, + "ĠëįĶë": 46389, + "Ġëı": 5189, + "Ġëı¼": 11080, + "Ġëı¼ìļĶ": 21565, + "ĠëıĦ": 10701, + "Ġëıħ": 39411, + "ĠëıĪ": 26963, + "ĠëıĮ": 20555, + "ĠëıĮë": 34324, + "ĠëıĮìķĦ": 26761, + "ĠëıĻ": 11685, + "ĠëıĻìķĪ": 32589, + "ĠëIJ": 3534, + "ĠëIJ©ëĭĪëĭ¤": 23630, + "ĠëIJIJ": 16718, + "ĠëIJĺ": 5514, + "ĠëIJĺê²Į": 14860, + "ĠëIJĺê³ł": 30597, + "ĠëIJĺë": 20603, + "ĠëIJĺë©´": 35664, + "ĠëIJĺëĬĶ": 18650, + "ĠëIJĺëĬĶëį°": 36436, + "ĠëIJĺì§Ģ": 43463, + "ĠëIJĺìĸ´": 41210, + "ĠëIJľ": 16975, + "ĠëIJł": 16625, + "Ġëij": 8108, + "ĠëijIJ": 11915, + "ĠëijIJë": 33940, + "Ġëijĺ": 21433, + "ĠëĴ": 14749, + "ĠëĴ¤": 19798, + "ĠëĴ¤ìĹIJ": 40856, + "Ġëĵ": 10758, + "Ġëĵ£": 32877, + "Ġëĵ¤": 6275, + "Ġëĵ¤ê³ł": 43488, + "Ġëĵ¤ë": 42186, + "Ġëĵ¤ìĸ´": 12900, + "Ġëĵ¤ìĸ´ê°Ģ": 20794, + "Ġëĵ¤ìĸ´ë": 46088, + "Ġëĵ¤ìĸ´ì": 20744, + "Ġëĵ¤ìĸ´ìĺ": 37916, + "Ġëĵ¯": 43058, + "Ġëĵ±": 15722, + "Ġëĵľ": 35561, + "Ġëĵľë": 13356, + "ĠëĶ": 7378, + "ĠëĶ°": 49150, + "ĠëĶ°ë": 15933, + "ĠëĶ°ëĿ¼": 24453, + "ĠëĶ±": 16681, + "ĠëĶĶ": 25158, + "ĠëĶĶìŀIJ": 47887, + "Ġëķ": 4893, + "ĠëķĮ": 7765, + "ĠëķĮë": 9057, + "ĠëķĮ문": 11406, + "ĠëķĮ문ìĹIJ": 12365, + "ĠëķĮëĬĶ": 27264, + "ĠëķĮëıĦ": 49738, + "Ġëĸ": 13320, + "Ġëĸ¡": 45197, + "Ġëĸ¨": 27436, + "Ġëĸ¨ìĸ´ì": 30667, + "Ġëĸł": 43687, + "Ġëĸłë": 48158, + "Ġëĺ": 7102, + "ĠëĺIJ": 7992, + "Ġëĺij": 29142, + "Ġëĺijê°Ļ": 33790, + "Ġëļ": 39181, + "ĠëĽ": 40589, + "Ġ뼰": 44380, + "Ġëľ": 20490, + "Ġ뾨": 38766, + "Ġëľ»": 44774, + "ĠëĿ¼": 22339, + "ĠëĿ¼ê³ł": 43281, + "ĠëĿ¼ë": 44831, + "ĠëĿ¼ëĬĶ": 49121, + "ĠëłĪ": 28156, + "ĠëłĪë": 43927, + "ĠëŃ": 10096, + "ĠëŃIJ": 7034, + "ĠëŃIJê°Ģ": 39713, + "ĠëŃIJë": 25205, + "ĠëŃIJìķ¼": 18410, + "ĠëŃĶ": 43972, + "ĠëŃĶê°Ģ": 20729, + "ĠëŃĺ": 32376, + "Ġì": 451, + "Ġì¡": 22116, + "Ġì¡°": 7430, + "Ġì¡°ê¸Ī": 13091, + "Ġì¡°ë": 42707, + "Ġì¡°ìĭ¬": 48164, + "Ġì¢": 3340, + "Ġì¢Ģ": 6796, + "Ġì¢ħ": 25260, + "Ġì¢ĭ": 5008, + "Ġì¢ĭëĭ¤": 44891, + "Ġì¢ĭìķĦ": 10805, + "Ġì¢ĭìķĦìļĶ": 22482, + "Ġì¢ĭìķĦíķĺ": 40344, + "Ġì¢ĭìķĦíķĺëĬĶ": 33164, + "Ġì¢ĭìĿĢ": 16460, + "Ġì¢ĭìĿĦ": 39968, + "Ġì£": 5442, + "Ġ주": 7757, + "Ġì£¼ê³ł": 45848, + "Ġ주ë": 16410, + "Ġ주ëĬĶ": 45589, + "Ġ주ìĦ¸ìļĶ": 34067, + "Ġ죽": 22303, + "Ġì£Ħ": 37347, + "Ġì£ĦìĨ¡": 41939, + "Ġì¤": 4855, + "Ġì¤Ģ": 38879, + "Ġì¤Ģë": 18647, + "Ġì¤Ģë¹Ħ": 21911, + "Ġì¤Ħ": 15320, + "Ġì¤ij": 7596, + "Ġì¤ijêµŃ": 39712, + "Ġì¤ijìĹIJ": 32690, + "Ġì¤ijìļĶ": 24851, + "Ġì¤ijìļĶíķľ": 39072, + "Ġì¤ĺ": 41926, + "Ġì¦": 19220, + "Ġì¦IJ": 35177, + "Ġì¦Ŀ": 33830, + "Ġì§": 2334, + "Ġ짧": 43437, + "Ġì§Ģ": 4704, + "Ġì§Ģê¸": 46253, + "Ġì§Ģê¸Ī": 7356, + "Ġì§Ģê¸Īê¹Įì§Ģ": 41309, + "Ġì§Ģê¸ĪìĿĢ": 46516, + "Ġì§Ģë": 12205, + "Ġì§ĢëĤĺ": 41672, + "Ġì§ĢëĤľ": 26416, + "Ġì§ĢìĹŃ": 36209, + "Ġì§ĢìĽIJ": 47284, + "Ġì§ģ": 19224, + "Ġì§ģìłij": 34196, + "Ġì§Ħ": 5526, + "Ġì§Ħì§ľ": 7106, + "Ġì§Ħíĸī": 32544, + "Ġì§Ī문": 39217, + "Ġì§ij": 12111, + "Ġì§ijìĹIJ": 38380, + "Ġì§ľ": 35609, + "Ġ쪽": 31790, + "Ġì«": 37453, + "Ġì°": 5122, + "Ġì°¨": 15391, + "Ġì°¨ë": 24537, + "Ġì°©": 36018, + "Ġì°¸": 18255, + "Ġì°½": 39501, + "Ġì°¾": 18283, + "Ġì°¾ìķĦ": 33219, + "Ġì°į": 17285, + "Ġì±": 14097, + "Ġì±Ħ": 27411, + "Ġì±ħ": 33623, + "Ġì±Ļ": 49414, + "Ġì²": 6768, + "Ġ첫": 22707, + "Ġì²´": 39667, + "Ġì²ĺ": 16650, + "Ġì²ĺë": 40272, + "Ġì²ĺìĿĮ": 18736, + "Ġì²ľ": 31076, + "Ġì²Ń": 24902, + "Ġì³": 43517, + "Ġì´": 10359, + "Ġì´¬ìĺģ": 27874, + "Ġì´Ī": 26631, + "Ġì´Īë": 34417, + "Ġì´ī": 47783, + "Ġì´Ŀ": 27370, + "Ġìµ": 12568, + "Ġìµľ": 14571, + "Ġìµľê³ł": 36703, + "Ġìµľê·¼": 37349, + "ĠìµľëĮĢ": 44112, + "Ġì¶": 7458, + "Ġ춤": 40037, + "Ġ충": 24975, + "Ġ충ë¶Ħ": 47891, + "Ġì¶Ķ": 17435, + "Ġì¶Ķê°Ģ": 38160, + "Ġì¶Ķì²ľ": 40264, + "Ġì¶ķ": 36692, + "Ġì¶ľ": 25420, + "Ġì·¨": 28880, + "Ġì¸": 33381, + "Ġ측": 41696, + "Ġì¹": 6639, + "Ġì¹´": 41703, + "Ġì¹´ë": 24369, + "Ġì¹´ë©Ķë": 37680, + "Ġì¹´ë©ĶëĿ¼": 46984, + "Ġì¹ĺ": 18447, + "Ġì¹ĺë": 38366, + "Ġì¹ľ": 15801, + "Ġì¹ľêµ¬": 28307, + "Ġì¹ľêµ¬ë": 30922, + "Ġìº": 25230, + "ĠìºIJë": 45024, + "Ġì»": 9305, + "Ġ커": 38687, + "Ġ커ë": 39573, + "Ġ커íĶ": 45326, + "Ġ컨": 36195, + "Ġ컬ë": 19266, + "Ġì»¬ëŁ¬": 26691, + "Ġì»¬ëŁ¬ë": 39177, + "Ġì¼": 25777, + "Ġì¼Ģ": 46142, + "Ġì½": 10630, + "Ġì½Ķ": 26306, + "Ġì½Ķë": 31512, + "Ġì½Ķë¡ľ": 29716, + "Ġì½Ķë¡ľëĤĺ": 31490, + "Ġì½ĺ": 43875, + "Ġì¿": 27056, + "Ġì¿ł": 37855, + "ĠìĤ": 2774, + "ĠìĤ¬": 4744, + "ĠìĤ¬ê±´": 49653, + "ĠìĤ¬ê³ł": 40836, + "ĠìĤ¬ë": 6606, + "ĠìĤ¬ëŀ": 7727, + "ĠìĤ¬ëŀĮ": 12211, + "ĠìĤ¬ëŀĮë": 18078, + "ĠìĤ¬ëŀĮëĵ¤": 39570, + "ĠìĤ¬ëŀĮëĵ¤ìĿ´": 34919, + "ĠìĤ¬ëŀĮìĿ´": 27660, + "ĠìĤ¬ëŀij": 22581, + "ĠìĤ¬ì§Ħ": 29899, + "ĠìĤ¬ìĭ¤": 14504, + "ĠìĤ¬ìļ©": 14422, + "ĠìĤ°": 29589, + "ĠìĤ´": 21155, + "ĠìĤ´ë": 37316, + "ĠìĤ´ì": 15482, + "ĠìĤ´ì§Ŀ": 22384, + "ĠìĤ´ìķĦ": 46978, + "ĠìĤ¼": 32391, + "Ġìĥ": 3694, + "Ġìĥģ": 8563, + "Ġìĥģíĥľ": 34210, + "ĠìĥģíĻ©": 24581, + "ĠìĥĪ": 31184, + "ĠìĥĪë": 21922, + "ĠìĥĪë¡ľ": 32594, + "ĠìĥĪë¡ľìļ´": 41088, + "Ġìĥī": 22530, + "Ġìĥīê¹": 44105, + "ĠìĥĿ": 6439, + "ĠìĥĿê°ģ": 8594, + "ĠìĥĿê°ģìĿ´": 34581, + "ĠìĥĿê°ģìĿĦ": 30852, + "ĠìĥĿê²¼": 49810, + "ĠìĦ": 3952, + "ĠìĦ¤": 30630, + "ĠìĦ¤ë": 24175, + "ĠìĦ¤ëªħ": 33020, + "ĠìĦ±": 14409, + "ĠìĦ±ê³µ": 38403, + "ĠìĦ¸": 11605, + "ĠìĦ¸ê³Ħ": 40179, + "ĠìĦ¸ë": 32143, + "ĠìĦ¸ìĥģ": 37990, + "ĠìĦľ": 17397, + "ĠìĦľë": 32558, + "ĠìĦľë¡ľ": 44595, + "ĠìĦľìļ¸": 31039, + "ĠìĦŀ": 45048, + "ĠìĦł": 11835, + "ĠìĦłë": 22218, + "ĠìĦłë¬¼": 44956, + "ĠìĦłë°°": 49122, + "ĠìĦłìĥĿ": 33600, + "ĠìĦłìĥĿëĭĺ": 37974, + "ĠìĦłíĥĿ": 33126, + "Ġìħ": 23567, + "Ġìħĭ": 34371, + "ĠìĨ": 4794, + "ĠìĨĮ": 10614, + "ĠìĨĮê°ľ": 42784, + "ĠìĨĮë": 13062, + "ĠìĨĮ리": 21652, + "ĠìĨį": 18663, + "ĠìĨIJ": 15268, + "ĠìĨĶ": 37255, + "ĠìĨĶì§ģ": 40279, + "ĠìĨĶì§ģíŀĪ": 46337, + "ĠìĪ": 3471, + "ĠìĪ¨": 33354, + "ĠìĪĺ": 4446, + "ĠìĪĺê°Ģ": 27345, + "ĠìĪĺë": 22297, + "ĠìĪĺëıĦ": 23455, + "ĠìĪľ": 23841, + "ĠìĪľê°Ħ": 44588, + "ĠìĪł": 41986, + "Ġìī": 18804, + "Ġìī¬": 37687, + "Ġìī½": 33561, + "ĠìĬ": 6955, + "ĠìĬ¤": 25858, + "ĠìĬ¤ë": 40420, + "ĠìĬ¤í": 11196, + "ĠìĬ¤íĥĢ": 30675, + "ĠìĬ¤íĥĢìĿ¼": 45881, + "ĠìĬ¤íĬ¸ë": 49490, + "ĠìĬ¹": 30977, + "Ġìĭ": 2811, + "Ġìĭ¤": 19300, + "Ġìĭ¤ë": 34496, + "Ġìĭ¤ìłľë¡ľ": 46399, + "Ġìĭ¤í": 37403, + "Ġìĭ«": 33649, + "Ġìĭ¬": 21923, + "Ġìĭ¶": 10785, + "Ġìĭ¶ìĿĢ": 26912, + "Ġìĭ¸": 33949, + "Ġìĭľ": 5710, + "Ġìĭľê°Ħ": 16648, + "Ġìĭľê°ĦìĿ´": 39330, + "Ġìĭľë": 24452, + "Ġìĭľì²Ń": 41123, + "Ġìĭľìŀij": 14525, + "ĠìĭĿ": 19675, + "ĠìĭĿìľ¼ë¡ľ": 47270, + "Ġìĭł": 13042, + "Ġìĭłê¸°": 47958, + "Ġìĭłë": 26397, + "ĠìĮ": 35792, + "Ġìį": 37113, + "Ġìį¨": 32575, + "Ġìı": 40304, + "Ġìĵ": 11647, + "Ġìĵ°": 17373, + "Ġìĵ°ê³ł": 43303, + "Ġìĵ°ë": 37159, + "Ġìĵ°ëĬĶ": 44878, + "Ġìĵ¸": 42776, + "ĠìĶ": 13479, + "ĠìĶ¨": 17394, + "ĠìĶ¨ê°Ģ": 49262, + "Ġìķ": 1298, + "Ġìķ¼": 13450, + "Ġìķ½": 11503, + "Ġìķ½ê°Ħ": 14466, + "ĠìķĦ": 2216, + "ĠìķĦê¹Į": 25289, + "ĠìķĦë": 9200, + "ĠìķĦë§Ī": 37298, + "ĠìķĦ무": 30702, + "ĠìķĦ무ë": 29907, + "ĠìķĦë²Ħ": 49972, + "ĠìķĦë¹ł": 41281, + "ĠìķĦëĭ": 16996, + "ĠìķĦëĭĪ": 5651, + "ĠìķĦëĭĪê³ł": 32510, + "ĠìķĦëĭĪë": 14279, + "ĠìķĦëĭĪë©´": 33059, + "ĠìķĦëĭĪëĿ¼": 22948, + "ĠìķĦëĭĪìķ¼": 20425, + "ĠìķĦëĭĪìĹIJìļĶ": 30809, + "ĠìķĦëĭĮ": 28069, + "ĠìķĦëĭĻ": 45842, + "ĠìķĦ주": 22360, + "ĠìķĦì§ģ": 22729, + "ĠìķĦ침": 41812, + "ĠìķĦìĿ´": 25130, + "ĠìķĦìĿ´ë": 24790, + "ĠìķĦíĮĮ": 46438, + "Ġìķħ": 43843, + "ĠìķĪ": 4811, + "ĠìķĪë": 9658, + "ĠìķĪëħķ": 13810, + "ĠìķĪëħķíķĺìĦ¸ìļĶ": 19289, + "ĠìķĪëı¼": 42685, + "ĠìķĪìĹIJ": 31660, + "Ġìķī": 37426, + "ĠìķĬ": 6718, + "ĠìķĬê³ł": 31157, + "ĠìķĬëĬĶ": 34790, + "ĠìķĬìķĦ": 39860, + "ĠìķĬìķĦìļĶ": 39952, + "ĠìķĬìķĺ": 29558, + "ĠìķĬìĿĢ": 34590, + "ĠìķĬìĿĦ": 32112, + "ĠìķĮ": 9457, + "ĠìķĮê³ł": 31935, + "ĠìķĮë": 21246, + "ĠìķĮ볤": 38654, + "ĠìķĮìķĦ": 32352, + "ĠìķĮìķĺìĸ´": 49453, + "Ġìķŀ": 13727, + "ĠìķŀìĹIJ": 42004, + "Ġìķŀìľ¼ë¡ľ": 30293, + "Ġìķł": 21459, + "Ġìķłë": 42422, + "Ġìĸ": 2417, + "Ġìĸ´": 9076, + "Ġìĸ´ë": 4863, + "Ġìĸ´ë¨¸": 33257, + "Ġìĸ´ëĬIJ": 34918, + "Ġìĸ´ëĶ": 41802, + "Ġìĸ´ëĶĶ": 20879, + "Ġìĸ´ëķĮ": 43884, + "Ġìĸ´ëĸ": 7768, + "Ġìĸ´ëĸ¡": 39593, + "Ġìĸ´ëĸ¤": 15620, + "Ġìĸ´ëĸ»": 12580, + "Ġìĸ´ëĸ»ê²Į": 12952, + "Ġìĸ´ëł¤": 32289, + "Ġìĸ´ëłµ": 43961, + "Ġìĸ´ì": 11474, + "Ġìĸ´ì¨": 46478, + "Ġìĸ´ì¨Įëĵł": 49856, + "Ġìĸ´ì©": 43513, + "Ġìĸ´ìļ": 27755, + "Ġìĸ´ìłľ": 39247, + "Ġìĸ¸": 16738, + "Ġìĸ¸ë": 44014, + "Ġìĸ¸ëĭĪ": 27213, + "Ġìĸ¸ìłľ": 43790, + "Ġìĸ¼": 22142, + "Ġìĸ¼êµ": 25233, + "Ġìĸ¼êµ´": 30818, + "Ġìĸ¼ë": 21699, + "Ġìĸ¼ë§": 33502, + "Ġìĸ¼ë§Ī": 44859, + "Ġìĸ¼ë§ĪëĤĺ": 36093, + "Ġìĸij": 17723, + "Ġìĸĺ": 11098, + "Ġìĸĺ기": 19641, + "Ġìĸĺ기를": 38327, + "Ġìĸĺë": 49441, + "ĠìĸĺëĬĶ": 43084, + "ĠìĹ": 2087, + "ĠìŬ": 5518, + "ĠìĹ¬ê¸°": 7543, + "ĠìĹ¬ê¸°ê¹Įì§Ģ": 46869, + "ĠìĹ¬ê¸°ëĬĶ": 48864, + "ĠìĹ¬ê¸°ìĦľ": 25404, + "ĠìĹ¬ê¸°ìĹIJ": 37138, + "ĠìŬë": 8228, + "ĠìŬ룬": 31784, + "ĠìŬ룬ë": 10791, + "ĠìŬ룬ë¶Ħ": 14707, + "ĠìŬ룬ë¶Ħëĵ¤": 25745, + "ĠìŬìŀIJ": 41768, + "ĠìĹ°": 11839, + "ĠìĹ°ë": 34902, + "ĠìĹ°ìĬµ": 35901, + "ĠìĹ´": 41280, + "ĠìĹ´ë": 38787, + "ĠìĹ´ì": 40039, + "ĠìĹ´ìĭ¬íŀĪ": 31939, + "ĠìĹĦ": 16685, + "ĠìĹĦë§Ī": 23747, + "ĠìĹĦì²Ń": 18070, + "ĠìĹħ": 32892, + "ĠìĹĨ": 5711, + "ĠìĹĨê³ł": 48724, + "ĠìĹĨëĬĶ": 20986, + "ĠìĹĨëĭ¤": 50174, + "ĠìĹĨìĬµëĭĪëĭ¤": 47236, + "ĠìĹĨìĸ´": 28715, + "ĠìĹĨìĸ´ìļĶ": 31162, + "ĠìĹĨìĿ´": 33353, + "ĠìĹIJ": 20122, + "ĠìĹIJë": 44428, + "ĠìĹŃ": 19427, + "ĠìĹŃìĭľ": 34522, + "Ġìĺ": 2355, + "Ġìĺ¤": 5175, + "Ġìĺ¤ë": 10258, + "Ġìĺ¤ë¥¸": 46673, + "Ġìĺ¤ë¹ł": 33398, + "Ġìĺ¤ëĬ": 36791, + "Ġìĺ¤ëĬĺ": 8880, + "Ġìĺ¤ëĬĺëıĦ": 47455, + "Ġìĺ¤ëĬĺìĿĢ": 23720, + "Ġìĺ¤ëŀĺ": 46211, + "Ġìĺ¤ëŀľë§Į": 48551, + "Ġìĺ¤ì¼ĢìĿ´": 30567, + "Ġìĺ¤í": 25586, + "Ġìĺ¨": 25506, + "Ġìĺ¬": 28603, + "Ġìĺ¬ë": 12917, + "Ġìĺ¬ëĿ¼": 22327, + "Ġìĺ·": 30880, + "Ġìĺģ": 9293, + "Ġìĺģìĥģ": 15603, + "ĠìĺģìĥģìĿĦ": 42942, + "ĠìĺģíĻĶ": 44869, + "ĠìĺĨ": 29095, + "ĠìĺĪ": 10134, + "ĠìĺĪë": 22551, + "ĠìĺĪë»IJ": 45527, + "ĠìĺĪìģ": 20684, + "ĠìĺĪìģĺ": 28424, + "ĠìĺĽ": 44298, + "ĠìĺĽëĤł": 48646, + "ĠìĻ": 4186, + "ĠìĻ¸": 27357, + "ĠìĻĢ": 12500, + "ĠìĻĢìĦľ": 45783, + "ĠìĻĦ": 18112, + "ĠìĻĦë": 36683, + "ĠìĻĦìĦ±": 41867, + "ĠìĻĦìłĦ": 25587, + "ĠìĻĶ": 17766, + "ĠìĻľ": 9883, + "ĠìĻľë": 33750, + "ĠìĻľëĥIJíķĺë©´": 49338, + "Ġìļ": 4709, + "Ġìļ©": 33622, + "Ġìļ°": 14995, + "Ġìļ°ë": 22776, + "Ġìļ°ë¦¬": 8126, + "Ġìļ°ë¦¬ê°Ģ": 22408, + "Ġìļ°ë¦¬ë": 36118, + "Ġìļ°ë¦¬ëĬĶ": 42425, + "Ġìļ°ìĻĢ": 36963, + "Ġìļ´ëıĻ": 33541, + "Ġìļ¸": 40814, + "ĠìļĶ": 10161, + "ĠìļĶë": 39688, + "ĠìļĶì¦ĺ": 24835, + "ĠìĽ": 6891, + "ĠìĽĢ": 40481, + "ĠìĽĢì§ģ": 42114, + "ĠìĽĥ": 25014, + "ĠìĽIJ": 13499, + "ĠìĽIJë": 20884, + "ĠìĽIJëŀĺ": 25169, + "Ġìľ": 4916, + "Ġìľ¤": 36844, + "Ġìľ¼": 37163, + "ĠìľĦ": 9491, + "ĠìľĦìĹIJ": 38388, + "ĠìľĦíķ´": 31600, + "ĠìľĦíķ´ìĦľ": 30238, + "ĠìľĦíķľ": 41475, + "Ġìľł": 11878, + "Ġìľłë": 22262, + "ĠìľłíĬľë": 39163, + "ĠìĿ": 1191, + "ĠìĿ´": 2620, + "ĠìĿ´ê±°": 7075, + "ĠìĿ´ê±°ë¥¼": 46208, + "ĠìĿ´ê±°ëĬĶ": 24535, + "ĠìĿ´ê±´": 21867, + "ĠìĿ´ê±¸": 27107, + "ĠìĿ´ê²ĥ": 23088, + "ĠìĿ´ê²ĥëıĦ": 42118, + "ĠìĿ´ê²Į": 10496, + "ĠìĿ´ë": 2892, + "ĠìĿ´ë¦Ħ": 28581, + "ĠìĿ´ë¯¸": 30099, + "ĠìĿ´ë²Ī": 16299, + "ĠìĿ´ë²ĪìĹIJ": 40692, + "ĠìĿ´ëŁ¬": 37398, + "ĠìĿ´ëŁ°": 8381, + "ĠìĿ´ëłĩê²Į": 5483, + "ĠìĿ´ì": 4329, + "ĠìĿ´ìª½": 40325, + "ĠìĿ´ìĥģ": 20362, + "ĠìĿ´ìķ¼": 20510, + "ĠìĿ´ìķ¼ê¸°": 37576, + "ĠìĿ´ìķ¼ê¸°ë¥¼": 48974, + "ĠìĿ´ìĸ": 40186, + "ĠìĿ´ìļ©": 37839, + "ĠìĿ´ìľł": 32292, + "ĠìĿ´ìł": 41049, + "ĠìĿ´ìłľ": 8424, + "ĠìĿ´íķ´": 49373, + "ĠìĿ´íĽĦ": 43577, + "ĠìĿµ": 45664, + "ĠìĿ¸": 9385, + "ĠìĿ¸ë": 34339, + "ĠìĿ¸íĦ°ë": 47491, + "ĠìĿ¼": 7682, + "ĠìĿ¼ë": 16623, + "ĠìĿ¼ë°ĺ": 47057, + "ĠìĿ¼ë³¸": 38496, + "ĠìĿ¼ëĭ¨": 17304, + "ĠìĿ¼ìĿ´": 42848, + "ĠìĿ½": 43302, + "ĠìĿĢ": 31863, + "ĠìĿĮ": 15179, + "ĠìĿĮìĭĿ": 34203, + "ĠìĿĮìķħ": 37851, + "ĠìĿij": 21712, + "ĠìĿĺ": 14389, + "ĠìĿĺë": 29321, + "Ġìŀ": 1332, + "Ġìŀ¡": 16545, + "Ġìŀ¡ìķĦ": 40845, + "Ġìŀ¥": 12280, + "Ġìŀ¥ëĤľ": 46314, + "Ġìŀ¬": 20804, + "Ġìŀ¬ë": 16526, + "Ġìŀ¬ë¯¸": 37723, + "Ġìŀ¬ë°Į": 31224, + "ĠìŀĦ": 43216, + "Ġìŀħ": 10051, + "ĠìŀħëĭĪëĭ¤": 37589, + "ĠìŀĪ": 2297, + "ĠìŀĪê±°ëĵłìļĶ": 44262, + "ĠìŀĪê²Į": 41680, + "ĠìŀĪê³ł": 18683, + "ĠìŀĪê³łìļĶ": 44426, + "ĠìŀĪ기": 48371, + "ĠìŀĪë": 23549, + "ĠìŀĪëĤĺ": 48178, + "ĠìŀĪëĬĶ": 7153, + "ĠìŀĪëĬĶëį°": 19197, + "ĠìŀĪëĬĶëį°ìļĶ": 43550, + "ĠìŀĪëĭ¤": 27468, + "ĠìŀĪëĭ¤ê³ł": 32517, + "ĠìŀĪëĭ¤ëĬĶ": 38469, + "ĠìŀĪì£ł": 34070, + "ĠìŀĪì§Ģ": 37693, + "ĠìŀĪì§Ģë§Į": 49355, + "ĠìŀĪìĬµëĭĪëĭ¤": 10552, + "ĠìŀĪìĸ´": 17300, + "ĠìŀĪìĸ´ìĦľ": 27937, + "ĠìŀĪìĸ´ìļĶ": 12654, + "ĠìŀĪìĹĪ": 15972, + "ĠìŀĪìľ¼": 47324, + "ĠìŀĪìľ¼ë©´": 35783, + "ĠìŀĪìľ¼ëĭĪê¹Į": 44489, + "ĠìŀĪìĿĦ": 18082, + "ĠìŀĪìŀĸìķĦìļĶ": 38853, + "ĠìŀIJ": 5650, + "ĠìŀIJ기": 37257, + "ĠìŀIJ꾸": 45989, + "ĠìŀIJë": 15905, + "ĠìŀIJ주": 47295, + "ĠìŀIJìĭł": 31505, + "ĠìŀIJìĹ°": 39635, + "Ġìŀij": 14585, + "ĠìŀijìĹħ": 40316, + "ĠìŀijìĿĢ": 45870, + "Ġìŀĺ": 6644, + "Ġìŀĺë": 24041, + "Ġìŀĺ못": 38991, + "Ġìŀł": 15825, + "Ġìŀłê¹": 24155, + "Ġìŀłê¹IJ": 43479, + "Ġìŀłê¹IJë§Į": 33805, + "Ġìł": 1647, + "ĠìłĢ": 4841, + "ĠìłĢ기": 33789, + "ĠìłĢë": 13163, + "ĠìłĢëĬĶ": 10551, + "ĠìłĢëıĦ": 27591, + "ĠìłĢíĿ¬": 14594, + "ĠìłĢíĿ¬ê°Ģ": 27463, + "Ġìłģ": 14370, + "ĠìłģìĿ´": 48660, + "ĠìłĦ": 6831, + "ĠìłĦë": 19617, + "ĠìłĦìĹIJ": 27117, + "ĠìłĪë": 36144, + "ĠìłĪëĮĢ": 48811, + "ĠìłIJ": 20060, + "Ġìłij": 21616, + "Ġìłijì¢ħ": 32840, + "Ġìłķ": 4980, + "Ġìłķë§IJ": 12793, + "Ġìłķë¶Ģ": 34659, + "ĠìłķëıĦ": 13636, + "ĠìłķëıĦë¡ľ": 42173, + "ĠìłķíĻķ": 47930, + "Ġìłľ": 4424, + "Ġìłľê°Ģ": 7439, + "Ġìłľë": 23406, + "ĠìłľëĮĢë¡ľ": 43795, + "ĠìłľìĿ¼": 23090, + "ĠìłľíĴĪ": 21496, + "Ġí": 1175, + "Ġíģ": 9414, + "Ġíģ¬": 23130, + "Ġíģ¬ê²Į": 38926, + "Ġíģ¬ë": 27680, + "Ġíģ°": 21307, + "Ġíģ´ë": 30464, + "ĠíĤ": 21959, + "ĠíĤ¤": 31855, + "Ġíĥ": 8675, + "ĠíĥĢ": 19840, + "ĠíĥĦ": 46979, + "Ġíĥľ": 28808, + "ĠíĦ°": 39565, + "Ġíħ": 18575, + "ĠíħĮ": 30516, + "ĠíĨ": 20901, + "ĠíĨµ": 17006, + "ĠíĨł": 40309, + "ĠíĨłë": 47955, + "ĠíĪ¬": 27256, + "ĠíĬ": 11412, + "ĠíĬ¸ë": 34479, + "ĠíĬ¹": 16909, + "ĠíĬ¹ë³Ħ": 48735, + "ĠíĬ¹íŀĪ": 37704, + "ĠíĬĢ": 49470, + "Ġíĭ": 22114, + "Ġíĭ°": 42417, + "ĠíĮ": 6950, + "ĠíĮ¨": 35470, + "ĠíĮ¬": 45480, + "ĠíĮ¬ë": 47132, + "ĠíĮĢ": 31448, + "ĠíĮĮ": 15390, + "ĠíĮĮë": 44475, + "ĠíĮIJ": 35008, + "ĠíĮĶ": 37110, + "ĠíĮĶë": 49236, + "Ġíį¼": 40849, + "Ġíİ": 10981, + "Ġíݸ": 16990, + "Ġíİĺ": 48574, + "Ġíı": 9250, + "Ġíı¬": 17101, + "Ġíı¬ìĿ¸": 45253, + "Ġíıī": 21967, + "ĠíıŃ": 35663, + "Ġíij": 41065, + "Ġíijľ": 20966, + "ĠíijľíĺĦ": 34232, + "ĠíĴ": 21442, + "ĠíĴĢ": 40036, + "ĠíĶ": 8074, + "ĠíĶ¼": 17448, + "ĠíĶ¼ë": 24009, + "ĠíĶ¼ë¶Ģ": 30192, + "ĠíĶĦë": 32051, + "ĠíĶĦë¡ľ": 27758, + "ĠíĶĮë": 28764, + "Ġíķ": 1362, + "Ġíķ¨": 19340, + "Ġíķ¨ê»ĺ": 21469, + "Ġíķ©": 32413, + "Ġíķ©ëĭĪëĭ¤": 18802, + "Ġíķ´": 11683, + "Ġíķ´ë": 11134, + "Ġíķ´ëıĦ": 35776, + "Ġíķ´ì": 7960, + "Ġíķ´ì£¼": 23281, + "Ġíķ´ì¤": 29409, + "Ġíķ´ìĦľ": 17705, + "Ġíķ´ìķ¼": 20556, + "Ġíķ´ìļĶ": 25744, + "ĠíķĦ": 19620, + "ĠíķĦìļĶ": 22731, + "Ġíķij": 45549, + "Ġíķĺ": 3369, + "Ġíķĺê²Į": 44605, + "Ġíķĺê²łìĬµëĭĪëĭ¤": 23473, + "Ġíķĺê³ł": 10301, + "Ġíķĺ기": 47378, + "Ġíķĺë": 5832, + "Ġíķĺ루": 33918, + "Ġíķĺë©´": 17422, + "Ġíķĺë©´ìĦľ": 37466, + "ĠíķĺëĤĺ": 12261, + "ĠíķĺëĤĺë": 38878, + "ĠíķĺëĬĶ": 10914, + "ĠíķĺëĬĶëį°": 29600, + "ĠíķĺëĭĪê¹Į": 47490, + "Ġíķĺì§Ģ": 26882, + "Ġíķĺì§Ģë§Į": 23286, + "ĠíķĻ": 24504, + "Ġíķľ": 4815, + "ĠíķľêµŃ": 21045, + "Ġíķľë": 10737, + "Ġíķľë²Ī": 14463, + "Ġíķľëĭ¤": 44005, + "Ġíķľëį°": 49780, + "Ġíķł": 8981, + "Ġíķłê²ĮìļĶ": 43258, + "Ġíķłë": 44148, + "ĠíķŃ": 25031, + "ĠíķŃìĥģ": 30747, + "Ġíĸ": 11988, + "Ġíĸ¥": 29165, + "ĠíĸĪ": 8154, + "ĠíĸĪëĬĶëį°": 27418, + "ĠíĸĪëįĺ": 45564, + "ĠíĸĪìĬµëĭĪëĭ¤": 32314, + "ĠíĸĪìĸ´": 49528, + "ĠíĸĪìĸ´ìļĶ": 36331, + "Ġíĸī": 21484, + "Ġíĸīë³µ": 36921, + "ĠíĹ": 13431, + "ĠíŤ": 45037, + "ĠíĹĪ": 26893, + "ĠíĹĪë": 47078, + "ĠíĹĪíĮĿ": 41756, + "Ġíĺ": 5706, + "Ġíĺ¸": 26932, + "Ġíĺ¹": 27088, + "Ġíĺ¹ìĭľ": 34767, + "Ġíĺ¼": 31523, + "Ġíĺ¼ìŀIJ": 36028, + "ĠíĺĦ": 17505, + "ĠíĺĦìŀ¬": 39870, + "Ġíĺij": 46977, + "Ġíĺķ": 12459, + "ĠíĻ": 5930, + "ĠíĻį": 36990, + "ĠíĻĶ": 20661, + "ĠíĻĶë": 26700, + "ĠíĻĶìŀ¥": 40711, + "ĠíĻķ": 12619, + "ĠíĻķì§Ħ": 45061, + "ĠíĻķìĭ¤íŀĪ": 50149, + "ĠíĻķìĿ¸": 31288, + "ĠíĻĺ": 29288, + "ĠíĻľ": 42194, + "ĠíĻľëıĻ": 45638, + "Ġíļ": 14794, + "Ġíļ¨": 33571, + "ĠíļĮ": 22980, + "ĠíĽ": 11091, + "ĠíĽ¨": 41842, + "ĠíĽ¨ìĶ¬": 42489, + "ĠíĽĦ": 21638, + "ĠíĽĦë": 23104, + "ĠíĽĦë³´": 40089, + "Ġíľ": 30200, + "ĠíĿ": 14473, + "Ġíŀĺ": 30326, + "Ġíŀĺë": 22042, + "Ġíŀĺëĵ¤": 28576, + "Ġï": 25072, + "Ġï·": 28081, + "Ġï·º": 41122, + "Ġï·»": 47735, + "Ġ�": 16867, + "ĠðĿ": 42244, + "ĠðĿĺ": 42341, + "ĠðŁ": 7385, + "ĠðŁİ": 19034, + "ĠðŁİµ": 25674, + "ĠðŁİ¶": 43669, + "ĠðŁIJ": 27480, + "ĠðŁij": 36276, + "ĠðŁĺ": 20732, + "ġ": 221, + "Ģ": 222, + "Ģë": 2366, + "Ģë¡ľ": 36680, + "Ģ리": 34374, + "ĢëıĦ": 33225, + "ĢìĿ´": 12192, + "ĢìĿĦ": 25700, + "ģ": 223, + "ģ¼": 29278, + "ģĶ": 30895, + "Ĥ": 224, + "Ĥ¨": 30856, + "Ĥ¬": 9915, + "Ĥ´": 22485, + "Ĥĺ": 3404, + "Ĥĺë": 14886, + "ĤĺëĿ¼": 47495, + "ĤĺìļĶ": 26057, + "Ĥľ": 16662, + "Ĥł": 24095, + "ĥ": 225, + "ĥ¥": 10408, + "ĥ½": 4720, + "ĥĢ": 22373, + "ĥģ": 17486, + "ĥIJ": 12476, + "ĥIJë©´": 35482, + "ĥIJíķĺë©´": 46370, + "Ħ": 226, + "Ħ¤": 5626, + "Ħ¤ìļĶ": 12974, + "Ħ°": 26267, + "Ħ±": 42235, + "Ħ¸": 20600, + "Ħ¸ìļĶ": 25918, + "Ħë": 2703, + "Ħë¡ľ": 14046, + "Ħ를": 21273, + "Ħë§Ī": 21274, + "ĦëıĦ": 24798, + "Ħëĵ¤": 10801, + "ĦĪ": 23318, + "ĦIJ": 45382, + "Ħľ": 3556, + "ħ": 227, + "ħ¸": 37524, + "ħëĭĪëĭ¤": 28332, + "ħĢ": 32710, + "ħĦ": 35530, + "ħķ": 12831, + "ħĺ": 36630, + "Ĩ": 228, + "Ĩµ": 9999, + "Ĩĵ": 28500, + "Ĩĵê³ł": 47441, + "ĩ": 229, + "Ī": 230, + "Ī¬": 20435, + "Ī¬ë": 48458, + "Īë": 2196, + "Ī를": 31567, + "Īë§Į": 30962, + "Īë¬": 5520, + "Ī무": 6438, + "Ī무ë": 27532, + "Ī문": 35604, + "ĪëĤĺ": 19505, + "ĪëĦ¤": 39510, + "Īëįĺ": 13461, + "ĪëıĦ": 22616, + "ī": 231, + "īìŀ¥": 14547, + "Ĭ": 232, + "Ĭ¤": 19426, + "Ĭ¨": 21588, + "Ĭ¸": 21830, + "Ĭ¸ë": 28699, + "ĭ": 233, + "Į": 234, + "Įë": 2457, + "Į를": 29039, + "Įëį°": 50158, + "ĮëıĦ": 33723, + "Įëĵł": 47353, + "Į룬": 39530, + "ĮĢ": 3638, + "ĮĢë": 8405, + "ĮĢë¡ľ": 15527, + "ĮĢ를": 49946, + "į": 235, + "į¨": 18304, + "į°": 2336, + "į¼": 21709, + "įãĥ«": 38518, + "įëĭĪëĭ¤": 27169, + "įĶ": 19666, + "įĶë": 12890, + "įĶëĭĪ": 39638, + "įĶëĿ¼": 39898, + "įĶëĿ¼ê³ł": 19129, + "įĶëĿ¼ê³łìļĶ": 21261, + "įĺ": 8092, + "İ": 236, + "ı": 237, + "ı¼": 25116, + "ıĦ": 1838, + "ıĦë¡Ŀ": 19305, + "ıħ": 19079, + "ıĮ": 34242, + "ıĻ": 8309, + "ıĻìķĪ": 48608, + "IJ": 238, + "IJ×": 2660, + "IJë": 2998, + "IJë§Į": 25940, + "IJë©´": 32324, + "IJëį°": 43429, + "IJëıĦ": 22983, + "IJIJ": 35606, + "IJĺ": 10487, + "IJĺëĬĶ": 43653, + "IJľ": 14987, + "ij": 239, + "ij¥": 42815, + "ij×": 4349, + "ij׾": 23602, + "ijIJ": 15150, + "ijIJë": 45193, + "ijľ": 12139, + "Ĵ": 240, + "ĵ": 241, + "ĵ¤": 2403, + "ĵ¤ëıĦ": 46313, + "ĵ¤ìĿ´": 8109, + "ĵ¤ìĿĢ": 22571, + "ĵ¤ìĿĦ": 24968, + "ĵ¤ìĿĺ": 29990, + "ĵ¯": 39358, + "ĵ±": 22205, + "ĵľ": 7087, + "ĵľë": 6300, + "ĵľë¥¼": 43871, + "ĵľë¦´": 29512, + "ĵľë¦´ê²ĮìļĶ": 41413, + "ĵľëĬĶ": 29609, + "ĵĿ": 26152, + "ĵł": 6646, + "Ķ": 242, + "Ķ©": 34521, + "Ķê°Ģ": 13833, + "Ķë": 3261, + "Ķë¡ľ": 18839, + "ĶëıĦ": 40720, + "ĶìĿ´": 17793, + "ĶìĿ´íģ¬": 29819, + "ĶìĿ´íģ¬ìĹħ": 30952, + "ĶĶ": 9520, + "ĶĶìĸ´": 40803, + "ĶĶìĺ¤": 49117, + "ķ": 243, + "ķ¼": 6612, + "ķĦ": 33889, + "ķĮ": 14922, + "ĸ": 244, + "ĸ´": 25982, + "ĸ×Ķ": 7889, + "ĸìĹIJ": 28216, + "ĸĪ": 4341, + "Ĺ": 245, + "ĹIJ": 8926, + "ĺ": 246, + "ĺë": 1894, + "ĺ를": 18855, + "ĺëıĦ": 8226, + "Ļ": 247, + "ĻĢ": 37404, + "ļ": 248, + "ļ©": 22621, + "ļĶ": 1206, + "Ľ": 249, + "Ľi": 8971, + "ľ": 250, + "ľ¨": 34057, + "ľë": 2163, + "ľë¡ľ": 15636, + "ľë¥¼": 20087, + "ľë©´": 34092, + "ľëĮĢ": 36718, + "ľëıĦ": 17099, + "ľëıĻ": 38667, + "ľł": 27144, + "Ŀ": 251, + "Ŀi": 10677, + "Ŀ¤": 35156, + "Ŀ¼": 2742, + "Ŀ¼ê³ł": 6954, + "Ŀ¼ë": 9316, + "Ŀ¼ë©´": 32713, + "Ŀ¼ëĬĶ": 13182, + "Ŀ¼ëıĦ": 25574, + "Ŀ¼ìĦľ": 48367, + "Ŀ½": 20523, + "ŀ": 252, + "ŀ¨": 43369, + "ŀ×": 3376, + "ŀר": 18520, + "ŀת": 40339, + "ŀĢ": 18781, + "ŀĪ": 5387, + "ŀĪë": 36329, + "ŀĪ볤": 50073, + "ŀĮ": 22855, + "ŀIJ": 15876, + "ŀIJë": 45863, + "ŀij": 9143, + "ŀĸ": 47812, + "ŀĺ": 4241, + "ŀĺë": 14387, + "ŀĺëıĦ": 38371, + "ŀĻ": 34284, + "ŀľë": 27273, + "ŀľë§Į": 46034, + "Ł": 253, + "Ł¬": 6235, + "Ł¬ë": 7871, + "Ł¬ìļ´": 40537, + "Ł°": 7436, + "Ł¼": 15375, + "Ł½": 21498, + "Łģ": 38067, + "Łī": 24502, + "ł": 254, + "ł¤": 5743, + "ł¤ê³ł": 18914, + "ł¤ë": 19479, + "ł¤ìĦľ": 40673, + "ł¤ìļĶ": 45410, + "ł¥": 11770, + "ł¨": 26627, + "łµ": 39469, + "ł¸": 14264, + "ł¹": 25565, + "ł×ķ": 32219, + "ł×Ĺ": 21418, + "ł×Ĺ׳×ķ": 22152, + "ł×Ļ": 10361, + "łë": 4673, + "łë¥¼": 39988, + "łĩ": 3921, + "łĩê²Į": 4591, + "łĪ": 10417, + "łĪë": 29494, + "łĪìĿ´": 38845, + "łĮ": 37422, + "łľ": 7589, + "Ń": 255, + "Ńī": 43962, + "ŃIJ": 4381 +} diff --git a/distil_whisper.egg-info/PKG-INFO b/distil_whisper.egg-info/PKG-INFO new file mode 100644 index 0000000000000000000000000000000000000000..6d765593b83b3a40e674f861cf9c63b84cb80a6f --- /dev/null +++ b/distil_whisper.egg-info/PKG-INFO @@ -0,0 +1,655 @@ +Metadata-Version: 2.1 +Name: distil_whisper +Version: 0.0.0 +Summary: Toolkit for distilling OpenAI's Whisper model. +Description-Content-Type: text/markdown +Requires-Dist: torch>=1.10 +Requires-Dist: transformers>=4.35.1 +Requires-Dist: datasets[audio]>=2.14.7 +Requires-Dist: accelerate>=0.24.1 +Requires-Dist: jiwer +Requires-Dist: evaluate>=0.4.1 +Requires-Dist: wandb +Requires-Dist: tensorboard +Requires-Dist: nltk +Provides-Extra: dev +Requires-Dist: ruff==0.1.5; extra == "dev" + +## Training Distil-Whisper + +This sub-folder contains all the scripts required to train a Distil-Whisper model in your choice of language. They are +slightly modified from the original scripts used to distill Whisper for English ASR (as-per the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). +The main difference is that these scripts are written in [PyTorch](https://pytorch.org), whereas the original scripts +are in [JAX](https://jax.readthedocs.io/en/latest/#)/[Flax](https://flax.readthedocs.io/en/latest/). These scripts are +also made to be easier to run end-to-end, whereas the original scripts require more steps and are somewhat hard-coded +for English ASR. Both sets of scripts achieve equivalent downstream results when the hyper-parameters are set equal. + +If you are interested in reproducing the original Distil-Whisper checkpoints, we refer you to the sub-folder [Flax Training](./flax/README.md). +Otherwise, if you wish to distill Whisper on your own language/dataset, we recommend you use these scripts for ease of use +and the configurability they provide. + +Reproducing the Distil-Whisper project requires four stages to be completed in successive order: + +1. [Pseudo-labelling](#1-pseudo-labelling) +2. [Initialisation](#2-initialisation) +3. [Training](#3-training) +4. [Evaluation](#4-evaluation) + +This README is partitioned according to the four stages. Each section provides a minimal example for running the +scripts used in the project. We will use a running example of distilling the Whisper model for Hindi speech recognition +on the Common Voice dataset. Note that this dataset only contains ~20 hours of audio data. Thus, it can be run extremely +quickly, but does not provide sufficient data to achieve optimal performance. We recommend training on upwards of 1000 +hours of data should you want to match the performance of Whisper on high-resource languages. + +## Requirements + +The Distil-Whisper training code is written in [PyTorch](https://pytorch.org) and [Accelerate](https://huggingface.co/docs/accelerate/index). +It heavily leverages the Whisper implementation in [🤗 Transformers](https://github.com/huggingface/transformers) for both +training and inference. + +The instructions for installing the package are as follows: +1. Install PyTorch from the [official instructions](https://pytorch.org/get-started/locally/), ensuring you install the correct version for your hardware and CUDA version. +2. Fork the `distil-whisper` repository by clicking on the [fork](https://github.com/huggingface/distil-whisper/fork) button on the reopsitory's page +3. Clone the `distil-whisper` repository and add the base repository as a remote. This will allow you to "pull" any upstream changes that are made to the base repository: + +```bash +git clone https://github.com//distil-whisper.git +cd distil-whisper +git remote add upstream https://github.com/huggingface/distil-whisper.git +``` +4. pip install the required packages from the [setup.py](./setup.py) file: +```bash +cd training +pip install -e . +cd ../.. +``` + +5. Configure Accelerate by running the following command. Note that you should set the number of GPUs you wish to use for distillation, and also the data type (dtype) to your preferred dtype for training/inference (e.g. `bfloat16` on A100 GPUs, `float16` on V100 GPUs, etc.): + +```bash +accelerate config +``` + +6. The last thing we need to do is link our Hugging Face account so that we can pull/push model repositories on the Hub. This will allow us to save our final distilled weights on the Hub so that we can share them with the community. Run the command: + +```bash +git config --global credential.helper store +huggingface-cli login +``` +And then enter an authentication token from https://huggingface.co/settings/tokens. Create a new token if you do not have one already. You should make sure that this token has "write" privileges. + +To confirm that you have a working environment, first accept the terms of use of the Common Voice 16.1 dataset on the Hub: https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1 + +You can run the following code cell to stream one sample of data from the Common Voice dataset, and check that you can +perform inference using the "tiny" Whisper model: + +```python +from transformers import WhisperProcessor, WhisperForConditionalGeneration +from datasets import load_dataset, Audio + +model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", low_cpu_mem_usage=True) +processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") + +model.to("cuda") + +common_voice = load_dataset("mozilla-foundation/common_voice_16_1", "en", split="validation", streaming=True) +common_voice = common_voice.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate)) + +inputs = processor(next(iter(common_voice))["audio"]["array"], sampling_rate=16000, return_tensors="pt") +input_features = inputs.input_features + +generated_ids = model.generate(input_features.to("cuda"), max_new_tokens=128) +pred_text = processor.decode(generated_ids[0], skip_special_tokens=True) + +print("Pred text:", pred_text) +print("Environment set up successful?", generated_ids.shape[-1] == 20) +``` + +## 1. Pseudo-Labelling + +The python script [`run_pseudo_labelling.py`](run_pseudo_labelling.py) is a flexible inference script that can be used +to generate pseudo-labels under a range of settings, including using both greedy and beam-search. It is also compatible +with [🤗 Datasets](https://github.com/huggingface/datasets) *streaming mode*, allowing users to load massive audio +datasets with **no disk space requirements**. For more information on streaming mode, the reader is referred to the +blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). + +> As of the latest Distil-Whisper release, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3), this +pseudo-labelling script also performs the added operation of concatenating (or packing) the audio inputs to 30-seconds. +Not only does this lead to a WER improvement when using sequential long-form decoding algorithm, but concatenating audios +to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. + +The following script demonstrates how to pseudo-label the Hindi split of the Common Voice 16.1 dataset with greedy sampling: + +```bash +#!/usr/bin/env bash + +accelerate launch run_pseudo_labelling.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --dataset_name "mozilla-foundation/common_voice_16_1" \ + --dataset_config_name "hi" \ + --dataset_split_name "train+validation+test" \ + --text_column_name "sentence" \ + --id_column_name "path" \ + --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + --wandb_project "distil-whisper-labelling" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --attn_implementation "sdpa" \ + --logging_steps 500 \ + --max_label_length 256 \ + --concatenate_audio \ + --preprocessing_batch_size 500 \ + --preprocessing_num_workers 8 \ + --dataloader_num_workers 8 \ + --report_to "wandb" \ + --language "hi" \ + --task "transcribe" \ + --return_timestamps \ + --streaming False \ + --generation_num_beams 1 \ + --push_to_hub +``` + +On an 80 GB A100 GPU, the following script takes approximately 5 minutes to concatenate and pre-process the 20 hours of +audio data, and a further 10 minutes to transcribe the pseudo-labels. The pseudo-labelled dataset corresponding to this +script is available on the Hugging Face Hub under [sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled](https://huggingface.co/datasets/sanchit-gandhi/common_voice_16_1_hi_pseudo_labelled). +The WER of the pre-trained Whisper large-v3 model is 17.2% on the test split. We will compare the performance of our distilled model against this number. + +There are two noteworthy arguments that configure the dataset concatenation (or packing) process: +1. `concatenate_audio`: whether or not to concatenate (or pack) the audios to 30-second chunks. The latest Distil-Whisper model, [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3#differences-with-distil-large-v2), highlights the WER improvements obtained using the sequential long-form decoding algorithm when concatenated audios are used. Concatenating audios to 30-seconds also improves the throughput during training, since the amount of zero-padding on the audio inputs is minimised. Hence, it is highly recommended to set `--concatenate_audio=True`. +2. `preprocessing_batch_size`: the batch size to use when concatenating (or packing) the audios. Using a larger batch size results in a greater portion of audio samples being packed to 30-seconds, at the expense of higher memory consumption. If you exceed your system's RAM when performing the concatenation operation, reduce the `preprocessing_batch_size` by a factor of 2 to 250 or even 125. +3. `preprocessing_num_workers`: the number of multiprocessing workers to use when concatenating the audios. Using more workers will result in faster pre-processing, at the expense of higher memory consumption. Ensure you do not exceed the maximum number of CPUs on your device. + +In addition, the following arguments configure the inference of the Whisper model: +1. `language`: explicitly setting the language token during inference substantially improves the generation performance of the Whisper model, since the model is forced always to predict in the given language. We recommend you set the language to the language you wish to distil the Whisper model on. The only exception is when distilling an English-only model (i.e. where the model id is appended with an `.en`, e.g. `small.en`), the language argument should be set to None, since there is no language token used during training/inference. +2. `return_timestamps`: whether or not to predict timestamps in the pseudo-labels. Timestamp prediction is required should you want your distilled model to be able to predict timestamps at inference time (e.g. for the original OpenAI long-form transcription algorithm). However, the pseudo-labels are marginally less accurate than not using timestamps. We recommend pseudo-labelling **with** timestamps to ensure the distilled model is as general as possible. +3. `attn_implementation`: which attention implementation to use for inference. Set to `sdpa` for [PyTorch SDPA](https://huggingface.co/docs/transformers/v4.35.2/en/perf_infer_gpu_one#bettertransformer), or `flash_attn_2` if your hardware supports Flash Attention 2 and you have the [package installed](https://github.com/Dao-AILab/flash-attention). +4. `streaming`: whether or not to use Datasets' streaming mode. If enabled, the audio data will be streamed from the Hugging Face Hub with no disk space requirements. However, the user is then responsible for adding the pseudo-labels to the dataset script in a follow-up step (see [Using Streaming Mode](#TODO)). If set to `False`, the audio data will be downloaded and pre-processed offline. At the end of pseudo-labelling, the pseudo-labels will be automatically appended to the original dataset, meaning the dataset is ready to be used for the subsequent training step without any additional steps. +5. `generation_num_beams`: how many beams to use while decoding. In practice, we found the distilled model to perform comparably when the data was pseudo-labelled with `generation_num_beams=1` (greedy) or `generation_num_beams>1` (beam). This is likely because the WER filter compensates for the lower quality pseudo-labels obtained using greedy search. However, using `generation_num_beams=1` gives substantially faster inference time for the pseudo-labelling step, and so we recommend this configuration. + +Should you have your own audio dataset, you can first [convert it](https://huggingface.co/docs/datasets/audio_dataset) to +Hugging Face Datasets format and push it to the Hugging Face Hub. You can then pseudo-label it using the script above, +replacing the `--dataset_name` with the name of your dataset on the Hub. + +Otherwise, you may wish to use an open-source dataset already available on the Hugging Face Hub. We provide a summary of +the three most popular multilingual datasets in the table below. For more details, refer to the blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#multilingual-speech-recognition). + +| Dataset | Languages | Domain | Speaking Style | License | Text Column | ID Column | +|-----------------------------------------------------------------------------------------------|-----------|---------------------------------------|----------------|-----------|---------------------|--------------| +| [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech) | 6 | Audiobooks | Narrated | CC-BY-4.0 | `"text"` | `"id"` | +| [Common Voice 16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) | 120 | Wikipedia text & crowd-sourced speech | Narrated | CC0-1.0 | `"sentence"` | `"path"` | +| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 15 | European Parliament recordings | Spontaneous | CC0 | `"normalized_text"` | `"audio_id"` | + +To achieve *robustness* to different distributions of audio data, it is recommended to train on multiple datasets where possible. +For example, the above three datasets all have splits for the German language. Thus, if distilling a Whisper model for German, +it would be wise to use a combination of the three datasets during training, in order to cover at least three distinct domains +(audiobooks, crowd-sourced speech, parliament recordings). You may wish to use a combination of open-source datasets, or +a combination of open-source and individually owned datasets to cover multiple distributions and domains. Moreover, if you were to train on low-resource datasets (<500 hours), you could experiment with [language mixing](#3-language-mixing) to improve robustness. + +## 2. Initialisation + +The script [`create_student_model.py`](create_student_model.py) can be used to initialise a small student model +from a large teacher model. When initialising a student model with fewer layers than the teacher model, the student is +initialised by copying maximally spaced layers from the teacher, as per the [DistilBart](https://arxiv.org/abs/2010.13002) +recommendations. + +First, we need to create a model repository on the Hugging Face Hub. This repository will contain all the required files +to reproduce the training run, alongside model weights, training logs and a README.md card. You can either create a model +repository directly on the Hugging Face Hub using the link: https://huggingface.co/new. Or, via the CLI, as we'll show here. + +Let's pick a name for our distilled model: `distil-whisper-large-v3-hi`. We can run the following command to create a repository under this name: + +```bash +huggingface-cli repo create distil-whisper-large-v3-hi +``` + +We can now see the model on the Hub, e.g. under https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi + +Let's clone the repository so that we can place our training script and model weights inside: + +```bash +git lfs install +git clone https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi +``` + +Be sure to change the repo address to `https://huggingface.co//` + +We can now copy the relevant training scrips to the repository: +```bash +cd distil-whisper-large-v3-hi + +cp ../distil-whisper/training/create_student_model.py . +cp ../distil-whisper/training/run_distillation.py . +``` + +The following command demonstrates how to initialise a student model from the Whisper [large-v3](https://huggingface.co/openai/whisper-large-v3) +checkpoint, with all 32 encoder layer and 2 decoder layers. The 2 student decoder layers are copied from teacher layers +1 and 32 respectively, as the maximally spaced layers: + +```bash +#!/usr/bin/env bash + +python create_student_model.py \ + --teacher_checkpoint "openai/whisper-large-v3" \ + --encoder_layers 32 \ + --decoder_layers 2 \ + --save_dir "./distil-large-v3-init" +``` + +The initialised model will be saved to the sub-directory `distil-large-v3-init` in our model repository. + + +**Note:** You can leverage language transfer by setting `--teacher_checkpoint` to "distil-whisper/distil-large-v3", see [language transfer](#22-language-transfer) for more details. + +## 3. Training + +The script [`run_distillation.py`](run_distillation.py) is an end-to-end script for loading multiple +datasets, a student model, a teacher model, and performing teacher-student distillation. It uses the loss formulation +from the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), which is a weighted sum of the cross-entropy and +KL-divergence loss terms. + +The following command takes the Common Voice dataset that was pseudo-labelled in the first stage and trains the +2-layer decoder model intialised in the previous step. We pass the local path to the pseudo-labelled Common Voice dataset +(`../common_voice_16_1_hi_pseudo_labelled`), which you can change to the path where your local pseudo-labelled dataset is +saved. + +In this example, we will combine the train and validation splits to give our training set, and evaluate on the test split +only. This is purely to demonstrate how to combine multiple pseudo-labelled datasets for training, rather than recommended +advice for defining train/validation splits. We advise that you train on the train splits of your dataset, evaluate and +tune hyper-parameters on the validation split, and only test the final checkpoint on the test split. Note how multiple +training datasets and splits can be loaded by separating the dataset arguments by `+` symbols. Thus, the script generalises +to any number of training datasets. + +```bash +#!/usr/bin/env bash + +accelerate launch run_distillation.py \ + --model_name_or_path "./distil-large-v3-init" \ + --teacher_model_name_or_path "openai/whisper-large-v3" \ + --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ + --train_split_name "train+validation" \ + --text_column_name "sentence+sentence" \ + --train_dataset_samples "7+4" \ + --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ + --eval_split_name "test" \ + --eval_text_column_name "sentence" \ + --eval_steps 1000 \ + --save_steps 1000 \ + --warmup_steps 50 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "constant_with_warmup" \ + --timestamp_probability 0.2 \ + --condition_on_prev_probability 0.2 \ + --language "hi" \ + --task "transcribe" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 5000 \ + --wer_threshold 20 \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 32 \ + --dataloader_num_workers 8 \ + --preprocessing_num_workers 8 \ + --ddp_timeout 7200 \ + --dtype "bfloat16" \ + --attn_implementation "sdpa" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --freeze_embed_positions \ + --streaming False \ + --push_to_hub + +``` + +The above training script will take approximately 3 hours to complete on an 80 GB A100 GPU and yield a final WER of 76%. +While the generations are starting to take form, there is still a 59% WER gap to the teacher model. This is hardly +surprising give we only have 15 hours of un-filtered data, and closer to just 1.5 hours with data filtering. +As mentioned above, using upwards of 1000 hours of data and training for 10k steps will likely yield +more competitive performance. For the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430), we trained on 21k hours +of audio data for 80k steps. We found that upwards of 13k hours of audio data was required to reach convergence on English +ASR (see Section 9.2 of the [paper](https://arxiv.org/abs/2311.00430)), so the more data you have, the better! + +Scaling to multiple GPUs using [distributed data parallelism (DDP)](https://pytorch.org/tutorials/beginner/ddp_series_theory.html) +is trivial: simply run `accelerate config` and select the multi-GPU option, specifying the IDs of the GPUs you wish to use. The +above script can then be run using DDP with no code changes. + +Training logs will be reported to TensorBoard and WandB, provided the relevant packages are available. An example of a +saved checkpoint pushed to the Hugging Face Hub can be found here: [sanchit-gandhi/distil-whisper-large-v3-hi](https://huggingface.co/sanchit-gandhi/distil-whisper-large-v3-hi). + +There are a few noteworthy data arguments: +1. `train_dataset_samples`: defines the number of training samples in each dataset. Used to calculate the sampling probabilities in the dataloader. A good starting point is setting the samples to the number of hours of audio data in each split. A more refined strategy is setting it to the number of training samples in each split, however this might require downloading the dataset offline to compute these statistics. +2. `wer_threshold`: sets the WER threshold between the normalised pseudo-labels and normalised ground truth labels. Any samples with WER > `wer_threshold` are discarded from the training data. This is beneficial to avoid training the student model on pseudo-labels where Whisper hallucinated or got the predictions grossly wrong. In our English distillation experiments, we found a WER threshold of 10% provides the optimal trade-off between ensuring high-quality transcriptions, and not filtering unnecessary amounts of training data. For multilingual distillation, the threshold should be set in accordance with the WER achieved by the pre-trained model on the test set. +3. `streaming`: whether or not to use Datasets' streaming mode. Recommended for large datasets, where the audio data can be streamed from the Hugging Face Hub with no disk space requirements. +4. `timestamp_probability`: the per-sample probability for retaining timestamp tokens in the labels (should they contain them). Retaining some portion of timestamp tokens in the training data is required to ensure the distilled model can predict timestamps at inference time. In our experiments, we found that training on timestamps with high-probability hurts the distilled model's transcription performance. Thus, we recommend setting this to a value below 0.5. Typically, a value of 0.2 works well, giving good transcription and timestamp performance. +5. `condition_on_prev_probability`: the per-sample probability for conditioning on previous labels. Conditioning on previous tokens is required to ensure the distilled model can be used with the "sequential" long-form transcription algorithm at inference time. We did not experiment with this parameter, but found values around 0.2 to provide adequate performance. OpenAI pre-trained Whisper on with a 50% probability for conditioning on previous tokens. Thus, you might wish to try higher values. + +As well as a few noteworthy model arguments that can be configured to give optimal training performance: +1. `freeze_encoder`: whether to freeze the entire encoder of the student model during training. Beneficial when the student encoder is copied exactly from the teacher encoder. In this case, the encoder hidden-states from the teacher model are re-used for the student model. Stopping the gradient computation through the encoder and sharing the encoder hidden-states provides a significant memory saving, and can enable up to 2x batch sizes. +2. `freeze_embed_positions`: whether to freeze the student model's decoder positional embeddings. Using the same embed positions as the teacher model, which is designed to handle context lengths up to 448 tokens, helps the student model retain its input id representation up to the full max input length. +3. `dtype`: data type (dtype) in which the model computation should be performed. Note that this only controls the dtype of the computations (forward and backward pass), and not the dtype of the parameters or optimiser states. +4. `freeze_decoder`: whether to freeze the student model's decoder. Note that the input tokens embeddings and language modelling head will remain trainable. + +And finally, a few noteworthy training arguments: +1. `max_steps`: defines the total number of optimisation steps (forward + backward pass) during training. To reach convergence, you should use a dataset of at least 1k hours and train for a minimum of 50k steps. +2. `lr_scheduler_stype`: defines the learning rate schedule, one of `constant_with_warmup` or `linear`. When experimenting with a training set-up or training for very few steps (< 5k), using `constant_with_warmup` is typically beneficial, since the learning rate remains high over the short training run. When performing long training runs (> 5k), using a `linear` schedule generally results in superior downstream performance of the distilled model. + +TODO: +- [ ] Template for model cards + +## 4. Evaluation + +There are four types of evaluation performed in Distil-Whisper: +1. Short form: evaluation on audio samples less than 30s in duration. Examples include typical ASR test sets, such as the LibriSpeech validation set. +2. Sequential long form: evaluation on audio samples longer than 30s in duration using the original "sequential" long-form algorithm. Examples include entire TED talks or earnings calls. +3. Chunked long form: evaluation on audio samples longer than 30s in duration using the Transformers "chunked" long-form algorithm. +4. Speculative decoding: evaluation on audio samples less than 30s in duration, where a faster, distilled model is used as the assistant to a slower, teacher model. + +All four forms of evaluation are performed using the script [`run_eval.py`](run_eval.py). Unlike the pseudo-labelling +and training scripts, the evaluation script assumes that only one GPU accelerator is used. We can copy the corresponding +evaluation script to the model repository using the following command: + +```bash +cp ../distil-whisper/training/run_eval.py . +``` + +Models are assessed jointly using: +1. The *word-error rate (WER)* metric: measures the number of substitution, deletion and insertion errors relative to the total number of words. A lower WER indicates a more accurate model. +2. The *inverse real-time factor (RTFx)* metric: measures the ratio of `audio input time : model compute time`. A higher RTFx indicates a faster model. Note that this metric is WER-dependent, meaning that it makes sense to compare two models' *RTFx* only at fixed *WER* performances. Indeed, deletions could lead to early stopping of token generation, resulting in higher *WER* and lower *RTFx*. +3. Token generation speed: This refers to the number of tokens generated per second. As with *RTFx*, this metric is dependent on the *WER* since token generation time is not linear. By default, this metric is calculated by averaging the total number of `generated tokens : generation time` (full forward pass of the model) when evaluating on the given test set. However, using the `--precise_tok_generation` flag will compute this metric separately for a fixed number of tokens. + +In all cases, it is particularly important to evaluate the final model on data that is *out-of-distribution (OOD)* with +the training data. Evaluating on OOD data provides insight as to how well the distilled model is likely to generalise to +different audio distributions at inference time. In our example, the Common Voice test set is *in-distribution (ID)* +with our training data, since it is taken from the same distribution as the Common Voice training set. Whereas the FLEURS +test set is OOD, since it is not used as part of the training set. See [Datasets](#1-datasets) section for recommendations. + +### Short Form + +The script [`run_eval.py`](run_eval.py) can be used to evaluate a trained student model over multiple short-form +validation sets. The following example demonstrates how to evaluate the student model trained in the previous step on +the Common Voice `test` set (ID) and also the FLEURS `test` set (OOD). Again, it leverages streaming mode to bypass +the need to download the data offline: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "./" \ + --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ + --dataset_config_name "default+hi_in" \ + --dataset_split_name "test+test" \ + --text_column_name "sentence+transcription" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "hi" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +The student model achieves an average WER of TODO% with an RTFx of TODO for a batch size of 16. We can easily adapt the above +script to evaluate the teacher model, simply by switching the `model_name_or_path` to `openai/whisper-large-v3`, which +achieves an average WER of TODO% with an RTFx of TODO. Therefore, for a batch size of 16, the student model is a factor of TODO +times faster than the teacher. The WER gap can be closed by training on more data (at least 1k hours) for more training +steps (at least 50k). + +### Sequential Long Form + +The original Whisper paper presents a long-form transcription algorithm that sequentially transcribes 30-second segments +of audio and shifts the sliding window according to the timestamps predicted by the model. This style of sequential +inference is performed directly using the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) +method in Transformers. + +The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of +long-form evaluation sets using the sequential algorithm. Since we don't have a long-form validation set for Hindi to hand, +in this example we'll evaluate the official Distil-Whisper model [`distil-large-v3`](https://huggingface.co/distil-whisper/distil-large-v3) +on the TED-LIUM validation set: + +```bash +#!/usr/bin/env bash + +accelerate launch run_eval.py \ + --model_name_or_path "distil-whisper/distil-large-v3" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "default" \ + --dataset_split_name "validation" \ + --text_column_name "text" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "en" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +### Chunked Long Form + +Chunked long form evaluation runs on the premise that a single long audio file can be *chunked* into smaller segments and +inferred in parallel. The resulting transcriptions are then joined at the boundaries to give the final text prediction. +A small overlap (or *stride*) is used between adjacent segments to ensure a continuous transcription across chunks. + +This style of chunked inference is performed using the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines) +class, which provides a wrapper around the [`.generate`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) +function for long-form inference. + +The script [`run_eval.py`](run_eval.py) can be used to evaluate the trained student model on an arbitrary number of +long-form evaluation sets using the pipeline class. Again, in this example we'll evaluate distil-large-v3 on the +TED-LIUM validation set: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "default" \ + --dataset_split_name "validation" \ + --text_column_name "text" \ + --use_pipeline \ + --chunk_length_s 25.0 \ + --language "en" \ + --return_timestamps \ + --dtype "bfloat16" \ + --streaming + +``` + +The argument `chunk_length_s` controls the length of the chunked audio samples. It should be set to match the typical +length of audio the student model was trained on. If unsure about what value of `chunk_length_s` is optimal for your case, +it is recommended to run a *sweep* over all possible values. A template script for running a [WandB sweep](https://docs.wandb.ai/guides/sweeps) +can be found under [`run_chunk_length_s_sweep.yaml`](flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml). + +### Speculative Decoding + +Speculative decoding, or assisted generation, relies on the premise that a faster, assistant model can be used to speed-up +the generation of a slower, assistant model. Speculative decoding mathematically ensures that exactly the same outputs as +Whisper are obtained, while being ~2 times faster. This makes it the perfect drop-in replacement for existing Whisper +pipelines, since exactly the same outputs are guaranteed. + +Distil-Whisper checkpoints can be designed to be efficient assistant models to Whisper for speculative decoding. More precisely, +by freezing the encoder during training, the distilled model can share the same encoder weights as Whisper during inference, since +the encoder weights are un-changed. In doing so, only the distilled 2-layer decoder has to be loaded in addition to the +original Whisper model, which is approximately an 8% increase to the total parameter count, with up to 2x faster inference +for low batch sizes. For more details on speculative decoding, the reader is advised to refer to the following blog post: +[Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co/blog/whisper-speculative-decoding). + +In the example below, we use our distilled model as an assistant to the large-v3 teacher model during inference: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v3" \ + --assistant_model_name_or_path "./" \ + --dataset_name "../common_voice_16_1_hi_pseudo_labelled+google/fleurs" \ + --dataset_config_name "default+hi_in" \ + --dataset_split_name "test+test" \ + --text_column_name "sentence+transcription" \ + --batch_size 16 \ + --dtype "bfloat16" \ + --generation_max_length 256 \ + --language "hi" \ + --attn_implementation "sdpa" \ + --streaming + +``` + +We see that we achieve a WER of TODO%, the same as what we obtained with the large-v3 model, but with an RTFx of TODO, +a factor of TODO faster than using the large-v3 model alone. The RTFx value can be improved by training the student on +more data and for more training steps, since this will improve the number of predicted tokens that match the teacher +predictions. + +## Recommendations and guidelines + +### 1. Datasets + +As explained, ideally, you should aim for ~1000 hours of audio data for training a distilled model via KD. Moreover, you should evaluate your model on out-of-distribution test sets to assess generalization capacities. With at least 1500 hours of audio data for German, Dutch, French and Spanish, 600 hours for Italian, and 300 hours for Portuguese and Polish (which can be supplemented with your own datasets), a good setup to start with is: +- **Training datasets:** [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) and [Multilingual Librispeech](https://huggingface.co/datasets/facebook/multilingual_librispeech). Use the `train` split for training, and the `validation` and `test` splits for in-distribution testing. +- **Test datasets:** [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) and [Fleurs](https://huggingface.co/datasets/google/fleurs). Use the `validation` and `test` splits for out-of-distribution testing. + +### 2. Student model's decoder +#### 2.1 Number of Decoder Layers + +We recommend using a 2-layers decoder (see language transfer below). However, you can adjust the number of decoder layers when initializing the student model to balance between inference speed and accuracy. Experimentation has revealed that the Pareto optimal points are with 2, 3, and 4-layers decoders. For indicative results, after 10,000 training steps and inference on an 80GB Nvidia H100 with a batch size of 16 and 20 tokens generation, compared to [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3) baseline: + +
+ +| | rel. token gen. speed | ΔWER(%) | +|----------|:-------------:|------:| +| 2 layers | $3.66$ | $-3.5$ | +| 3 layers | $3.35$ | $-2.3$ | +| 4 layers | $3.11$ | $-1.8$ | + +
+ + +#### 2.2 Language Transfer + +If you opt for a 2-layers decoder, consider leveraging language transfer by initializing the student model from the [distil-large-v3 English distilled model](https://huggingface.co/distil-whisper/distil-large-v3). For French, this method has shown performance improvements of ΔWER=-1.9% (compared to a 2-layers decoder initialized from [Whiper *large-v3*](https://huggingface.co/openai/whisper-large-v3)) after 10,000 training steps. + +```diff +- --teacher_checkpoint "openai/whisper-large-v3" \ ++ --teacher_checkpoint "distil-whisper/distil-large-v3" \ +``` + +### 3. Language mixing + +If you're working with low-resource languages (<500 hours of audio data), consider mixing your training data with a closely related language (for example, mix French and Spanish) to leverage knowledge transfer between languages. Experiments showed that mixing ~400 hours of French (which resulted in a model with poor generalization capacities) with ~500 hours of Spanish improved the model's out-of-distribution performance on French by ΔWER=-7.5%. + +To do this: +1. Run [pseudo labeling](#1-pseudo-labelling) for each training dataset, setting the `--language` flag to the language of the respective dataset. In the example of mixing French and Spanish, simply modify the given [pseudo labeling](#1-pseudo-labelling) command with: + * pseudo labelling the French dataset + ```diff + - --dataset_config_name "hi" \ + - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + - --language "hi" \ + + --dataset_config_name "fr" \ + + --output_dir "./common_voice_16_1_fr_pseudo_labelled" \ + + --language "fr" \ + ``` + * pseudo labelling the Spanish dataset + ```diff + - --dataset_config_name "hi" \ + - --output_dir "./common_voice_16_1_hi_pseudo_labelled" \ + - --language "hi" \ + + --dataset_config_name "es" \ + + --output_dir "./common_voice_16_1_es_pseudo_labelled" \ + + --language "es" \ + ``` + +2. Conduct [training](#3-training) on these pseudo-labeled datasets, using the `--language` flag set to your targeted language. Note that this flag is only used for evaluation purposes, so you set it to the targeted language. The language token used for forwarding the teacher and student model decoders is the one used and saved in pseudo labels during pseudo-labeling, ensuring it's the correct one for the considered sample. In the example of mixing French and Spanish, simply modify the given [training](#1-pseudo-labelling) command with: + ```diff + - --train_dataset_name "../common_voice_16_1_hi_pseudo_labelled+../common_voice_16_1_hi_pseudo_labelled" \ + - --train_split_name "train+validation" \ + - --eval_dataset_name "../common_voice_16_1_hi_pseudo_labelled" \ + - --eval_split_name "test" \ + + --train_dataset_name "../common_voice_17_0_fr_pseudo_labelled+../common_voice_17_0_es_pseudo_labelled" \ + + --train_split_name "train+train" \ + + --eval_dataset_name "../common_voice_16_1_fr_pseudo_labelled" \ + + --eval_split_name "validation" \ + ``` + +## Overview of Training Methods + +### 1. Fine-Tuning + +For fine-tuning, we take the original Whisper checkpoint and train it on one or more datasets using the standard +cross-entropy loss. As such, there is no involvement from the teacher checkpoint during training, and so the fine-tuned +model is permitted to *overfit* to the distribution of the training data we provide. This makes it appealing for "low-resource" +languages where the original Whisper model performs poorly, since we can boost the performance of the model on a single +language by *overfitting* to that distribution of data. Note that this means the fine-tuned model is prone to loosing +its robustness to different audio distributions, which is the trade-off with improving performance on a specified dataset. + +As a rule of thumb, fine-tuning is appropriate for languages where the original Whisper model performs > 20% WER, and we +have a relatively small quantity of training data available (< 1000 hours). With fine-tuning, we require as little as **10 hours** +of training data to significantly boost the performance of the Whisper model. For an in-depth guide to fine-tuning Whisper, +the reader is advised to refer to the blog post: [Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper). + +### 2. Shrink and Fine-Tune + +Shrink and fine-tune (SFT) is a knowledge distillation (KD) technique in which we first *shrink* the teacher model to a +smaller student model by copying maximally spaced layers, and then *fine-tune* the student model on the cross-entropy loss +as described above. Typically, we retain the full encoder from the Whisper model and only shrink the decoder. Retaining +the entire encoder helps significantly with maintaining Whisper's robustness to different audio distributions (_c.f._ +Section 9.3 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). + +We can either train the student model on a dataset of (audio, text) pairs as above. Or, we can use the pre-trained +Whisper model to generate *pseudo-labels* for our audio data, and train on the (audio, pseudo-label) pairs. + +Pseudo-labels can be used when either: +1. The original text transcriptions are normalised (lower-cased or no punctuation): the Whisper generated pseudo-labels contain both punctuation and casing, and so can be used as a substitute for the normalised transcriptions +2. The pre-trained Whisper model achieves < 20% WER on the languages: we then know the majority of the pseudo-labels will be accurate enough for us to train on. + +They are not recommended when both of the following are true: +1. The original text is punctuated and cased +2. The pre-trained Whisper model achieves > 20% WER on the languages: in this case, we want to overfit to the particular distribution of the language, and so train directly on the original text data + +To discard inaccurate pseudo-labels during training, we employ a simple WER heuristic to filter our pseudo-labelled +training data. We first normalise the original text and the pseudo-labelled text using the Whisper normaliser. If the +WER between the normalised text exceeds a 10% WER threshold, we discard the training sample. Else, we retain it for training. +Section 9.1 of the Distil-Whisper [paper](https://arxiv.org/abs/2311.00430) demonstrates the importance of using this +threshold for training. + +### 3. KL Divergence + +In the KL Divergence setting, the student model is initialised by shrinking the teacher as before, and then trained to +match the predictions of the teacher during training. + +### Summary of Methods + +The following table summarises the two training paradigms: fine-tuning and knowledge distillation (KD). It suggests +minimum values for the pre-trained WER / training data to achieve reasonable performance: + +| Method | Pre-Trained WER / % | Training Data / h | +|-------------|---------------------|-------------------| +| Fine-tuning | > 20 | < 1000 | +| KD | < 20 | > 1000 | + +## Acknowledgements + +* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3) and [original codebase](https://github.com/openai/whisper) +* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the Whisper model implementation +* Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) program for Cloud TPU v4s used to train the official Distil-Whisper models +* The Hugging Face 🤗 cluster for enabling experimentation with the PyTorch scripts + +## Citation + +If you use this code-base, please consider citing the Distil-Whisper paper: + +``` +@misc{gandhi2023distilwhisper, + title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, + author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush}, + year={2023}, + eprint={2311.00430}, + archivePrefix={arXiv}, + primaryClass={cs.CL} +} +``` diff --git a/distil_whisper.egg-info/SOURCES.txt b/distil_whisper.egg-info/SOURCES.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a60003fef94628001e05287a3342034e26f1e36 --- /dev/null +++ b/distil_whisper.egg-info/SOURCES.txt @@ -0,0 +1,8 @@ +README.md +pyproject.toml +setup.py +distil_whisper.egg-info/PKG-INFO +distil_whisper.egg-info/SOURCES.txt +distil_whisper.egg-info/dependency_links.txt +distil_whisper.egg-info/requires.txt +distil_whisper.egg-info/top_level.txt \ No newline at end of file diff --git a/distil_whisper.egg-info/dependency_links.txt b/distil_whisper.egg-info/dependency_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/distil_whisper.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/distil_whisper.egg-info/requires.txt b/distil_whisper.egg-info/requires.txt new file mode 100644 index 0000000000000000000000000000000000000000..e7a7a4704974bbacdb99f1dab9bf3c8261fc28d0 --- /dev/null +++ b/distil_whisper.egg-info/requires.txt @@ -0,0 +1,12 @@ +torch>=1.10 +transformers>=4.35.1 +datasets[audio]>=2.14.7 +accelerate>=0.24.1 +jiwer +evaluate>=0.4.1 +wandb +tensorboard +nltk + +[dev] +ruff==0.1.5 diff --git a/distil_whisper.egg-info/top_level.txt b/distil_whisper.egg-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/distil_whisper.egg-info/top_level.txt @@ -0,0 +1 @@ + diff --git a/flax/LICENSE b/flax/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/flax/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/flax/Makefile b/flax/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..035241e681719b7e11f943545d578ec317462af1 --- /dev/null +++ b/flax/Makefile @@ -0,0 +1,9 @@ +check_dirs := . + +quality: + black --check $(check_dirs) + ruff $(check_dirs) + +style: + black $(check_dirs) + ruff $(check_dirs) --fix diff --git a/flax/README.md b/flax/README.md new file mode 100644 index 0000000000000000000000000000000000000000..13a7845e344642ed5a7e4c900e0d15afc80f0aa7 --- /dev/null +++ b/flax/README.md @@ -0,0 +1,293 @@ +## Reproducing Distil-Whisper + +This sub-folder contains all the training and inference scripts to reproduce the Distil-Whisper project. Distil-Whisper +is written in JAX to leverage the fast training and inference speed offered by TPU v4 hardware. However, it also works +efficiently on GPU hardware without any additional code changes. + +Reproducing the Distil-Whisper project requires four stages to be completed in successive order: + +1. [Pseudo-labelling](#pseudo-labelling) +2. [Initialisation](#initialisation) +3. [Training](#training) +4. [Evaluation](#evaluation) + +This README is partitioned according to the four stages. Each section provides a minimal example for running the +scripts used in the project. The final scripts used to train the model are referenced in-line. + +It is worth noting that the experiments performed in JAX/Flax have been on English ASR only. For multilingual training code, +the [PyTorch Training Code](../README.md) can easily be used, facilitating anyone to run Whisper distillation on a language of their choice. + +## Requirements + +Distil-Whisper is written in Python, JAX and Flax, and heavily leverages the Flax Whisper implementation in +[🤗 Transformers](https://github.com/huggingface/transformers). The instructions for installing the package are as follows: +1. Install JAX from the [official instructions](https://github.com/google/jax#installation), ensuring you install the correct version for your hardware (GPU or TPU). +2. Install the `distil_whisper` package by cloning the repository and performing an editable installation: + +```bash +git clone https://github.com/huggingface/distil-whisper.git +cd distil-whisper/training/flax +pip install -e . +``` + +## Pseudo-Labelling + +Pseudo-labelling is the process of generating target text predictions for the input audio data using the teacher model. +The generated text labels then replace the ground truth text labels when performing distillation. The rationale for +using pseudo-labels instead of ground truth labels is to circumvent the issue of inconsistent transcription formatting +across datasets. + +The python script [`run_pseudo_labelling.py`](run_pseudo_labelling.py) is a flexible inference script that can be used +to generate pseudo-labels under a range of settings, including using both greedy and beam-search. It is also compatible +with [🤗 Datasets](https://github.com/huggingface/datasets) *streaming mode*, allowing users to load massive audio +datasets with **no disk space requirements**. For more information on streaming mode, the reader is referred to the +blog post: [A Complete Guide to Audio Datasets](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). + +The following script demonstrates how to pseudo-label the [LibriSpeech 960h](https://huggingface.co/datasets/librispeech_asr) +dataset with greedy sampling and streaming mode: + +```bash +#!/usr/bin/env bash + +python run_pseudo_labelling.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name "librispeech_asr" \ + --dataset_config_name "all" \ + --data_split_name "train.clean.100+train.clean.360+train.other.500" \ + --text_column_name "text" \ + --output_dir "./transcriptions" \ + --per_device_eval_batch_size 16 \ + --max_label_length 256 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --dataloader_num_workers 16 \ + --streaming \ + --push_to_hub \ + --generation_num_beams 1 # for greedy, set >1 for beam + +``` + +The script will save the generated pseudo-labels alongside the file ids to the output directory `output_dir`. Adding the +`--push_to_hub` argument uploads the generated pseudo-labels to the Hugging Face Hub on save. + +The directory [`pseudo_labelling_scripts`](pseudo_labelling_scripts) contains a collection of bash scripts for +pseudo-labelling all 10 audio datasets used in the project. The datasets with the Whisper generated transcriptions +can be found on the Hugging Face Hub under the [Distil Whisper organisation](https://huggingface.co/datasets?sort=trending&search=distil-whisper%2F). +They can be re-used should you wish to bypass the data labelling stage of the reproduction. + + + +## Initialisation + +The script [`create_student_model.py`](create_student_model.py) can be used to initialise a small student model +from a large teacher model. When initialising a student model with fewer layers than the teacher model, the student is +initialised by copying maximally spaced layers from the teacher, as per the [DistilBart](https://arxiv.org/abs/2010.13002) +recommendations. + +The following command demonstrates how to initialise a student model from the [large-v2](https://huggingface.co/openai/whisper-large-v2) +checkpoint, with all 32 encoder layer and 2 decoder layers. The 2 student decoder layers are copied from teacher layers +1 and 32 respectively, as the maximally spaced layers. + +```bash +#!/usr/bin/env bash + +python create_student_model.py \ + --teacher_checkpoint "openai/whisper-large-v2" \ + --encoder_layers 32 \ + --decoder_layers 2 \ + --save_dir "./large-32-2" \ + --push_to_hub +``` + + +## Training + +The script [`run_distillation.py`](run_distillation.py) is an end-to-end script for loading multiple +datasets, a student model, a teacher model, and performing teacher-student distillation. It uses the loss formulation +from [DistilBart](https://arxiv.org/abs/2010.13002), which is a combination of a cross-entropy, KL-divergence and +mean-square error (MSE) loss: + +https://github.com/huggingface/distil-whisper/blob/4dd831543e6c40b1159f1ec951db7f4fe0e86850/run_distillation.py#L1725 + +The weight assigned to the MSE loss is configurable. The others are fixed to the values from the DistilBART paper. + +The following command takes the LibriSpeech 960h dataset that was pseudo-labelled in the first stage and trains the +2-layer decoder model intialised in the previous step. Note that multiple training datasets and splits can be loaded +by separating the dataset arguments by `+` symbols. Thus, the script generalises to any number of training datasets. + +```bash +#!/usr/bin/env bash + +python3 run_distillation.py \ + --model_name_or_path "./large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr" \ + --train_dataset_config_name "all+all+all" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500" \ + --train_dataset_samples "100+360+500" \ + --eval_dataset_name "librispeech_asr" \ + --eval_dataset_config_name "all" \ + --eval_split_name "validation.clean" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "constant_with_warmup" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 20000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dataloader_num_workers 16 \ + --dtype "bfloat16" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub + +``` + +The above training script will take approximately 20 hours to complete on a TPU v4-8 and yield a final WER of 2.3%. + +Training logs will be reported to TensorBoard and WandB, provided the relevant packages are available. An example of a +saved checkpoint pushed to the Hugging Face Hub can be found here: [large-32-2](https://huggingface.co/distil-whisper/large-32-2). + +There are a few noteworthy arguments that can be configured to give optimal training performance: +* `train_dataset_samples`: defines the number of training samples in each dataset. Used to calculate the sampling probabilities in the dataloader. A good starting point is setting the samples to the number of hours of audio data in each split. A more refined strategy is setting it to the number of training samples in each split, however this might require downloading the dataset offline to compute these statistics. +* `wer_threshold`: sets the WER threshold between the normalised pseudo-labels and normalised ground truth labels. Any samples with WER > `wer_threshold` are discarded from the training data. This is beneficial to avoid training the student model on pseudo-labels where Whisper hallucinated or got the predictions grossly wrong. +* `freeze_encoder`: whether to freeze the entire encoder of the student model during training. Beneficial when the student encoder is copied exactly from the teacher encoder. In this case, the encoder hidden-states from the teacher model are re-used for the student model. Stopping the gradient computation through the encoder and sharing the encoder hidden-states provides a significant memory saving, and can enable up to 2x batch sizes. +* `dtype`: data type (dtype) in which the model computation should be performed. Note that this only controls the dtype of the computations (forward and backward pass), and not the dtype of the parameters or optimiser states. + +The Distil Whisper project extends the above script to train on a combined dataset formed from 12 open-source ASR datasets, +totalling 22k hours and over 50k speakers. Template scripts to run training on this composite dataset can be found +in the directory [`distillation_scripts`](distillation_scripts). + +## Evaluation + +There are two types of evaluation performed in Distil-Whisper: +1. Short form: evaluation on audio samples less than 30s in duration. Examples include typical ASR test sets, such as the LibriSpeech validation set. +2. Long form: evaluation on audio samples longer than 30s in duration. Examples include entire TED talks or earnings calls. + +Both forms of evaluation are performed using the *word-error rate (WER)* metric. + +### Short Form + +The script [`run_eval.py`](run_eval.py) can be used to evaluate a trained student model over multiple validation sets. +The following example demonstrates how to evaluate the student model trained in the previous step on the LibriSpeech +`validation.clean` and `validation.other` dev sets. Again, it leverages streaming mode to bypass the need to download +the data offline: + +```bash +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "./large-32-2" \ + --dataset_name "librispeech_asr+librispeech_asr" \ + --dataset_config_name "all+all" \ + --dataset_split_name "validation.clean+validation.other" \ + --output_dir "./large-32-2" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +``` + +### Long Form + +Long form evaluation runs on the premise that a single long audio file can be *chunked* into smaller segments and +inferred in parallel. The resulting transcriptions are then joined at the boundaries to give the final text prediction. +A small overlap (or *stride*) is used between adjacent segments to ensure a continuous transcription across chunks. + +This style of chunked inference is performed using the [`FlaxWhisperPipeline`](https://github.com/huggingface/distil-whisper/blob/6426022e3b3a0a498b4150a636b54e2e3898bf1a/distil_whisper/pipeline.py#L61) +class, which is heavily inspired from [Whisper JAX](https://github.com/sanchit-gandhi/whisper-jax/tree/main#pipeline-usage). + +The script [`run_long_form_transcription.py`](run_long_form_transcription.py) can be used to evaluate the trained +student model on an arbitrary number of long-form evaluation sets. The following script demonstrates how to evaluate +the example student model on two such test sets, [Earnings 21](https://huggingface.co/datasets/distil-whisper/earnings21) +and [Earnings 22](https://huggingface.co/datasets/distil-whisper/earnings22): + +```bash +#!/usr/bin/env bash + +python run_long_form_transcription.py \ + --model_name_or_path "./large-32-2" \ + --dataset_name "distil-whisper/earnings21+distil-whisper/earnings22" \ + --dataset_config_name "default+default" \ + --dataset_split_name "test+test+test+test" \ + --text_column_name "transcription+transcription" \ + --output_dir "./large-32-2" \ + --per_device_eval_batch_size 64 \ + --chunk_length_s 15 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming + +``` + +The argument `chunk_length_s` controls the length of the chunked audio samples. It should be set to match the typical +length of audio the student model was trained on. If unsure about what value of `chunk_length_s` is optimal for your case, +it is recommended to run a *sweep* over all possible values. A template script for running a [WandB sweep](https://docs.wandb.ai/guides/sweeps) +can be found under [`run_chunk_length_s_sweep.yaml`](long_form_transcription_scripts/run_chunk_length_s_sweep.yaml). + +### 1. Pseudo Labelling + +#### Greedy vs Beam + +We found there to be little-to-no difference in the downstream performance of the distilled model after pseudo labelling +using either greedy or beam-search. We attribute this to the minimal difference in performance of the pre-trained Whisper +model under greedy and beam-search decoding, giving pseudo-labelled transcriptions of similar quality. We encourage +users to generate pseudo-labels using greedy decoding given it runs significantly faster. Beam search is only advised if +the pre-trained model is hallucinating significantly on the audio inputs, in which case it helps reduce the frequency and +severity of hallucinations. If using beam search, the number of beams can be kept low: even 2 beams helps reduce the +amount of hallucinations significantly. + +#### Timestamps + +Whisper is trained on a timestamp prediction task as part of the pre-training set-up. Here, a fixed proportion of the +pre-training data includes sequence-level *timestamps* as part of the transcription labels: + +```bash +<|0.00|> Hey, this is a test transcription. <|3.42|> +``` + +Timestamp prediction is useful for enriching the transcriptions with timing information for downstream tasks, such as +aligning the Whisper transcription with the output of a speaker diarization system, and also reduces the frequency of +hallucinations. + +The pseudo-labelling scrip [`run_pseudo_labelling.py`](run_pseudo_labelling.py) can be extended to predict timestamp +information in the audio data by appending the `--return_timestamps` flag to the launch command. The timestamped labelled +data can be passed to the training script in exactly the same way as the non-timestamped version, and the pre-processing +function will take care of encoding the timestamps and appending the required task tokens. + +#### Previous Context + +Whisper is also pre-trained on a prompting task, where the transcription for the preceding utterance is fed as context +to the current one: + +```bash +<|startofprev|> This is the previous context from the preceding utterance.<|startoftranscript|> And this is the current utterance.<|endoftranscript|> +``` + +Annotating the transcriptions with previous context labels is only possible for datasets where we have consecutive files +and unique speaker ids, since we need to ensure segment `i` directly follows on from segment `i-1` if we use it as the +prompt. + +As per the Whisper paper, we mask out the loss over the previous context tokens. At inference time, we can replace the +previous context with a “prompt” to encourage the model to generate text in the style of the prompt (i.e. for specific +named entities, or styles of transcription) + +## Acknowledgements + +* 🤗 Hugging Face Transformers for the base Whisper implementation +* Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) programme for their generous provision of Cloud TPUs diff --git a/flax/conversion_scripts/run_convert_distilled_train_state_to_hf.sh b/flax/conversion_scripts/run_convert_distilled_train_state_to_hf.sh new file mode 100644 index 0000000000000000000000000000000000000000..688722f6ef56d405583169ef26e2ea0a7dcbcbc9 --- /dev/null +++ b/flax/conversion_scripts/run_convert_distilled_train_state_to_hf.sh @@ -0,0 +1,8 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python convert_train_state_to_hf.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --output_dir "./" \ + --resume_from_checkpoint "checkpoint-15000" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --use_scan diff --git a/flax/convert_train_state_to_hf.py b/flax/convert_train_state_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..bed16bb32d7c8c72b6bfe77eaee5d8c6092dea66 --- /dev/null +++ b/flax/convert_train_state_to_hf.py @@ -0,0 +1,327 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Convert a Flax training state to HF Transformers Whisper weights. +""" + +import logging +import os +import sys +from dataclasses import field +from pathlib import Path +from typing import Callable, Optional + +import flax +import jax +import jax.numpy as jnp +import optax +from flax import jax_utils, traverse_util +from flax.serialization import from_bytes +from flax.training import train_state +from flax.training.common_utils import shard_prng_key +from huggingface_hub import Repository, create_repo +from optax._src import linear_algebra +from transformers import ( + AutoConfig, + HfArgumentParser, + Seq2SeqTrainingArguments, +) +from transformers.file_utils import get_full_repo_name +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + +from distil_whisper import FlaxWhisperForConditionalGeneration + + +# initialise JAX for multi-host set-up on TPU +jax.distributed.initialize() + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + + +@flax.struct.dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, + ) + model_revision: str = field( + default="main", + metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and trained. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + load_with_scan_weights: bool = field( + default=False, + metadata={ + "help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned " + "weights, defaults to False for non-scan (unrolled) weights." + }, + ) + use_scan: bool = field( + default=True, + metadata={"help": ("Whether or not to use `scan_with_axes` over the encoder and decoder blocks.")}, + ) + + +def create_learning_rate_fn( + num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float +) -> Callable[[int], jnp.array]: + """Returns a linear warmup, linear_decay learning rate function.""" + lr_scheduler_types = ("linear", "constant_with_warmup") + + if lr_scheduler_type not in lr_scheduler_types: + raise ValueError( + f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}." + ) + + warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) + decay_fn = optax.linear_schedule( + init_value=learning_rate, + end_value=0 if lr_scheduler_type == "linear" else learning_rate, + transition_steps=num_train_steps - num_warmup_steps, + ) + schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) + return schedule_fn + + +class TrainState(train_state.TrainState): + dropout_rng: jnp.ndarray + max_grad_norm: float + + def apply_gradients(self, *, grads, **kwargs): + """Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the + gradients by the maximum grad norm. + + Note that internally this function calls `.tx.update()` followed by a call + to `optax.apply_updates()` to update `params` and `opt_state`. + + Args: + grads: Gradients that have the same pytree structure as `.params`. + **kwargs: Additional dataclass attributes that should be `.replace()`-ed. + + Returns: + An updated instance of `self` with `step` incremented by one, `params` + and `opt_state` updated by applying `grads`, and additional attributes + replaced as specified by `kwargs`. + """ + # clip gradients by global l2 norm + g_norm = linear_algebra.global_norm(grads) + g_norm = jnp.maximum(self.max_grad_norm, g_norm) + grads = jax.tree_map(lambda t: (t / g_norm) * self.max_grad_norm, grads) + + updates, new_opt_state = self.tx.update(grads, self.opt_state, self.params) + new_params = optax.apply_updates(self.params, updates) + + return self.replace( + step=self.step + 1, + params=new_params, + opt_state=new_opt_state, + **kwargs, + ) + + def replicate(self): + return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) + + def unreplicate(self): + return jax_utils.unreplicate(self) + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser( + ( + ModelArguments, + Seq2SeqTrainingArguments, + ) + ) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, training_args = parser.parse_args_into_dataclasses() + + # Handle the repository creation + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(training_args.output_dir).absolute().name, + token=training_args.hub_token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, exist_ok=True, token=training_args.hub_token) + repo = Repository( + training_args.output_dir, + clone_from=repo_name, + token=training_args.hub_token, + ) + + # 5. Load pretrained config, model and processor + config = AutoConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + dtype=getattr(jnp, model_args.dtype), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + _do_init=False, + use_scan=model_args.load_with_scan_weights, + ) + + # enable scan / gradient checkpointing if necessary in the student model + if model_args.use_scan: + student_model.enable_scan() # to enable scan in the nn.Module + student_params = student_model.convert_unroll_to_scan(student_params) # to convert the unrolled params to scan + + # Initialize our student state + rng = jax.random.PRNGKey(training_args.seed) + rng, dropout_rng = jax.random.split(rng) + + total_train_steps = int(training_args.max_steps) + + # Create learning rate schedule + linear_decay_lr_schedule_fn = create_learning_rate_fn( + total_train_steps, + training_args.lr_scheduler_type, + training_args.warmup_steps, + training_args.learning_rate, + ) + + # We use Optax's "masking" functionality to not apply weight decay + # to bias and LayerNorm scale parameters. decay_mask_fn returns a + # mask boolean with the same structure as the parameters. + # The mask is True for parameters that should be decayed. + def decay_mask_fn(params): + flat_params = traverse_util.flatten_dict(params) + # find out all LayerNorm parameters + layer_norm_candidates = [ + "layer_norm", + "self_attn_layer_norm", + "final_layer_norm", + "encoder_attn_layer_norm", + ] + layer_norm_named_params = { + layer[-2:] + for layer_norm_name in layer_norm_candidates + for layer in flat_params.keys() + if layer_norm_name in "".join(layer).lower() + } + flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params} + return traverse_util.unflatten_dict(flat_mask) + + # create adam optimizer + adamw = optax.adamw( + learning_rate=linear_decay_lr_schedule_fn, + b1=training_args.adam_beta1, + b2=training_args.adam_beta2, + eps=training_args.adam_epsilon, + weight_decay=training_args.weight_decay, + mask=decay_mask_fn, + ) + + # Setup train state + student_state = TrainState.create( + apply_fn=student_model.__call__, + params=student_params, + tx=adamw, + dropout_rng=dropout_rng, + max_grad_norm=training_args.max_grad_norm, + ) + + if training_args.resume_from_checkpoint is not None: + if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")): + logger.info( + f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid " + "this behavior, omit the resume_from_checkpoint argument." + ) + with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f: + student_state = from_bytes(student_state, f.read()) + else: + logger.warning( + f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure " + f"you pass the path to a folder with a valid checkpoint for your model." + ) + + cur_step = int(jax.device_get(student_state.step)) + + # save weights in HF Transformers format + if jax.process_index() == 0: + student_model.disable_scan() + student_state_params = student_model.convert_scan_to_unroll(student_state.params) + student_params = jax.device_get(student_state_params) + student_model.save_pretrained( + os.path.join(training_args.output_dir, f"checkpoint-{cur_step}"), params=student_params + ) + if training_args.push_to_hub: + repo.push_to_hub( + commit_message=f"Saving weights of step {cur_step}", + blocking=False, + ) + + +if __name__ == "__main__": + main() diff --git a/flax/create_student_model.py b/flax/create_student_model.py new file mode 100644 index 0000000000000000000000000000000000000000..b9d5632d0d7586a3524fdc920a5211a7f1fba073 --- /dev/null +++ b/flax/create_student_model.py @@ -0,0 +1,226 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Initialise a student Whisper model from a pre-trained teacher model for +teacher-student distillation. +""" + +import argparse +import copy +import logging + +import jax +import numpy as np +from flax.core import freeze, unfreeze +from transformers import GenerationConfig, WhisperFeatureExtractor, WhisperProcessor + +from distil_whisper import FlaxWhisperForConditionalGeneration + + +logger = logging.getLogger(__name__) + + +def parse_args(): + parser = argparse.ArgumentParser( + description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary." + ) + parser.add_argument( + "--teacher_checkpoint", + type=str, + required=True, + help="The HF Hub ID of the teacher checkpoint.", + ) + parser.add_argument( + "--subfolder", + type=str, + default="", + help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you " + "can specify the folder name here.", + ) + parser.add_argument( + "--encoder_layers", + type=int, + default=None, + help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.", + ) + parser.add_argument( + "--decoder_layers", + type=int, + default=2, + help="Number of decoder layers to use in the student model. Defaults to 2 layers.", + ) + parser.add_argument( + "--max_source_positions", + type=int, + default=None, + help="The maximum sequence length of log-mel filter-bank features that this model might ever be used with. Can " + "be used to create a student model with a shorter context length than the teacher model. Defaults to the number " + "of source positions in the teacher model (1500).", + ) + parser.add_argument( + "--save_dir", + type=str, + required=True, + help="Where to save the student weights and processor.", + ) + parser.add_argument( + "--push_to_hub", + type=bool, + required=False, + default=False, + help="Whether to push the student weights and processor to the Hub.", + ) + parser.add_argument( + "--cache_dir", + type=str, + default=None, + help="Where to store the pretrained models downloaded from huggingface.co", + ) + + args = parser.parse_args() + return args + + +def init_student_model_from_teacher( + teacher_checkpoint, + encoder_layers=None, + decoder_layers=2, + max_source_positions=None, + save_dir=None, + push_to_hub=None, + cache_dir=None, + subfolder="", +): + teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained( + teacher_checkpoint, + _do_init=False, + cache_dir=cache_dir, + subfolder=subfolder, + ) + processor = WhisperProcessor.from_pretrained(teacher_checkpoint) + generation_config = GenerationConfig.from_pretrained(teacher_checkpoint) + + teacher_config = teacher_model.config + teacher_encoder_layers = teacher_config.encoder_layers + teacher_decoder_layers = teacher_config.decoder_layers + + student_config = copy.deepcopy(teacher_config) + student_config.update( + { + "encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers, + "decoder_layers": decoder_layers, + "max_source_positions": ( + max_source_positions if max_source_positions is not None else student_config.max_source_positions + ), + } + ) + + encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int) + encoder_mapping[-1] = teacher_encoder_layers - 1 + + encoder_map = {} + for student_layer, teacher_layer in enumerate(encoder_mapping): + encoder_map[str(teacher_layer)] = str(student_layer) + + decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int) + decoder_mapping[-1] = teacher_decoder_layers - 1 + + decoder_map = {} + for student_layer, teacher_layer in enumerate(decoder_mapping): + decoder_map[str(teacher_layer)] = str(student_layer) + + # init the student params from the teacher model + student_params = unfreeze(teacher_params) + student_params["model"]["decoder"]["layers"] = {} + + for layer in teacher_params["model"]["decoder"]["layers"]: + if layer in decoder_map: + # re-introduce pre-defined layers from the teacher + student_params["model"]["decoder"]["layers"][decoder_map[layer]] = teacher_params["model"]["decoder"][ + "layers" + ][layer] + + if encoder_layers is not None: + student_params["model"]["encoder"]["layers"] = {} + for layer in teacher_params["model"]["encoder"]["layers"]: + if layer in encoder_map: + # re-introduce pre-defined layers from the teacher + student_params["model"]["encoder"]["layers"][encoder_map[layer]] = teacher_params["model"]["encoder"][ + "layers" + ][layer] + + if max_source_positions is not None: + # slice the first MAX_SOURCE_POSITIONS embedding weights + student_params["model"]["encoder"]["embed_positions"]["embedding"] = teacher_params["model"]["encoder"][ + "embed_positions" + ]["embedding"][: student_config.max_source_positions, :] + # update the feature extractor to handle the new input length + chunk_length = int(student_config.max_source_positions * 2 / 100) + processor.feature_extractor = WhisperFeatureExtractor(chunk_length=chunk_length) + + # remove the teacher params and model + del teacher_params, teacher_model + + # save the converted weights and model + student_params = freeze(student_params) + student_model = FlaxWhisperForConditionalGeneration(student_config, _do_init=False) + + if save_dir is not None: + student_model.save_pretrained(save_dir, params=student_params) + # we also need to correctly save the processor and generation config + processor.save_pretrained(save_dir) + generation_config.save_pretrained(save_dir) + + # check we can do a forward pass with the saved model - first load the weights and processor + logger.info("Checking we can load the saved model...") + student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained( + save_dir, + _do_init=False, + ) + processor = WhisperProcessor.from_pretrained(save_dir) + + # define some random inputs + input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="np").input_features + decoder_start_token_id = student_model.config.decoder_start_token_id + decoder_input_ids = np.ones((input_features.shape[0], 1)) * decoder_start_token_id + + # do a forward pass - outputs will be gibberish for the initialised model so we can't check them + logger.info("Checking we can run the converted model forward...") + _ = student_model(input_features, decoder_input_ids=decoder_input_ids, params=student_params).logits + logger.info("Conversion successful!") + + if push_to_hub: + student_model.push_to_hub(save_dir, params=student_params) + processor.push_to_hub(save_dir) + generation_config.push_to_hub(save_dir) + + +if __name__ == "__main__": + args = parse_args() + + # Set the verbosity to info of the logger - we only want one process per machine to log things on the screen + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + + init_student_model_from_teacher( + teacher_checkpoint=args.teacher_checkpoint, + encoder_layers=args.encoder_layers, + decoder_layers=args.decoder_layers, + max_source_positions=args.max_source_positions, + save_dir=args.save_dir, + push_to_hub=args.push_to_hub, + cache_dir=args.cache_dir, + subfolder=args.subfolder, + ) diff --git a/flax/distil_whisper/__init__.py b/flax/distil_whisper/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..642aba4dadb6690f40a6eed270fb252800e5fbd8 --- /dev/null +++ b/flax/distil_whisper/__init__.py @@ -0,0 +1,21 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +__version__ = "0.0.1" + +from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration +from .partitioner import PjitPartitioner +from .pipeline import FlaxWhisperPipeline +from .train_state import InferenceState diff --git a/flax/distil_whisper/layers.py b/flax/distil_whisper/layers.py new file mode 100644 index 0000000000000000000000000000000000000000..800845b280d8bd1f959ea78997201ab767d56872 --- /dev/null +++ b/flax/distil_whisper/layers.py @@ -0,0 +1,1338 @@ +# Copyright 2022 The T5X Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Dense attention classes and mask/weighting functions.""" + +# pylint: disable=attribute-defined-outside-init,g-bare-generic + +import dataclasses +import functools +import operator +from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union + +import jax +import jax.numpy as jnp +import numpy as np +from flax import linen as nn +from flax.linen import partitioning as nn_partitioning +from flax.linen.dtypes import promote_dtype +from jax import lax, random + + +# from flax.linen.partitioning import param_with_axes, with_sharding_constraint +param_with_axes = nn_partitioning.param_with_axes +with_sharding_constraint = nn_partitioning.with_sharding_constraint + + +# Type annotations +Array = jnp.ndarray +DType = jnp.dtype +PRNGKey = jnp.ndarray +Shape = Iterable[int] +Activation = Callable[..., Array] +PrecisionLike = Union[None, str, lax.Precision, Tuple[str, str], Tuple[lax.Precision, lax.Precision]] +DotGeneralT = Callable[..., Array] +ConvGeneralDilatedT = Callable[..., Array] +PaddingLike = Union[str, int, Sequence[Union[int, Tuple[int, int]]]] +LaxPadding = Union[str, Sequence[Tuple[int, int]]] + +# Parameter initializers. +Initializer = Callable[[PRNGKey, Shape, DType], Array] +InitializerAxis = Union[int, Tuple[int, ...]] +NdInitializer = Callable[[PRNGKey, Shape, DType, InitializerAxis, InitializerAxis], Array] + +default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0) + + +# ------------------------------------------------------------------------------ +# Temporary inlined JAX N-d initializer code +# TODO(levskaya): remove once new JAX release is out. +# ------------------------------------------------------------------------------ +def _compute_fans(shape: jax.core.NamedShape, in_axis=-2, out_axis=-1): + """Inlined JAX `nn.initializer._compute_fans`.""" + if isinstance(in_axis, int): + in_size = shape[in_axis] + else: + in_size = int(np.prod([shape[i] for i in in_axis])) + if isinstance(out_axis, int): + out_size = shape[out_axis] + else: + out_size = int(np.prod([shape[i] for i in out_axis])) + receptive_field_size = shape.total / in_size / out_size + fan_in = in_size * receptive_field_size + fan_out = out_size * receptive_field_size + return fan_in, fan_out + + +def variance_scaling(scale, mode, distribution, in_axis=-2, out_axis=-1, dtype=jnp.float_): + """Inlined JAX `nn.initializer.variance_scaling`.""" + + def init(key, shape, dtype=dtype): + return jnp.zeros(shape, dtype=dtype) + dtype = jax.dtypes.canonicalize_dtype(dtype) + shape = jax.core.as_named_shape(shape) + fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) + if mode == "fan_in": + denominator = fan_in + elif mode == "fan_out": + denominator = fan_out + elif mode == "fan_avg": + denominator = (fan_in + fan_out) / 2 + else: + raise ValueError("invalid mode for variance scaling initializer: {}".format(mode)) + variance = jnp.array(scale / denominator, dtype=dtype) + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + stddev = jnp.sqrt(variance) / jnp.array(0.87962566103423978, dtype) + return random.truncated_normal(key, -2, 2, shape, dtype) * stddev + elif distribution == "normal": + return random.normal(key, shape, dtype) * jnp.sqrt(variance) + elif distribution == "uniform": + return random.uniform(key, shape, dtype, -1) * jnp.sqrt(3 * variance) + else: + raise ValueError("invalid distribution for variance scaling initializer: {}".format(distribution)) + + return init + + +# ------------------------------------------------------------------------------ + + +def nd_dense_init(scale, mode, distribution): + """Initializer with in_axis, out_axis set at call time.""" + + def init_fn(key, shape, dtype, in_axis, out_axis): + fn = variance_scaling(scale, mode, distribution, in_axis, out_axis) + return fn(key, shape, dtype) + + return init_fn + + +def dot_product_attention( + query: Array, + key: Array, + value: Array, + bias: Optional[Array] = None, + dropout_rng: Optional[PRNGKey] = None, + dropout_rate: float = 0.0, + deterministic: bool = False, + dtype: DType = jnp.float32, + float32_logits: bool = False, +): + """Computes dot-product attention given query, key, and value. + + This is the core function for applying attention based on + https://arxiv.org/abs/1706.03762. It calculates the attention weights given + query and key and combines the values using the attention weights. + + Args: + query: queries for calculating attention with shape of `[batch, q_length, + num_heads, qk_depth_per_head]`. + key: keys for calculating attention with shape of `[batch, kv_length, + num_heads, qk_depth_per_head]`. + value: values to be used in attention with shape of `[batch, kv_length, + num_heads, v_depth_per_head]`. + bias: bias for the attention weights. This should be broadcastable to the + shape `[batch, num_heads, q_length, kv_length]` This can be used for + incorporating causal masks, padding masks, proximity bias, etc. + dropout_rng: JAX PRNGKey: to be used for dropout + dropout_rate: dropout rate + deterministic: bool, deterministic or not (to apply dropout) + dtype: the dtype of the computation (default: float32) + float32_logits: bool, if True then compute logits in float32 to avoid + numerical issues with bfloat16. + + Returns: + Output of shape `[batch, length, num_heads, v_depth_per_head]`. + """ + assert key.ndim == query.ndim == value.ndim, "q, k, v must have same rank." + assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], "q, k, v batch dims must match." + assert query.shape[-2] == key.shape[-2] == value.shape[-2], "q, k, v num_heads must match." + assert key.shape[-3] == value.shape[-3], "k, v lengths must match." + assert query.shape[-1] == key.shape[-1], "q, k depths must match." + + # Casting logits and softmax computation for float32 for model stability. + if float32_logits: + query = query.astype(jnp.float32) + key = key.astype(jnp.float32) + + # `attn_weights`: [batch, num_heads, q_length, kv_length] + attn_weights = jnp.einsum("bqhd,bkhd->bhqk", query, key) + + # Apply attention bias: masking, dropout, proximity bias, etc. + if bias is not None: + attn_weights = attn_weights + bias.astype(attn_weights.dtype) + + # Normalize the attention weights across `kv_length` dimension. + attn_weights = jax.nn.softmax(attn_weights).astype(dtype) + + # Apply attention dropout. + if not deterministic and dropout_rate > 0.0: + keep_prob = 1.0 - dropout_rate + # T5 broadcasts along the "length" dim, but unclear which one that + # corresponds to in positional dimensions here, assuming query dim. + dropout_shape = list(attn_weights.shape) + dropout_shape[-2] = 1 + keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape) + keep = jnp.broadcast_to(keep, attn_weights.shape) + multiplier = keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype) + attn_weights = attn_weights * multiplier + + # Take the linear combination of `value`. + return jnp.einsum("bhqk,bkhd->bqhd", attn_weights, value) + + +dynamic_vector_slice_in_dim = jax.vmap(lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None)) + + +class MultiHeadDotProductAttention(nn.Module): + """Multi-head dot-product attention. + + Attributes: + num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1]) + should be divisible by the number of heads. + head_dim: dimension of each head. + dtype: the dtype of the computation. + dropout_rate: dropout rate + kernel_init: initializer for the kernel of the Dense layers. + float32_logits: bool, if True then compute logits in float32 to avoid + numerical issues with bfloat16. + """ + + num_heads: int + head_dim: int + dtype: DType = jnp.float32 + dropout_rate: float = 0.0 + kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "normal") + float32_logits: bool = False # computes logits in float32 for stability. + + @nn.compact + def __call__( + self, + inputs_q: Array, + inputs_kv: Array, + mask: Optional[Array] = None, + bias: Optional[Array] = None, + *, + decode: bool = False, + deterministic: bool = False, + ) -> Array: + """Applies multi-head dot product attention on the input data. + + Projects the inputs into multi-headed query, key, and value vectors, + applies dot-product attention and project the results to an output vector. + + There are two modes: decoding and non-decoding (e.g., training). The mode is + determined by `decode` argument. For decoding, this method is called twice, + first to initialize the cache and then for an actual decoding process. The + two calls are differentiated by the presence of 'cached_key' in the variable + dict. In the cache initialization stage, the cache variables are initialized + as zeros and will be filled in the subsequent decoding process. + + In the cache initialization call, `inputs_q` has a shape [batch, length, + q_features] and `inputs_kv`: [batch, length, kv_features]. During the + incremental decoding stage, query, key and value all have the shape [batch, + 1, qkv_features] corresponding to a single step. + + Args: + inputs_q: input queries of shape `[batch, q_length, q_features]`. + inputs_kv: key/values of shape `[batch, kv_length, kv_features]`. + mask: attention mask of shape `[batch, num_heads, q_length, kv_length]`. + bias: attention bias of shape `[batch, num_heads, q_length, kv_length]`. + decode: Whether to prepare and use an autoregressive cache. + deterministic: Disables dropout if set to True. + + Returns: + output of shape `[batch, length, q_features]`. + """ + projection = functools.partial( + DenseGeneral, + axis=-1, + features=(self.num_heads, self.head_dim), + kernel_axes=("embed", "heads", "kv"), + dtype=self.dtype, + ) + + # NOTE: T5 does not explicitly rescale the attention logits by + # 1/sqrt(depth_kq)! This is folded into the initializers of the + # linear transformations, which is equivalent under Adafactor. + depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype) + + def query_init(*args): + return self.kernel_init(*args) / depth_scaling + + # Project inputs_q to multi-headed q/k/v + # dimensions are then [batch, length, num_heads, head_dim] + query = projection(kernel_init=query_init, name="query")(inputs_q) + key = projection(kernel_init=self.kernel_init, name="key")(inputs_kv) + value = projection(kernel_init=self.kernel_init, name="value")(inputs_kv) + + query = with_sharding_constraint(query, ("batch", "length", "heads", "kv")) + key = with_sharding_constraint(key, ("batch", "length", "heads", "kv")) + value = with_sharding_constraint(value, ("batch", "length", "heads", "kv")) + + if decode: + # Detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + + # The key and value have dimension [batch, length, num_heads, head_dim], + # but we cache them as [batch, num_heads, head_dim, length] as a TPU + # fusion optimization. This also enables the "scatter via one-hot + # broadcast" trick, which means we do a one-hot broadcast instead of a + # scatter/gather operations, resulting in a 3-4x speedup in practice. + def swap_dims(x): + return x[:-3] + tuple(x[i] for i in [-2, -1, -3]) + + cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + if is_initialized: + batch, num_heads, head_dim, length = cached_key.value.shape + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + # Sanity shape check of cached key against input query. + expected_shape = (batch, 1, num_heads, head_dim) + if expected_shape != query.shape: + raise ValueError( + "Autoregressive cache shape error, " + "expected query shape %s instead got %s." % (expected_shape, query.shape) + ) + + # Create a OHE of the current index. NOTE: the index is increased below. + cur_index = cache_index.value + one_hot_indices = jax.nn.one_hot(cur_index, length, dtype=key.dtype) + # In order to update the key, value caches with the current key and + # value, we move the length axis to the back, similar to what we did for + # the cached ones above. + # Note these are currently the key and value of a single position, since + # we feed one position at a time. + one_token_key = jnp.moveaxis(key, -3, -1) + one_token_value = jnp.moveaxis(value, -3, -1) + # Update key, value caches with our new 1d spatial slices. + # We implement an efficient scatter into the cache via one-hot + # broadcast and addition. + key = cached_key.value + one_token_key * one_hot_indices + value = cached_value.value + one_token_value * one_hot_indices + cached_key.value = key + cached_value.value = value + cache_index.value = cache_index.value + 1 + # Move the keys and values back to their original shapes. + key = jnp.moveaxis(key, -1, -3) + value = jnp.moveaxis(value, -1, -3) + + # Causal mask for cached decoder self-attention: our single query + # position should only attend to those key positions that have already + # been generated and cached, not the remaining zero elements. + mask = combine_masks( + mask, + jnp.broadcast_to( + jnp.arange(length) <= cur_index, + # (1, 1, length) represent (head dim, query length, key length) + # query length is 1 because during decoding we deal with one + # index. + # The same mask is applied to all batch elements and heads. + (batch, 1, 1, length), + ), + ) + + # Grab the correct relative attention bias during decoding. This is + # only required during single step decoding. + if bias is not None: + # The bias is a full attention matrix, but during decoding we only + # have to take a slice of it. + # This is equivalent to bias[..., cur_index:cur_index+1, :]. + bias = dynamic_vector_slice_in_dim(jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2) + + # Convert the boolean attention mask to an attention bias. + if mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + mask > 0, + jnp.full(mask.shape, 0.0).astype(self.dtype), + jnp.full(mask.shape, -1e10).astype(self.dtype), + ) + else: + attention_bias = None + + # Add provided bias term (e.g. relative position embedding). + if bias is not None: + attention_bias = combine_biases(attention_bias, bias) + + dropout_rng = None + if not deterministic and self.dropout_rate > 0.0: + dropout_rng = self.make_rng("dropout") + + # Apply attention. + x = dot_product_attention( + query, + key, + value, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout_rate, + deterministic=deterministic, + dtype=self.dtype, + float32_logits=self.float32_logits, + ) + + # Back to the original inputs dimensions. + out = DenseGeneral( + features=inputs_q.shape[-1], # output dim is set to the input dim. + axis=(-2, -1), + kernel_init=self.kernel_init, + kernel_axes=("heads", "kv", "embed"), + dtype=self.dtype, + name="out", + )(x) + return out + + +def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]: + # A tuple by convention. len(axes_tuple) then also gives the rank efficiently. + return tuple([ax if ax >= 0 else ndim + ax for ax in axes]) + + +def _canonicalize_tuple(x): + if isinstance(x, Iterable): + return tuple(x) + else: + return (x,) + + +# ------------------------------------------------------------------------------ +# DenseGeneral for attention layers. +# ------------------------------------------------------------------------------ +class DenseGeneral(nn.Module): + """A linear transformation (without bias) with flexible axes. + + Attributes: + features: tuple with numbers of output features. + axis: tuple with axes to apply the transformation on. + dtype: the dtype of the computation (default: float32). + kernel_init: initializer function for the weight matrix. + """ + + features: Union[Iterable[int], int] + axis: Union[Iterable[int], int] = -1 + dtype: DType = jnp.float32 + params_dtype: DType = jnp.float32 + kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "normal") + kernel_axes: Tuple[str, ...] = () + use_bias: bool = True + bias_init: Any = nn.initializers.zeros + + @nn.compact + def __call__(self, inputs: Array) -> Array: + """Applies a linear transformation to the inputs along multiple dimensions. + + Args: + inputs: The nd-array to be transformed. + + Returns: + The transformed input. + """ + features = _canonicalize_tuple(self.features) + axis = _canonicalize_tuple(self.axis) + + inputs = jnp.asarray(inputs, self.dtype) + axis = _normalize_axes(axis, inputs.ndim) + + kernel_shape = tuple([inputs.shape[ax] for ax in axis]) + features + kernel_in_axis = np.arange(len(axis)) + kernel_out_axis = np.arange(len(axis), len(axis) + len(features)) + kernel = param_with_axes( + "kernel", + self.kernel_init, + kernel_shape, + self.params_dtype, + kernel_in_axis, + kernel_out_axis, + axes=self.kernel_axes, + ) + if self.use_bias: + bias = param_with_axes( + "bias", + self.bias_init, + features, + self.params_dtype, + axes=(self.kernel_axes[-1],), + ) + kernel = jnp.asarray(kernel, self.dtype) + + contract_ind = tuple(range(0, len(axis))) + y = lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ()))) + if self.use_bias: + bias = jnp.asarray(bias, self.dtype) + # y += jnp.reshape(bias, (1,) * (y.ndim - 1) + (-1,)) + y += jnp.reshape(bias, (1,) * (len(features) - y.ndim) + bias.shape[:]) + return y + + +def _convert_to_activation_function(fn_or_string: Union[str, Callable]) -> Callable: + """Convert a string to an activation function.""" + if fn_or_string == "linear": + return lambda x: x + elif isinstance(fn_or_string, str): + return getattr(nn, fn_or_string) + elif callable(fn_or_string): + return fn_or_string + else: + raise ValueError("don't know how to convert %s to an activation function" % (fn_or_string,)) + + +class MlpBlock(nn.Module): + """Transformer MLP / feed-forward block. + + Attributes: + intermediate_dim: Shared dimension of hidden layers. + activations: Type of activations for each layer. Each element is either + 'linear', a string function name in flax.linen, or a function. + kernel_init: Kernel function, passed to the dense layers. + deterministic: Whether the dropout layers should be deterministic. + intermediate_dropout_rate: Dropout rate used after the intermediate layers. + dtype: Type for the dense layer. + """ + + intermediate_dim: int = 2048 + activations: Sequence[Union[str, Callable]] = ("relu",) + kernel_init: NdInitializer = nd_dense_init(1.0, "fan_in", "truncated_normal") + intermediate_dropout_rate: float = 0.1 + dtype: Any = jnp.float32 + + @nn.compact + def __call__(self, inputs, decode: bool = False, deterministic: bool = False): + """Applies Transformer MlpBlock module.""" + # Iterate over specified MLP input activation functions. + # e.g. ('relu',) or ('gelu', 'linear') for gated-gelu. + activations = [] + for idx, act_fn in enumerate(self.activations): + dense_name = "wi" if len(self.activations) == 1 else f"wi_{idx}" + x = DenseGeneral( + self.intermediate_dim, + dtype=self.dtype, + kernel_init=self.kernel_init, + kernel_axes=("embed", "mlp"), + name=dense_name, + )(inputs) + x = _convert_to_activation_function(act_fn)(x) + activations.append(x) + + # Take elementwise product of above intermediate activations. + x = functools.reduce(operator.mul, activations) + # Apply dropout and final dense output projection. + x = nn.Dropout(rate=self.intermediate_dropout_rate, broadcast_dims=(-2,))( + x, deterministic=deterministic + ) # Broadcast along length. + x = with_sharding_constraint(x, ("batch", "length", "mlp")) + output = DenseGeneral( + inputs.shape[-1], + dtype=self.dtype, + kernel_init=self.kernel_init, + kernel_axes=("mlp", "embed"), + name="wo", + )(x) + return output + + +class Embed(nn.Module): + """A parameterized function from integers [0, n) to d-dimensional vectors. + + Attributes: + num_embeddings: number of embeddings. + features: number of feature dimensions for each embedding. + dtype: the dtype of the embedding vectors (default: float32). + embedding_init: embedding initializer. + one_hot: performs the gather with a one-hot contraction rather than a true + gather. This is currently needed for SPMD partitioning. + """ + + num_embeddings: int + features: int + cast_input_dtype: Optional[DType] = None + dtype: DType = jnp.float32 + params_dtype: DType = jnp.float32 + attend_dtype: Optional[DType] = None + embedding_init: Initializer = default_embed_init + one_hot: bool = True + embedding: Array = dataclasses.field(init=False) + + def setup(self): + self.embedding = param_with_axes( + "embedding", + self.embedding_init, + (self.num_embeddings, self.features), + self.params_dtype, + axes=("vocab", "embed"), + ) + + def __call__(self, inputs: Array) -> Array: + """Embeds the inputs along the last dimension. + + Args: + inputs: input data, all dimensions are considered batch dimensions. + + Returns: + Output which is embedded input data. The output shape follows the input, + with an additional `features` dimension appended. + """ + if self.cast_input_dtype: + inputs = inputs.astype(self.cast_input_dtype) + if not jnp.issubdtype(inputs.dtype, jnp.integer): + raise ValueError("Input type must be an integer or unsigned integer.") + if self.one_hot: + iota = lax.iota(jnp.int32, self.num_embeddings) + one_hot = jnp.array(inputs[..., jnp.newaxis] == iota, dtype=self.dtype) + output = jnp.dot(one_hot, jnp.asarray(self.embedding, self.dtype)) + else: + output = jnp.asarray(self.embedding, self.dtype)[inputs] + output = with_sharding_constraint(output, ("batch", "length", "embed")) + return output + + def attend(self, query: Array) -> Array: + """Attend over the embedding using a query array. + + Args: + query: array with last dimension equal the feature depth `features` of the + embedding. + + Returns: + An array with final dim `num_embeddings` corresponding to the batched + inner-product of the array of query vectors against each embedding. + Commonly used for weight-sharing between embeddings and logit transform + in NLP models. + """ + dtype = self.attend_dtype if self.attend_dtype is not None else self.dtype + return jnp.dot(query, jnp.asarray(self.embedding, dtype).T) + + +class RelativePositionBiases(nn.Module): + """Adds T5-style relative positional embeddings to the attention logits. + + Attributes: + num_buckets: Number of buckets to bucket distances between key and query + positions into. + max_distance: Maximum distance before everything is lumped into the last + distance bucket. + num_heads: Number of heads in the attention layer. Each head will get a + different relative position weighting. + dtype: Type of arrays through this module. + embedding_init: initializer for relative embedding table. + """ + + num_buckets: int + max_distance: int + num_heads: int + dtype: Any + embedding_init: Callable[..., Array] = nn.linear.default_embed_init + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """Translate relative position to a bucket number for relative attention. + + The relative position is defined as memory_position - query_position, i.e. + the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are + invalid. + We use smaller buckets for small absolute relative_position and larger + buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative + positions <=-max_distance map to the same bucket. This should allow for + more graceful generalization to longer sequences than the model has been + trained on. + + Args: + relative_position: an int32 array + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 + values in the range [0, num_buckets) + """ + ret = 0 + n = -relative_position + if bidirectional: + num_buckets //= 2 + ret += (n < 0).astype(np.int32) * num_buckets + n = np.abs(n) + else: + n = np.maximum(n, 0) + # now n is in the range [0, inf) + max_exact = num_buckets // 2 + is_small = n < max_exact + val_if_large = max_exact + ( + np.log(n.astype(np.float32) / max_exact + np.finfo(np.float32).eps) + / np.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).astype(np.int32) + val_if_large = np.minimum(val_if_large, num_buckets - 1) + ret += np.where(is_small, n, val_if_large) + return ret + + @nn.compact + def __call__(self, qlen, klen, bidirectional=True): + """Produce relative position embedding attention biases. + + Args: + qlen: attention query length. + klen: attention key length. + bidirectional: whether to allow positive memory-query relative position + embeddings. + + Returns: + output: `(1, len, q_len, k_len)` attention bias + """ + # TODO(levskaya): should we be computing this w. numpy as a program + # constant? + context_position = np.arange(qlen, dtype=jnp.int32)[:, None] + memory_position = np.arange(klen, dtype=jnp.int32)[None, :] + relative_position = memory_position - context_position # shape (qlen, klen) + rp_bucket = self._relative_position_bucket( + relative_position, + bidirectional=bidirectional, + num_buckets=self.num_buckets, + max_distance=self.max_distance, + ) + relative_attention_bias = param_with_axes( + "rel_embedding", + self.embedding_init, + (self.num_heads, self.num_buckets), + jnp.float32, + axes=("heads", "relpos_buckets"), + ) + + relative_attention_bias = jnp.asarray(relative_attention_bias, self.dtype) + # Instead of using a slow gather, we create a leading-dimension one-hot + # array from rp_bucket and use it to perform the gather-equivalent via a + # contraction, i.e.: + # (num_head, num_buckets) x (num_buckets one-hot, qlen, klen). + # This is equivalent to relative_attention_bias[:, rp_bucket] + bcast_iota = lax.broadcasted_iota(jnp.int32, (self.num_buckets, 1, 1), 0) + rp_bucket_one_hot = jnp.array(rp_bucket[jnp.newaxis, ...] == bcast_iota, dtype=self.dtype) + # --> shape (qlen, klen, num_heads) + values = lax.dot_general( + relative_attention_bias, + rp_bucket_one_hot, + (((1,), (0,)), ((), ())), # rhs, lhs contracting dims + ) # no batched dims + # Add a singleton batch dimension. + # --> shape (1, num_heads, qlen, klen) + return values[jnp.newaxis, ...] + + +# ------------------------------------------------------------------------------ +# T5 Layernorm - no subtraction of mean or bias. +# ------------------------------------------------------------------------------ +# class LayerNorm(nn.Module): +# """T5 Layer normalization operating on the last axis of the input data.""" +# epsilon: float = 1e-6 +# dtype: Any = jnp.float32 +# scale_init: Initializer = nn.initializers.ones + +# @nn.compact +# def __call__(self, x: jnp.ndarray) -> jnp.ndarray: +# """Applies layer normalization on the input.""" +# x = jnp.asarray(x, jnp.float32) +# features = x.shape[-1] +# mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True) +# y = jnp.asarray(x * lax.rsqrt(mean2 + self.epsilon), self.dtype) +# scale = param_with_axes( +# 'scale', self.scale_init, (features,), jnp.float32, axes=('embed',)) + +# scale = jnp.asarray(scale, self.dtype) +# return y * scale + + +class LayerNorm(nn.Module): + """Layer normalization (https://arxiv.org/abs/1607.06450). + Operates on the last axis of the input data. + It normalizes the activations of the layer for each given example in a + batch independently, rather than across a batch like Batch Normalization. + i.e. applies a transformation that maintains the mean activation within + each example close to 0 and the activation standard deviation close to 1. + Attributes: + epsilon: A small float added to variance to avoid dividing by zero. + dtype: the dtype of the computation (default: float32). + use_bias: If True, bias (beta) is added. + use_scale: If True, multiply by scale (gamma). When the next layer is linear + (also e.g. nn.relu), this can be disabled since the scaling will be done + by the next layer. + bias_init: Initializer for bias, by default, zero. + scale_init: Initializer for scale, by default, one. + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + params_dtype: DType = jnp.float32 + use_bias: bool = True + use_scale: bool = True + bias_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.zeros + scale_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.ones + + @nn.compact + def __call__(self, x): + """Applies layer normalization on the input. + Args: + x: the inputs + Returns: + Normalized inputs (the same shape as inputs). + """ + x = jnp.asarray(x, jnp.float32) + features = x.shape[-1] + mean = jnp.mean(x, axis=-1, keepdims=True) + mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True) + var = mean2 - lax.square(mean) + mul = lax.rsqrt(var + self.epsilon) + if self.use_scale: + scale = param_with_axes( + "scale", + self.scale_init, + (features,), + self.params_dtype, + axes=("embed",), + ) + mul = mul * jnp.asarray(scale, self.dtype) + y = (x - mean) * mul + if self.use_bias: + bias = param_with_axes("bias", self.bias_init, (features,), self.params_dtype, axes=("embed",)) + y = y + jnp.asarray(bias, self.dtype) + return jnp.asarray(y, self.dtype) + + +# ------------------------------------------------------------------------------ +# Mask-making utility functions. +# ------------------------------------------------------------------------------ +def make_attention_mask( + query_input: Array, + key_input: Array, + pairwise_fn: Callable = jnp.multiply, + extra_batch_dims: int = 0, + dtype: DType = jnp.float32, +) -> Array: + """Mask-making helper for attention weights. + + In case of 1d inputs (i.e., `[batch, len_q]`, `[batch, len_kv]`, the + attention weights will be `[batch, heads, len_q, len_kv]` and this + function will produce `[batch, 1, len_q, len_kv]`. + + Args: + query_input: a batched, flat input of query_length size + key_input: a batched, flat input of key_length size + pairwise_fn: broadcasting elementwise comparison function + extra_batch_dims: number of extra batch dims to add singleton axes for, none + by default + dtype: mask return dtype + + Returns: + A `[batch, 1, len_q, len_kv]` shaped mask for 1d attention. + """ + # [batch, len_q, len_kv] + mask = pairwise_fn( + # [batch, len_q] -> [batch, len_q, 1] + jnp.expand_dims(query_input, axis=-1), + # [batch, len_q] -> [batch, 1, len_kv] + jnp.expand_dims(key_input, axis=-2), + ) + + # [batch, 1, len_q, len_kv]. This creates the head dim. + mask = jnp.expand_dims(mask, axis=-3) + mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims))) + return mask.astype(dtype) + + +def make_causal_mask(x: Array, extra_batch_dims: int = 0, dtype: DType = jnp.float32) -> Array: + """Make a causal mask for self-attention. + + In case of 1d inputs (i.e., `[batch, len]`, the self-attention weights + will be `[batch, heads, len, len]` and this function will produce a + causal mask of shape `[batch, 1, len, len]`. + + Note that a causal mask does not depend on the values of x; it only depends on + the shape. If x has padding elements, they will not be treated in a special + manner. + + Args: + x: input array of shape `[batch, len]` + extra_batch_dims: number of batch dims to add singleton axes for, none by + default + dtype: mask return dtype + + Returns: + A `[batch, 1, len, len]` shaped causal mask for 1d attention. + """ + idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape) + return make_attention_mask(idxs, idxs, jnp.greater_equal, extra_batch_dims=extra_batch_dims, dtype=dtype) + + +def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32): + """Combine attention masks. + + Args: + *masks: set of attention mask arguments to combine, some can be None. + dtype: final mask dtype + + Returns: + Combined mask, reduced by logical and, returns None if no masks given. + """ + masks = [m for m in masks if m is not None] + if not masks: + return None + assert all( + (x.ndim == masks[0].ndim for x in masks) + ), f"masks must have same rank: {tuple((x.ndim for x in masks))}" + mask, *other_masks = masks + for other_mask in other_masks: + mask = jnp.logical_and(mask, other_mask) + return mask.astype(dtype) + + +def combine_biases(*masks: Optional[Array]): + """Combine attention biases. + + Args: + *masks: set of attention bias arguments to combine, some can be None. + + Returns: + Combined mask, reduced by summation, returns None if no masks given. + """ + masks = [m for m in masks if m is not None] + if not masks: + return None + assert all( + (x.ndim == masks[0].ndim for x in masks) + ), f"masks must have same rank: {tuple((x.ndim for x in masks))}" + mask, *other_masks = masks + for other_mask in other_masks: + mask = mask + other_mask + return mask + + +def make_decoder_mask( + decoder_target_tokens: Array, + dtype: DType, + decoder_causal_attention: Optional[Array] = None, + decoder_segment_ids: Optional[Array] = None, +) -> Array: + """Compute the self-attention mask for a decoder. + + Decoder mask is formed by combining a causal mask, a padding mask and an + optional packing mask. If decoder_causal_attention is passed, it makes the + masking non-causal for positions that have value of 1. + + A prefix LM is applied to a dataset which has a notion of "inputs" and + "targets", e.g., a machine translation task. The inputs and targets are + concatenated to form a new target. `decoder_target_tokens` is the concatenated + decoder output tokens. + + The "inputs" portion of the concatenated sequence can attend to other "inputs" + tokens even for those at a later time steps. In order to control this + behavior, `decoder_causal_attention` is necessary. This is a binary mask with + a value of 1 indicating that the position belonged to "inputs" portion of the + original dataset. + + Example: + + Suppose we have a dataset with two examples. + + ds = [{"inputs": [6, 7], "targets": [8]}, + {"inputs": [3, 4], "targets": [5]}] + + After the data preprocessing with packing, the two examples are packed into + one example with the following three fields (some fields are skipped for + simplicity). + + decoder_target_tokens = [[6, 7, 8, 3, 4, 5, 0]] + decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]] + decoder_causal_attention = [[1, 1, 0, 1, 1, 0, 0]] + + where each array has [batch, length] shape with batch size being 1. Then, + this function computes the following mask. + + mask = [[[[1, 1, 0, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]]]] + + mask[b, 1, :, :] represents the mask for the example `b` in the batch. + Because mask is for a self-attention layer, the mask's shape is a square of + shape [query length, key length]. + + mask[b, 1, i, j] = 1 means that the query token at position i can attend to + the key token at position j. + + Args: + decoder_target_tokens: decoder output tokens. [batch, length] + dtype: dtype of the output mask. + decoder_causal_attention: a binary mask indicating which position should + only attend to earlier positions in the sequence. Others will attend + bidirectionally. [batch, length] + decoder_segment_ids: decoder segmentation info for packed examples. [batch, + length] + + Returns: + the combined decoder mask. + """ + masks = [] + # The same mask is applied to all attention heads. So the head dimension is 1, + # i.e., the mask will be broadcast along the heads dim. + # [batch, 1, length, length] + causal_mask = make_causal_mask(decoder_target_tokens, dtype=dtype) + + # Positions with value 1 in `decoder_causal_attneition` can attend + # bidirectionally. + if decoder_causal_attention is not None: + # [batch, 1, length, length] + inputs_mask = make_attention_mask( + decoder_causal_attention, + decoder_causal_attention, + jnp.logical_and, + dtype=dtype, + ) + masks.append(jnp.logical_or(causal_mask, inputs_mask).astype(dtype)) + else: + masks.append(causal_mask) + + # Padding mask. + masks.append(make_attention_mask(decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=dtype)) + + # Packing mask + if decoder_segment_ids is not None: + masks.append(make_attention_mask(decoder_segment_ids, decoder_segment_ids, jnp.equal, dtype=dtype)) + + return combine_masks(*masks, dtype=dtype) + + +def canonicalize_padding(padding: PaddingLike, rank: int) -> LaxPadding: + """ "Canonicalizes conv padding to a jax.lax supported format.""" + if isinstance(padding, str): + return padding + if isinstance(padding, int): + return [(padding, padding)] * rank + if isinstance(padding, Sequence) and len(padding) == rank: + new_pad = [] + for p in padding: + if isinstance(p, int): + new_pad.append((p, p)) + elif isinstance(p, tuple) and len(p) == 2: + new_pad.append(p) + else: + break + if len(new_pad) == rank: + return new_pad + raise ValueError( + f"Invalid padding format: {padding}, should be str, int," + f" or a sequence of len {rank} where each element is an" + " int or pair of ints." + ) + + +def _conv_dimension_numbers(input_shape): + """Computes the dimension numbers based on the input shape.""" + ndim = len(input_shape) + lhs_spec = (0, ndim - 1) + tuple(range(1, ndim - 1)) + rhs_spec = (ndim - 1, ndim - 2) + tuple(range(0, ndim - 2)) + out_spec = lhs_spec + return lax.ConvDimensionNumbers(lhs_spec, rhs_spec, out_spec) + + +class _Conv(nn.Module): + """Convolution Module wrapping `lax.conv_general_dilated[_local]`. + + Attributes: + features: number of convolution filters. + kernel_size: shape of the convolutional kernel. For 1D convolution, + the kernel size can be passed as an integer. For all other cases, it must + be a sequence of integers. + strides: an integer or a sequence of `n` integers, representing the + inter-window strides (default: 1). + padding: either the string `'SAME'`, the string `'VALID'`, the string + `'CIRCULAR'` (periodic boundary conditions), or a sequence of `n` `(low, + high)` integer pairs that give the padding to apply before and after each + spatial dimension. A single int is interpeted as applying the same padding + in all dims and passign a single int in a sequence causes the same padding + to be used on both sides. `'CAUSAL'` padding for a 1D convolution will + left-pad the convolution axis, resulting in same-sized output. + input_dilation: an integer or a sequence of `n` integers, giving the + dilation factor to apply in each spatial dimension of `inputs` + (default: 1). Convolution with input dilation `d` is equivalent to + transposed convolution with stride `d`. + kernel_dilation: an integer or a sequence of `n` integers, giving the + dilation factor to apply in each spatial dimension of the convolution + kernel (default: 1). Convolution with kernel dilation + is also known as 'atrous convolution'. + feature_group_count: integer, default 1. If specified divides the input + features into groups. + use_bias: whether to add a bias to the output (default: True). + mask: Optional mask for the weights during masked convolution. The mask must + be the same shape as the convolution weight matrix. + dtype: the dtype of the computation (default: infer from input and params). + params_dtype: the dtype passed to parameter initializers (default: float32). + precision: numerical precision of the computation see `jax.lax.Precision` + for details. + kernel_init: initializer for the convolutional kernel. + bias_init: initializer for the bias. + """ + + features: int + kernel_size: Sequence[int] + strides: Union[None, int, Sequence[int]] = 1 + padding: PaddingLike = "SAME" + input_dilation: Union[None, int, Sequence[int]] = 1 + kernel_dilation: Union[None, int, Sequence[int]] = 1 + feature_group_count: int = 1 + use_bias: bool = True + mask: Optional[Array] = None + dtype: Optional[DType] = None + params_dtype: DType = jnp.float32 + precision: PrecisionLike = None + kernel_init: Callable[[PRNGKey, Shape, DType], Array] = nn.initializers.lecun_normal() + bias_init: Callable[[PRNGKey, Shape, DType], Array] = nn.initializers.zeros + conv_general_dilated: ConvGeneralDilatedT = lax.conv_general_dilated + kernel_axes: Tuple[str, ...] = () + + @property + def shared_weights(self) -> bool: # type: ignore + """Defines whether weights are shared or not between different pixels. + + Returns: + `True` to use shared weights in convolution (regular convolution). + `False` to use different weights at different pixels, a.k.a. + "locally connected layer", "unshared convolution", or "local convolution". + + """ + ... + + @nn.compact + def __call__(self, inputs: Array) -> Array: + """Applies a (potentially unshared) convolution to the inputs. + + Args: + inputs: input data with dimensions (*batch_dims, spatial_dims..., + features). This is the channels-last convention, i.e. NHWC for a 2d + convolution and NDHWC for a 3D convolution. Note: this is different from + the input convention used by `lax.conv_general_dilated`, which puts the + spatial dimensions last. + Note: If the input has more than 1 batch dimension, all batch dimensions + are flattened into a single dimension for the convolution and restored + before returning. In some cases directly vmap'ing the layer may yield + better performance than this default flattening approach. If the input + lacks a batch dimension it will be added for the convolution and removed + n return, an allowance made to enable writing single-example code. + + Returns: + The convolved data. + """ + + if isinstance(self.kernel_size, int): + raise TypeError( + "Expected Conv kernel_size to be a" + " tuple/list of integers (eg.: [3, 3]) but got" + f" {self.kernel_size}." + ) + else: + kernel_size = tuple(self.kernel_size) + + def maybe_broadcast(x: Optional[Union[int, Sequence[int]]]) -> Tuple[int, ...]: + if x is None: + # backward compatibility with using None as sentinel for + # broadcast 1 + x = 1 + if isinstance(x, int): + return (x,) * len(kernel_size) + return tuple(x) + + # Combine all input batch dimensions into a single leading batch axis. + num_batch_dimensions = inputs.ndim - (len(kernel_size) + 1) + if num_batch_dimensions != 1: + input_batch_shape = inputs.shape[:num_batch_dimensions] + total_batch_size = int(np.prod(input_batch_shape)) + flat_input_shape = (total_batch_size,) + inputs.shape[num_batch_dimensions:] + inputs = jnp.reshape(inputs, flat_input_shape) + + # self.strides or (1,) * (inputs.ndim - 2) + strides = maybe_broadcast(self.strides) + input_dilation = maybe_broadcast(self.input_dilation) + kernel_dilation = maybe_broadcast(self.kernel_dilation) + + padding_lax = canonicalize_padding(self.padding, len(kernel_size)) + if padding_lax == "CIRCULAR": + kernel_size_dilated = [(k - 1) * d + 1 for k, d in zip(kernel_size, kernel_dilation)] + zero_pad: List[Tuple[int, int]] = [(0, 0)] + pads = zero_pad + [((k - 1) // 2, k // 2) for k in kernel_size_dilated] + [(0, 0)] + inputs = jnp.pad(inputs, pads, mode="wrap") + padding_lax = "VALID" + elif padding_lax == "CAUSAL": + if len(kernel_size) != 1: + raise ValueError("Causal padding is only implemented for 1D convolutions.") + left_pad = kernel_dilation[0] * (kernel_size[0] - 1) + pads = [(0, 0), (left_pad, 0), (0, 0)] + inputs = jnp.pad(inputs, pads) + padding_lax = "VALID" + + dimension_numbers = _conv_dimension_numbers(inputs.shape) + in_features = jnp.shape(inputs)[-1] + + if self.shared_weights: + # One shared convolutional kernel for all pixels in the output. + assert in_features % self.feature_group_count == 0 + kernel_shape = kernel_size + ( + in_features // self.feature_group_count, + self.features, + ) + + else: + if self.feature_group_count != 1: + raise NotImplementedError( + "`lax.conv_general_dilated_local` does not support " + f"`feature_group_count != 1`, got `{self.feature_group_count}`." + ) + + # Need to know the spatial output shape of a standard convolution to + # create the unshared convolution kernel. + conv_output_shape = jax.eval_shape( + lambda lhs, rhs: self.conv_general_dilated( # pylint: disable=g-long-lambda + lhs=lhs, + rhs=rhs, + window_strides=strides, + padding=padding_lax, + dimension_numbers=dimension_numbers, + lhs_dilation=input_dilation, + rhs_dilation=kernel_dilation, + ), + inputs, + jax.ShapedArray(kernel_size + (in_features, self.features), inputs.dtype), + ).shape + + # One (unshared) convolutional kernel per each pixel in the output. + kernel_shape = conv_output_shape[1:-1] + ( + np.prod(kernel_size) * in_features, + self.features, + ) + + if self.mask is not None and self.mask.shape != kernel_shape: + raise ValueError( + "Mask needs to have the same shape as weights. " f"Shapes are: {self.mask.shape}, {kernel_shape}" + ) + + kernel = param_with_axes( + "kernel", + self.kernel_init, + kernel_shape, + self.params_dtype, + axes=self.kernel_axes, + ) + + if self.mask is not None: + kernel *= self.mask + + if self.use_bias: + if self.shared_weights: + # One bias weight per output channel, shared between pixels. + bias_shape = (self.features,) + else: + # One bias weight per output entry, unshared betwen pixels. + bias_shape = conv_output_shape[1:] + + bias = param_with_axes( + "bias", + self.bias_init, + bias_shape, + self.params_dtype, + axes=(self.kernel_axes[-1],), + ) + else: + bias = None + + inputs, kernel, bias = promote_dtype(inputs, kernel, bias, dtype=self.dtype) + if self.shared_weights: + y = self.conv_general_dilated( + inputs, + kernel, + strides, + padding_lax, + lhs_dilation=input_dilation, + rhs_dilation=kernel_dilation, + dimension_numbers=dimension_numbers, + feature_group_count=self.feature_group_count, + precision=self.precision, + ) + else: + y = lax.conv_general_dilated_local( + lhs=inputs, + rhs=kernel, + window_strides=strides, + padding=padding_lax, + filter_shape=kernel_size, + lhs_dilation=input_dilation, + rhs_dilation=kernel_dilation, + dimension_numbers=dimension_numbers, + precision=self.precision, + ) + + if self.use_bias: + bias = bias.reshape((1,) * (y.ndim - bias.ndim) + bias.shape) + y += bias + + if num_batch_dimensions != 1: + output_shape = input_batch_shape + y.shape[1:] + y = jnp.reshape(y, output_shape) + return y + + +class Conv(_Conv): + """Convolution Module wrapping `lax.conv_general_dilated`. + + Attributes: + features: number of convolution filters. + kernel_size: shape of the convolutional kernel. For 1D convolution, + the kernel size can be passed as an integer. For all other cases, it must + be a sequence of integers. + strides: an integer or a sequence of `n` integers, representing the + inter-window strides (default: 1). + padding: either the string `'SAME'`, the string `'VALID'`, the string + `'CIRCULAR'` (periodic boundary conditions), or a sequence of `n` `(low, + high)` integer pairs that give the padding to apply before and after each + spatial dimension. A single int is interpeted as applying the same padding + in all dims and passign a single int in a sequence causes the same padding + to be used on both sides. `'CAUSAL'` padding for a 1D convolution will + left-pad the convolution axis, resulting in same-sized output. + input_dilation: an integer or a sequence of `n` integers, giving the + dilation factor to apply in each spatial dimension of `inputs` + (default: 1). Convolution with input dilation `d` is equivalent to + transposed convolution with stride `d`. + kernel_dilation: an integer or a sequence of `n` integers, giving the + dilation factor to apply in each spatial dimension of the convolution + kernel (default: 1). Convolution with kernel dilation + is also known as 'atrous convolution'. + feature_group_count: integer, default 1. If specified divides the input + features into groups. + use_bias: whether to add a bias to the output (default: True). + mask: Optional mask for the weights during masked convolution. The mask must + be the same shape as the convolution weight matrix. + dtype: the dtype of the computation (default: infer from input and params). + params_dtype: the dtype passed to parameter initializers (default: float32). + precision: numerical precision of the computation see `jax.lax.Precision` + for details. + kernel_init: initializer for the convolutional kernel. + bias_init: initializer for the bias. + """ + + @property + def shared_weights(self) -> bool: + return True diff --git a/flax/distil_whisper/modeling_flax_whisper.py b/flax/distil_whisper/modeling_flax_whisper.py new file mode 100644 index 0000000000000000000000000000000000000000..da6a634e7f7bbb9598c75c59ebf118680c9dc495 --- /dev/null +++ b/flax/distil_whisper/modeling_flax_whisper.py @@ -0,0 +1,2135 @@ +# coding=utf-8 +# Copyright 2023 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax whisper model.""" + +import random +from functools import partial +from typing import Dict, Optional, Tuple, Union + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.linen.partitioning import remat, scan_with_axes +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey +from transformers import WhisperConfig +from transformers.generation.flax_logits_process import ( + FlaxLogitsProcessor, + FlaxLogitsProcessorList, + FlaxWhisperTimeStampLogitsProcessor, +) +from transformers.modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, +) +from transformers.modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) + +from .layers import Conv, DenseGeneral, Embed, LayerNorm, with_sharding_constraint + + +logger = logging.get_logger(__name__) + + +_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" +_CONFIG_FOR_DOC = "WhisperConfig" + + +WHISPER_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + Finally, this model supports inherent JAX features such as: + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision + inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] + and [`~FlaxPreTrainedModel.to_bf16`]. +""" + +WHISPER_INPUTS_DOCSTRING = r""" + Args: + input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): + Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by + loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via + the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a + tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`] + attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but + is not used. By default the silence in the input log mel spectrogram are ignored. + decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using + [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. + [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as + the starting token for `decoder_input_ids` generation. + decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 + in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't + use masking, but this argument is preserved for compatibility. By default the silence in the input log mel + spectrogram are ignored. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +WHISPER_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): + Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by + loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via + the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a + tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]. + attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but + is not used. By default the silence in the input log mel spectrogram are ignored. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +WHISPER_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using + [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. + [What are decoder input IDs?](../glossary#decoder-input-ids) + encoder_outputs (`tuple(tuple(numpy.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, + but it is not used. By default the silence in the input log mel spectrogram are ignored. + decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 + in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class FlaxStaticForceTokensLogitsProcessor(FlaxLogitsProcessor): + r""" + [`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to + token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens + to `-inf` so that they are sampled at their corresponding index. This is a static version of the `transformers` logit + processor [`FlaxForceTokensLogitsProcessor`] that is compatible with sharded forced tokens. + + Args: + force_token_map (`list`): + Map giving token ids and indices where they will be forced to be sampled. + """ + + def __init__(self, force_token_map): + # The generic `transformers` logit processor builds `force_token_array` as a dictionary - this is not a valid + # JAX type, and so we switch to using a JAX array instead + force_token_map = jnp.array(force_token_map) + # Converts the array of format [[index, token]] containing the tokens to be forced to an array, where the + # index of the array corresponds to the index of the token to be forced. For XLA compatibility, + # indexes without forced tokens will have a negative value. Note that the last token we ever need to force in + # Whisper is at position 3, so we only construct an array up to this index. The native version constructs a tensor + # dynamically according to the length of the `force_token_map`. Array shapes need to be concrete for XLA compatibility, + # so this is not permitted here. + force_token_array = jnp.ones(3, dtype=jnp.int32) * -1 + for index, token in force_token_map: + force_token_array = force_token_array.at[index].set(token) + self.force_token_array = jnp.int32(force_token_array) + + def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: + def _force_token(generation_idx): + batch_size = scores.shape[0] + current_token = self.force_token_array[generation_idx] + + new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf") + updates = jnp.zeros((batch_size, 1), dtype=scores.dtype) + new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token)) + return new_scores + + scores = lax.cond( + cur_len >= self.force_token_array.shape[0], + # If the current length is geq than the length of force_token_array, the processor does nothing. + lambda: scores, + # Otherwise, it may force a certain token. + lambda: lax.cond( + self.force_token_array[cur_len] >= 0, + # Only valid (positive) tokens are forced + lambda: _force_token(cur_len), + # Otherwise, the processor does nothing. + lambda: scores, + ), + ) + return scores + + +class FlaxWhisperAttention(nn.Module): + config: WhisperConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + "embed_dim must be divisible by num_heads (got `embed_dim`:" + f" {self.embed_dim} and `num_heads`: {self.num_heads})." + ) + + dense = partial( + DenseGeneral, + self.embed_dim, + axis=-1, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("embed", "joined_kv"), + ) + + self.q_proj = dense(use_bias=self.bias) + self.k_proj = dense(use_bias=False) + self.v_proj = dense(use_bias=self.bias) + + self.out_proj = DenseGeneral( + self.embed_dim, + axis=-1, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("joined_kv", "embed"), + use_bias=self.bias, + ) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_target_positions), dtype="bool"), + dtype="bool", + ) + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + query_states = self.q_proj(hidden_states) + + if is_cross_attention: + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + query_states = with_sharding_constraint(query_states, ("batch", "length", "heads", "kv")) + key_states = with_sharding_constraint(key_states, ("batch", "length", "heads", "kv")) + value_states = with_sharding_constraint(value_states, ("batch", "length", "heads", "kv")) + + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + # max_length of cached_key is last dim + max_decoder_length = self.variables["cache"]["cached_key"].shape[-1] + causal_mask = lax.dynamic_slice( + self.causal_mask, + (0, 0, mask_shift, 0), + (1, 1, query_length, max_decoder_length), + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + def _split_heads(self, hidden_state) -> jnp.ndarray: + return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_state) -> jnp.ndarray: + return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + # The following code is largely copied from: https://github.com/google-research/t5x/blob/63d9addf628c6d8c547a407a32095fcb527bb20b/t5x/examples/scalable_t5/layers.py#L280-L284 + is_initialized = self.has_variable("cache", "cached_key") + + # The key and value have dimension [batch_size, seq_length, num_heads, head_dim], + # but we cache them as [batch_size, num_heads, head_dim, seq_length] as a TPU + # fusion optimization. This also enables the "scatter via one-hot + # broadcast" trick, which means we do a one-hot broadcast instead of a + # scatter/gather operations, resulting in a 3-4x speedup in practice. + def swap_dims(x): + return x[:-3] + tuple(x[i] for i in [-2, -1, -3]) + + cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + batch_size, num_heads, head_dim, seq_length = cached_key.value.shape + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + # Sanity shape check of cached key against input query. + num_updated_cache_vectors = query.shape[1] + expected_shape = (batch_size, 1, num_heads, head_dim) + if num_updated_cache_vectors == 1 and expected_shape != query.shape: + raise ValueError( + "Autoregressive cache shape error, expected query shape" + f" {expected_shape} instead got {query.shape}" + ) + + # Create a OHE of the current index. NOTE: the index is increased below. + cur_index = cache_index.value + + # In order to update the key, value caches with the current key and + # value, we move the seq_length axis to the back, similar to what we did for + # the cached ones above. + # Note these are currently the key and value of a single position, since + # we feed one position at a time. + one_token_key = jnp.moveaxis(key, -3, -1) + one_token_value = jnp.moveaxis(value, -3, -1) + + # Update key, value caches with our new 1d spatial slices. + # We implement an efficient scatter into the cache via one-hot + # broadcast and addition. + if num_updated_cache_vectors > 1: + indices = jnp.eye(num_updated_cache_vectors, seq_length)[None, None] + key = cached_key.value + jnp.matmul(one_token_key, indices) + value = cached_value.value + jnp.matmul(one_token_value, indices) + else: + one_hot_indices = jax.nn.one_hot(cur_index, seq_length, dtype=key.dtype) + key = cached_key.value + one_token_key * one_hot_indices + value = cached_value.value + one_token_value * one_hot_indices + + cached_key.value = key + cached_value.value = value + cache_index.value = cache_index.value + num_updated_cache_vectors + + # Move the keys and values back to their original shapes. + key = jnp.moveaxis(key, -1, -3) + value = jnp.moveaxis(value, -1, -3) + + # causal mask for cached decoder self-attention: our single query position should only + # attend to those key positions that have already been generated and cached, not the + # remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(seq_length) < cur_index + num_updated_cache_vectors, + (batch_size,) + (1, num_updated_cache_vectors, seq_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + + return key, value, attention_mask + + +class FlaxWhisperEncoderLayer(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxWhisperAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.encoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + self.fc1 = DenseGeneral( + self.config.encoder_ffn_dim, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("embed", "mlp"), + ) + self.fc2 = DenseGeneral( + self.embed_dim, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("mlp", "embed"), + ) + self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + output_attentions: bool = True, + deterministic: bool = True, + all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer + ) -> Tuple[jnp.ndarray]: + if self.use_scan: + hidden_states = hidden_states[0] + + hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) + + residual = hidden_states + + layernorm_output = self.self_attn_layer_norm(hidden_states) + layernorm_output = with_sharding_constraint(layernorm_output, ("batch", "length", "embed")) + + attn_output, attn_weights = self.self_attn(hidden_states=layernorm_output, attention_mask=attention_mask) + attn_output = self.dropout_layer(attn_output, deterministic=deterministic) + attn_output = residual + attn_output + attn_output = with_sharding_constraint(attn_output, ("batch", "length", "embed")) + + residual = attn_output + + post_layer_norm = self.final_layer_norm(attn_output) + post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed")) + + fc1_output = self.activation_fn(self.fc1(post_layer_norm)) + fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic) + fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp")) + + hidden_states = self.fc2(fc1_output) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + if self.use_scan: + if all_hidden_states is not None: + all_hidden_states = all_hidden_states + (hidden_states,) + outputs = ( + outputs, + all_hidden_states, + ) + + return outputs + + +class FlaxWhisperEncoderLayerCollection(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + @nn.compact + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + FlaxWhisperEncoderCheckpointLayer = ( + remat( + FlaxWhisperEncoderLayer, + static_argnums=(2, 3), + prevent_cse=not self.use_scan, + ) + if self.gradient_checkpointing + else FlaxWhisperEncoderLayer + ) + + if self.use_scan: + if output_attentions: + raise ValueError("Cannot use `scan` with `output_attentions` set to True") + + # nicest behaviour for scan is to let the compiler figure out the correct shapes for the hidden states + # so we'll just pass an empty tuple as the carry initializer and hold on to the first hidden states for later + input_hidden_states = hidden_states + hidden_states = (hidden_states,) + + hidden_states, all_hidden_states = scan_with_axes( + FlaxWhisperEncoderCheckpointLayer, + variable_axes={"params": 0, "cache": 0}, + split_rngs={"params": True, "dropout": True}, + in_axes=( + nn.broadcast, + nn.broadcast, + nn.broadcast, + nn.broadcast, + ), + variable_carry="all_hidden_states", + length=self.config.encoder_layers, + )( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=True, + name="FlaxEncoderScanLayers", + )( + hidden_states, + attention_mask, + output_attentions, + deterministic, + all_hidden_states, # tuple intializer (or None if not using output_hidden_states) + ) + + # remove the scan dimension + hidden_states = hidden_states[0] + + if output_hidden_states: + # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple + all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]]) + + else: + for layer_idx in range(self.config.encoder_layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.config.encoder_layerdrop): # skip the layer + layer_outputs = (None, None) + else: + layer_outputs = FlaxWhisperEncoderCheckpointLayer( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + name=str(layer_idx), + )( + hidden_states, + attention_mask, + output_attentions, + deterministic, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + +class FlaxWhisperDecoderLayer(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxWhisperAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + self.encoder_attn = FlaxWhisperAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + self.encoder_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + self.fc1 = DenseGeneral( + self.config.decoder_ffn_dim, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("embed", "mlp"), + ) + self.fc2 = DenseGeneral( + self.embed_dim, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("mlp", "embed"), + ) + self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer + ) -> Tuple[jnp.ndarray]: + if self.use_scan: + hidden_states = hidden_states[0] + + hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) + + residual = hidden_states + + layer_norm_output = self.self_attn_layer_norm(hidden_states) + layer_norm_output = with_sharding_constraint(layer_norm_output, ("batch", "length", "embed")) + + # Self Attention + self_attn_output, self_attn_weights = self.self_attn( + hidden_states=layer_norm_output, + attention_mask=attention_mask, + init_cache=init_cache, + ) + self_attn_output = self.dropout_layer(self_attn_output, deterministic=deterministic) + self_attn_output = residual + self_attn_output + self_attn_output = with_sharding_constraint(self_attn_output, ("batch", "length", "embed")) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = self_attn_output + + encoder_layer_norm_output = self.encoder_attn_layer_norm(self_attn_output) + encoder_layer_norm_output = with_sharding_constraint( + encoder_layer_norm_output, ("batch", "length", "embed") + ) + + cross_attn_output, cross_attn_weights = self.encoder_attn( + hidden_states=encoder_layer_norm_output, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + cross_attn_output = self.dropout_layer(cross_attn_output, deterministic=deterministic) + cross_attn_output = residual + cross_attn_output + cross_attn_output = with_sharding_constraint(cross_attn_output, ("batch", "length", "embed")) + + # Fully Connected + residual = cross_attn_output + + post_layer_norm = self.final_layer_norm(cross_attn_output) + post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed")) + + fc1_output = self.activation_fn(self.fc1(post_layer_norm)) + fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic) + fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp")) + + hidden_states = self.fc2(fc1_output) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if self.use_scan: + if all_hidden_states is not None: + all_hidden_states = all_hidden_states + (hidden_states,) + outputs = ( + outputs, + all_hidden_states, + ) + + return outputs + + +class FlaxWhisperDecoderLayerCollection(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + @nn.compact + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + FlaxWhisperDecoderCheckpointLayer = ( + remat( + FlaxWhisperDecoderLayer, + static_argnums=(4, 5, 6), + prevent_cse=not self.use_scan, + ) + if self.gradient_checkpointing + else FlaxWhisperDecoderLayer + ) + + if self.use_scan: + if output_attentions: + raise ValueError("Cannot use `scan` with `output_attentions` set to True") + + input_hidden_states = hidden_states + hidden_states = (hidden_states,) + + hidden_states, all_hidden_states = scan_with_axes( + FlaxWhisperDecoderCheckpointLayer, + variable_axes={"params": 0, "cache": 0}, + split_rngs={"params": True, "dropout": True}, + in_axes=( + nn.broadcast, + nn.broadcast, + nn.broadcast, + nn.broadcast, + nn.broadcast, + nn.broadcast, + nn.broadcast, + ), + variable_carry="all_hidden_states", + length=self.config.decoder_layers, + )( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=True, + name="FlaxDecoderScanLayers", + )( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + output_attentions, + deterministic, + all_hidden_states, + ) + hidden_states = hidden_states[0] + + if output_hidden_states: + # if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple + all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]]) + + else: + for layer_idx in range(self.config.decoder_layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.config.decoder_layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = FlaxWhisperDecoderCheckpointLayer( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + name=str(layer_idx), + )( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + output_attentions, + deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = [ + hidden_states, + all_hidden_states, + all_self_attns, + all_cross_attentions, + ] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +class FlaxWhisperEncoder(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + def setup(self) -> None: + self.conv1 = Conv( + self.config.d_model, + kernel_size=(3,), + padding=1, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("channels", "num_mel", "embed"), + ) + self.conv2 = Conv( + self.config.d_model, + kernel_size=(3,), + strides=2, + padding=1, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("channels", "embed", "num_mel"), + ) + + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + self.layers = FlaxWhisperEncoderLayerCollection( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.embed_positions = Embed( + self.config.max_source_positions, + self.config.d_model, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + + self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) + + def __call__( + self, + input_features: jnp.ndarray, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + if input_features.shape[1:] != ( + self.config.num_mel_bins, + self.config.max_source_positions * 2, + ): + raise ValueError( + "input_features.shape[1:], must be equal to (self.config.num_mel_bins," + " self.config.max_source_positions * 2) (got" + f" {input_features.shape[1:]}, but should be" + f" ({self.config.num_mel_bins}," + f" {self.config.max_source_positions * 2}))" + ) + + input_features = input_features.transpose(0, 2, 1) + hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) + hidden_states = with_sharding_constraint(hidden_states, ("batch", "embed", "num_mel")) + hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) + hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) + + embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) + # sinusoidal positional embeddings should not be trained + embed_positions = jax.lax.stop_gradient(embed_positions) + hidden_states = hidden_states + embed_positions + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask=None, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + if self.use_scan: + hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]]) + else: + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + ) + + +class FlaxWhisperDecoder(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + def setup(self) -> None: + self.embed_tokens = Embed( + self.config.vocab_size, + self.config.d_model, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + self.embed_positions = Embed( + self.config.max_target_positions, + self.config.d_model, + dtype=self.dtype, + params_dtype=self.params_dtype, + ) + + self.layers = FlaxWhisperDecoderLayerCollection( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-5, params_dtype=self.params_dtype) + + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: jnp.ndarray, + position_ids: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + input_embeds = self.embed_tokens(input_ids) + position_embeds = self.embed_positions(position_ids) + + hidden_states = input_embeds + position_embeds + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + if self.use_scan: + hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]]) + else: + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +class FlaxWhisperModule(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + def setup(self) -> None: + self.encoder = FlaxWhisperEncoder( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.decoder = FlaxWhisperDecoder( + self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + input_features: jnp.ndarray, + decoder_input_ids: jnp.ndarray, + decoder_attention_mask: jnp.ndarray, + decoder_position_ids: jnp.ndarray, + output_attentions: bool = False, + output_hidden_states: bool = False, + freeze_encoder: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_features, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + encoder_hidden_states = encoder_outputs[0] + + if freeze_encoder: + encoder_hidden_states = jax.lax.stop_gradient(encoder_hidden_states) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + +class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): + config_class = WhisperConfig + base_model_prefix: str = "model" + main_input_name = "input_features" + module_class: nn.Module = None + + def __init__( + self, + config: WhisperConfig, + input_shape: Tuple[int, int, int] = None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + params_dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + # Can only use_scan=True in init if loading scanned weights -> need to handle use_scan=True and unrolled weights + use_scan: bool = False, + gradient_checkpointing: bool = False, + **kwargs, + ): + self.use_scan = use_scan + self.gradient_checkpointing = gradient_checkpointing + + module = self.module_class( + config=config, + dtype=dtype, + params_dtype=params_dtype, + use_scan=use_scan, + gradient_checkpointing=gradient_checkpointing, + **kwargs, + ) + + if input_shape is None: + input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions) + + super().__init__( + config, + module, + input_shape=input_shape, + seed=seed, + dtype=dtype, + _do_init=_do_init, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_features = jnp.zeros(input_shape, dtype="f4") + input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) + + decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_features=input_features, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def enable_gradient_checkpointing(self): + self.gradient_checkpointing = True + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def enable_scan(self): + self.use_scan = True + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + init_fn = partial(self.init_weights, input_shape=self.input_shape) + params_shape_tree = jax.eval_shape(init_fn, self.key) + + # get the shape of the parameters + self._params_shape_tree = params_shape_tree + + # save required_params as set + self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) + + # initialize the parameters + if self._is_initialized: + self.params = self.convert_unroll_to_scan(self.params) + + def disable_scan(self): + self.use_scan = False + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + init_fn = partial(self.init_weights, input_shape=self.input_shape) + params_shape_tree = jax.eval_shape(init_fn, self.key) + + # get the shape of the parameters + self._params_shape_tree = params_shape_tree + + # save required_params as set + self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) + + # initialize the parameters + if self._is_initialized: + self.params = self.convert_scan_to_unroll(self.params) + + def convert_unroll_to_scan(self, params: Union[Dict, FrozenDict]): + r""" + Convert a `PyTree` of unrolled model parameters to a scanned block of model parameters. This method can be used + to explicitly convert the model parameters to scanned format. This returns a new `params` tree and does not + convert the `params` in place. + + To illustrate the workings of this method, take the Flax BERT model. The unrolled structure for the query + projection params is as follows: + ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn', + 'q_proj') ... ('bert', 'encoder', 'layer', '23', 'self_attn', 'q_proj') + This method takes each of the `q_proj` matrices for layers (0, ..., 23) and stacks them into a single 'super' + matrix, giving a *single* block of weights for all 24 layers compatible with the scanned model: + ('bert', 'encoder', 'layer', 'ScanLayers', 'self_attn', 'q_proj') + + When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With + _do_init=False, it will have to be called explicitly (see example below). + + Arguments: + params (`Union[Dict, FrozenDict]`): + A `PyTree` of model parameters. + + Examples: + + ```python + >>> from distil_whisper import FlaxWhisperForConditionalGeneration + + >>> # Download model and configuration from huggingface.co + >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False) + >>> # By default, the model params will be in unrolled format. To illustrate the use of this method, + >>> # we'll first convert to scan format and then back to unrolled + >>> model.enable_scan() + >>> params = model.convert_unroll_to_scan(params) + >>> # now convert back to unrolled + >>> model.disable_scan() + >>> params = model.convert_scan_to_unroll(params) + ```""" + if isinstance(params, FrozenDict): + params = unfreeze(params) + + params = flatten_dict(params, sep="/") + keys = list(params.keys()) + + for k in keys: + # Identify all "unrolled" layers formed as part of the FlaxBertLayerCollection + # These params contain the identifier `layer` in their key + if "layers/0" in k: + if "decoder" in k: + block_prefix = "Decoder" + num_hidden_layers = self.config.decoder_layers + else: + block_prefix = "Encoder" + num_hidden_layers = self.config.encoder_layers + + # Squash the keys for the N unrolled layers into one single key: + # (layer/0, ..., layer/N) -> layer/FlaxScanLayers + scan_key = k.replace("0", f"Flax{block_prefix}ScanLayers") + stacked_params = [] + + # Iterate over the unrolled layers (1,...,N) + for i in range(num_hidden_layers): + # Stack the params for the N layers into one super block + # and remove the unrolled layer params on the fly + # -> no memory overhead for conversion! + unrolled_layer = params.pop(k.replace("0", str(i))) + stacked_params.append(unrolled_layer) + + params[scan_key] = jnp.stack(stacked_params) + + # Finally, unflatten the dict to restore the nested pytree structure + params = unflatten_dict(params, sep="/") + return params + + def convert_scan_to_unroll(self, params: Union[Dict, FrozenDict]): + r""" + Convert a `PyTree` of scanned model parameters to an unrolled stack of model parameters. This method can be + used to explicitly convert the model parameters to unrolled format. This returns a new `params` tree and does + not convert the `params` in place. + + To illustrate the workings of this method, take the Flax BERT model. The scanned structure for the query + projection (`q_proj`) params is a single, stacked matrix of parameters over all N layers: + ('bert', 'encoder', 'layer', 'FlaxScanLayers', 'self_attn', 'q_proj') + + This method slices each layer of the `q_proj` scanned matrix into single, standalone layers, and replaces the + scanned matrix of parameteres on the fly: + ('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn', + 'q_proj') ... ('bert', 'encoder', 'layer', 'N', 'self_attn', 'q_proj') + + When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With + _do_init=False, it will have to be called explicitly (see example below). + + Arguments: + params (`Union[Dict, FrozenDict]`): + A `PyTree` of model parameters. + + Examples: + + ```python + >>> from distil_whisper import FlaxWhisperForConditionalGeneration + + >>> # Download model and configuration from huggingface.co + >>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False) + >>> # By default, the model params will be in unrolled format. To illustrate the use of this method, + >>> # we'll first convert to scan format and then back to unrolled + >>> model.enable_scan() + >>> params = model.convert_unroll_to_scan(params) + >>> # now convert back to unrolled + >>> model.disable_scan() + >>> params = model.convert_scan_to_unroll(params) + ```""" + + if isinstance(params, FrozenDict): + params = unfreeze(params) + + params = flatten_dict(params, sep="/") + keys = list(params.keys()) + + for k in keys: + # Identify all "scan" layers formed as part of the FlaxBertLayerCollection + # These params contain the identifier `FlaxScanLayers` in their key + if "FlaxEncoderScanLayers" in k: + # Remove the scan layer from the PyTree of params + scan_layer = params.pop(k) + + # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number + # layer/FlaxScanLayers -> (layer/0, ..., layer/N) + for i in range(self.config.encoder_layers): + # Unstack the params for the i-th scan layer to unrolled + # and remove corresponding scan params on the fly + # -> no memory overhead for conversion! + unrolled_key = k.replace("FlaxEncoderScanLayers", str(i)) + params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:] + + elif "FlaxDecoderScanLayers" in k: + # Remove the scan layer from the PyTree of params + scan_layer = params.pop(k) + + # Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number + # layer/FlaxScanLayers -> (layer/0, ..., layer/N) + for i in range(self.config.decoder_layers): + # Unstack the params for the i-th scan layer to unrolled + # and remove corresponding scan params on the fly + # -> no memory overhead for conversion! + unrolled_key = k.replace("FlaxDecoderScanLayers", str(i)) + params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:] + + params = unflatten_dict(params, sep="/") + return params + + # Copied from transformers.models.whisper.modeling_flax_whisper.FlaxWhisperPreTrainedModel.init_cache + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), + decoder_input_ids.shape, + ) + + def _decoder_forward( + module, + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig) + def encode( + self, + input_features: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + **kwargs, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration + >>> from datasets import load_dataset + + >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") + >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") + >>> input_features = inputs.input_features + >>> encoder_outputs = model.encode(input_features=input_features) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_features, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_features, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_features=jnp.array(input_features, dtype="f4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, + config_class=WhisperConfig, + ) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration + >>> from datasets import load_dataset + + >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") + >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") + >>> input_features = inputs.input_features + >>> encoder_outputs = model.encode(input_features=input_features) + >>> decoder_start_token_id = model.config.decoder_start_token_id + + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + if decoder_attention_mask is not None: + decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 + else: + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxWhisperAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward( + module, + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ): + decoder_module = module._get_decoder_module() + return decoder_module( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) + def __call__( + self, + input_features: jnp.ndarray, + decoder_input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + freeze_encoder: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare decoder inputs + if decoder_position_ids is None: + if decoder_attention_mask is not None: + decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 + else: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_features=jnp.array(input_features, dtype="f4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + freeze_encoder=freeze_encoder, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings( + ("The bare Whisper Model transformer outputting raw hidden-states without any specific head on top."), + WHISPER_START_DOCSTRING, +) +class FlaxWhisperModel(FlaxWhisperPreTrainedModel): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + params_dtype: jnp.dtype = jnp.float32 + module_class = FlaxWhisperModule + + +append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + + +class FlaxWhisperForConditionalGenerationModule(nn.Module): + config: WhisperConfig + dtype: jnp.dtype = jnp.float32 + params_dtype: jnp.dtype = jnp.float32 + use_scan: bool = False + gradient_checkpointing: bool = False + + def setup(self) -> None: + self.model = FlaxWhisperModule( + config=self.config, + dtype=self.dtype, + params_dtype=self.params_dtype, + use_scan=self.use_scan, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.lm_head = DenseGeneral( + self.config.vocab_size, + use_bias=False, + dtype=self.dtype, + params_dtype=self.params_dtype, + kernel_axes=("embed", "vocab"), + ) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_features, + decoder_input_ids, + decoder_attention_mask: jnp.ndarray = None, + decoder_position_ids: jnp.ndarray = None, + position_ids: jnp.ndarray = None, + attention_mask: jnp.ndarray = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + freeze_encoder: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_features=input_features, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + freeze_encoder=freeze_encoder, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return output + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING) +class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): + module_class = FlaxWhisperForConditionalGenerationModule + + @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration + >>> from datasets import load_dataset + + >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") + >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") + >>> input_features = inputs.input_features + >>> encoder_outputs = model.encode(input_features=input_features) + >>> decoder_start_token_id = model.config.decoder_start_token_id + + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + if decoder_attention_mask is not None: + decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 + else: + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxWhisperAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward( + module, + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ): + decoder_module = module._get_decoder_module() + outputs = decoder_module( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + **kwargs, + ) + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = module.lm_head(hidden_states) + + return lm_logits, outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def generate( + self, + input_features, + generation_config=None, + logits_processor=None, + return_timestamps=None, + task=None, + language=None, + is_multilingual=None, + **kwargs, + ): + if generation_config is None: + generation_config = self.generation_config + + if return_timestamps is not None: + generation_config.return_timestamps = return_timestamps + + if task is not None: + generation_config.task = task + + if is_multilingual is not None: + generation_config.is_multilingual = is_multilingual + + if language is not None: + generation_config.language = language + + if kwargs is not None and "decoder_input_ids" in kwargs: + decoder_input_length = len(kwargs["decoder_input_ids"]) + else: + decoder_input_length = 1 + + forced_decoder_ids = [] + + if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: + if hasattr(generation_config, "language"): + forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) + else: + forced_decoder_ids.append((1, None)) + + if hasattr(generation_config, "task"): + forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) + else: + forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) + + if ( + hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps + ) or return_timestamps: + logits_processor = [ + FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) + ] + else: + if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: + idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 + forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) + + if len(forced_decoder_ids) > 0: + generation_config.forced_decoder_ids = forced_decoder_ids + + return super().generate( + input_features, + generation_config, + logits_processor=logits_processor, + **kwargs, + ) + + def pipeline_generate( + self, + input_features, + forced_decoder_ids, + return_timestamps=False, + generation_config=None, + **kwargs, + ): + if generation_config is None: + generation_config = self.generation_config + + # override the generation config forced decoder ids in preference of the ones we have set + generation_config.forced_decoder_ids = None + + logits_processor = FlaxLogitsProcessorList() + logits_processor.append(FlaxStaticForceTokensLogitsProcessor(forced_decoder_ids)) + + if hasattr(generation_config, "return_timestamps") and return_timestamps: + logits_processor.append(FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, 1)) + + return super().generate( + input_features, + generation_config, + logits_processor=logits_processor, + **kwargs, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + position_ids = decoder_attention_mask.cumsum(-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + +FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" + Returns: + + Transcription example: + + ```python + >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration + >>> from datasets import load_dataset + + >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") + >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") + >>> input_features = inputs.input_features + >>> generated_ids = model.generate(input_ids=input_features) + >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> transcription + ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' + ``` +""" + +overwrite_call_docstring( + FlaxWhisperForConditionalGeneration, + WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING, +) +append_replace_return_docstrings( + FlaxWhisperForConditionalGeneration, + output_type=FlaxSeq2SeqLMOutput, + config_class=_CONFIG_FOR_DOC, +) diff --git a/flax/distil_whisper/partitioner.py b/flax/distil_whisper/partitioner.py new file mode 100644 index 0000000000000000000000000000000000000000..9e02437b59d3b6f36e9df9a1bf37dcb1b4e59ceb --- /dev/null +++ b/flax/distil_whisper/partitioner.py @@ -0,0 +1,965 @@ +# Copyright 2022 The T5X Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Utilities for partitioning.""" + +import abc +import collections +import dataclasses +import typing +from typing import Any, Callable, Optional, Sequence, Tuple, Union + +import cached_property +import jax +import numpy as np +from absl import logging +from flax import traverse_util +from flax.linen import partitioning as flax_partitioning +from jax import numpy as jnp +from jax import random +from jax.experimental import multihost_utils +from jax.experimental.mesh_utils import create_hybrid_device_mesh +from jax.experimental.pjit import pjit as jax_pjit +from jax.sharding import Mesh, PartitionSpec + + +JaxDevice = Any +TpuMesh = Tuple[int, int, int, int] # (x, y, z, num_cores). +OtherMesh = Tuple[int, int] +HardwareMesh = Union[TpuMesh, OtherMesh] +PyTreeDef = type(jax.tree_util.tree_structure(None)) +TrainState = Any +LogicalAxisRules = Sequence[Tuple[str, Optional[str]]] + +if typing.TYPE_CHECKING: # See b/163639353 + cached_property = property # pylint: disable=invalid-name +else: + cached_property = cached_property.cached_property + + +class AxisNames(tuple): + """Tuple of strings specifying name for each axis. + + We create a separate class for this so JAX's pytree utilities can distinguish + it from a tuple that should be treated as a pytree, instead treating it as a + leaf. + """ + + def __new__(cls, *names): + return tuple.__new__(AxisNames, names) + + def __repr__(self): + return "AxisNames%s" % tuple.__repr__(self) + + +# pjit wrappers for cpu fallback. +# ---------------------------------------------------------------------------- +# TODO(levskaya): This function is now no different than jax_pjit, but callers +# currently depend on `backend` argument +def pjit( + fun: Callable, # pylint: disable=g-bare-generic + in_axis_resources, + out_axis_resources, + static_argnums: Union[int, Sequence[int]] = (), + donate_argnums: Union[int, Sequence[int]] = (), + backend: Optional[str] = None, +): + """Wrapper for pjit.""" + del backend + return jax_pjit( + fun, + in_axis_resources, + out_axis_resources, + static_argnums=static_argnums, + donate_argnums=donate_argnums, + ) + + +# pjit wrappers for cpu fallback. +# ----------------------------------------------------------------------------- +# TODO(levskaya): upstream this fallback behavior to jax pjit. +def pjit_with_cpu_fallback( + fun: Callable, # pylint: disable=g-bare-generic + in_axis_resources, + out_axis_resources, + static_argnums: Union[int, Sequence[int]] = (), + donate_argnums: Union[int, Sequence[int]] = (), + backend: Optional[str] = None, +): + """Wrapper for pjit that calls normal jit on cpu.""" + if jax.devices(backend)[0].platform == "cpu": + return jax.jit(fun, static_argnums=static_argnums, donate_argnums=donate_argnums) + else: + return jax_pjit( + fun, + in_axis_resources, + out_axis_resources, + static_argnums=static_argnums, + donate_argnums=donate_argnums, + ) + + +def with_sharding_constraint(x, axis_resources): + """Wrapper for pjit with_sharding_constraint, no-op on cpu or outside pjit.""" + if jax.devices()[0].platform == "cpu" or not global_mesh_defined(): + return x + else: + return jax.experimental.pjit.with_sharding_constraint(x, axis_resources) + + +# pjit Mesh creation functions. +# ----------------------------------------------------------------------------- +def bounds_from_last_device(last_device: JaxDevice) -> HardwareMesh: + """Get the bound from the given last device.""" + # Must be passed the device at the highest-coordinate corner of the + # relevant mesh, which is a requirement we know is satisfied by the last + # device in jax.devices(). + if hasattr(last_device, "coords"): + x, y, z = last_device.coords + return x + 1, y + 1, z + 1, last_device.core_on_chip + 1 + else: + # On non-TPU platforms, the "mesh" is hosts x devices per host in order + # to take advantage of faster within-host interconnect. + return jax.host_count(), jax.local_device_count() + + +def get_coords(device: JaxDevice) -> HardwareMesh: + """Returns the coordinates of the given device.""" + if hasattr(device, "coords"): + return (*device.coords, device.core_on_chip) + return (device.process_index, device.id % jax.local_device_count()) + + +def global_mesh_defined(): + """Checks if global xmap/pjit mesh resource environment is defined.""" + maps_env = jax.experimental.maps.thread_resources.env + return maps_env.physical_mesh.devices.shape != () # pylint: disable=g-explicit-bool-comparison + + +def get_mesh( + model_parallel_submesh: HardwareMesh, + input_devices: Sequence[JaxDevice] = (), + input_local_devices: Sequence[JaxDevice] = (), + tile_by_host_if_needed: bool = True, + backend: Optional[str] = None, +) -> Mesh: + """Construct an xmap/pjit Mesh for the given model-parallel submesh. + + The resulting mesh has two resource axes: 'model', with the provided submesh + shape, and 'data', which covers the rest of the mesh. + + Args: + model_parallel_submesh: a HardwareMesh spec, namely (x,y,z,core) on TPU for + a single model-parallel replica's "tile" in the physical device mesh. The + first three elements (`x`, `y`, and `z`) should be factors of the pod + slice; e.g., if you are using df_4x8, then `x` should be a factor of 4 + (one of 1, 2, 4), `y` should be a factor of 8 (one of 1, 2, 4, 8), and `z` + must be 1, because TPU v3 slices are only 2D. `z` can be >1 for TPU v4 + (and maybe later TPUs) that allow 3D slices. `core` is the number of cores + to use from each TPU node. As communication is usually fastest inside the + same node, if you need a tile of more than 1 core, then + you should first increase `core`: e.g., for TPU v3, (1,1,1,2) is better + than (2,1,1,1). To pick a good spec, try a few possible values until you + get high TPU utilization. + input_devices: the devices to use, will use jax.devices() if this is not + set. + input_local_devices: the local devices to use, will use jax.local_devices() + if this is not set. + tile_by_host_if_needed: JAX currently requires that the parts of any sharded + array that are located on one host's local devices form a single + contiguous slice. A best effort will be made to achieve this without + "tiling" the device assignment over hosts (which can reduce XLA collective + performance). If this flag is True, then the device assignment will be + tiled over hosts if necessary to satisfy this constraint and create a + buildable mesh; if false, mesh construction will fail instead. + backend: get devices from the pinned backend, if specified. This is + useful for explicitly specifying the devices other than relying on + jax_platform_name. + + Returns: + A xmap / pjit Mesh containing the virtual device mesh with data, model axes. + """ + input_devices = input_devices or jax.devices(backend) + input_local_devices = input_local_devices or jax.local_devices(0, backend) + # Sort input_devices based on coords, as backends might not return devices + # in order. + last_device = sorted(input_devices, key=get_coords)[-1] + last_input_local_devices = sorted(input_local_devices, key=get_coords)[-1] + logging.info( + "last device coords : %r\nlast local device coords: %r", + get_coords(last_device), + get_coords(last_input_local_devices), + ) + global_hardware_mesh = bounds_from_last_device(last_device) + mesh_ndim = len(global_hardware_mesh) + local_hardware_mesh = bounds_from_last_device(last_input_local_devices) + mesh_err = ( + f"each dimension of the model parallel submesh {model_parallel_submesh} " + "must be a factor of the corresponding dimension of the global device " + f"mesh {global_hardware_mesh}" + ) + assert not any(g % m for g, m in zip(global_hardware_mesh, model_parallel_submesh)), mesh_err + assert not any(g % l for g, l in zip(global_hardware_mesh, local_hardware_mesh)) + devices = np.empty(global_hardware_mesh, dtype=object) + for device in input_devices: + device_coords = get_coords(device) + devices[device_coords] = device + tile_by_host = tile_by_host_if_needed + if len(global_hardware_mesh) == 4: + # enable contiguous local chunks without host tiling by making Z major + global_hardware_mesh = typing.cast(Tuple[int, int, int, int], global_hardware_mesh) + model_parallel_submesh = typing.cast(Tuple[int, int, int, int], model_parallel_submesh) + gx, gy, gz, gc = global_hardware_mesh + mx, my, mz, mc = model_parallel_submesh + if (mx == gx > 1 and my == mz == 1) or (mx == 1 and my == gy > 1 and mz == gz > 1): + logging.info("ensuring YZ plane has a Z-major device order") + # YZ should be ZY + assert mc == gc, (mc, gc) + global_hardware_mesh = gx, gz, gy, gc + model_parallel_submesh = mx, mz, my, mc + devices = devices.swapaxes(1, 2) + tile_by_host = False + if (my == gy > 1 and mx == mz == 1) or (my == 1 and mx == gx > 1 and mz == gz > 1): + logging.info("ensuring XZ plane has a Z-major device order") + # XZ should be ZX + assert mc == gc, (mc, gc) + global_hardware_mesh = gz, gy, gx, gc + model_parallel_submesh = mz, my, mx, mc + devices = devices.swapaxes(0, 2) + tile_by_host = False + if tile_by_host: + logging.warning( + "Tiling device assignment mesh by hosts, which may lead to " + "reduced XLA collective performance. To avoid this, modify " + "the model parallel submesh or run with more tasks per host." + ) + tile_err = ( + "to tile the mesh by hosts, each dimension of the model parallel " + "submesh must be either a factor or a multiple of the corresponding " + "dimension of the per-host submesh" + ) + + def dh_dd_mh_md(g: int, m: int, l: int) -> Tuple[int, int, int, int]: + """Split a global mesh dimension into four tiling components. + + Args: + g: global mesh bounds dimension size + m: model-parallel submesh bounds dimension size + l: local submesh bounds dimension size + + Returns: + The resulting tuple divides the dimension into the hosts component of + the data-parallel submesh, the devices component of the data-parallel + submesh, the hosts component of the model-parallel submesh, and the + devices component of the model-parallel submesh. + """ + d = g // m + if m >= l: + assert not m % l, tile_err + return (d, 1, m // l, l) + else: + assert not l % m, tile_err + return (d // (l // m), l // m, 1, m) + + # e.g. [(x_data_hosts, x_data_devs, x_model_hosts, x_model_devs), ...] + dh_dd_mh_md_tups = map( + dh_dd_mh_md, + global_hardware_mesh, + model_parallel_submesh, + local_hardware_mesh, + ) + # reshape to e.g. (x_dh, x_dd, x_mh, x_md, y_dh, ...) + devices = devices.reshape(*(s for t in dh_dd_mh_md_tups for s in t)) # pylint: disable=g-complex-comprehension + # TODO(jekbradbury): reorder local subgroups for ring locality + # Transpose to [data_host], [data_device], [model_host], [model_device] + # block ordering e.g. (x_dh, y_dh, ..., x_dd, y_dd, ...) + devices = devices.transpose( + *(4 * i for i in range(mesh_ndim)), + *(4 * i + 1 for i in range(mesh_ndim)), + *(4 * i + 2 for i in range(mesh_ndim)), + *(4 * i + 3 for i in range(mesh_ndim)), + ) + else: + # e.g. [(x_data, x_model), (y_data, y_model), ...] + model_data_tups = [(g // m, m) for g, m in zip(global_hardware_mesh, model_parallel_submesh)] + # reshape to e.g. (x_data, x_model, y_data, y_model...) + devices = devices.reshape(*(s for t in model_data_tups for s in t)) # pylint: disable=g-complex-comprehension + # TODO(jekbradbury): reorder small subgroups for ring locality + # transpose to e.g. (x_data, y_data, ..., x_model, ...) + devices = devices.transpose(*(2 * i for i in range(mesh_ndim)), *(2 * i + 1 for i in range(mesh_ndim))) + # reshape to (data, model) + devices = devices.reshape(-1, np.prod(model_parallel_submesh)) + global_mesh = Mesh(devices, ["data", "model"]) + logging.info("global_mesh axis_names: %s", global_mesh.axis_names) + logging.info("global_mesh devices: %s", global_mesh.devices) + logging.info("global_mesh devices shape: %s", global_mesh.devices.shape) + return global_mesh + + +def get_cpu_mesh() -> Mesh: + """Trivial mesh for CPU Testing.""" + devices = np.empty((jax.host_count(), jax.local_device_count()), dtype=object) + for device in jax.devices(): + devices[device.process_index, device.id % jax.local_device_count()] = device + return Mesh(devices, ["data", "model"]) + + +def get_gpu_mesh(num_partitions: int) -> Mesh: + """Mesh for GPUs that preferentially places 'model' on NVLink.""" + nvlink_size = jax.local_device_count() + dcn_size = jax.process_count() + nvlink_mp = min(num_partitions, nvlink_size) + nvlink_dp, extra1 = divmod(nvlink_size, nvlink_mp) + dcn_mp, extra2 = divmod(num_partitions, nvlink_mp) + assert not ( + extra1 or extra2 + ), "number of partitions on GPU must be a factor or multiple of the number of local devices" + dcn_dp = dcn_size // dcn_mp + + devices = create_hybrid_device_mesh( + mesh_shape=[nvlink_dp, nvlink_mp], + dcn_mesh_shape=[dcn_dp, dcn_mp], + process_is_granule=True, + ) + + global_mesh = Mesh(devices, ["data", "model"]) + logging.info("global_mesh axis_names: %s", global_mesh.axis_names) + logging.info("global_mesh devices: %s", global_mesh.devices) + return global_mesh + + +def default_mesh( + num_partitions: int, + model_parallel_submesh: Optional[HardwareMesh] = None, + backend: Optional[str] = None, +) -> Mesh: + """Attempt to return a default mesh for simple cases. + + Args: + num_partitions: number of partitions to use, will be ignored if + model_parallel_submesh is provided. + model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use as + the model-parallel device tile. + backend: get devices from the pinned backend, if specified. This is useful + for explicitly specifying the devices other than relying on + jax_platform_name. + + Returns: + xmap/pjit 2D Mesh with 'data', 'model' mesh axes. + """ + last_device = jax.devices(backend)[-1] + platform = last_device.platform + device_kind = last_device.device_kind + bounds = bounds_from_last_device(last_device) + + if model_parallel_submesh: + return get_mesh(model_parallel_submesh, backend=backend) + + if platform == "cpu": + return get_cpu_mesh() + elif platform == "gpu": + return get_gpu_mesh(num_partitions) + + mps = None + if device_kind in ("TPU v2", "TPU v3"): + if num_partitions == 1: + mps = (1, 1, 1, 1) + elif num_partitions == 2: + mps = (1, 1, 1, 2) + elif num_partitions == 4: + mps = (2, 1, 1, 2) + elif num_partitions == 8: + mps = (2, 2, 1, 2) + elif num_partitions == 16: + mps = (4, 2, 1, 2) + # assume the use of megacore on TPU v4 + elif (device_kind == "TPU v4" or device_kind == "TPU v4 lite") and bounds[3] == 1: + if num_partitions == 1: + mps = (1, 1, 1, 1) + elif num_partitions == 2: + mps = (1, 2, 1, 1) + elif num_partitions == 4: + if bounds[0] >= 4: + mps = (4, 1, 1, 1) + else: + mps = (2, 2, 1, 1) + elif num_partitions == 8: + if bounds[2] >= 8: + mps = (1, 1, 8, 1) + else: + mps = (4, 2, 1, 1) + elif num_partitions == 16: + if bounds[2] >= 16: + mps = (1, 1, 16, 1) + elif bounds[0] >= 8: + mps = (8, 2, 1, 1) + elif bounds[0] >= 4: + mps = (4, 4, 1, 1) + else: + mps = (2, 2, 4, 1) + + if mps is None: + raise ValueError( + "No default mesh for this configuration: specify " "config.model_parallel_submesh explicitly." + ) + return get_mesh(mps, backend=backend) + + +# Data chunking helper. +# ----------------------------------------------------------------------------- +@dataclasses.dataclass +class LocalChunkInfo: + # The logical slice of an array located on this host's local devices. + slice: Tuple[slice, ...] + # A unique index for this host/local chunk among chunks with the same slice. + replica_id: int + + +class LocalChunker: + """Utility class to aid chunking of sharded arrays in multihost settings.""" + + def __init__(self, global_mesh: Mesh): + self.global_mesh = global_mesh + local_mesh = global_mesh.local_mesh + first_local_device = local_mesh.devices.reshape(-1)[0] + host_location = collections.OrderedDict( + zip( + global_mesh.shape.keys(), + list(zip(*np.nonzero(global_mesh.devices == first_local_device)))[0], + ) + ) + self.num_chunks = collections.OrderedDict() + self.chunk_ids = collections.OrderedDict() + self.mesh_axes = list(global_mesh.shape.keys()) + for mesh_axis in self.mesh_axes: + num_devices_per_chunk = local_mesh.shape[mesh_axis] + self.num_chunks[mesh_axis] = global_mesh.shape[mesh_axis] // num_devices_per_chunk + self.chunk_ids[mesh_axis] = host_location[mesh_axis] // num_devices_per_chunk + + def get_local_chunk_info( + self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]] + ) -> LocalChunkInfo: + """Get the local chunk info for a given array shape and sharded axes. + + Args: + global_shape: the global, unsharded shape of the array to chunk. + mesh_axes: a sequence of names (or None) of equal rank to `global_shape` + that specifies which mesh dimensions the array is sharded along. + + Returns: + LocalChunkInfo containing the logical slices of the array found on this + host's local devices, as well as the replica index for this chunk among + chunks with the same slice. The latter is used to determine which + host should write this chunk during checkpointing. + """ + local_slice = [slice(None) for dim in global_shape] + sharded_mesh_axes = set() + for i, (mesh_axis, size) in enumerate(zip(mesh_axes, global_shape)): + if not mesh_axis: + continue + sharded_mesh_axes.add(mesh_axis) + if not isinstance(mesh_axis, str): + raise NotImplementedError("TODO(jekbradbury)") + chunk_id = self.chunk_ids[mesh_axis] + chunk_size = size // self.num_chunks[mesh_axis] + local_slice[i] = slice(chunk_id * chunk_size, (chunk_id + 1) * chunk_size) + + replicated_mesh_axes = [mesh_axis for mesh_axis in self.mesh_axes if mesh_axis not in sharded_mesh_axes] + replica_id = 0 + for mesh_axis in replicated_mesh_axes: + chunk_id = self.chunk_ids[mesh_axis] + replica_id = replica_id * self.num_chunks[mesh_axis] + chunk_id + + return LocalChunkInfo(tuple(local_slice), replica_id) + + +def standard_logical_axis_rules( + activation_partitioning_dims: int = 1, + parameter_partitioning_dims: int = 1, + additional_rules: Optional[LogicalAxisRules] = None, +) -> LogicalAxisRules: + """Default sharding rules for T5X model in terms of logical axis names. + + Args: + activation_partitioning_dims: enables 2-D activation sharding when set to 2. + parameter_partitioning_dims: enables 2-D parameter sharding when set to 2. + additional_rules: additional rules (a sequence of tuples) that will be + appended to the standard rules. + + Returns: + Sequence of logical axis rules + """ + logging.info( + "`activation_partitioning_dims` = %d, `parameter_partitioning_dims` = %d", + activation_partitioning_dims, + parameter_partitioning_dims, + ) + + if activation_partitioning_dims == 1 and parameter_partitioning_dims == 1: + rules = [ + ("batch", "data"), + ("vocab", "model"), + ("embed", None), + ("mlp", "model"), + ("heads", "model"), + ("kv", None), + ("joined_kv", "model"), # joined heads+kv dim in 2D attn param layouts + ] + elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 1: + rules = [ + ("batch", "data"), + ("vocab", "model"), + ("mlp", "model"), + ("heads", "model"), + ("kv", None), + ("joined_kv", "model"), + ("embed", "model"), + ] + elif activation_partitioning_dims == 1 and parameter_partitioning_dims == 2: + rules = [ + ("batch", "data"), + ("vocab", "model"), + ("mlp", "model"), + ("heads", "model"), + ("kv", None), + ("joined_kv", "model"), + ("embed", "data"), + ] + elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 2: + rules = [ + ("batch", "data"), + ("vocab", "model"), + ("mlp", "model"), + ("heads", "model"), + ("kv", None), + ("joined_kv", "model"), + ("embed", "model"), + ("embed", "data"), + ] + else: + raise ValueError( + f"`activation_partitioning_dims` = {activation_partitioning_dims} " + f"`parameter_partitioning_dims` = {parameter_partitioning_dims} " + "is not supported." + ) + + # Add the common rules for the replicated logical axes names. + replicated_rules = [ + ("relpos_buckets", None), + ("abspos_buckets", None), + ("length", None), + ("layers", None), + ("stack", None), + ("mlp_activations", None), + ] + rules.extend(replicated_rules) + + if additional_rules: + rules.extend(additional_rules) + + return rules + + +# NB: This needs to be top-level for the jax compilation cache. +def _id_fn(x, ix): + """Identity function for copying parameters to the devices, sharded.""" + # A pure identity such as `lambda x, *: x` can get optimized away, so we + # include a random.split as a cheap function that cannot be optimized away. + y = random.split(random.PRNGKey(jnp.array(ix, dtype=jnp.uint32))) + return x, y + + +@dataclasses.dataclass +class DataLayout: + """Represents data layout for the partitioned model.""" + + batch_size: int + shard_id: int + num_shards: int + is_first_host_in_replica_set: bool + + +PartitionedCallable = Callable[..., Any] +CompiledPartitionedCallable = Callable[..., Any] + + +class BasePartitioner(metaclass=abc.ABCMeta): + """Interface for partitioning computations across hardware devices.""" + + def __init__( + self, + num_partitions: Optional[int] = None, + model_parallel_submesh: Optional[HardwareMesh] = None, + params_on_devices: bool = True, + backend: Optional[str] = None, + ): + """Configures the partitioner. + + Args: + num_partitions: the number of partitions to use. Ignored if + `model_parallel_submesh` is provided. + model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use + as the model-parallel device tile. This submesh is used for the larger + of the two parameter dimensions, and, if 2-D activation sharding is + enabled, for the model dimension of activations. The rest of the mesh is + used for data parallelism and, if 2-D parameter sharding is enabled, the + other parameter dimension. + params_on_devices: whether to keep the params on devices, if False - + params stay in the host memory. Note that some partitioners might ignore + this setting, for example if they don't support storing all params on + device memory. + backend: get devices from the pinned backend, if specified. This is useful + for explicitly specifying the devices other than relying on + jax_platform_name. + """ + + if not num_partitions and not model_parallel_submesh: + raise ValueError("At least one of `num_partitions` or " "`model_parallel_submesh` must be set.") + + if model_parallel_submesh is not None and len(model_parallel_submesh) != 4: + logging.error( + ( + "`model_parallel_submesh` must be either None or a 4-tuple. Got" + " `model_parallel_submesh`=%s. A ValueError will be raised" + " beginning March 1, 2022." + ), + model_parallel_submesh, + ) + + if bool(num_partitions) and bool(model_parallel_submesh): + logging.error( + ( + "At most one of `num_partitions` or `model_parallel_submesh` can be" + " set. Got `num_partitions=%s` and `model_parallel_submesh`=%s. A" + " ValueError will be raised beginning March 21, 2022." + ), + num_partitions, + model_parallel_submesh, + ) + + self._num_partitions = num_partitions + self._model_parallel_submesh = model_parallel_submesh + self._params_on_devices = params_on_devices + self._data_axis = "data" + self._backend = backend + + @property + def mesh(self) -> Mesh: + raise NotImplementedError + + @property + def data_partition_spec(self) -> PartitionSpec: + return PartitionSpec(self._data_axis) + + def get_data_layout(self, batch_size: Optional[int] = None, host_index: Optional[int] = None) -> DataLayout: + """Returns filled `DataLayout` based on the partitioned model layout. + + Args: + batch_size: if set, indicates the requested batch size. The exception will + be raised if this batch size is not compatible with the layout. If not + set, the batch size is inferred from the layout. + host_index: indicates the host index to use for the calculations, if not + set - use JAX-provided one. Should be in [0, num_hosts) interval and the + order should match the order of corresponding CPU devices in + `jax.devices()`. + + Returns: + Filled `DataLayout` structure. + """ + if host_index is not None: + raise NotImplementedError("Explicit host_index is not yet implemented.") + if self._data_axis is None: + return DataLayout( + batch_size=batch_size, + shard_id=0, + num_shards=1, + is_first_host_in_replica_set=(jax.process_index() == 0), + ) + mesh_size = self._local_chunker.global_mesh.shape[self._data_axis] + batch_size = batch_size or mesh_size + if batch_size % mesh_size: + raise ValueError( + f"Batch size ({batch_size}) must be divisible by corresponding " f"mesh size ({mesh_size})." + ) + num_shards = self._local_chunker.num_chunks[self._data_axis] + if batch_size % num_shards: + raise ValueError(f"Batch size ({batch_size}) must be divisible by number of " f"replicas ({num_shards}).") + replica_id = self._local_chunker.get_local_chunk_info((batch_size,), [self._data_axis]).replica_id + return DataLayout( + batch_size=int(batch_size), + shard_id=int(self._local_chunker.chunk_ids[self._data_axis]), + num_shards=int(num_shards), + is_first_host_in_replica_set=(replica_id == 0), + ) + + def get_local_chunk_info( + self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]] + ) -> LocalChunkInfo: + """Returns the local chunk info for a given array shape and sharded axes.""" + return self._local_chunker.get_local_chunk_info(global_shape, mesh_axes) + + @property + def params_on_devices(self): + return self._params_on_devices + + def move_params_to_devices(self, train_state: TrainState, train_state_axes: TrainState) -> TrainState: + """Moves the optimizer parameters to devices.""" + p_id_fn = self.partition( + _id_fn, + in_axis_resources=(train_state_axes, None), + out_axis_resources=(train_state_axes, None), + donate_argnums=(0,), + ) + if jax.config.jax_array and jax.process_count() > 1: + train_state = multihost_utils.host_local_array_to_global_array(train_state, self.mesh, train_state_axes) + train_state, _ = p_id_fn(train_state, jnp.ones((), dtype=jnp.uint32)) + return train_state + + @property + @abc.abstractmethod + def _local_chunker(self): + """Returns the chunker that matches the parameters of this partitioner.""" + raise NotImplementedError + + def get_logical_axes(self, train_state: TrainState) -> TrainState: + """Returns a copy of TrainState with Optional[AxisNames] as leaves.""" + # By default, return None for the logical axes. + return train_state.restore_state(jax.tree_map(lambda x: None, train_state.state_dict())) + + def get_mesh_axes(self, train_state: TrainState) -> TrainState: + """Returns a copy of TrainState with Optional[PartitionSpecs] as leaves.""" + raise NotImplementedError + + @abc.abstractmethod + def partition( + self, + fn: Callable, # pylint: disable=g-bare-generic + in_axis_resources, + out_axis_resources, + static_argnums: Union[int, Sequence[int]] = (), + donate_argnums: Union[int, Sequence[int]] = (), + ) -> PartitionedCallable: + """Partitions the computation using partitioner-specific implementation. + + Args: + fn: the function to partition. + in_axis_resources: Pytree of structure matching that of arguments to `fn`, + with all actual arguments replaced by resource assignment + specifications. It is also valid to specify a pytree prefix (e.g. one + value in place of a whole subtree), in which case the leaves get + broadcast to all values in that subtree. + The valid resource assignment specifications are: + `None`: in which case the value will be replicated on all devices + `PartitionSpec`: a tuple of length at most equal to the rank of the + partitioned value. Each element can be a `None`, a mesh axis or a + tuple of mesh axes, and specifies the set of resources assigned to + partition the value's dimension matching its position in the spec. + out_axis_resources: Like `in_axis_resources`, but specifies resource + assignment for function outputs. + static_argnums: an optional int or collection of ints that specify which + positional arguments to treat as static (compile-time constant) in the + partitioned function. + donate_argnums: an optional int or collection of ints that specify which + argument buffers are "donated" to the computation. It is safe to donate + argument buffers if you no longer need them once the computation has + finished. + + Returns: + A partitioned version of the input function. + """ + raise NotImplementedError + + @abc.abstractmethod + def compile(self, partitioned_fn: PartitionedCallable, *args) -> CompiledPartitionedCallable: + """Compiles and returns the partitioned function, or the original. + + Args: + partitioned_fn: The partitioned function. + *args: Sample arguments to the partitioned function matching the input + shapes that will be passed to the compiled function. + + Returns: + The compiled function, or the original if this partitioner does not + support compilation. + """ + raise NotImplementedError + + +class PjittedFnWithContext(PartitionedCallable): + """Wraps pjitted function to apply the appropriate contexts.""" + + def __init__( + self, + pjitted_fn, + partition_mesh: Mesh, + logical_axis_rules: flax_partitioning.LogicalRules = (), + ): + self._pjitted_fn = pjitted_fn + self._mesh = partition_mesh + self._logical_axis_rules = logical_axis_rules + + def __call__(self, *args): + with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules): + return self._pjitted_fn(*args) + + def lower(self, *args): + with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules): + return self._pjitted_fn.lower(*args) + + +class BasePjitPartitioner(BasePartitioner): + """Partitioner that uses T5X version of jax.pjit.""" + + @cached_property + def _local_chunker(self) -> LocalChunker: + return LocalChunker(self.mesh) + + @cached_property + def mesh(self) -> Mesh: + return default_mesh(self._num_partitions, self._model_parallel_submesh, self._backend) + + def partition( + self, + fn: Callable, # pylint: disable=g-bare-generic + in_axis_resources, + out_axis_resources, + static_argnums: Union[int, Sequence[int]] = (), + donate_argnums: Union[int, Sequence[int]] = (), + ) -> PjittedFnWithContext: + pjitted = pjit( + fn, + in_axis_resources=in_axis_resources, + out_axis_resources=out_axis_resources, + static_argnums=static_argnums, + donate_argnums=donate_argnums, + backend=self._backend, + ) + + return PjittedFnWithContext(pjitted, self.mesh) + + def compile(self, partitioned_fn: PjittedFnWithContext, *args) -> CompiledPartitionedCallable: + return partitioned_fn.lower(*args).compile() + + +class PjitPartitioner(BasePjitPartitioner): + """Partitioner that uses named axes and jax.pjit.""" + + def __init__( + self, + num_partitions: Optional[int] = None, + model_parallel_submesh: Optional[HardwareMesh] = None, + params_on_devices: bool = True, + backend: Optional[str] = None, + logical_axis_rules: Optional[LogicalAxisRules] = None, + use_cpu_pjit: Optional[bool] = False, + ): + """PjitPartitioner constructor. + + See https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.mdx/usage/partitioning for details. + + Args: + num_partitions: an integer that specifies the size of the model parallel + submesh to be automatically selected for the current topology. See + `model_parallel_submesh` for details on how this submesh is used. + Mutually exlusive with `model_parallel_submesh`. + model_parallel_submesh: is a 4-tuple that specifies the `(x, y, z, c)` + submesh model-parallel device tile, an axis of accelerator parallelism + orthogonal to data parallelism. Array axes in a model's parameters or + activations can be sharded over this submesh using axis rules (see + `logical_axis_rules`) that map them to 'model'. The effective number of + model sub-partitions is equal to `np.prod(model_parallel_submesh)` and + must evenly divide the total number of devices (i.e., + `jax.device_count() % np.prod(model_parallel_submesh) == 0`). The rest + of the TPU mesh is the data parallel submesh, providing + `jax.device_count() // np.prod(model_parallel_submesh)` partitions. It + is used for data (batch) parallelism and to shard other array axes that + are mapped to 'data'. This argument is mutually exclusive with + `num_partitions`. + params_on_devices: whether to keep the params on devices, if False - + params stay in the host memory. Note that some partitioners might ignore + this setting, for example if they don't support storing all params on + device memory. + backend: get devices from the pinned backend, if specified. This is + useful for explicitly specifying the devices other than relying on + jax_platform_name. + logical_axis_rules: a priority-ordered sequence of KV tuples that maps + logical axis names to either `None` (not sharded), 'model' (to shard + across the model-parallel submesh), or 'data' (to shard across the + data-parallel submesh). + use_cpu_pjit: enables wrapper function for pjit which just jits the + function if using CPU backend. + """ + super().__init__( + num_partitions=num_partitions, + model_parallel_submesh=model_parallel_submesh, + params_on_devices=params_on_devices, + backend=backend, + ) + if logical_axis_rules is None: + logical_axis_rules = standard_logical_axis_rules() + self._logical_axis_rules = tuple(logical_axis_rules) + (self._data_axis,) = flax_partitioning.logical_to_mesh_axes(["batch"], logical_axis_rules) + self._use_cpu_pjit = use_cpu_pjit + + def partition( + self, + fn: Callable, # pylint: disable=g-bare-generic + in_axis_resources, + out_axis_resources, + static_argnums: Union[int, Sequence[int]] = (), + donate_argnums: Union[int, Sequence[int]] = (), + ) -> PjittedFnWithContext: + """Partitions the function using jax.pjit.""" + if self._use_cpu_pjit: + pjit_fn = pjit_with_cpu_fallback + else: + pjit_fn = pjit + pjitted = pjit_fn( + fn, + in_axis_resources=in_axis_resources, + out_axis_resources=out_axis_resources, + static_argnums=static_argnums, + donate_argnums=donate_argnums, + backend=self._backend, + ) + + return PjittedFnWithContext(pjitted, self.mesh, self._logical_axis_rules) + + @property + def logical_axis_rules(self): + """Returns the logical axis rules.""" + return self._logical_axis_rules + + def get_logical_axes(self, train_state: TrainState) -> TrainState: + """Returns a copy of TrainState with Optional[AxisNames] as leaves.""" + return train_state.as_logical_axes() + + def get_mesh_axes(self, train_state: TrainState) -> TrainState: + """Returns a copy of TrainState with Optional[PartitionSpecs] as leaves.""" + logical_axes = self.get_logical_axes(train_state) + + def _logical_to_mesh_axes(param_name, logical_axes): + if logical_axes is None: + return None + elif logical_axes is traverse_util.empty_node: + return traverse_util.empty_node + try: + return flax_partitioning.logical_to_mesh_axes(logical_axes, self._logical_axis_rules) + except ValueError as e: + raise ValueError(f"Failed to map logical axes for {param_name}") from e + + flat_logical_axes = traverse_util.flatten_dict(logical_axes.state_dict(), keep_empty_nodes=True, sep="/") + flat_mesh_axes = {k: _logical_to_mesh_axes(k, v) for k, v in flat_logical_axes.items()} + + return logical_axes.restore_state(traverse_util.unflatten_dict(flat_mesh_axes, sep="/")) diff --git a/flax/distil_whisper/pipeline.py b/flax/distil_whisper/pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..f00d0504ef119a19bb128d3b7216d1f39a1b6773 --- /dev/null +++ b/flax/distil_whisper/pipeline.py @@ -0,0 +1,527 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Whisper JAX pipeline compatible with Distil Whisper checkpoints. Copied from https://github.com/sanchit-gandhi/whisper-jax/blob/main/whisper_jax/pipeline.py""" + +import math + +import jax +import jax.numpy as jnp +import numpy as np +import requests +import torch +from flax import jax_utils +from flax.core.frozen_dict import freeze +from flax.training.common_utils import shard +from transformers import WhisperFeatureExtractor, WhisperTokenizerFast +from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE +from transformers.pipelines.audio_utils import ffmpeg_read +from transformers.utils import logging + +from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration + + +logger = logging.get_logger(__name__) + + +class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): + def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation + computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation + in transformers, and matches to within 1e-5 abs tolerance. + """ + waveform = torch.from_numpy(waveform).type(torch.float32) + + window = torch.hann_window(self.n_fft) + stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) + magnitudes = stft[..., :-1].abs() ** 2 + + mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) + mel_spec = mel_filters.T @ magnitudes + + log_spec = torch.clamp(mel_spec, min=1e-10).log10() + log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) + log_spec = (log_spec + 4.0) / 4.0 + return log_spec.numpy() + + +class FlaxWhisperPipeline: + def __init__( + self, + checkpoint="openai/whisper-large-v2", + dtype=jnp.float32, + batch_size=None, + max_length=None, + **kwargs, + ): + """ + Args + checkpoint (`str`, *optional*, defaults to `"openai/whisper-large-v2"): + The Whisper checkpoint to use with the pipeline. Must be an available checkpoint on the Hugging Face Hub + with Flax weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). This can be used to enable half-precision inference on GPUs or TPUs. + If specified all the computation will be performed with the given `dtype`. **Note that this only + specifies the dtype of the computation and does not influence the dtype of model parameters.** + batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): + The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing + a batch size in the `__init__` method will be superseded by any batch size passed to the `__call__` method. + max_length (`int`, *optional*): + The maximum numbers of tokens to generate. Defaults to `model.config.max_length`. + """ + self.checkpoint = checkpoint + self.dtype = dtype + + self.feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(self.checkpoint) + self.tokenizer = WhisperTokenizerFast.from_pretrained(self.checkpoint) + + self.model, self.params = FlaxWhisperForConditionalGeneration.from_pretrained( + self.checkpoint, + _do_init=False, + dtype=self.dtype, + **kwargs, + ) + + self.max_length = max_length if max_length is not None else self.model.generation_config.max_length + self.min_batch_size = jax.local_device_count() + self.batch_size = ( + batch_size if batch_size is not None else self.min_batch_size + ) # we need a minimum of 1 batch per-device + + def generate( + params, + input_features, + forced_decoder_ids, + return_timestamps, + num_beams, + length_penalty, + do_sample, + top_k, + temperature, + ): + output_ids = self.model.pipeline_generate( + input_features, + params=params, + forced_decoder_ids=forced_decoder_ids, + return_timestamps=return_timestamps, + max_length=self.max_length, + num_beams=num_beams, + length_penalty=length_penalty, + do_sample=do_sample, + top_k=top_k, + temperature=temperature, + ) + return output_ids + + self.params = jax_utils.replicate(self.params) + self.p_generate = jax.pmap( + generate, + "input_features", + in_axes=(0, 0, None, None, None, None, None, None, None), + static_broadcasted_argnums=( + 3, + 4, + 5, + 6, + 7, + 8, + ), + ) + + def generate( + self, + input_features, + language=None, + task=None, + return_timestamps=False, + num_beams=1, + length_penalty=1.0, + do_sample=False, + top_k=50, + temperature=1.0, + ): + forced_decoder_ids = self.get_forced_decoder_ids( + language=language, task=task, return_timestamps=return_timestamps + ) + # if we're using pmap we need to manually replicate the input data across devices and gather the output tokens + output_ids = self.p_generate( + freeze(self.params), + shard(input_features), + forced_decoder_ids, + return_timestamps, + num_beams, + length_penalty, + do_sample, + top_k, + temperature, + ).sequences + output_ids = jax.device_get(output_ids.reshape(-1, self.max_length)) + return output_ids + + def get_forced_decoder_ids(self, generation_config=None, task=None, language=None, return_timestamps=False): + if generation_config is None: + generation_config = self.model.generation_config + + if hasattr(generation_config, "is_multilingual"): + is_multilingual = generation_config.is_multilingual + else: + is_multilingual = None + + forced_decoder_ids = [] + + if is_multilingual: + if language is not None: + language = language.lower() + if language in generation_config.lang_to_id.keys(): + language_token = language + elif language in TO_LANGUAGE_CODE.values(): + language_token = f"<|{language}|>" + elif language in TO_LANGUAGE_CODE.keys(): + language_token = f"<|{TO_LANGUAGE_CODE[language]}|>" + else: + if len(language) == 2: + # ISO 639-1 language code + acceptable_languages = list(TO_LANGUAGE_CODE.values()) + elif "<" in language or "|" in language or ">" in language: + # generation config language code + acceptable_languages = list(generation_config.lang_to_id.keys()) + else: + # language passed as a string + acceptable_languages = list(TO_LANGUAGE_CODE.keys()) + raise ValueError( + f"Unsupported language: {language}. Language should be one of:" f" {acceptable_languages}." + ) + forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) + + if task is not None: + forced_decoder_ids.append((2, generation_config.task_to_id[task])) + else: + forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) + + if not return_timestamps: + if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: + idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 + forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) + else: + forced_decoder_ids.append((1, generation_config.no_timestamps_token_id)) + + return forced_decoder_ids + + def chunk_iter_with_batch(self, inputs, chunk_len, stride_left, stride_right, batch_size): + inputs_len = inputs.shape[0] + step = chunk_len - stride_left - stride_right + + all_chunk_start_idx = np.arange(0, inputs_len, step) + num_samples = len(all_chunk_start_idx) + + num_batches = math.ceil(num_samples / batch_size) + batch_idx = np.array_split(np.arange(num_samples), num_batches) + + for idx in batch_idx: + chunk_start_idx = all_chunk_start_idx[idx] + + chunk_end_idx = chunk_start_idx + chunk_len + + chunks = [inputs[chunk_start:chunk_end] for chunk_start, chunk_end in zip(chunk_start_idx, chunk_end_idx)] + processed = self.feature_extractor( + chunks, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" + ) + + _stride_left = np.where(chunk_start_idx == 0, 0, stride_left) + is_last = np.where(stride_right > 0, chunk_end_idx > inputs_len, chunk_end_idx >= inputs_len) + _stride_right = np.where(is_last, 0, stride_right) + + chunk_lens = [chunk.shape[0] for chunk in chunks] + strides = [ + (chunk_l, _stride_l, _stride_r) + for chunk_l, _stride_l, _stride_r in zip(chunk_lens, _stride_left, _stride_right) + ] + + yield {"stride": strides, **processed} + + def preprocess_batch(self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None): + if isinstance(inputs, np.ndarray): + logger.warning( + "Numpy array passed as input - no sampling rate checks will be performed." + "It is strongly recommended to pass the input as a dictionary with an 'array' key " + "containing the numpy array representing the audio, and a 'sampling_rate' key " + "containing the sampling rate associated with the audio array." + "Failing to do so can result in silent errors that might be hard to debug." + ) + + if isinstance(inputs, str): + if inputs.startswith("http://") or inputs.startswith("https://"): + # We need to actually check for a real protocol, otherwise it's impossible to use a local file + # like http_huggingface_co.png + inputs = requests.get(inputs).content + else: + with open(inputs, "rb") as f: + inputs = f.read() + + if isinstance(inputs, bytes): + inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) + + stride = None + if isinstance(inputs, dict): + stride = inputs.get("stride", None) + # Accepting `"array"` which is the key defined in `datasets` for + # better integration + if not ("sampling_rate" in inputs and "array" in inputs): + raise ValueError( + "When passing a dictionary to FlaxWhisperPipline, the dict needs to contain an 'array' key " + "containing the numpy array representing the audio, and a 'sampling_rate' key " + "containing the sampling rate associated with the audio array." + ) + + in_sampling_rate = inputs.get("sampling_rate") + inputs = inputs.get("array", None) + + if in_sampling_rate != self.feature_extractor.sampling_rate: + try: + import librosa + except ImportError as err: + raise ImportError( + "To support resampling audio files, please install 'librosa' and 'soundfile'." + ) from err + + inputs = librosa.resample( + inputs, orig_sr=in_sampling_rate, target_sr=self.feature_extractor.sampling_rate + ) + ratio = self.feature_extractor.sampling_rate / in_sampling_rate + else: + ratio = 1 + + if not isinstance(inputs, np.ndarray): + raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") + if len(inputs.shape) != 1: + raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") + + if stride is not None: + if stride[0] + stride[1] > inputs.shape[0]: + raise ValueError("Stride is too large for input") + + # Stride needs to get the chunk length here, it's going to get + # swallowed by the `feature_extractor` later, and then batching + # can add extra data in the inputs, so we need to keep track + # of the original length in the stride so we can cut properly. + stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) + + if chunk_length_s: + if stride_length_s is None: + stride_length_s = chunk_length_s / 6 + + if isinstance(stride_length_s, (int, float)): + stride_length_s = [stride_length_s, stride_length_s] + + chunk_len = round(chunk_length_s * self.feature_extractor.sampling_rate) + stride_left = round(stride_length_s[0] * self.feature_extractor.sampling_rate) + stride_right = round(stride_length_s[1] * self.feature_extractor.sampling_rate) + + if chunk_len < stride_left + stride_right: + raise ValueError("Chunk length must be superior to stride length") + + for item in self.chunk_iter_with_batch( + inputs, + chunk_len, + stride_left, + stride_right, + batch_size, + ): + yield item + else: + processed = self.feature_extractor( + inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" + ) + if stride is not None: + processed["stride"] = stride + yield processed + + def postprocess(self, model_outputs, return_timestamps=None, return_language=None): + # unpack the outputs from list(dict(list)) to list(dict) + model_outputs = [dict(zip(output, t)) for output in model_outputs for t in zip(*output.values())] + + time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions + # Send the chunking back to seconds, it's easier to handle in whisper + sampling_rate = self.feature_extractor.sampling_rate + for output in model_outputs: + if "stride" in output: + chunk_len, stride_left, stride_right = output["stride"] + # Go back in seconds + chunk_len /= sampling_rate + stride_left /= sampling_rate + stride_right /= sampling_rate + output["stride"] = chunk_len, stride_left, stride_right + + text, optional = self.tokenizer._decode_asr( + model_outputs, + return_timestamps=return_timestamps, + return_language=return_language, + time_precision=time_precision, + ) + return {"text": text, **optional} + + def forward( + self, + model_inputs, + batch_size=None, + language=None, + task=None, + return_timestamps=False, + num_beams=1, + length_penalty=1.0, + do_sample=False, + top_k=50, + temperature=1.0, + ): + # We need to keep track of some additional input arguments for post-processing so need to forward these on after running generation + input_features = model_inputs.pop("input_features") + input_batch_size = input_features.shape[0] + + if input_batch_size != batch_size: + padding = np.zeros([batch_size - input_batch_size, *input_features.shape[1:]], input_features.dtype) + input_features = np.concatenate([input_features, padding]) + + pred_ids = self.generate( + input_features, + language=language, + task=task, + return_timestamps=return_timestamps, + num_beams=num_beams, + length_penalty=length_penalty, + do_sample=do_sample, + top_k=top_k, + temperature=temperature, + )[:input_batch_size] + + # tokenizer's decode method expects an extra dim - we insert it here for convenience + out = {"tokens": pred_ids[:, None, :]} + + stride = model_inputs.pop("stride", None) + if stride is not None: + out["stride"] = stride + + return out + + def __call__( + self, + inputs, + chunk_length_s=30.0, + stride_length_s=None, + batch_size=None, + language=None, + task=None, + return_timestamps=None, + num_beams=1, + length_penalty=1.0, + do_sample=False, + top_k=50, + temperature=1.0, + ): + """ + Transcribe an audio input sequence to a text transcription, optionally with timestamps. + + Args: + inputs (`np.ndarray` or `bytes` or `str` or `dict`): + The inputs is either: + - `str` that is the filename of the audio file, the file will be read at the correct sampling rate + to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. + - `bytes` is the byte content of an audio file and is interpreted by *ffmpeg* in the + same way. + - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) + Raw audio assumed to be at the correct sampling rate (16kHz). Note that no further sampling + rate check will be done. + - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this + pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "array": + np.array}`. Optionally an additional argument `"stride": (left: int, right: int)` can be used to + ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in + decoding (but used at inference to provide more context to the model). In general, this additional + stride argument is not required. + chunk_length_s (`float`, *optional*, defaults to 30.0): + The input length for each chunk. If `chunk_length_s = 0` then chunking is disabled. By default, the chunk + length is set 30.0s, equal to Whisper's context window. + stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`): + The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables + the model to *see* more context and infer letters better than without this context but the pipeline + discards the stride bits at the end to make the final reconstitution as perfect as possible. + + + + For more information on how to effectively use `stride_length_s`, refer to the [ASR chunking + blog post](https://huggingface.co/blog/asr-chunking). + + + batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): + The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing + a batch size in the `__call__` method will supersede any batch size passed to the `__init__`. + task (`str`, *optional*): + Task to use for generation, either `"transcribe"` or `"translate"`. Defaults to `"transcribe"`. + language (`str`, *optional*): + Language token to use for generation, can be either in the form of `"<|en|>"`, `"en"` or `"english"`. + Defaults to `None`, meaning the language is automatically inferred from the audio input. + return_timestamps (*optional*, `bool`): + Whether to return timestamps in the prediction. Defaults to False. If set to true, the pipeline + will return two keys in the output dictionary: `"text"` containing the text transcription, and `"chunks"` + containing the transcription segments chunked by their utterance-level timestamps. + length_penalty (*optional*, `float`): + Exponential penalty to the length that is used with beam-based generation. It is applied as an + exponent to the sequence length, which in turn is used to divide the score of the sequence. Since + the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes + longer sequences, while length_penalty < 1.0 encourages shorter sequences. + do_sample (*optional*, `bool`): + Whether or not to use sampling ; use greedy decoding otherwise. + top_k (*optional*, `int`): + The number of the highest probability vocabulary tokens to keep for top-k-filtering. + temperature (*optional*, `float`): + The value used to modulate the next token probabilities if sampling. + + Return: + `Dict`: A dictionary with the following keys: + - **text** (`str` ) -- The recognised text. + - **chunks** (*optional(, `List[Dict]`) + When using `return_timestamps`, the `chunks` will become a list containing all the various text + chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text": + "there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing + `"".join(chunk["text"] for chunk in output["chunks"])`. + """ + batch_size = batch_size if batch_size is not None else self.batch_size + if batch_size % self.min_batch_size != 0: + raise ValueError( + f"Batch size must be a multiple of the number of JAX devices, but got batch size {batch_size} and num devices {self.min_batch_size}." + ) + + dataloader = self.preprocess_batch( + inputs, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, batch_size=batch_size + ) + model_outputs = [] + # iterate over our chunked audio samples + for batch in dataloader: + model_outputs.append( + self.forward( + batch, + batch_size=batch_size, + language=language, + task=task, + return_timestamps=return_timestamps, + num_beams=num_beams, + length_penalty=length_penalty, + do_sample=do_sample, + top_k=top_k, + temperature=temperature, + ) + ) + post_processed = self.postprocess(model_outputs, return_timestamps=return_timestamps) + return post_processed diff --git a/flax/distil_whisper/train_state.py b/flax/distil_whisper/train_state.py new file mode 100644 index 0000000000000000000000000000000000000000..a049933681bf247538ec61e12d469352201bc4cc --- /dev/null +++ b/flax/distil_whisper/train_state.py @@ -0,0 +1,118 @@ +from typing import Any, Mapping, MutableMapping, Optional, Tuple + +import flax.core +import flax.serialization +import flax.struct +import jax.numpy as jnp +from flax import traverse_util +from flax.core import scope as flax_scope +from flax.linen import partitioning as flax_partitioning + + +EMPTY_DICT = flax.core.freeze({}) +FrozenDict = flax_scope.FrozenDict +FrozenVariableDict = flax_scope.FrozenVariableDict +MutableVariableDict = flax_scope.MutableVariableDict +VariableDict = flax_scope.VariableDict + + +def _validate_params_axes(params_axes, params): + axis_names = flax_partitioning.get_axis_names(params_axes) + missing_params_axes = set(traverse_util.flatten_dict(params, sep="/")) - set( + traverse_util.flatten_dict(axis_names, sep="/") + ) + if missing_params_axes: + raise ValueError(f"Missing axis names for parameters: {missing_params_axes}") + + +def _split_variables_and_axes( + variables_and_axes: FrozenVariableDict, +) -> Tuple[FrozenVariableDict, FrozenVariableDict]: + """Splits `variables_and_axes` into two separate dicts with the same keys.""" + # For each `key`, `key_axes` (if any) are its axes in `variables_and_axes`. + variables = {} + axes = {} + for k, v in variables_and_axes.items(): + if k.endswith("_axes"): + axes[k[:-5]] = v # k without "_axes". + _validate_params_axes(v, variables_and_axes[k[:-5]]) # k without "_axes". + else: + variables[k] = v + return flax.core.freeze(variables), flax.core.freeze(axes) + + +class InferenceState(flax.struct.PyTreeNode): + """State compatible with FlaxOptimTrainState without optimizer state.""" + + step: jnp.ndarray + params: flax_scope.FrozenVariableDict + params_axes: Optional[flax_scope.FrozenVariableDict] = None + flax_mutables: flax_scope.FrozenDict = EMPTY_DICT + flax_mutables_axes: Optional[flax_scope.FrozenVariableDict] = None + + @classmethod + def create(cls, model_variables: FrozenVariableDict) -> "InferenceState": + other_variables, params = model_variables.pop("params") + if "params_axes" in other_variables: + other_variables, params_axes = other_variables.pop("params_axes") + _validate_params_axes(params_axes, params) + else: + params_axes = None + + # Split other_variables into mutables and their corresponding axes. + flax_mutables, flax_mutables_axes = _split_variables_and_axes(other_variables) + flax_mutables_axes = flax_mutables_axes or None + return InferenceState( + step=jnp.array(0), + params=params, + params_axes=params_axes, + flax_mutables=flax_mutables, + flax_mutables_axes=flax_mutables_axes, + ) + + @property + def param_states(self) -> FrozenVariableDict: + """The optimizer states of the parameters as a PyTree.""" + raise NotImplementedError("InferenceState has no optimizer states.") + + def apply_gradient(self, *args, **kwargs) -> "InferenceState": + raise NotImplementedError("InferenceState does not support `apply_gradient`.") + + def state_dict(self) -> MutableMapping[str, Any]: + state_dict = { + "target": flax.core.unfreeze(self.params), + "state": {"step": self.step}, + } + if self.flax_mutables: + state_dict["flax_mutables"] = flax.core.unfreeze(self.flax_mutables) + return state_dict + + def replace_step(self, step: jnp.ndarray) -> "InferenceState": + return self.replace(step=step) + + def replace_params(self, params: FrozenVariableDict) -> "InferenceState": + return self.replace(params=params) + + def replace_flax_mutables(self, flax_mutables: FrozenDict) -> "InferenceState": + return self.replace(flax_mutables=flax_mutables) + + def restore_state(self, state_dict: Mapping[str, Any]) -> "InferenceState": + return self.replace( + params=flax.core.freeze(state_dict["target"]), + step=state_dict["state"]["step"], + flax_mutables=( + flax.core.freeze(state_dict["flax_mutables"]) if "flax_mutables" in state_dict else EMPTY_DICT + ), + ) + + def as_logical_axes(self) -> "InferenceState": + # Set step to None so that when the logical axes are processed by the + # flax.partitioning.logical_to_mesh_axes function, it will be skipped + # because jax.tree_map will short circut and never call the function on the + # step. + flax_mutables_axes = self.flax_mutables_axes or EMPTY_DICT + return InferenceState( + step=None, + params=flax_partitioning.get_axis_names(self.params_axes), + flax_mutables=flax_partitioning.get_axis_names(flax_mutables_axes), + ) diff --git a/flax/distillation_scripts/run_32_2_pt.sh b/flax/distillation_scripts/run_32_2_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..1e93d75afe65a83c7d2ea5d2cd580704e61f71cf --- /dev/null +++ b/flax/distillation_scripts/run_32_2_pt.sh @@ -0,0 +1,38 @@ +#!/bin/bash + +accelerate launch --multi_gpu --mixed_precision=bf16 --num_processes=2 run_distillation_pt.py \ + --model_name_or_path distil-whisper/large-32-2 \ + --teacher_model_name_or_path openai/whisper-large-v2 \ + --train_dataset_config_name all+all+all+l \ + --train_dataset_samples 2.9+10.4+14.9+226.6 \ + --train_dataset_name librispeech_asr+librispeech_asr+librispeech_asr+gigaspeech-l \ + --train_split_name train.clean.100+train.clean.360+train.other.500+train \ + --eval_dataset_name librispeech_asr+librispeech_asr+gigaspeech-l \ + --eval_dataset_config_name all+all+l \ + --eval_split_name validation.clean+validation.other+validation \ + --eval_text_column_name text+text+text \ + --eval_steps 2500 \ + --save_steps 2500 \ + --warmup_steps 50 \ + --learning_rate 0.0001 \ + --lr_scheduler_type constant_with_warmup \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 10000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --gradient_accumulation_steps 2 \ + --per_device_eval_batch_size 64 \ + --dataloader_num_workers 16 \ + --cache_dir /fsx/sanchit/cache \ + --dataset_cache_dir /fsx/sanchit/cache \ + --dtype bfloat16 \ + --output_dir ./ \ + --wandb_project distil-whisper-training \ + --do_train \ + --do_eval \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming diff --git a/flax/distillation_scripts/run_bs_sweep.yaml b/flax/distillation_scripts/run_bs_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3c42f6fa91a49486c0984ff414731a06e2b4bc97 --- /dev/null +++ b/flax/distillation_scripts/run_bs_sweep.yaml @@ -0,0 +1,67 @@ +command: + - python3 + - ${program} + - --do_train + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - --compilation_cache + - ${args} +method: grid +metric: + goal: minimize + name: train/loss +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr + train_dataset_config_name: + value: all + train_split_name: + value: train.other.500 + train_dataset_samples: + value: 100 + cache_dir: + value: /fsx/sanchitgandhi/cache + dataset_cache_dir: + value: /fsx/sanchitgandhi/cache + output_dir: + value: ./ + per_device_train_batch_size: + values: + - 128 + - 256 + - 512 + precision: + values: + - "full_mixed" + - "half_mixed" + dtype: + value: bfloat16 + do_eval: + value: false + learning_rate: + value: 3e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 30 + max_steps: + value: 30 + save_steps: + value: 51 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 5 + wer_threshold: + value: 100 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_dataset_sweep.yaml b/flax/distillation_scripts/run_dataset_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6d10f562da275b3bf75310926eafe804aeafa597 --- /dev/null +++ b/flax/distillation_scripts/run_dataset_sweep.yaml @@ -0,0 +1,77 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - ${args} +method: grid +metric: + goal: minimize + name: gigaspeech-l/validation/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + max_train_samples: + values: + - 109876 + - 219752 + - 439504 + - 879008 + - 1758015 + - 3516030 + - 7032061 + train_dataset_name: + value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3 + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train + train_dataset_samples: + value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8 + eval_dataset_name: + value: librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs + eval_dataset_config_name: + value: all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us + eval_split_name: + value: validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation + eval_text_column_name: + value: text+text+text+text+text+text+text+text+text+text+text+text+transcription + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 64 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 10000 + save_steps: + value: 10001 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 25 + wer_threshold: + value: 10 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_decoder_sweep.yaml b/flax/distillation_scripts/run_decoder_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4fd916676456ced2707fa12be5209e8235fff5c5 --- /dev/null +++ b/flax/distillation_scripts/run_decoder_sweep.yaml @@ -0,0 +1,72 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - ${args} +method: grid +metric: + goal: minimize + name: gigaspeech-l/validation/wer +parameters: + model_name_or_path: + values: + - distil-whisper/large-32-16 + - distil-whisper/large-32-8 + - distil-whisper/large-32-4 + - distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3 + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train + train_dataset_samples: + value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8 + eval_dataset_name: + value: librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs + eval_dataset_config_name: + value: all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us + eval_split_name: + value: validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation + eval_text_column_name: + value: text+text+text+text+text+text+text+text+text+text+text+text+transcription + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 64 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 10000 + save_steps: + value: 10001 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 25 + wer_threshold: + value: 10 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_distillation_12_2_timestamped.sh b/flax/distillation_scripts/run_distillation_12_2_timestamped.sh new file mode 100644 index 0000000000000000000000000000000000000000..6c86711dee002b6566bfa593c0ee30e85d480260 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_12_2_timestamped.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/small-12-2" \ + --teacher_model_name_or_path "openai/whisper-medium.en" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8" \ + --train_dataset_name "librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --timestamp_probability 0.2 \ + --wandb_name "small-12-2-tpu-timestamped-prob-0.2" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_15s_context.sh b/flax/distillation_scripts/run_distillation_15s_context.sh new file mode 100644 index 0000000000000000000000000000000000000000..91a05e1f076a1bd77808a253a8086798098875d5 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_15s_context.sh @@ -0,0 +1,43 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2-15s-context" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --feature_extractor_name "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+L" \ + --train_dataset_samples "100+360+500+2300+450+90+90+12000+450+3600+2500+5000" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "linear" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --max_duration_in_seconds 15 \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --dtype "bfloat16" \ + --output_dir "./" \ + --wandb_name "large-32-2-ts-28k-wer-10-context-15s" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_16_2.sh b/flax/distillation_scripts/run_distillation_16_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..2ae8c27a5a46194303bc5b45c075a1e6dbe0c39b --- /dev/null +++ b/flax/distillation_scripts/run_distillation_16_2.sh @@ -0,0 +1,41 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-16-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+L" \ + --train_dataset_samples "100+360+500+2300+450+90+90+12000+450+3600+2500+5000" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "linear" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_eval_batch_size 64 \ + --per_device_train_batch_size 64 \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --dtype "bfloat16" \ + --output_dir "./" \ + --wandb_name "large-16-2-ts-28k-wer-10" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_24_2.sh b/flax/distillation_scripts/run_distillation_24_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..cc4661fc7eb17ce56e979ce544a8a34b122a345c --- /dev/null +++ b/flax/distillation_scripts/run_distillation_24_2.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/medium-24-2" \ + --teacher_model_name_or_path "openai/whisper-medium.en" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+L" \ + --train_dataset_samples "100+360+500+2300+450+90+90+12000+450+3600+2500+5000" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "linear" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_eval_batch_size 64 \ + --per_device_train_batch_size 64 \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --dtype "bfloat16" \ + --output_dir "./" \ + --wandb_name "medium-24-2-ts-freeze-28k-wer-10" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --streaming \ + --freeze_encoder \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_24_2_timestamped.sh b/flax/distillation_scripts/run_distillation_24_2_timestamped.sh new file mode 100644 index 0000000000000000000000000000000000000000..aedbfd42c2a2ee687c7bfd32f0468ad0850f5316 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_24_2_timestamped.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/medium-24-2" \ + --teacher_model_name_or_path "openai/whisper-medium.en" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8" \ + --train_dataset_name "librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --timestamp_probability 0.2 \ + --wandb_name "medium-24-2-tpu-timestamped-prob-0.2" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_32_2.sh b/flax/distillation_scripts/run_distillation_32_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..30fb3d25cf783676f891ced6b2441596a65271fc --- /dev/null +++ b/flax/distillation_scripts/run_distillation_32_2.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+l" \ + --train_dataset_samples "100+360+500+2500" \ + --train_dataset_name "librispeech_asr-token-ids+librispeech_asr-token-ids+librispeech_asr-token-ids+gigaspeech-l-token-ids" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train" \ + --eval_dataset_name "librispeech_asr+librispeech_asr+gigaspeech-l" \ + --eval_dataset_config_name "all+all+l" \ + --eval_split_name "validation.clean+validation.other+validation" \ + --eval_text_column_name "text+text+text" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 50 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "constant_with_warmup" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 10000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --dtype "bfloat16" \ + --output_dir "./" \ + --wandb_name "large-32-2-ls-gs-token-ids" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_32_2_by_samples.sh b/flax/distillation_scripts/run_distillation_32_2_by_samples.sh new file mode 100644 index 0000000000000000000000000000000000000000..840f2b4c8c6bebe447367787896e298337507a03 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_32_2_by_samples.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+L" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+192.7" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "linear" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --dtype "bfloat16" \ + --output_dir "./" \ + --wandb_name "large-32-2-ts-freeze-28k-wer-10-probs-by-samples" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_32_2_gpu.sh b/flax/distillation_scripts/run_distillation_32_2_gpu.sh new file mode 100644 index 0000000000000000000000000000000000000000..919164cb8ea150e28f25ffc8605c5725e60658e8 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_32_2_gpu.sh @@ -0,0 +1,43 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+all+L" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+371.2+192.7" \ + --train_dataset_name "librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+switchboard-data+spgispeech" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 1250 \ + --save_steps 1250 \ + --warmup_steps 250 \ + --learning_rate 0.0001 \ + --lr_scheduler_type "constant_with_warmup" \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 20000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 128 \ + --per_device_eval_batch_size 128 \ + --dtype "bfloat16" \ + --precision "full_mixed" \ + --dataloader_num_workers 16 \ + --cache_dir "/fsx/sanchit/.cache" \ + --dataset_cache_dir "/fsx/sanchit/.cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-gpu-flat-lr" \ + --wandb_dir "/fsx/sanchit/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_32_2_timestamped.sh b/flax/distillation_scripts/run_distillation_32_2_timestamped.sh new file mode 100644 index 0000000000000000000000000000000000000000..ae17c7387a273af33bd1ae2b7961862afc369832 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_32_2_timestamped.sh @@ -0,0 +1,41 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8" \ + --train_dataset_name "librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-tpu-timestamped" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_large_32_2_gpu_timestamped.sh b/flax/distillation_scripts/run_distillation_large_32_2_gpu_timestamped.sh new file mode 100644 index 0000000000000000000000000000000000000000..08ae4fb93b0b10c8e37b2d18bd30068a53e5757a --- /dev/null +++ b/flax/distillation_scripts/run_distillation_large_32_2_gpu_timestamped.sh @@ -0,0 +1,41 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python3 run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --train_dataset_config_name "all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3" \ + --train_dataset_samples "2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8" \ + --train_dataset_name "librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech+librispeech+common_voice+common_voice+voxpopuli+voxpopuli+tedlium+tedlium+spgispeech+spgispeech+ami+ami" \ + --eval_split_name "validation+clean+other+clean+other+clean+other+clean+other+clean+other+clean+other" \ + --eval_text_column_name "text+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript+ortho_transcript" \ + --eval_steps 5000 \ + --save_steps 5000 \ + --warmup_steps 500 \ + --learning_rate 0.0001 \ + --logging_steps 25 \ + --save_total_limit 1 \ + --max_steps 80000 \ + --wer_threshold 10 \ + --per_device_train_batch_size 64 \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --cache_dir "/fsx/sanchit/.cache" \ + --dataset_cache_dir "/fsx/sanchit/.cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-gpu-timestamped" \ + --wandb_dir "/fsx/sanchit/.cache" \ + --wandb_project "distil-whisper" \ + --do_train \ + --do_eval \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --freeze_encoder \ + --streaming \ + --use_auth_token \ + --push_to_hub diff --git a/flax/distillation_scripts/run_distillation_objective.yaml b/flax/distillation_scripts/run_distillation_objective.yaml new file mode 100644 index 0000000000000000000000000000000000000000..feb340ad04c98fdbbd132eaacb4a150d5e6ea681 --- /dev/null +++ b/flax/distillation_scripts/run_distillation_objective.yaml @@ -0,0 +1,72 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - ${args} +method: grid +metric: + goal: minimize + name: gigaspeech-l/validation/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3 + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train + train_dataset_samples: + value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8 + eval_dataset_name: + value: librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs + eval_dataset_config_name: + value: all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us + eval_split_name: + value: validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation + eval_text_column_name: + value: text+text+text+text+text+text+text+text+text+text+text+text+transcription + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 64 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 10000 + save_steps: + value: 10001 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 25 + wer_threshold: + value: 10 + kl_weight: + values: + - 0.0 + - 1.0 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_dropout_sweep.yaml b/flax/distillation_scripts/run_dropout_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7bae2ed823c884821953b2537aebbeb46030e912 --- /dev/null +++ b/flax/distillation_scripts/run_dropout_sweep.yaml @@ -0,0 +1,84 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --streaming + - --use_auth_token + - ${args} +method: random +metric: + goal: minimize + name: eval/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train + train_dataset_samples: + value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 + eval_dataset_name: + value: "distil-whisper/gigaspeech-l" + eval_dataset_config_name: + value: "l" + cache_dir: + value: /home/sanchitgandhi/cache + dataset_cache_dir: + value: /home/sanchitgandhi/cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 32 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 1000 + eval_steps: + value: 1000 + save_steps: + value: 1000 + dataloader_num_workers: + value: 16 + logging_steps: + value: 5 + wer_threshold: + value: 10 + activation_dropout: + values: + - 0 + - 0.05 + - 0.1 + attention_dropout: + values: + - 0 + - 0.05 + - 0.1 + dropout: + values: + - 0 + - 0.05 + - 0.1 + freeze_encoder: + values: + - true + - false +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_librispeech.sh b/flax/distillation_scripts/run_librispeech.sh new file mode 100644 index 0000000000000000000000000000000000000000..640a7aea40b6ed572adac0e92201522e35dd6d2d --- /dev/null +++ b/flax/distillation_scripts/run_librispeech.sh @@ -0,0 +1,33 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python run_distillation.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --teacher_model_name_or_path "openai/whisper-large-v2" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500" \ + --eval_split_name "validation.clean" \ + --text_column_name "whisper_transcript" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-ts-librispeech" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-librispeech" \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 16 \ + --dtype "bfloat16" \ + --learning_rate 1e-4 \ + --warmup_steps 500 \ + --temperature 2.0 \ + --do_train \ + --do_eval \ + --num_train_epochs 10 \ + --preprocessing_num_workers 16 \ + --dataloader_num_workers 8 \ + --logging_steps 25 \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --push_to_hub diff --git a/flax/distillation_scripts/run_librispeech_dummy_pt.sh b/flax/distillation_scripts/run_librispeech_dummy_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..171882c5b0a51455c416f68aea9aee541b52ce65 --- /dev/null +++ b/flax/distillation_scripts/run_librispeech_dummy_pt.sh @@ -0,0 +1,35 @@ +#!/usr/bin/env bash + +accelerate launch --mixed_precision=bf16 --num_processes=1 run_distillation_pt.py \ + --model_name_or_path "distil-whisper/tiny-random-whisper-2-1" \ + --teacher_model_name_or_path "distil-whisper/tiny-random-whisper" \ + --train_dataset_name "distil-whisper/librispeech_asr_dummy" \ + --train_dataset_config_name "clean" \ + --train_dataset_samples "100" \ + --train_split_name "validation" \ + --eval_dataset_name "distil-whisper/librispeech_asr_dummy" \ + --eval_dataset_config_name "clean" \ + --eval_split_name "validation" \ + --eval_text_column_name "text" \ + --cache_dir "/home/sanchit/.cache" \ + --dataset_cache_dir "/home/sanchit/.cache" \ + --wandb_project "distil-whisper-debug" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --learning_rate 1e-4 \ + --warmup_steps 25 \ + --per_device_train_batch_size 8 \ + --per_device_eval_batch_size 8 \ + --gradient_checkpointing \ + --max_steps 100 \ + --eval_steps 50 \ + --save_steps 50 \ + --dataloader_num_workers 14 \ + --wer_threshold 10 \ + --logging_steps 5 \ + --overwrite_output_dir \ + --dtype bfloat16 \ + --predict_with_generate \ + --freeze_encoder \ + --streaming False diff --git a/flax/distillation_scripts/run_librispeech_streaming_dummy.sh b/flax/distillation_scripts/run_librispeech_streaming_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..85a261352e1a743d6c6698c206c68fbbbfed679e --- /dev/null +++ b/flax/distillation_scripts/run_librispeech_streaming_dummy.sh @@ -0,0 +1,37 @@ +#!/usr/bin/env bash + +python run_distillation.py \ + --model_name_or_path "distil-whisper/tiny-random-whisper-2-1" \ + --teacher_model_name_or_path "distil-whisper/tiny-random-whisper" \ + --train_dataset_name "distil-whisper/librispeech_asr+distil-whisper/librispeech_asr-timestamped" \ + --train_dataset_config_name "all+all" \ + --train_dataset_samples "100+360" \ + --train_split_name "train.clean.100+train.clean.360" \ + --eval_dataset_name "distil-whisper/gigaspeech-l+esb/diagnostic-dataset" \ + --eval_dataset_config_name "l+librispeech" \ + --eval_split_name "validation+clean" \ + --eval_text_column_name "text+ortho_transcript" \ + --max_train_samples 1024 \ + --max_eval_samples 32 \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --per_device_train_batch_size 2 \ + --per_device_eval_batch_size 2 \ + --max_steps 10 \ + --eval_steps 5 \ + --dataloader_num_workers 14 \ + --save_steps 5 \ + --wer_threshold 10 \ + --wandb_project "distil-whisper-debug" \ + --logging_steps 1 \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --return_timestamps \ + --timestamp_probability 1 \ + --freeze_encoder diff --git a/flax/distillation_scripts/run_lr_sweep.yaml b/flax/distillation_scripts/run_lr_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..fadbb1f42cf03941a4eda4a9499f41ecac8513a4 --- /dev/null +++ b/flax/distillation_scripts/run_lr_sweep.yaml @@ -0,0 +1,73 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - --compilation_cache + - --load_with_scan_weights # checkpoint is saved with scan weights + - ${args} +method: grid +metric: + goal: minimize + name: eval/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2-ts-freeze-librispeech # resume from a partially trained checkpoint + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train + train_dataset_samples: + value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 + eval_dataset_name: + value: "distil-whisper/gigaspeech-l" + eval_dataset_config_name: + value: "l" + cache_dir: + value: /fsx/sanchit/cache + dataset_cache_dir: + value: /fsx/sanchit/cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 128 + per_device_eval_batch_size: + value: 128 + dtype: + value: bfloat16 + learning_rate: + values: + - 1e-3 + - 3e-4 + - 1e-4 + - 3e-5 + - 1e-5 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 500 + eval_steps: + value: 500 + save_steps: + value: 501 # don't save checkpoints during sweep + dataloader_num_workers: + value: 16 + logging_steps: + value: 5 + wer_threshold: + value: 10 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_mse_sweep.yaml b/flax/distillation_scripts/run_mse_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..feb75c56f5d2ad22a7f0885beeac54a0b04b9b6b --- /dev/null +++ b/flax/distillation_scripts/run_mse_sweep.yaml @@ -0,0 +1,71 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --streaming + - --use_auth_token + - --use_scan + - ${args} +method: grid +metric: + goal: minimize + name: eval/wer +parameters: + model_name_or_path: + value: distil-whisper/large-16-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train + train_dataset_samples: + value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 + eval_dataset_name: + value: "distil-whisper/gigaspeech-l" + eval_dataset_config_name: + value: "l" + cache_dir: + value: /home/sanchitgandhi/cache + dataset_cache_dir: + value: /home/sanchitgandhi/cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 32 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 0.0001 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 2500 + eval_steps: + value: 2500 + save_steps: + value: 2001 # don't save checkpoints during sweep + dataloader_num_workers: + value: 16 + logging_steps: + value: 5 + wer_threshold: + value: 10 + mse_weight: + values: + - 0.0 + - 0.3 + - 1 + - 3 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_timestamp_sweep.yaml b/flax/distillation_scripts/run_timestamp_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..67fd45b102f2e314ddad3f7e0692b77540a09f1b --- /dev/null +++ b/flax/distillation_scripts/run_timestamp_sweep.yaml @@ -0,0 +1,76 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - --compilation_cache + - --return_timestamps + - ${args} +method: grid +metric: + goal: minimize + name: eval/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+spgispeech-timestamped + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train + train_dataset_samples: + value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+192.7 + timestamp_probability: + values: + - 0.0 + - 0.2 + - 0.4 + - 0.6 + - 0.8 + - 1.0 + round_timestamps: + values: + - True + - False + eval_dataset_name: + value: "distil-whisper/gigaspeech-l" + eval_dataset_config_name: + value: "l" + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 2500 + save_steps: + value: 2501 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 25 + wer_threshold: + value: 10 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/distillation_scripts/run_wer_sweep.yaml b/flax/distillation_scripts/run_wer_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..fc78e6fa82e5e6076470fdc214d3752ba41a9797 --- /dev/null +++ b/flax/distillation_scripts/run_wer_sweep.yaml @@ -0,0 +1,73 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - --freeze_encoder + - --streaming + - --use_auth_token + - ${args} +method: grid +metric: + goal: minimize + name: gigaspeech-l/validation/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + teacher_model_name_or_path: + value: openai/whisper-large-v2 + train_dataset_name: + value: librispeech_asr-timestamped+librispeech_asr-timestamped+librispeech_asr-timestamped+common_voice_13_0-timestamped+voxpopuli-timestamped+ami-ihm-timestamped+ami-sdm-timestamped+peoples_speech-clean-timestamped+tedlium-timestamped+switchboard-data+gigaspeech-l-timestamped+librispeech_asr-prompted+librispeech_asr-prompted+librispeech_asr-prompted+tedlium-prompted + train_dataset_config_name: + value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+all+all+all+release3 + train_split_name: + value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train.clean.100+train.clean.360+train.other.500+train + train_dataset_samples: + value: 2.9+10.4+14.9+89+18.2+10.9+10.9+288+26.8+371.2+226.6+2.9+10.4+14.9+26.8 + eval_dataset_name: + value: librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs + eval_dataset_config_name: + value: all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us + eval_split_name: + value: validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation + eval_text_column_name: + value: text+text+text+text+text+text+text+text+text+text+text+text+transcription + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 64 + per_device_eval_batch_size: + value: 64 + dtype: + value: bfloat16 + learning_rate: + value: 1e-4 + lr_scheduler_type: + value: constant_with_warmup + warmup_steps: + value: 50 + max_steps: + value: 10000 + save_steps: + value: 10001 # don't save checkpoints during sweep + dataloader_num_workers: + value: 48 + logging_steps: + value: 25 + wer_threshold: + values: + - 100 + - 20 + - 15 + - 10 + - 5 +program: run_distillation.py +project: distil-whisper-sweeps diff --git a/flax/evaluation_scripts/run_baselines.sh b/flax/evaluation_scripts/run_baselines.sh new file mode 100644 index 0000000000000000000000000000000000000000..9ab00ff2fe586bda8695bb5c7ee386ff870150d8 --- /dev/null +++ b/flax/evaluation_scripts/run_baselines.sh @@ -0,0 +1,96 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-tiny.en" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "tiny.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-base.en" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "base.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-small.en" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "small.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-medium.en" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "medium.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "large-v2" \ + --per_device_eval_batch_size 16 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate \ No newline at end of file diff --git a/flax/evaluation_scripts/run_distilled.sh b/flax/evaluation_scripts/run_distilled.sh new file mode 100644 index 0000000000000000000000000000000000000000..d5b2ff4573744726b351db6cdc3146017b5a287f --- /dev/null +++ b/flax/evaluation_scripts/run_distilled.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10" \ + --subfolder "checkpoint-15000" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "large-32-2-ts-freeze-28k-wer-10-30k-steps" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate diff --git a/flax/evaluation_scripts/run_distilled_16_2.sh b/flax/evaluation_scripts/run_distilled_16_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..661b4a6666e940eeb4cbc07fdb4324ee79e50700 --- /dev/null +++ b/flax/evaluation_scripts/run_distilled_16_2.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "sanchit-gandhi/large-16-2-ts-28k-wer-10" \ + --subfolder "checkpoint-10000" \ + --dataset_name "librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs" \ + --dataset_config_name "all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us" \ + --dataset_split_name "validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" \ + --text_column_name "text+text+text+text+text+text+text+text+text+text+text+text+transcription" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "large-16-2-eval" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate diff --git a/flax/evaluation_scripts/run_librispeech_eval_dummy.sh b/flax/evaluation_scripts/run_librispeech_eval_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..e3dbf8027d3d9a665ec0b8f4602bcdf08d4e9c09 --- /dev/null +++ b/flax/evaluation_scripts/run_librispeech_eval_dummy.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name "gigaspeech-l+gigaspeech-l" \ + --dataset_config_name "l+l" \ + --dataset_split_name "train+validation" \ + --text_column_name "text" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-label" \ + --wandb_name "whisper-large-v2-gigaspeech-l-with-audio" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --max_eval_samples 1024 \ + --predict_with_generate \ + --log_audio diff --git a/flax/evaluation_scripts/test/run_baselines.sh b/flax/evaluation_scripts/test/run_baselines.sh new file mode 100644 index 0000000000000000000000000000000000000000..91b193aa824b3ebdd04841770064ed067a6dab7d --- /dev/null +++ b/flax/evaluation_scripts/test/run_baselines.sh @@ -0,0 +1,101 @@ +#!/usr/bin/env bash + +DATASET_NAMES="librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+earnings22" +DATASET_CONFIG_NAMES="all+all+en+en+ihm+sdm+clean+release3+all+all+l+L+1-channel+en_us+chunked" +DATASET_SPLIT_NAMES="test.clean+test.other+test+test+test+test+test+test+test.switchboard+test.callhome+test+test+test+test+test" +TEXT_COLUMN_NAMES="text+text+text+text+text+text+text+text+text+text+text+text+text+transcription+transcription" + +python run_eval.py \ + --model_name_or_path "openai/whisper-tiny.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --wandb_name "tiny.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-base.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --wandb_name "base.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-small.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --wandb_name "small.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-medium.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --wandb_name "medium.en" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +python run_eval.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --wandb_name "large-v2" \ + --per_device_eval_batch_size 16 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate diff --git a/flax/evaluation_scripts/test/run_baselines_pt.sh b/flax/evaluation_scripts/test/run_baselines_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..7e81fc922e54b1ddc99250175b961640ea7866b7 --- /dev/null +++ b/flax/evaluation_scripts/test/run_baselines_pt.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +DATASET_NAMES="librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+earnings22" +DATASET_CONFIG_NAMES="all+all+en+en+ihm+sdm+clean+release3+all+all+l+L+1-channel+en_us+chunked" +DATASET_SPLIT_NAMES="test.clean+test.other+test+test+test+test+test+test+test.switchboard+test.callhome+test+test+test+test+test" +TEXT_COLUMN_NAMES="text+text+text+text+text+text+text+text+text+text+text+text+text+transcription+transcription" + +python run_pt_long_form_transcription.py \ + --model_name_or_path "facebook/wav2vec2-large-960h" \ + --wandb_name "facebook/wav2vec2-large-960h" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --output_dir "./" \ + --wandb_project "distil-whisper-test" \ + --per_device_eval_batch_size 32 \ + --dtype "float16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate diff --git a/flax/evaluation_scripts/test/run_distilled.sh b/flax/evaluation_scripts/test/run_distilled.sh new file mode 100644 index 0000000000000000000000000000000000000000..2a1b234520bbc335c08eb0cc58aaaa8bdc8b5a49 --- /dev/null +++ b/flax/evaluation_scripts/test/run_distilled.sh @@ -0,0 +1,46 @@ +#!/usr/bin/env bash + +DATASET_NAMES="librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+earnings22" +DATASET_CONFIG_NAMES="all+all+en+en+ihm+sdm+clean+release3+all+all+l+L+1-channel+en_us+chunked" +DATASET_SPLIT_NAMES="test.clean+test.other+test+test+test+test+test+test+test.switchboard+test.callhome+test+test+test+test+test" +TEXT_COLUMN_NAMES="text+text+text+text+text+text+text+text+text+text+text+text+text+transcription+transcription" + +python run_eval.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-tpu-timestamped-resumed" \ + --wandb_name "large-32-2-tpu-timestamped" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + +python run_eval.py \ + --model_name_or_path "sanchit-gandhi/medium-24-2-tpu-timestamped-prob-0.2" \ + --subfolder "checkpoint-45000" \ + --wandb_name "medium-24-2-tpu-timestamped-prob-0.2" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-test" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 0 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate diff --git a/flax/finetuning_scripts/run_librispeech.sh b/flax/finetuning_scripts/run_librispeech.sh new file mode 100644 index 0000000000000000000000000000000000000000..a81cd3fd583a9566879789415a403dceaaab1f69 --- /dev/null +++ b/flax/finetuning_scripts/run_librispeech.sh @@ -0,0 +1,31 @@ +#!/usr/bin/env bash + +python run_finetuning.py \ + --model_name_or_path "distil-whisper/large-32-2" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --train_split_name "train.clean.100+train.clean.360+train.other.500" \ + --eval_split_name "validation.clean" \ + --text_column_name "whisper_transcript" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-pl-librispeech" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-librispeech" \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 16 \ + --dtype "bfloat16" \ + --learning_rate 1e-4 \ + --warmup_steps 500 \ + --do_train \ + --do_eval \ + --num_train_epochs 10 \ + --preprocessing_num_workers 16 \ + --dataloader_num_workers 8 \ + --logging_steps 25 \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate \ + --push_to_hub diff --git a/flax/finetuning_scripts/run_librispeech_dummy.sh b/flax/finetuning_scripts/run_librispeech_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..6a3b9e73b051c1eee0b94af8161c8f45167622f3 --- /dev/null +++ b/flax/finetuning_scripts/run_librispeech_dummy.sh @@ -0,0 +1,27 @@ +#!/usr/bin/env bash + +python run_finetuning.py \ + --model_name_or_path "distil-whisper/tiny-random-whisper" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --train_split_name "train.clean.100[:1024]" \ + --eval_split_name "validation.clean[:1024]" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --text_column_name "text" \ + --output_dir "./" \ + --do_train \ + --do_eval \ + --per_device_train_batch_size 8 \ + --per_device_eval_batch_size 4 \ + --dtype "bfloat16" \ + --num_train_epochs 2 \ + --dataloader_num_workers 16 \ + --freeze_encoder \ + --wandb_project "distil-whisper-debug" \ + --logging_steps 2 \ + --use_scan \ + --gradient_checkpointing \ + --overwrite_output_dir \ + --predict_with_generate diff --git a/flax/finetuning_scripts/run_librispeech_eval.sh b/flax/finetuning_scripts/run_librispeech_eval.sh new file mode 100644 index 0000000000000000000000000000000000000000..116696c9ba72531a1966d93b26ecdcdce1c7986c --- /dev/null +++ b/flax/finetuning_scripts/run_librispeech_eval.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "./" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --test_split_name "validation.clean+validation.other+test.clean+test.other" \ + --text_column_name "text" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_name "large-32-2-pl-freeze-librispeech-eval" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-librispeech" \ + --per_device_eval_batch_size 128 \ + --dtype "bfloat16" \ + --do_predict \ + --preprocessing_num_workers 16 \ + --dataloader_num_workers 8 \ + --load_with_scan \ + --predict_with_generate \ + --report_to "wandb" diff --git a/flax/finetuning_scripts/run_librispeech_eval_dummy.sh b/flax/finetuning_scripts/run_librispeech_eval_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..7e980e0f4b50a6202831d65ad9c96bed2b5acae9 --- /dev/null +++ b/flax/finetuning_scripts/run_librispeech_eval_dummy.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash + +python run_eval.py \ + --model_name_or_path "./" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --test_split_name "validation.clean[:32]+validation.other[:32]" \ + --text_column_name "text" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-debug" \ + --per_device_eval_batch_size 4 \ + --dtype "bfloat16" \ + --do_predict \ + --preprocessing_num_workers 16 \ + --dataloader_num_workers 8 \ + --load_with_scan \ + --predict_with_generate \ + --report_to "wandb" diff --git a/flax/finetuning_scripts/run_librispeech_sweep.yaml b/flax/finetuning_scripts/run_librispeech_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..07634a8db6da104a37b2082be38dcf58ebf8cee4 --- /dev/null +++ b/flax/finetuning_scripts/run_librispeech_sweep.yaml @@ -0,0 +1,60 @@ +command: + - python3 + - ${program} + - --do_train + - --do_eval + - --use_scan + - --gradient_checkpointing + - --overwrite_output_dir + - --predict_with_generate + - ${args} +method: random +metric: + goal: minimize + name: eval/wer +parameters: + model_name_or_path: + value: distil-whisper/large-32-2 + dataset_name: + value: distil-whisper/librispeech_asr + dataset_config_name: + value: all + train_split_name: + value: train.clean.100+train.clean.360+train.other.500 + eval_split_name: + value: validation.clean + text_column_name: + value: whisper_transcript + cache_dir: + value: /home/sanchitgandhi/cache + dataset_cache_dir: + value: /home/sanchitgandhi/cache + output_dir: + value: ./ + per_device_train_batch_size: + value: 32 + per_device_eval_batch_size: + value: 16 + dtype: + value: bfloat16 + learning_rate: + distribution: log_uniform + max: -6.91 + min: -11.51 + warmup_steps: + value 500 + num_train_epochs: + value: 1 + preprocessing_num_workers: + value: 16 + dataloader_num_workers: + value: 16 + logging_steps: + value: 25 + freeze_encoder: + values: + - True + - False + +program: run_finetuning.py +project: distil-whisper diff --git a/flax/initialisation_scripts/run_large_32_2_init.sh b/flax/initialisation_scripts/run_large_32_2_init.sh new file mode 100644 index 0000000000000000000000000000000000000000..7e7ab99e86ca33517a049ea7b9c8865b1afa1797 --- /dev/null +++ b/flax/initialisation_scripts/run_large_32_2_init.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python create_student_model.py \ + --teacher_checkpoint "openai/whisper-large-v2" \ + --decoder_layers 2 \ + --save_dir "./" \ No newline at end of file diff --git a/flax/initialisation_scripts/run_medium_24_2_init.sh b/flax/initialisation_scripts/run_medium_24_2_init.sh new file mode 100644 index 0000000000000000000000000000000000000000..6ee9f533ab090a24933ec1340c9a930a4a788e91 --- /dev/null +++ b/flax/initialisation_scripts/run_medium_24_2_init.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python create_student_model.py \ + --teacher_checkpoint "openai/whisper-medium.en" \ + --decoder_layers 2 \ + --save_dir "./" diff --git a/flax/initialisation_scripts/run_small_12_2_init.sh b/flax/initialisation_scripts/run_small_12_2_init.sh new file mode 100644 index 0000000000000000000000000000000000000000..57b4bd5b6d183170d653a4af15223762e8c15f55 --- /dev/null +++ b/flax/initialisation_scripts/run_small_12_2_init.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python create_student_model.py \ + --teacher_checkpoint "openai/whisper-small.en" \ + --decoder_layers 2 \ + --save_dir "./" diff --git a/flax/initialisation_scripts/run_tiny_2_1_init.sh b/flax/initialisation_scripts/run_tiny_2_1_init.sh new file mode 100644 index 0000000000000000000000000000000000000000..a1c3d70f7cbc300b6fcc52eaf56b139bf5a896b1 --- /dev/null +++ b/flax/initialisation_scripts/run_tiny_2_1_init.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash + +TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD=10000000000 python create_student_model.py \ + --teacher_checkpoint "distil-whisper/tiny-random-whisper" \ + --decoder_layers 1 \ + --save_dir "./" diff --git a/flax/initialisation_scripts/run_tiny_2_1_init_pt.sh b/flax/initialisation_scripts/run_tiny_2_1_init_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..7f850d96ab77d7a2b385380f3e724db19af2617f --- /dev/null +++ b/flax/initialisation_scripts/run_tiny_2_1_init_pt.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash + +python create_student_model_pt.py \ + --teacher_checkpoint "distil-whisper/tiny-random-whisper" \ + --decoder_layers 1 \ + --save_dir "./" diff --git a/flax/latency_scripts/run_speculative.sh b/flax/latency_scripts/run_speculative.sh new file mode 100644 index 0000000000000000000000000000000000000000..d25389b5b8c4b8075aa59c1c369debf3edb63ea8 --- /dev/null +++ b/flax/latency_scripts/run_speculative.sh @@ -0,0 +1,30 @@ +#!/usr/bin/env bash +# batch_sizes=(1 4) +batch_sizes=(1) +names=("openai/whisper-large-v2" "openai/whisper-large-v2" "openai/whisper-medium.en" "openai/whisper-medium.en") +assistant_names=("patrickvonplaten/whisper-large-v2-32-2" "openai/whisper-small" "patrickvonplaten/whisper-medium-24-2" "openai/whisper-base.en") + +# --assistant_model_name_or_path "patrickvonplaten/whisper-large-v2-32-2" \ +# --use_pipeline \ + +# Double loop + +for (( i=0; i<${#names[*]}; ++i)); do + name=${names[$i]} + assistant_name=${assistant_names[$i]} + + for batch_size in "${batch_sizes[@]}"; do + CUDA_VISIBLE_DEVICES="0" python ./run_speed_pt.py \ + --dataset_name "distil-whisper/chime4+distil-whisper/earnings22+google/fleurs+kensho/spgispeech" \ + --wandb_name "FP16-RTX-4090-bsz${batch_size}-${name}-${assistant_name}" \ + --model_name_or_path ${name} \ + --wandb_project "distil-whisper-speed-bench-check-spec-dec-final" \ + --dataset_config_name "1-channel+chunked+en_us+test" \ + --dataset_split_name "test+test+test+test" \ + --text_column_name "text+transcription+transcription+transcript" \ + --attn_type "flash2" \ + --assistant_model_name_or_path ${assistant_name} \ + --samples_per_dataset "10" \ + --batch_size ${batch_size} + done +done diff --git a/flax/latency_scripts/run_speed.sh b/flax/latency_scripts/run_speed.sh new file mode 100644 index 0000000000000000000000000000000000000000..2273a817698ca23e2a4127735fcbc9cde6e29c27 --- /dev/null +++ b/flax/latency_scripts/run_speed.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash +# --assistant_model_name_or_path "patrickvonplaten/whisper-large-v2-32-2" \ +# --attn_type "flash2" \ +names=("openai/whisper-large-v2" "openai/whisper-medium.en" "openai/whisper-small.en" "openai/whisper-base.en" "openai/whisper-tiny.en" "patrickvonplaten/whisper-large-v2-32-2" "patrickvonplaten/whisper-medium-24-2") +batch_sizes=(1 4 16) + +# Double loop +for name in "${names[@]}"; do + for batch_size in "${batch_sizes[@]}"; do + CUDA_VISIBLE_DEVICES="1" python ./run_speed_pt.py \ + --dataset_name "google/fleurs+distil-whisper/chime4+distil-whisper/earnings22+kensho/spgispeech" \ + --wandb_name "A100-bsz${batch_size}-${name}" \ + --model_name_or_path ${name} \ + --wandb_project "distil-whisper-speed-bench-256-no-timestamps" \ + --dataset_config_name "en_us+1-channel+chunked+test" \ + --dataset_split_nam "test+test+test+test" \ + --text_column_name "transcription+text+transcription+transcript" \ + --samples_per_dataset "256" \ + --batch_size ${batch_size} + done +done diff --git a/flax/latency_scripts/run_speed_longform.sh b/flax/latency_scripts/run_speed_longform.sh new file mode 100644 index 0000000000000000000000000000000000000000..ed7fe5d7f5c9ac27d555033bdd343e891f60e94e --- /dev/null +++ b/flax/latency_scripts/run_speed_longform.sh @@ -0,0 +1,30 @@ +#!/usr/bin/env bash +names=("openai/whisper-large-v2" "openai/whisper-medium.en" "openai/whisper-small.en" "openai/whisper-base.en" "openai/whisper-tiny.en" "patrickvonplaten/whisper-large-v2-32-2" "patrickvonplaten/whisper-medium-24-2") + +# chunk_lengths=("15.0" "30.0") +# --assistant_model_name_or_path "patrickvonplaten/whisper-large-v2-32-2" \ +# --attn_type "flash" \ + +# Double loop +for name in "${names[@]}"; do + if [[ ${name:0:6} == "openai" ]]; then + chunk_length_s=30.0 + else + chunk_length_s=15.0 + fi + + CUDA_VISIBLE_DEVICES="1" python ./run_speed_pt.py \ + --dataset_name "distil-whisper/earnings21+distil-whisper/earnings22+distil-whisper/meanwhile+distil-whisper/rev16" \ + --wandb_name "T4-${name}-Longform" \ + --model_name_or_path ${name} \ + --wandb_project "distil-whisper-speed-bench-long-form-32" \ + --dataset_config_name "full+full+default+whisper_subset" \ + --dataset_split_name "test+test+test+test" \ + --text_column_name "transcription+transcription+text+transcription" \ + --chunk_length_s "$chunk_length_s" \ + --use_pipeline \ + --return_timestamps \ + --max_label_length "1000000" \ + --samples_per_dataset "32" \ + --batch_size "1" +done diff --git a/flax/latency_scripts/run_trial.sh b/flax/latency_scripts/run_trial.sh new file mode 100644 index 0000000000000000000000000000000000000000..d7fafd6c98557e3abaa0300d9975494060960d1e --- /dev/null +++ b/flax/latency_scripts/run_trial.sh @@ -0,0 +1,10 @@ +#!/usr/bin/env bash +CUDA_VISIBLE_DEVICES="0" python ./run_speed_pt.py \ + --dataset_name "distil-whisper/earnings22" \ + --wandb_name "[Earnings] RTX 4090 - large-v2-32-2" \ + --model_name_or_path "patrickvonplaten/whisper-large-v2-32-2" \ + --wandb_project "distil-whisper-speed-benchmark" \ + --dataset_config_name "chunked" \ + --dataset_split_nam "test" \ + --text_column_name "transcription" \ + --batch_size 1 diff --git a/flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml b/flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c1ff93d231916a3b06338ea5f7d71d3f943a7690 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_chunk_length_s_sweep.yaml @@ -0,0 +1,47 @@ +command: + - python3 + - ${program} + - --streaming + - ${args} +method: grid +metric: + goal: minimize + name: tedlium-long-form/validation/wer +parameters: + model_name_or_path: + value: sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10 + subfolder: + value: checkpoint-15000 + dataset_name: + value: distil-whisper/tedlium-long-form + dataset_config_name: + value: all + dataset_split_name: + value: validation + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + compilation_cache: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + wandb_dir: + value: /home/sanchitgandhi/.cache + per_device_eval_batch_size: + value: 8 + dtype: + value: bfloat16 + report_to: + value: wandb + chunk_length_s: + values: + - 10 + - 15 + - 20 + - 25 + - 30 + generation_max_length: + value: 128 +program: run_long_form_transcription.py +project: distil-whisper-long-form \ No newline at end of file diff --git a/flax/long_form_transcription_scripts/run_eval_with_pipeline.sh b/flax/long_form_transcription_scripts/run_eval_with_pipeline.sh new file mode 100644 index 0000000000000000000000000000000000000000..4db30b3ce86bfc8a2da40e99fe894cc8f415086b --- /dev/null +++ b/flax/long_form_transcription_scripts/run_eval_with_pipeline.sh @@ -0,0 +1,24 @@ +#!/usr/bin/env bash + +DATASET_NAMES="librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech+chime4+google/fleurs+sanchit-gandhi/earnings22_split_resampled" +DATASET_CONFIG_NAMES="all+all+en+en+ihm+sdm+clean+release3+all+l+L+1-channel+en_us+default" +DATASET_SPLIT_NAMES="validation.clean+validation.other+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation+validation" +TEXT_COLUMN_NAMES="text+text+text+text+text+text+text+text+text+text+text+text+transcription+sentence" + +python run_long_form_transcription.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-ts-28k-wer-10-converted-context-20s" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-eval" \ + --wandb_name "large-32-2-ts-freeze-28k-wer-10-30k-steps-chunk-length-15-context-20" \ + --per_device_eval_batch_size 1 \ + --chunk_length_s 15 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming diff --git a/flax/long_form_transcription_scripts/run_length_penalty_sweep.yaml b/flax/long_form_transcription_scripts/run_length_penalty_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..18f6ad7f67a8a7c6c020ac9096a91e5343deb113 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_length_penalty_sweep.yaml @@ -0,0 +1,47 @@ +command: + - python3 + - ${program} + - --streaming + - ${args} +method: grid +metric: + goal: minimize + name: tedlium-long-form/validation/wer +parameters: + model_name_or_path: + value: sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10 + subfolder: + value: checkpoint-15000 + dataset_name: + value: distil-whisper/tedlium-long-form + dataset_config_name: + value: all + dataset_split_name: + value: validation + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + wandb_dir: + value: /home/sanchitgandhi/.cache + per_device_eval_batch_size: + value: 32 + dtype: + value: bfloat16 + report_to: + value: wandb + generation_num_beams: + value: 5 + generation_max_length: + value: 256 + length_penalty: + values: + - 0.6 + - 0.8 + - 1.0 + - 1.2 + - 1.4 +program: run_long_form_transcription.py +project: distil-whisper-long-form \ No newline at end of file diff --git a/flax/long_form_transcription_scripts/run_tedlium_long_form.sh b/flax/long_form_transcription_scripts/run_tedlium_long_form.sh new file mode 100644 index 0000000000000000000000000000000000000000..53a7152a764c3531b224cee30267cf0a352dadf0 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_tedlium_long_form.sh @@ -0,0 +1,19 @@ +#!/usr/bin/env bash + +python run_long_form_transcription.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10" \ + --subfolder "checkpoint-15000" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "all" \ + --dataset_split_name "validation" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form" \ + --wandb_name "large-32-2-ts-freeze-28k-wer-10-30k-steps" \ + --per_device_eval_batch_size 32 \ + --chunk_length_s 20 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming diff --git a/flax/long_form_transcription_scripts/run_tedlium_long_form_dummy.sh b/flax/long_form_transcription_scripts/run_tedlium_long_form_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..ddf854b8d6d402f042357dc0511509febc757400 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_tedlium_long_form_dummy.sh @@ -0,0 +1,18 @@ +#!/usr/bin/env bash + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-tiny" \ + --dataset_name "distil-whisper/tedlium-long-form" \ + --dataset_config_name "all" \ + --dataset_split_name "validation" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-debug" \ + --wandb_name "whisper-tiny-tedlium-long-form" \ + --per_device_eval_batch_size 64 \ + --max_eval_samples 1 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming diff --git a/flax/long_form_transcription_scripts/run_tedlium_long_form_timestamps.sh b/flax/long_form_transcription_scripts/run_tedlium_long_form_timestamps.sh new file mode 100644 index 0000000000000000000000000000000000000000..314c566928a5751090e85059a33dba239bef1cd2 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_tedlium_long_form_timestamps.sh @@ -0,0 +1,18 @@ +#!/usr/bin/env bash + +python run_long_form_transcription.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10-v4-8-10k-steps" \ + --dataset_name "distil-whisper/tedlium-long-form+distil-whisper/tedlium-long-form" \ + --dataset_config_name "all+all" \ + --dataset_split_name "validation+test" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form" \ + --wandb_name "large-32-2-ts-freeze-28k-wer-10-v4-8-10k-steps-tedlium-timestamps" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps \ No newline at end of file diff --git a/flax/long_form_transcription_scripts/run_top_k_temperature_sweep.yaml b/flax/long_form_transcription_scripts/run_top_k_temperature_sweep.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bb2c1a72028d2c5c9a0a038824885a72203e8701 --- /dev/null +++ b/flax/long_form_transcription_scripts/run_top_k_temperature_sweep.yaml @@ -0,0 +1,51 @@ +command: + - python3 + - ${program} + - --streaming + - --do_sample + - ${args} +method: grid +metric: + goal: minimize + name: tedlium-long-form/validation/wer +parameters: + model_name_or_path: + value: sanchit-gandhi/large-32-2-ts-freeze-28k-wer-10 + subfolder: + value: checkpoint-15000 + dataset_name: + value: distil-whisper/tedlium-long-form + dataset_config_name: + value: all + dataset_split_name: + value: validation + cache_dir: + value: /home/sanchitgandhi/.cache + dataset_cache_dir: + value: /home/sanchitgandhi/.cache + output_dir: + value: ./ + wandb_dir: + value: /home/sanchitgandhi/.cache + per_device_eval_batch_size: + value: 32 + dtype: + value: bfloat16 + report_to: + value: wandb + generation_num_beams: + value: 1 + generation_max_length: + value: 256 + temperature: + values: + - 0.2 + - 0.4 + - 0.6 + - 0.8 + - 1.0 + - 1.2 + chunk_length_s: + value: 20 +program: run_long_form_transcription.py +project: distil-whisper-long-form \ No newline at end of file diff --git a/flax/long_form_transcription_scripts/test/run_baselines.sh b/flax/long_form_transcription_scripts/test/run_baselines.sh new file mode 100644 index 0000000000000000000000000000000000000000..d1a1b586cbce5d45877dfd1099d854a16211e317 --- /dev/null +++ b/flax/long_form_transcription_scripts/test/run_baselines.sh @@ -0,0 +1,106 @@ +#!/usr/bin/env bash + +DATASET_NAMES="distil-whisper/tedlium-long-form+distil-whisper/earnings21+distil-whisper/earnings22+distil-whisper/meanwhile+distil-whisper/rev16" +DATASET_CONFIG_NAMES="all+full+full+default+whisper_subset" +DATASET_SPLIT_NAMES="test+test+test+test+test" +TEXT_COLUMN_NAMES="text+transcription+transcription+text+transcription" + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-tiny.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "tiny.en" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 30 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-base.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "base.en" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 30 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-small.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "small.en" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 30 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-medium.en" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "medium.en" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 30 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps + +python run_long_form_transcription.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "large-v2" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 30 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming \ + --return_timestamps diff --git a/flax/long_form_transcription_scripts/test/run_baselines_pt.sh b/flax/long_form_transcription_scripts/test/run_baselines_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..84776311005296b455b5ce612f17dafee4d4ba2f --- /dev/null +++ b/flax/long_form_transcription_scripts/test/run_baselines_pt.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash + +DATASET_NAMES="distil-whisper/tedlium-long-form+distil-whisper/earnings21+distil-whisper/earnings22+distil-whisper/meanwhile+distil-whisper/rev16" +DATASET_CONFIG_NAMES="all+full+full+default+whisper_subset" +DATASET_SPLIT_NAMES="test+test+test+test+test" +TEXT_COLUMN_NAMES="text+transcription+transcription+text+transcription" + +python run_pt_long_form_transcription.py \ + --model_name_or_path "facebook/wav2vec2-large-960h" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --output_dir "./" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "wav2vec2-large-960h" \ + --per_device_eval_batch_size 32 \ + --chunk_length_s 20 \ + --dtype "float16" \ + --report_to "wandb" \ + --streaming diff --git a/flax/long_form_transcription_scripts/test/run_distilled.sh b/flax/long_form_transcription_scripts/test/run_distilled.sh new file mode 100644 index 0000000000000000000000000000000000000000..8d1b879d4f4f2abba06257d518d1eaced6bca4f2 --- /dev/null +++ b/flax/long_form_transcription_scripts/test/run_distilled.sh @@ -0,0 +1,45 @@ +#!/usr/bin/env bash + +DATASET_NAMES="distil-whisper/tedlium-long-form+distil-whisper/earnings21+distil-whisper/earnings22+distil-whisper/meanwhile+distil-whisper/rev16" +DATASET_CONFIG_NAMES="all+full+full+default+whisper_subset" +DATASET_SPLIT_NAMES="test+test+test+test+test" +TEXT_COLUMN_NAMES="text+transcription+transcription+text+transcription" + +python run_long_form_transcription.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-tpu-timestamped-resumed" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "large-32-2" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 15 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming + +python run_long_form_transcription.py \ + --model_name_or_path "sanchit-gandhi/medium-24-2-tpu-timestamped-prob-0.2" \ + --subfolder "checkpoint-45000" \ + --dataset_name $DATASET_NAMES \ + --dataset_config_name $DATASET_CONFIG_NAMES \ + --dataset_split_name $DATASET_SPLIT_NAMES \ + --text_column_name $TEXT_COLUMN_NAMES \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-long-form-test" \ + --wandb_name "medium-24-2" \ + --per_device_eval_batch_size 16 \ + --chunk_length_s 20 \ + --generation_max_length 128 \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming diff --git a/flax/noise_evaluation_scripts/run_baselines.sh b/flax/noise_evaluation_scripts/run_baselines.sh new file mode 100644 index 0000000000000000000000000000000000000000..eb9a2e507ab102fb5a9db8e6c6c8947ce96aae32 --- /dev/null +++ b/flax/noise_evaluation_scripts/run_baselines.sh @@ -0,0 +1,98 @@ +#!/usr/bin/env bash + +DATASET_NAME="librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise" +DATASET_CONFIG_NAME=("validation-white-noise" "validation-pub-noise") +DATASET_SPLIT_NAME="40+35+30+25+20+15+10+5+0+minus5+minus10" + +for i in "${!DATASET_CONFIG_NAME[@]}"; do + python run_eval.py \ + --model_name_or_path "openai/whisper-tiny.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "tiny.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-base.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "base.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-small.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "small.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-medium.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "medium.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "large-v2-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + +done \ No newline at end of file diff --git a/flax/noise_evaluation_scripts/run_baselines_pt.sh b/flax/noise_evaluation_scripts/run_baselines_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..cc49dc577c58fba90d17abb916ed46971d30bc87 --- /dev/null +++ b/flax/noise_evaluation_scripts/run_baselines_pt.sh @@ -0,0 +1,27 @@ +#!/usr/bin/env bash + +MODEL_IDs=("facebook/wav2vec2-base-960h" "facebook/wav2vec2-large-960h" "facebook/wav2vec2-large-960h-lv60-self" "facebook/wav2vec2-large-robust-ft-libri-960h" "facebook/wav2vec2-conformer-rel-pos-large-960h-ft" "facebook/wav2vec2-conformer-rope-large-960h-ft" "facebook/hubert-large-ls960-ft" "facebook/hubert-xlarge-ls960-ft" "facebook/mms-1b-all" "facebook/mms-1b-fl102" "facebook/data2vec-audio-large-960h" "facebook/data2vec-audio-base-960h") +DATASET_NAME="librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise" +DATASET_CONFIG_NAME=("test-white-noise" "test-pub-noise") +DATASET_SPLIT_NAME="40+35+30+25+20+15+10+5+0+minus5+minus10" + +for i in "${!MODEL_IDs[@]}"; do + for j in "${!DATASET_CONFIG_NAME[@]}"; do + python run_pt_long_form_transcription.py \ + --model_name_or_path "${MODEL_IDs[i]}" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}+${DATASET_CONFIG_NAME[j]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchit/.cache" \ + --dataset_cache_dir "/home/sanchit/.cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchit/.cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "${MODEL_IDs[i]}-${DATASET_CONFIG_NAME[j]}" \ + --per_device_eval_batch_size 16 \ + --dtype "float16" \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + done +done diff --git a/flax/noise_evaluation_scripts/run_distilled.sh b/flax/noise_evaluation_scripts/run_distilled.sh new file mode 100644 index 0000000000000000000000000000000000000000..123971f50432ec2f00e10d24b869fcd9e36f7c6f --- /dev/null +++ b/flax/noise_evaluation_scripts/run_distilled.sh @@ -0,0 +1,25 @@ +#!/usr/bin/env bash + +DATASET_NAME="librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise" +DATASET_CONFIG_NAME=("validation-white-noise" "validation-pub-noise") +DATASET_SPLIT_NAME="40+35+30+25+20+15+10+5+0+minus5+minus10" + +for i in "${!DATASET_CONFIG_NAME[@]}"; do + python run_eval.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-gpu-flat-lr" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-eval" \ + --wandb_name "large-32-2-gpu-flat-lr-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate +done diff --git a/flax/noise_evaluation_scripts/test/run_baselines.sh b/flax/noise_evaluation_scripts/test/run_baselines.sh new file mode 100644 index 0000000000000000000000000000000000000000..427a25e3a704c6a37284608646a076755e7405a5 --- /dev/null +++ b/flax/noise_evaluation_scripts/test/run_baselines.sh @@ -0,0 +1,97 @@ +#!/usr/bin/env bash + +DATASET_NAME="librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise" +DATASET_CONFIG_NAME=("test-white-noise" "test-pub-noise") +DATASET_SPLIT_NAME="40+35+30+25+20+15+10+5+0+minus5+minus10" + +for i in "${!DATASET_CONFIG_NAME[@]}"; do + python run_eval.py \ + --model_name_or_path "openai/whisper-tiny.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "tiny.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-base.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "base.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-small.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "small.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-medium.en" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "medium.en-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 32 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "large-v2-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 16 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate +done \ No newline at end of file diff --git a/flax/noise_evaluation_scripts/test/run_distilled.sh b/flax/noise_evaluation_scripts/test/run_distilled.sh new file mode 100644 index 0000000000000000000000000000000000000000..b7ede30a91db9dc1d8ff33e51d4772259741ad7e --- /dev/null +++ b/flax/noise_evaluation_scripts/test/run_distilled.sh @@ -0,0 +1,44 @@ +#!/usr/bin/env bash + +DATASET_NAME="librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise+librispeech_asr-noise" +DATASET_CONFIG_NAME=("test-white-noise" "test-pub-noise") +DATASET_SPLIT_NAME="40+35+30+25+20+15+10+5+0+minus5+minus10" + +for i in "${!DATASET_CONFIG_NAME[@]}"; do + python run_eval.py \ + --model_name_or_path "sanchit-gandhi/large-32-2-tpu-timestamped-resumed" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "large-32-2-tpu-timestamped-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate + + python run_eval.py \ + --model_name_or_path "sanchit-gandhi/medium-24-2-tpu-timestamped-prob-0.2" \ + --subfolder "checkpoint-45000" \ + --dataset_name $DATASET_NAME \ + --dataset_config_name "${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}+${DATASET_CONFIG_NAME[i]}" \ + --dataset_split_name $DATASET_SPLIT_NAME \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./" \ + --wandb_dir "/home/sanchitgandhi/cache" \ + --wandb_project "distil-whisper-noise-test" \ + --wandb_name "medium-24-2-tpu-timestamped-prob-0.2-${DATASET_CONFIG_NAME[i]}" \ + --per_device_eval_batch_size 64 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --report_to "wandb" \ + --streaming \ + --predict_with_generate +done diff --git a/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling.sh b/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling.sh new file mode 100644 index 0000000000000000000000000000000000000000..8f6d14a15412cc7a3e1825ab03595e22ddf54c32 --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +python run_pseudo_labelling.py \ + --model_name_or_path "openai/whisper-large-v2" \ + --dataset_name "sanchit-gandhi/librispeech_asr_clean" \ + --dataset_config_name "clean" \ + --data_split_name "train.100" \ + --text_column_name "text" \ + --cache_dir "/home/sanchitgandhi/cache" \ + --dataset_cache_dir "/home/sanchitgandhi/cache" \ + --output_dir "./transcriptions-streaming" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-debug" \ + --wandb_name "whisper-large-v2-beam-libri-train.clean.100" \ + --per_device_eval_batch_size 16 \ + --max_label_length 256 \ + --dtype "bfloat16" \ + --preprocessing_num_workers 16 \ + --report_to "wandb" \ + --dataloader_num_workers 16 \ + --streaming False \ + --generation_num_beams 1 diff --git a/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling_dummy.sh b/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling_dummy.sh new file mode 100644 index 0000000000000000000000000000000000000000..e96b9cfbc57ef322aed0dcde1bbd7794050a8047 --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_librispeech_pseudo_labelling_dummy.sh @@ -0,0 +1,23 @@ +#!/usr/bin/env bash + +python run_pseudo_labelling.py \ + --model_name_or_path "openai/whisper-tiny" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --data_split_name "validation.clean+validation.other" \ + --text_column_name "text" \ + --cache_dir "/home/sanchitgandhi/.cache" \ + --dataset_cache_dir "/home/sanchitgandhi/.cache" \ + --output_dir "./transcriptions-streaming" \ + --wandb_dir "/home/sanchitgandhi/.cache" \ + --wandb_project "distil-whisper-debug" \ + --per_device_eval_batch_size 1 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --logging_steps 2 \ + --report_to "wandb" \ + --streaming \ + --max_samples_per_split 256 \ + --max_label_length 256 \ + --return_timestamps \ + --decode_token_ids False diff --git a/flax/pseudo_labelling_scripts/run_pseudo_labelling.sh b/flax/pseudo_labelling_scripts/run_pseudo_labelling.sh new file mode 100644 index 0000000000000000000000000000000000000000..e15ead92ee593926d065b4b65187a6693abaf326 --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_pseudo_labelling.sh @@ -0,0 +1,59 @@ +#!/usr/bin/env bash + +MODEL_NAME="openai/whisper-large-v3" +CACHE_DIR="/home/sanchitgandhi/.cache" +OUTPUT_DIR="./transcriptions-streaming" +WANDB_DIR="/home/sanchitgandhi/.cache" +WANDB_PROJECT="distil-whisper-label" +BATCH_SIZE=64 +NUM_BEAMS=1 +MAX_LABEL_LENGTH=256 +LOGGING_STEPS=500 +NUM_WORKERS=64 +RETURN_TIMESTAMPS=False + +python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --data_split_name "train.other.500+validation.clean+validation.other+test.clean+test.other" \ + --wandb_name "whisper-large-v2-librispeech_asr" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR + +python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "distil-whisper/peoples_speech-clean" \ + --dataset_config_name "clean" \ + --data_split_name "train+validation+test" \ + --wandb_name "whisper-large-v2-peoples_speech-clean" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR diff --git a/flax/pseudo_labelling_scripts/run_pseudo_labelling_2.sh b/flax/pseudo_labelling_scripts/run_pseudo_labelling_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..2f83ed36dc23301c4151217e42d841e10e6d2294 --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_pseudo_labelling_2.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +MODEL_NAME="openai/whisper-large-v3" +CACHE_DIR="/home/sanchitgandhi/.cache" +OUTPUT_DIR="./transcriptions-streaming" +WANDB_DIR="/home/sanchitgandhi/.cache" +WANDB_PROJECT="distil-whisper-label" +SPLITS="train+validation+test" +BATCH_SIZE=64 +NUM_BEAMS=1 +MAX_LABEL_LENGTH=256 +LOGGING_STEPS=500 +NUM_WORKERS=64 +RETURN_TIMESTAMPS=False + +DATASET_NAMES=("distil-whisper/common_voice_13_0" "distil-whisper/voxpopuli" "distil-whisper/tedlium" "distil-whisper/ami-ihm" "distil-whisper/ami-sdm" "distil-whisper/spgispeech" "distil-whisper/gigaspeech-l") +CONFIGS=("en" "en" "release3" "ihm" "sdm" "L" "l") + +for i in "${!DATASET_NAMES[@]}"; do + python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "${DATASET_NAMES[i]}" \ + --dataset_config_name "${CONFIGS[i]}" \ + --data_split_name "$SPLITS" \ + --wandb_name "whisper-large-v2-${DATASET_NAMES[i]}" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR +done diff --git a/flax/pseudo_labelling_scripts/run_pseudo_labelling_dummy_pt.sh b/flax/pseudo_labelling_scripts/run_pseudo_labelling_dummy_pt.sh new file mode 100644 index 0000000000000000000000000000000000000000..e7891bc761de5d53816a6baa4e25cbc6bcaf16ac --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_pseudo_labelling_dummy_pt.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash + +accelerate launch --mixed_precision=bf16 --num_processes=1 run_pseudo_labelling_pt.py \ + --model_name_or_path "openai/whisper-tiny" \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --data_split_name "validation.clean+validation.other" \ + --text_column_name "text" \ + --cache_dir "/home/sanchit/.cache" \ + --dataset_cache_dir "/home/sanchit/.cache" \ + --output_dir "./transcriptions-streaming" \ + --wandb_project "distil-whisper-debug" \ + --per_device_eval_batch_size 8 \ + --dtype "bfloat16" \ + --dataloader_num_workers 16 \ + --logging_steps 2 \ + --report_to "wandb" \ + --streaming \ + --max_samples_per_split 256 \ + --max_label_length 256 \ + --return_timestamps \ + --decode_token_ids False diff --git a/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids.sh b/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids.sh new file mode 100644 index 0000000000000000000000000000000000000000..fe046ab90b856a5a8c9d4a1eb8fd19efb9811fed --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids.sh @@ -0,0 +1,62 @@ +#!/usr/bin/env bash + +MODEL_NAME="openai/whisper-large-v3" +CACHE_DIR="/home/sanchitgandhi/.cache" +OUTPUT_DIR="./transcriptions-streaming" +WANDB_DIR="/home/sanchitgandhi/.cache" +WANDB_PROJECT="distil-whisper-label" +BATCH_SIZE=16 +NUM_BEAMS=1 +MAX_LABEL_LENGTH=256 +LOGGING_STEPS=500 +NUM_WORKERS=64 +RETURN_TIMESTAMPS=False +DECODE_TOKEN_IDS=False + +python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "distil-whisper/librispeech_asr" \ + --dataset_config_name "all" \ + --data_split_name "train.other.500+validation.clean+validation.other+test.clean+test.other" \ + --wandb_name "whisper-large-v2-librispeech_asr-token-ids" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR \ + --decode_token_ids $DECODE_TOKEN_IDS + +python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "distil-whisper/peoples_speech-clean" \ + --dataset_config_name "clean" \ + --data_split_name "train+validation+test" \ + --wandb_name "whisper-large-v2-peoples_speech-clean-token-ids" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR \ + --decode_token_ids $DECODE_TOKEN_IDS diff --git a/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids_2.sh b/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids_2.sh new file mode 100644 index 0000000000000000000000000000000000000000..9fcc4c0928bb12ad5c0d4befebe7a7932532a47e --- /dev/null +++ b/flax/pseudo_labelling_scripts/run_pseudo_labelling_token_ids_2.sh @@ -0,0 +1,44 @@ +#!/usr/bin/env bash + +MODEL_NAME="openai/whisper-large-v3" +CACHE_DIR="/home/sanchitgandhi/.cache" +OUTPUT_DIR="./transcriptions-streaming" +WANDB_DIR="/home/sanchitgandhi/.cache" +WANDB_PROJECT="distil-whisper-label" +SPLITS="train+validation+test" +BATCH_SIZE=16 +NUM_BEAMS=1 +MAX_LABEL_LENGTH=256 +LOGGING_STEPS=500 +NUM_WORKERS=64 +RETURN_TIMESTAMPS=False +DECODE_TOKEN_IDS=False + +DATASET_NAMES=("distil-whisper/common_voice_13_0" "distil-whisper/voxpopuli" "distil-whisper/tedlium" "distil-whisper/ami-ihm" "distil-whisper/ami-sdm" "distil-whisper/spgispeech" "distil-whisper/gigaspeech-l") +CONFIGS=("en" "en" "release3" "ihm" "sdm" "L" "l") + +for i in "${!DATASET_NAMES[@]}"; do + python run_pseudo_labelling.py \ + --model_name_or_path $MODEL_NAME \ + --dataset_name "${DATASET_NAMES[i]}" \ + --dataset_config_name "${CONFIGS[i]}" \ + --data_split_name "$SPLITS" \ + --wandb_name "whisper-large-v2-${DATASET_NAMES[i]}-token-ids" \ + --cache_dir $CACHE_DIR \ + --dataset_cache_dir $CACHE_DIR \ + --output_dir $OUTPUT_DIR \ + --wandb_dir $WANDB_DIR \ + --wandb_project $WANDB_PROJECT \ + --per_device_eval_batch_size $BATCH_SIZE \ + --generation_num_beams $NUM_BEAMS \ + --max_label_length $MAX_LABEL_LENGTH \ + --logging_steps $LOGGING_STEPS \ + --dataloader_num_workers $NUM_WORKERS \ + --dtype "bfloat16" \ + --report_to "wandb" \ + --streaming True \ + --push_to_hub \ + --return_timestamps $RETURN_TIMESTAMPS \ + --compilation_cache $CACHE_DIR \ + --decode_token_ids $DECODE_TOKEN_IDS +done diff --git a/flax/pyproject.toml b/flax/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..776884b3ff48d48581b82b4d76fd4233700ec271 --- /dev/null +++ b/flax/pyproject.toml @@ -0,0 +1,17 @@ +[tool.black] +line-length = 119 +target-version = ['py37'] + +[tool.ruff] +# Never enforce `E501` (line length violations). +ignore = ["C901", "E501", "E741", "W605"] +select = ["C", "E", "F", "I", "W"] +line-length = 119 + +# Ignore import violations in all `__init__.py` files. +[tool.ruff.per-file-ignores] +"__init__.py" = ["E402", "F401", "F403", "F811"] + +[tool.ruff.isort] +lines-after-imports = 2 +known-first-party = ["distil_whisper"] \ No newline at end of file diff --git a/flax/requirements.txt b/flax/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..13f585fce0ae73a651e18731e842497354af656c --- /dev/null +++ b/flax/requirements.txt @@ -0,0 +1,5 @@ +torch>=1.7 +transformers +datasets[audio] +jiwer +evaluate>=0.3.0 diff --git a/flax/run_distillation.py b/flax/run_distillation.py new file mode 100644 index 0000000000000000000000000000000000000000..dca7a4b41c2eb686c20f220ee04cb149162e558f --- /dev/null +++ b/flax/run_distillation.py @@ -0,0 +1,2137 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. +""" +# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments. + +import logging +import os +import re +import shutil +import string +import sys +import time +from dataclasses import dataclass, field +from functools import partial +from pathlib import Path +from typing import Any, Callable, Dict, List, Optional, Union + +import datasets +import evaluate +import flax +import jax +import jax.numpy as jnp +import numpy as np +import optax +import torch +import transformers +from datasets import ( + DatasetDict, + IterableDataset, + IterableDatasetDict, + concatenate_datasets, + interleave_datasets, + load_dataset, +) +from flax import jax_utils, traverse_util +from flax.jax_utils import pad_shard_unpad, unreplicate +from flax.serialization import from_bytes, to_bytes +from flax.training import train_state +from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key +from huggingface_hub import Repository, create_repo +from jax.experimental.compilation_cache import compilation_cache as cc +from optax._src import linear_algebra +from torch.utils.data import DataLoader +from torchdata.datapipes.iter import IterableWrapper +from tqdm import tqdm +from transformers import ( + AddedToken, + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperConfig, + WhisperFeatureExtractor, + WhisperProcessor, + WhisperTokenizerFast, + is_tensorboard_available, + is_wandb_available, + set_seed, +) +from transformers.file_utils import get_full_repo_name +from transformers.modeling_flax_outputs import FlaxBaseModelOutput +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version, send_example_telemetry +from transformers.utils.versions import require_version + +from distil_whisper import FlaxWhisperForConditionalGeneration + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + + +@flax.struct.dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")} + ) + teacher_model_name_or_path: str = field( + metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, + ) + model_revision: str = field( + default="main", + metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and trained. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + load_with_scan_weights: bool = field( + default=False, + metadata={ + "help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned " + "weights, defaults to False for non-scan (unrolled) weights." + }, + ) + activation_dropout: float = field( + default=0.0, + metadata={"help": "The dropout ratio for activations inside the fully connected layer."}, + ) + attention_dropout: float = field( + default=0.0, + metadata={"help": "The dropout ratio for the attention probabilities."}, + ) + dropout: float = field( + default=0.0, + metadata={ + "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." + }, + ) + + +@flax.struct.dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + train_dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the training dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " + " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." + }, + ) + train_dataset_config_name: Optional[str] = field( + default=None, + metadata={ + "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset configs by a '+' symbol." + }, + ) + train_dataset_samples: str = field( + default=None, + metadata={ + "help": "Number of samples in the training data. Load and combine " + "multiple datasets by separating dataset samples by a '+' symbol." + }, + ) + eval_dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified." + }, + ) + eval_dataset_config_name: Optional[str] = field( + default=None, + metadata={ + "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified" + }, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of" + " training examples to this value if set." + ) + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of" + " evaluation examples to this value if set." + ) + }, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")}, + ) + train_text_column_name: str = field( + default="whisper_transcript", + metadata={ + "help": ( + "The name of the dataset column containing the text data. Defaults to" + " 'whisper_transcript'which is the pseudo-labelled Whisper" + " transcription data." + ) + }, + ) + eval_text_column_name: str = field( + default="text", + metadata={ + "help": ( + "The name of the dataset column containing the text data. Defaults to" + " 'text', which is the original text data" + ) + }, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")}, + ) + min_duration_in_seconds: float = field( + default=0.0, + metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")}, + ) + max_label_length: int = field( + default=128, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + pad_target_to_multiple_of: Optional[int] = field( + default=None, + metadata={ + "help": ( + "If set will pad the target sequence to a multiple of the provided" + " value. This is important to avoid triggering recompilations on TPU." + " If unspecified, will default to padding the targets to max length." + ) + }, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + train_split_name: str = field( + default="train", + metadata={ + "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") + }, + ) + eval_split_name: str = field( + default="validation", + metadata={ + "help": ( + "The name of the evaluation data set split to use (via the datasets" + " library). Defaults to 'validation'" + ) + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + wer_threshold: float = field( + default=None, + metadata={ + "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` " + "WER with the normalised transcriptions." + }, + ) + prefetch_size: int = field( + default=0, + metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."}, + ) + timestamp_probability: float = field( + default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} + ) + return_timestamps: bool = field( + default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} + ) + round_timestamps: bool = field( + default=False, + metadata={ + "help": "Whether or not to round the timestamp tokens to the nearest tenth of a second." + "By default, Whisper predicts timestamps to the nearest hundredth of a second." + "Reducing the timestamp precision to one tenth of a second simplifies the timestamp" + "prediction task, at the expense of timestamp granularity." + }, + ) + + +@dataclass +class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments): + use_scan: Optional[bool] = field( + default=True, + metadata={ + "help": ( + "Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results " + "in faster compile times and more efficient memory use during training, since all of the layers " + "in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index " + "each layer. However, it results in slower inference time due to the overhead of stacking the " + "layers this way. Thus, we **always** default to disabling scan for the inference step." + ) + }, + ) + freeze_encoder: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " + "copied from the teacher model." + ) + }, + ) + temperature: Optional[float] = field( + default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} + ) + kl_weight: Optional[float] = field( + default=1.0, + metadata={ + "help": ( + "Weighting assigned to the MSE loss in the KD formulation. MSE loss is " + "computed between the teacher-student hidden states and attentions." + ) + }, + ) + mse_weight: Optional[float] = field( + default=0.0, + metadata={ + "help": ( + "Weighting assigned to the MSE loss in the KD formulation. MSE loss is " + "computed between the teacher-student hidden states and attentions." + ) + }, + ) + precision: Optional[str] = field( + default="half_mixed", + metadata={ + "help": ( + "Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two" + "of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation " + "and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three " + "settings is provided below:" + " 1. Full precision: forward pass, backward pass and optimiser states all in float32." + " 2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This " + " corresponds to setting the dtype argument to bfloat16 when instantiating the model." + " 3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype " + " argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 " + " parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter " + " updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 " + " prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to " + " memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step." + "For further details, refer to https://github.com/deepmind/optax/discussions/336" + ) + }, + ) + compilation_cache: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the " + "first time it is run. Successive compilation steps for the same function utilise the cache to reduce" + "the compilation time." + ) + }, + ) + save_train_state: Optional[bool] = field( + default=False, + metadata={ + "help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend" + "to resume training from partial training runs. If False, only the model weights will be saved." + "If True, both the model weights and Flax Train state will be saved." + }, + ) + + +def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: + """ + Shift label ids one token to the right. + """ + shifted_label_ids = np.zeros_like(label_ids) + shifted_label_ids[:, 1:] = label_ids[:, :-1] + shifted_label_ids[:, 0] = decoder_start_token_id + + return shifted_label_ids + + +@flax.struct.dataclass +class FlaxDataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The start-of-sequence token id of the decoder. + decoder_prev_token_id (:obj: `int`) + The start-of-prompt token id of the decoder + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + """ + + processor: Any + decoder_start_token_id: int + decoder_prev_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + + # dataloader returns a list of features which we convert to a dict + input_features = {model_input_name: [feature[model_input_name] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="np", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="np", + ) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + labels = labels_batch["input_ids"] + if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}): + decoder_input_ids = labels[:, :-1] + labels = labels[:, 1:] + labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] + else: + decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) + + # replace padding with -100 to ignore correctly when computing the loss + labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) + labels = labels.filled(fill_value=-100) + + # replace initial prompt tokens with -100 to ignore correctly when computing the loss + bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1) + prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None] + labels = np.where(prompt_mask, -100, labels) + + batch["labels"] = labels + batch["decoder_input_ids"] = decoder_input_ids + + return batch + + +def get_data_loader( + seed: int, + dataset: IterableDataset, + batch_size: int, + data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, + shuffle: bool = True, + drop_last: bool = True, + dataloader_num_workers: int = 0, + skip_batches: int = 0, + pin_memory: bool = True, + prefetch_size: int = 0, +) -> DataLoader: + """ + Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, + and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. + + Args: + seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset. + dataset (IterableDataset): streaming dataset from which to load the data. + batch_size (int): how many samples per batch to load. + data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a + mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. + shuffle (bool, optional): set to `True` to have the batches reshuffled. + drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, + if the dataset size is not divisible by the batch size. If ``False`` and + the size of dataset is not divisible by the batch size, then the last batch + will be smaller. (default: ``False``) + dataloader_num_workers (int, optional): how many subprocesses to use for data + loading. ``0`` means that the data will be loaded in the main process. + (default: ``0``) + skip_batches (int, optional): Efficiently skip the first `skip_batches`. + pin_memory (bool, optional): If ``True``, the data loader will copy Tensors + into device/CUDA pinned memory before returning them. If your data elements + are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, + see the example below. + + """ + if shuffle: + dataset = dataset.shuffle(seed) + + if skip_batches > 0: + dataset = dataset.skip(skip_batches * batch_size) + + if prefetch_size > 0: + dataset = IterableWrapper(dataset) + dataset = dataset.prefetch(prefetch_size) + + data_loader = DataLoader( + dataset, + batch_size=batch_size, + drop_last=drop_last, + pin_memory=pin_memory, + collate_fn=data_collator, + num_workers=dataloader_num_workers, + ) + + return data_loader + + +def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]: + ordering_and_checkpoint_path = [] + + glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] + + for path in glob_checkpoints: + if use_mtime: + ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) + else: + regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) + if regex_match is not None and regex_match.groups() is not None: + ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) + + checkpoints_sorted = sorted(ordering_and_checkpoint_path) + checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] + return checkpoints_sorted + + +def rotate_checkpoints( + save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint" +) -> None: + if save_total_limit is None or save_total_limit <= 0: + return + + # Check if we should delete older checkpoint(s) + checkpoints_sorted = sorted_checkpoints( + use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix + ) + if len(checkpoints_sorted) <= save_total_limit: + return + + number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) + checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] + for checkpoint in checkpoints_to_be_deleted: + logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") + shutil.rmtree(checkpoint, ignore_errors=True) + + +def to_fp32(t): + return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t) + + +def to_bf16(t): + return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t) + + +class TrainState(train_state.TrainState): + dropout_rng: jnp.ndarray + max_grad_norm: float + + def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs): + """Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the + gradients by the maximum grad norm. + + Note that internally this function calls `.tx.update()` followed by a call + to `optax.apply_updates()` to update `params` and `opt_state`. + + Args: + grads: Gradients that have the same pytree structure as `.params`. + **kwargs: Additional dataclass attributes that should be `.replace()`-ed. + + Returns: + An updated instance of `self` with `step` incremented by one, `params` + and `opt_state` updated by applying `grads`, and additional attributes + replaced as specified by `kwargs`. + """ + # clip gradients by global l2 norm + casted_max_grad_norm = to_dtype(self.max_grad_norm) + g_norm = linear_algebra.global_norm(grads) + g_norm = jnp.maximum(casted_max_grad_norm, g_norm) + grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads) + + # perform update step in fp32 and subsequently downcast optimizer states if mixed precision training + # grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is) + updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params) + + new_params = optax.apply_updates(self.params, updates) + + return self.replace( + step=self.step + 1, + params=new_params, + opt_state=to_dtype(new_opt_state), + **kwargs, + ) + + @classmethod + def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs): + """Creates a new instance with `step=0` and initialized `opt_state`.""" + # downcast optimizer state to bf16 if mixed-precision training + opt_state = tx.init(to_dtype(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + + def replicate(self): + return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) + + def unreplicate(self): + return jax_utils.unreplicate(self) + + def save_state(self, output_dir, save_total_limit=None, checkpoint_prefix="checkpoint"): + step = int(jax.device_get(unreplicate(self.step))) + serialized_state = to_bytes(self.unreplicate()) + + output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack")) + output_file.parent.mkdir(exist_ok=True, parents=True) + + with output_file.open("wb") as f: + f.write(serialized_state) + + logger.info(f"Flax train state saved in {output_file}") + rotate_checkpoints( + save_total_limit=save_total_limit, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix + ) + + +def save_hf_weights( + student_state: TrainState, + student_model: FlaxWhisperForConditionalGeneration, + processor: WhisperProcessor, + output_dir: str, + cur_step: int, + total_train_steps: int, + use_scan: bool = True, + checkpoint_prefix: str = "checkpoint", +) -> None: + # always disable scan in the params / model so that we can load from PyTorch directly - this is a no-op if we're not using scan for training + student_state_params = unreplicate(student_state.params) + student_state_params = student_model.convert_scan_to_unroll(student_state_params) + student_params = jax.device_get(student_state_params) + student_model.disable_scan() + + if cur_step != total_train_steps: + output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}") + os.makedirs(output_dir, exist_ok=True) + + student_model.save_pretrained(output_dir, params=student_params) + processor.save_pretrained(output_dir) + + # re-enable scan only if required for training + if use_scan: + student_model.enable_scan() + + +def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps): + summary_writer.scalar("train/time", train_time, step) + + train_metrics = get_metrics(train_metrics) + for key, vals in train_metrics.items(): + steps_arr = np.arange(0, step, logging_steps)[-len(vals) :] + tag = f"train/{key}" + for i, val in enumerate(vals): + summary_writer.scalar(tag, val, steps_arr[i]) + + +def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"{prefix}/{metric_name}", value, step) + + +def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + log_metrics[f"{prefix}/epoch"] = epoch + wandb_logger.log(log_metrics, step) + + +def write_wandb_pred( + wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000 +): + # pretty name for current step: step 50000 -> step 50k + cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + # log as a table with the appropriate headers + wandb_logger.log( + { + f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table( + columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines] + ) + }, + cur_step, + ) + # log incorrect normalised predictions + str_data = np.asarray(str_data) + str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] + # log as a table with the appropriate headers + wandb_logger.log( + { + f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table( + columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines] + ) + }, + cur_step, + ) + + +def create_learning_rate_fn( + num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float +) -> Callable[[int], jnp.array]: + """Returns a linear warmup, linear_decay learning rate function.""" + lr_scheduler_types = ("linear", "constant_with_warmup") + + if lr_scheduler_type not in lr_scheduler_types: + raise ValueError( + f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}." + ) + + warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) + decay_fn = optax.linear_schedule( + init_value=learning_rate, + end_value=0 if lr_scheduler_type == "linear" else learning_rate, + transition_steps=num_train_steps - num_warmup_steps, + ) + schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) + return schedule_fn + + +def convert_dataset_str_to_list( + dataset_names, + dataset_config_names, + splits=None, + text_column_names=None, + dataset_samples=None, + default_split="train", +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_samples is not None: + if len(dataset_samples) != len(dataset_names): + raise ValueError( + f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_samples)} samples." + ) + dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] + else: + dataset_samples = [None] * len(dataset_names) + + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "samples": dataset_samples[i], + } + ) + return dataset_names_dict + + +def load_multiple_datasets( + dataset_names: Union[List, str], + dataset_config_names: Union[List, str], + splits: Optional[Union[List, str]] = None, + text_column_names: Optional[List] = None, + sampling_rate: Optional[int] = 16000, + stopping_strategy: Optional[str] = "first_exhausted", + dataset_samples: Optional[Union[List, np.array]] = None, + streaming: bool = True, + seed: int = None, + **kwargs, +) -> IterableDataset: + dataset_names_dict = convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits, text_column_names, dataset_samples + ) + + if dataset_samples is not None: + dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] + probabilities = np.array(dataset_samples) / np.sum(dataset_samples) + else: + probabilities = None + + if len(dataset_names_dict) == 1: + dataset_dict = dataset_names_dict[0] + # we have a single dataset so just return it as is + return load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + streaming=streaming, + **kwargs, + ) + + all_datasets = [] + # iterate over the datasets we want to interleave + for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."): + dataset = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + streaming=streaming, + **kwargs, + ) + # resample to specified sampling rate + dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) + dataset = dataset.remove_columns( + set(dataset.features.keys()) - {"audio", dataset_dict["text_column_name"], "whisper_transcript"} + ) + all_datasets.append(dataset) + + if streaming: + interleaved_dataset = interleave_datasets( + all_datasets, + stopping_strategy=stopping_strategy, + probabilities=probabilities, + seed=seed, + ) + else: + interleaved_dataset = concatenate_datasets(all_datasets) + + return interleaved_dataset + + +def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict: + """Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used + for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers + in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer + 3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer + 2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely + the output of this function for the arguments (student_layers=3, teacher_layers=12).""" + layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int) + layer_intervals[-1] = teacher_layers - 1 + layer_map = {} + + for student_layer, teacher_layer in enumerate(layer_intervals): + layer_map[student_layer] = teacher_layer + + return layer_map + + +class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): + def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation + computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation + in transformers, and matches to within 1e-5 abs tolerance. + """ + waveform = torch.from_numpy(waveform).type(torch.float32) + + window = torch.hann_window(self.n_fft) + stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) + magnitudes = stft[..., :-1].abs() ** 2 + + mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) + mel_spec = mel_filters.T @ magnitudes + + log_spec = torch.clamp(mel_spec, min=1e-10).log10() + log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) + log_spec = (log_spec + 4.0) / 4.0 + return log_spec.numpy() + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The + # information sent is the one passed as arguments along with your JAX/Flax versions. + send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") + + # 2. Define remote logging - do this early so that we get the full traceback on our remote logs + # Enable tensorboard only on the master node + has_tensorboard = is_tensorboard_available() + if has_tensorboard: + if jax.process_index() == 0: + try: + from flax.metrics.tensorboard import SummaryWriter + + summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs")) + except ImportError as ie: + has_tensorboard = False + logger.warning( + "Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}" + ) + else: + logger.warning( + "Unable to display metrics through TensorBoard because the package is not" + " installed: Please run `pip install tensorboard` to enable." + ) + + # Enable wandb only on the master node + has_wandb = is_wandb_available() + if has_wandb: + import wandb as wandb_logger + + # Set up wandb run + if jax.process_index() == 0: + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + else: + logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 3. Setup local logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + # Set the verbosity to info of the Transformers logger. + # We only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + if jax.process_index() == 0: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + + logger.info("Training/evaluation parameters %s", training_args) + + # Check the output dir is valid + if ( + os.path.exists(training_args.output_dir) + and os.listdir(training_args.output_dir) + and training_args.do_train + and not training_args.overwrite_output_dir + ): + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not" + " empty. Use `--overwrite_output_dir` to overcome." + ) + + # 4. Handle the repository creation + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(training_args.output_dir).absolute().name, + token=training_args.hub_token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, exist_ok=True, token=training_args.hub_token) + repo = Repository( + training_args.output_dir, + clone_from=repo_name, + token=training_args.hub_token, + ) + + if training_args.compilation_cache: + cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache")) + + # 5. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # set seed for determinism + set_seed(training_args.seed) + + if training_args.do_train: + raw_datasets["train"] = load_multiple_datasets( + data_args.train_dataset_name, + data_args.train_dataset_config_name, + splits=data_args.train_split_name, + streaming=data_args.streaming, + dataset_samples=data_args.train_dataset_samples, + seed=training_args.seed, + cache_dir=data_args.dataset_cache_dir, + token=True if model_args.use_auth_token else None, + ) + + if training_args.do_eval: + dataset_names_dict = convert_dataset_str_to_list( + data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, + ( + data_args.eval_dataset_config_name + if data_args.eval_dataset_config_name + else data_args.train_dataset_config_name + ), + splits=data_args.eval_split_name, + text_column_names=data_args.eval_text_column_name, + ) + all_eval_splits = [] + if len(dataset_names_dict) == 1: + # load a single eval set + dataset_dict = dataset_names_dict[0] + all_eval_splits.append("eval") + raw_datasets["eval"] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + else: + # load multiple eval sets + for dataset_dict in dataset_names_dict: + if dataset_dict["name"] == "esb/diagnostic-dataset": + # for the ESB diagnostic dataset, the dataset name is effectively the config + pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}" + else: + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + all_eval_splits.append(pretty_name) + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + features = raw_datasets[pretty_name].features.keys() + if "text" not in features: + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( + set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"} + ) + + if not training_args.do_train and not training_args.do_eval: + raise ValueError( + "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." + ) + + raw_datasets_train_features = list(raw_datasets["train"].features.keys()) + + if data_args.audio_column_name not in raw_datasets_train_features: + raise ValueError( + f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(raw_datasets_train_features)}." + ) + + if data_args.train_text_column_name not in raw_datasets_train_features: + raise ValueError( + f"--train_text_column_name {data_args.train_text_column_name} not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--train_text_column_name` to the" + " correct text column - one of" + f" {', '.join(raw_datasets_train_features)}." + ) + + # 6. Load pretrained model, tokenizer, and feature extractor + config = WhisperConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=True if model_args.use_auth_token else None, + ) + feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=True if model_args.use_auth_token else None, + ) + tokenizer = WhisperTokenizerFast.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + token=True if model_args.use_auth_token else None, + ) + + # override timestamp tokens until tokenizer issues are fixed in transformers + timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] + tokenizer.add_tokens(timestamps) + + config.update( + { + "activation_dropout": model_args.activation_dropout, + "attention_dropout": model_args.attention_dropout, + "dropout": model_args.dropout, + } + ) + + if training_args.precision == "full_mixed": + # forward pass, backward pass and optimiser states in bf16 + dtype = jnp.bfloat16 + to_dtype = to_bf16 + elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16": + # forward pass in bf16, backward pass and optimiser states in fp32 + dtype = jnp.bfloat16 + to_dtype = to_fp32 + else: + if training_args.precision != "full": + raise ValueError( + f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}" + ) + # forward pass, backward pass and optimiser states in fp32 + dtype = jnp.float32 + to_dtype = to_fp32 + + student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + dtype=dtype, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + subfolder=model_args.subfolder, + token=True if model_args.use_auth_token else None, + _do_init=False, + use_scan=model_args.load_with_scan_weights, + ) + + teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained( + model_args.teacher_model_name_or_path, + # config=config, + dtype=dtype, + cache_dir=model_args.cache_dir, + # revision=model_args.model_revision, + token=True if model_args.use_auth_token else None, + _do_init=False, + ) + + if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: + raise ValueError( + f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " + f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " + f"student and {teacher_model.config.decoder_start_token_id} for the teacher." + ) + + # enable scan / gradient checkpointing if necessary + if training_args.use_scan: + student_model.enable_scan() # to enable scan in the nn.Module + student_params = student_model.convert_unroll_to_scan(student_params) # to convert the unrolled params to scan + + teacher_model.enable_scan() # faster compile time (even though we don't train the teacher) + teacher_params = teacher_model.convert_unroll_to_scan(teacher_params) + + if training_args.gradient_checkpointing: + student_model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure + teacher_model.enable_gradient_checkpointing() + + if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: + # We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to English + tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False) + student_model.generation_config.update( + **{ + "language": "<|en|>", + "task": "transcribe", + } + ) + + # 7. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), + ) + + # 8. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) + min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length + ) + audio_column_name = data_args.audio_column_name + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + dataloader_prefetch_size = data_args.prefetch_size + train_text_column_name = data_args.train_text_column_name + eval_text_column_name = "text" + model_input_name = feature_extractor.model_input_names[0] + normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + wer_threshold = data_args.wer_threshold + round_timestamps = data_args.round_timestamps + + if training_args.do_train and data_args.max_train_samples is not None: + raw_datasets["train"] = ( + raw_datasets["train"].take(data_args.max_train_samples) + if data_args.streaming + else raw_datasets["train"].select(range(data_args.max_train_samples)) + ) + + if training_args.do_eval and data_args.max_eval_samples is not None: + for eval_split in all_eval_splits: + raw_datasets[eval_split] = ( + raw_datasets[eval_split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) + ) + + def is_wer_in_range(ground_truth, whisper_transcript): + norm_ground_truth = normalizer(ground_truth) + if len(norm_ground_truth) > 0 and whisper_transcript is not None: + norm_whisper_transcript = normalizer(whisper_transcript) + wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth]) + return wer < wer_threshold + else: + # filter automatically since we can't know the WER + return False + + filter_by_wer_threshold = partial( + raw_datasets["train"].filter, + function=is_wer_in_range, + input_columns=[eval_text_column_name, train_text_column_name], + ) + + if wer_threshold is not None: + raw_datasets["train"] = ( + filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer") + if not data_args.streaming + else filter_by_wer_threshold() + ) + + def has_timestamp_tokens(input_str): + """ + Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for + pairs of left and right-angle brackets. + """ + return bool(re.search("\<[^\>]*\>", input_str)) + + def round_timestamp_tokens(input_str: str, ndigits: int = 1): + timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL) + for token in timestamps: + # extract time digits from timestamp token, e.g. <|6.24|> to 6.24 + time_digit = token[2:-2] + # round to specified number of digits, e.g. 6.24 to 6.2 + time_digit = round(float(time_digit), ndigits=ndigits) + # replace in original string with the same precision, e.g. <|6.24|> to <|6.20|> + input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit)) + return input_str + + def prepare_train_dataset(batch): + # process audio input + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + batch[model_input_name] = inputs.get(model_input_name)[0] + batch["input_length"] = len(sample["array"]) + + # process text targets + input_str = batch[train_text_column_name] + + # prompt & timestamp processing: for now, we only do one or the other + if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"): + # prompted target text already has special ids added, so don't add them here + batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids + return batch + + has_timestamps = has_timestamp_tokens(input_str) + + if has_timestamps: + predict_timestamps = bool(np.random.binomial(1, data_args.timestamp_probability)) + if not predict_timestamps: + # filter timestamp token ids if not part of the prediction task + input_str = tokenizer._filter_timestamp_ids(input_str) + elif round_timestamps: + input_str = round_timestamp_tokens(input_str) + else: + predict_timestamps = False + + tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=predict_timestamps) + input_ids = tokenizer(input_str).input_ids + batch["labels"] = input_ids + return batch + + def prepare_eval_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + batch["input_length"] = len(sample["array"]) + + # process targets + input_str = batch[eval_text_column_name] + batch["labels"] = tokenizer(input_str).input_ids + return batch + + vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + if training_args.do_train: + map_fn_train = partial( + raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features + ) + vectorized_datasets["train"] = ( + map_fn_train(num_proc=num_workers, desc="preprocess train dataset") + if not data_args.streaming + else map_fn_train() + ) + if training_args.do_eval: + for eval_split in all_eval_splits: + raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) + map_fn_eval = partial( + raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features + ) + vectorized_datasets[eval_split] = ( + map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") + if not data_args.streaming + else map_fn_eval() + ) + + # filter training data with inputs longer than max_input_length + def is_audio_in_length_range(length): + return min_input_length < length < max_input_length + + filter_by_audio_fn = partial( + vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"] + ) + vectorized_datasets = ( + filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length") + if not data_args.streaming + else filter_by_audio_fn() + ) + + # filter training data with labels longer than max_label_length + def is_labels_in_length_range(labels): + return 0 < len(labels) < max_label_length + + filter_by_labels_fn = partial( + vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] + ) + vectorized_datasets = ( + filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") + if not data_args.streaming + else filter_by_labels_fn() + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + # 8. Load Metric + metric = evaluate.load("wer") + # convention is that we space all punctuation *except* apostrophes + all_punctuation = list(string.punctuation.replace("'", "")) + return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False + + def compute_metrics(preds, labels): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + + # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352) + spaced_pred_str = [ + pred_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(pred_str)) + ] + spaced_label_str = [ + label_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(label_str)) + ] + wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str + + # 9. Save feature extractor, tokenizer, config and generation config + feature_extractor.save_pretrained(training_args.output_dir) + tokenizer.save_pretrained(training_args.output_dir) + config.save_pretrained(training_args.output_dir) + student_model.generation_config.save_pretrained( + training_args.output_dir + ) # generation config stays bound to model to make it easy to jit + + processor = WhisperProcessor.from_pretrained(training_args.output_dir) + + data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=student_model.config.decoder_start_token_id, # <|startoftranscript|> + decoder_prev_token_id=tokenizer.all_special_ids[-3], # <|startofprev|> + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + ) + + # Initialize our training + rng = jax.random.PRNGKey(training_args.seed) + rng, dropout_rng = jax.random.split(rng) + + # Store some constants + train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() + gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + eval_batch_size = per_device_eval_batch_size * jax.device_count() + + if not data_args.streaming and training_args.max_steps < 0: + num_epochs = int(training_args.num_train_epochs) + steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size + total_train_steps = steps_per_epoch * num_epochs + elif training_args.max_steps > 0: + logger.info("max_steps is given, it will override any value given in num_train_epochs") + total_train_steps = int(training_args.max_steps) + # Setting a very large number of epochs so we go as many times as necessary over the iterator. + num_epochs = sys.maxsize + steps_per_epoch = total_train_steps + else: + raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") + + if training_args.eval_steps is None: + logger.info( + f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" + ) + eval_steps = steps_per_epoch + else: + eval_steps = training_args.eval_steps + + # Create learning rate schedule + linear_decay_lr_schedule_fn = create_learning_rate_fn( + total_train_steps * gradient_accumulation_steps, + training_args.lr_scheduler_type, + training_args.warmup_steps * gradient_accumulation_steps, + training_args.learning_rate, + ) + + # We use Optax's "masking" functionality to not apply weight decay + # to bias and LayerNorm scale parameters. decay_mask_fn returns a + # mask boolean with the same structure as the parameters. + # The mask is True for parameters that should be decayed. + def decay_mask_fn(params): + flat_params = traverse_util.flatten_dict(params) + # find out all LayerNorm parameters + layer_norm_candidates = [ + "layer_norm", + "self_attn_layer_norm", + "final_layer_norm", + "encoder_attn_layer_norm", + ] + layer_norm_named_params = { + layer[-2:] + for layer_norm_name in layer_norm_candidates + for layer in flat_params.keys() + if layer_norm_name in "".join(layer).lower() + } + flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params} + return traverse_util.unflatten_dict(flat_mask) + + # create adam optimizer + adamw = optax.adamw( + learning_rate=linear_decay_lr_schedule_fn, + b1=training_args.adam_beta1, + b2=training_args.adam_beta2, + eps=training_args.adam_epsilon, + weight_decay=training_args.weight_decay, + mask=decay_mask_fn, + ) + + if gradient_accumulation_steps > 1: + # accumulate gradients and apply once every k steps + adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps) + + share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model + encoder_layer_mapping = get_layers_to_supervise( + student_model.config.encoder_layers, teacher_model.config.encoder_layers + ) + decoder_layer_mapping = get_layers_to_supervise( + student_model.config.decoder_layers, teacher_model.config.decoder_layers + ) + + # Setup train state + student_state = TrainState.create( + apply_fn=student_model.decode if share_hidden_states else student_model.__call__, + params=student_params, + tx=adamw, + to_dtype=to_dtype, + dropout_rng=dropout_rng, + max_grad_norm=training_args.max_grad_norm, + ) + + if training_args.resume_from_checkpoint is not None: + if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")): + logger.info( + f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid " + "this behavior, omit the resume_from_checkpoint argument." + ) + with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f: + student_state = from_bytes(student_state, f.read()) + else: + logger.warning( + f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure " + f"you pass the path to a folder with a valid checkpoint for your model." + ) + + def cross_entropy_loss(logits, labels): + vocab_size = logits.shape[-1] + # optax onehot always returns a float32 device array, need to downcast if performing mixed precision training + onehot_targets = to_dtype(onehot(labels, vocab_size)) + loss = optax.softmax_cross_entropy(logits, onehot_targets) + # ignore padded tokens from loss, i.e. where labels are not set to -100 + padding = labels >= 0 + loss = loss * padding + loss = loss.sum() + num_labels = padding.sum() + return loss, num_labels + + # temperature smoothed kl-divergence + def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20): + divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps)) + # ignore padded tokens from divergence, i.e. where labels are not set to -100 + padding_mask = labels >= 0 + padding_mask = jnp.expand_dims(padding_mask, axis=-1) + divergence = (divergence * padding_mask).sum() + return to_dtype(divergence) # respect the dtype of the backprop + + def mean_square_error_loss(student_outputs, teacher_outputs): + mse = dtype(0.0) + + # tie encoder embeddings + mse += jnp.mean( + jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0]) + ) + + for student_layer_id, teacher_layer_id in encoder_layer_mapping.items(): + # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state + student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1] + teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1] + mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state)) + + # student_attention = student_outputs.encoder_attentions[student_layer_id] + # teacher_attention = teacher_outputs.encoder_attentions[teacher_layer_id] + # mse += jnp.mean(jnp.square(student_attention - teacher_attention)) + + # tie decoder embeddings + mse += jnp.mean( + jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0]) + ) + + for student_layer_id, teacher_layer_id in decoder_layer_mapping.items(): + # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state + student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1] + teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1] + mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state)) + + # student_attention = student_outputs.decoder_attentions[student_layer_id] + # teacher_attention = teacher_outputs.decoder_attentions[teacher_layer_id] + # mse += jnp.mean(jnp.square(student_attention - teacher_attention)) + + # student_cross_attention = student_outputs.cross_attentions[student_layer_id] + # teacher_cross_attention = teacher_outputs.cross_attentions[teacher_layer_id] + # mse += jnp.mean(jnp.square(student_cross_attention - teacher_cross_attention)) + + return to_dtype(mse) # respect the dtype of the backprop + + # Define gradient update step fn + def train_step( + student_state, + teacher_params, + batch, + freeze_encoder, + share_hidden_states, + temperature=2.0, + ): + dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng) + + def compute_loss(student_params): + labels = batch.pop("labels") + output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0 + + teacher_outputs = teacher_model( + **batch, + params=teacher_params, + freeze_encoder=True, + output_hidden_states=output_hidden_states, + train=False, + ) + + if share_hidden_states: + # if the student and teacher share the same frozen encoder then we don't have to recompute the + # encoder hidden-states for the student model, we can just re-use from the teacher + encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state) + encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states) + + student_outputs = student_state.apply_fn( + decoder_input_ids=batch["decoder_input_ids"], + encoder_outputs=encoder_outputs, + params=student_params, + dropout_rng=dropout_rng, + train=True, + ) + else: + # do the full forward pass for the student model (encoder + decoder) + student_outputs = student_state.apply_fn( + **batch, + params=student_params, + dropout_rng=dropout_rng, + freeze_encoder=freeze_encoder, + output_hidden_states=output_hidden_states, + train=True, + ) + + # CE (data) loss + ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels) + + # rescale by temperature to ensure gradients scale correctly + teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1) + # ensure no information flow backwards through teacher + teacher_distribution = jax.lax.stop_gradient(teacher_distribution) + # log softmax of student predictions for numerical stability + student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1) + # KL-divergence loss (scaled by temperature) + kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2 + + # MSE loss between enc-dec hidden-states and attentions + mse_loss = ( + mean_square_error_loss(student_outputs, teacher_outputs) + if output_hidden_states + else jnp.zeros_like(kl_loss) + ) + + # use DistilBart formulation - only tune the MSE weight and take remaining HPs from DistilBERT + ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0 + loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss + + return loss, ( + ce_loss, + kl_loss, + mse_loss, + num_labels, + ) + + grad_fn = jax.value_and_grad(compute_loss, has_aux=True) + (loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params)) + + # true loss = total loss / total samples + loss = jax.lax.psum(loss, "batch") + num_labels = jax.lax.psum(num_labels, "batch") + loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) + + # true grad = total grad / total samples + grad = jax.lax.psum(grad, "batch") + grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) + new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype) + + # CE/KL/MSE losses for logging + ce_loss = jax.lax.psum(ce_loss, "batch") + ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss) + + kl_loss = jax.lax.psum(kl_loss, "batch") + kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss) + + mse_loss = jax.lax.psum(mse_loss, "batch") + mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss) + + metrics = { + "loss": loss, + "learning_rate": linear_decay_lr_schedule_fn(student_state.step), + "ce_loss": ce_loss, + "kl_loss": kl_loss, + "mse_loss": mse_loss, + } + return new_state, metrics + + # Define eval fn + def eval_step(student_params, teacher_params, batch): + labels = batch.pop("labels") + output_hidden_states = not share_hidden_states and training_args.mse_weight > 0 + + student_outputs = student_model( + **batch, + params=student_params, + output_hidden_states=output_hidden_states, + train=False, + ) + student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1) + ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels) + + teacher_outputs = teacher_model( + **batch, + params=teacher_params, + output_hidden_states=output_hidden_states, + train=False, + ) + teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1) + # temperature is always 1 for eval + kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) + + mse_loss = ( + mean_square_error_loss(student_outputs, teacher_outputs) + if output_hidden_states + else jnp.zeros_like(kl_loss) + ) + + ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0 + loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss + # true loss = total loss / total samples + loss = jax.lax.psum(loss, "batch") + num_labels = jax.lax.psum(num_labels, "batch") + loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) + + # CE/KL/MSE losses for logging + ce_loss = jax.lax.psum(ce_loss, "batch") + ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss) + + kl_loss = jax.lax.psum(kl_loss, "batch") + kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss) + + mse_loss = jax.lax.psum(mse_loss, "batch") + mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss) + + metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss} + return metrics + + # Define generation function + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else student_model.config.num_beams + ) + + # forcing the language and task tokens helps the model in its generations + gen_kwargs = { + "max_length": max_label_length, + "num_beams": num_beams, + "language": "<|en|>", + "task": "transcribe", + "return_timestamps": return_timestamps, + } + + def generate_step(student_params, batch): + output_ids = student_model.generate( + batch[model_input_name], + attention_mask=batch.get("attention_mask"), + params=student_params, + **gen_kwargs, + ) + return output_ids.sequences + + # Replicate the train state on each device + student_state = student_state.replicate() + + # Replicate the teacher params on each device + teacher_params = jax_utils.replicate(teacher_params) + + # Create parallel version of the train and eval step + p_train_step = jax.pmap( + train_step, + "batch", + in_axes=(0, 0, 0, None, None, None), + donate_argnums=(0,), + static_broadcasted_argnums=( + 3, + 4, + ), + ) + p_eval_step = jax.pmap(eval_step, "batch") + p_generate_step = jax.pmap(generate_step, "batch") + + logger.info("***** Running training *****") + logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") + logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") + logger.info( + f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" + ) + logger.info(f" Total optimization steps = {total_train_steps}") + + # ======================== Training ================================ + train_time = 0 + train_start = time.time() + train_metrics = [] + batches_to_skip = jax.device_get(unreplicate(student_state.step)) + cur_step = int(batches_to_skip) # will be zero if starting from scratch + epochs_trained = batches_to_skip // steps_per_epoch + steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0) + steps_trained_progress_bar.update(batches_to_skip) + continue_training = True + minibatch_steps = 0 + + if batches_to_skip > 0: + logger.info(" Continuing training from checkpoint, will skip to saved global_step") + logger.info(f" Continuing training from epoch {epochs_trained}") + logger.info(f" Continuing training from global step {batches_to_skip}") + + # Generate a training data loader by shuffling sampling indices from the train dataset + train_loader = get_data_loader( + training_args.seed, + vectorized_datasets["train"], + batch_size=train_batch_size, + data_collator=data_collator, + dataloader_num_workers=dataloader_num_workers, + skip_batches=batches_to_skip, + prefetch_size=dataloader_prefetch_size, + ) + + for epoch in range(epochs_trained, num_epochs): + if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset): + train_loader.dataset.set_epoch(epoch) + + for batch in train_loader: + minibatch_steps += 1 + update_step = minibatch_steps == gradient_accumulation_steps + + if update_step: + steps_trained_progress_bar.update(1) + cur_step += 1 + minibatch_steps = 0 + + batch = shard(batch.data) + student_state, train_metric = p_train_step( + student_state, + teacher_params, + batch, + training_args.freeze_encoder, + share_hidden_states, + training_args.temperature, + ) + + if cur_step % training_args.logging_steps == 0 and update_step: + train_metrics.append(train_metric) + train_metric_to_write = unreplicate(train_metric) + steps_trained_progress_bar.write( + f"Step... ({cur_step} / {total_train_steps} | Loss:" + f" {train_metric_to_write['loss']}, Learning Rate:" + f" {train_metric_to_write['learning_rate']})" + ) + if has_wandb and jax.process_index() == 0: + write_wandb_metric( + wandb_logger, + train_metric_to_write, + train_time + time.time() - train_start, + cur_step, + epoch, + prefix="train", + ) + + # save checkpoint and weights after each save_steps and at the end of training + if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps: + if jax.process_index() == 0: + save_hf_weights( + student_state, + student_model, + processor, + training_args.output_dir, + cur_step, + total_train_steps, + use_scan=training_args.use_scan, + ) + if training_args.save_train_state: + student_state.save_state( + training_args.output_dir, save_total_limit=training_args.save_total_limit + ) + if training_args.push_to_hub: + repo.push_to_hub( + commit_message=f"Saving train state of step {cur_step}", + blocking=False, + ) + + if training_args.do_eval and ( + (cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps + ): + train_time += time.time() - train_start + # ======================== Evaluating ============================== + for eval_split in all_eval_splits: + eval_metrics = [] + eval_preds = [] + eval_labels = [] + eval_start = time.time() + + eval_loader = get_data_loader( + training_args.seed, + vectorized_datasets[eval_split], + batch_size=eval_batch_size, + data_collator=data_collator, + shuffle=False, + drop_last=False, + dataloader_num_workers=dataloader_num_workers, + ) + for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2): + # Model forward + labels = batch["labels"] + + metrics = pad_shard_unpad( + p_eval_step, + static_argnums=( + 0, + 1, + ), + static_return=True, + )( + student_state.params, + teacher_params, + batch.data, + min_device_batch=per_device_eval_batch_size, + ) + eval_metrics.append(metrics) + + # generation + if training_args.predict_with_generate: + generated_ids = pad_shard_unpad(p_generate_step)( + student_state.params, batch.data, min_device_batch=per_device_eval_batch_size + ) + eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) + eval_labels.extend(labels) + + eval_time = time.time() - eval_start + + # normalize eval metrics + eval_metrics = get_metrics(eval_metrics) + eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) + + # compute WER metric + wer_desc = "" + if training_args.predict_with_generate: + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( + eval_preds, eval_labels + ) + eval_metrics.update(wer_metric) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + + # Print metrics and update progress bar + steps_trained_progress_bar.write( + f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |" + f" {wer_desc})" + ) + + if has_tensorboard and jax.process_index() == 0: + write_eval_metric( + summary_writer, + eval_metrics, + cur_step, + prefix=eval_split, + ) + + if has_wandb and jax.process_index() == 0: + write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split) + if training_args.predict_with_generate: + write_wandb_pred( + wandb_logger, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + cur_step, + prefix=eval_split, + ) + + if has_tensorboard and jax.process_index() == 0: + # we'll only log to tensorboard every eval steps + write_train_metric( + summary_writer, + train_metrics, + train_time, + cur_step, + training_args.logging_steps, + ) + + # flush the train metrics + train_start = time.time() + train_metrics = [] + + # break condition + if cur_step == total_train_steps: + continue_training = False + break + + if not continue_training: + break + + +if __name__ == "__main__": + main() diff --git a/flax/run_eval.py b/flax/run_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..3f2c9869d94bff2917f8c3dc32ab226b1728ad78 --- /dev/null +++ b/flax/run_eval.py @@ -0,0 +1,978 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Evaluating a Whisper model on one or more evaluation datasets. +""" +# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments. + +import logging +import os +import string +import sys +import time +from dataclasses import field +from functools import partial +from pathlib import Path +from typing import Any, Dict, List, Optional, Union + +import datasets +import evaluate +import flax +import jax +import jax.numpy as jnp +import numpy as np +import optax +import torch +import transformers +from datasets import Dataset, DatasetDict, IterableDatasetDict, load_dataset +from flax import jax_utils +from flax.jax_utils import pad_shard_unpad +from flax.training.common_utils import get_metrics, onehot +from torch.utils.data import DataLoader +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperConfig, + WhisperFeatureExtractor, + WhisperProcessor, + WhisperTokenizerFast, + is_tensorboard_available, + is_wandb_available, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version, send_example_telemetry +from transformers.utils.versions import require_version + +from distil_whisper import FlaxWhisperForConditionalGeneration + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + + +@flax.struct.dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + processor_name: Optional[str] = field( + default=None, + metadata={"help": "processor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, + ) + model_revision: str = field( + default="main", + metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and trained. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + load_with_scan: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to load the model with scan enabled. Required when the model was saved with scan enabled" + ) + }, + ) + return_timestamps: bool = field( + default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} + ) + + +@flax.struct.dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset hours by a '+' symbol." + }, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_split_name: Optional[str] = field( + default=None, + metadata={"help": "The split name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."}, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, + ) + min_duration_in_seconds: float = field( + default=0.0, + metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, + ) + max_label_length: int = field( + default=128, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + pad_target_to_multiple_of: Optional[int] = field( + default=None, + metadata={ + "help": ( + "If set will pad the target sequence to a multiple of the provided" + " value. This is important to avoid triggering recompilations on TPU." + " If unspecified, will default to padding the targets to max length." + ) + }, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, + ) + log_audio: Optional[bool] = field( + default=False, + metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, + ) + + +def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: + """ + Shift label ids one token to the right. + """ + shifted_label_ids = np.zeros_like(label_ids) + shifted_label_ids[:, 1:] = label_ids[:, :-1] + shifted_label_ids[:, 0] = decoder_start_token_id + + return shifted_label_ids + + +@flax.struct.dataclass +class FlaxDataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The begin-of-sentence of the decoder. + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + log_audio (:obj:`bool`): + Whether we're logging audio samples as part of our eval. If so, will forward on the audio samples to the batch. + audio_column_name (:obj:`str`): + Name of the audio column in the dataset. Only relevant if logging audio samples. + """ + + processor: Any + decoder_start_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + log_audio: Optional[bool] = False + audio_column_name: Optional[str] = "audio" + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + + # dataloader returns a list of features which we convert to a dict + input_features = {model_input_name: [feature[model_input_name] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="np", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="np", + ) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + labels = labels_batch["input_ids"] + if (labels[:, 0] == self.decoder_start_token_id).all().item(): + labels = labels[:, 1:] + labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] + + decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) + + # replace padding with -100 to ignore correctly when computing the loss + labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) + labels = labels.filled(fill_value=-100) + + batch["labels"] = labels + batch["decoder_input_ids"] = decoder_input_ids + + if self.log_audio: + audio_samples = [feature[self.audio_column_name] for feature in features] + batch["audio"] = audio_samples + + return batch + + +def get_data_loader( + dataset: Dataset, + batch_size: int, + data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, + dataloader_num_workers: int = 0, + pin_memory: bool = True, +) -> DataLoader: + """ + Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, + and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. + + Args: + dataset (Dataset): dataset from which to load the data. + batch_size (int): how many samples per batch to load. + data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a + mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. + dataloader_num_workers (int, optional): how many subprocesses to use for data + loading. ``0`` means that the data will be loaded in the main process. + (default: ``0``) + pin_memory (bool, optional): If ``True``, the data loader will copy Tensors + into device/CUDA pinned memory before returning them. If your data elements + are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, + see the example below. + """ + + data_loader = DataLoader( + dataset, + batch_size=batch_size, + drop_last=False, + pin_memory=pin_memory, + collate_fn=data_collator, + num_workers=dataloader_num_workers, + ) + + return data_loader + + +def write_metric(summary_writer, eval_metrics, step, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"{prefix}/{metric_name}", value, step) + + +def write_wandb_metric(wandb_logger, metrics, train_time, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + wandb_logger.log(log_metrics) # TODO(SG): bug with wandb means we can't log the step count + + +def convert_audio_to_wandb(wandb_logger, audio): + return wandb_logger.Audio(audio["array"][:, np.newaxis], sample_rate=audio["sampling_rate"]) + + +def write_wandb_pred( + wandb_logger, + eval_audios, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + prefix="eval", + num_lines=200000, +): + columns = ["Target", "Pred", "Norm Target", "Norm Pred"] + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + + if len(eval_audios) > 0: + columns.insert(0, "Audio") + str_data = [ + [ + convert_audio_to_wandb(wandb_logger, eval_audios[i]), + *str_data[i], + ] + for i in range(len(pred_str)) + ] + + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/all_predictions": wandb_logger.Table(columns=columns, data=str_data[:num_lines])}, + ) + # log incorrect normalised predictions + str_data = np.asarray(str_data) + str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/incorrect_predictions": wandb_logger.Table(columns=columns, data=str_data_incorrect[:num_lines])}, + ) + + +def convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_hours is not None: + if len(dataset_hours) != len(dataset_names): + raise ValueError( + f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_hours)} hours." + ) + dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] + else: + dataset_hours = [None] * len(dataset_names) + + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "hours": dataset_hours[i], + } + ) + return dataset_names_dict + + +class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): + def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation + computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation + in transformers, and matches to within 1e-5 abs tolerance. + """ + waveform = torch.from_numpy(waveform).type(torch.float32) + + window = torch.hann_window(self.n_fft) + stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) + magnitudes = stft[..., :-1].abs() ** 2 + + mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) + mel_spec = mel_filters.T @ magnitudes + + log_spec = torch.clamp(mel_spec, min=1e-10).log10() + log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) + log_spec = (log_spec + 4.0) / 4.0 + return log_spec.numpy() + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The + # information sent is the one passed as arguments along with your JAX/Flax versions. + send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + # Set the verbosity to info of the Transformers logger. + # We only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + if jax.process_index() == 0: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + + logger.info("Evaluation parameters %s", training_args) + + # Enable tensorboard only on the master node + has_tensorboard = is_tensorboard_available() + if "tensorboard" in training_args.report_to: + if has_tensorboard and jax.process_index() == 0: + try: + from flax.metrics.tensorboard import SummaryWriter + + summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) + except ImportError as ie: + has_tensorboard = False + logger.warning( + "Unable to display metrics through TensorBoard because some" f" package are not installed: {ie}" + ) + else: + logger.warning( + "Unable to display metrics through TensorBoard because the package is" + " not installed: Please run `pip install tensorboard` to enable." + ) + + # Enable wandb only on the master node + has_wandb = is_wandb_available() + if "wandb" in training_args.report_to: + if has_wandb and jax.process_index() == 0: + import wandb as wandb_logger + + # Set up wandb run + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + else: + logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # Convert lists of dataset names/configs/splits to a dict + # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation" + # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"} + dataset_names_dict = convert_dataset_str_to_list( + data_args.dataset_name, + data_args.dataset_config_name, + splits=data_args.dataset_split_name, + text_column_names=data_args.text_column_name, + ) + + if len(dataset_names_dict) == 1: + # load a single eval set + dataset_dict = dataset_names_dict[0] + raw_datasets["eval"] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets["eval"].features.keys()): + raise ValueError( + f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets['eval'].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets["eval"] = raw_datasets["eval"].rename_column(dataset_dict["text_column_name"], "text") + else: + # load multiple eval sets + for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."): + # Clean-up the dataset name for pretty logging + # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean" + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): + raise ValueError( + f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + + # 5. Load pretrained model, tokenizer, and feature extractor + config = WhisperConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + tokenizer = WhisperTokenizerFast.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + processor = WhisperProcessor.from_pretrained( + (model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + model, params = FlaxWhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + dtype=getattr(jnp, model_args.dtype), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + _do_init=False, + subfolder=model_args.subfolder, + # use_scan=model_args.load_with_scan, # Model might have (erroneously) been saved with scan still enabled + ) + + if model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + # disable scan if necessary (makes the inference step faster) + if model_args.load_with_scan: + model.disable_scan() # to disable scan in the nn.Module + params = model.convert_scan_to_unroll(params) # to convert the scan params to unrolled + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length + ) + audio_column_name = data_args.audio_column_name + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + model_input_name = feature_extractor.model_input_names[0] + normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + + if data_args.max_eval_samples is not None: + for split in raw_datasets: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_eval_samples)) + ) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + + # process targets + input_str = batch["text"] + batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids + return batch + + vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + for split in raw_datasets: + raw_datasets_features = list(raw_datasets[split].features.keys()) + if data_args.log_audio: + # if logging audio samples preserve the audio column when mapping the dataset + raw_datasets_features.remove(audio_column_name) + + map_fn = partial( + raw_datasets[split].map, + function=prepare_dataset, + remove_columns=raw_datasets_features, + ) + + vectorized_datasets[split] = ( + map_fn(num_proc=num_workers, desc="preprocess eval dataset") + if not data_args.streaming + else map_fn() # In streaming, we can't run multiproc - errors out if we try to + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + # 8. Load Metric + metric = evaluate.load("wer") + # convention is that we space all punctuation *except* apostrophes + all_punctuation = list(string.punctuation.replace("'", "")) + return_timestamps = model_args.return_timestamps + + def compute_metrics(preds, labels): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + + # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352) + spaced_pred_str = [ + pred_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(pred_str)) + ] + spaced_label_str = [ + label_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(label_str)) + ] + wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str + + data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=model.config.decoder_start_token_id, + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + log_audio=data_args.log_audio, + ) + + # Store some constants + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + eval_batch_size = per_device_eval_batch_size * jax.device_count() + + # label smoothed cross entropy + def loss_fn(logits, labels, label_smoothing_factor=0.0): + """ + The label smoothing implementation is adapted from Flax's official example: + https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 + """ + vocab_size = logits.shape[-1] + confidence = 1.0 - label_smoothing_factor + low_confidence = (1.0 - confidence) / (vocab_size - 1) + normalizing_constant = -( + confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) + ) + soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) + + loss = optax.softmax_cross_entropy(logits, soft_labels) + loss = loss - normalizing_constant + + # ignore padded tokens from loss, i.e. where labels are not set to -100 + padding_mask = labels >= 0 + loss = loss * padding_mask + loss = loss.sum() + num_labels = padding_mask.sum() + return loss, num_labels + + # Define eval fn + def eval_step(params, batch, label_smoothing_factor=0.0): + labels = batch.pop("labels") + logits = model(**batch, params=params, freeze_encoder=True, train=False)[0] + + loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) + num_labels = jax.lax.psum(num_labels, "batch") + + # true loss = total loss / total samples + loss = jax.lax.psum(loss, "batch") + loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) + + metrics = {"loss": loss} + return metrics + + # Define generation function + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else model.config.num_beams + ) + + # forcing the language and task tokens helps the flax teacher model in its generations + gen_kwargs = { + "max_length": max_label_length, + "num_beams": num_beams, + "language": "<|en|>", + "task": "transcribe", + "return_timestamps": return_timestamps, + } + + def generate_step(params, batch): + output_ids = model.generate( + batch[model_input_name], + attention_mask=batch.get("attention_mask"), + params=params, + freeze_encoder=True, + **gen_kwargs, + ) + return output_ids.sequences + + # Create parallel version of the eval and generate step + p_eval_step = jax.pmap( + partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), + "batch", + ) + p_generate_step = jax.pmap(generate_step, "batch") + + # Replicate params on each device + params = jax_utils.replicate(params) + + def eval_step(split="eval"): + # ======================== Evaluating ============================== + eval_metrics = [] + eval_preds = [] + eval_labels = [] + eval_audios = [] + eval_start = time.time() + + eval_loader = get_data_loader( + vectorized_datasets[split], + batch_size=eval_batch_size, + data_collator=data_collator, + dataloader_num_workers=dataloader_num_workers, + ) + for batch in tqdm(eval_loader, desc=f"Evaluating {split}..."): + # Model forward + labels = batch["labels"] + if data_args.log_audio: + eval_audios.extend(batch.pop("audio")) + + metrics = pad_shard_unpad(p_eval_step, static_return=True)( + params, batch.data, min_device_batch=per_device_eval_batch_size + ) + eval_metrics.append(metrics) + + # generation + if training_args.predict_with_generate: + generated_ids = pad_shard_unpad(p_generate_step)( + params, batch.data, min_device_batch=per_device_eval_batch_size + ) + eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) + eval_labels.extend(labels) + + eval_time = time.time() - eval_start + + # normalize eval metrics + eval_metrics = get_metrics(eval_metrics) + eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) + + # compute WER metric + wer_desc = "" + if training_args.predict_with_generate: + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(eval_preds, eval_labels) + eval_metrics.update(wer_metric) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + + # Print metrics + logger.info(f"Eval Loss: {eval_metrics['loss']} | {wer_desc})") + + # Save metrics + if has_tensorboard and jax.process_index() == 0 and "tensorboard" in training_args.report_to: + write_metric(summary_writer, eval_metrics, model_args.step, prefix=split) + + if has_wandb and jax.process_index() == 0 and "wandb" in training_args.report_to: + write_wandb_metric(wandb_logger, eval_metrics, eval_time, prefix=split) + if training_args.predict_with_generate: + write_wandb_pred( + wandb_logger, eval_audios, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split + ) + + logger.info("***** Running Eval *****") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") + logger.info(f" Total eval batch size (w. parallel & distributed) = {eval_batch_size}") + for split in vectorized_datasets: + eval_step(split=split) + + +if __name__ == "__main__": + main() diff --git a/flax/run_finetuning.py b/flax/run_finetuning.py new file mode 100644 index 0000000000000000000000000000000000000000..4fc2c2c51a8b2ba86bdd9d4d6e04a408c0e9ec9d --- /dev/null +++ b/flax/run_finetuning.py @@ -0,0 +1,1122 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fine-tuning the Whisper model for sequence to sequence speech recognition. +""" +# You can also adapt this script for your own speech recognition task. Pointers for this are left as comments. + +import logging +import os +import string +import sys +import time +from dataclasses import dataclass, field +from functools import partial +from pathlib import Path +from typing import Any, Callable, Dict, List, Optional, Union + +import datasets +import evaluate +import flax +import jax +import jax.numpy as jnp +import numpy as np +import optax +import transformers +from datasets import Dataset, DatasetDict, load_dataset +from flax import jax_utils, traverse_util +from flax.jax_utils import pad_shard_unpad, unreplicate +from flax.training import train_state +from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key +from huggingface_hub import Repository, create_repo +from torch.utils.data import DataLoader +from tqdm import tqdm +from transformers import ( + AutoConfig, + AutoFeatureExtractor, + AutoProcessor, + AutoTokenizer, + HfArgumentParser, + Seq2SeqTrainingArguments, + is_tensorboard_available, + is_wandb_available, +) +from transformers.file_utils import get_full_repo_name +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version, send_example_telemetry +from transformers.utils.versions import require_version + +from distil_whisper import FlaxWhisperForConditionalGeneration + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + + +@flax.struct.dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, + ) + model_revision: str = field( + default="main", + metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and trained. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + activation_dropout: float = field( + default=0.0, + metadata={"help": "The dropout ratio for activations inside the fully connected layer."}, + ) + attention_dropout: float = field( + default=0.0, + metadata={"help": "The dropout ratio for the attention probabilities."}, + ) + dropout: float = field( + default=0.0, + metadata={ + "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." + }, + ) + + +@flax.struct.dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={"help": "The name of the dataset to use (via the datasets library)."}, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": ("The configuration name of the dataset to use (via the datasets library).")}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of" + " training examples to this value if set." + ) + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of" + " evaluation examples to this value if set." + ) + }, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")}, + ) + text_column_name: str = field( + default="whisper_transcript", + metadata={ + "help": ( + "The name of the dataset column containing the text data. Defaults to" + " 'whisper_transcript'which is the pseudo-labelled Whisper" + " transcription data." + ) + }, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")}, + ) + min_duration_in_seconds: float = field( + default=0.0, + metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")}, + ) + max_label_length: int = field( + default=128, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + pad_target_to_multiple_of: Optional[int] = field( + default=None, + metadata={ + "help": ( + "If set will pad the target sequence to a multiple of the provided" + " value. This is important to avoid triggering recompilations on TPU." + " If unspecified, will default to padding the targets to max length." + ) + }, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + train_split_name: str = field( + default="train", + metadata={ + "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") + }, + ) + eval_split_name: str = field( + default="validation", + metadata={ + "help": ( + "The name of the evaluation data set split to use (via the datasets" + " library). Defaults to 'validation'" + ) + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experimentreproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + + +@dataclass +class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments): + use_scan: Optional[bool] = field( + default=True, + metadata={ + "help": ( + "Whether or not to use `scan_with_axes` over the encoder and decoder" + " blocks. Using scan results in faster compile times and more efficient" + " memory use during training, since all of the layers in the" + " encoder/decoder are stacked, and we perform a lax.scan over the" + " stacked block to index each layer. However, it results in slower" + " inference time due to the overhead of stacking the layers this way." + " Thus, we always default to disabling scan for the inference step." + ) + }, + ) + freeze_encoder: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to freeze the entire encoder model. Only recommended when the" + " entire encoder has been copiedfrom the teacher model." + ) + }, + ) + + +def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: + """ + Shift label ids one token to the right. + """ + shifted_label_ids = np.zeros_like(label_ids) + shifted_label_ids[:, 1:] = label_ids[:, :-1] + shifted_label_ids[:, 0] = decoder_start_token_id + + return shifted_label_ids + + +@flax.struct.dataclass +class FlaxDataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The begin-of-sentence of the decoder. + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + """ + + processor: Any + decoder_start_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + + # dataloader returns a list of features which we convert to a dict + input_features = {model_input_name: [feature[model_input_name] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="np", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="np", + ) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + labels = labels_batch["input_ids"] + if (labels[:, 0] == self.decoder_start_token_id).all().item(): + labels = labels[:, 1:] + labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] + + decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) + + # replace padding with -100 to ignore correctly when computing the loss + labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) + labels = labels.filled(fill_value=-100) + + batch["labels"] = labels + batch["decoder_input_ids"] = decoder_input_ids + + return batch + + +def get_data_loader( + rng: jax.random.PRNGKey, + dataset: Dataset, + batch_size: int, + data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, + shuffle: bool = True, + drop_last: bool = True, + dataloader_num_workers: int = 0, + pin_memory: bool = True, +) -> DataLoader: + """ + Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, + and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. + + Args: + rng (List(int)): JAX rng for generating pseudo random numbers. Used if shuffling the dataset. + dataset (Dataset): dataset from which to load the data. + batch_size (int): how many samples per batch to load. + data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a + mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. + shuffle (bool, optional): set to `True` to have the batches reshuffled. + drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, + if the dataset size is not divisible by the batch size. If ``False`` and + the size of dataset is not divisible by the batch size, then the last batch + will be smaller. (default: ``False``) + dataloader_num_workers (int, optional): how many subprocesses to use for data + loading. ``0`` means that the data will be loaded in the main process. + (default: ``0``) + pin_memory (bool, optional): If ``True``, the data loader will copy Tensors + into device/CUDA pinned memory before returning them. If your data elements + are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, + see the example below. + + """ + if shuffle: + batch_idx = jax.random.permutation(rng, len(dataset)) + batch_idx = np.asarray(batch_idx) + dataset = dataset.select(batch_idx) + + data_loader = DataLoader( + dataset, + batch_size=batch_size, + drop_last=drop_last, + pin_memory=pin_memory, + collate_fn=data_collator, + num_workers=dataloader_num_workers, + ) + + return data_loader + + +class TrainState(train_state.TrainState): + dropout_rng: jnp.ndarray + + def replicate(self): + return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) + + +def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step, logging_steps): + summary_writer.scalar("train/time", train_time, step) + + train_metrics = get_metrics(train_metrics) + for key, vals in train_metrics.items(): + steps_arr = np.arange(0, step, logging_steps)[-len(vals) :] + tag = f"train/{key}" + for i, val in enumerate(vals): + summary_writer.scalar(tag, val, steps_arr[i]) + + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"eval/{metric_name}", value, step) + + +def write_wandb_metric(wandb_logger, metrics, train_time, step, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + wandb_logger.log(log_metrics, step) + + +def write_wandb_pred(wandb_logger, pred_str, label_str, prefix="eval", num_lines=100): + # convert str data to a wandb compatible format + if num_lines < len(pred_str): + str_data = [[label_str[i], pred_str[i]] for i in range(num_lines)] + else: + str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))] + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/predictions": wandb_logger.Table(columns=["label_str", "pred_str"], data=str_data)}, + ) + + +def create_learning_rate_fn( + num_train_steps: int, num_warmup_steps: int, learning_rate: float +) -> Callable[[int], jnp.array]: + """Returns a linear warmup, linear_decay learning rate function.""" + warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) + decay_fn = optax.linear_schedule( + init_value=learning_rate, + end_value=0, + transition_steps=num_train_steps - num_warmup_steps, + ) + schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) + return schedule_fn + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The + # information sent is the one passed as arguments along with your JAX/Flax versions. + send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + # Set the verbosity to info of the Transformers logger. + # We only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + if jax.process_index() == 0: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + + logger.info("Training/evaluation parameters %s", training_args) + + # Check the output dir is valid + if ( + os.path.exists(training_args.output_dir) + and os.listdir(training_args.output_dir) + and training_args.do_train + and not training_args.overwrite_output_dir + ): + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not" + " empty.Use `--overwrite_output_dir` to overcome." + ) + + # Handle the repository creation + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(training_args.output_dir).absolute().name, + token=training_args.hub_token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, exist_ok=True, token=training_args.hub_token) + repo = Repository( + training_args.output_dir, + clone_from=repo_name, + token=training_args.hub_token, + ) + + # 3. Load dataset + raw_datasets = DatasetDict() + + if training_args.do_train: + raw_datasets["train"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=data_args.train_split_name, + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + num_proc=data_args.preprocessing_num_workers, + ) + + if training_args.do_eval: + raw_datasets["eval"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=data_args.eval_split_name, + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + num_proc=data_args.preprocessing_num_workers, + ) + + if not training_args.do_train and not training_args.do_eval: + raise ValueError( + "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." + ) + + if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--text_column_name {data_args.text_column_name} not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" + " correct text column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + # 5. Load pretrained model, tokenizer, and feature extractor + config = AutoConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + feature_extractor = AutoFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + tokenizer = AutoTokenizer.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + config.update( + { + "activation_dropout": model_args.activation_dropout, + "attention_dropout": model_args.attention_dropout, + "dropout": model_args.dropout, + } + ) + + model, params = FlaxWhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + dtype=getattr(jnp, model_args.dtype), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + _do_init=False, + ) + + if model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + # enable scan / gradient checkpointing if necessary + if training_args.use_scan: + model.enable_scan() # to enable scan in the nn.Module + params = model.convert_unroll_to_scan(params) # to convert the unrolled params to scan + + if training_args.gradient_checkpointing: + model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure + + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + # We need to set the language and task ids for previously multilingual checkpoints + tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False) + model.generation_config.forced_decoder_ids = tokenizer.get_decoder_prompt_ids( + language="English", task="transcribe", no_timestamps=True + ) + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) + min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length + ) + audio_column_name = data_args.audio_column_name + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + text_column_name = data_args.text_column_name + model_input_name = feature_extractor.model_input_names[0] + normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + + if training_args.do_train and data_args.max_train_samples is not None: + raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) + + if training_args.do_eval and data_args.max_eval_samples is not None: + raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + batch["input_length"] = len(sample["array"]) + + # process targets + input_str = " " + batch[text_column_name].lower() + batch["labels"] = tokenizer(input_str).input_ids + return batch + + vectorized_datasets = raw_datasets.map( + prepare_dataset, + remove_columns=next(iter(raw_datasets.values())).column_names, + num_proc=num_workers, + desc="preprocess train dataset", + ) + + # filter training data with inputs longer than max_input_length + def is_audio_in_length_range(length): + return min_input_length < length < max_input_length + + vectorized_datasets = vectorized_datasets.filter( + is_audio_in_length_range, + num_proc=num_workers, + input_columns=["input_length"], + ) + + # filter training data with labels longer than max_label_length + def is_labels_in_length_range(labels): + return 0 < len(labels) < max_label_length + + vectorized_datasets = vectorized_datasets.filter( + is_labels_in_length_range, + num_proc=num_workers, + input_columns=["labels"], + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + # 8. Load Metric + metric = evaluate.load("wer") + all_punctuation = list(string.punctuation.replace("'", "")) + + def compute_metrics(preds, labels): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + + # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352) + spaced_pred_str = [ + pred_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(pred_str)) + ] + spaced_label_str = [ + label_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(label_str)) + ] + wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str + + # 9. Save feature extractor, tokenizer, config and generation config + feature_extractor.save_pretrained(training_args.output_dir) + tokenizer.save_pretrained(training_args.output_dir) + config.save_pretrained(training_args.output_dir) + model.generation_config.save_pretrained( + training_args.output_dir + ) # generation config stays bound to model to make it easy to jit + + processor = AutoProcessor.from_pretrained(training_args.output_dir) + + data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=model.config.decoder_start_token_id, + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + ) + + # Enable tensorboard only on the master node + has_tensorboard = is_tensorboard_available() + if has_tensorboard and jax.process_index() == 0: + try: + from flax.metrics.tensorboard import SummaryWriter + + summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) + except ImportError as ie: + has_tensorboard = False + logger.warning( + "Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}" + ) + else: + logger.warning( + "Unable to display metrics through TensorBoard because the package is not" + " installed: Please run `pip install tensorboard` to enable." + ) + + # Enable wandb only on the master node + has_wandb = is_wandb_available() + if has_wandb: + import wandb as wandb_logger + + # Set up wandb run + if jax.process_index() == 0: + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + else: + logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # Initialize our training + rng = jax.random.PRNGKey(training_args.seed) + rng, dropout_rng = jax.random.split(rng) + + # Store some constant + num_epochs = int(training_args.num_train_epochs) + train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + eval_batch_size = per_device_eval_batch_size * jax.device_count() + steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size + total_train_steps = steps_per_epoch * num_epochs + + # Create learning rate schedule + linear_decay_lr_schedule_fn = create_learning_rate_fn( + total_train_steps, + training_args.warmup_steps, + training_args.learning_rate, + ) + + # We use Optax's "masking" functionality to not apply weight decay + # to bias and LayerNorm scale parameters. decay_mask_fn returns a + # mask boolean with the same structure as the parameters. + # The mask is True for parameters that should be decayed. + def decay_mask_fn(params): + flat_params = traverse_util.flatten_dict(params) + # find out all LayerNorm parameters + layer_norm_candidates = [ + "layer_norm", + "self_attn_layer_norm", + "final_layer_norm", + "encoder_attn_layer_norm", + ] + layer_norm_named_params = { + layer[-2:] + for layer_norm_name in layer_norm_candidates + for layer in flat_params.keys() + if layer_norm_name in "".join(layer).lower() + } + flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params} + return traverse_util.unflatten_dict(flat_mask) + + # create adam optimizer + adamw = optax.adamw( + learning_rate=linear_decay_lr_schedule_fn, + b1=training_args.adam_beta1, + b2=training_args.adam_beta2, + eps=training_args.adam_epsilon, + weight_decay=training_args.weight_decay, + mask=decay_mask_fn, + ) + + # Setup train state + state = TrainState.create(apply_fn=model.__call__, params=params, tx=adamw, dropout_rng=dropout_rng) + + # label smoothed cross entropy + def loss_fn(logits, labels, label_smoothing_factor=0.0): + """ + The label smoothing implementation is adapted from Flax's official example: + https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 + """ + vocab_size = logits.shape[-1] + confidence = 1.0 - label_smoothing_factor + low_confidence = (1.0 - confidence) / (vocab_size - 1) + normalizing_constant = -( + confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) + ) + soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) + + loss = optax.softmax_cross_entropy(logits, soft_labels) + loss = loss - normalizing_constant + + # ignore padded tokens from loss, i.e. where labels are not set to -100 + padding_mask = labels >= 0 + loss = loss * padding_mask + loss = loss.sum() + num_labels = padding_mask.sum() + return loss, num_labels + + # Define gradient update step fn + def train_step(state, batch, freeze_encoder, label_smoothing_factor=0.0): + dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) + + def compute_loss(params): + labels = batch.pop("labels") + logits = state.apply_fn( + **batch, + params=params, + dropout_rng=dropout_rng, + freeze_encoder=freeze_encoder, + train=True, + )[0] + loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) + return loss, num_labels + + grad_fn = jax.value_and_grad(compute_loss, has_aux=True) + (loss, num_labels), grad = grad_fn(state.params) + num_labels = jax.lax.psum(num_labels, "batch") + + # true loss = total loss / total samples + loss = jax.lax.psum(loss, "batch") + loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) + + # true grad = total grad / total samples + grad = jax.lax.psum(grad, "batch") + grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) + new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) + + metrics = { + "loss": loss, + "learning_rate": linear_decay_lr_schedule_fn(state.step), + } + return new_state, metrics + + # Define eval fn + def eval_step(params, batch, label_smoothing_factor=0.0): + labels = batch.pop("labels") + logits = model(**batch, params=params, train=False)[0] + + loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) + num_labels = jax.lax.psum(num_labels, "batch") + + # true loss = total loss / total samples + loss = jax.lax.psum(loss, "batch") + loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) + + metrics = {"loss": loss} + return metrics + + # Define generation function + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else model.config.num_beams + ) + gen_kwargs = {"max_length": max_label_length, "num_beams": num_beams} + + def generate_step(params, batch): + output_ids = model.generate( + batch[model_input_name], + attention_mask=batch.get("attention_mask"), + params=params, + **gen_kwargs, + ) + return output_ids.sequences + + # Create parallel version of the train and eval step + p_train_step = jax.pmap( + partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), + "batch", + donate_argnums=(0,), + static_broadcasted_argnums=(2,), + ) + p_eval_step = jax.pmap( + partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), + "batch", + ) + p_generate_step = jax.pmap(generate_step, "batch") + + # Replicate the train state on each device + state = state.replicate() + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(vectorized_datasets['train'])}") + logger.info(f" Num Epochs = {num_epochs}") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") + logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") + logger.info(f" Total optimization steps = {total_train_steps}") + + train_time = 0 + epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) + for epoch in epochs: + # ======================== Training ================================ + train_start = time.time() + + # Create sampling rng + rng, input_rng = jax.random.split(rng) + train_metrics = [] + + # Generate an epoch by shuffling sampling indices from the train dataset + train_loader = get_data_loader( + input_rng, + vectorized_datasets["train"], + batch_size=train_batch_size, + data_collator=data_collator, + dataloader_num_workers=dataloader_num_workers, + ) + # train + for step, batch in enumerate(tqdm(train_loader, desc="Training...", position=1), 1): + batch = shard(batch.data) + state, train_metric = p_train_step(state, batch, training_args.freeze_encoder) + + cur_step = epoch * steps_per_epoch + step + if cur_step % training_args.logging_steps == 0: + train_metrics.append(train_metric) + train_metric_to_write = unreplicate(train_metric) + epochs.write( + f"Step... ({cur_step} / {total_train_steps} | Loss:" + f" {train_metric_to_write['loss']}, Learning Rate:" + f" {train_metric_to_write['learning_rate']})" + ) + if has_wandb and jax.process_index() == 0: + write_wandb_metric( + wandb_logger, + train_metric_to_write, + train_time + time.time() - train_start, + cur_step, + "train", + ) + + train_time += time.time() - train_start + + train_metric = unreplicate(train_metric) + + epochs.write( + f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}," + f" Learning Rate: {train_metric['learning_rate']})" + ) + + # ======================== Evaluating ============================== + eval_metrics = [] + eval_preds = [] + eval_labels = [] + eval_start = time.time() + + eval_loader = get_data_loader( + input_rng, + vectorized_datasets["eval"], + batch_size=eval_batch_size, + data_collator=data_collator, + shuffle=False, + drop_last=False, + dataloader_num_workers=dataloader_num_workers, + ) + for batch in tqdm(eval_loader, desc="Evaluating...", position=2): + # Model forward + labels = batch["labels"] + + metrics = pad_shard_unpad(p_eval_step, static_return=True)( + state.params, batch.data, min_device_batch=per_device_eval_batch_size + ) + eval_metrics.append(metrics) + + # generation + if training_args.predict_with_generate: + generated_ids = pad_shard_unpad(p_generate_step)( + state.params, batch.data, min_device_batch=per_device_eval_batch_size + ) + eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) + eval_labels.extend(labels) + + eval_time = time.time() - eval_start + + # normalize eval metrics + eval_metrics = get_metrics(eval_metrics) + eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) + + # compute WER metric + wer_desc = "" + if training_args.predict_with_generate: + wer_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels) + eval_metrics.update(wer_metric) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + + # Print metrics and update progress bar + desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} |" f" {wer_desc})" + epochs.write(desc) + epochs.desc = desc + + # Save metrics + if has_tensorboard and jax.process_index() == 0: + write_metric( + summary_writer, + train_metrics, + eval_metrics, + train_time, + cur_step, + training_args.logging_steps, + ) + + if has_wandb and jax.process_index() == 0: + write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, "eval") + if training_args.predict_with_generate: + write_wandb_pred(wandb_logger, pred_str, label_str) + + # save checkpoint after each epoch and push checkpoint to the hub + if jax.process_index() == 0: + params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) + model.save_pretrained(training_args.output_dir, params=params) + tokenizer.save_pretrained(training_args.output_dir) + if training_args.push_to_hub: + repo.push_to_hub( + commit_message=f"Saving weights and logs of epoch {epoch + 1}", + blocking=False, + ) + + +if __name__ == "__main__": + main() diff --git a/flax/run_long_form_transcription.py b/flax/run_long_form_transcription.py new file mode 100644 index 0000000000000000000000000000000000000000..4ea91f15856b96ae22d562412a161f33eb3489d3 --- /dev/null +++ b/flax/run_long_form_transcription.py @@ -0,0 +1,653 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Evaluating a Whisper model on one or more long-form evaluation datasets. +""" +# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments. + +import logging +import os +import sys +import time +from dataclasses import field +from pathlib import Path +from typing import Optional + +import datasets +import flax +import jax +import jax.numpy as jnp +import numpy as np +import transformers +from datasets import DatasetDict, IterableDatasetDict, load_dataset +from jax.experimental.compilation_cache import compilation_cache as cc +from jiwer import process_words, wer_default +from nltk import ngrams +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + Seq2SeqTrainingArguments, + is_tensorboard_available, + is_wandb_available, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version, send_example_telemetry +from transformers.utils.versions import require_version + +from distil_whisper import FlaxWhisperPipeline + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + + +@flax.struct.dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, + ) + model_revision: str = field( + default="main", + metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and trained. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + load_with_scan: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to load the model with scan enabled. Required when the model was saved with scan enabled" + ) + }, + ) + return_timestamps: Optional[bool] = field( + default=False, + metadata={ + "help": "Whether to predict timestamps (alongside the text predictions). Timestamp predictions " + "are discarded at the end of inference, but may assist in the model in reducing hallucinations." + }, + ) + length_penalty: Optional[float] = field( + default=1.0, + metadata={ + "help": ( + "Exponential penalty to the length that is used with beam-based generation. It is applied as an " + "exponent to the sequence length, which in turn is used to divide the score of the sequence. Since " + "the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes " + "longer sequences, while length_penalty < 1.0 encourages shorter sequences." + ) + }, + ) + do_sample: Optional[bool] = field( + default=False, + metadata={"help": "Whether or not to use sampling ; use greedy decoding otherwise."}, + ) + top_k: Optional[int] = field( + default=50, + metadata={"help": "The number of the highest probability vocabulary tokens to keep for top-k-filtering."}, + ) + temperature: Optional[float] = field( + default=1.0, + metadata={"help": "The value used to modulate the next token probabilities if sampling."}, + ) + chunk_length_s: Optional[float] = field( + default=30.0, + metadata={ + "help": "The input length for each chunk. By default, the chunk" + "length is set 30.0s, equal to Whisper's context window." + }, + ) + compilation_cache: Optional[str] = field( + default=None, + metadata={ + "help": ( + "Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the " + "first time it is run. Successive compilation steps for the same function utilise the cache to reduce" + "the compilation time." + ) + }, + ) + + +@flax.struct.dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset hours by a '+' symbol." + }, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_split_name: Optional[str] = field( + default=None, + metadata={"help": "The split name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, + ) + max_label_length: int = field( + default=256, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, + ) + log_audio: Optional[bool] = field( + default=False, + metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, + ) + log_predictions: Optional[bool] = field( + default=True, + metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."}, + ) + ngram_degree: Optional[int] = field( + default=5, metadata={"help": "Degree of n-grams used when computing duplicate n-grams in the predicted text."} + ) + + +def write_metric(summary_writer, eval_metrics, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"{prefix}/{metric_name}", value, 0) + + +def write_wandb_metric(wandb_logger, metrics, train_time, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + wandb_logger.log(log_metrics) + + +def convert_audio_to_wandb(wandb_logger, audio): + return wandb_logger.Audio(audio["array"][:, np.newaxis], sample_rate=audio["sampling_rate"]) + + +def write_wandb_pred( + wandb_logger, + eval_audios, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + prefix="eval", +): + columns = ["Target", "Pred", "Norm Target", "Norm Pred"] + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + + if len(eval_audios) > 0: + columns.insert(0, "Audio") + str_data = [ + [ + convert_audio_to_wandb(wandb_logger, eval_audios[i]), + *str_data[i], + ] + for i in range(len(pred_str)) + ] + + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)}, + ) + + +def convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_hours is not None: + if len(dataset_hours) != len(dataset_names): + raise ValueError( + f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_hours)} hours." + ) + dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] + else: + dataset_hours = [None] * len(dataset_names) + + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "hours": dataset_hours[i], + } + ) + return dataset_names_dict + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The + # information sent is the one passed as arguments along with your JAX/Flax versions. + send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") + + # Enable tensorboard only on the master node + has_tensorboard = is_tensorboard_available() + if "tensorboard" in training_args.report_to: + if has_tensorboard and jax.process_index() == 0: + try: + from flax.metrics.tensorboard import SummaryWriter + + summary_writer = SummaryWriter(log_dir=Path(os.path.join(training_args.output_dir, "runs"))) + except ImportError as ie: + has_tensorboard = False + logger.warning( + f"Unable to display metrics through TensorBoard because some packages are not installed: {ie}" + ) + else: + logger.warning( + "Unable to display metrics through TensorBoard because the package is" + " not installed: Please run `pip install tensorboard` to enable." + ) + + # Enable wandb only on the master node + has_wandb = is_wandb_available() + if "wandb" in training_args.report_to: + if has_wandb and jax.process_index() == 0: + import wandb as wandb_logger + + # Set up wandb run + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + else: + logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + # Set the verbosity to info of the Transformers logger. + # We only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + if jax.process_index() == 0: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + + logger.info("Evaluation parameters %s", training_args) + + if model_args.compilation_cache: + cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache")) + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # Convert lists of dataset names/configs/splits to a dict + # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation" + # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"} + dataset_names_dict = convert_dataset_str_to_list( + data_args.dataset_name, + data_args.dataset_config_name, + splits=data_args.dataset_split_name, + text_column_names=data_args.text_column_name, + ) + + # load multiple eval sets + for dataset_dict in dataset_names_dict: + # Clean-up the dataset name for pretty logging + # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean" + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): + raise ValueError( + f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + + # Streaming mode robust way of obtaining the features + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + audio_column_name = data_args.audio_column_name + + if audio_column_name not in raw_datasets_features: + raise ValueError( + f"--audio_column_name '{audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(raw_datasets_features)}." + ) + + for split in raw_datasets: + raw_datasets[split] = raw_datasets[split].remove_columns( + set(raw_datasets[split].features.keys()) - {audio_column_name, "text"} + ) + + # 5. Load pretrained model, tokenizer, and feature extractor + pipeline = FlaxWhisperPipeline( + model_args.model_name_or_path, + dtype=getattr(jnp, model_args.dtype), + max_length=training_args.generation_max_length, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + subfolder=model_args.subfolder, + # use_scan=model_args.load_with_scan, # Model might have (erroneously) been saved with scan still enabled + ) + + if pipeline.model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + # disable scan if necessary (makes the inference step faster) + if model_args.load_with_scan: + pipeline.model.disable_scan() # to disable scan in the nn.Module + pipeline.params = pipeline.model.convert_scan_to_unroll( + pipeline.params + ) # to convert the scan params to unrolled + + # 6. Possibly evaluate on a subset of data + if data_args.max_eval_samples is not None: + for split in raw_datasets: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_eval_samples)) + ) + + # 8. Compute WER Metrics + normalizer = EnglishTextNormalizer(pipeline.tokenizer.english_spelling_normalizer) + + def compute_metrics(pred_str, label_str, ngram_degree=5): + # normalize everything and compute the WER + norm_pred_str = [normalizer(pred).replace(".", "") for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer_output = process_words(norm_label_str, norm_pred_str, wer_default, wer_default) + wer_norm = 100 * wer_output.wer + ier_norm = 100 * wer_output.insertions / sum([len(ref) for ref in wer_output.references]) + ser_norm = 100 * wer_output.substitutions / sum([len(ref) for ref in wer_output.references]) + der_norm = 100 * wer_output.deletions / sum([len(ref) for ref in wer_output.references]) + + all_ngrams = list(ngrams(" ".join(norm_pred_str).split(), ngram_degree)) + repeated_ngrams = len(all_ngrams) - len(set(all_ngrams)) + + return ( + {"wer": wer_norm, "ier": ier_norm, "ser": ser_norm, "der": der_norm, "repeated_ngrams": repeated_ngrams}, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + ) + + # Store some constants + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + eval_batch_size = per_device_eval_batch_size * jax.device_count() + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else pipeline.model.config.num_beams + ) + + generation_config = pipeline.model.generation_config + if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: + # We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to English + language = "English" + task = "transcribe" + else: + language = None + task = None + + # pre-compile the model so that we don't count it in our eval + logger.info("Pre-compiling the generate call...") + random_inputs = {"input_features": np.ones((eval_batch_size, 80, 2 * pipeline.model.config.max_source_positions))} + pipeline.forward( + random_inputs, + batch_size=eval_batch_size, + language=language, + task=task, + return_timestamps=model_args.return_timestamps, + num_beams=num_beams, + length_penalty=model_args.length_penalty, + do_sample=model_args.do_sample, + top_k=model_args.top_k, + temperature=model_args.temperature, + ) + + def eval_step(split="eval"): + # ======================== Evaluating ============================== + eval_preds = [] + eval_labels = [] + eval_audios = [] + eval_start = time.time() + + for sample in tqdm(raw_datasets[split], desc=f"Evaluating {split}..."): + # Model forward + label_str = sample["text"] + if data_args.log_audio: + eval_audios.append(sample["audio"]) + + pred_str = pipeline( + sample["audio"], + batch_size=eval_batch_size, + language=language, + task=task, + chunk_length_s=model_args.chunk_length_s, + return_timestamps=model_args.return_timestamps, + num_beams=num_beams, + length_penalty=model_args.length_penalty, + do_sample=model_args.do_sample, + top_k=model_args.top_k, + temperature=model_args.temperature, + ) + eval_preds.append(pred_str["text"]) + eval_labels.append(label_str) + + eval_time = time.time() - eval_start + + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( + eval_preds, eval_labels, ngram_degree=data_args.ngram_degree + ) + wer_desc = " ".join([f"{split} {key}: {value} |" for key, value in wer_metric.items()]) + + # Print metrics to stdout + logger.info(wer_desc) + + # Save metrics to tensorboard + if has_tensorboard and jax.process_index() == 0 and "tensorboard" in training_args.report_to: + write_metric(summary_writer, wer_metric, prefix=split) + + # Save metrics to wandb + if has_wandb and jax.process_index() == 0 and "wandb" in training_args.report_to: + write_wandb_metric(wandb_logger, wer_metric, eval_time, prefix=split) + if data_args.log_predictions: + write_wandb_pred( + wandb_logger, eval_audios, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split + ) + + logger.info("***** Running Eval *****") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") + logger.info(f" Total eval batch size (w. parallel & distributed) = {eval_batch_size}") + logger.info(f" Beam size = {num_beams}") + if num_beams > 1: + logger.info(f" Length penalty size = {model_args.length_penalty}") + logger.info(f" Do sample = {model_args.do_sample}") + if model_args.do_sample: + logger.info(f" Top k = {model_args.top_k}") + logger.info(f" Temperature = {model_args.temperature}") + + for split in raw_datasets: + eval_step(split=split) + + +if __name__ == "__main__": + main() diff --git a/flax/run_orig_longform.sh b/flax/run_orig_longform.sh new file mode 100644 index 0000000000000000000000000000000000000000..0451b29ebc1304738858b95b174c0dc67d9c38d7 --- /dev/null +++ b/flax/run_orig_longform.sh @@ -0,0 +1,25 @@ +#!/usr/bin/env bash +names=("openai/whisper-large-v2" "openai/whisper-medium.en" "openai/whisper-small.en" "openai/whisper-base.en" "openai/whisper-tiny.en") +names=("openai/whisper-small.en" "openai/whisper-base.en" "openai/whisper-tiny.en") +# names=("patrickvonplaten/whisper-large-v2-32-2" "patrickvonplaten/whisper-medium-24-2") + +# chunk_lengths=("15.0" "30.0") +# --return_timestamps \ +# --assistant_model_name_or_path "patrickvonplaten/whisper-large-v2-32-2" \ +# --attn_type "flash2" \ + +# Double loop +for name in "${names[@]}"; do + CUDA_VISIBLE_DEVICES="1" python ./run_speed_pt.py \ + --dataset_name "distil-whisper/earnings21+distil-whisper/earnings22+distil-whisper/meanwhile+distil-whisper/rev16" \ + --wandb_name "A100-${name}-Longform-Orig" \ + --model_name_or_path ${name} \ + --wandb_project "distil-whisper-speed-bench-long-form-orig-32" \ + --dataset_config_name "full+full+default+whisper_subset" \ + --dataset_split_name "test+test+test+test" \ + --text_column_name "transcription+transcription+text+transcription" \ + --use_orig_whisper \ + --max_label_length "1000000" \ + --samples_per_dataset "32" \ + --batch_size "1" +done diff --git a/flax/run_pseudo_labelling_pt.py b/flax/run_pseudo_labelling_pt.py new file mode 100644 index 0000000000000000000000000000000000000000..78e8bc4d939da5da536617e0852f62b4c93f238d --- /dev/null +++ b/flax/run_pseudo_labelling_pt.py @@ -0,0 +1,880 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Pseudo-labelling audio data using the Whisper model in preparation for distillation. +""" +import csv + +# You can also adapt this script for your own pseudo-labelling tasks. Pointers for this are left as comments. +import logging +import os +import string +import sys +import time +from dataclasses import dataclass, field +from datetime import timedelta +from pathlib import Path +from typing import Any, Dict, List, Optional, Union + +import datasets +import evaluate +import numpy as np +import torch +import transformers +from accelerate import Accelerator, InitProcessGroupKwargs +from accelerate.logging import get_logger +from datasets import ( + DatasetDict, + IterableDatasetDict, + load_dataset, +) +from huggingface_hub import HfFolder, Repository, create_repo, get_full_repo_name +from torch.utils.data import DataLoader +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperConfig, + WhisperFeatureExtractor, + WhisperForConditionalGeneration, + WhisperProcessor, + WhisperTokenizerFast, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.34.0.dev0") + +require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") + +logger = get_logger(__name__) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to distill from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + processor_name: Optional[str] = field( + default=None, + metadata={"help": "processor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + token: str = field( + default=None, + metadata={ + "help": ( + "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " + "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "The data type (dtype) in which to load the model weights. One of `float32` (full-precision), " + "`float16` or `bfloat16` (both half-precision)." + ) + }, + ) + attn_type: Optional[str] = field( + default=None, + metadata={ + "help": ( + "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" + "1. `None`: default Transformers attention implementation." + "2. `flash_attn`: Flash Attention through PyTorch SDPA. Requires `torch>=2.0` and `optimum` to be installed. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080)" + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)" + ) + }, + ) + compile_encoder: Optional[bool] = field( + default=True, + metadata={ + "help": "Whether or not to enable torch compile in the encoder module. Requires `torch>=2.0` to be installed." + }, + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={"help": "The name of the dataset to use (via the datasets library)."}, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default="text", + metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, + ) + id_column_name: str = field( + default="id", + metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"}, + ) + max_label_length: int = field( + default=128, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + data_split_name: str = field( + default="train+validation+test", + metadata={ + "help": ( + "The name of the data set splits to use (via the datasets library)." + " Defaults to 'train+validation+test'. Multiple splits can be passed by splitting a" + " list through the '+' character, e.g. 'train+validation' will" + " pseudo-label both the 'train' and 'validation' splits sequentially." + ) + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + streaming: bool = field( + default=False, + metadata={"help": "Whether to use dataset's streaming mode to load and pre-process the data."}, + ) + max_samples_per_split: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of examples per split to this value if set."}, + ) + return_timestamps: bool = field( + default=False, + metadata={ + "help": "Whether to return the timestamps with the text. This enables the `FlaxWhisperTimestampsLogitsProcessor`." + }, + ) + language: str = field( + default=None, + metadata={ + "help": ( + "Language for multilingual distillation. This argument should be set for multilingual distillation " + "only. For English speech recognition, it should be left as `None`." + ) + }, + ) + task: str = field( + default="transcribe", + metadata={ + "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." + "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." + }, + ) + decode_token_ids: bool = field( + default=True, + metadata={"help": "Whether or not to decode the predicted token ids to text transcriptions."}, + ) + private_dataset: bool = field( + default=False, + metadata={"help": "Whether or not to create a private dataset for the pseudo-labelled data."}, + ) + + +def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: + """ + Shift label ids one token to the right. + """ + shifted_label_ids = np.zeros_like(label_ids) + shifted_label_ids[:, 1:] = label_ids[:, :-1] + shifted_label_ids[:, 0] = decoder_start_token_id + + return shifted_label_ids + + +@dataclass +class DataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The start-of-sequence token id of the decoder. + decoder_prev_token_id (:obj: `int`) + The start-of-prompt token id of the decoder + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + """ + + processor: Any + decoder_start_token_id: int + decoder_prev_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + + # dataloader returns a list of features which we convert to a dict + input_features = {model_input_name: [feature[model_input_name] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + file_ids = {"input_ids": [feature["file_id"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="pt", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="pt", + ) + + file_ids_batch = self.processor.tokenizer.pad( + file_ids, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="pt", + ) + + # replace padding with -100 to ignore correctly when computing the loss + labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + if set(torch.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}): + labels = labels[:, 1:] + + # replace initial prompt tokens with -100 to ignore correctly when computing the loss + bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1) + prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None] + labels = torch.where(prompt_mask, -100, labels) + + batch["labels"] = labels + batch["file_ids"] = file_ids_batch["input_ids"] + + return batch + + +def log_metric( + accelerator, + metrics: Dict, + train_time: float, + prefix: str = "eval", +): + """Helper function to log all evaluation metrics with the correct prefixes and styling.""" + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + accelerator.log(log_metrics) + + +def log_pred( + accelerator, + pred_str: List[str], + label_str: List[str], + norm_pred_str: List[str], + norm_label_str: List[str], + prefix: str = "eval", + num_lines: int = 200000, +): + """Helper function to log target/predicted transcriptions to weights and biases (wandb).""" + if accelerator.is_main_process: + wandb_tracker = accelerator.get_tracker("wandb") + # pretty name for split + prefix = prefix.replace("/", "-") + + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"{prefix}/all_predictions", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data[:num_lines], + ) + + # log incorrect normalised predictions + str_data = np.asarray(str_data) + str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"{prefix}/incorrect_predictions", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data_incorrect[:num_lines], + ) + + +def main(): + # 1. Parse input arguments + # We keep distinct sets of args, for cleaner separation of model/data/training related args + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # 2. Initialize the accelerator + # We will let the accelerator handle device placement for us in this example + # We simply have to specify the training precision and any trackers being used + # We'll use the same dtype arguments as our JAX/Flax training script and convert + # it to accelerate format + if model_args.dtype == "float16": + mixed_precision = "fp16" + torch_dtype = torch.float16 + elif model_args.dtype == "bfloat16": + mixed_precision = "bf16" + torch_dtype = torch.bfloat16 + else: + mixed_precision = "no" + torch_dtype = torch.float32 + + kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) + + accelerator = Accelerator( + gradient_accumulation_steps=training_args.gradient_accumulation_steps, + mixed_precision=mixed_precision, + log_with=training_args.report_to, + project_dir=training_args.output_dir, + kwargs_handlers=[kwargs], + ) + + accelerator.init_trackers(project_name=data_args.wandb_project) + + # 3. Set-up basic logging + # Create one log on every process with the configuration for debugging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + # Log a small summary on each proces + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" + ) + + # Set the verbosity to info of the Transformers logger (on main process only) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + logger.info("Training/evaluation parameters %s", training_args) + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + token = model_args.token if model_args.token is not None else HfFolder().get_token() + + data_splits = data_args.data_split_name.split("+") + for split in data_splits: + if data_args.streaming: + raw_datasets[split] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=split, + cache_dir=data_args.dataset_cache_dir, + token=token, + streaming=True, + ) + else: + raw_datasets[split] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=split, + cache_dir=data_args.dataset_cache_dir, + token=token, + streaming=False, + num_proc=data_args.preprocessing_num_workers, + ) + + if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--text_column_name {data_args.text_column_name} not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" + " correct text column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + # 7. Load pretrained model, tokenizer, and feature extractor + config = WhisperConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + feature_extractor = WhisperFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + tokenizer = WhisperTokenizerFast.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + token=token, + ) + processor = WhisperProcessor.from_pretrained( + (model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + model = WhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + subfolder=model_args.subfolder, + token=token, + low_cpu_mem_usage=True, + torch_dtype=torch_dtype, + use_flash_attention_2=model_args.attn_type == "flash_attn_2", + ) + + if model_args.attn_type == "flash_attn": + model = model.to_bettertransformer() + elif model_args.attn_type not in [None, "flash_attn", "flash_attn_2"]: + raise ValueError( + f"Argument `attn_type` is set to {model_args.attn_type}. Should be one of:" + "1. `None`: default Transformers attention implementation." + "2. `flash_attn`: Flash Attention through PyTorch SDPA. Requires `torch>=2.0` and `optimum` to be installed. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080)." + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." + ) + + if model_args.compile_encoder: + model.model.encoder.forward = torch.compile( + model.model.encoder.forward, mode="reduce-overhead", fullgraph=True + ) + + model.eval() + + if model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + return_timestamps = data_args.return_timestamps + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + # We need to set the language and task ids for multilingual checkpoints + tokenizer.set_prefix_tokens( + language=data_args.language, task=data_args.task, predict_timestamps=return_timestamps + ) + elif data_args.language is not None: + raise ValueError( + "Setting language token for an English-only checkpoint is not permitted. The language argument should " + "only be set for multilingual checkpoints." + ) + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length + ) + audio_column_name = data_args.audio_column_name + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + text_column_name = data_args.text_column_name + model_input_name = feature_extractor.model_input_names[0] + id_column_name = data_args.id_column_name + normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + + if data_args.max_samples_per_split is not None: + for split in data_splits: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_samples_per_split) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_samples_per_split)) + ) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + + # process targets + input_str = batch[text_column_name] + batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids + + # record the id of the sample as token ids + batch["file_id"] = tokenizer(batch[id_column_name], add_special_tokens=False).input_ids + return batch + + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + if data_args.streaming: + vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=raw_datasets_features) + else: + vectorized_datasets = raw_datasets.map( + prepare_dataset, + remove_columns=raw_datasets_features, + num_proc=num_workers, + desc="preprocess dataset", + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + if data_args.streaming and dataloader_num_workers > 0: + logger.warning( + "Using multiple dataloader num workers with streaming mode will result in different shards of " + "data being transcribed in parallel. This is not advised if you want to preserve the order of the " + "audio-text data." + ) + + # Handle the repository creation + output_dir = training_args.output_dir + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(output_dir).absolute().name, + token=token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, exist_ok=True, token=token, repo_type="dataset", private=data_args.private_dataset) + repo = Repository( + output_dir, + clone_from=repo_name, + token=token, + repo_type="dataset", + ) + # Ensure large txt files can be pushed to the Hub with git-lfs + with open(os.path.join(output_dir, ".gitattributes"), "r+") as f: + git_lfs_extensions = f.read() + if "*.csv" not in git_lfs_extensions: + f.write("*.csv filter=lfs diff=lfs merge=lfs -text") + else: + # this is where we'll save our transcriptions + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + # 8. Load Metric + metric = evaluate.load("wer") + # convention is that we space all punctuation *except* apostrophes + all_punctuation = list(string.punctuation.replace("'", "")) + + def compute_metrics(preds, labels, file_ids): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + + # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352) + spaced_pred_str = [ + pred_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(pred_str)) + ] + spaced_label_str = [ + label_str[i].replace(punctuation, f" {punctuation} ") + for punctuation in all_punctuation + for i in range(len(label_str)) + ] + wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + file_ids = [file_ids[i] for i in range(len(file_ids)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str, file_ids + + # 12. Define Training Schedule + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + + data_collator = DataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=model.config.decoder_start_token_id, # <|startoftranscript|> + decoder_prev_token_id=tokenizer.all_special_ids[-3], # <|startofprev|> + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + ) + + # 14. Define generation arguments - we need to do this before we wrap the models in DDP + # so that we can still access the configs + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else getattr(model.generation_config, "num_beams", 1) + ) + + gen_kwargs = { + "max_length": max_label_length, + "num_beams": num_beams, + "return_timestamps": return_timestamps, + } + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + # forcing the language and task tokens helps multilingual models in their generations + gen_kwargs.update( + { + "language": data_args.language, + "task": data_args.task, + } + ) + + # 15. Prepare everything with accelerate + model = accelerator.prepare(model) + + def eval_step_with_save(split="eval"): + # ======================== Evaluating ============================== + eval_preds = [] + eval_labels = [] + eval_ids = [] + eval_start = time.time() + + eval_loader = DataLoader( + vectorized_datasets[split], + batch_size=per_device_eval_batch_size, + collate_fn=data_collator, + num_workers=dataloader_num_workers, + pin_memory=True, + ) + + eval_loader = accelerator.prepare(eval_loader) + batches = tqdm(eval_loader, desc=f"Evaluating {split}...", disable=not accelerator.is_local_main_process) + + # make the split name pretty for librispeech etc + split = split.replace(".", "-").split("/")[-1] + output_csv = os.path.join(output_dir, f"{split}-transcription.csv") + + for step, batch in enumerate(batches): + file_ids = batch.pop("file_ids") + # Generate predictions and pad to max generated length + generated_ids = model.module.generate(batch["input_features"].to(dtype=torch_dtype), **gen_kwargs) + generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id) + # Gather all predictions and targets + file_ids, generated_ids, labels = accelerator.gather_for_metrics( + (file_ids, generated_ids, batch["labels"]) + ) + eval_preds.extend(generated_ids.cpu().numpy()) + eval_labels.extend(labels.cpu().numpy()) + file_ids = tokenizer.batch_decode(file_ids, skip_special_tokens=True) + eval_ids.extend(file_ids) + + if step % training_args.logging_steps == 0 and step > 0: + batches.write(f"Saving transcriptions for split {split} step {step}") + accelerator.wait_for_everyone() + if data_args.decode_token_ids: + eval_preds = tokenizer.batch_decode( + eval_preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps + ) + csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))] + + with open(output_csv, "w", encoding="UTF8", newline="") as f: + writer = csv.writer(f) + # write multiple rows + writer.writerow(["file_id", "whisper_transcript"]) + writer.writerows(csv_data) + + if training_args.push_to_hub and accelerator.is_main_process: + repo.push_to_hub( + commit_message=f"Saving transcriptions for split {split} step {step}.", + blocking=False, + ) + + accelerator.wait_for_everyone() + eval_time = time.time() - eval_start + + # compute WER metric for eval sets + wer_desc = "" + if "validation" in split or "test" in split: + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str, eval_ids = compute_metrics( + eval_preds, eval_labels, eval_ids + ) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + # Save metrics + predictions + log_metric( + accelerator, + metrics=wer_metric, + train_time=eval_time, + prefix=split, + ) + log_pred( + accelerator, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + prefix=split, + ) + if data_args.decode_token_ids: + eval_preds = pred_str + elif data_args.decode_token_ids: + eval_preds = tokenizer.batch_decode( + eval_preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps + ) + + batches.write(f"Saving final transcriptions for split {split}.") + csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))] + with open(output_csv, "w", encoding="UTF8", newline="") as f: + writer = csv.writer(f) + # write multiple rows + writer.writerow(["file_id", "whisper_transcript"]) + writer.writerows(csv_data) + + # Print metrics + logger.info(wer_desc) + + if not data_args.streaming: + raw_datasets[split] = raw_datasets[split].add_column("whisper_transcript", eval_preds) + + logger.info("***** Running Labelling *****") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") + logger.info( + f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size * accelerator.num_processes}" + ) + logger.info(f" Predict labels with timestamps = {return_timestamps}") + logger.info(f" Decode labels to transcriptions = {data_args.decode_token_ids}") + for split in data_splits: + eval_step_with_save(split=split) + accelerator.wait_for_everyone() + if training_args.push_to_hub and accelerator.is_main_process: + repo.push_to_hub( + commit_message=f"Saving final transcriptions for split {split.replace('.', '-').split('/')[-1]}", + blocking=False, + ) + if not data_args.streaming and accelerator.is_main_process: + raw_datasets.save_to_disk(output_dir, num_proc=num_workers) + if training_args.push_to_hub: + raw_datasets.push_to_hub(repo_name, config_name=data_args.dataset_config_name) + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/flax/run_pt_long_form_transcription.py b/flax/run_pt_long_form_transcription.py new file mode 100644 index 0000000000000000000000000000000000000000..f2b8aac809bc44ca757bc6133db9d642bea4fd0a --- /dev/null +++ b/flax/run_pt_long_form_transcription.py @@ -0,0 +1,597 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Evaluating a Whisper model on one or more long-form evaluation datasets. +""" +# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments. + +import logging +import os +import sys +import time +from dataclasses import dataclass, field +from typing import Optional + +import datasets +import numpy as np +import torch +import transformers +from datasets import DatasetDict, IterableDatasetDict, load_dataset +from jiwer import process_words, wer_default +from nltk import ngrams +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperTokenizer, + is_tensorboard_available, + is_wandb_available, + pipeline, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: update `datasets` to the latest version: `pip install --upgrade datasets[audio]`", +) + +logger = logging.getLogger(__name__) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `transformers-cli login`" + " (necessary to use this script with private models)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and evaluated. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + return_timestamps: Optional[bool] = field( + default=False, + metadata={ + "help": "Whether to predict timestamps (alongside the text predictions). Timestamp predictions " + "are discarded at the end of inference, but may assist in the model in reducing hallucinations." + }, + ) + length_penalty: Optional[float] = field( + default=1.0, + metadata={ + "help": ( + "Exponential penalty to the length that is used with beam-based generation. It is applied as an " + "exponent to the sequence length, which in turn is used to divide the score of the sequence. Since " + "the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes " + "longer sequences, while length_penalty < 1.0 encourages shorter sequences." + ) + }, + ) + do_sample: Optional[bool] = field( + default=False, + metadata={"help": "Whether or not to use sampling ; use greedy decoding otherwise."}, + ) + top_k: Optional[int] = field( + default=50, + metadata={"help": "The number of the highest probability vocabulary tokens to keep for top-k-filtering."}, + ) + temperature: Optional[float] = field( + default=1.0, + metadata={"help": "The value used to modulate the next token probabilities if sampling."}, + ) + chunk_length_s: Optional[float] = field( + default=0, + metadata={ + "help": "The input length for each chunk. By default, the chunk length is set to 0, which means no chunking." + }, + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset hours by a '+' symbol." + }, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_split_name: Optional[str] = field( + default=None, + metadata={"help": "The split name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, + ) + max_label_length: int = field( + default=256, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, + ) + log_audio: Optional[bool] = field( + default=False, + metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, + ) + log_predictions: Optional[bool] = field( + default=True, + metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."}, + ) + ngram_degree: Optional[int] = field( + default=5, metadata={"help": "Degree of n-grams used when computing duplicate n-grams in the predicted text."} + ) + + +def write_metric(summary_writer, eval_metrics, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.add_scalar(f"{prefix}/{metric_name}", value, 0) + + +def write_wandb_metric(wandb_logger, metrics, train_time, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + wandb_logger.log(log_metrics) + + +def convert_audio_to_wandb(wandb_logger, audio): + return wandb_logger.Audio(audio["array"][:, np.newaxis], sample_rate=audio["sampling_rate"]) + + +def write_wandb_pred( + wandb_logger, + eval_audios, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + prefix="eval", +): + columns = ["Target", "Pred", "Norm Target", "Norm Pred"] + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + + if len(eval_audios) > 0: + columns.insert(0, "Audio") + str_data = [ + [ + convert_audio_to_wandb(wandb_logger, eval_audios[i]), + *str_data[i], + ] + for i in range(len(pred_str)) + ] + + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)}, + ) + + +def convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_hours is not None: + if len(dataset_hours) != len(dataset_names): + raise ValueError( + f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_hours)} hours." + ) + dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] + else: + dataset_hours = [None] * len(dataset_names) + + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "hours": dataset_hours[i], + } + ) + return dataset_names_dict + + +def data(dataset, text_column_name="text", log_audio=False): + for item in dataset: + yield {**item["audio"], "reference": item[text_column_name], "audio": item["audio"] if log_audio else None} + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Enable tensorboard only on the master node + has_tensorboard = is_tensorboard_available() + if "tensorboard" in training_args.report_to: + if has_tensorboard: + try: + from torch.utils.tensorboard import SummaryWriter + + summary_writer = SummaryWriter(log_dir=os.path.join(training_args.output_dir, "runs")) + except ImportError as ie: + has_tensorboard = False + logger.warning( + "Unable to display metrics through TensorBoard because some" f" package are not installed: {ie}" + ) + else: + logger.warning( + "Unable to display metrics through TensorBoard because the package is" + " not installed: Please run `pip install tensorboard` to enable." + ) + + # Enable wandb only on the master node + has_wandb = is_wandb_available() + if "wandb" in training_args.report_to: + if has_wandb: + import wandb as wandb_logger + + # Set up wandb run + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + else: + logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + # Set the verbosity to info of the Transformers logger. + # We only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO) + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + + logger.info("Evaluation parameters %s", training_args) + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # Convert lists of dataset names/configs/splits to a dict + # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation" + # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"} + dataset_names_dict = convert_dataset_str_to_list( + data_args.dataset_name, + data_args.dataset_config_name, + splits=data_args.dataset_split_name, + text_column_names=data_args.text_column_name, + ) + + # load multiple eval sets + for dataset_dict in dataset_names_dict: + # Clean-up the dataset name for pretty logging + # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean" + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): + raise ValueError( + f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + + # Streaming mode robust way of obtaining the features + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + audio_column_name = data_args.audio_column_name + + if audio_column_name not in raw_datasets_features: + raise ValueError( + f"--audio_column_name '{audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(raw_datasets_features)}." + ) + + for split in raw_datasets: + raw_datasets[split] = raw_datasets[split].remove_columns( + set(raw_datasets[split].features.keys()) - {audio_column_name, "text"} + ) + + if data_args.max_eval_samples is not None: + for split in raw_datasets: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_eval_samples)) + ) + + # Store some constants + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + num_beams = training_args.generation_num_beams if training_args.generation_num_beams is not None else 1 + + model_kwargs = { + "cache_dir": model_args.cache_dir, + "use_auth_token": True if model_args.use_auth_token else None, + "subfolder": model_args.subfolder, + } + + # 5. Load pretrained model, tokenizer, and feature extractor + pipe = pipeline( + "automatic-speech-recognition", + model_args.model_name_or_path, + torch_dtype=getattr(torch, model_args.dtype), + model_kwargs=model_kwargs, + max_new_tokens=training_args.generation_max_length, + batch_size=per_device_eval_batch_size, + chunk_length_s=model_args.chunk_length_s, + return_timestamps=model_args.return_timestamps, + device="cuda:0" if torch.cuda.is_available() else "cpu", + ) + + if pipe.model.can_generate(): + if pipe.model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + generate_kwargs = { + "num_beams": num_beams, + "length_penalty": model_args.length_penalty, + "do_sample": model_args.do_sample, + "top_k": model_args.top_k, + "temperature": model_args.temperature, + } + if hasattr(pipe.model.generation_config, "is_multilingual") and pipe.model.generation_config.is_multilingual: + generate_kwargs = generate_kwargs.update({"langauge": "English", "task": "transcribe"}) + else: + generate_kwargs = None + + # 8. Load Metric + whisper_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en") + normalizer = EnglishTextNormalizer(whisper_tokenizer.english_spelling_normalizer) + + def compute_metrics(pred_str, label_str, ngram_degree=5): + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer_output = process_words(norm_label_str, norm_pred_str, wer_default, wer_default) + wer_norm = 100 * wer_output.wer + ier_norm = 100 * wer_output.insertions / sum([len(ref) for ref in wer_output.references]) + ser_norm = 100 * wer_output.substitutions / sum([len(ref) for ref in wer_output.references]) + der_norm = 100 * wer_output.deletions / sum([len(ref) for ref in wer_output.references]) + + all_ngrams = list(ngrams(" ".join(norm_pred_str).split(), ngram_degree)) + repeated_ngrams = len(all_ngrams) - len(set(all_ngrams)) + + return ( + {"wer": wer_norm, "ier": ier_norm, "ser": ser_norm, "der": der_norm, "repeated_ngrams": repeated_ngrams}, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + ) + + def eval_step(split="eval"): + # ======================== Evaluating ============================== + eval_preds = [] + eval_labels = [] + eval_audios = [] + eval_start = time.time() + + for sample in tqdm( + pipe( + data(raw_datasets[split], log_audio=data_args.log_audio), + generate_kwargs=generate_kwargs, + ), + desc=f"Evaluating {split}...", + ): + eval_preds.append(sample["text"]) + eval_labels.append(sample["reference"][0]) + if data_args.log_audio: + eval_audios.append(sample["audio"][0]) + + eval_time = time.time() - eval_start + + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( + eval_preds, eval_labels, data_args.ngram_degree + ) + wer_desc = " ".join([f"{split} {key}: {value} |" for key, value in wer_metric.items()]) + + # Print metrics to stdout + logger.info(wer_desc) + + # Save metrics to tensorboard + if has_tensorboard and "tensorboard" in training_args.report_to: + write_metric(summary_writer, wer_metric, prefix=split) + + # Save metrics to wandb + if has_wandb and "wandb" in training_args.report_to: + write_wandb_metric(wandb_logger, wer_metric, eval_time, prefix=split) + if data_args.log_predictions: + write_wandb_pred( + wandb_logger, eval_audios, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split + ) + + logger.info("***** Running Eval *****") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") + logger.info(f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size}") + if pipe.model.can_generate(): + logger.info(f" Beam size = {num_beams}") + if num_beams > 1: + logger.info(f" Length penalty size = {model_args.length_penalty}") + logger.info(f" Do sample = {model_args.do_sample}") + if model_args.do_sample: + logger.info(f" Top k = {model_args.top_k}") + logger.info(f" Temperature = {model_args.temperature}") + + for split in raw_datasets: + eval_step(split=split) + + +if __name__ == "__main__": + main() diff --git a/flax/run_speculative_decoding.py b/flax/run_speculative_decoding.py new file mode 100644 index 0000000000000000000000000000000000000000..39cdccb2369fa15a1d910b1dd4a5a0c628619e88 --- /dev/null +++ b/flax/run_speculative_decoding.py @@ -0,0 +1,122 @@ +#!/usr/bin/env python3 +# make sure to use branch: https://github.com/huggingface/transformers/pull/26701 +import copy +import time + +import torch +from datasets import load_dataset +from transformers import ( + AutoProcessor, + WhisperForConditionalGeneration, +) + + +DEVICE = "cuda" +DTYPE = torch.float16 +SAMPLING_RATE = 16_000 +BATCH_SIZE = 1 +USE_FLASH_ATTN_2 = True + +# TO DEBUG +GAMMAS = [5, 7, 6, 5, 4, 3, 5] +COUNT = 0 + +# local loading is faster +teacher = WhisperForConditionalGeneration.from_pretrained( + "/home/patrick/distil_whisper/", + torch_dtype=DTYPE, + variant="fp16", + low_cpu_mem_usage=True, + use_flash_attention_2=USE_FLASH_ATTN_2, +) +student = WhisperForConditionalGeneration.from_pretrained( + "/home/patrick/distil_whisper_student/", + torch_dtype=DTYPE, + variant="fp16", + low_cpu_mem_usage=True, + use_flash_attention_2=USE_FLASH_ATTN_2, +) +# student = WhisperForCausalLM.from_pretrained("/home/patrick/distil_whisper_student", torch_dtype=DTYPE, variant="fp16", low_cpu_mem_usage=True, use_flash_attention_2=USE_FLASH_ATTN_2) + +student.generation_config = copy.deepcopy(teacher.generation_config) +student.generation_config.num_assistant_tokens_schedule = "constant" + +# teacher = WhisperForConditionalGeneration.from_pretrained( +# "openai/whisper-large-v2", torch_dtype=DTYPE, variant="fp16", low_cpu_mem_usage=True +# ) +# student = WhisperForConditionalGeneration.from_pretrained( +# "sanchit-gandhi/large-32-2-gpu-flat-lr", torch_dtype=DTYPE, variant="fp16", low_cpu_mem_usage=True +# ) +# +teacher.to(DEVICE) +student.to(DEVICE) + +processor = AutoProcessor.from_pretrained("sanchit-gandhi/large-32-2-gpu-flat-lr") + +ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + +total_time_default = 0 +total_time_spec = 0 +total_time_spec_2 = 0 + +input_values = ds[0]["audio"]["array"] +inputs = processor(input_values, return_tensors="pt", sampling_rate=SAMPLING_RATE) +input_features = inputs.input_features.to(device=DEVICE, dtype=DTYPE) + +_ = teacher.generate(input_features, max_length=100) + +end_idx = ds.shape[0] +for audio_idx in range(0, end_idx, BATCH_SIZE): + input_values = ds[audio_idx : audio_idx + BATCH_SIZE] + input_values = [i["array"] for i in input_values["audio"]] + + inputs = processor(input_values, return_tensors="pt", sampling_rate=SAMPLING_RATE) + input_features = inputs.input_features.to(device=DEVICE, dtype=DTYPE) + + start_time = time.time() + out = teacher.generate(input_features, max_length=100) + run_time = time.time() - start_time + print(f"Normal Decoding: {run_time}") + total_time_default += run_time + + default_out = processor.batch_decode(out, skip_special_tokens=True) + # print("Output", default_out) + + # start_time = time.time() + # with torch.no_grad(): + # encoder_outputs = teacher.get_encoder()(input_features).last_hidden_state + + # out, ratio = speculative_decoding(teacher, student, encoder_outputs, max_length=100, gamma=5) + # run_time = time.time() - start_time + # print(20 * "=") + # print(f"Speculative Decoding: {run_time}") + # total_time_spec += run_time + + # spec_out = processor.batch_decode(out) + + start_time = time.time() + with torch.no_grad(): + encoder_outputs = teacher.get_encoder()(input_features) + + out = teacher.generate( + assistant_model=student, + assistant_encoder_outputs=encoder_outputs, + encoder_outputs=encoder_outputs, + max_length=100, + ) + run_time = time.time() - start_time + + spec_out_2 = processor.batch_decode(out, skip_special_tokens=True) + + print(f"Speculative Decoding 2: {run_time}") + total_time_spec_2 += run_time + + if spec_out_2 != default_out: + COUNT += 1 + print(f"Audio {audio_idx} does not match. Spec: {spec_out_2}, True: {default_out}") + + +print(20 * "=") +print("Total time", total_time_default) +print(f"Overall speed-up spec 2 {total_time_default / total_time_spec_2}") +# print(f"Overall speed-up {total_time_default / total_time_spec}") diff --git a/flax/run_speed.sh b/flax/run_speed.sh new file mode 100644 index 0000000000000000000000000000000000000000..9bb362510b90b29d88d23390d1c3d3bd0d0eb528 --- /dev/null +++ b/flax/run_speed.sh @@ -0,0 +1,22 @@ +#!/usr/bin/env bash +# --wandb_project "distil-whisper-speed-bench-1024-no-timestamps" \ +batch_sizes=(1 16) +names=("openai/whisper-large-v2" "openai/whisper-medium.en" "openai/whisper-small.en" "openai/whisper-base.en" "openai/whisper-tiny.en" "patrickvonplaten/whisper-large-v2-32-2" "patrickvonplaten/whisper-medium-24-2") + +# Double loop +for name in "${names[@]}"; do + for batch_size in "${batch_sizes[@]}"; do + CUDA_VISIBLE_DEVICES="1" python ./run_speed_pt.py \ + --dataset_name "google/fleurs+distil-whisper/chime4+distil-whisper/earnings22+kensho/spgispeech" \ + --wandb_name "T4-bsz${batch_size}-${name}" \ + --model_name_or_path ${name} \ + --wandb_project "beam-search-distil-whisper-speed-bench-256-no-timestamps" \ + --dataset_config_name "en_us+1-channel+chunked+test" \ + --dataset_split_name "test+test+test+test" \ + --text_column_name "transcription+text+transcription+transcript" \ + --samples_per_dataset "256" \ + --attn_type "flash2" \ + --num_beams 5 \ + --batch_size ${batch_size} + done +done diff --git a/flax/run_speed_pt.py b/flax/run_speed_pt.py new file mode 100644 index 0000000000000000000000000000000000000000..30ffd5357cd3ba65a2b302c53a24c10f54e6d198 --- /dev/null +++ b/flax/run_speed_pt.py @@ -0,0 +1,775 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Evaluating a Whisper model on one or more evaluation datasets. +""" +# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments. + +import json +import logging +import os +import string +import subprocess +import sys +import tempfile +import time +from dataclasses import dataclass, field +from functools import partial +from typing import Optional + +import datasets +import evaluate +import numpy as np +import torch +import transformers +import whisper +from datasets import DatasetDict, IterableDatasetDict, load_dataset +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + WhisperForConditionalGeneration, + WhisperProcessor, + is_wandb_available, + pipeline, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer +from transformers.models.whisper.modeling_whisper import WhisperForCausalLM +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.27.0.dev0") + +require_version( + "datasets>=1.18.0", + "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", +) + +logger = logging.getLogger(__name__) + +PIPELINE_BATCH_SIZE = 16 + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset hours by a '+' symbol." + }, + ) + model_name_or_path: str = field( + default=None, + metadata={"help": "The name of the model to use (via the transformers library). "}, + ) + assistant_model_name_or_path: str = field( + default=None, + metadata={ + "help": "The name of the assistant model to use to do speculative decoding. If None, no speculative decoding will be done." + }, + ) + use_fp16: bool = field( + default=True, + metadata={"help": "Whether to evaluate in fp16"}, + ) + use_torch_compile: bool = field( + default=False, + metadata={"help": "Whether to compile the model"}, + ) + use_orig_whisper: bool = field( + default=False, + metadata={"help": "Whether to evaluate with orig whisper"}, + ) + use_bf16: bool = field( + default=False, + metadata={"help": "Whether to evaluate in bf16"}, + ) + use_pipeline: bool = field( + default=False, + metadata={"help": "Whether to evaluate with Transformers pipeline"}, + ) + chunk_length_s: float = field( + default=30.0, metadata={"help": "Chunk length to use when `use_pipeline` is enabled."} + ) + return_timestamps: bool = field( + default=False, + metadata={ + "help": "Whether to decode with timestamps. This can help for improved WER for long form evaluation." + }, + ) + attn_type: Optional[str] = field( + default=None, + metadata={"help": "Which attn type to use: None, 'flash', 'compile', 'flash+compile'"}, + ) + batch_size: int = field( + default=1, + metadata={"help": "The batch size used for evluation."}, + ) + num_beams: int = field( + default=1, + metadata={"help": "The beam size used for evluation."}, + ) + samples_per_dataset: Optional[int] = field( + default=None, + metadata={"help": "Number of samples per dataset used to measure speed."}, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_split_name: Optional[str] = field( + default=None, + metadata={"help": "The split name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."}, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, + ) + min_duration_in_seconds: float = field( + default=0.0, + metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, + ) + max_label_length: int = field( + default=128, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + max_gen_length: int = field(default=128, metadata={"help": "Generate up until max_gen_length tokens."}) + pad_target_to_multiple_of: Optional[int] = field( + default=None, + metadata={ + "help": ( + "If set will pad the target sequence to a multiple of the provided" + " value. This is important to avoid triggering recompilations on TPU." + " If unspecified, will default to padding the targets to max length." + ) + }, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + wandb_project: str = field( + default="distil-whisper-speed-benchmark", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, + ) + log_audio: Optional[bool] = field( + default=False, + metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, + ) + + +def write_metric(summary_writer, eval_metrics, step, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"{prefix}/{metric_name}", value, step) + + +def write_wandb_metric(wandb_logger, metrics, train_time, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + wandb_logger.log(log_metrics) # TODO(SG): bug with wandb means we can't log the step count + + +def convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_hours is not None: + if len(dataset_hours) != len(dataset_names): + raise ValueError( + f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_hours)} hours." + ) + dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] + else: + dataset_hours = [None] * len(dataset_names) + + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "hours": dataset_hours[i], + } + ) + return dataset_names_dict + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser([DataTrainingArguments]) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] + else: + data_args = parser.parse_args_into_dataclasses()[0] + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + + if data_args.use_pipeline and data_args.batch_size > 1: + raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.") + + has_wandb = is_wandb_available() + if has_wandb: + import wandb + import wandb as wandb_logger + + # Set up wandb run + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + ) + wandb_logger.log({"torch_version": str(torch.__version__)}) + wandb_logger.log({"transformers_version": str(transformers.__version__)}) + wandb_logger.log({"batch_size": data_args.batch_size}) + + if data_args.use_pipeline: + wandb_logger.log({"chunk_length_s": data_args.chunk_length_s}) + else: + raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # Convert lists of dataset names/configs/splits to a dict + # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation" + # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"} + dataset_names_dict = convert_dataset_str_to_list( + data_args.dataset_name, + data_args.dataset_config_name, + splits=data_args.dataset_split_name, + text_column_names=data_args.text_column_name, + ) + + if len(dataset_names_dict) == 1: + # load a single eval set + dataset_dict = dataset_names_dict[0] + raw_datasets["eval"] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets["eval"].features.keys()): + raise ValueError( + f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets['eval'].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets["eval"] = raw_datasets["eval"].rename_column(dataset_dict["text_column_name"], "text") + else: + # load multiple eval sets + for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."): + # Clean-up the dataset name for pretty logging + # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean" + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + use_auth_token=True, + streaming=data_args.streaming, + ) + if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): + raise ValueError( + f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + + # 5. Load pretrained model, tokenizer, and feature extractor + processor = WhisperProcessor.from_pretrained(data_args.model_name_or_path) + + dtype = torch.float16 if data_args.use_fp16 else torch.float32 + if data_args.use_bf16: + dtype = torch.bfloat16 + + use_flash_attention_2 = data_args.attn_type is not None and "flash2" in data_args.attn_type + + # make sure we're not using a T4 + result = subprocess.run(["nvidia-smi"], capture_output=True, text=True) + gpu_type = [x for x in result.stdout.split("=") if len(x) > 1][1].split("0")[1].split() + + use_sdpa = False + if gpu_type[0] == "Tesla" and use_flash_attention_2: + use_flash_attention_2 = False + use_sdpa = True + + use_orig_whisper = False + if data_args.use_orig_whisper: + use_orig_whisper = True + + model_name = data_args.model_name_or_path.split("/")[-1].split("whisper-")[-1] + model = whisper.load_model(model_name) + model.cuda() + else: + model = WhisperForConditionalGeneration.from_pretrained( + data_args.model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 + ) + model.cuda() + + if use_sdpa: + logger.info("Use SDPA via BetterTransformers...") + model.to_bettertransformer() + + if data_args.use_torch_compile: + logger.info("Enabling torch compile for the encoder.") + # let's compile the encoder forward path + model.model.encoder.forward = torch.compile( + model.model.encoder.forward, mode="reduce-overhead", fullgraph=True + ) + + # init torch compile once to create binaries + input_values = np.random.randn(data_args.batch_size, 16_000) + input_features = processor(input_values, return_tensors="pt", sampling_rate=16_000).input_features + input_features = input_features.to(dtype=dtype, device=model.device) + + # run generation three times to that model is compiled + for _ in range(3): + _ = model.generate(input_features) + + model_pipeline = None + if data_args.use_pipeline: + model_pipeline = pipeline( + "automatic-speech-recognition", + model=model, + tokenizer=processor.tokenizer, + feature_extractor=processor.feature_extractor, + torch_dtype=dtype, + device=model.device, + chunk_length_s=data_args.chunk_length_s, + ) + model_pipeline_forward = model_pipeline._forward + + assistant_model = None + if data_args.assistant_model_name_or_path is not None: + logger.info("Loading assistant model...") + + if data_args.assistant_model_name_or_path.startswith("openai"): + assistant_model = WhisperForConditionalGeneration.from_pretrained( + data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 + ) + else: + assistant_model = WhisperForCausalLM.from_pretrained( + data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 + ) + + assistant_model.cuda() + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length + ) + audio_column_name = data_args.audio_column_name + num_workers = data_args.preprocessing_num_workers + model_input_name = processor.feature_extractor.model_input_names[0] + normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer) + + if data_args.max_eval_samples is not None: + for split in raw_datasets: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_eval_samples)) + ) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + + if model_pipeline is None and not use_orig_whisper: + inputs = processor.feature_extractor( + sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" + ) + batch[model_input_name] = inputs.get(model_input_name) + else: + batch[model_input_name] = sample["array"] + + # process audio length + batch["length_in_s"] = len(sample["array"]) / sample["sampling_rate"] + + # process targets + input_str = batch["text"] + batch["labels"] = processor.tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids + return batch + + vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + for split in raw_datasets: + raw_datasets_features = list(raw_datasets[split].features.keys()) + + map_fn = partial( + raw_datasets[split].map, + function=prepare_dataset, + remove_columns=raw_datasets_features, + ) + + vectorized_datasets[split] = ( + map_fn(num_proc=num_workers, desc="preprocess eval dataset") + if not data_args.streaming + else map_fn() # In streaming, we can't run multiproc - errors out if we try to + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + # 8. Load Metric + metric = evaluate.load("wer") + # convention is that we space all punctuation *except* apostrophes + list(string.punctuation.replace("'", "")) + + def compute_metrics(pred_str, label_str): + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + # if any of the two lengths is 0, return 0 WER + if len(norm_pred_str) == 0 or len(norm_label_str) == 0: + return 0.0 + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return wer + + result_datasets = DatasetDict() + + def benchmark(batch): + if model_pipeline is None and not use_orig_whisper: + inputs = torch.cat(batch[model_input_name], dim=0).cuda() + if data_args.use_fp16: + inputs = inputs.to(torch.float16) + if data_args.use_bf16: + inputs = inputs.to(torch.bfloat16) + + inner_batch_size = inputs.shape[0] + else: + inner_batch_size = 1 + + inputs = batch[model_input_name] + + gen_kwargs = { + "return_timestamps": data_args.return_timestamps, + "max_length": data_args.max_gen_length, + } + + # if not data_args.model_name_or_path.endswith(".en"): + if not data_args.model_name_or_path.endswith(".en") and not data_args.model_name_or_path.endswith("24-2"): + gen_kwargs["language"] = "<|en|>" + gen_kwargs["task"] = "transcribe" + gen_kwargs["num_beams"] = data_args.num_beams + + # Time forward + if use_orig_whisper: + raw_audio = inputs[0].astype(np.float32) + out_dict = model.transcribe(raw_audio) + + batch["transcription"] = [out_dict["text"]] + batch["time"] = [out_dict["all_time"]] + elif model_pipeline is not None: + # if model is pipeline let's make sure that only forward is timed and not pre- and post-process + time_result = [] + + def _forward_time(*args, **kwargs): + start_time = time.time() + result = model_pipeline_forward(*args, **kwargs) + end_time = time.time() - start_time + + time_result.append(end_time) + + return result + + model_pipeline._forward = _forward_time + + result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"] + batch["transcription"] = [result] + batch["time"] = [sum(time_result)] + elif assistant_model is not None: + gen_kwargs["assistant_model"] = assistant_model + + start_time = time.time() + with torch.no_grad(): + encoder_outputs = model.get_encoder()(inputs) + + gen_kwargs["encoder_outputs"] = encoder_outputs + + if data_args.assistant_model_name_or_path.startswith("openai"): + with torch.no_grad(): + assistant_encoder_outputs = assistant_model.get_encoder()(inputs) + + gen_kwargs["assistant_encoder_outputs"] = assistant_encoder_outputs + else: + gen_kwargs["assistant_encoder_outputs"] = encoder_outputs + + output_ids = model.generate(**gen_kwargs) + batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size] + + batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True) + else: + start_time = time.time() + output_ids = model.generate(inputs, **gen_kwargs) + batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size] + + batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True) + + batch["length_in_s"] = batch["length_in_s"] + batch["reference"] = processor.batch_decode(batch["labels"], skip_special_tokens=True) + batch["num_words"] = [len(r.split()) for r in batch["reference"]] + + return batch + + for split in vectorized_datasets: + vectorized_datasets_features = [model_input_name] + + map_fn = partial( + vectorized_datasets[split].map, + function=benchmark, + remove_columns=vectorized_datasets_features, + batch_size=data_args.batch_size, + batched=True, + ) + + result_datasets[split] = ( + map_fn(num_proc=1, desc="benchmark eval dataset") if not data_args.streaming else map_fn() + ) + + stats_dataset = DatasetDict() + + all_stats = { + "times_audio_total": 0, + "times_transcription_total": 0, + "num_words_total": 0, + "num_samples": 0, + "time_per_sample": 0, + "rtf": 0, + "words_per_s": 0, + "wer": 0, + } + + count = 0 + for split in result_datasets: + transcriptions = [] + references = [] + stats = {k: 0 for k in all_stats.keys()} + + print(f"Start benchmarking {split}...") + if data_args.streaming: + result_iter = iter(result_datasets[split]) + + for result in result_iter: + stats["times_audio_total"] += result["length_in_s"] + stats["times_transcription_total"] += result["time"] + stats["num_words_total"] += result["num_words"] + stats["num_samples"] += 1 + transcriptions.append(result["transcription"]) + references.append(result["reference"]) + + count += 1 + print(f"Processed {count} samples...") + + if data_args.samples_per_dataset is not None and stats["num_samples"] == data_args.samples_per_dataset: + break + + stats["time_per_sample"] = stats["times_transcription_total"] / stats["num_samples"] + stats["avg_length_sample"] = stats["times_audio_total"] / stats["num_samples"] + stats["wer"] = compute_metrics(transcriptions, references) + stats["rtf"] = stats["times_audio_total"] / stats["times_transcription_total"] + stats["words_per_s"] = stats["num_words_total"] / stats["times_transcription_total"] + + stats_dataset[split] = stats + + log_stats = {f"{split}_{k}": v for k, v in stats.items()} + wandb_logger.log(log_stats) + + all_stats["times_audio_total"] += stats["times_audio_total"] + all_stats["times_transcription_total"] += stats["times_transcription_total"] + all_stats["wer"] += stats["wer"] + all_stats["num_samples"] += stats["num_samples"] + all_stats["num_words_total"] += stats["num_words_total"] + + all_stats["time_per_sample"] = all_stats["times_transcription_total"] / all_stats["num_samples"] + all_stats["avg_length_sample"] = all_stats["times_audio_total"] / all_stats["num_samples"] + all_stats["wer"] = all_stats["wer"] / len(result_datasets) + all_stats["rtf"] = all_stats["times_audio_total"] / all_stats["times_transcription_total"] + all_stats["words_per_s"] = all_stats["num_words_total"] / all_stats["times_transcription_total"] + + stats_dataset["all"] = all_stats + + log_all_stats = {f"all_{k}": v for k, v in all_stats.items()} + wandb_logger.log(log_all_stats) + + benchmark_artifact = wandb.Artifact("Benchmark", type="datasets") + with tempfile.TemporaryDirectory() as temp_dir: + for split in stats_dataset: + file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json") + + with open(file_name, "w") as json_file: + json.dump(stats_dataset[split], json_file) + + benchmark_artifact.add_file(file_name, split) + + wandb_logger.log_artifact(benchmark_artifact) + + print("Done!") + + +if __name__ == "__main__": + main() diff --git a/flax/setup.py b/flax/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..9a0ba04e0d18efc84791e2489f86ec1b72dbeae4 --- /dev/null +++ b/flax/setup.py @@ -0,0 +1,65 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import os + +import setuptools + + +_deps = [ + "transformers>=4.34.0", + "datasets[audio]>=2.14.5", + "jax>=0.4.13", + "flax>=0.7.2", + "optax", + "evaluate", + "jiwer", + "torch", + "torchdata", + "tokenizers", +] + +_extras_dev_deps = [ + "black~=23.1", + "isort>=5.5.4", + "ruff>=0.0.241,<=0.0.259", +] + +here = os.path.abspath(os.path.dirname(__file__)) + +with open(os.path.join(here, "README.md"), encoding="utf-8") as f: + long_description = f.read() + +# read version +with open(os.path.join(here, "distil_whisper", "__init__.py"), encoding="utf-8") as f: + for line in f: + if line.startswith("__version__"): + version = line.split("=")[1].strip().strip('"') + break + else: + raise RuntimeError("Unable to find version string.") + +setuptools.setup( + name="distil_whisper", + version=version, + description="Toolkit for distilling OpenAI's Whisper model.", + long_description=long_description, + long_description_content_type="text/markdown", + packages=setuptools.find_packages(), + install_requires=_deps, + extras_require={ + "dev": [_extras_dev_deps], + }, +) diff --git a/flax/tpu_connect.sh b/flax/tpu_connect.sh new file mode 100644 index 0000000000000000000000000000000000000000..9cc33a6f47eac5a4ceefc7883ba96c3dbdf0084a --- /dev/null +++ b/flax/tpu_connect.sh @@ -0,0 +1,82 @@ +#!/bin/bash + +# This script is adapted from https://github.com/peregilk/ttconnect#ttconnect + +zone="us-central2-b" # TPU v4's always are in us-central2-b. Update if using TPU v2/v3's +name=$1 + +echo "Connecting to $name"; + +## Some basic checks if the input is valid +output=$(gcloud compute tpus describe $name --zone $zone 2>/dev/null) +if [ $? != 0 ]; then + echo "Could not find a tpu-v4 with this name in the zone $zone. Exiting." + exit 1 +fi + +tputype=$(echo $output | awk '{print $2}') +tpusize=$(echo $tputype| cut -c4-) +size="$(($tpusize / 8))" + +if (( $size < 1 )); then + echo "This is reported as a $tputype with $size tpu(s). This is not a valid tpu-v4 resource. Exiting." + exit 1 +fi + + +# Check if the session exists, if not create it +# If there already is a session with this name, it will just attach + +tmux has-session -t $name 2>/dev/null + + +if [ $? != 0 ]; then + tmux new-session -d -s $name + tmux select-layout main-vertical + + for i in $(seq $(($size-1))); do + tmux split-window -v -d -t $name + # Making sure there is space to split + tmux select-layout main-horizontal + done + + for i in $(seq $(($size))); do + worker=$(($i -1)) + command="gcloud alpha compute tpus tpu-vm ssh $name --zone $zone --worker $worker" + tmux select-pane -t $name:0.$worker + tmux send-keys -t $name "$command" Enter + + done + + # Select the final layout + if ((size >= 16));then + tmux select-layout tiled + else + tmux select-layout tiled + tmux select-layout main-vertical + fi + + # Enable mouse control - for changing pane size + # Disabled for now since it makes copying more difficult + # tmux set-mouse on + + # Move cursor to worker 0 + tmux select-pane -t $name:0.0 + + # Resize the left window + tmux resize-pane -L 50 + + + + # Set pane synchronization + tmux set-window-option -t $name:0 synchronize-panes on + + # Set pane border format + tmux set-option -t $name pane-border-status top + tmux set-option -t $name pane-border-format "worker #{pane_index} " + + +fi + +# Attach to the session +tmux attach -t $name diff --git a/generation_config.json b/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..9f4dced2a5a6e8902cd9e1d0f695f6217e02debd --- /dev/null +++ b/generation_config.json @@ -0,0 +1,255 @@ +{ + "alignment_heads": [ + [ + 7, + 0 + ], + [ + 10, + 17 + ], + [ + 12, + 18 + ], + [ + 13, + 12 + ], + [ + 16, + 1 + ], + [ + 17, + 14 + ], + [ + 19, + 11 + ], + [ + 21, + 4 + ], + [ + 24, + 1 + ], + [ + 25, + 6 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 + }, + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50364, + "pad_token_id": 50257, + "prev_sot_token_id": 50362, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50359, + 50360, + 50361, + 50362, + 50363 + ], + "task_to_id": { + "transcribe": 50360, + "translate": 50359 + }, + "transformers_version": "4.41.2" +} diff --git a/merges.txt b/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..6038932a2a1f09a66991b1c2adae0d14066fa29e --- /dev/null +++ b/merges.txt @@ -0,0 +1,50001 @@ +#version: 0.2 +Ġ t +Ġ a +Ġt h +i n +e r +Ġ w +Ġ s +o u +Ġth e +r e +o n +a t +e n +Ġ c +i t +i s +Ġ b +n d +Ġ d +Ġ m +Ġ h +Ġ o +in g +e s +Ġ p +Ġt o +a n +Ġ f +o r +l l +Ġ I +Ġ l +Ġ y +a r +Ġ g +Ġy ou +e d +Ġa nd +Ġ in +Ġo f +a s +Ġ n +o m +i c +Ġth at +u s +e t +v e +a l +o w +l e +Ġ is +Ġ e +Ġ it +o t +' s +Ġb e +i on +Ġ T +Ġw h +Ġ A +en t +Ġ S +Ġ re +a y +Ġw e +Ġ on +er e +Ġh a +u t +a c +i d +i g +o s +k e +v er +i m +Ġ Ð +ĠT h +a m +a ll +Ġf or +e l +c h +r o +Ġth is +Ġs t +Ġ W +Ġ u +a d +ou t +i r +l d +c t +Ġ k +i f +Ġg o +. . +Ð ¾ +it h +l y +h t +q u +Ġ - +Ġd o +Ġ j +Ġha ve +Ġ B +Ġa n +Ġw ith +Ġa re +Ġ r +Ġd e +Ġs e +Ġs o +Ġ v +s t +i ll +u r +Ġl i +Ġ M +es t +o d +all y +' t +us t +Ġa s +Ġ C +c e +Ġm e +Ð ° +Ð µ +i l +Ġ H +Ġw as +t er +t h +Ġc an +an t +Ġc om +ou r +ig ht +Ġ Y +at ion +ĠA nd +o l +Ġs h +Ñ Ĥ +o p +s e +Ġn ot +ĠS o +Ġn e +u n +Ġa b +Ġli ke +Ġa t +Ġ D +i e +Ġh e +Ġc on +Ġc h +o re +Ġa l +Ġo r +Ġ qu +Ġ O +om e +r a +u l +Ġ N +p p +Ġyou r +ou ld +Ġ P +Ġf r +g e +er s +' re +Ð ¸ +Ġthe y +Ġwh at +us e +Ġa ll +ĠTh e +Ġ L +es s +e m +Ġk n +Ġj ust +ar t +Ġp ro +ver y +u m +Ġl o +Ġ ì +Ġm y +o k +Ġe x +a b +Ġth ere +Ġb ut +Ġkn ow +Ġs u +Ġ G +Ñ ģ +Ġ E +Ġm a +о Ð +Ġ en +Ġab out +ĠI t +is t +Ġw or +r i +in d +Ġon e +at e +a nd +in k +Ġl e +or t +' m +Ġ F +ic h +Ñ Ģ +id e +Ġg et +Ġ out +.. . +Ġw ill +ã ģ +i ve +Ð ½ +Ġfr om +a in +ĠW e +Ġu p +p e +re s +c a +Ġ R +Ġ if +Ġp l +Ġd on +ac k +Ġ 1 +Ġ " +Ġt r +Ġ us +ĠW h +it y +Ġ J +ĠY ou +Ġh ere +h er +Ġs ome +ou g +a k +ar d +Ġgo ing +Ġu n +m ent +Ġth ink +Ġp e +en d +Ġ ( +ca use +Ġt im +as t +à © +Ġ our +Ġw ant +am e +i es +Ġ ë +u d +in e +Ġre ally +Ġt e +Ġse e +c i +Ġb y +s o +u re +os e +Ġ [ +a re +Ġm ore +a h +on e +c k +op le +а Ð +Ġthe n +Ġth ing +Ġthe m +v en +ou nd +os t +on g +e ct +Ġr ight +a g +Ġin t +Ġpe ople +Ġwh en +ou s +p l +Ġtim e +Ġ im +Ġwh o +Ġ 2 +a p +Ġbe cause +h ing +Ġn o +ic e +Ġlo ok +Ġh as +Ġw ould +Ġh ow +ac t +Ġf e +n t +oug h +Ġp r +ĠB ut +Ġs ay +Ñ ĥ +Ġn ow +Ġm an +Ġ very +Ġwor k +i z +Ġ K +i v +it t +Ġa r +e p +Ġc l +Ġwh ich +Ġc o +an s +' ve +Ġs a +f f +' ll +Ġan y +Ġa ct +Ġy e +b er +ac h +a ge +p er +Ġal so +f er +Ġthe se +Ġa d +е Ð +th er +ac e +ic k +a ke +re at +i re +u e +Ġa g +Ġ U +u ch +ion s +r y +0 0 +n a +Ġd id +Ġqu e +Ġha d +Ġe very +ĠH e +Ġl a +Ġw ay +Ġs p +b le +ĠTh is +as s +Ġthe ir +it e +Ġne ed +Ġp art +Ġw ere +Ġb ack +i p +ow n +om et +b e +as e +Ġma ke +ir st +i a +en ce +an g +an k +Ġg ot +Ġp re +Ġcon t +Ġo ther +p t +ĠTh at +o g +Ġgo od +Ġint o +al k +Ġbe en +Ġa m +Ġo ver +u ally +Ġ â +ì Ŀ +Ġu nd +h e +w ay +Ġg r +Ñ Į +Ġd if +Ġp er +Ñ ı +ĠI n +Ġt w +on d +ar s +in t +or m +Ġl ot +Ġwh ere +Ġ à +Ġ V +Ġs omet +Ð » +en s +Ġg u +Ġa c +u g +Ñ ĭ +Ä ± +Ġf irst +re e +Ġh is +itt le +Ġim p +Ġm o +a v +Ġl ittle +ĠWh at +Ġm uch +Ġ z +Ġ ê +ab le +ĠÐ ¿ +Ġp o +Ġcom p +n e +Ġd is +Ġl et +an ce +Ġh er +Ġthing s +Ġst art +ul t +Ġa pp +Ġre s +Ġf o +Ġc ould +Ġin ter +Ġth ose +Ġd es +Ġwe ll +Ġtw o +Ġk ind +x t +res s +el y +à ¤ +Ġb r +Ġth r +ĠÐ ² +Ġ i +is h +Ġdif fer +Ġ ro +ĠS t +Ġsomet hing +Ġt ake +Ġb o +y s +Ġsh e +Ġt alk +l o +Ñ ĩ +Ġe ven +Ð º +ã Ģ +ĠÐ ½ +Ġb u +ĠI f +Ġd own +ĠC h +ad e +ation s +Ġ use +or d +Ġof f +Ġact ually +Ġs pe +d u +at ed +at er +os s +n ing +à ¼ +Ġdo es +Ġ Ñģ +Ġne w +Ġb et +ve l +c ess +p le +Ġha pp +t ing +on na +Ġ es +Ġd ay +Ġon ly +ig n +k ay +s el +ent s +ou nt +i ld +i le +Ġs c +Ġh im +Ġag ain +v ing +Ġg onna +Ġcom m +Ġh el +ot her +Ġ ke +ic al +Ġ 3 +Ġe l +Ġthr ough +Ġcom e +ar k +d ay +i er +à ³ +Ġth an +ĠThe y +Ġm ay +Ġs er +í ķ +Ġc all +Ġdiffer ent +Ġsh ould +ĠTh ere +ar y +ĠN ow +ã Ĥ +th ing +w e +or y +f ter +Ġp ut +or s +i al +ë ĭ +Ġund er +Ġin c +ĠY e +u b +f orm +Ġv ide +à ¸ +ver s +Ġfe el +à ¡ +od y +f t +f ore +Ġe m +g et +Ġsa id +it ion +Ġre c +i ous +at ch +Ġtr y +Ġhel p +Ġsh ow +Ð ´ +Ġb it +u ll +Ð ² +ÑĤ о +g r +Ġpl ay +if e +a il +ĠYe ah +Ġqu est +Ġman y +Ġp ers +Ġg reat +Ã Ń +Ġ est +n g +Ġâ Ļ +t y +l a +ĠO h +Ġ × +à ® +ĠB e +ad y +Ġm ost +ct ion +ĠN o +Ġdo ing +Ġbe ing +Ġto o +c es +Ġb l +. " +Ġre m +is s +on s +> > +r u +w n +on t +i b +e ll +Ġs m +ot h +u al +Ġ >> +Ġp h +l es +o c +f ul +Ġse c +is e +Ġad d +ig h +er t +Ġs ame +â Ģ +Ġme an +Ġf ind +e k +Ġen d +- - +Ð ¼ +Ġst ill +a z +Ġ ' +Ġm in +Ġye ars +ur n +Ġar ound +sel f +Ġw r +b s +oug ht +ĠâĻ ª +Ġf l +an ge +Ġa fter +Ġpo int +m er +v ed +Ġl ong +o y +ä ¸ +Ġc r +way s +Ġs y +Ġt ra +Ġ2 0 +a ve +Ġch e +Ġ ent +Ġbe fore +p h +Ġat t +i an +i ly +Ġpers on +Ġb ig +Ġs ch +Ġre al +Ġne xt +Ġlo ve +Ġvide o +ĠL et +Ġf in +Ġma k +i ble +Ġto day +er m +ĠA l +ow er +an n +i x +Ġp ar +Ġst ud +à ¶ +Ġimp ort +t e +Ġg ive +v es +Ġd ie +Ġde c +Ġte ll +ĠÐ º +Ñģ ÑĤ +Ġwh y +ic ally +ic t +re d +Ġb as +Ġsu re +Ġbe l +at ing +Ġt ak +Ġs et +Ġl ife +Ġdid n +Ø § +o b +u nd +at h +Ġo p +ĠÐ ¾ +a it +Ġwor ld +Ġsu pp +i o +Ġc our +ĠÐ ¸ +w ard +е н +Ġal ways +u p +Ġha nd +ĠH ow +ci al +Ġcon s +Ġ Ñ +Ġin d +Ġ 4 +ĠA s +Ġf un +j ect +Ġimport ant +Ġs ur +e w +at es +Ġ 5 +Ġd i +Ġm ade +Ġin s +Ġas k +Ġ et +Ġn um +Ġc ar +ĠO kay +Ġs im +i k +Ġl ast +ĠG o +Ġm us +Ġre l +ul ar +´ ì +ĠWe ll +pe ct +ĠTh ank +Ġth ree +à £ +ã ĥ +Ġin v +Ġg en +l ic +Ġhapp en +ë Ĭ +i en +e ver +оР² +Ġst r +ĠA ll +Ġin st +Ġâ Ģ +Ġde f +Ġs l +Ġm ight +un g +Ġye ar +Ġo wn +Ġke ep +b ody +d er +Ġ ÑĤ +ĠÐ ´ +Ġan other +Ġm od +Ġe v +Ġgu ys +Ġab le +ã o +qu e +id ent +ĠY es +Ġit s +Ġpl ace +Ġpro du +ar n +ĠÐ ¼ +Ġre p +Ġex per +Ġf am +it ies +if ic +Ġh igh +i ed +o ol +ie w +е ÑĤ +re n +Ġdon e +Ġ ... +ëĬ Ķ +st em +ĠS e +Ġbet ter +c ome +Ġd el +Ġt y +Ġu m +Ġh o +ĠA n +Ġm on +ing s +Ġs k +Ġo b +c om +ble m +op e +st and +' d +ment s +Ġe le +ĠI s +Ġd a +Ġre g +le ase +i ke +al s +iz e +ê ° +Ġc are +Ġne ver +ìĿ ´ +es e +Ġm et +ol og +ĠWh en +u ck +е ÑĢ +Ġ é +Ġd at +à § +Ġex am +il ity +Ġd et +c ri +Ġus ed +ĠD o +Ġtr ans +e g +t en +Ñ İ +c us +Ġsec ond +Ġb est +Ġh ard +Ġ ide +Ġpro blem +ê ³ +ĠU n +Ñ ħ +Ġ Î +Ġw atch +ĠS h +at ter +Ġpre t +Ġd er +Ġcour se +Å Ł +at ive +ic s +Ġquest ion +ut e +ì Ĺ +ĠF or +at her +Ġc ol +i end +Ġ í +Ġ Z +Ġdoes n +ar ch +Ġinter est +Ġp ol +Ġc or +i ence +Ġp res +Ġe ach +Ġsy stem +Ġf act +i el +ab ly +Ġ er +Ġr un +Ġì Ŀ +Ġto p +n er +Ġth ought +Ġe as +i ent +Ġc re +Ñ Ī +Ġcomm un +y e +re ady +ll ow +Ġevery thing +om m +Ġm ed +ļ Ķ +Ġc ount +it s +Ġcom pl +h ip +Ù Ħ +o ok +Ġto get +Ġtoget her +am p +Ġg ame +Ġal ready +аР» +Ġcall ed +al e +Å Ĥ +ĠM y +Ġunder stand +Ġd r +Ġm om +it ed +оР» +Ġus ing +z y +Ġnum ber +ãĢ ģ +c ed +Ġc le +н о +ëĭ ¤ +in ce +Ġlook ing +Ġpret ty +Ġpro b +ĠS he +Ġ ve +Ġget ting +Ġwe ek +Ġe ff +u ff +a ir +u es +er n +Ġ Q +ou p +ent ion +Ġs ide +оР¼ +Ġfor m +Ġb us +Ġas s +Ġ ed +as on +we en +âĢ ¦ +Ġt urn +Ġc ur +Ġco ll +Ġd ire +ĠG od +Ġ1 0 +Ġe qu +ĠÐ ± +Ġop en +Ġsu ch +ir d +аРº +Ġe ar +Ä Ļ +g an +Ġpart ic +Ġfr iend +Ġex p +Ġex t +Ġh ome +Ġw ater +ĠO n +ÑĤ ÑĮ +or k +Ġп ÑĢ +Ġmo ve +n ess +en se +h o +Ġch ar +c o +in s +Ġb oth +Ġ1 9 +Ġg ra +Ġbet ween +á » +Ġì ķ +as h +ĠR e +a i +al th +u res +em ber +Ġa v +Ġ ver +à ª +one y +Ġth ank +Ġmay be +u c +im e +ê³ ł +Ġa way +Ġn ame +ou se +Ġac c +Ġmus ic +Ġch ange +Ġp ass +g er +Ġbu ild +Ġv al +in ess +an y +Ġfe w +´ ë +t a +Ġl ist +à ¥ +Ġo ld +Ġì ŀ +Ġs ort +Ġme m +Ġc a +ce pt +Ġgen er +Ġye ah +Ġwh ile +Ġany thing +r ic +gr am +Ġe in +c y +ur ing +ĠD e +Ġp ower +Ġcom ing +Ġwor d +Ġ- - +Ġbel ie +Ġf ound +t o +Ð ¿ +Ġme ans +Ġin form +Ġ Ø +Ġ Ñĩ +Ġsm all +00 0 +Ġc ame +Ġ íķ +w h +Ġwork ing +Ġexam ple +Ġp os +Ġde p +ê ² +ä º +ot e +Ġde m +ì § +t s +Ġv ar +a ut +Ġt ri +ch n +Ġhe ad +Ġwho le +× Ļ +z e +Ġtry ing +Ġt em +Ġc ou +et s +Ġ 6 +Ġf il +vel op +Ġc ase +à ¯ +Ġprob ably +Ġo kay +Ġpl an +Ġs it +Ġsch ool +ĠTh en +¸ ë +m e +Ġpro cess +Ġf ar +Ġre ad +Ġp oss +Ġb re +Ġso l +ic ht +Ġsupp ort +ĠT o +ert ain +Ġstart ed +Ġc ap +Ġle ft +Ġdat a +Ġtim es +еР» +Ġwant ed +а н +Ġtalk ing +Ġis t +Ġha ving +um p +Ġcont in +Ġsu b +ĠÐ · +p r +ëĭ Ī +in a +Å ¼ +Ġc reat +od e +× ķ +æ ĺ +! ! +Ġt erm +is m +оР´ +ĠBe cause +Ġw ent +id er +Ġpro v +Ġch ild +Ġd en +Ġl ight +b r +³ о +o h +Ġbo ok +Ġ Ù +ut ion +ĠJ ust +en e +Ġf our +Ġv is +ê° Ģ +Ġh ope +Ġmak ing +ĠL e +ì ķ +Ġo pp +a u +Ġm oney +Ġpro gram +à ¨ +Ġst and +I N +Ġs ign +Ġle arn +à ł +ĠD on +Ġte am +Ġн а +l ud +Ġre st +ic es +æ ľ +Ġ ÑĢ +Ġa ut +Ġle ad +ation al +d e +g y +Ġn ice +Ġd as +Ġd ist +Ġh um +ĠO ne +æ Ī +Ġcom es +Ġj o +Ġc ent +Ġex pl +Ġm ark +re en +l ed +g in +ì ļĶ +Ġle vel +Ġcon f +us h +Ġde velop +Ġt est +en g +v ious +at ure +еР¼ +re t +Ġj e +Ġst uff +Ġcl ass +ow s +Ġê · +Ġs i +Ġl es +ro p +ç ļ +Ġp or +Ġw ar +ìĹ IJ +Ġevery one +Ġg e +Ġche ck +ot t +Ġs ing +Ġar t +Ġfo llow +Ġ20 1 +ĠF r +a is +ì ĸ +Î ± +å ° +Ġà ł +im es +Ġre t +Ġch ang +Ġp ub +Ġin f +Ġte chn +ad a +iv es +Ġbe h +æĺ ¯ +Ġlook s +ãĢ Ĥ +Ð · +ĠWh y +çļ Ħ +Ġen ough +Ġb ra +it ch +ä » +Ġad v +Ð ± +Ġwith out +w er +mer ic +d en +Ġcompl et +Ġide a +ter s +o ck +Ġdef in +Ġe ver +Ġg l +Ġon ce +Ġbr ing +Ġsay ing +Ġan s +Ġhe ar +n ect +Ġl ess +g o +re am +ad o +ì ŀ +Ġm ind +ent e +Ġf ull +Ġb ad +Ġw om +Ġsome one +Ġd u +Ġw on +Ġcont ro +ort un +Ġhe alth +Ġch o +ĠA r +Ġcon c +Ġinform ation +Ġst op +at t +at ely +ä ½ +Ġgr oup +Ġ Ñĥ +Ġqu ite +Ġres p +E R +ug ht +ê ¸ +m an +iz ed +ĠB r +Ġrem ember +Ġfam ily +Ġbus iness +a w +Ġspe c +Ġa u +ĠO r +Ä ħ +Ġse en +Ġl ar +Ġ 7 +g g +b ers +Ġd ra +Ġmon th +Ġsay s +Ġis s +Ġli ve +Ġl ine +Ġmom ent +Ġex c +el s +Ġs ound +Ġco ol +Ġlo c +Ġc ertain +Ġd ri +о ÑĤ +am es +Ġm ust +n y +и ÑĤ +Ġk id +Ġinc lud +ìĿ Ħ +at or +Ä Ł +h a +are d +Ġse em +Ð ¹ +ì Ħ +Ġel se +Ġì ł +ir l +Ġ 8 +Ġv o +Ġquest ions +in es +e e +æĪ ij +ü r +ĠA meric +Ġst ory +Ġser v +ver n +ag es +l and +ĠâĢ ĵ +er a +ĠC an +Ġp op +et her +Ġn a +Ġor der +Ġmak es +Ġs ince +c on +ct or +Ġth ough +Ġprodu ct +л и +Ġle g +Ġme et +al f +Ñģ Ñı +un ch +it er +o ve +×ķ × +i et +аР¼ +it al +Ġsu per +l ing +Ġp ay +Ġpar a +Ġj ob +ĠH ere +Ġs w +k s +pt ion +m a +Ġbelie ve +¬ ë +Ġw ait +оР¹ +Ġun t +Ġqu ick +h r +ĠÑ į +ĠP ro +Ġm en +à ¹ +Ġday s +Ġgo es +Ġspe ak +ĠA t +em ent +Ġm iss +Ġa w +Ġdes ign +Ġpro ject +о ÑĢ +i j +ant s +at s +ĠCh r +Ġ 9 +Ġc ut +Ġre qu +Ġн е +ĠN ot +as ter +Ġm ill +Ġpartic ular +Ġp ie +Ġstud ents +Ġf ive +ou n +ĠN e +Ġg i +Ġp as +Ġf ree +ĠS p +l ich +Ġpro f +Ġen g +Ġpr ot +ĠL ike +os ed +Ġcon nect +a pp +Ġë § +it ing +Ġb lo +Ġl os +ist s +Ġexper ience +re nt +Ġst ay +Ġfo od +t on +ru ct +Ġh ist +v iew +in ing +m ost +i vers +b o +ãģ Ħ +ĠT r +g en +Ġp lease +Ġcommun ity +Ġc e +A N +n o +Ġb ody +Ġh our +Ġ vers +á º +c er +Ġê ° +Ġre ason +ĠR ight +Ġl ater +Ï Ħ +Ġh ouse +Ġ X +оР½ +Ġst ate +f ic +å ¤ +Å Ľ +iel d +Ġp ri +Ġp ast +Ġw alk +olog y +er ing +an na +Ġt er +Ġho ld +Ġor gan +b en +Î ¿ +ó n +Ġeff ect +Ġyour self +Ġpl us +a j +and o +ur al +Ġro om +le ct +ê² Į +? " +s ide +Ġbe come +Ñ Ĩ +Ġ  +o od +Ġcon st +Ġn ight +ut es +Ð ¶ +Ġbre ak +Ġp ain +Ġst ep +ire d +Ġnot hing +Ġunt il +Ñ ĸ +аР² +Ù Ĭ +Ġd uring +ì§ Ģ +l ess +o ll +н Ñĭ +Î ¹ +f ect +i ver +ı Ħ +ith er +y ing +Ġbe gin +×Ļ × +iv id +Ġà § +Ġs al +Ġt a +Ġp ot +Ġ $ +Ġm ar +Ġcle ar +Ġf ace +Ġgr ow +Ġ * +Ġins ide +Ġfriend s +Ġle ave +en n +Ġeas y +Ġare a +al ity +ou d +Ġe at +Ù Ĩ +Ġp ur +or n +Ġsa w +Ġans wer +Ġfr ont +Ġbe aut +¼ ë +Ġm atter +Ġs on +ĠN ew +Ġres ult +id es +ch e +Ġf ut +p s +Ġfo cus +Ġinterest ing +å ¥ +Ġa p +" . +Ġcre ate +о Ñģ +Ġp ress +r oss +Ġp ick +l ine +Ġto ok +ĠM ay +r ow +Ġ ich +ĺ ë +Ġre f +Ġm or +r act +are nt +A R +Ġex act +Ġsp ace +w ork +н и +Ġb ir +Ġde v +Ð ³ +Ġto ld +Ġpub lic +ci ally +Ġv iew +ĠHe y +m ed +ll o +c c +Ġf ac +Ġcou ple +Ġhe art +l er +Ġre ady +Ġal most +ar ing +Ġh alf +ĠM e +av or +i que +Ġchar ac +Ġpr act +O N +an e +Ġ il +н а +Ġv i +l ish +he ad +Ġle ast +Ġbas ically +as ed +r ight +Ġy et +Ġtak ing +Ġcount ry +Ġw in +Ġis n +Ġposs ible +Ġc am +Ġinc re +Ġp at +Ġw anna +Ġcons ider +Ġab s +Ġwith in +Ġhum an +Ġthink ing +Ġo h +¡ ľ +Ġqu i +as es +Ġ 0 +it ely +ä¸ į +Ġk ill +Ġm il +Ġinv est +is ter +Ġsu c +ion al +el f +Ġwh ether +Ġcontro l +Ġagain st +ot s +ëĭĪ ëĭ¤ +i or +Ġpres ent +Ġ ا +Ġwatch ing +u be +er v +Ġn icht +Ġgo vern +ĠTh ese +Ġ : +u it +ug h +Ġwork s +o o +Ġw ir +Ġa ir +ĠT e +аР· +is ion +wh ere +Ġto t +j oy +ì ĭ +Ġv ol +ĠÐ µ +Ġcl ose +ĠA d +Ñ ī +in ed +Ġun a +Ġê· ¸ë +° ë +or ry +Ġb ro +Ġfil m +if t +2 0 +Ġty pe +Ġhappen ed +ĠA m +Ġg irl +ĠA re +ward s +Ġp our +Ġcol or +el t +а Ñģ +Ġs ense +le x +ĠW ith +us s +ri b +Ġre se +Ġn orm +Ġfut ure +Ġde al +end ing +e y +Ġ x +er o +ĠC l +u k +Ġwhat ever +sel ves +Ġyou ng +ì Ĭ +ĠM ar +ĠChr ist +Ġgu ess +Ġper form +Ġen er +r on +Ġh it +Ġw ond +Ġdire ct +ĠE very +Ġof ten +Ġf a +Ġal ong +Ġcl ick +ĠL ook +Ġsit u +Ġhapp y +e ad +Ġag o +Ġen c +Ġmy self +Ġco ver +оР± +Ġm id +Ġc ost +Ġt en +ĠS ch +Ġex pect +Ġwas n +Ġstr ong +if ul +Ġopp ortun +in al +y le +Ġsh are +Ġtr ue +Ġapp ro +Ġch all +Ġmin utes +Ġch ann +Ġë Ĥ +Î µ +l i +Ġm ess +or ies +pe cially +Ġwr ong +Ġy es +Ġì Ĺ +ir on +Ġall ow +Ġsu bs +Ġf ore +Ġf ight +Ġso cial +Ġc ra +an a +Ġa ff +Ġ ess +Ġway s +Ġsh ort +Ġf all +Ġla w +ĠWh o +Ġen joy +Ġc al +Ġac cess +f e +Ġn on +Ġac ross +er y +vious ly +ĠE x +id ed +Ġl ink +ĠP r +Ġterm s +ac es +Ġl and +az ing +Ġ1 5 +Ġm ult +Ġspe cial +å Ģ +iv ing +ìĿ Ģ +Ġty p +Ġst e +Ġ Ä +Ġfor ward +å ı +Ġf re +å¥ ½ +Ġrese arch +௠į +а ÑĤ +Ġma in +Ġrec ord +Ġh u +Ġdefin itely +Ġe ither +Ġlist en +Ġke y +Ġmark et +ĠÑĩ ÑĤо +iz ation +Ġvide os +Ġgu y +Ġf ig +Ġst ra +ĠP l +ull y +am os +Ġm ention +Ġs ong +Ġinter n +r al +ur s +Ġh on +Ġval ue +Ġb ar +c le +оР¶ +Ä ĩ +ľ ë +Ġz u +и м +ä½ ł +Ġsing le +Ġa uch +cus s +Ġget s +Ġsomet imes +å ¾ +am b +m m +c ing +Ġper fect +ĠB l +out h +ì ł +Ġs ci +p ar +Ġre d +Ġp ost +Ġm ot +Ġele ct +ĠE u +it ive +ĠS ome +Ġdes cri +Ġcur rent +é s +Ġt re +ĠE n +Ġm it +E N +Ī ë +i um +Ġhe ard +Ġsim ple +l ar +Ġevery body +il ar +Ġneed s +Ġdif fic +ĠGo od +um ent +c ent +Ġo per +а ÑĤÑĮ +et y +Ġbl ack +Ġgi ven +on es +Ġwe l +é Ģ +Ġìķ Ħ +Ġ3 0 +A T +Ġst at +ou ch +ĠM r +а ÑĢ +Ġsh o +Ġcon d +× Ķ +m y +Ġchild ren +Ġe u +еР´ +ìķ Ħ +ter n +Ġu h +Ġh ar +Ġpr om +Ġp ull +re w +Ġcomp any +Ġbeaut iful +ust om +íķ ĺ +к и +Ġst re +Ġam azing +ri es +Ġsuc cess +Ġm ach +n ot +Ġdis cuss +Ġn at +¦ ¬ +Ġun e +Ġdiffic ult +Ġr is +Î ½ +Ġc amp +Ġbu y +ä¸ Ģ +Ġma g +p o +ĠY our +Ġbeh ind +ic a +ı n +ĠO K +Ġl ang +Ġwom en +Ġen v +Ġre ce +Ġchann el +i ally +u le +Ġ1 2 +th ers +Ġb ott +Ġrep ort +ent ly +f ully +T he +Ġs ent +Ġev ent +Ġener gy +l t +Ġword s +ar r +d le +Ġa head +ard s +Ø ± +äº Ĩ +Ġto ol +con om +е Ñģ +Ġexact ly +Ġf avor +Ġl ow +Ġpro per +Ġìŀ Ī +Ġ ! +Ġrel ations +Ġm as +Ġkid s +Ġent ire +ud e +Ù ħ +ĠWh ere +Ġon es +Ġc ity +ol ut +Ġs ix +ab ility +ö r +il i +ĠE s +Ġhapp ens +ain s +Ġmod el +Ġp ict +Ġes pecially +Ġ1 00 +k t +Ġso on +b y +ro du +Ġan n +Ġsubs cri +ĠQ u +Ġav ail +im ent +Ġv oc +k a +Ġ2 00 +ap er +ĠI nd +Ġì § +h or +į ° +j or +и л +Ġs qu +A U +ar ning +ĠÐ ³ +I S +ĠÐ » +еР¹ +y es +å ħ +ĠÐ Ĵ +Ġor ig +оР³Ð¾ +Ġask ed +il t +оР³ +Ġcontin ue +Ġì ĺ +r am +Ġo thers +E S +oh n +Ġl ay +Ġbas ed +Ġp u +Ġapp e +Ġl im +Ġpro p +Ģ ë +m in +Ġh ot +ĠL a +Ġf ast +Ġprot ect +Ġam ount +Ġa qu +Ġf und +Ġc ustom +Ġc ult +Ġhand s +Ġha ven +Ġa ud +Ġout side +ĠA fter +ap s +Ġan im +pl oy +Ġh at +ĠF irst +Ġt reat +Ġe p +Ġm ater +Ġbuild ing +Ġë ° +å IJ +ìĦ ľ +z a +ught er +ĠP e +ne y +et er +at ic +Ġed uc +ê¸ ° +Ġmo v +ĵ ¤ +am a +r ation +Ġs n +Ù Ī +Ġs um +Ġph ot +ĠÐ Ŀ +Ġ . +æľ ī +Ġfin ish +itt ing +å ® +Ġlar ge +Ġì ĸ +Ġwh ite +ar a +Ġma is +ĠH i +Ġd am +Ġا ÙĦ +Ġbo x +ĠHe llo +Ġs le +Ġo pt +ri ed +¥ ¼ +Ġact iv +Ġn ão +ĠC om +Ġplay ing +T h +Ġavail able +Ġp ort +å Ī +ĠA h +Ġl as +Ġear ly +Ġwond er +± ° +Ġ1 8 +c ul +Ġfun ction +Ġmor ning +ll e +i ents +u x +Ġc ir +it ions +Ġde ep +Ġpol it +y or +m p +ak ing +Į ë +ĠM an +Ġmill ion +Ġ / +Ġind ivid +Ġp an +Ġgovern ment +Ġwr ite +ĠT od +am ent +Ġ Ï +Ġw ind +ĠE ng +ch en +W h +ì ľ +Ġ ident +ãģ § +v ent +ur ch +Ġh y +Ġy a +Ġtr ad +Ġrelations hip +à º +Ġd ou +O R +Ġs we +Ġne g +in ation +Ġte xt +i pp +Ġf ine +á s +ĠD r +ĠC ome +Ġmonth s +, " +ен и +Ġhour s +Ġp od +ir t +Ġinv ol +Ġcoll ect +Ġau f +Ġp a +Ġhist ory +m b +if y +Ġ ? +Ġbel ow +as ure +ab y +Ġlang u +Ġan t +Ġcom b +at o +Ġex ist +Ġë ĭ +Ġtak es +Ġcharac ter +a ff +Ġf ield +Ġe conom +ie f +Ġpie ce +å ľ +Ġre ach +Ġê ² +on y +Ġmater ial +Ġd ig +Ġph ys +Ġimp ro +Ġsim ilar +I C +Ġn et +y n +Ġpos ition +à Ł +Ġb ene +re ad +Ġle arning +um e +Ġcle an +ÑĤо ÑĢ +Ġco ok +Ġseem s +Ġo l +ĠU S +ĠJ es +Ġ à® +ent ial +ivers ity +ac y +Ġ Ñı +olut ely +re ct +ĠP lease +Ġrep res +Ġt ouch +m en +ĠÐ ° +i ón +ĠThank s +Ġan g +Ġma jor +Ġit self +ill s +" , +i ans +Ġsc reen +Ġh or +Ġknow n +Ġenv iron +Ġfin al +Ġfig ure +ĠT w +Ġe yes +Ġim ag +Ġsee ing +Ġha ir +re m +Ġapp lic +end s +p ut +Ġnew s +Ġcomplet ely +ugh s +Ġkn ew +if ied +ĠJ e +ĠD id +Ġsitu ation +Ġf lo +m s +Ġph one +Ġb all +d o +Ġp arent +Ġs orry +ur y +и н +ip s +аР´ +Ġinst ead +Ġhu ge +Ġt u +Ġ ãģ +ĠG r +Ġdet ail +ĠÐ Ł +Ġindivid ual +Ġf ire +Ġcl os +Ġw er +un e +Ġrun ning +Ġcon vers +Ġrec omm +Ġcom o +Ġsome body +ĠJ ohn +ĠìĿ ´ +ĠO ur +pl es +ĠP h +Ġan al +Ġ5 0 +Ġof fer +Ġ < +ition al +g est +Ġv ous +l et +ic y +Ġfeel ing +L E +r os +Ġth ird +оРº +Ġser ies +ĠAn y +is ed +o ld +Ġdra w +Ġserv ice +Ġcan not +b al +ãģ Ĩ +Ġli ving +ı m +Ġdiffer ence +Ġopportun ity +Ġne ar +or th +k en +Ġloc al +Ø ª +ĠC on +Ġob ject +Ġd ass +ãģ Ļ +IJ × +Ġquick ly +ra ph +Ġiss ues +éĢ Ļ +ĠAmeric an +Ġpre p +en ces +Ġprof ess +ll ing +o f +Ġfo ot +b re +Ġus ually +Ġgener al +d a +an ces +Ġd est +Ġo cc +Ġmem bers +Ġd ans +Ġequ al +z t +Ġbe com +Ġmo ving +Ġspec ific +ÃŃ a +Ġf ur +Ġne cess +Ġcomm on +Ġatt ack +ĠÑį ÑĤо +ĠTod ay +Ġun s +ĠG u +i od +Ġacc ount +Ġgra nd +Ġs elf +ĠE l +Ġt ast +Ġcont ent +Ġc u +Ħ ë +ĠMay be +ĠJes us +ore s +p ort +© ´ +Ġg ives +Ġnorm al +ÑĢ Ñĥ +Ġimp act +ä r +Ġd ies +Ġl ab +s h +i os +ĠP res +ĠU nd +ĠO f +Ġfin ally +Ġdo ll +Ġvoc ê +p ly +ĠA g +Ġtak en +Ġgr ound +f ort +Ġg ave +ĠIn st +Ġl ost +Ġwork ed +Ġl iter +Ġiss ue +Ġind ust +Ġret urn +Ġhappen ing +Ġwant s +и в +Ġproblem s +ĠC ar +Ŀ ¼ +ĠAl so +Ġs ize +Ġob viously +ĠS u +ĠS c +Ġrecomm end +our ces +ast ic +.. .. +Ġm i +l ier +ĠE ven +ci a +Ġh ur +v a +Ġm ass +Ġwould n +un t +ck s +Ġf elt +os p +l ight +ол ÑĮ +n ie +Ġbott om +Ġб Ñĭ +ore d +is on +Ġgr ad +Ġum a +Ġv a +Ġì Ĥ +ress ion +ul ation +I D +id ence +Ġb ur +Ġg one +l u +ìĸ ´ì +Ġre du +Ġj a +ìĿ ĺ +it a +Ġso ft +Ġç a +ic o +er al +à ± +a f +Ġpoint s +g u +Ġd é +ap t +a x +ĠAl right +Ġcam era +Ġa ch +Ġп о +Ġse ver +5 0 +Ġs ie +Ï ģ +Ġm al +Ġcomp ut +Ġmid dle +Ġcould n +m ing +Ġì ĭ +ĠH is +Ġg ames +Ġint rodu +Ġc ell +p or +Ġsle ep +Ġë ³ +id ing +Ġ ou +Ġde g +Ġdr ink +Ġenviron ment +ĠUn ited +Ġtalk ed +Ġcho ose +Ġj our +e ge +ĠM in +Ġint e +Ġr ather +Ġoff ic +к а +ac hing +Ġmention ed +Ġf ill +Ġtr ack +Ġn ie +Ġ ut +Ġв Ñĭ +ib ility +Ġv ac +Ġr ad +Ġp ack +Ġs end +ĠD as +ĠA b +Ġeng ine +ãģ Ĺ +Ġcomp et +à ´ +Ġв Ñģ +Ġdo or +Ġlong er +å° į +Ġlangu age +Ġext ra +pl ay +Ġwe bs +um b +ro om +ç ľ +Ġbegin ning +Ġre fer +A M +n en +ig her +f ace +er c +Ġfor get +Ġcom ment +еРº +л Ñı +r or +ż e +ĠG e +Ġd ark +Ġany one +ant e +g es +ìĬ µ +Ñ ij +b ed +j e +ruct ure +Ġpr im +id a +è ¦ +ãģ ¾ +Ġm ix +Ġstart ing +ĠìĿ ´ë +Ġprov ide +act ion +Ġm other +Ġper iod +Ġst ick +ĠYou T +Ġtechn ology +ê ¹ +Ġb ed +Ġg iving +Ġexpl ain +z en +im ate +Ġrepres ent +lo ad +ĠHow ever +Ġli ves +ut h +ir it +og n +Ġli k +Ġresp ons +Ġpri v +Ġto m +ç ão +i am +Ġexc ited +Ġc ard +gr ound +Ġ× Ķ +Ġs ens +Ġte ach +id o +h od +Ġep is +Ġwel come +Ġw all +ä ¹ +Ġch ance +h en +ĠÐ ¡ +ĠÄ ij +Ġsim ply +ĠÑĤ ак +r ing +j a +b ook +Ġsever al +st e +Ġcreat ed +Ġо ÑĤ +Ġp ush += = +Ġh igher +u f +our ce +o ke +Ġon line +Ġre le +Ġt on +ens ive +Ġfavor ite +Ñĥ д +Ġlook ed +Ġv on +âĢ Ķ +Ġf ür +Ġbut ton +Ġb ill +Ġchang es +! " +Ġsl ow +ab les +Ġde ath +and s +ate g +Ġthem selves +ãģ £ +Ġc op +ãģ ® +Ġperson al +ug hing +Ġ1 1 +g ar +ad es +Ġneed ed +Ġstud y +ag ed +ÑģÑĤ в +in o +Ġdis c +k i +Ġadd ress +× ¨ +itt en +es ome +ĠÐ ¶ +¤ ë +ur a +Ġm u +Ġcontin u +f or +Ġm atch +ãģ ¦ +Ġstra ight +IJ ë +n ers +Ġdo g +Ġde b +ĠC O +Ġo s +g ed +c ame +Ġcor rect +et te +ĠSe e +Ġinclud ing +ĠEu ro +est er +Ġj ump +ĠWh ich +Ġк ак +s on +y a +IN G +Ġe ine +os h +en cy +Ġmed ia +Ġsubscri be +é Ĥ +Ġpr in +Ġha b +ĠP er +ĠW as +Ġp age +it or +Ġto wards +Ġtri ed +en ge +art ment +Ġvar i +Ġp aper +Ġpict ure +Ġvers ion +Ġbr ought +w are +ĠSt ates +Ġs ich +led ge +Ġper cent +Ġgo d +e c +ĠC omm +Ġdec ided +Ġse lect +íķ ľ +) . +ur ity +Ġfur ther +Ġcom ments +le ment +Ġd ream +Ġcent er +m i +Ġc as +Ġwom an +Ġro ad +Ġf ail +Ġbe came +l us +il ities +ãģ ¯ +ĠC o +Ġman age +Ġrec ogn +Ġact ion +Ġbene f +Ġear lier +× ľ +Ġspe ed +Ġm ent +Ġso ci +Ġsho ot +u i +Ġà ¤ +Ġapp ly +v o +x im +Ġca use +Ġsur pr +Ġha ben +D I +Ġf ather +ĠNe xt +ĠYouT ube +Ġc ode +Ġro le +g ress +Ġg reen +et t +Ġbu ilt +Ġfl ow +Ġb ase +Ġtra ining +Ġr ound +ĠW ill +Ġp ath +ĠR o +Ġinterest ed +ìĸ ´ +Ġres pect +Ġchang ed +iss ion +Ġstud ent +og raph +Ġappro ach +Ġshow s +å° ± +Ġt ar +Ġcr it +Ġg lo +ìĬµ ëĭĪëĭ¤ +Ġde ad +ĠPres ident +Ġth ous +Ġb al +st er +e x +Ġabs olutely +Ġm ic +Ġpract ice +Ġqu ality +Ġl ower +og le +Ġse par +b all +med i +Ġre view +ĠA pp +Ġo k +âĢ ĭ +Ġexper ien +Ġconc ern +ent ially +m ore +ĠJ o +ap an +ĠI ch +ist ic +Ġf air +Ġwebs ite +i res +ĠB y +Ġtra vel +Ġris k +Ġm ir +Ġbo ard +Ġs en +Ġparent s +ĠW ow +Ġfe ed +Ġsa ve +Ġser ious +Ġin it +E L +und red +A S +Ġv an +or row +Ġwor th +Ġse arch +Ġ1 6 +Ġpart s +ÑģÑĤ ÑĮ +Ġcomp an +Ġmov ie +Ġmet hod +Ġ ill +Ġw ish +d y +Ġit em +Ġmin us +ang er +Ġvo ice +Ġsk in +Ġare as +Ġe ight +Ġo bs +Ġ , +аР¹ +Ġo il +Ġc y +Ġb aby +s y +Ġem ploy +ĠK e +Ġpl aces +Ġf ix +Ġest á +ãģ ¨ +iv ed +Ġlot s +Ġse ason +un k +al t +Ġt able +ĠÐ ¢ +à ¢ +Ġatt ention +ãģ ª +ĠH er +Ġa ge +Ġp ra +b ack +c il +Ġnet work +r it +Ġdo c +Ġare n +ig en +Ġë Ħ +Ø ¯ +end er +Ġtot al +Ġpr ice +Ġcra zy +ì ļ +i qu +th ough +Y ou +Ù ĩ +ãĤ ĵ +Ï ħ +Ġs at +Ġb i +ĠD ie +Ġsh a +Ġthank s +u h +Ġst age +аР¶ +ĠF l +Ġle av +Ġbo y +Ġa f +ö n +ĠG et +Ġac cept +Ġent er +Ġt ur +Ġsi ÄĻ +Ġhon est +ãĢ Į +Ġs am +Ġre pl +g ing +Ġdevelop ment +ĠA ct +or a +ãĢ į +ä ¾ +Ġknow s +Ġim age +ĠL ord +и ÑĤÑĮ +Ġweek s +Ġse x +Ķ ë +Ġh undred +Ġsound s +Ġlearn ed +Ġb ud +ĠÑģ ÑĤ +Ġinc red +â Ļ +Ġn os +Ġd rop +Ġb en +ĠÐ ĺ +Ġsa fe +at a +Ġf uck +so ci +Ġd an +Ġcr oss +1 0 +m o +ver t +Ġ1 7 +z ie +å ķ +Ġd om +ĠB o +Ġset ting +Ġinvol ved +ar ily +Ġs ind +Ġs us +Ġwor ry +et h +ê¹ Į +Ġs un +Ġh ier +Ġcertain ly +ou l +ort s +ĠE r +ĠU m +Ġca us +Ġnat ural +Ġà ¼ +Ġc ry +ĠSe c +Ġs om +æ ² +Ġeduc ation +а еÑĤ +Ġmult ip +Ġal one +Ġe ye +Ġr ate +ĠEuro pe +è ¿ +m on +Ġf it +iz ing +pp ed +Ġpress ure +th e +и Ñģ +it es +ĠA f +re ci +att le +Ġserv ices +ĠGo ogle +é ģ +Ġc ases +Ġdri ve +Ġchall eng +u z +ĠM o +ìľ ¼ë +v al +åĢ ĭ +Ġf ol +Ġì ¢ +ff ic +Ġr a +Ġs in +Ġbl ue +Ġaff ect +Ġm is +Ġsh ot +Ġо б +as ing +Ġsign ific +ĠC he +Ġê ³ +Ġpos itive +ì £ +Ġw ie +Ġ4 0 +ord ing +ĠFr om +ê µ +Ġbra nd +Ġtr ust +Ġp le +Ġcommun ic +Ġwe ight +Ġask ing +Ġta x +ĠJ apan +ãģ Ł +Ġíķ ĺ +op s +Ï Ĥ +Ġput ting +Ġro ll +ĠAmeric a +re g +ŀ × +at ures +ens ion +ĠS omet +Ġorig inal +p ing +Ġ ÅŁ +Ġproduct s +ãĥ ¼ +Ġcont act +ol ution +Ġgo al +Ġp ow +Ġperform ance +Ġblo od +at ors +ĠM ich +Ġtem per +ĠD an +Ġsu gg +ÑĤ и +Ġim m +Ġoff ice +Ġar ri +Ġcom fort +ĠÐ Ķ +Ġsugg est +Ġpl at +Ĥ ĺ +1 9 +Ġo m +Ġse ven +ĠC ent +ill e +Ġcon cept +Ġb ag +ü n +ive ly +Ġd iv +m os +æ ī +Ġfeel s +Ġ ir +ak es +le y +Ġpartic ip +ĠÐ ļ +f l +j ust +Ġs il +ĠP a +A L +Ġgot ta +Ġf an +Ġchall enge +Ġcompan ies +ĠPe ople +< / +оР· +Ġp en +is ing +Ġa us +em ic +am ente +Ġmeet ing +Ġvis it +Ġsupp osed +ĠOn ce +д а +or ld +3 0 +U S +Ġvi ol +Ġnot ice +ĠÐ IJ +h an +p ed +ì ĺ +h h +Ġtr ou +Ġmin ute +ĠP ar +r ay +Ġt it +Ġup d +Ġblo ck +Ġd ue +a ur +Ġfor ce +Ġcou n +ĠâĢ Ķ +Ġtyp es +ë § +Ġl ate +Ġimpro ve +Ġì Ī +Ġa ve +ul es +c l +am ed +Ġaw esome +ĠO k +Ġv ot +Ġmach ine +Ġfollow ing +Ġme asure +ac ión +u el +ch an +Ġab ility +Ġt out +Ġide as +Ġincre ase +Ġen s +ĠÑ ħ +Ġë ª +Ġj est +ĠÐ ľ +Ġtr uth +h y +Ġsp end +Ġsci ence +et e +Ġ1 4 +Ġepis ode +Ġal g +end ed +ãģ ĵ +ar i +ll a +Ġf ish +Ġthr ow +m it +å ¹ +Ġcir c +ĠC al +Ġt our +Ġdire ction +Ġno ch +еР² +é n +Ġcount ries +Ġindust ry +in y +ic le +Ġfe et +I t +Ġlead ers +et zt +Ġst aff +ç Ķ +Ġpur p +it o +? ! +ĠJ a +Ġst ore +et ic +ĠCh ina +Ġë IJ +ĠUn iversity +Ġ # +Ġdec ision +Ġach ie +Ġact ual +u ly +Ġse ction +Ġresult s +Ġst ar +Ġm ist +ib ly +Ġd ad +Ġnum bers +om b +è ª +ĠS pe +Ġm er +Ġ2 5 +Ġaut om +Ġco ld +Ø ¨ +Ħ ľ +ag er +ĠT V +ĠS ie +ĠH ave +Ġ że +ug g +ain ed +Ġup on +Ġlo g +Ġcomplet e +Ġbra in +ag ing +ĠM us +o ver +Ġeas ier +Ġinte gr +Ġm ás +Ġturn ed +Ġst ri +iv al +Ġhe av +ĠT H +Ġwr iting +ÑĢ а +åľ ¨ +å¤ § +Ġcl a +d ing +Ġtell ing +и д +ic ated +ä» ¥ +ac ht +ãģ Ĥ +h aps +ĠSt e +Ġres ources +Ġd ann +Ġpart y +Ġ ÏĦ +Ġsa f +is es +t re +o int +Ġknow ledge +Ġany more +Ġf ly +Ġma int +и к +å ij +Ġse ll +la ughs +ĠY ork +Ġb ien +Ġo d +Ġeas ily +Ġr ange +Ġo ption +Ø ¹ +Ġapp reci +oc r +Ġdet erm +Ñ Ħ +Ġmean ing +Ġs ite +Ġdis co +ver age +Ġl ose +Ġinst all +Ġem ot +ant ly +ä t +Ġt amb +ĠW ar +ĠH o +ĠG en +em y +еР· +ĠP ol +Ġmess age +Ġnot e +Į Ģ +Ġh et +Ġim medi +Ġav o +Ġbook s +Ġbecom es +res h +è s +as ons +Ġhim self +ut s +Ġj u +Ġaw are +Ġrequ ire +Ġsystem s +ĠH ar +Ġam ong +Ġh om +Ġb reat +Ġwe ird +Ġë ¶ +Î » +Ø © +if f +or ing +Ġplat form +ĠT ake +Ġhelp s +ut ions +Ġfor g +Ġl uck +ĠEng lish +Ġwe b +Ġneg ative +Ġt ut +Ġab ove +ng th +Ġê ±° +Ġst ories +Ġlo ad +Ġback ground +Ġsw itch +g a +Ġprin ci +Ġfin an +Ġvar ious +Ġl Ãł +Ġkind s +ain ing +Ġn ature +ĠÐ ŀ +c z +Ġpr ay +Ġg ar +ir m +Ġ & +Ġì ĥ +n s +ĠR ep +ĠF e +Ġre v +ra nd +Ġlike ly +Ġunderstand ing +ı r +ãģ ĭ +Ġf al +Ġ1 3 +ÑĨ и +Ġsu d +Ġbr other +Ġpl ant +Ġthrough out +w ise +p re +Ġcult ure +ĠÙ ħ +Ġwonder ful +Ġa h +pp er +Ġso ld +Ġstart s +Ġwr itten +Î ¯ +n i +Ġ×Ķ × +ĠD av +Ġu lt +Ġar m +Ġro ck +Ġwe ar +ë į° +an o +ra g +Ġsqu are +ан и +c ast +le br +Ġliter ally +Ġplay ed +Ġhe at +on se +r ict +Ġins p +id s +Ġpop ular +ë ıĦ +Ġc atch +Ġm ount +Ġj ud +Wh at +еР± +R A +a ud +к о +Ġsur face +Ġcon v +Ġpie ces +O h +æ Ģ +Ġst yle +pp ing +Ġread ing +Ġconvers ation +оР¿ +ä¾ Ĩ +ĠAg ain +Ġb ank +t ime +Ñĥ ÑĤ +er ve +ĠG reat +Ġcap t +аР± +ay s +ĠF in +ific ation +Ġä r +а Ñİ +Ġe gg +ĠW el +Ġtar get +ul a +ch es +an i +O O +ic ious +n ow +Ï ĥ +bo ard +Ġg ente +Ġd ro +ĠE t +Ġd in +Ġc os +Ġaut hor +Ø ³ +Ġo ch +Ġem ail +Ġsp irit +Ġs itting +m as +Ġstre ngth +Ġbig ger +ĠW ait +Ġm at +Ġpol ice +ress ed +Ġwait ing +is hing +Ġdoll ars +ho od +s s +Ġimag ine +in i +Ġm es +Ġdis e +id ge +ab or +Ġp et +Ġh op +ĠK ing +Ġcomput er +Ġgo ld +Ġn u +Ġf ing +) , +Ġsec urity +ru ction +Ġsol ution +e xt +Ġp atter +ick en +ure d +Ġstand ard +ìĭ ľ +Ġdou ble +Î · +Ġw ife +is a +Ġdirect ly +ac ed +Ġb unch +Ġ ¿ +ал ÑĮ +Ġreg ard +Ġswe et +Ġun ique +ĠâĻ « +Ġtra in +ĠG erm +Î ¬ +R E +Ġbeh av +Ġpre d +ì ĥ +s et +Ġdescri ption +é e +Ġc at +å ĵ +Ġcoll ege +ì Ľ +Ġapplic ation +ĠS en +as k +Ġc red +ub lic +Ġmultip le +Ġn i +Ġpres ident +Ġadd ed +Ġro b +Ġaqu i +Ġh osp +Ġtool s +Ġg un +Ġbas ic +Ġl ines +Ġst ructure +ĠR uss +Ġtot ally +Ġbig gest +Ġe en +Ġar g +Ġ× ľ +Ġp ark +ĠD es +Ġce lebr +Ġf ait +ен ÑĮ +Ġsu ff +Ġreg ular +¨ ë +Ġm ine +ĠK ore +Ġpre vious +Ġp i +Ġse g +Ġpol icy +Ġк о +ĠTr ump +Ġvac c +ó w +ĠS y +и Ñĩ +it ter +Ġpolit ical +r as +Ġal s +ел ÑĮ +Ġsha pe +an z +Ġon to +Ġar ch +Ġam b +ag ram +ĠS m +ct ions +Ġjo in +b or +å Ľ +Ġfr ame +ł ĩ +Ġcho ice +௠ģ +Ñĥ Ñİ +ĠC or +ĠS w +I T +Ġt end +ĠE ar +Ġto r +Ġev ents +Ġcla im +ĠD a +ĠM ark +Ġgroup s +Ġe ating +ĠW orld +Ġrec ently +Ġtast e +Ġsur v +à ¤ +Ġsk ills +Ġи з +itt ed +Ġsh op +ìĿ ´ì +Ġest ab +ĠëĤ ĺ +Ġsecond s +ĠTh ose +ĠE nt +Ġì Ħ +ers on +Ġto wn +Ġc and +Ġopt ions +Ġ ing +V ID +Ġenc our +Ġr é +âĻ ª +Ġent re +Ġmove ment +ĠB en +Ġbir th +Ġwh e +Ġh ang +ĠE m +ig e +ro ll +Ġun f +ì Ĥ +Ġr id +Ġsp read +Ġh ost +al d +ĠE d +Ġcons um +U N +Ġop in +it ar +ĠM ed +Ġsub ject +Ġp al +Ġcar ry +Ġag ree +ĠWh ile +Ġcare er +Ġsci ent +Ġsud den +Ġf ile +z i +Ġex cept +é º +Ġpot ential +ĠAn other +Ġcomp lex +ĠS im +end o +Ġr ais +Ġphys ical +Ġd ate +ak er +ĠC ol +Ġpower ful +Ġmem ber +ra p +Ġsp ot +Ġs ource +Ġf em +é m +Ġem p +j i +iet y +Ġinf lu +Ġd ry +Ġlo ck +Ġz ero +ĠU h +Ġr out +Ġpor que +Ġ2 4 +Ġt al +Ġfol ks +Ġla unch +Ġcomp on +ĠWel come +Ġk ann +ä n +ĠÑį ÑĤ +e es +ĠÙ Ī +Ġany way +Ġaud ience +äº º +Ġsl ight +on a +Ġu r +Ġrel ig +Ġext rem +ı z +ĠM a +Î ¼ +Ġà ¶ +Ġall ows +Ġf at +ĠF ace +Ġn ational +Ġinter view +ĠM c +é t +Ġc ute +el a +Ġsec ret +ĠW est +ĠD ep +Ġex erc +Ġhist or +Ġpri or +Ġ6 0 +av a +ac her +y ond +ĠH a +Ġest e +in ary +ĠN orth +on st +Ġsm art +am s +ал и +Ġd ar +er ed +Ġfun ny +ĠO b +ĠBl ack +Ġrel ated +ĠB u +Ġsome where +ĠR em +n es +ment e +ĠRe ally +Ġcreat ing +Ġfam il +Ġsoci ety +Ġg el +Ġtrans form +Ä ĥ +Ġinclud e +Ġh ol +l ike +k o +air s +Ġп од +Ġpers pect +Ġb es +Ġparticular ly +Ġshow ing +ĠP art +Ġqu al +lo ck +Ġreal ity +ho ld +ict ion +o on +Ġv ir +ãģ « +it ary +Ġdr ug +Ġfe ature +Ġre asons +Ġ× © +Ġwr ote +Ġf ant +Ġb and +Ù ĥ +en a +ke y +Ġear th +d om +Ġfe atures +Ġflo or +Ġspeak ing +Ġt ip +ĠA ust +Ġst ock +Ġch urch +Ġr ac +ìľ¼ë ¡ľ +ภĻ +ãĤ Į +k y +Ġresp onse +Û Į +ul ations +Ġsl ide +Ġgrad u +ci ous +Ġme ant +Ġ == +Ġ× IJ× +ã ħ +Ġkind a +Ġsc ene +Ġm uit +Ġê° Ģ +r ast +re st +Ġplay ers +w a +Ġbro ad +Ġtom orrow +oc ol +ĠÑģ в +ĠB ar +ı k +Ġse a +Ġrem ove +Ġrem ind +ом Ñĥ +ĠS ince +Ġave c +ce ll +и Ñħ +Ġdoc ument +Ġê·¸ë Ł +Ġne igh +be at +Ġp Ã¥ +Ġas pect +Ġd ed +lish ed +il s +Ġour selves +u ce +Ġhe y +ĠпÑĢ о +ent y +Ġas soci +ad os +um ber +Ġ ] +éĤ £ +no v +Ġì Ļ +Ñĥ Ñĩ +Ġcond ition +ëĬĶ ëį° +Ġval ues +Ġsc en +min ist +Ġc ast +Ġgrow ing +Ġus er +Ġresp ond +l im +é r +y m +çľ ĭ +os es +sy ch +ĠÑĢ аз +Ġappe ar +Ġpro gress +eng th +Ġj ak +ĠD is +Ġpat ients +ĠS er +Ġg as +è re +ìĸ´ì ļĶ +Ġre ci +ìĿ ¸ +Ġs ca +ep end +Ñģ к +аР¿ +Ġb atter +Ġve h +ð Ł +Ġac com +Ġbe at +Ġpain t +Ġcont rib +Ġs ad +Æ ° +al es +Ġt ree +b a +Ġb orn +ic ed +à® ķ +b and +Ġme chan +ĠD et +Ġcap ital +Ġdel iver +Ġfe ar +ŀ ĺ +ĠS outh +Ġb ought +Ġst ress +Ġv or +? ? +i h +ìķ ¼ +Ġer a +ìĿ´ ë +а Ñı +is ions +iv ity +Ġhelp ed +Ġass ist +Ġplay er +r an +Ġimmedi ately +Ġmo ved +c ie +ê ± +Ġann oun +å ¿ +ìŀ IJ +Ġprodu ction +Ġsum mer +Ġt un +Ġprogram s +G H +al ing +ir a +el ess +. ) +Ġa verage +è¦ ģ +Ġgl ass +om an +if ically +Ġëĭ ¤ +ĠC ong +ĠV er +Ġtr ick +Ġbe gan +Ġv ill +ê ±° +h ow +æ Ń +Ġt ill +Ġ9 0 +ber t +Ġê ¸ +Ġtemper ature +à ² +๠Ī +Ġgra ph +Ġê· ¸ +Ġr ot +Ġmo b +A Y +a el +Ġre pe +Ġdev ice +Ġ19 9 +Ġte le +Ġke pt +p a +æ ĸ +ver se +Ġst ream +е Ñĩ +ess ion +Ġstr ugg +z z +Ġdeg ree +Ġhelp ing +Ġsm ell +Ġper haps +p ro +Ġcont ext +Ġi k +Ġп еÑĢ +Ġcal cul +éº ¼ +b ing +Ġreal ize +l am +ĠCh ar +y t +ĠìĿ ´ì +Ġd anger +ĠI m +a a +Ġlo ved +Ġpurp ose +Ġfinish ed +Ġpe ace +Ġo t +Ġglo bal +Ï Ģ +Ġab er +ĸ Ī +Ġcharac ters +Ġn ur +Ġdam age +Ġem er +Ġpre c +ĠW ir +Ġinst it +ij × +Ġallow ed +b on +Ġto d +еР³Ð¾ +Ġj etzt +Ġmed ic +Ġsmall er +ce ed +Ġlevel s +Ġint ell +W e +Ġse m +Ġcurrent ly +Ġmod ern +Ġcont ract +Ġdetail s +ortun ately +O S +Ġst ates +Ġad just +ant age +e z +ĠV ery +Ġsc ale +Ġre lease +Ġf az +Ġ ic +it ude +A C +ĠP at +id en +Ń IJ +Ġpre fer +olog ical +ĠFace book +Ġê° Ļ +Ġ .. +ĠM ake +Ġко ÑĤоÑĢ +ĠDav id +ĠAf ric +Ġmod e +ĠC ity +Ġsh all +ĠÑ Ħ +im in +Ġз а +r om +u a +Ġbe yond +Ġdist rib +к Ñĥ +ĠDo es +Ġv ict +r ate +Ġv ai +Ġsuccess ful +Ġh ous +ah a +est s +ĠE st +Ġdisco ver +Ġthere fore +ch a +Ġc up +Ġpop ulation +ĠI l +s c +Ġsp ent +re l +Ġuse ful +Ġt ab +æ Ŀ +Ġ Å +Ġìł ľ +Ġcon se +Ġqu ant +ay a +Ġb on +åı ¯ +ĠCh in +Ġê² ĥ +ound s +е ÑĪ +ell e +Ġ ice +2 1 +Ġk ick +ä¸ ĭ +Ġstep s +Ġton ight +нÑĭ й +ren ch +. ' +Ġgra b +Ġimp lement +ĠìĪ ĺ +Ġmiss ion +Ġclear ly +Ġappreci ate +è Ģ +Ġf resh +ar m +ĠTw o +Ġex ec +Ġproject s +Ġcommun ities +ri ble +Ġreg ion +Ġfre qu +ro y +Ġhow ever +Ġpart ners +an c +Ġmin im +Ġl at +Ġfamil ies +Ġev idence +Ġp un +ra ft +Ġl oss +Ġma p +Ġany body +Ġchang ing +Ġr ules +Ġorgan ization +Ġess entially +ĠR ed +Ġele ment +æ Ĺ +Ġv irt +r at +Ġpr int +and er +are n +em os +ο Ïħ +Ġcond itions +ab e +Ġd ance +и ÑĢ +Ġd os +о Ñĩ +ĠQ ue +Ġwalk ing +Ġt ro +Ġ id +Ġadd itional +Ġfull y +Ġf ans +Ġadd ition +Ġlik ed +Ġü ber +Ġb ow +d i +Ġm aster +o ff +) : +m ber +Ġë ¬ +å ¯ +åĪ ° +la use +Ġo der +Ġsaf ety +Ġre act +à® ¿ +b t +Ġdis app +Ġgirl s +S t +ĠA ng +Ġfa ith +Ġturn s +Ġt ight +Ġm outh +am i +z er +Ġwe ap +Ġб Ñĥд +Ġhosp ital +ra id +Ġmic ro +ĠSt ate +ĠM ost +ag n +Ġdec ide +Ġpat ient +Ġcor ner +Ġdi ed +N o +ĠSt ud +re nd +em pt +Ġli e +Ġl if +ĠBe fore +t ó +ĠSu per +Ġbe ll +6 0 +Ġpriv ate +ĠPa ul +Ġg ib +Ġag re +´ì Ħľ +Ġs ig +Ġinvest ig +Ñı ÑĤ +en ing +Ġdist ance +Ġwar m +Ġdig ital +å¾ Ī +in er +Ġp and +ĠCO VID +Ð ³Ð¾ +g n +Ġr ace +Ġpr oud +Ġte aching +Ġ ÑĤо +ìŀ ¥ +ĠAll ah +I n +Ġw ood +Ġcol ors +Ġw ird +u j +id ad +Ġcustom ers +Ġconnect ed +Ġlay er +Ġachie ve +Ġperspect ive +ĠC oll +Ù Ĥ +Ġcl oud +!! ! +Ġend ed +łĩ ê²Į +Ġmanage ment +Ġr ich +Ġsub st +Ġrem o +Ġser ve +Ġres ist +Ġthought s +Ġgrow th +ili ar +Ġright s +Ġchar ge +Ġcons ist +Ġwer den +Ġem b +and om +Ġhur t +Ġk an +i as +л о +Ġsh it +Ġbe g +Ġrece ived +it ation +Ġme at +Ġis so +ff ee +Ġfam ous +Ġcomfort able +I L +ĠB ye +èª ª +åĢ ij +oth es +Ġmed ical +Ġenjoy ed +Ġhealth y +Ġw y +c ies +Ġeff ort +Ġdo ctor +Ġmil itary +L AU +Ġg ro +Ġb attle +Ġf ed +Ġcap ac +Ġaf raid +iv il +ĠвÑģ е +Ġl ength +ys is +Ġbe i +¤ í +Ġorgan iz +or g +in c +Ġinter act +ĠChin ese +Ġacc ording +Ġincred ible +Ġkill ed +Ġda ughter +ĠÏ Ģ +Ñĭ в +Ġschool s +Ġ « +ll er +Ġshould n +n al +Ġcr is +Ġch icken +Ġf aster +Ġextrem ely +Ġopp os +Ġn ous +Ġ + +ri a +Ġfinan cial +Ġexc iting +Ġjour ney +×Ļ× Ŀ +ł ë +Ġdis play +Ġmem ory +Ġheav y +н е +Ġpass ed +ÑĢ и +il es +Ġp sych +Ġspec ifically +Ġeng age +Ġl ed +or ge +ĠD em +ord er +Ġ8 0 +Ġcre am +ester day +Ġed ge +Ġп ол +Ġbu ll +Ġind ic +Ġk tó +Ġhope fully +um ents +ag en +н ого +Ġh ate +ch t +8 0 +Ġeff ic +Ġì§ Ģ +Ġintern et +Ġbud get +Ġproper ty +id ay +Ġì ļ +Ġм ож +ol a +Ġshow ed +ĠM on +Ġthous and +A P +Ġpo or +us ed +ĠJ ack +Ġs Ã¥ +ĥ ½ +Ġes c +Ġsoft ware +Ġqu ar +ĠØ ¨ +Ġnecess arily +om en +i y +Ġevent ually +ish ed +Ġbr ight +E D +Ġs pl +Ġdem and +Ġth reat +Ġs ir +Ġrele ased +ck et +ĠâĢ « +Ġrequ ired +Ġv ote +ì ¹ +à® ¤ +Ġdevelop ed +ĠìĤ ¬ +at ory +Ġd ir +ca pe +Ġslight ly +à ¬ +๠ī +re et +Ġdise ase +Ġcour t +Ġitem s +ĠEar th +ÑģÑĤ и +ж е +ì ² +Ġchalleng es +ĠBr it +Ġdesign ed +1 2 +Ġhear ing +Ġlisten ing +z o +ĠÑģ л +ãģ§ ãģĻ +Ġper o +Ġwe aring +pl ic +Ġch em +Ġbal ance +Ġb a +Ġrece ive +im a +Ġsignific ant +Ġм Ñĭ +an ch +ĠC r +ĠC oun +ê¸ Ī +Ġjo bs +Ġoffic ial +Ġper m +om s +Ġopportun ities +Ġover all +Ġh us +od es +Ġn ation +ĠR eg +Ġor d +Ġrest aur +Ġì Ĩ +Ġm el +v in +Ġw enn +Ġk ön +æ ĥ +Ġopin ion +ãĤ Ĥ +è ¬ +ĠSomet imes +ç Ĥ +Ñī е +as c +O U +Ġ20 20 +Ġdel icious +ig er +Ġìķ Ī +o le +Ġhand le +Ġc it +Ġíķ ľ +Ġf ör +o oth +Ġnecess ary +Ġind epend +æ Ħ +ist en +h am +Ġé t +ãĥ ³ +Ġmult i +Ï Į +? ) +Ġcamp us +Ġtop ic +Ġr ain +Ġpan el +ĠS am +Ġlar ger +aud ience +Ġpa id +Ġeconom ic +ol t +Ġstre et +ĠC ont +Ġdri ving +Ġìł Ģ +Ġh ay +Ġprofess ional +ĠIn tern +å ¸ +Ġin put +Ġc ateg +Ġc ro +Ġ ll +E T +Ñĭ й +* * +ĠZ e +B LE +Ġì ¤ +re es +ĠÐ ¯ +ed e +ier t +Ġfo ld +Ġd ur +ĠN ational +Ġìĸ ´ë +an ced +Ġfa ire +ut ed +Ġk ing +Ġw ild +o i +up beat +Ġpre vent +i us +Ġà ¨ +Ġw ide +Ġr ing +Ġtit le +Ġstand ing +Ġal though +Ġh i +Ġsa uce +Ġs ides +Ġanim als +il ing +at ives +ìĹIJ ìĦľ +ĠO ver +Ġdes p +Ġconsider ed +ar ies +i ers +Ġein en +Ġs ister +Ġë ķ +ĠS ure +ãĤ ĭ +ri end +a ign +Ġsh own +Ġs ac +Ġs ont +Ġcent ury +Ġt ien +ĠÎ º +ĠS T +åķ Ĭ +Ġold er +ie m +Ġtr uly +ĠS i +Ġwind ow +iqu es +ar io +æ² Ĵ +Ġloc ation +Î º +Ġì ľ +v i +ag ue +ĠS orry +Ġdis p +Ġhe ll +Ġà ī +Ġtr ade +Ġcrit ical +Ġê ± +Ġn amed +Ġprep ared +ĠH ouse +al u +Ġt ough +Ġtri p +Ġs and +c el +ü z +ĠP ut +Ġap art +is f +v is +Ġli br +a ven +Ġv ie +Ġeffect ive +ภ² +Ġmag n +Ġmuit o +Ġê µ +h al +Ġlim it +Ġn ine +Ġwill ing +ı ÅŁ +s p +еР³ +h i +Ġal t +ĠJ an +Ġorig in +ĠU s +Ġele ments +Ġus es +Ġhelp ful +Ġfl at +Ġfam iliar +ĠP ark +Ġc ore +Ġclos er +Ġact ive +Ġad minist +C E +нÑĭ е +ç Ħ +Ġrel ative +Ġment al +Ġr andom +Ġpart ner +Ġut il +ph one +Ġr ule +w w +Ġìł ķ +Ġsch on +Ġco ffee +H A +Ġconnect ion +Ġun it +la ughing +l og +Ġapp l +л а +us ic +ĠB ra +Ġany where +AU DI +Ġsepar ate +bo x +Ġd ivid +Ġtest ing +Ġs ick +Ġwer en +ä» ĸ +Ġ׾ × +Ġadv antage +Ġtrans fer +' . +Ġë ¹ +Ġfind ing +н ой +Ġì¢ ĭ +Ġfor t +Ġeconom y +Ġl ack +Ġleav ing +Ġd im +å İ +ĠR es +Ø Ń +Ġdiscuss ion +еР¿ +Ġg es +du ct +Ġch ain +Ġus ers +e ch +ÅĤ a +Ġdis h +Ġcare ful +Ġte acher +Ġopt im +Ġfl u +at ically +Ġref lect +Ġtreat ment +e ed +i ÄĻ +à ¹ +à® ¾ +Ġequ ip +Ġplan ning +Ġsol ve +ãģ Ŀ +ĠT om +Ġavo id +Ġp ou +Ġgreat er +l in +O L +ĠL u +ĠM ore +Ġatt ract +ê n +un a +Ġphot o +er ation +Ġplan et +Ġcop y +Ġvis ual +ir ing +Ġintern ational +Ġla ughing +Ġth ick +Ġhold ing +Ġbring ing +Ġlet ter +Ġb urn +Ġeffect s +it é +our s +O T +ê me +ĠSch ool +×ķ× ª +rop ri +l ig +α ι +Ġad ult +Ġsu gar +Ġr ide +Ġhigh light +Ġno body +Ġ2 1 +Ġch at +ĠпÑĢ и +Ġin nov +ung en +Ġatt ach +ed om +å Ĭ +y l +Ġleg al +Ġr ice +Ġcoll abor +k ing +d own +æ Ļ +ãĤ Ĭ +Ġi h +ĠA c +ous ly +Ġr ap +Ġsol id +Ġgener ally +Ġpatter n +al i +à¸ Ń +Ġtrans l +in ter +a ult +Ġë ¨ +Ġexp ress +Ġexam ples +Ġch ose +Ġtell s +ÃŃ s +ain t +ĠT ell +ĠMich ael +æ ¨ +ĠN umber +Ġt ap +Ġexper iment +Ġbenef it +Ġì ° +Ġse qu +Ġexp ensive +Ġgener ation +ĠM any +Ġadd ing +Ġk il +Ġcamp aign +ĠA nt +ra w +omm en +Ġs oul +j o +ĠAct ually +am m +ê² ł +Ġma xim +Ġsal t +Ġc ru +Ġcall ing +ãģ Į +Ġbas is +b an +Ġkeep ing +ĠM or +ed s +ì Ĩ +Ġto do +ам и +н Ñı +Ġli ved +ĠD u +ãĤ ī +å® ¶ +for ce +å¹ ´ +fer ence +al a +Ġocc ur +s k +Ġrec ent +Ġc ars +Ġtrad itional +ent le +² Ī +Ġhel d +Ġn ach +ĠCent er +er en +Ġb in +Ù ģ +Ġcomm e +Ġre ve +Ġìĺ ¤ +Ġexpect ed +ab il +Ġfocus ed +o v +Ġi P +or ial +i ro +Ġet c +am ing +ĠS on +Ġy esterday +Ġstr ate +ĠÑ Ĩ +Ġë ı +p es +Ġactiv ity +Ġadv ice +Ġopen ing +f in +Ġre la +é ĸ +Ġinst ance +ĠEvery one +b l +p en +Ġvis ion +ĠA lex +if orn +Ġt ick +H e +Ġstrate gy +Ġk om +P E +ĠG l +Ġelect ric +1 5 +Ġda ily +Ġhus band +Ġst ation +Ġanal ysis +yn am +Ġatt empt +Ġbill ion +v ant +Ġfor th +Ġm ath +al y +Ġbehav ior +ĠM as +k an +ĠD ay +Ġbl ess +Ġg ut +ĠH igh +o x +Ġd ress +Ġj ed +è ¯ +å ĸ +Ġexperien ces +ist a +Ġfight ing +å · +ĠÑģ к +Ġmost ly +a use +Ġpict ures +ен ÑĤ +Ġm ad +Ġmod els +ÑĪ е +ĠC ount +Å Ħ +ÅĤ o +ep t +O M +ĠA N +Ġtrou ble +4 0 +Ġb ird +ul ate +Ġm ur +Ġprodu ce +Ġmar ried +b it +Ġthe ory +í ĺ +Ġlead er +ĠL ast +A A +è µ +Ġim ages +Ġexp and +ĠP or +Ġpur ch +ĠS an +ĠChrist mas +ĠAust ral +Ġw id +ĠM iss +Ġknow ing +Ġz e +s hip +k u +Ñħ од +ĠInst agram +ĠInd ia +Ġest a +ĠCal iforn +Ġ7 0 +Ġdra g +Ġbr ush +Ġn ames +A nd +Ġy o +ill a +Ġsch ed +Ġdest roy +ye ar +Ġv amos +Ġ ÙĦ +ç a +Ġforg ot +и е +Ġra ise +re me +íķ ´ +ĠG ive +Ġcont ain +ra b +Ġg ift +ĠÑģ п +Ġrequ est +Ġsh ut +Ġdeg rees +Ġbenef its +Ñĭ е +Ġstud ies +Ġend s +Ġevery where +Ġher o +op h +er ry +Ġmaterial s +en ed +N A +å į +Ġmu y +Ġwor se +ä» Ģ +ĠM ad +Ġdec isions +ion e +Ġfore ign +la ughter +i ber +ени Ñı +ãħ ĭ +Ġreal ized +Ġ ign +Ġwe ak +ĠÎ ¼ +Ġsca red +Ġass um +A K +ï ¿ +ï¿ ½ +Ġcover ed +ĠS at +Ġо н +Ġindividual s +Ġcomp ared +1 1 +ĠAd d +ic les +Ġc ert +r ar +Ġbr ief +Ġactiv ities +Ġf ab +b ar +Ġa st +ĠO ther +Ġclass es +Ġo g +Ġmiss ing +ãģ ł +é Ŀ +w ers +× © +Ġintrodu ce +Ġequ ation +ãģ¾ ãģĻ +Ġn om +Ġpain ting +us hing +ĠA P +Ġencour age +Ġsh ip +itt ee +iver se +ot a +n am +ãĥ » +Ġexerc ise +ĠÐ Ń +Ġn as +Ġthous ands +ĠCaliforn ia +Ġs es +Ġr ow +ŀ Ī +Ġpand emic +Ġsk ill +b el +Ġdire ctor +Ġmil k +Ġn ut +Ġmot ion +Ġcl osed +è ¨ +Ġcred it +ah r +Ġche ese +Ġal tern +im ately +Ġs ust +ĠT ra +Ġgl ad +Ġhigh ly +Ġw a +Ġredu ce +Ġb le +ad or +in ated +ion es +ci ent +Ġdep ending +Ġsh aring +Ġca ught +ra el +Ġme hr +Ġpass ion +ç Ľ +Ġr u +Ġfar m +T I +av es +ĠR ob +ĠB ro +Ġmot iv +ret ch +ru pt +ĠB ig +Ġall e +Ġet t +ub s +ĠJapan ese +ĠH all +и ли +AUDI BLE +ç ¬ +Ġcell s +ik a +el ine +il er +Ġì £ +Ġsk y +IN AUDIBLE +end e +ap ter +Ġp in +Ġg ather +h ol +le ction +Ġsy n +Ġpl ug +r ound +Ġun iversity +h ib +Ġfant astic +k n +Ġho le +ĠRem ember +in ct +ak s +C H +Ġbro ken +Ġstr ateg +Ġal ive +Ġt ank +Ġc art +r ated +r ie +ĠSt ep +ĠEvery thing +Ġb ound +Ġso bre +Ġcustom er +¡ Į +ur g +ĠB ill +L a +wh at +Ġre action +Ġs ession +Ġpl ans +ĠìĿ´ë łĩê²Į +Ġdown load +ì Ļ +u er +Ġc ab +Ġinst r +if ying +ĠN ice +Ġteam s +ı l +Ġgo als +is ch +Ġtrans port +Ġanim al +Ġcost s +Ġcall s +Ġse hr +ì Ī +ri an +Ġd ial +Ġwe ather +๠Ģ +Ġв оÑĤ +ĠPl ay +Ġsh ared +Ġsm ooth +ab a +Ġleav es +à® © +Ġconc ent +Ġsh ift +ĠëIJ ĺ +ĠGo vern +Ġdem onst +Ġbut ter +ĠìĹ ¬ +Ġsat isf +Īë ¬ +Ġrecogn ize +ĠF rench +Ġvol ume +ä nd +Ñĥ м +Ġì§ Ħ +ĠKe ep +ow a +ipp ed +ÑģÑĤ ÑĢ +Ġdet ect +ĠÏ ĥ +Ġl ift +Ġcl othes +ĠSt op +à µ +m et +Ġcl in +Ġar r +f riend +Ġst uck +Y e +h and +um a +Ġsc ri +Ġfuck ing +ct ors +× ª +Ġjo ining +Ġc ette +ĠØ £ +ĠWh ite +Ġi hr +Î Ń +ãģ Ń +Ġinclud ed +ess o +Ġac ad +b um +Ġs ab +Ġд лÑı +è¿ Ļ +uf act +ĠRep ublic +r im +Ġye llow +Ġlim ited +T ER +ĠT y +Ġnot es +v est +и з +al ed +Ġph ase +and a +ĠM om +R I +Ġim mer +m al +Ġin j +Ġy ang +ud ible +аР³ +Ġset t +Ġmag ic +Ġens ure +Ġsp ring +Ġsh ock +Ġwhe el +ог да +ãĤ Ī +Ġcan cer +Ġro ot +Ð IJ +gen cy +Ġë į +i i +Ġout put +Ġcomm it +Ġwork ers +ìķĦ ìļĶ +ĠÑģ ам +ve y +Ġpe u +Ġc ivil +is c +Ġbr ings +ÑĢ ав +an ia +Ä ģ +c raft +mb ol +Ġintell ig +b i +ac ing +y ou +Ġbecom ing +ĠD er +em a +å°± æĺ¯ +Ġing red +Ġcomm and +Ġupd ate +Ġpre m +Ġopen ed +Ħ ¤ +ени е +Ġg ard +Ġstat ement +Ġsc rew +Ġpr ote +Ġc ards +Ġt ask +Ġeven ing +Ġst itch +in en +ĠB er +m ark +ĠD ad +Ġе ÑģÑĤÑĮ +Ġ× ŀ× +ìĹ Ī +Ġb an +Ġcl im +Ġfre edom +Ġnorm ally +еÑģ ÑĮ +å ¦ +Ġprov ided +Ġìŀ IJ +ĠìķĦ ëĭĪ +ĠK im +ied er +ìĿ Į +Ġcit iz +Ġb ike +Ġb ak +Ġno ise +Ġcl imate +iz es +å¾ Į +Ġincre asing +ĠTH E +Ġli qu +Ġperson ally +e f +res p +Ġleg s +ind er +Ġp ed +Ġë§ İ +Ġdep end +Ġvar iety +ĠIs rael +Ġwas h +å Ĩ +Ġqu iet +ĠJ ames +ĠJ ew +Ġfore ver +ĠI nt +Ġcoun ter +ur ance +ĠAny way +ca re +ĠOn ly +ci ón +ad i +ĠE v +ëĭĪ ê¹Į +ĠÎ ± +Ġslow ly +Ġо д +Ġnot iced +ier en +Ġfe ll +ĠÐ ij +Ġm ême +Ġwhen ever +! ) +ĠH y +å ¼ +ord s +us ion +ĠSt ar +Ġí ĺ +ĠM ac +ä¸ Ĭ +i ven +Ġìĭ ľ +ĠìĹ Ĩ +ĠT ur +Ġg er +r is +Ġve z +Ġл Ñİ +Ġvers us +ا Ø +ocol ate +Ġplan e +Ġz o +Ġsu it +Th is +Ġn erv +ĠA cc +Ñĥ ж +ìĤ ¬ +n h +em e +Ġa uss +Ġme as +Ġtr ès +Ï ī +Ñģ ли +ĠAr t +ĠSec ond +олÑĮ ко +ch o +it ect +е ÑģÑĤ +Ġb oss +Ġinc ome +ł ¤ +Ġsh ad +Ġapp ropri +ĠM al +op t +Ġart ist +Ġplay s +oth ers +ĠIn ter +Ġvir us +Ġh ung +Ġconst ant +Ġscri pt +Ġsn ow +ul f +k et +Ġdev ices +Ġmet al +ight s +ìĦ ¸ +Ġsal es +Ġve get +Ġcollect ion +Ġv ia +k er +Ġgot ten +O W +i én +Ġacc ur +Ġw ave +ult y +ĠA ir +Ġlead ing +ic ing +Ġcent ral +ĠChrist ian +f r +ĠAl though +Ġsong s +Ġf if +нÑĭ Ñħ +Ġbel ong +oss ible +ì ° +Ġphot os +is l +Ġrela x +s a +US IC +ê · +Ġman ufact +ĠTw itter +Ġdanger ous +Ġhy d +le ar +i ant +ĠâĢ ¦ +Ġsudden ly +Ġla ugh +Ġang le +ĠG ot +Ġwor ried +о е +Ġp ap +ĠM art +en o +Ġbatter y +Ġп оÑģ +Ġlight s +Ġar ms +ĠA bs +m es +âĢ ĵ +use um +Ġte a +ĠM ic +Ġfor mer +ograph y +Ġapplic ations +ĠD ire +çĦ ¶ +Ġfeed back +itch en +yor um +u ed +ig t +Æ° á» +os ition +ĠD el +Ġíķ ĺë +ĠB ack +ad s +Ġpr ime +ì£ ¼ +ì£ ł +× ij +Ġm ut +] . +ĠÐ Ĺ +lo c +k in +Ġexper t +Ġal right +ung s +Ġsupp ly +Ġleaders hip +ĠF ra +Ġtyp ically +Ġs el +Ġtre es +Ġ2 2 +h ar +Ġwor st +Ġbus y +ant o +ĠU p +ĠB as +Ġpresent ation +Ġstr ange +Ġth in +ÑĤ е +Ġveh icle +Ġд о +cell ent +7 0 +Ġt ired +Ġcris is +Ġt iny +as y +Ġr an +é ĩ +Ġfor ces +Ġо Ñĩ +Ġident ify +Ġass ess +иÑĤ е +S E +Ġcreat ive +ç Ł +Ġdep artment +Ġinit ial +æĪij åĢij +ĠD am +ak t +v ere +Ġinf ect +Ġp ump +Ạ¡ +Ġv iel +Ġr are +Ġd ot +ash ion +em pl +Ġf lex +Ġk on +Ġtr uck +Ġle ct +Ġpl astic +la w +Ġlik es +Ġr ough +ĠM AT +í ŀĪ +Ġcomm er +Ġas se +Ġc ake +Ġact ions +Ġad m +Ġother wise +ĠHe alth +Ġcoll e +à¹Ģ ภ+Ġr ub +å¾ Ĺ +æ Ķ +Ġsc r +Ġz um +ĠH im +Ġch amp +Ġconcern ed +Ġ5 00 +Ġpl ate +ĠO ut +Ġdon c +Ġequip ment +Ġta ught +ll ed +Ġí Ļ +iv a +Ġmot or + » +Ġgu ide +å ī +Ġstop ped +Ġr at +Ġlab or +Ġa im +Ġprep are +ĠÑ Ī +Ġshoot ing +ann ed +cri pt +Ġen emy +Ġdep ends +Ġn av +Ġb er +Ġland s +Ġun ivers +i u +Ġfact or +ok ing +Ġcar bon +b ut +ĠL ove +el d +ĠÎ µ +Ġg a +Ġé s +Ġbre ad +Ġvol t +í Ĭ +Ġwas te +Ġkeep s +æī Ģ +Ġst or +Ġhon or +Ġun less +Ġcol um +Ġë ĮĢ +Ġpl ants +Ye ah +Ġinclud es +ä¸ Ń +Ġo x +Ġpe ut +ë§ Į +ìĥ ģ +ist ry +ภ± +ĠDep artment +ant a +Ġfing er +Ġst retch +Ġsy mbol +Ġneigh bor +æ ¬ +ê° Ħ +~ ~ +ĠÑĤ Ñĭ +ĠA ber +k es +Ġmass ive +ĠC H +ĠS al +× ł +ãĤ Ĵ +Ġd ynam +ach e +ĠP re +Ġmon itor +ent ed +E O +Ġrais ed +ist ics +Ú © +Ġv ou +it en +¡ ° +Ġbusiness es +Ġe arn +Ġmob ile +id ade +Ġha be +y r +l ict +Ġcon duct +Ġfed eral +Ġw o +b u +Ġn one +Ġteach ers +ĠاÙĦ Ø +éģ ĵ +id ents +ا ÙĦ +Ġtre nd +еР¶ +Ġal bum +Ġm ich +b ased +ภµ +Ġtrans ition +Ġн о +õ es +h ost +ed y +ĠPro f +p an +ij n +Ġcapac ity +und o +Ġ× ij× +Ġbreat h +Ġм ен +Ġm ü +í Ļ +ĠA ut +hing ton +Ġn or +Ġg ain +po int +Y es +ĠØ ª +ĠN a +Ã¥ r +Ġi ç +ĠM ary +Ġsp in +Ġant i +åIJ § +Ġsome how +Ġlaw s +Ġmom ents +Ġg re +Ġmo ves +ĠW ould +Ġpred ict +Ġv ra +Ġ201 9 +¶ Ħ +Ġfund ament +2 5 +Ġp ure +Ġw ow +Ġis land +Ġinvest ment +Ġb ath +ĠY a +Ġhard er +Ġt ips +å Ĺ +Ġelect ron +ĠB ob +Ġb ond +od ies +ĠA ug +Ġgib t +Ġch air +Ġtw ice +w ood +Ġcl ar +Ġmas k +Ġhonest ly +Ġ201 8 +t ies +' , +Ġp ens +Ġsurpr ised +Ġcommunic ation +ãģ£ ãģ¦ +Ġsp r +Ġwh ose +Ġst ars +× IJ× +ĠâĢ ĭ +Ġproper ly +Ġg rew +os ing +Ġdi vers +A D +Ġem pt +Ġexp ression +Ạ¿ +ĠP al +ãģ Ĭ +Ġjust ice +Ġp air +w o +Ġse at +or ter +Ġlink s +ĠM er +Ġre nd +но е +up id +ĠH el +ĠM arch +ĠL o +Ñģ ÑĮ +Ġhas n +Ġev alu +ãģ ı +å¤ © +il os +Ġfund ing +Ġv en +u an +ĠM aster +ĠO l +ĠF re +Ġy ap +ĠS ir +s ch +Ġmist ake +am an +Ġdin ner +ĠWas hington +Ġorganiz ations +Ġж е +av ing +Ġv ÃŃ +Ġbirth day +Ġbe ar +ĠÙ ģ +Ġaff ord +Ġre ven +Ġrelationship s +r ough +ĠT ime +Ġt ag +ĠS un +u ary +ĠP o +c ar +ab ilities +Ġpr ison +Ġl ic +ìł ķ +id den +Ġspec ies +é » +Ġf irm +Ġsc ore +Ġd it +Ġspe ct +Ġp el +Ġcompl icated +æ¨ £ +Ġr ank +Ġoppos ite +Ġpick ed +Ġк он +el er +Ġm ig +ĠS l +ĠN et +Ġne ck +ĠFr ance +Ġtechn ical +ภ¡ +Ġmil es +Ġprim ary +Ġse in +s es +Ġla ughs +b ra +ÅĽ ci +ri age +Ġn ic +et ers +Ġà ª +olog ies +ĠI S +r ad +ud o +ı nd +m ar +Ġex ch +Ġcompet ition +Ġauss i +ĠS erv +Ġre nt +Ġch ocolate +Ġw ieder +Ġnear ly +Ġspe ech +Ġun c +Ġpar am +ĠBrit ish +Ġrem ain +ภģ +ur t +ĠØ ¹ +Ġcr ack +ail s +Ġprom ise +Ġpay ing +i ÃŁ +Ġad apt +ал а +Ġmov ies +Ġw ire +Ł ¬ +æľ ĥ +Ġter rible +Ġs ó +Ġperfect ly +åij ¢ +ord in +Ġj á +Ġimp ossible +ĠTh ree +Ġn h +Ġtur ning +r um +ĠB el +ig g +Ġrespons ible +и й +Ġincred ibly +w i +ian o +Ġhum ans +Ġà ĩ +Ġsetting s +Ġj oy +o ot +Ġdeal ing +ill ed +Ġsur round +Ġfollow ed +Ġposs ibly +Ġinit i +st en +Ġpr os +Ġcand id +Ġass ign +Ġviol ence +W ell +Ġr ise +P S +Ġtamb ém +Ġë ĵ¤ +i ance +y an +Ġaud io +ĠB et +ĠAmeric ans +ĠAs s +is chen +ìŀ ħ +Ġult imately +Ġpol ic +Ġmajor ity +éĢĻ åĢĭ +ĠFin ally +er ap +Ġgu ard +ĠMAT T +Ġbr own +м и +Ġch a +ĠHo ly +Ġnerv ous +ipp ing +ÄĻ d +ĠS a +ĵ ľë +¶ Ģ +l ie +çľ Ł +Ġn uc +ĠA pr +é Ľ +ĠKore a +eg o +ĠCan ada +Ġkön nen +Ġcomp ar +Ġg anz +ĠM ais +Ġthem e +Ġk i +Ġdraw ing +az on +ĠO ff +t t +ĠW ind +Ġtod os +Ġob vious +на Ñı +I M +ĠÐ ł +we ll +Ġbl ow +Ġho ok +Ġcir cle +Ġë³ ´ +Ġarch itect +ĠK r +Ġc ó +Ġprotect ion +eg a +å ĩ +Ġwatch ed +Ġans wers +Ġdi et +iv o +Ġpow der +Ġyour s +Ġhigh est +çĤ º +F F +å º +Ġbo ys +ö yle +Ġl unch +è¬ Ŀ +ĠI I +Ġset s +Ġmo le +Û ģ +Ġwin ter +Ġluck y +Ġrespons ibility +Ġsign al +Ġwond ering +Ġa x +Ġcook ing +ов оÑĢ +le g +Ġп оÑĤ +Ġsurpr ise +Ġdem ocr +Ġlo op +Ġj ag +Ġcur ious +Ġmarket ing +Ð Ŀ +ar on +ĠApp le +Ġvirt ual +Ġ19 8 +no on +ĠM et +оÑģ ÑĤо +об Ñĭ +it u +ĠA w +Ġbu ying +Ġrestaur ant +ĠB ud +Ġdou bt +Ġgr ant +Ġver d +Ġc ash +Ġfac ulty +Th at +ĠE in +å¤ ļ +Ġw ed +it ness +ĠM ag +n el +Ġn arr +Ġacc ident +Ġmed ium +em ents +Ġcr ow +n ight +ìĿ ¼ +ä¹ Ł +Ġlibr ary +аÑİ ÑĤ +Ġtamb ién +Ġrefer ence +Ġfour th +h ouse +v ention +Ġfill ed +ĠC our +ib r +Ġn g +Ġdevelop ing +Ġprov ides +Ġpo ll +Ġtra ffic +arent ly +à® Ł +Ġform s +Ġcl ient +Ġg entle +Ġmus s +ĠCong ress +ĠInd ian +ce an +Ġp il +Ġc zy +st ood +ut y +Ġn ä +Ġsp ending +Ġconst ruction +ina udible +Ġë§ Ī +Īë¬ ´ +Ġìĥ Ŀ +om a +os en +ag o +Ġlar gest +ãħĭ ãħĭ +Ġun iverse +b es +os a +Ġе го +Ġd ude +ĠM AR +Ġind eed +ε ι +Ġman aged +ĠSh ould +S o +Ġappl ied +Ġfair ly +ĠD en +Ġanal y +Ġconst antly +Ñģ п +H ow +ĠS ay +en cies +ĠP C +Ġegg s +à® ° +Ġet h +ĠEnt ão +in ar +i ot +Ġc z +ĠEurope an +ãģ Ī +ĠA M +Ġc á +Ġrad io +§ Į +Ġh ide +ä» Ĭ +ĠSt art +Ġcl ub +ĠH ope +Ġeff orts +lus ion +Ġc ities +h one +Ġreach ed +Ġgu id +ro id +Ġhar m +Ġcut ting +Ġb ul +1 8 +i est +ĠMe x +Ġ iron +çŁ ¥ +Ġafter noon +Ġha ll +Ġpr zy +Ġg osh +Ġinflu ence +Ġв ид +Ġincre ased +ĠMin ister +Ġdis ci +ĠP eter +Ġver t +Ġmen u +Ġse lling +ur ally +Ġqu ote +Ġ ¡ +Ġcontin ues +mp re +ĠÅŁ ey +it ution +Ġна Ñģ +c les +ĠGerm an +c zy +ĠÐ £ +B e +Ġk itchen +ĠT ry +i pe +Ġic on +ar p +Ġprov iding +ĠTr ans +Ġtechn ique +Ġh är +Ġinf rast +Ġsus p +ü ck +ic ip +ĠÐ ķ +Ġc in +ìĸ ´ë +Ġpr z +Ġcompon ent +Ġby e +ĠB ible +iz er +C h +Ġsol utions +Ġaccom pl +Ġ201 6 +I E +ĠT a +Ġass ume +Ġliqu id +Ġë¨ ¹ +Ġquar ter +Ġfem ale +ĠTh ink +Ġstat us +it ute +Ġco ach +Ġre in +Ġcomb ination +è · +ĠT er +Ġobject s +Ġdist rict +Ġmake up +Ġmur der +w as +f en +Ġbow l +Ġpub lished +Ġsp orts +ãģ ¡ +Ġident ity +Ġseem ed +Ġact ing +л Ñİ +ri x +Ġup load +Ġh ast +Ġbo at +ĠM od +ri o +Ġ = +Ġcy cle +¯ ¸ +Ġl oud +ust ed +com ing +Ġ201 7 +Ġon t +Ġleg isl +Ġst ruct +ĠSomet hing +Ġconf lict +Ġu pper +Ġman ager +Ġm ort +Ġf ra +ĠÄ ° +ĠM ike +ĠW ork +Ġn ó +ph ere +ĠìĤ ¬ë +ĠL and +Ġfil ter +Ġprom ot +æ ° +æĻ Ĥ +ķ ¼ +Ġrecord ing +× Ŀ +Ġassoci ated +Ġf uel +und er +Ġele ction +Ġemploy ees +ĠCom p +ÑĢÑĥ г +ĠW o +ro l +Ġsa ved +ĠH on +ĠV i +åĪ Ĩ +ac a +p ret +Ġw et +Ġst upid +Ġl ad +Ġf est +Ġw ake +Ġи н +Ġgreat est +ĠJ im +Ġserious ly +Ġì ¹ +Ġfeel ings +Ġ3 00 +i ation +Ġbeaut y +Ġìŀ ĺ +Ġs an +ĵ ł +Ġ- ( +Ġcons cious +Ġд ел +b ye +ç Ļ +M an +Ġlet s +Ġsho es +y d +ä¹ Ī +Ġdisapp e +ĠCount y +ĠSc ott +Ġbut t +Ġaqu ÃŃ +Ġconf ig +resp ond +LAU GH +© ëĭĪëĭ¤ +Ġdivid ed +Ġac qu +Ġz one +Ġk omm +a ção +ì§ ľ +c ut +Ġ2 3 +Ġmaxim um +ro g +Ġrun s +Ġcompon ents +Ġarri ved +Ġconf ident +ÑĢ ов +Ġhe ight +Ġpro ced +E M +ĠÐŃ ÑĤо +ĠM en +Ġtalk s +Ġconf idence +ĠChr is +Ġlead s +Ġn ose +f all +b b +ĠNot hing +is er +Ġindepend ent +Ġmin or +Ġsy m +l en +ci ence +Ġf ashion +Ġsex ual +Ġb un +h ere +Ġso il +Ġdies e +Ġsh ap +Ġempt y +Ġjour nal +ag on +ĠThe ir +Ġweek end +ÃŃ t +Ġer ror +Ġn ar +à ¸ +è © +an cy +Ġìķ Ĭ +Ġfore st +Ġha cer +Ġmiss ed +ãģ ķ +åı¯ 以 +Ġev il +Ġstor age +Ġsing ing +in ha +Ġkn ock +Ġimp ress +ĠоÑĩ енÑĮ +ĠGo ld +ĠS ur +ĠP ort +åİ » +ĠL ond +Ġfaz er +ot y +ot o +Ġan x +ĠWill iam +Ġexist ing +pl ace +ĠC D +Î ³ +ĠColl ege +l or +ĠE ast +s en +f ach +o ft +Ġexperien ced +Ġlo ves +im m +Ġpo ly +Ġes se +ì ¤ +ĠG rand +è § +ch er +Ġvict im +ĠG es +л ÑĮ +v ision +Ġt all +Ġl ens +Ġз на +ĠB oth +Ġì ² +Ġsust ain +Ġarg ument +Ġfact ors +Ġautom atically +Ġfr uit +Ġli ber +Ġa le +ĠP ress +ĠB a +ĠÐ ³Ð¾ +Ġhundred s +th at +ĠR ich +Ġreci pe +ĠI T +è ĩ +Ạ¥ +Ġdescri be +Ġdri ver +ĠO ct +ĠM at +д е +Ġme al +Ġlat est +Ġth erap +Ġcomp are +ĠAm azon +Ġì¢ Ģ +ĠRuss ia +Ġstr ing +Ġk a +ĠComm un +Ġd ia +I s +Ġmill ions +Ġcor por +Ġcor respond +Ġfix ed +ĠJo e +Ù İ +Ġview s +Ġr iver +Ġstud io +ig ger +Ġfl avor +Ġpres ence +Ġun its +Ġsa ving +av our +Ġp esso +or ith +Ġh ers +ĠN at +as ion +ĠFr ank +о ÑĪ +ÅĤ y +í Ħ +Ġein em +Ġfun ctions +um an +Ġn orth +Ġìł Ħ +Ġhor se +v id +Ġple asure +а ÑĪ +é es +ind a +Ġt ail +Ġexpl ore +S T +Ġcommer cial +ĠD uring +ar l +] : +f it +Ġr ates +æ ³ +M USIC +Ġhous ing +Ġein er +Ġsitu ations +æ ĭ +Ġdec re +Ġappropri ate +ен но +% . +Ġb ac +Ġw at +ens ity +ä h +kn own +it z +Ġemot ional +erv ation +Ġbl ind +1 6 +í ĥ +大 家 +Ġjo ined +Ġloc ated +ĠÑģ м +ad as +ber g +Ġd ess +Ġde ar +ed en +c os +Ġad opt +1 00 +ow e +ĠChe ck +ism o +Ġsim pl +Ġang ry +Ġмен Ñı +ĠC am +Ġp ad +Ġatt end +Ġsam ple +æĹ ¥ +Ġì Ľ +ĠI N +ul ous +ĠS ar +ĠSh ow +Ġinfrast ructure +ĠAug ust +Ġless on +Ġn iet +æ İ +Ġfo i +Ġbro ke +t r +ç ķ +Ġ4 5 +Ġg ew +Ñĥ п +at i +Ġmaint ain +Ġart ists +ing er +æĿ ¥ +er ved +I A +Ġequ als +Ġoper ation +ill y +ĠëĤ ´ +Ġcrow d +Ġintern al +Ġtest s +ĠR ock +ĠC ons +ĠëĦ Ī무 +w ar +Ġs ou +Ġch art +ĠJ une +ĠApr il +g ent +Ġv ent +Ġqu and +ĠKore an +im o +ç ī +id ers +Ġmount ain +ÑģÑĤ ав +æľ Ī +ij k +Ġdiscover ed +ĠS und +ĠS il +Ġso lo + ´ +Ġsch ol +ĠE ach +ç µ +Ġb are +Ġí Į +ĠvÃŃ de +Ġingred ients +ĠIt s +Ŀ¼ ê³ł +Ġì Ĭ +Ï į +ĠLe e +Ġsc ary +Ġprinci p +Ġspirit ual +ì ħ +ĠH old +æ²Ĵ æľī +Ġdef ine +ĠL es +ĠN or +ĠE nd +Ġbl og +ĠG reen +аеÑĤ ÑģÑı +p art +el es +äº ĭ +ĠUnd er +Ġpart e +Ġ3 5 +Ġse ctor +ĠS ept +Ġaut h +à® ® +om in +Ġcl ients +Ġc i +ĠFr iday +er as +Ġtw e +ul ated +Ġcult ural +ĠÑģв о +Ġëį Ķ +Ġà º +Ġpar ce +à® ² +Ġtrad ition +Ġjud ge +ĠGen eral +Ġdeterm ine +ĠIs n +ĠP L +ne ath +Ġmatter s +íķ ´ì +! ] +а Ñħ +Ġpo ol +Ġvari able +Ġvacc ine +Ġcaus ed +Ġw est +ĠY ep +f ast +Ġph ilos +hor a +Ġcontinu ed +Ġunf ortunately +ãģ į +æ ķ +Ġfl ight +Ġw rap +Ġhu h +ĠAbs olutely +Ġp ink +Ġrem ains +Ġn é +Ġf le +ĠS ol +Ġlos ing +Ġalg orith +Ġrequ ires +Ġfound ation +ĠB ur +Ġprofess ion +ĠM id +Ġë ŃIJ +c an +ĠM il +Ġyoung er +Ġappe ars +ter m +íķĺ ê³ł +ac le +ĠLond on +Ġengine ering +ภ¢ +Ġadv ent +ìĦ¸ ìļĶ +Ġê¸ ° +ĠM aj +ÑĢ ем +ing u +ĠU K +u ro +s pe +Ġt ent +Ġreport ed +ĠA L +H ey +Ġë§ IJ +Ġd ent +ĠAustral ia +ĠJan uary +³ ´ +ag ues +ars h +r ig +Ġtien e +ภ£ +Î ® +Ġmach en +un te +Ñĥ Ñģ +Ġelect r +Ġtut orial +Ġpl aced +ĠìĿ´ ê±° +ĠCoun cil +í ĸĪ +°ë ¦¬ +ah ren +Ġê·¸ë ŀĺ +Ġpro ve +f ol +Ġqu er +Ġche ap +ĠF ather +ĠP ower +ĵ ľ +Ġpur s +Ġes p +ĠB re +ê¸ °ë +om as +æĥ ³ +ил ÑĮ +Ġge ht +os ter +ê³ ¼ +Ġfil es +ĠÐ § +be ll +Ġwh om +Ġë ĺ +Ġex cellent +Ġdat ab +Ġg ö +Ġì§Ħ ì§ľ +Ġbelie f +j et +Ġj ack +Ġsw im +ri al +um in +a uc +Ġso ll +Ġess ential +íķĺ ëĬĶ +Ġev ol +cha ft +ain e +th let +Ġinc or +Ġreport s +Ġdefin ition +ke l +Ġcirc um +Ġprodu ced +Ġ× Ľ +ant ic +n et +Ġa ward +Ġd urch +Ġtrans p +Ġm ale +¦ ¬ë +Ġmo on +ĠGe orge +Ġfly ing +i ó +Ġs ources +Ġpl enty +ĠDem ocr +R O +Ġ 00 +Ġsec ure +ĠB ir +ra in +Ġz ur +Ġeffic ient +Ġrepe at +Ġmethod s +Ġcal m +Ġdiscuss ed +ĠìŀĪ ëĬĶ +Ġser ver +an ie +ĠInst ead +Ġide al +Ġcon ven +Ġhop ing +ĠT or +Ġdep th +Ġhe aven +EN CE +Ġhab it +gr ad +Ġfl ag +Ġin e +Ġk h +ĠL I +Ġfac ing +ĠA U +ĠT im +Ġg em +ĠJ ul +Ġel a +iz za +Ġfe llow +Ġqu el +Ġsp oke +Ġcitiz ens +u ge +é ĥ½ +Ġp ages +Ġf asc +Ġrelig ious +at en +Ġch apter +ĠV al +Ġcons ult +ĠM ill +g l +op er +Ġinf in +Ġmar riage +Ġmedic ine +Ġд в +Ġdog s +Ġinstr ument +ĠEx act +á n +Ġ20 21 +Ġf er +Ġwe alth +Ġgr ade +Ñĭ Ñħ +Ġcr ime +Ġth read +Ġess a +Ġw ine +co hol +ph a +ภĩ +og ue +Ġins urance +arr ator +ĠSept ember +Ġv id +ĠSp irit +Ġg est +ĠRuss ian +Ġproper ties +Ġart icle +Ġunder neath +y er +Ġjo int +Ġrelative ly +Ġin ch +Ġdesp ite +ĠG ree +Ġclass ic +Ġsupport ing +Ġinst ruct +lus ive +Ġdi agn +æ Ĭ +Ġadminist ration +аб оÑĤ +ĠO pen +æīĢ 以 +Ġп ок +Ġdoll ar +Ġconse qu +o ber +ĠGerm any +Ġter r +ĠQ U +ĠÐ ĵ +ç ¾ +Ġstrong er +É Ļ +ĠÙ Ĭ +ĠiP hone +Ġfab ric +ü h +Ġen em +æ ¯ +Ġsub t +E E +ond e +Ġcre w +Ġremo ved +Ġl ady +Ġpot entially +ĠÐĿ о +y al +Ġsym pt +Ġar my +Ġintrodu ced +t es +Ġaspect s +1 4 +ĠL ou +Ġ ) +Ġde ploy +p et +Ġh an +ĠW atch +Ġweap ons +Ġph en +Ġreg ister +Ġein fach +Ġsp ort +Ġbr idge +Ġin ner +Ġminim um +Ġw itness +Ġes o +Ġvill age +Ġown er +¦¬ ê³ł +Ġsc ream +il ed +Ġp itch +b ru +Ġadv ance +ä¸į æĺ¯ +Ġsupp ose +ĠAt t +еÑĤ ÑģÑı +Ġdiffer ences +ak ed +Ġinter pret +à ¦ +iend o +Ġabs ol +ĠбÑĥд еÑĤ +Ġë ² +Ġtri al +Ġthink s +ly ing +cept ion +ĠAfric an +Ġchem ical +Ġta pe +Ġconvers ations +Ġdistrib ution +t i +ĠA I +Ġfl ash +Ġunder stood +ĠGovern ment +å° ı +! ? +ĠS k +ê± °ë +ri er +T S +ĠAcc ording +Ñİ ÑĤ +Ġsp ons +ÑĤ обÑĭ +Ġval u +ere m +icht ig +Ġresist ance +ĠG al +ger y +Ġbeg ins +Ġadv anced +Ġrele vant +Ġpolit ics +ĠF am +Ġç ok +ĠN ever +ill ing +Ġfoot ball +и и +ĠI D +ĠAfric a +Ġfing ers +Ġб олÑĮ +Ġà ¡ +Ġcl ip +ĠL at +ãĤ Ħ +Ġì§Ģ ê¸Ī +es se +Ġvo or +Ġas ide +æ ŀ +Ġto ward +Ġb at +Ġval id +ĠM ens +Ġcomplet ed +ı ÄŁ +Ġpod cast +ĠB on +Û Ĵ +ĠJ uly +il a +Ġpack age +Ġpull ed +ch ar +ĠM el +o is +Ġs outh +Ġë Ķ +Ġimport ance +Ġp ushing +Ġis ol +Ġstand s +c ill +ä ¼ +Ġ ðŁ +or i +ê° ģ +Ġhom es +Ġconcern s +Ġb iz +å ½ +b ie +Ġb is +Ġge ar +ĠM S +Ġh un +ĠM att +Ạ£ +se y +ĠSec ret +Ġod d +ĠM ax +oll y +f ord +ĠS H +Ġrepl ace +Ġnav ig +Ġin i +и Ñı +Ġgi ant +Ġma nd +ĠH app +TI ON +g un +iam o +ìŀħ ëĭĪëĭ¤ +Ġg ap +Ġê tre +Ġclass room +Ġhy p +ak i +è ® +is ters +ack s +ĠÑģ о +Ġb ug +Ġgra v +am in +Ġevery day +Ġì ¡° +Ġgard en +ce mber +Ġest o +åĹ İ +Ø ¬ +Ł ° +å ģ +Ġr om +Ġìłľ ê°Ģ +Ġfall ing +Ġfa ult +ell y +Ġch est +Ġл и +Ġpot ato +Ġbuild ings +Ġoper ating +Ġp are +w r +D on +ĠF our +Ġv ul +Ġl á +Ġfr ust +ĠD ann +ol es +ny a +Ġì ¶ +ĠÑĢ аÑģ +× Ľ +Ġa ÃŃ +w ord +Ġweap on +Ġob t +ĠF all +ĠSte ve +Ġmix ed +Ġp ode +ĠA S +ĠL eg +Ġdes c +Ġspl it +Ġemer gency +ĠS ing +Ġprof it +Ġtyp ical +ĠDon c +Ġannoun ce +ĠTe x +Ġsac r +tern al +Ġcomm ittee +ig o +Ġdi am +ph as +Ġdef e +ĠProf ess +Ġdec l +Ñĥ ÑĢ +2 2 +ol f +ĠM ond +u y +Ġa y +Ġl em +Ġlove ly +ĠC ould +Ġgu ar +H H +Ġcare fully +ĠL isten +Ġк ÑĢ +Ġyou th +ĠThere fore +Ġdream s +ĠJe ff +? ] +Ġë Ī +D A +Ġb odies +au x +Ġtechn iques +Ġmechan ism +× ĵ +Ġо ни +Ġdes ire +à ® +ĠV o +qu es +ĠÑĥ же +ĠWho a +ĠG ame +Ġh al +an ish +Ġpract ices +5 00 +Ġsort s +up s +ate ful +Ġhers elf +Ġgu itar +Ġprop os +Ġsit es +Ġbe ach +Ġ× ¢ +ç¬ ¬ +н Ñĥ +Ġdr am +ĠNo ve +V E +r ant +Ġpl ot +ĠìŬ 기 +ĠC a +Ġestab lished +Ġ201 5 +Ġinsp ired +Ġannoun ced +ä¸ ª +ĠÑĤ ÑĢ +Ġ2 6 +Ġv oy +Ġte ch +ìł ģ +Ġprocess es +ont o +ĠP an +Ġrap id +ist an +Ġ19 7 +Ġrelig ion +Ġ2 8 +Ġsm ile +Ġb ab +Ġ Ú© +ĠV ir +Ġsched ule +Ġexec ut +Ġpr on +Ñ į +ĠÐĿ Ñĥ +m usic +ìĽ IJ +Ġg an +ìĭ ł +Ġdef ault +Ġbe m +Ù ī +Ġfor ced +ĠOb viously +Ġst one +Ġt ie +Ġdrink ing +Ġser ved +C ause +Ġcon ference +ĠExact ly +ãĥ Ī +ł ľ +ìĻ Ģ +ĠR a +Ġf ake +Ġdif f +ãģ © +Ġchalleng ing +Ġì¤ ij +Ï ĩ +ä»Ģ 麼 +Ġintellig ence +re te +Ġstud ying +Ġapp oint +Ġt an +Ġи м +Ġcur ve +ĠTe am +ĠA z +Ġз д +ĠMus ic +f ield +ir ation +Ġfail ed +Ġno vel +Ġdifferent ly +Ġes cape +ĠY o +ĠOct ober +ı yor +Ġdescri bed +Ġcon vert +ac ement +Ġhot el +is ation +Ġsu is +ãģ ij +å ŃIJ +æĢ İ +Ġwalk ed +2 00 +Ġneighbor hood +is p +ĠL os +Ġh idden +Ġ2 7 +л е +Ġph r +ĠIs land +ĠSt reet +end a +hip s +os ure +Ġdefin ed +ภ§ +Ġv ida +Ġlab el +ĠEvery body +Ġjo ke +ia o +ا ÙĨ +Ġa thlet +... " +ĠF ire +D o +Ġdef ense +Ġent ertain +á t +Ġpolic ies +Ġal cohol +ĠEng ine +Ġg al +ĠJ ud +Ġvol unte +ick s +et a +ag t +Ġ× ķ +Ġm ö +1 3 +Ġenc oun +Ġe h +Ġor ange +Ġabs or +Ġsp aces +ĠNove mber +êµ ¬ +i at +Ġt am +ck now +Ġst orm +ĠDire ctor +Ġpre gn +ĠìĿ ¼ +Ġо п +Ġres ource +Ġb ard +ne w +ĠDe cember +u its +Ġwe il +Ġconst ruct +s i +n ic +Ġfl our +Ġrest rict +ü t +Ġentire ly +Ġbreak ing +ent lich +Ġtw enty +Ġcaus es +Ġele v +ĠS pr +ĠIntern et +Ġk iss +Ġoper ations +s zy +Ġë Ĭ +Ġscient ists +Ġgr own +Ġown ers +out s +Ġcour ses +Ġus ual +Ġin n +Ġtrans m +ñ o +Ġnu est +к ов +Ġcateg ory +ĠL ife +ĠPl us +Ġat mos +wh ile +Ġrecord s +Ġde ÄŁ +ëĭ¤ ê³ł +ĠìĤ¬ë ŀ +Ġrequire ments +in n +Ġimm ig +Ġdeep er +ç ´ +Ġapp s +Ġcolle agues +ż y +Ġoff ers +Ġt á +Ġcolum n +la ud +I R +ĠM s +Ġexch ange +l as +ĠL aw +ĠJ on +is se +ro gen +Ġmo i +× Ĺ +Ġs ending +Ġhe llo +е е +ÅĽ Äĩ +Ġsuc ceed +Ġsuff ering +Ġad vert +Ġì£ ¼ +çŁ¥ éģĵ +Ġrec o +ın ı +Ġк ом +all ey +Ġfail ure +ie j +Ġëķ Į +Ġdrug s +Ġcu ando +Ġìĸ´ë ĸ +ĠAb out +Ġqu ando +9 0 +ĠF ed +1 7 +S h +in ho +ĠSund ay +ĠPh il +Ġacad emic +ĠIn c +Ġmaint en +åĩ º +Ġre ward +er d +Ġcomm itted +ìĬ ¤ +г ÑĢ +Ġstand ards +Ġk al +Ġint ention +ĠZ h +Ġa cknow +ä ¿ +Ġ== = +og y +å § +Ġfilm s +is k +Ġte eth +Ġstrugg le +r d +u en +Ġdis s +ĠD ar +am y +Ġenem ies +Ġve loc +ĠC all +um bs +иÑĤ елÑĮ +Ġo cean +é d +ìļ ° +Ġtre m +ient o +еÑĪ ÑĮ +ffic ient +Ġbott le +Ġinstit ution +est y +ĠH an +h ab +ëĬ ĺ +Ġar rest +éĤ Ħ +Ġlet ters +oun ce +í Į +A n +Ġcreat es +Ġcl ock +Ġdeb t +Ġan cient +ific ations +g i +B ut +ĠT u +k l +Ġb order +Ġo ok +ĠB ay +est a +Ġë³ ´ì +Ġw ra +pre ne +Ġê² Į +ang le +Ġbelie ved +ien cy +ak a +Ġcrit ic +Ġb omb +Ġha m +ĠÐ Ľ +êµ Ń +ĠGu ys +ros oft +Ġcr im +et ch +AR R +Ġs ight +и на +Ġa in +á» ij +is che +Ġau x +Ġnum er +Ġsurv ive +A ll +B C +Ġs z +Ł ¬ë +Ġj am +ĠCour t +Ġall es +Ġtr igger +Ð ŀ +Ġform at +Ġdec ades +Ġc es +Ġsign s +Ġrob ot +ĠCh urch +Ġa z +Ġs oup +ĠTex as +ut en +ĠÑĩ ÑĤобÑĭ +Ġneigh b +ĸ ×Ķ +Ġcommunic ate +Å ¡ +Ġel imin +Ġfrequ ency +her n +id os +Ġem phas +Ġmess ages +Ġg ender +ĠW enn +Ġв о +Ġpr ices +ol o +Ġп он +w ing +ĠF il +а ем +ĠC ur +Ġfal se +Ġfield s +Ġs é +2 4 +Ġm ac +u ÅŁ +Ġlay ers +Ġadv oc +w an +Ġk ar +ĠÅ ŀ +Ġdec or +Ġwall s +o e +iss ions +Ġres ol +× ¢ +ĠCar ol +ĠV ide +le ep +ĠY OU +Ġfl ip +Ġsur gery +Ġch op +U R +. , +Ġag ency +Ġwant ing +Ġsol ar +Ġhor iz +ĠAd am +Ġstay ing +ol ic +Ġgr ateful +Ġrem ark +Ġtechn ologies +Ġprote in +å¿ ĥ +д ел +ĠM ont +Ġshould er +Ġz a +re y +ĠO oh +Ġst y +ic ar +оÑĤ ÑĢ +Ġrout e +ĠT urn +Ġb om +Ġdeb ate +Ġposs ibility +Ġíķ ´ì +ap a +Ġinv ent +ür lich +Ġprof ile +Ġsen ior +pp y +v as +Ġm undo +ate ver +Ġapp arently +en er +× IJ +ç Ń +Ġprec is +Ġal ign +Ġkn ife +ĠRo bert +å ĭ +Ġfo ol +Ġinv ite +us ing +Ġcircum st +Ġcapt ure +Ġd ough +ĠS and +Ġse u +ĠNew s +Ġb ite +Ġne ut +w ide +Ġlect ure +Ġëĺ IJ +Ġorigin ally +Ġcho ices +ĠG ar +Ġver se +Ġl it +Ġ19 6 +íķ ł +Ġmeas ures +ç ões +w ater +ri ve +Ġz ijn +í ģ +ĠB us +Ġhe b +е Ñħ +ĠK ar +ĠN ão +Ġkill ing +à® ª +Ġmir ror +m od +Ġm ol +Ġcre ation +Ġest im +Ġatmos phere +Ġg am +Ġt ables +is i +ĠL ittle +Ġt as +ĠE le +é l +Ġscen es +Ġt one +Ġaffect ed +ĠAU DI +ĠBr own +I f +ĠÙ ĩ +ĠDan iel +羣 çļĦ +qu er +ch i +íķ ĺë +Ġmist akes +Ġs la +ãĤ ¤ +Ġent r +Ġе Ñģли +Ġsh out +Ġport ion +Ñ Ĺ +Ġpre viously +á» Ļ +ĠпÑĢ ед +оÑģ ÑĮ +Ġhead s +ç İ +å Ń +åľ ĭ +Ġgr ass +ภ° +cri be +Ġqu é +ĠSp anish +Ġoffer ed +ĠбÑĭ ло +ĠCl oud +Ġve ctor +ĠH uh +Ġk ad +if ts +ĠÎ ½ +Ġhung ry +Ð ¡ +Ġpar all +AN D +ĠvÃŃde o +iz z +Ġocc up +Ġí Ķ +Ġsee k +h es +Ġdo ors +Ġhous es +Ġconsider ing +Ġgradu ate +Ġf ulf +è ¡Į +è £ +Ġext reme +Ġflow ers +it ate +ĠP ri +Ġfundament al +Ñĩ аÑģ +è¯ ´ +Ġtext ure +į ĺ +ĠAN D +à® ± +ĠT em +Ġn ada +ì§ Ħ +Ġcelebr ate +um s +Ġp ill +Ġи ли +go ing +Ġh ip +Ġsupport ed +Ġper man +Ġagre ement +Ġty m +Ġë ij +ĵ¤ ìĿ´ +Ġpurch ase +í Ķ +ĠPl an +eg en +Ġrec over +P U +ĠMic rosoft +du c +Ġhol es +Ġdro pped +Ġp ig +Ġend ing +Ġattack s +be c +Ġre n +Ġr app +Ġìļ °ë¦¬ +Ġter ror +Ġ× Ļ +Ġed it +Ġa o +. +Ġhero es +ĠB oston +Ġdepend ent +Ġmotiv ation +fl ix +Ġse am +ки е +Ġdra in +od ed +Ġgu ilty +ĠJ enn +ing en +Ġgrant ed +ĠK elly +ĠS av +ĠUn cle +ĠHon estly +EL I +Ġnavig ate +Ġbless ed +c ore +Ġear ning +Ġsign als +Ġdis k +ial s +Ġag es +æ ħ +Ġpartic le +ĠÑĩ еÑĢ +Ġcan n +Ġt ier +Ġstat ements +ê³ł ìļĶ +ĠëķĮ문 ìĹIJ +ĠCh o +Ġpol ar +an ç +ĠK enn +ĠN i +ĠF ight +or gan +é ķ +ĠCh a +ĠS ÃŃ +ãĥ ª +Ġs lic +Ġcert ific +Ġtempl ate +ĠFed eral +Ġconsider ation +Ġexpl o +ĠM ain +ĠN E +Ġalong side +Ġd ressed +ĠP oint +Ġenviron ments +Ġpró xim +Ġda ar +Ġprom pt +Ġpurs ue +Ġentertain ment +Ġth roat +Ġproblem a +Ġm art +ì ¼ +Ġprov ider +Ø Į +Ġ× Ĺ +int e +m aking +Ġstro ke +Ġtiss ue +U n +Ġpre cious +ĠAr ts +ink ing +ĠÐŀ н +Ġи Ñģ +n ah +ĠÐķ Ñģли +Ġcor ners +Ġtrick y +in ch +l ijk +Ġpress ing +le vel +AN G +Ġrad iation +ìĦ ł +Ġconf ront +Ġv et +Ġrepresent ative +Ġprop ag +Ġcra p +ĠDe c +Ġr amp +еп еÑĢÑĮ +u és +ess en +cri ption +Ġb ills +ĠMatth ew +Ġan ime +ấ t +Ġlow est +h as +sc reen +og rap +ал о +int on +ĠJ ah +èĢ ħ +it Ãł +Ġk ay +Ġrot ation +ĠW ere +abe i +Ġtri als +Ġle ver +ight y +Ġsp oon +Ġh unt +c ling +Ġdis m +ĠболÑĮ ÑĪ +Ġass ault +Ġíĺ ķ +Ġweek ly +Ġm ismo +Ġgen etic +ul pt +ĠStud ent +Ġreal istic +Ġauthent ic +æī ĵ +ast a +Ġarrest ed +Ġguid elines +Ġ×ľ× IJ +Ġд ав +ĠCom ing +f ür +Ġrequ ests +ĥ IJ +Ġanaly ze +Ġinter ess +Ġh alt +ĠO per +on om +Ġd uck +Ġwith d +s er +ĠÏ Į +ĠHist ory +Ġyout ube +ãĤ į +Ġsab er +w alk +f ont +Ġover view +3 9 +ü y +ett i +Ġfro zen +Ġf lesh +ÄŁ i +ĠP M +ĠìĻ Ģ +é ¢ +ÑĨи и +Ġê¸ °ë +íģ ¬ +Ġpr ose +oo oo +r ates +W S +Ġautom atic +Ġcollect ing +Å ij +Ġneighb ors +» . +ĠEx pl +Ġcir cul +co ver +we g +Ġstick s +Ġe ller +Ġw ww +Ġd orm +ĠEx per +Ġstat istics +Ġemail s +Ġgra ve +im iz +H S +Ġu it +, ' +Ġlas er +è ī +ĠÑĤ ем +Ñĭ ÑĪ +Ñī Ñij +Ġgen au +Ġtien en +Ġmed itation +ĠOr gan +Ġest imate +Ġë¬ ´ì +l ets +Ġn Ãły +Ġmind set +Ġres on +Ġm és +Ġnumer ous +Ġvie lleicht +ĠTh ird +u ous +ĠDe ad +ан д +H N +Ġrac ing +Ġag ents +ĠU t +Ġte ar +ĠH P +Ġchem istry +Ġsurv ival +æĸ ° +Ġconvin ced +Ġ ; +Ġreg ulations +ĠE S +åĴ Į +3 00 +Ġen se +Ġì µ +Ġd ict +G A +Ġah ÃŃ +åĭ ķ +Ġte j +Ġо ÑģÑĤ +ĠE lect +Ġintellect ual +Ġbi as +Ġbur den +çĤ ¹ +Ġìĸ´ëĸ » +Ġche er +Ġso ph +Ġportfol io +ub a +Ġest os +T V +F or +Ġas h +Ġkom mer +Ġcollect ive +Ġw rest +ĠJ etzt +ĠW at +re ich +Ġprim er +act ive +Ġm ie +ick ed +Ġhun ting +Ġtest im +Ġcompass ion +ĠØ ± +Ġbr ut +Ġsal ad +об Ñīе +Ġsol ving +Ġflo ating +ç · +Ġattract ive +ÙĪ ÙĦ +Ġper d +if fer +Ġsc ulpt +hh h +ĠWe ek +Ġent hus +Ġn ad +Ġmer ch +ĠíĻ ķ +Ġm ile +好 äºĨ +ĠÎ ¸ +ĠëĤ ĺë +éĩ į +3 8 +Ġch ains +ĠAl most +Ġtick ets +r in +ĠC C +Ġdistrib uted +abet es +Ġtemper atures +Ġg ained +Ġflex ibility +Ġscream ing +Ġab road +un o +Ġentreprene urs +ĠNet work +ĠCanad ian +Ġpre v +Ġs ö +ĠÑĤеб Ñı +ĠP oke +ĠP od +ĠTur key +çı¾ åľ¨ +Ġabst ract +Ġsn ake +ĠAm y +ĠëĬIJëĤ Į +Ġbra ve +ĠìŀĪ ìĸ´ìļĶ +ĠK al +Ġ200 7 +á rio +Ġmark ed +gin es +Ġall oc +ON G +Ġscient ist +Ġes ca +Ġrac ism +× ij× +ĠS ams +ĠP enn +Ġload s +Ġà® ¨ +ü ber +M e +ix ò +Ġper ò +an ne +Ġexp ressed +м еÑĢ +Ġmo et +Ġret urning +n ia +Ġexp on +P ro +Ġlo yal +M L +Ġl amp +Ġsh y +Ġcomp osition +ĠL y +Ġmagn etic +Ġprem ier +Ġmeasure d +Ġsumm ary +Ġattack ed +Ġfin ishing +Ð Ĺ +ç ¥ +Ġs its +Ġhyd rogen +Ġma i +ĠDeuts ch +as ı +Ġobt ain +v ie +Ġso it +Ġë° Ķ +Ġl ane +Ġconse gu +в о +Ġe ase +ak in +ĠF a +Ġunt uk +Ġbur st +Ġc um +al ım +ú blic +id i +ĠRoy al +ĠK on +Ġcommon ly +Ġremo ving +Ġj ur +il ib +Ġan ch +íĸ ī +Æ°á» £ +ĠÐľ Ñĭ +ĠAn th +ĠS Ã¥ +Ġinter rupt +Ġst ere +ĠO S +ony m +ter y +ĠMar ia +ê² ĥ +Ġexpl oring +Ġtransp arent +Ġf ate +ĠJ ung +Ġgr up +Ġdark er +ĠD oug +Ġman e +æĶ ¾ +ạ i +d ri +lo ok +ĠDes ign +Ġtut aj +Ġhorizont al +re on +ort e +ĠCor rect +ĠSte ven +Ġv ine +0 2 +i Äĩ +Ġsie mpre +ĠK ey +åĥ ı +ĠG ames +Ġna ar +Ġshock ed +el ve +ĠR ose +ìĭ ¬ +Ġstop ping +oh l +ĠM ix +Ġsuff ered +Ġsig ma +Ġweak ness +ĠO w +ี à¹Ī +I F +Ġà® ħ +ad ed +ĠNet flix +an es +Ġrem ained +ir y +Ġr ip +ell t +Ġsil ent +Ġpro ven +Ġtox ic +Ġal umin +Ġmulti pl +al and +Ġ3 4 +0 6 +ĠB ru +Ġìłķ ë§IJ +J ust +b oy +Ġsho e +Ġcreat ure +Ġhead ed +ĠоÑĤ к +æ ± +Ġess ence +Ġremark able +Ġnú mer +Ġd rew +Ġpu zzle +ĠLibr ary +ĠF u +ash es +k k +ĠI st +¦ ° +ĠB ry +Ġc eremony +Ġà® İ +Ġc ri +e qu +ãĤ ¢ +Ġpri ze +Ġdim ensions +og ram +Ġle ather +Ġpop ulations +u um +Ġve gan +Ñı д +Ġcó mo +å Ħ +Ġstri p +å £ +Ġvac ation +ħ ķ +Ġme als +ili pp +Ġ ents +ar am +ric ht +Ġgra in +ĠSp ain +Ġche ek +ĠA ff +I ON +ĠBr ing +Ġ3 8 +iel en +ul u +ĠболÑĮ ÑĪе +Ġannounce ment +ĠÑĤ ÑĥÑĤ +ĠPro phet +ard o +3 7 +Ġw oke +Ġtransl ation +ĠN OT +ĠC L +Ġd Ã¼ÅŁ +ÑĨ Ñĸ +ac er +ĠL oc +Ġper ception +N O +Ġdies en +L ook +he art +av ed +Ġbound ary +Ġfl ows +Ñij м +Ġarg uments +Ġelect ions +ı s +Ġhe ck +Ġsuit able +Ġf iber +ĠSt ra +x y +ĠH um +Ġmonth ly +u per +Ġgol f +Ġl ately +ĠG ard +ĠR en +ĠA st +ĠF ant +аÑģ Ñģ +Ġobs er +ë ¡ľ +Ġeas iest +į Ķë +Ġwebs ites +p ol +Ġco con +Ġà® ĩ +ĠV eg +Ġwalk s +Ġint ro +Ġdirect ed +ĠAn na +Ġëĵ¤ ìĸ´ +ĠEaster n +ĠS aint +ĠB ow +Ġro ast +ĠU RL +Ġjed en +ur as +aj a +Ġse mi +Ġrapid ly +Ġtarget s +ĠCont rol +Ġb ah +Ġref lection +Ġcreat ivity +hold ers +Ġìĺ ¬ë +Ġamong st +Ġfeed ing +ÑįÑĤ омÑĥ +Ġвид е +Ġë§Įë ĵ¤ +ĠSm art +Ġrel iable +Ġvez es +Ġ× ¨ +ch uckles +az ione +ĠWilliam s +Ġa ç +Ġsle e +е Ñī +Ġtim eline +Ġthor ough +á» į +ĠO t +ạ n +Ġimag ination +Ġmechan ics +r ist +Ġclaim ed +ÏĦ η +ê te +ĠHur ry +ĠiP ad +Ġconst ru +ĠC la +ĠAl s +ä¼ ļ +ut z +Ġcult ures +Ġìĸ´ëĸ» ê²Į +Ġbelong s +Ġy er +ĠDoes n +Ġge omet +Ġb id +Ġfo am +Ġh ob +ĠBrit ain +Ġsubst ance +Ġann iversary +ĠëĦ Ī +Ġnot ed +Ġgovern or +Ġstock s +3 1 +Ġdi ye +ìĬ ¤ë +Ġre b +z el +Ġmultip ly +Ġoper ator +Ħ¤ ìļĶ +Ġwat ers +Ġd är +Ġuns er +ĠEliz abeth +é« ĺ +Ġincreasing ly +ĠG ro +Ġen gines +ir s +Ø « +Ġtre asure +P C +in ction +ir i +Ġacc um +Ġvari ation +Ġp om +Ġtit les +ĠF est +ó s +Ġeld er +ny m +r un +Ñı в +Ġinnov ative +Ġnom bre +Ġco inc +Ġfr anch +Ġent onces +Ġnicht s +Ġexc lusive +ĠChe ers +ĠB i +u je +æŃ ¡ +Ġp ok +ĠP rem +Ġrock et +ELI PE +Ġhosp itals +ri um +Ġjust e +Ġham mer +Ġquant um +Ġrespons es +ll y +end i +Ġact ively +Ġfr idge +i ate +l ong +Ġqu em +Ġdeath s +Ġsuper ior +ck en +ìĿ´ì ĹIJ +kt op +Ġgather ed +£ ¨ +Ġd azu +Ġreci pes +Ġbu zz +c en +Ġany time +ons ense +Ġcirc les +Ġsol ved +Ġìĭ ł +Ġcoron avirus +ĠLu ke +Ġbu bb +Ġcont empor +r zy +ĠJ ane +Ġд ом +Ġscrew s +Ġhy brid +Ġcas ual +Ġsel bst +be ing +ĠÄ IJ +ĠCol umb +ĠÑħ оÑĩ +Ġbu cket +Ġevalu ate +Ġid ol +Ġrep utation +ĠìĨ Įë +ÙĪ ر +Ġhe cho +Ġpo em +Ġsubject s +pl ant +ĠBe h +ĠSpe aking +Ġbatter ies +Ġfollow ers +ö l +Ġg ently +Ġsi xt +Ġparam eter +Ġik ke +ĠT our +ĠD J +ot te +ĠJ ahren +Ġprepar ation +Ġд Ñĥм +Ġ8 00 +c op +ik ing +Ġë¬ ¸ +Ġн Ñĥ +Ġл еÑĤ +åIJ Į +ĠI de +Ġì¡° ê¸Ī +Ġla ughter +Ġmole cules +ĠR est +Ġobs erved +d zie +Ġadvert ising +ert o +Ġmo ins +ĠM IT +Ġexc it +Ġt um +Ġty l +Ġinvest ed +Ġph arm +Ġunex pected +Ġph i +oty pe +we ise +Ġge ç +jour d +Ġhors es +n Äħ += " +ĠS M +Ġf ib +Ġcl ips +çķ ¶ +å¦Ĥ æŀľ +Ġreg ime +Ġrot ate +r ou +n ik +Ġarm or +ðŁ ĺ +еÑĢ а +åº ¦ +ĠO ch +Ġr ichtig +üz el +ane ously +m ek +éĮ ¯ +ĠX iao +Ġexist ed +w orth +ãģ£ ãģ¨ +Ġna ught +Ġhe iÃŁt +ĠB al +Ġres id +iv ot +om atic +Ġh ired +Ġgrad ually +Ġon ions +Ġcomp at +Ġint im +Ġj ew +Ġcontrib ution +ĠI re +ac ji +Ġsl ice +Ġimm un +ĠR us +Ġgr ows +ĠSimilar ly +Ġhard est +Ġst ruck +Ġmeasure ment +... ] +th ey +Ġìł Ģë +Ġsne ak +Ġappl ies +Ġн ем +æ ĵ +×ij ר +ĠЧ ÑĤо +Ġout ro +Ġinnoc ent +Ġm og +ĠSams ung +Ġmer cy +Ġhand ling +Ġinter vention +id ays +g ot +Ġcur ric +Ġbound aries +Ġconf using +Ŀ¼ ëĬĶ +æ ĩ +Ġstitch es +ÃŃ vel +Ġtun nel +it ä +Ġg ost +im y +Ġcz as +Ġm é +Ġcat al +ĠSim on +ĠLI AM +m ic +ĠÐ ¤ +Ġey el +is as +ĠC PU +ĠD ou +Ġnä ch +Ġinfin ity +Ġr if +ĠPe ace +ĠC u +Ġminim al +Ġlisten ed +Ġpo le +hal b +Ġload ed +Ġste ady +ĠBes ides +ê m +Ġl ap +Ġco op +Ġfriends hip +w orld +Ġge h +Ġtyl ko +ĠLa ura +Ġsurround ed +ĠE vent +Ġch ap +ĠW onder +bre ak +Ġdro ve +Ġbroad er +Ġch i +F i +Ġge hen +Ġwest ern +Ġintellig ent +Ġpers ist +Ġfound ed +ãģĵ ãģ¨ +Ġhistor ic +Ġfr Ã¥ +cks Ã¥ +Ġhand y +Ġsy mp +Ġr ows +Ġnut ri +b ur +ĠLe on +Ġsist ema +Ġext ensive +ĠÑĥ в +í ı +Ġnight s +Ġcá c +Ġcount ing +ĠM ust +all ow +еÑģ Ñģ +M om +Ġнад о +Ġbar rel +ãĥ ŀ +AR D +Ġinstall ation +Ġin sect +Ġëħ ¸ë +uj Äħ +ĠÄij i +Ġpack ed +Ġf iction +N ow +ĠY ay +Ġper t +r ons +und e +ach es +Ġsty les +Ġapr ès +ok u +ĠV ice +ın ız +com m +Ġassign ed +Ġinteract ions +Ġac ab +F ELIPE +Ġresc ue +Ġindust ries +ĠAnd y +Ġpra ise +Ġfl ame +Ġsn ack +í Ĥ +ç ģ +Ġsw o +rend er +Ġbo ards +ĠÑĤ ом +en ne +Ġpast a +Ġdev il +ĠF el +Ġhat te +Ġcoll eg +e h +ì » +ãģĵ ãģ® +Ġproduct ive +for ward +и п +Ġsmart phone +Ġinv is +Ġb um +Ġwho a +ìŀ Ħ +Ġo cksÃ¥ +ĠL ang +ĠSy ria +Ġses i +ί α +Ġappro val +4 8 +Ġод ин +Ġë ĸ +ĠH arr +ĠAd minist +Ġ× ¤ +ĠDe an +f i +Ġcitiz en +Ġsh ark +0 5 +Ġbo il +Ġindic ate +å ¡ +A re +Ġlay out +Ġref r +ĠPac ific +AA AA +ĠAustral ian +g ression +V oice +ал ÑģÑı +Ġshel ter +T o +au pt +Ġevalu ation +ap or +Ġcur rency +Ġм ного +ig os +ãģ ° +Ġo ct +Ġro yal +è ³ +as il +ĠChild ren +Ġr ien +Ġë ĵľë +Ġbar rier +Ġej emplo +Ġe k +N D +es p +ен а +Ġp ic +Ġkill er +Ġintegr ate +Ġfew er +Ġdis abilities +Ġ .... +Ġtri angle +Ġfe es +Ġwid ely +em i +Ġoverwhel ming +Ġz omb +Ġb ere +Ġho od +ĠA ye +ĠHar vard +e v +ĠÏĦ οÏħ +Ġcup s +ĠA uch +z ona +Ġ199 0 +Ġwe iÃŁ +Ġcr unch +æ ¥ +Ġз ав +Ġmeas uring +Ġst ations +ĠStep hen +Ġshort ly +Ġsig ning +Ġcom edy +om o +Ġsuggest ions +Ġsign ature +ĠпÑĢ ив +Ġdis order +as ka +Ġworld s +Ġprecis ely +n orm +ra v +ĠC ivil +In ter +ĠC ertain +Ġinj ured +Ġsuggest s +ĠGold en +Ġcy ber +ĠØ ´ +Ġtempor ary +Ġco oper +Ġvot ed +Ġ ought +ấ y +x ual +Ġpan els +Ġ9 5 +Ġhands ome +ĠпÑĢ ов +Ġper mit +Ġke in +Ġbad ly +Ġnot ifications +iz a +ĠNot ice +Ġinc lusive +Ġanswer ing +Ġí Ĺ +u ld +íħ Į +Ġnow adays +Ġ3 7 +Ġb olt +Ġstat ic +ĠH op +Ġav ant +aj o +Ġ맼 ìŀĪ +Ġfif ty +ĠF inal +Ġsc ores +ĠT ap +Ġcy l +Ġconv ince +Ġany ways +od a +Ġìķ ¼ +Ġser ves +ĠÑĤак ой +ĠZo om +Ġsaving s +ul o +Ġs outhern +view er +Ġho je +Ġse ja +Ġrepresent ing +Īë įĺ +l ik +ĠSome body +Ġbe ast +Ġstick ing +Ġins ist +Ġtal ented +Ġexplain ing +Ġatt orney +éĥ ¨ +Ġst airs +ĠD og +í ĭ +Ġc ig +Ġshap ed +Ġs ons +Ïģ ι +ut t +Ġì Ķ +Ġpar ad +ìĿ¸ë į° +Ġh orn +ĠJ our +ann o +Ġworld wide +åĬ Ľ +Ġparticip ation +¦ Ħ +Ġm ów +Ġburn ed +Ġwrit ers +all ah +ĠF und +Ġcle ver +ĠLe ute +b in +Ġbe ating +f oot +ĠìĽ IJ +ĠStud io +Ġv ag +be y +r ze +Ġoppos ition +Ġж из +w ho +Ġê± ´ +Ġtr ace +Ġд енÑĮ +Ġep id +Ġges ch +ĠN ar +ĠB E +Ñĥ й +ĠS ign +ed ly +Ġcl ay +Ġinst antly +Ġgather ing +ĠGal axy +Ġb ored +ĠBudd h +c é +Ġm am +Ġsl ope +Ġëĭ¤ ìĿĮ +Ġsch ön +Ġp ir +ge f +am er +Ġh ö +Ġcolle ague +Ġpres ents +ad ium +Ġà® µ +Ġfal ar +be ep +Ġdri ed +ism s +Ġro pe +Ġworks hop +Ġest ud +Ġb ands +Ġthem es +åħ ¬ +ÙĬ ر +åIJ İ +Ġremind er +ÑĤ Ñĥ +ĠB h +Ġcocon ut +ĠÑģ ÑĤо +ĠCh annel +Ġimmig ration +ä s +.. ... +ä¸ » +çĻ ½ +st op +Ġк аÑĢ +Ġco ins +ĠÑĩ аÑģ +Ġdest ruction +l ined +Ġbar riers +ant ine +Ġprint ed +Ġcongrat ulations +ĠHe art +Ġin qu +th a +Ġhard ly +ĠA ven +Ġt inha +ĠS ony +ĠN F +Ġgradu ates +Ġsque eze +ere my +ÏĦ ι +Ġep ic +ĠJ u +Ġol m +ĠLa ughter +Ġbelief s +ĠC ru +ĠTr ue +ĠS oul +owe en +Ġrom antic +Ġз в +Ġan os +ĠY up +éĺ ¿ +d im +Ġin fer +Ġз ам +Ġso c +uk a +Ġprec ise +Ġdro pping +Ġcl ue +Ġer rors +char ge +ĠP u +omet er +Ġlamb da +ac ional +ĠD ong +Ġcham ber +Ġthank ful +ĠN u +ĠHaw ai +Ġinf o +Ġactiv ate +ĠQ ual +Ġqu ed +Ñĥ лÑĮ +Ġcl oth +åĸ ľ +Ġw ichtig +5 5 +Ġot ra +ograp her +Ġcur ios +Ġ19 80 +Ġemp res +d ess +e ur +Ġcl uster +ar ter +ob ile +ĠY an +ĠAd v +Ġdiscipl ine +Ġìłķ ëıĦ +ĠPl ace +ĠSe lect +T E +ĠбÑĭ ла +Ġwh is +Ġb ay +ĠD or +en cing +Ġrep et +Ġf icar +p ad +Ġf og +u yor +Ġsn ap +ib t +Ġso bie +Ġappoint ment +ĠR y +Ġce iling +our se +Ġwr ites +ĠAfghan istan +Ġm os +az e +Ġpen al +Ġcry stal +IC E +ê° IJ +é Ł +ĠTes la +Ġthe ories +Ġappe al +Ġnewsp aper +Ġcook ies +æ © +ĠاÙĦ ÙĦ +Ġma j +ĠGet ting +k ommen +ĠHe aven +ell s +Ġdiv ine +Ä « +Ġa kt +Ġhop es +ĠCh en +we gen +** * +ĠFra ge +Ġн и +ภ¹ +min ister +nes ota +wh ich +Ġexpl icit +Ġverd ad +Ġgradu ated +ĠPh ilipp +Q L +ĠM I +Ġdev ot +Ġc ure +Ġclos est +Ġà Ħ +Ġsex y +ãģ Ľ +ĠDe ath +ok o +ug u +ĠAn ne +itar ian +es a +ег од +ĠD ur +Ġ 000 +ze it +Ġtour nament +Ġmel hor +ภª +Ġin du +Ġf law +Ġw ars +ĠM ind +ĠI ron +ÑĤ ак +ĠV R +Ġs iz +ĠS outhern +Ġê·¸ëŁ ¬ë +Ġaw ak +Ġìķ ŀ +Ġc ube +believ able +if all +d is +Ġabandon ed +m ind +Ġpar l +Ġclass ical +è ĭ +á»Ļ t +ĠAut o +ĠB or +ç © +4 00 +ĠSoci ety +Ġsubt le +Ġmiss ions +Ġremember ed +ĠE ither +Ġda für +OR D +Ġint ensity +ES IN +ĠC up +Ġrare ly +Ġto ys +ĠChar lie +á» Ł +Ġgla ube +Ġround s +T IN +Ġcap ability +Ġderiv ative +Ġrefer ring +Ġd Ã¥ +ĠT ALI +Ġcott on +Ġcon fer +Ġcolum ns +Ġliber al +Ġnun ca +Ġμ ε +Ġind o +ib en +ĠBe ispiel +Ġê·¸ë łĩ +ĠÑĥ Ñĩ +Ġh oy +Ġfr y +ĠScott ish +è Ĭ +Ġc iv +Ġconserv ative +Ġair pl +Ġs ar +r us +Ġinvest ments +Ġinfin ite +Ġà® ķ +ĠTALI ESIN +ĠG ary +ue ll +Ġа к +ĠC ir +Ġrit ual +Ġ>> > +Ġtem pt +ĠTe ch +ĠPoke mon +Ġimprove ments +Ġsp are +Ġtransl ate +Ġson ra +ĠFil m +w ort +Ġм и +Ġperiod s +Ġje alous +ãģĦ ãģĦ +Ġt ir +M I +Ġconduct ed +ĠìķĪë ħķ +0 9 +ĠPol it +ĠWhere as +Ġmoist ure +Ġs ins +Ġk ap +ĠÑį к +Ġben im +Ġelimin ate +Ġathlet es +ĠMan ager +Ġfeature d +ap ore +äº Ľ +Ġë° ľ +Ġper f +ĠTh us +Ġdeb ut +об ÑĢ +Ġse ñ +Ġmyster ious +w ords +Ķ ê°Ģ +Ġcheck s +Ġvolunte er +Ġwas hing +ĠMar vel +ĠA B +iss ors +! ' +ĠF ull +ye on +Ġwe igh +ĠJO HN +Ġv os +Ġproced ures +Ġaddress ed +ĠBer lin +put er +ĠB an +Ġmedic ation +Ġdr one +ĠÑĥ б +ĠJe an +Ġcap s +Ġdisappoint ed +Ġw ore +Ġêµ Ń +Ġorgan ize +ĠHall oween +Ġfant asy +y ard +Ġnos otros +Ġjump ed +Ġphot ography +ĠN ame +re c +A B +Ġbless ing +ĠSh ut +Ġbit ter +p op +ãģĿ ãĤĮ +Ġde i +Ġfulf ill +çIJ Ĩ +Ġden gan +Ġbe lo +ĠMean while +Ġdep ois +Ġdi abetes +Ġbu nd +ĠZe aland +Ġdig est +Ġt ires +Ġdo d +ag ne +ế t +Ġpe el +Ġз аб +Ġn odes +Ġtrend s +ĠSw itch +ĠA ward +ĠOr ig +ĠH al +Ġest as +Ġ3 60 +Ġsim ult +Ġcom ic +Ġm Ãł +Ġbal anced +ĠPrin cess +Ġkilomet ers +á» © +Ġpart ir +ì¤ ij +so ft +ĠV iew +Ġbi ological +in st +4 4 +Ġman era +Ġcompreh ensive +ĠS ab +Ġcr imes +y ers +ĠComp any +ĠPh ot +Ġpou co +i ac +Ġbe im +in ate +Ġsub sequ +ĠMay or +Ġcent uries +è res +ìŀĸ ìķĦìļĶ +Ġê·¸ëŁ ¼ +ĠFra u +ĠO H +Ġëģ Ŀ +ĠN ah +ĠSer ies +Ġover night +íĴ Ī +ĠâĢ ¢ +Ġtra ve +atter ed +Ġwar ri +ĠGru nd +ĠInd ones +Ġsc ra +ob y +ĠBro ok +Ġcur s +Ġë ¸ +Ġexpl ains +ram atic +Ġparticip ating +Ġmin ut +Ġcontract s +Ġg egen +Ġdisappe ared +ĠS N +Ġrob ust +ap h +Ġsh rim +Ġdev ast +c ope +Ġme ets +Ġpeace ful +m ate +Ġwe ld +Ġ× ª +d on +Ñĥ ÑĤÑĮ +Ġregister ed +ĠN ik +j in +Ġc av +Ġe cht +io x +Ġflow ing +но ÑģÑĤи +Ġto e +Ġent ity +ов а +f its +ĠPat rick +ÑĤ ÑĢ +Ġle verage +Ġcor rel +i ah +Ġstr ings +ist inct +Ġg ue +arch y +Ġteng o +ım ız +Ġor bit +ä¸ º +Ġе ÑīÑij +ca ke +Ġ׾ ×Ķ +ĠMin nesota +Ġbra ke +ow ie +Ġcra w +ê¸°ë ¥¼ +Ġprogram me +ĠÑģл ÑĥÑĩ +åı ª +ien ces +ĠO ui +ĠP ers +im iento +ĠIn vest +Ġsl ower +æĻĤ åĢĻ +ĠB eth +Ġnur se +ĠSpr ing +S p +Ġun employ +д и +Ġgen ius +ĠA aron +Ġê·¸ëŁ ¬ +Ġe i +ãģĹ ãĤĩ +Ġtank s +Ġau jourd +Ġcomplex ity +ĠÑĢ еÑĪ +Ġold est +Ġlet z +åħ ¥ +Ġphenomen on +pr int +ĠBund es +it at +ê» ĺ +Ġ4 2 +ĠW i +Ġinc om +Ġg ek +Ġembr ace +Ġt ies +out e +Ġd ose +ĠF riends +Ñĭ ÑĤ +егод нÑı +Ġor g +Ħë ¡ľ +ó g +Ġex ceed +Ġgod s +Ġê±° ìĺĪìļĶ +Ġsoci et +ĠUn ivers +it ät +Ġword en +Ġsm oking +Ġint ens +ab ul +em ia +è ij +4 7 +f ly +Ġ200 6 +ĠSer iously +Ġprze z +æ ¼ +c re +Ġn an +Ġmod es +ов аÑĤÑĮ +ĠH ang +em en +Ġbenefic ial +Ġvot ers +ĠBro ad +Ġb ent +W ow +Ġm ul +åĵ ¥ +ĠU C +Ġdam aged +ĠUk raine +Ġw ipe +Ġst ones +Ġman agers +Ġr ab +ÑģÑĤÑĢ о +l at +Ġde ce +Ġgraph ic +Ġf oss +Ġdisag ree +ĠAm en +Ġsec rets +ho le +ink le +Ġfortun ate +Ġì ± +ìľ Ħ +èIJ ¬ +Ġhab its +Ġbur ied +Ġh in +Ġvirt ually +ol as +ĠR P +ĠT ab +l ow +Ġsacr ific +Ġestim ated +ol n +Ù ĭ +c ur +ĠFe el +Ġcast le +Ġus eless +Ġdis g +ĠJac ob +Ġga an +Ġup side +Ġpare ce +ãĥ³ ãĥ +Ġsh ipping +ĠC R +Ġdis rupt +ac ter +UN D +f u +å® Į +ĠP ick +ĠChar l +ĠB ull +Ġenter prise +Ġpunish ment +ack ing +Ġfr action +Ġtab let +Ġch ord +Ġsimilar ly +åħ¶ 實 +ĠTor onto +Ġcour ts +ÄŁ l +esz cze +Ġpron oun +ĠS ister +ĠM P +Ġgreat ly +ĠD ank +ic op +Ġgar bage +Ġresol ve +ĠS af +ĠG un +Ġcomp ound +Ġë° ° +ĠMus ik +âĻ « +Ġcha os +ĠWhen ever +Ġe uros +Ġor chest +Ġrefr iger +al an +ภ· +ĠAm azing +Ġp ud +ag an +Ġj eszcze +is y +Ġaccur acy +ĠA ma +is ode +ë ĮĢ +Ġinterpret ation +ĠL iber +æ · +c am +Ġevol ved +ĠK ay +ÑĨ Ñĭ +Ġcreat or +it as +Ġal arm +Ġcelebr ation +z ent +Ġfun cion +Ġo v +umb ling +Ġ % +ภĪ +Ġrestrict ions +Ġн ав +ĠK inder +Ġban ana +ÑĮ Ñı +Ġdiam eter +Ġnor thern +ur ers +ĠP as +æĪij çļĦ +Ġwork force +Ġj ung +Ġguar ante +Ġequ ilib +Ġsu ite +Ġeu ro +Ġdel iber +S te +Ġdownt own +Ġch in +Ġc odes +ed ia +Ġshe ep +res hold +wn ie +ó b +Ġunder lying +l ia +j er +ÏĢ ÏĮ +ç Ŀ +th rop +Ġz ap +Ġvac uum +ĠH ab +Ġwra pped +ì ¢ +Ġinvent ory +м а +Ġco ord +Ġpl ates +Ġsy mm +T e +ĠwÅĤa ÅĽnie +Ġreach es +Ġlon ely +S cript +le e +ess er +Ġê± ¸ +ĠGes ch +ĠMo ving +Ġré p +ĠV ill +åIJ Ī +ĠR achel +Ġtem os +ON E +Ġstra in +Ġang el +Ġf Ã¥ +T r +Ġach o +Ġhighlight s +ĠW er +ĠCar l +Ġbl ur +Ġreg ards + · +ил ÑģÑı +Ġrec re +ĠY ani +U CK +ł ¸ +Ġelectr ons +ĠSp iel +Ġv ed +Ú ¾ +Ġbe am +Ġid iot +ë ĵ¤ +на Ñĩ +id d +Ġsk i +it ative +Ġhyp othes +ãģ§ãģĻ ãģŃ +ent er +ĠìķĦëĭĪ ë +Ġih re +Ġpre view +ang el +Ġdem on +Ġd us +Ġd ic +ĠK om +LE Y +... ! +Ġsie ht +ĠSon ic +Ġten ho +an as +Ġdig it +ĠMa ar +Ġunder grad +oun cer +uff y +Ġconvers ion +Ġdis connect +Ġe cho +om er +Ġcurric ulum +Ġper ché +Ġw and +.. ? +Ġroll ed +Ġentreprene ur +Ġtheore t +ĠÑī о +Ġins ights +Ġzus ammen +o in +ret t +p rodu +Ġvisit ors +e ous +Ġgrand mother +Ġhum or +Ġн иÑħ +zen ia +ins on +Ġres et +Ġbase ball +Ġmatch ing +ëĭ¤ ê°Ģ +Ġpun to +ì ¡ +Ġre de +Ġaddress ing +Ġfore cast +ĠB ol +Ġcol ored +Ġdocument ation +Ġexpect ation +ĠNor thern +Ġcre o +Ġà® ļ +f on +Ġuns ere +U M +Ġcop ies +Ġexpand ed +Ġveter ans +ĠAl m +Ġво обÑīе +Ġpsych ological +Ġnos so +Ġpay ments +im eters +Ġ-- > +ĠJenn ifer +Ġvolunte ers +os se +or ious +ĠбÑĭ ли +è Ĥ +ĠEs s +w s +ĠB C +ĠI C +W oman +Ġv ont +Ġeth nic +EN N +им о +Ġlo b +Ġou i +c s +Ġre he +Ġìł ģ +Ġch ick +ús ica +Ġk ont +ĠDist rict +Ġp ile +Ġа в +ей ÑģÑĤв +Ġ £ +Ġiss ued +Ġком п +Ġpros per +Ġprof ound +ĠDe ar +Ġãģ ĵ +Ġfund ed +Ġb isa +ŀ ĺë +× Ł +ĠìĿ ĺ +Ġtw elve +ĠChamp ions +éĿŀ 常 +Ñģ л +Ġ200 5 +p m +Ġon de +Ġdiff é +ĠCh all +Ġdifficult ies +Ġgar age +Ġd á +ün k +Ġë¬ ¼ +Ġtr an +Ġsubm itted +z w +ÙĪ ا +Ġar k +ĠìĦ ± +Ġgrocer y +он а +i ere +Ġa est +Ġexhib ition +Ġr és +Ġconsist ency +Ġcook ie +н ей +Ġrepl acement +æ² ¹ +ĠS em +ĠìĤ¬ ìļ© +8 00 +Ġgen es +Ġtrans action +ĠE L +Ġdur ante +ib les +ĠE at +t ail +iss ance +Ġto ss +Ġsurv ived +Ġoff ices +Ġsupport ive +Wh ere +Ġtout es +Ġë§ ī +Ġj okes +ier on +ap ers +Ġm ature +ĠM arsh +Ġs ido +k ind +Ġreal mente +ĠChe f +Ġquel que +Ġjud ges +e ft +ER S +Ġj et +Ġpers ons +è » +iz ations +ri k +Ġsh ops +ĠW y +Ġele g +qu è +qu oi +Ġjug a +Ġíķľë ²Ī +ĠQuest ion +ĠGlo bal +Ġìķ½ ê°Ħ +ĠSt ation +æİ ¥ +ĠOh io +Ġstick y +Ġst ressed +Ġg ün +Ġí Ŀ +ÑģÑĤ Ñĥп +é ¡Į +ĠPh D +im mer +Ġment or +Ġinv ented +Ġre un +Ġine vit +Ġpol ÃŃt +Ġexec ute +ĠSt ory +Ġout standing +Ġgu er +ĠR ain +Ġch oses +ĠT it +ĠÑģ еÑĢ +ĠSing apore +ĠN one +Ġch ronic +°ë į° +Ġe go +æł · +ES T +ãģĤ ãĤĬ +ĠW ang +ĠN AT +Ġa ug +Ġdes ktop +Ġetern al +ĠìĤ¬ ìĭ¤ +ĠConst itution +ìĤ ¬ë +×Ļ× ľ +p res +ĠТ Ñĭ +Ġinter f +Ġlist s +Ġfight s +ft en +ĠI owa +Ġmotiv ated +ĠH osp +Ġelse where +Ġpath s +Ġinst ances +B l +r ange +á» ± +ĠS it +man a +Ġìĭľ ìŀij +Ġm ình +ans as +Ġs na +Ġphilos oph +Ġpas se +Æ°á» Ŀi +ak h +ent al +Ġih n +ru ctor +Ġв аÑĪ +Ġgener ous +Ġp ivot +п ол +Ġjam ais +Ġcom ent +ĠL ew +od zi +ĠX box +Ġв од +Ġcons ent +ī ìŀ¥ +Ġdis par +l ass +ĠGovern or +Be ifall +Ġê° ľ +Ġbelo ved +׳ ×ķ +se ll +Ġhon ored +le h +Ġw äre +un ting +Ġfra ud +ĠR AM +ê± ¸ +Ġkill s +Ġeconom ics +0 4 +п еÑĢ +Ġco isas +Ġи гÑĢ +ÃŃ m +Ġmö chte +Ġìµ ľ +Ġstim ul +Ġfast est +l v +Ġg én +ĠS ounds +Ġ19 70 +Ġhome work +spe aking +Ġencour aging +Ġqu ery +Ġre vers +pro fit +Ġd y +Ġìŀ ij +ëĬĶëį° ìļĶ +Ġso ap +ĠG all +ĠC N +ĠAn s +Ġf ic +ank s +Ġdess ert +ĠìłĢ íĿ¬ +ĠM aking +Ġcome ç +ê³ Ħ +Ġassoci ation +D ad +he e +Ġh ogy +Ġap ro +Ġinvis ible +Americ an +í İ +Ġvi be +Ġem issions +Ġadvoc ate +Ġkick ed +Ġ vel +Ġsum mar +Ġfre aking +ch ron +Ġpin ch +Ġwszyst k +isc al +Ġpro ved +Ġmind ful +Ġt ä +Ġno ises +Ġisol ated +Ġcross ed +Ġê° ķ +Ġvo ilÃł +Ġch ore +ĠR A +C om +Ġrelax ed +at ro +Ġpre vention +Voice over +O D +ĠCo vid +Ġsepar ation +Ġ- [ +иÑĩ его +çĻ ¼ +ĠS D +ble ep +Ġindepend ence +Ġpart ial +Ġalgorith ms +ĠAny one +Ġassoci ate +h um +ic ular +Ġb ạn +Ġbatt les +G ood +App lause +Ġbast ante +Ġadv ant +ĠS weet +Ġref used +ãĤ ¸ +ĠÑĤеб е +pl et +Ġencour aged +åĵ ¦ +Ġmir acle +ĠB un +ĠV ar +rim ination +e lect +ĠM ult +Ġdeliver ing +e ing +Ġc m +ne hmen +ĠL ine +Ġë§ Į +en ced +ĠS ound +ĠCont in +ij d +UN G +k le +Ġth reshold +Ġcomp act +ad t +Ġto es +ĠP ur +own ed +ment ed +Ġdes igning +Ġvacc inated +Ġexha ust +Ġbas ics +Ġcons ists +ĠGu y +ac zy +Ġm ÃŃ +w on +å® ³ +Ġ8 5 +æ Ĥ +Ġm um +Ġign or +Ġprint ing +ac ular +p ow +Ġexpand ing +Ġg ir +ĠC ab +íĺ ¸ +ÑĤÑĮ ÑģÑı +ĠìĹ¬ëŁ¬ë ¶Ħ +Ġang les +Ġterm inal +ĠW on +ĠInter esting +Ġcross ing +Ġbond s +Ġpu eden +Ġor b +lar ın +Ġcreep y +Ġnutr ition +Ġall ies +Ġwire less +Ġdes ired +Ġcomp ute +ĠAri zona +ĠBeaut iful +Ġprodu ces +Ġnuest ro +t ed +Ġel igible +ĠÑģ оз +ic ial +ĠH ero +Ġcons ume +Ġrob ots +Ġpurch ased +c ción +Ġ iz +ượ c +ίν αι +ĠØ£ ÙĨ +Ġshad ows +ĠMed ia +Ġprin cess +Ġk lar +Ġwood en +Ġus ar +Ġg üzel +Ġsl ot +r ade +Ġë Ĵ +Ġhar mon +Ġingred ient +ors hip +ek i +Ġgrand father +Ġexcit ement +Ġpolit icians +.. ! +Ġout s +Ġsepar ately +ĠÑı к +ĠW elt +ĠP ow +j an +Ġorient ation +åı ĭ +L C +age m +ÛĮ Úº +åIJ Ĺ +Ġbran ches +ad en +rent e +ĠI hr +as m +Ġest ão +ĠN ic +Ġsla ve +Ġcomp ress +c rowd +Ġclim bing +ĠMan agement +ĠB ah +Ġpan ic +Ġk or +Ġcool ing +Ġb ind +Ġз ад +Ġr ack +Ġent it +Ġs ends +Ġyour selves +d es +ĠMuslim s +Ġí ļ +ism a +cy cle +un kt +ĠC ore +Ġinj uries +Ġident ical +ка Ñı +ĠDeutsch land +Ġе е +is an +Ġtr uc +let on +Ġback up +Ġult ra +Ġab und +ille urs +Ġby ÅĤo +åħ ĥ +ort ed +Ġearth qu +Ġк л +Ġobs ervation +Ġmainten ant +el en +Ġsett led +Ġp ela +ĠE conom +Ġ Õ +Ġste ering +ĠAL L +ĠC her +Ġpat ience +ĠS now +Ġb or +Ġworth y +Ġcá i +Ġ× § +Ġκ α +d og +ĠK aren +ill es +Î ² +Ġagric ulture +×ķ× Ł +ĠSe an +Ġsens ors +íķ ´ë +ag h +Ġpublic ly +Ġpe ux +ĠAlex ander +Ġprior it +Ġla zy +ard on +atter ing +Ġcost ume +س ت +è¿ ĺ +Ġun w +Ð Ľ +Ġthick ness +qu ito +g unt +ist as +ne ys +ĠëIJĺ ê²Į +ĠBr asil +Ġto ken +Ġaff ili +l on +Ġf Ã¥r +ĠBe ach +Ġw itch +ĠSe ven +Ġp ant +λ λ +Ġcapt ain +å Ŀ +Ġve ut +Ġpou voir +ac z +ĠBar b +Ġut ility +Ġcontempor ary +Ġobt ained +Ġpainting s +e ar +Ġpe an +ĠO g +Ġc ust +л ем +Ĥ ĺë +ĠIs so +Ġac onte +ĠTe le +ĠAss istant +à ī +íĸĪ ìĬµëĭĪëĭ¤ +Ġcount s +Ġbu ck +ĠDe ep +Ġtack le +Ġh arsh +Ġdec ides +éĹ ľ +. âĢĭ +éĤ Ĭ +ĠAng el +Ġlay ing +Ġcal ories +Ġcontro lling +Ġadvant ages +ĠÑįÑĤ ой +Ġappro aching +Ġthreat s +ak an +em atic +m ann +ê³ µ +m umbles +ac ió +Ġmaint aining +Ġfound er +l ah +f ight +Ġadm itted +âĢ¦ . +ķ Į +ab ol +Ġus age +Ġn onsense +ĠPal est +Ġcont re +ĠDemocr atic +ĠE R +j ekt +Ġar bit +Ġг ол +ĠMich elle +ich er +es h +ĠP ho +к ом +4 9 +ĠEner gy +ο Ïį +Ġc ents +Ġref ers +Ġg ospel +ĠSh a +ĠSh are +×Ļ× ł +Ġclin ic +ĠëĦ £ +Ġequ ality +ug s +Ġsh ed +Ġplan es +Ġtout e +re ck +Ġstra nd +Ġbi ology +Ġle ague +ĠP ok +Ġnúmer o +ĠCo ast +Ġconsist ently +Ġnuc le +OO OO +Ġob jet +Ġch or +Ġg inger +Ġd abei +Ġcoop eration +à¯į . +nt en +ç ¤ +l Ãł +ìĸ ij +r ado +Ġpass ive +Ġglo ves +Ġunder ground +Ġlog ical +Ġk et +Ġfunction ality +¸ë ¦¬ +Ġport al +ell er +×Ļ× ¨ +ĠT ed +ĠG re +IJ ľ +Ġperson nel +Ġemer ging +ĠF ür +Ġmeant ime +usal em +ĠC lear +Ġtra pped +Ġìļ ° +Ġdis pl +Ġmet tre +Ġmun icip +Ġwithd raw +Ġsp at +un es +Ġaccess ibility +æĪij 们 +Ġap are +Ġpros pect +Ġн аз +Ġcop per +ĠP RO +Ïħ ÏĦ +Ġattack ing +ĠV in +ĠSt one +Ġinvestig ate +st yle +ĠÎ » +ë ¡Ŀ +ë§ Ī +Ġins pect +Ġli ver +ал иÑģÑĮ +Ġser a +hal ten +em an +Ġmin istry +' ' +Ġd ots +ãħĭãħĭ ãħĭãħĭ +Ñĥ ÑģÑĤ +ĠJ ak +AK E +Ġg aps +uck er +ĠинÑĤеÑĢ еÑģ +ĠEm ily +Ġinter val +Ġt ender +ĠTechn ology +g ame +Ġtri b +ÙĦ ا +ĠDevelop ment +Ùħ ا +Ġwr ist +Ġf ires +Ġtarget ed +ìł IJ +Ġso d +íļ Į +Ġoldu ÄŁ +Ġse asons +vent ions +Ġн его +Ġsomet ime +ли в +n é +Ġt ú +ĠDe us +Ġexec ution +á p +ĠCh ange +ĠInd eed +Ġreg ulation +ĠH ung +é is +Ġwish es +Ġj azz +Ġstruct ural +Ġblow ing +Ġby Äĩ +Ġtherm al +ph ant +ÑĢÑĥ з +ан ÑĤ +ĠP ull +Ġconf usion +нÑĭ ми +Ġscen arios +ìłģ ìľ¼ë¡ľ +Ġд еÑĤ +Ġtatto o +Ġaut re +Ġhe ating +Ġtreat ing +Ġпон им +Ġexc lus +ĠL OL +we ar +ag le +Ġzur ück +Ġr ational +s u +Ġdet er +ĠN ative +à®ķ ள +ach ed +Ġ ãĥ +ĠEnt onces +Ġhor a +ìĿ´ìĹIJ ìļĶ +Ġl ite +à « +Ġsix th +Ġбол ее +act or +Ġpsych ology +çĽ ¸ +Ġdem ands +Ġpe er +Ġnew ly +ĠWW E +Don ald +ĠBo x +Ġp ine +Ġload ing +ĠN ico +Ġs ÅĤ +omm e +AR T +Ġrecru it +Ġbug s +arent s +ĠпÑĢ об +ĠIn side +ipp er +d ramatic +Ġplan ets +ord e +Ġy oga +ch ild +ĠMar ie +Ġãģ Ĥ +ĠB L +Ġfil med +Ġref resh +Ġtomato es +Ġf et +Qu é +Ġ !! +ĠëĤ ´ë +r ine +Ġinteract ive +s al +ann ah +pe z +ç¶ ĵ +Ġunderstand s +ĠTok yo +Ġlibr aries +Ġread er +ij IJ +o z +ĠEnd e +ĠF lo +Ġm ild +Ġpo etry +Ġж ив +æĦ Ľ +Ġbeh ave +Ġdo en +ĠSus an +p age +ra ham +Ġcommunic ations +Ġtun ing +Ġp ac +Ġanx ious +I O +M ark +Ġhi ç +book s +Ġp iss +Ġen abled +achel or +ĠF OR +Ġé c +ĠT R +il st +h at +ĠìĿ Į +Ġty ch +Ġj ar +Ġbuild s +ĠAr gent +Ġinter medi +Ġl ou +Ġa ra +Ġassign ment +Ġcabin et +Ġretire ment +ãģ » +Ġdis abled +ric a +Ġa wards +Ġbo ots +Ġacknow led +Ġth y +Ġêµ ¬ +Ġsy nd +ни й +il ton +Ġprob l +ĠF al +Ġverd ade +Ġ7 00 +ĠLe arning +oc us +Ġpal ace +N ot +t ain +c m +Ġmagn et +inc oln +Ġfig uring +ĠL yn +ĠB oss +ĠV O +Ġdiagn osis +Ġequ ipped +w atch +in os +ad ers +Ġsh elf +Ġorgan is +Ġn od +Ġk ız +pp ers +Ġrest ore +Ġart ic +ĠVo ice +ı yorum +ê² © +Ġspread ing +Ġh ips +Ġw ard +ure au +Ġinter section +6 6 +Ġ3 9 +ç ³ +Ġwait ed +ì ´ +hh hh +Ġd ys +ĠE N +Ġb atch +Ġca f +Ġmark er +大家 好 +or able +ó ria +Ġste pped +Ġcelebr ating +ан а +Ġwor n +ĠF ol +Ġpl a +Ġattempt s +Ġtwe et +Ġr ust +g ence +í Ĩµ +Ġre vel +Ġre cept +en ess +Ġ( ( +ãĥ¼ ãĥ +! âĢĭ +ĠìĨ IJ +Ġinfluen ced +и ж +Ġкон еÑĩно +Ġcolleg es +ion i +Ġs ag +An n +ol ar +Ġexpress ions +Ġsu its +Ġowners hip +el and +pie ce +æĢİ ä¹Ī +Ġdesp ués +Ġt el +Ġins ult +Ġêµ īìŀ¥ +ĠSm all +ĠF R +ok a +ber ries +ĠAnt on +ел Ñı +Ñı Ñģ +Ġval ve +act s +Ġwood s +à® £ +Ġcult iv +Ġf á +ãģ¨ ãģĦãģĨ +Ġche ers +Ġassum ption +Ġfit ness +ÃŃ cul +Ġpod r +Ġwe it +ĠH ind +Ġd ign +Ġз н +Ġsqu ad +Ġdest ro +c ere +sh irt +imm t +eng ers +Ġs ä +k ÅĤad +Ġ ÈĻ +Ġocc as +Ġì¤ Ħ +Ġprocess or +ĠD M +ĠDad dy +Ġsoon er +Ġstraight forward +Ġdepart ments +ĠChr ome +Ġwork place +ĠPy thon +Ġm eng +ĠD AN +ĠI ce +ĠëĪ Ī +ĠG i +Ġh iring +Ġland ed +Ġdemocr atic +ied z +ãģĺ ãĤĥ +Ġse v +ic ia +Ġespe cial +ĠN ous +Ġh ät +Ġb ou +per t +ies z +åij Ģ +Ġv il +ÅĽ li +Ġî n +Ġloss es +éķ · +Ġto ast +Ġreal m +ĠAust in +ĠIn formation +Ġres ume +Ġch ase +Ġsal ary +Ġë¶ Ħ +ли Ñĩ +ĠÑģл ед +ĠFur ther +Ġcar ing +Ġv ig +Ġval or +è¿Ļ 个 +ĠÑĩ а +Ġanalyt ics +Ġglo be +ĠM AN +Ġn el +ìĿ´ì ķ¼ +Ł ¼ +Ġo y +íķĺ ìĦ¸ìļĶ +j en +Ġtrou bles +ah aha +Ġchurch es +u et +Ġmeasure ments +b il +ì ½ +if ully +ин Ñĥ +ĠWil son +¦ ´ +ĠíĮ Į +Ġì° ¨ +Ġp úblic +ĠJer usalem +Ġn ails +Ġsp ine +Ġhe mos +Ġz n +qu is +ĠLe ben +Ġrefer ences +IT H +i per +ĠÑģеб Ñı +ì ģ +ĠW a +st ate +§ Ŀ +åħ ± +ĠGen er +Ġact ress +ĠEn joy +๠ĥ +Ġ× Ĵ +Ġinfect ed +Ġsh aking +Ġn ick +ภ¸ +Ġf ot +Ġaccompl ished +u ke +Ġshe ets +Ġf ence +Ġnurs ing +Ġintrodu cing +Ġfe at +O ne +T O +Ġcl ubs +ĠBru ce +on ge +ch ange +ĠBat man +åı ° +ĠOffic er +Ġhyd ro +Ġsupp lement +Ġc ela +Ġlong est +Ġcompet ing +Ġcon he +g iving +Ġbra ins +Ġlo ans +Ġw age +ĠCl inton +Ġs Äĥ +ane ous +Ġl ord +ÑĢÑĥ ж +Ġqu iz +Ġst iff +ĠL GB +s z +M E +m are +th ere +Ġn är +ĠM and +l ast +Ġd ag +Ġhalf way +ĠB and +Ġëĭ¤ ìĭľ +ĠA ren +Ġi le +P N +ent o +Ġalg um +Ġsoc cer +Ġblock ed +ĠJon athan +Ġse w +ĠTest ament +Ġv ale +Ġbehav i +å§ ĭ +Ġcon na +IC H +Ġaud iences +m l +amm ad +ĠìĤ ´ì +I GH +Ġr aces +em ed +Ġm á»Ļt +à ¯ +Ġover s +Ġdecl ared +Ġs ana +ĠU na +ĠÑĢ е +uck s +Ġp airs +Ġan ge +N e +Ġup s +av y +ø r +ree k +Ġbehav iors +Ġreflect ed +Ġprior ities +Ġcon du +Ġret reat +Ġexp enses +Ġë´ IJ +Ġtri ple +Ġêµīìŀ¥ íŀĪ +ä lt +Ġind igenous +Ġmin ing +Ġaccept able +Ġru in +C A +u ine +Ġpip eline +ct ic +ê t +ĠвÑģ его +Ġb oun +ĠDig ital +ĠBo om +ÑĨ е +Ġл ÑĥÑĩ +Ġas c +ĮĢë ¡ľ +ĠGood bye +Ġrend er +ene z +ar re +ĠTH AT +b our +ic ión +ãĤ Ń +E very +Ġw ires +ĠPar liament +n ung +ate ur +ĠS ave +ĠPh ys +Ġam or +ĠE ve +Ġfr ight +Ġgam ma +Ġmic ros +m itt +ĠC ode +ĠBe y +pl ed +ĠиÑģп олÑĮз +ç Ĺ +ìĥ ī +å¥ ¹ +Ġmon et +ĠJah re +Ġlux ury +Ġde af +Ġbet ray +Ġê² ° +и ки +Ġdefe ated +Ġunder t +Ġwe g +Ġcool er +ãģķ ãĤĵ +iam i +éĤĦ æľī +ĠJess ica +ĠJ oy +Ġsoph istic +ени и +ðĿ ĺ +Ġch ili +ĠTy pe +Ġprote ins +Ġpresent ing +al ia +ìļ ¸ +ĠMaj or +Ġmolec ule +um er +Ġcoll apse +ĠAny ways +ĠMount ain +ant ed +ãĢ IJ +Ġвиде о +æ° ´ +A ud +Ġcon qu +Ġvo ll +Ġkn it +Ġmem br +ĠMark et +Ġd ari +Ġcalcul ated +г и +Ġshrim p +ĠM u +ĠпÑĢ оÑĤ +Ġìĺģ ìĥģ +Ġproduct ivity +Ġcogn itive +ĠHe b +ict ions +ê² ½ +Ġcr é +f ör +Ġpray ing +ash i +ĠT ik +ó r +w en +ÑĮ Ñİ +ix o +Ġ( " +ĠÑĤ ел +Ġìĸ´ëĸ ¤ +ĠпеÑĢ ед +ĠD rive +ãĢ ij +ĠE qu +Ġequilib rium +Ġdescri bes +не е +4 2 +ĠCur rent +y y +Ġabsor b +Ġsold ier +d ers +Ġtestim ony +Ġdec line +ľë ¡ľ +g age +Ġinsp ire +la pping +Ġspin ning +Ġsla very +Ġfac ial +Ġtrad itions +ári os +ĠHosp ital +Ġn est +ĠëĪ Ħ +Ġto i +Ġfe ars +ìħ ¨ +ĠM uh +Ġgradu ation +Ġimpact ed +Ġa unt +ĠLet s +Ġalumin um +Ġdomin ant +ĠDav is +ĠNav y +Ġcom pt +op les +Ġest ava +è ¥ +Ġsc al +Ġpres erve +ĠO pp +Ġpract ically +Ġmagn itude +Ġf itting +Ġcoordin ate +Ġfurn iture +ĠFam il +Ġexplos ion +Ġdocument ary +ĠS cript +Ġport ray +m at +Ġschedul ed +Ġdynam ics +ph y +ak y +ĠU I +C he +Ġcontinu ously +ĠPro v +å° ij +Ñĥ з +ra h +Ġger ne +pro of +Ġsecret ary +ĠPat reon +sc ream +ĠK ids +á»ĵ i +Ġk g +Ġuncertain ty +Ġк ажд +Ġmit ig +Ġread s +å· ² +ĠR u +Ġpri est +Ġн ед +Ġlimit ations +Ġflo at +6 00 +ĠT oy +ĠJim my +Ġoff ensive +en i +ĠX i +Ġeye br +ĠTur k +Ġaccident ally +Ġoh ne +ĠS aud +9 5 +ĠD utch +ан Ñģ +ĠSe attle +Ġëĵ ± +che ck +k ÄĻ +Ġcontrib utions +Ġbes ide +Ġqu indi +Ġfle w +æĹ ¶ +Ø° ا +ĠL O +Ġwa ist +ĠE V +Ġhol idays +j on +Ġmis under +Ñı н +Ġb out +Ġd imin +Ạ½ +ó l +ĠGr ace +Ġinput s +Ġden y +Ġform ing +ĠB ild +Ġad equ +Ġfol k +Ġreject ed +se mb +Ġfrust rated +op en +ĠBet ter +il on +Ġtow el +Ġdifferent ial +Ġsac red +Ġsa il +éĩ Į +ent imes +Ġgentle man +Ġicon ic +Ġcomp aring +Ġs agt +Ġtext s +Ġgrand ma +Ġroll s +Ġcont ents +ä¸į 好 +оÑģ Ñģ +Ġsusp ension +ro it +¦ ¼ +Ġasse z +Ġd ort +ĠM ath +ĠVict or +ĠJava Script +ä¸į å°į +Ġen han +Å Ļ +ĠB ush +Ġpromot ion +Ġk in +Ġmon sters +ĠColor ado +ĠÎ ² +íķ´ì ļĶ +æŃ £ +iffer ent +Ġn aked +Ġpro d +et ics +ĠW oman +Ġtreat ments +Ġest oy +v é +Ġlif ting +Ġy apt +ĠRo ber +Ġì¹ ľ +Ġsubst itute +ak u +r idge +Ġê± °ë +Ġrespond ed +Ġb é +ĠEngine er +Ġtransfer red +ë ² +Ġha ber +o op +ĠW E +Ġv est +Ġfor ty +ĠD S +Ġ200 4 +Ġco aching +n om +ĠB ab +Ġn ossa +ĠJ ake +Ġg y +Ġde leg +Ġìŀ ł +ĠкÑĢ аÑģ +Ġstand point +Ġdis ad +Ġart work +A d +ill o +ĠÄij ược +ĠPr om +ĠL ib +Ġcritic ism +Ġcontact s +ÑĢ ам +Ġachieve ment +ÐĶ а +Ġdiss ol +ĠVeg as +Ġstream s +ĠK ent +ĠعÙĦ Ùī +Ġrad ius +Ġsu cks +ĠA ch +Ġf i +ou st +ĠлÑİд и +Ġpal ette +ĠH az +ĠAnth ony +Ġtem a +ĠC os +Ġsa fer +α ÏĤ +Ġcont rad +Ġma ior +Ġinfl ation +ĠSil ver +Ġatt ending +íķľ íħĮ +art o +Ġapplaud ing +Ġcomput ing +ĠH at +æ » +k now +mak ers +Ġcon oc +Ġeduc ated +Ġmod ified +Ġinc lusion +ment al +ŀ IJ +is ia +ĠÏĢ οÏħ +Ġa un +ĠIre land +Ġk ö +Ġcompl iance +Ġinsp iring +иÑĤелÑĮ но +Ġdisp os +ì° ¨ +Ġw ip +r ical +raw d +Ġt res +Ġmob il +olut ions +B O +Ġb ounce +Ġassum ed +ĠMed ical +Ġf iscal +Ġng Æ°á»Ŀi +ition ally +Ġst olen +ĠB M +Ġmechanism s +ε ί +Ġqual ified +Ġìŀ IJë +ught ers +ĠH IV +ĠL ots +Ġser vers +Ġcar r +ĠT ogether +Ġattract ed +Ġk r +æĪij æĺ¯ +th ur +in in +ĠH alf +È Ľ +ĠP ap +Ġremind ed +AL L +Ġhel met +Ġbott les +Ġprofess ors +Ġse ine +ÅĤ Äħ +ãĥ ı +Ġê±° ìķ¼ +Ġ×¢ ׾ +f un +ĠB ird +Ġfight er +ĠëĶ °ë +ĠT ool +Ġt in +ino is +ë ¶Ħ +×Ļ× Ł +ĠC AR +åIJ į +irst y +Ġout door +ĠN S +ãħ İ +ff en +Ġl ud +H ello +Ġroll er +ie le +ĠPol and +Ġap a +ex p +Ġcertific ate +ĠT own +аÑİÑĤ ÑģÑı +ild e +Ġdeterm in +P R +Ġfree ze +Ġmain stream +Ġobject ives +b lo +Ġtak ie +åĵĪ åĵĪ +Ġë°Ķë ¡ľ +el et +ĠI V +ĠF ast +Ġd ere +em p +ĠD ra +ĠìŀĪ ìĹĪ +Ġdisc rimination +Ġε ίναι +ne cess +æ ® +ıģ ı +Ġpost ing +wi ÅĽcie +Ġl ub +Ġol ive +Ġr im +Ġmodel ing +Ġa ño +ĠPak istan +Ġover l +Ġinf lam +N E +ìĹIJ ê²Į +Ġatt ended +Ġdeal t +ĠAl t +ĠL incoln +Ġaw ake +Ġfil ters +ĠWith in +czy wiÅĽcie +Ġs û +ĠJohn ny +Ġintegr ity +Ġisol ation +ĠE asy +ĠпÑĢ ин +ĠAl ice +Ġsm iling +en ix +, ... +Î ¶ +Ġbeg un +Ġjew el +Ġconvention al +Ġstat ist +Ġhand ed +Ġir re +Ġpro hib +Ġsatell ite +é¦ Ļ +ĠInd ust +Ġtra ged +Ġtra va +Ġih m +Ġcru el +ĠAg ora +ĠD oc +Ġz ones +Ġm all +Ġtr ay +×ķ× ł +Ġir rit +Ġk ans +ĠBe at +ud ge +ie lle +Ġtrust ed +Ġb ikes +ĠÑĥ п +ĠM ember +w ick +Ġcreat ors +Ġher itage +ind istinct +Ġres ur +enn en +C ome +Ġf iring +ĠBu eno +ĠТ о +ik an +ett es +Ġk es +Ġtri ps +Ġdivor ce +ĠK l +Ġcons ol +ke ep +기 ê°Ģ +ĠRep ort +Ġhost ing +Ġdiam ond +Ġcompl ic +Ġhel icop +Ġdep uis +d s +ĠCh an +Ñı л +Ġsc issors +il ation +Ġprop ortion +ER E +ĠÙĪ اÙĦ +int a +Ġmuch as +u ation +it is +æĬ Ĭ +Ñı Ñī +Ġni in +Ġemphas ize +uel a +Ġprodu cers +Ġr ze +änd er +ET H +æ º +Ġconst itu +åĽ ½ +Ġperform ances +ist le +go v +ĠL iter +Ġincorpor ate +Ġeduc ate +ĠN in +ì ª½ +Ùĩ Ùħ +el eration +×ķ× ij +Ġya ÅŁ +or ous +ĠC as +Ġgr ants +ëĬ ¥ +am el +Ġê·¸ë łĩê²Į +ĠE ste +Ñħод иÑĤ +ĠпоÑģ ле +Ġg ent +Ġfocus es +al ities +ĠR h +ë ³´ +æ° ij +ĠD ance +r r +Ġam er +Ġutil ize +Ġl ÃŃ +ĠAm ong +Ġpregn ancy +Ġlo ops +ал оÑģÑĮ +ĠM oh +Ġcatch ing +Ġglo b +Ġa jud +Ġ[ ? +ĠAn al +lo oking +Ġsurf aces +Ġprogress ive +Ġvir al +0 8 +Î ¾ +K A +Ġ ży +Ġpick s +ann on +Ġbul k +ĠR oss +Ġdescri bing +ĠG el +Ġloc ally +Ġend less +Ġmass age +Ġclean ed +Ġtravel ed +ен Ñĭ +Ġsent iment +ig ma +ĠN as +Ġchemical s +Ġright eous +ĠMag ic +Ġrel ates +Ġtruck s +Ġ19 60 +åĪ ¥ +Ġapp et +Ġsn acks +ĠSum mer +Ġy üz +Ġpr is +ĠMex ican +Ġtransp aren +Ġminor ity +Ġver te +Ġl assen +4 6 +л ек +é p +ĠÑĦ илÑĮ +Ġi yi +Ġsp an +íķĺ ì§Ģ +Ġind icated +qu ar +Ġscholars hip +ĠLGB T +Ġhistor ically +ó ÅĤ +Ġmin ist +Ġpen et +ĠR ap +Ġcons ervation +çĽ ´ +ĠH oney +ĠBe i +id el +Ġrespons ibilities +Ġmess y +ĠEx cept +OR E +Ġiniti atives +Ġjun ior +Ġdesign ers +Ġexpl oration +Ġspons or +Ġmob ility +Ġint eg +land o +Ġb ark +Ġindic ates +à ¶ +Ġemploy er +å® ī +Ġcous in +Ġbo iling +Ġch rom +Ġç al +Ġper pet +Ġcont ained +Ġpark s +Ð « +ĠEngine ering +P lease +ĠStart ing +her o +Ġlaw yers +è¥ ¿ +Ġz d +Ġfranch ise +ra ge +Ġint uit +ĠG L +re ach +ĠE lle +Ġnh Æ° +ĠN ord +Ġbe an +0 7 +Ġple asant +å½ ĵ +v iron +Ġgrad ient +z us +ĠE M +Ġess ay +ìĹIJ ìļĶ +ế n +n u +á» « +ĠÃī s +Ġden omin +ĠGirl s +Ġperson nes +ĠاÙĦØ £ +b ild +ĠSt at +Ġcompl iment +ĠK ate +Ġoptim al +Ġh id +د ÙĬ +Ġquick er +w all +E n +IN E +?? ? +ì² ´ +ĠA ction +å Ł +Ġpenal ty +ĠK az +' ? +Ġc ried +Ġcan vas +ft e +Ġexc lud +¸ë ¡ľ +Ġemphas is +Ġen zy +ĠH ou +Ġoverse as +ÃŃ amos +å¸ « +ö glich +Ġhead phones +c n +ĠA ge +Ġa kan +Ġcharacter istic +íķĺë ©´ +get s +Ġë¶ Ī +Ġr ival +Ġb orders +em ente +em ás +Ġy ol +Ġcom pe +end ers +ınd an +Ġmö glich +Ġbubb les +nat ural +Ġar med +Ġel abor +ĠìĿ´ë ²Ī +Ġwash ed +οÏħ με +è« ĭ +Ġfl avors +Ġexist e +Ġpre st +ĠThe ma +оп ÑĢоÑģ +er on +U E +er i +Ġconc er +Ġa ixò +åħ © +Ġprotect ive +Ġзна Ñİ +ĠëĤ ł +ĠII I +Ġme er +ĠSh op +ll i +ĠOr der +ĠM Y +ĠG host +ãĤĤ ãģĨ +ad el +Ġst ole +Ġrele asing +ĠCom ment +Ġtra ins +ë ªħ +Ġw issen +ens ed +Ġdesc end +Ġf ier +Ġrad i +Ġpers u +ç ¢ +Ġм н +ĠD est +Ġwor ries +it et +b as +Ġst ab +n ame +or ic +ĠCl ose +Ġalum ni +ĠS elf +ff e +it ating +ather ine +ĠRight s +Ġell os +Ġwar rant +Ġn erve +Ġveget able +ĠTe il +Ġê°Ļ ìĿ´ +R Y +Ġsustain ability +Ġste ht +Ġbr id +ada ÅŁ +Ġt v +Ġdur ation +Ġpesso a +Ġmet rics +Ġad am +c as +аÑĢ и +Ġev ident +Ġdisplay ed +Ø§Ø ¦ +Ġre ck +ĠBudd ha +Ġde le +ĠDie go +os ph +Ġb la +ĠM ik +ul ator +Ġ200 1 +Ġpromot ing +y ch +ĠE X +Ġlast ly +Ġout line +Ġspir its +Ġve ux +Ġsubt ract +ĠÅŁ imdi +Ġp ins +Ġbur ger +Ġmol to +Ġhab ÃŃa +Ġë° ĺ +ig u +er st +Ġn en +Ġbac on +it ious +Ġcar ries +Ġprom ises +nd e +ĠLe ft +ĠL im +æ £ +Ġ4 4 +Ġcare ers +Ġì£ ¼ë +Ġspeed s +qu é +m ad +mark et +is me +Ġ200 3 +Ġre cess +ĠJ UD +Ġrac ist +ĠSch l +Ġpar ler +Ġot ros +ish es +Ġconvert ed +aa aa +ани и +ĠAr k +ĠCh ance +Ġelement ary +ε ν +ink s +Inter viewer +Ġfre ely +al ah +Ġëĭ¤ë ¥¸ +Ġrequest ed +Ġtor que +no ÅĽci +ou red +ĠSt aff +Ġst ain +ĠAl an +Ġv ere +ĠW inter +Ġdef ect +ied y +Ġbe ats +Ġh á +um n +o ons +it udes +Ġse it +o ly +Ġres erv +Ġext r +Ġphys ician +vis or +Ġhand ful +ĠN ations +Ġì¢ĭ ìĿĢ +uc cess +Ġup stairs +ĠSqu are +Ġhe in +ĠSe ason +ol is +Ġpr ince +Ġdef ensive +ç ½ +Ġм еÑģÑĤ +Ñĸ й +Ġا ÙĨ +um ble +ê¹Į ìļĶ +Ġass ass +Ġcirc ular +Ġqual ities +Ġh mm +Ġbl own +ĠL iz +ĠK ur +ĠS A +Ġfind ings +Ġcol ours +Ġde lle +ĠI R +ĠA th +ĠD ub +ĠO x +ĠØ ® +Ġpo ckets +Ġgr ill +Ġswitch ing +Ġprefer red +ĠW ales +Ġex emplo +Ġchop ped +Ġvacc ination +Ġne uro +Ġspec ify +iv os +Ġser á +Ġz ie +Ġà® ® +Ġresult ing +ĠU gh +Ġmess ed +C D +Ġpa ar +Ġcom er +Ġcou ch +ĠFest ival +Ġ4 9 +v ous +z ens +ç¨ ® +ĠKenn edy +ĠT s +Ġë³´ì Ĺ +Ġdemonst ration +Ġun to +Ġfrust rating +Ġlabor atory +Ġe gy +Ġbeaut ifully +Ġìŀ ¬ë +Ġal gu +Ġö yle +ä½ł çľĭ +ĠP H +Ġfort une +Ġclean er +ĠRob in +Ġsa us +ĠG eld +Ġk at +o bs +Ġol ur +Ġm att +Ġquest a +Ġsuggest ion +en cer +о ÑģÑĤ +Ġrad ar +Ġìŀ ¡ +ish a +à® ¨ +ãĤĵ ãģª +j es +Ġve el +ìĤ ° +Ġauth ors +ãĢ İ +pl an +Ġcollabor ative +Ġinst inct +Ġfar ming +au ge +E du +Ġmembers hip +Ġsimult aneously +Ġb ake +Ġk ä +Ġlect ures +Ñĩ еÑģ +Ġprend re +Ġcoll aps +ĠS aya +ĠF ut +Ġy og +ĠR ather +ر ÙĬ +Ġcamp s +ол од +Ġsim ulation +ĠM ak +La ughs +Ġgre y +Ġsent ences +y en +ĠUn less +J e +ĠSat an +ĠÑĤак же +ĠN A +Ġbr on +Ġ? ] +Ġsoul s +Ġlight ning +Ġimag ined +Ġczy li +ps ilon +et ta +Ġbelie ving +Ġstrong est +ĠC ON +Ġquel ques +Ġimmig rants +Ġwall et +éĢĻ æĺ¯ +ĠJer sey +Ġimplic ations +Ġfor b +ãĢ ı +Ġun believable +Ø§Ø ¡ +Ġoper ational +ü s +ĠG M +Ġê·¸ëŁ °ëį° +Ġgrac ias +Ġent end +ĠReg ard +ro b +ĠÑĤ еÑħ +è ı +ĠRev olution +Ġwa ar +ĠB iz +th eless +Ġspons ored +qu ier +ĠìĿ ¼ë +Ġte k +ĠëIJ ł +ig keit +ĠL uck +ĠCertain ly +Ġto ll +Ġн иÑĩего +ĠM oney +ĠÑģ ÑĤоÑĢ +ĠDou ble +ĠW olf +Ġch unk +ά ν +it és +on ing +M ar +Ġgrand es +Ġcollect ions +ĠEurop a +Ġа ÑĢ +ĠâĢĭâĢĭ âĢĭ +Ġê·¸ëŁ¬ë ©´ +Ġоб ÑĬ +Ġãģ ª +Ġìĭľ ê°Ħ +ĠC ustom +Ġì² ĺ +Ñĸ лÑĮ +Ġindivid ually +í Ĺ +Ġdo zen +Ġo we +ĠVict oria +åı¯ èĥ½ +Ġbe et +ur b +Ġanal og +i ção +Ĥ ľ +so ever +Ġmod o +Ġsubscri bed +ìŀ ¬ +Ġent ities +çī ĩ +Ġclos et +Ġrespond ing +Ġprin ter +ĠStep han +Ġby ÅĤ +ĠD om +ĠF ern +ĠP ier +ĠwiÄĻ c +Ġh ence +Ġmod ules +ãĥ ¬ +ĠëĶ ± +ĠDann y +ĠÑģеб е +Ġv ad +ĠìĹ Ħ +Ġs ous +Ġsp here +B Y +ĠP ed +ign ed +Ġwhe at +Ġund ers +Ġevol ve +Ġdec lar +Ġlight ly +Ġident ifying +æĦı æĢĿ +Ġlegend ary +Ġgen uine +Ġgr ind +ĠU ne +ge ben +Ġb icy +Ġjump s +Ġprov ince +zi ÄĻ +Ġ×IJ× ł×Ļ +Ġh oc +Ġб л +ĠGr ad +Ġreven ge +ĠاÙĦ ت +o oh +æĭ ľ +аÑĨи и +å¹ ³ +Ġelect ro +ĠëIJ IJ +ãģ§ ãģ¯ +Ġf als +ri el +ok er +ĠEx cellent +ĠMor gan +Ġbr ick +Ġsubstant ial +Ġpoll ution +ĠT ür +ĠEv et +Ġl ung +ãģ ĸ +×Ļ× © +omm es +Ġreal izing +Ġhum ble +ĠL ock +Ġb od +Ġìĸ ¸ +Ġpe ers +uz z +Ġembed ded +Ġclar o +Ġag greg +Ġemploy ers +ĠR aj +Ġãģ ¨ +ĠY i +Ġje u +at ers +Ġstri kes +n os +aut res +d r +op her +ĠApp arently +íĺ Ħ +Ġinf ant +ا ب +ÑĤ Ñĭ +í Ľ +Ú ¯ +Ġred es +acaÄŁ ım +ĠDA VID +ĠCh icken +Ġperspect ives +Ġview er +Ġsh ar +ĠпÑĢо из +lig t +er os +it able +ил оÑģÑĮ +Ġdif ÃŃ +´ë į° +Ġret ired +Ġthat s +zen ie +be iten +Ġmy cket +ĠR ab +Ġinflam m +ì° ® +Ġd um +Ġdad dy +æľ Ł +Ġimm ers +Ġplay list +௠Ĩ +Ġtra um +Ġref use +st ep +à® ļ +c up +Ġpop s +r imin +ay ım +Ġa ld +Ġun necess +Ġd ah +ĠIr ish +Ġcomp r +la ÅŁ +T P +Ġtransl ated +S c +ce ÄŁim +´ IJ +Ġd rei +ĠлÑİд ей +Ġqu iero +Ġhe le +z lich +Ġapp les +Ġdistrict s +Ġcred its +Ġas p +Ġëĭ ¨ +or al +å½ ± +Ġste pping +ĠV a +Ġg ains +6 5 +Ġnuest ra +ed ay +ass ador +ĠL ind +Ġcrop s +ci endo +ig ue +Ġb ana +A m +Ġp ent +Ġadd iction +Ġpack aging +ä d +ª ¨ +Ġper què +Ġcampaign s +Ġste ep +Ġne ue +Ġembarrass ed +Ġdist inction +it zer +åij Ĭ +Ġregist ration +Ġll am +ĠAlm ighty +li est +Ġu z +n ak +ç º +Ġter az +iam ente +Ġtrans actions +Ġc ôt +Ġswitch ed +Ġcom bo +Ġpray ers +Ġintern ship +Ġaddress es +Ġchar ity +ĠW OO +Ġb ait +è¿ ĩ +Ġ � +Ġf ica +ĠTy ler +ar u +Ġat oms +ĠLe vel +ĠпоÑĤ ом +Ġf ame +ul k +Ġteach es +Ġre build +ед ÑĮ +ĠIndones ia +ush i +ĠSh ort +Ġens uring +f s +e le +Ġmargin al +Ġconclud e +am t +Ġver ify +ĠMc Donald +Ġsk al +Ġrec onst +ĠM ann +Ġbas ement +Ġtransform ed +Ġoccasion ally +z one +ĠD ans +Ġкак ой +Ġdiagn osed +ĠÏĦ α +Ġcomm ands +Ġpresident ial +Ġab b +Ġbrack et +ĠL em +Ã¥ ng +Ġfavor ites +Ġrev ol +ĠíĬ ¹ +Ġhar ass +é ħ +Ġcle ans +st änd +Ġknock ed +Ġpe oples +Ġmusic ians +Ġmut ual +ĠC old +8 8 +ze j +at ie +ĠHon or +Ġobs essed +ĠM USIC +ĠBre ak +ú ng +Ġmod ify +Ġs öyle +Ġ×ŀ ×Ķ +ĠOn line +f o +ĠMill er +Ġlik ing +Ġin hab +Ġgrat itude +ĠJour nal +arn ess +J ohn +ĠG it +åī Ľ +Ġsin cere +ĠS ci +ĠE li +Ġsymbol s +Ġman ually +ε ÏĤ +Ġв Ñĸд +ĠF at +Ġlab els +Ġsophistic ated +ump s +Ġrele ases +Ġ4 7 +ĠO M +ê°Ģ ë +ĠB ien +ĠRe f +è¨ ĺ +ĠSt a +ĠE gg +Ġindic ator +ps on +Ġnas ıl +R ight +Ġcon vey +Ġkn ot +Ġconnect s +ul as +Ġpre ced +Ġine quality +am iento +Ġrep ly +O Y +Ġdism iss +ĠëIJ ľ +çĦ ¡ +ĠÑħоÑĢоÑĪ о +Ġm éd +Ġrandom ly +ĠO nt +u ard +Ġpull s +ĠÑĤ епеÑĢÑĮ +ĠNe ed +ĠSo ft +Ġstrength s +Ġgo ed +um en +æŃ » +Ġíİ ¸ +Ġд об +Ġclar ity +ĠA i +Ġball oon +ĠP and +ĠìķĦ ëĭ +Ġsh iny +Ġsmall est +on ia +h ill +ot ing +Ġe ing +Ġmere ly +Ġse us +Ġн еп +Ġí Ĩµ +Ġgu ides +Ġspecial ist +Ġste ak +ãĤĪ ãģĨ +Ġmig ration +que le +Ġru ined +Ġpu pp +å¥ ³ +Ġk end +ang an +Ġpal m +Ġunf air +Ġz m +ĠD V +ch ester +и Ñİ +Ġo oh +er g +AT H +° © +åĵ ª +r ison +Ġinvol ving +Ġpart ly +anç ais +Ġv ow +Ġprom inent +Ġcry st +ib a +Ġdes erves +Ġover t +Ġsens it +ĠWh e +Ġtight en +Ġintim id +Ġal iment +w ill +Ġstrength en +ĠT an +åı Ī +ãģĹ ãģ¾ãģĻ +on i +ĠM un +Ġpro ph +Ġrehe ars +ĠK le +Ġve ces +Ġwonder ed +ok i +Ġsens es +´ì ĭ +Æ°á» Ľ +ĠÈĻ i +Ġmuch os +Ġwatch es +ortun ate +ĠJ uan +ìŀĸ ìķĦ +ÑĢ е +e i +ion en +Ġexperiment al +Ġda ughters +ภĽ +Ġment ally +bec ca +aw are +ìĦ Ŀ +Ġwhat soever +Ġen ables +ĠL ow +o id +ภĬ +ó d +Ø º +Ġconstruct ed +ĠLad ies +Ġaccus ed +Ġа н +D an +Ġsp awn +Ġcontain ers +Ġart istic +ı p +Ġdisc l +Ġaut res +in as +ĠN ation +Ġn ag +be an +w he +ľë ıĦ +ĠSe oul +Ġíı ¬ +ĠN ich +Ġcomp lement +Ġinter ven +ĠMod el +ĠOr ange +nam on +Ġcalcul ation +se e +Ġusted es +Ġle b +Ġdo ct +Ñĸ н +Ġf oster +Ġel astic +ĠAh h +Ġa ce +ĠP ink +ĠJ eg +Ġde er +ãģĹ ãģĦ +s is +Ġjak o +ĠEm ma +ÑģÑĤв енно +Ġport rait +Ġmak er +Ġa ument +ÑĢ об +Ġairpl ane +Ġtransparen cy +Ġadjust ment +ĠCD C +ç on +Ġupload ed +Ġд ейÑģÑĤв +Ġго ÑĤов +Ġit er +Ġcur se +ô n +mer ce +ar an +Ġle ak +çµ IJ +Ġabs ence +Ñģ кий +Ġread ers +al er +Ġbene ath +ang o +h etic +Ġfin ns +Ġpo op +Ġdu plic +H i +ig s +olog ically +op p +Ġd izer +ĠAll en +Ġgl i +Ġacc eleration +Ġvit amin +ãĥ Ń +v ä +ĠAc cess +à® Ļ +r ás +Ġappreci ated +Ġn ah +Ġpos ter +Ġt ale +Ġhighlight ed +æĸ ĩ +ż eli +Ġblock chain +Ġmic row +Ġcin ema +ĠCh ang +ĠSe arch +ust ers +ĠZ ero +ĠDiv ision +ÑĢ аÑģ +Ġsca re +Ġj elly +ĠAdminist ration +S O +Ġl ined +Ġê° Ħ +Ġge ben +Ġso da +Ġwin ners +³ ¼ +Ù Ĵ +ĠAm b +åķı é¡Į +å Ķ +Ġpe g +å· ± +4 3 +Ġra us +Ġre wards +Ġinc lus +Ġhigh way +Ġha h +Ġmultipl ied +Ġs ẽ +Ġdisci ples +Ġn ing +Ġdress ing +Ġattrib utes +ĠM osc +ĠGree ce +Ġse k +ĠLe arn +Ġj us +rend re +Ġperson ne +pl ete +Ġpl acing +Ġl uego +ill ance +Ġоб Ñī +Ġprov ision +Ġl ion +t ra +bo ards +Ġbehavi our +he y +Ġsubscri ption +Ġprot agon +ãĥ £ +Ġvar a +ĠÅŁ u +Ġha ha +Ġteas poon +æ Ł +av oir +Ġcrypt o +ĠÑģÑĤ аÑĢ +ĠSt ore +ab s +ĠStud ents +Ġla und +int o +Ġapproach ed +° ľ +ÑĥÑİ Ñī +ĠL abor +ot es +iat ric +Ġgro ÃŁ +ut ive +Ġи д +ĠG ib +Ġpl acement +ĠdifÃŃ cil +Ġf rog +ĠвÑģе Ñħ +ĠJ r +az ed +Ñĥ Ñī +Ġê ¼ +fr ame +а еÑĪÑĮ +Ġlock down +åij ³ +Ġmed i +Ġ×Ķ× ŀ× +ени й +em ale +ì¢ ħ +ater al +Ġdist ant +Ġbe ars +Ġjournal ist +è§ £ +ĠMarsh all +ĠIh nen +uet ooth +b ag +ĠÄij ã +ĠHigh ness +Ġì° į +и ка +ĠW u +ĠFr an +Ġp eng +Ġf on +Ġhypothes is +ĠÑĢ Ñĥ +Ġl y +× ļ +ìĽ Ķ +ĠRad io +ภŀ +D av +Ġembarrass ing +ĠìŀĪ ìĸ´ +Ġcast ing +Ġc age +ĠP sych +ĠìĿ¼ ëĭ¨ +ĠÅ ¾ +im b +Ġdirect ors +S H +ĠÏĦη ν +á»ģ u +Ġkon uÅŁ +Ġoption al +quar ters +ik er +ĠS ant +Ġvers es +ë ¶Ģ +Ġo lar +ĠÏ ĩ +ãĥ ķ +Ġγ ια +ĠI mm +Ġcontrovers ial +Ġer sten +Ġreci p +ĠChristian ity +Ġê´ ľ +ord on +×ķ× © +Ġsl ash +ĠP f +Ñĥд ÑĮ +×ķ× Ŀ +ĠPer ry +Ġm amy +Ġbackground s +Ġà®İ ன +Ġpend ant +ĠColumb ia +Ġin verse +ĠÑĩеÑĢ ез +Ġs v +Ġdig ging +4 1 +ch em +Ġnavig ation +ĠSh in +ĠFr ont +P D +Ġbe aring +ĠW asser +Ġw ax +ĠCH RIS +ch ing +Ġpress ed +E l +ĠD al +ons in +Ġb inding +Ñģк ой +po ons +Ġmo ck +are st +к ÑĢа +M M +Ġcor rupt +st orm +Ġref res +ĠCo ach +ll ä +ĠTH IS +Ġpar ag +Ġìĵ ° +p ool +Ġbill ions +Ġê¹ Ģ +gr oup +Ġwel coming +cell ence +ĠDu ke +ê¸ ´ +Ġprim era +ìł ¸ +Ġp ond +Ġstat ue +Ġêµ ¬ë +Ġh atch +Ġinstrument al +Ġresident ial +ì» ¤ +Ġaccept ing +osh i +d ate +ĠìĶ ¨ +Ġplant ed +Ġj oking +Ġì Ħľ +Ġh ated +ĠÑĢаÑģ Ñģк +Ġsle pt +Ġpack ages +Ġisland s +es en +ÄŁ ı +Ġdi agon +ĠO sc +Ġmes h +Ġsc ales +ar ity +ĠDef ense +ãģ¡ ãĤĩ +ĠLew is +ĠÑģ егоднÑı +Ġfl ies +uin ely +ĠCons ider +Ġst ark +he w +ĠAs ÃŃ +³ ´ë +Ġprop ose +Ġíķĺë ©´ +od o +ĠNorm ally +Ġhe eft +ĠHarr is +g ro +ĠBlo od +b ase +Ġi OS +Ġtouch es +Ġinsp ir +Ġ× ĵ +Ġb inary +Ġì¶ Ķ +Ġser ial +Ġ ion +Ġunemploy ment +Ġodd s +ĠF ab +ĠF BI +BR UN +Ġweight s +ν ο +at ile +Ġnurs es +Ġinvolve ment +ĠíĶ ¼ +Ġgovern ance +Ġâ Ĥ¬ +ÑĢÑĥ п +ier ra +íĺ ķ +ĠJ erry +Ġbe ard +Ġsal vation +ĠAl ong +g entle +ĠK i +b ol +ĠPl at +Ġhas ht +è¿ ij +Ġw are +Ġpart ie +y cz +Ġint r +F ih +n ent +Ġche at +il en +Ġë ¯ +or ie +Ġfá cil +et ric +Ġaffect ing +unci ation +Ġaff airs +Ġbe e +Ġview ing +Ġor ang +ĠL an +ĠС ÑĤ +ä¸ ĸ +ĠM es +ĥ ģ +er ie +Ġes pa +Ġinter pre +Ġposs ess +Ġpure ly +rit o +f ound +as ma +ìłģ ìĿ¸ +Ġexam ine +ĠÑĥ м +Ġbes ch +ĠTom orrow +ĠB lock +Ġvari ant +Ġprefer ence +Ġcoach es +Ġmedic ations +Ġíĺ Ħ +Ġemp ire +ë Ħ¤ +ĠIll inois +Ġcris py +Ġth ì +Ġbe es +7 7 +Ġgl ow +è º +ĠStud ies +åIJ Ħ +ĠChall enge +Ġunlike ly +Ð § +ıy orsun +DI E +Ġminim ize +iz ard +Ġú n +Ġencont rar +ĠK ill +å » +Ġvan illa +ĠGr ant +ĠG T +se a +Ġs ought +в од +Ġnä m +ĠA unt +OW N +Ġpump kin +st ellen +Ġr ag +ег да +Ġstory t +Ġfor um +æ© Ł +Ġestab a +uch e +Ġcon gress +ĠRe y +Ġdram atically +ĠSp ort +ĠYe llow +Ġê³Ħ ìĨį +Ġdisg usting +ĠRe cent +Ġacqu ired +Ġc ables +çĶ ļ +d in +Ġv isto +Ġcommunic ating +ÑģÑĤав лÑı +еÑģ ÑĤо +ãĥ»ãĥ» ãĥ» +Ġré g +Ġso cks +Ġpro ces +be cause +Ġut ter +Ġcoloc ar +Ġnew est +Ġgr amm +è¡ ¨ +ä¸į çŁ¥éģĵ +Ġsh ifting +Ġcar rier +ĠÑģк оÑĢ +ĠSch w +Ġexec uted +Ġmaint ained +ĠÏ Ĩ +ĠM oses +Ġdis se +Ġhor r +ãĢ ľ +Ġr ally +Ġall em +ĠEvent ually +Ġdi yor +lv ania +Ġsch nell +Ġê³ ¼ +Ġë§ ¤ +Ġstrugg les +l ate +Ġclar ify +é ment +Ġmulti plic +иб о +Ġjour n +Ġfra gr +Ġsurprising ly +Ġdesper ate +5 2 +Ġs ul +ĠRe ad +ĠF ried +Ġm ond +w oo +Ġorgan izing +ãģĹãĤĩ ãģĨ +ĠSo on +Ġв опÑĢоÑģ +ĠN ur +ĠÐĹ Ð´ +Ġsp ider +е ÑģÑı +Ġtutorial s +Ġnutri ents +or er +Ġcoe fficient +Ġarrange ment +Ġpr icing +n an +y u +B L +Ġtri be +ĠHow ard +un ks +Ġnew er +Ġprov in +Ġpred iction +h os +Ġol sun +ĠAr ound +Ġv ier +ĠÑģÑĤоÑĢ он +Ġv alley +ĠE la +if i +Ġgal axy +Ġtran qu +Ġad vers +ĠTem ple +iff s +ig ence +èĩª å·± +Ġkön nte +ĠÄij ó +D id +Ġphotograph s +ĠA WS +ÑĨи Ñı +Ġgu ards +Ġappoint ed +ĠG il +Ġм ом +Ġc od +ĠUn like +Ġeven ly +isc onsin +Ġest ou +Ġm nie +ĠEx ec +ĠM V +ĠE ine +ä¿ ¡ +ĠRog er +ĠF ac +ĠL ist +Ġf uer +аеÑĤ е +om ed +Ġattract ion +èī ² +Ġter rain +ĠD rop +Ġcorpor ations +Ġsci ences +Ġthr one +ãģĦ ãģŁ +Ġa j +ĠR ot +çī ¹ +Ġsupp orters +ĠB ere +H ere +Ġdifer entes +Ġsignific ance +Ïĥ η +æĪij 覺å¾Ĺ +Ġcl amp +Ġë ĮĢë +Ġfab ulous +re z +æĮ ģ +Ġassum ptions +ut her +w id +p ot +è¿ İ +Ġy an +ul in +ÑĢ Ñĭв +ĠSl ow +ĠPenn sy +Ġíķ ´ìĦľ +Ġme io +Ġwealth y +ĠE ight +Ġpul se +Ġfr iction +id ity +ĠH oll +i yorum +Ġsound ed +ĠC arr +Ġfor k +â ĺ +ĠP A +Ġcons pir +Ġc oding +r t +ĠTy p +Ġìĸ ij +Ġп ог +Ġmis er +ĠÑģм оÑĤÑĢ +ĠSw eden +Ġolar ak +ĠZh ang +ĠCh i +ĠT itan +Ġscreen ing +ĠSp ider +ĠÅŀ imdi +Ġobst acles +lar a +Ġchalleng ed +p se +T ON +á» ¥ +ĠP i +Ġlag i +ie urs +Ġhur ting +Ġneg lect +Ġgener ating +Ġyoung est +Ġaud it +ĠÑĢ ез +Ïģ ά +Ġdon ate +ĠPD F +Ġvis its +Ġcru ise +P P +as er +Ġw sp +back s +iv als +ãģĨ ãĤĵ +Ġde ve +Ġprop ort +Ġc ath +ĠE ffect +Ġwind s +ĠìĻ Ķ +Ġchart s +Ġs ama +Ġautom ation +Ġпок а +Ġol an +Ġbo ats +Ġca fe +Ġden ied +ĠM ama +Ġblock ing +ĠTh or +Ġphenomen al +Ġstake holders +Ġun os +Ñĥ еÑĤ +ĠAb raham +ãģ§ ãĤĤ +Ġdetect ion +Ġjur is +Ġpower ed +z ial +Ġwel fare +Ġup grad +Ġmoż na +ĠC ase +c ular +Ķ ìĿ´ +ãĥ ģ +ĠGu ess +Ġcy cles +ä¾ ĭ +çµ ¦ +ro ck +um i +Ġel ite +Ġqu è +åł ± +ÑĤ ом +Ġsh ore +gun ta +Ġk u +Ġfaith ful +ĠJ eremy +a id +à · +ug al +å°į åķĬ +ĠV el +Ġvra i +st ell +¨ ¸ +Ġk ol +è ½ +Ġquant o +Ġз аÑĢ +Ġ200 2 +es y +Ġres erve +Ġмом енÑĤ +Ġdeploy ed +Ġdefin ing +Ġsa u +Ġga at +" ) +Ġtrans mit +Ġpubl ishing +Ġrank ing +Ġoff ense +Ġ4 6 +p in +ĠT aking +Ġentit led +Ġgen uinely +Ġvari ations +Ġfind e +Ġt au +Ġunf ortunate +ĠR ah +port s +Ġc Å +Ġmon key +Ġbr ac +we i +l ung +Ġart if +Ġsy rup +ĠÐĶ ав +Ġlift ed +Ġche z +ĠAd vent +ĠSt ock +Ġdo l +м ен +иÑĪ ÑĮ +Ġy n +g io +d et +Ġdes se +Ġg ri +ĠChair man +ç ħ +Ġcu enta +an im +Ġcra b +Ġesc al +Ġpremi ère +ĠGe f +Ġd ining +Ġsevent h +Ġch asing +ĠT ower +Ġbrut al +Ġfundament ally +ãģ¨ ãģĨ +л ениÑı +st age +Ġacqu is +Ġcyl inder +Ġcomm ander +m em +ĠU V +ha ppy +Ġe psilon +Ġinv itation +Ġfar mer +ch air +Ġdest iny +Ġso vere +ĠHeb rew +Ġserv ant +Ġbe w +Ġg ast +ut ies +Ġadministr ative +ĠComm and +é ta +Ġnit rogen +ê· ¼ +Ġab i +Ġvill ain +Ġblank et +ĠS end +Ġbeat en +² Ħ +Ġvol unt +Ġschol ar +ĠEm peror +Ġ4 3 +v able +ĠD us +ĠG U +Ġtarget ing +ww w +Ġamend ment +ìĨ Įë +Ġt ing +Ġn asty +Ġg auge +ĠÑĢ од +ĠH ans +Y our +α ν +Ġpro jet +ĠHawai i +Ġsusp icious +Ġsch w +Ġremo val +Ġint rig +ĠM U +Ġp onto +ठ¾ +Ġоб ÑĢаз +Ġguess ing +p ace +Ġm others +Ġmill imeter +л ение +没 æľī +Ġavail ability +ic z +æŃ ¤ +Ġfr act +Ġbas es +k m +ĠB TS +ĠF ield +Ġd zie +Ġseg undo +ĠëĤĺ ëĬĶ +Ġlegit imate +im as +Ġв н +Ġcor ruption +Ġsm ash +ĠVal ent +Ġalign ed +ĠPennsy lvania +Ġg ab +ĠE un +ent h +ĠMor ning +Ġcand le +Ġback pack +ĠIslam ic +a ções +Ġenc ry +Ġmushroom s +íĮ Į +d it +Ġtrans it +ĠW isconsin +Ġparticip ated +ĠIl s +Ġunf old +¶ Ģë +Ġprof its +Ġwar ming +ĠG ang +Ġnetwork ing +Ġme ga +Ġthorough ly +le ments +ĠH m +Ġdec iding +Ġemotion ally +Ġexha usted +ĠÐŁ оÑĤ +c ido +ĠHT ML +Ġcopy right +Ġmel ody +y im +Ġand ers +osh op +Ġë³ ¼ +Ġathlet e +ĠG E +Ġfrequ ent +Ġdes ires +Ġneed ing +ĠY un +Ġrif le +Ġlo ver +' T +Ġd ense +Ġt ão +Ġnot ified +Ġid i +ìĹ Ń +í Ĩ +Ġinteract ing +Ġrapp ort +еÑĢ и +s ki +Ġb esser +Ġmanufact urer +ĠK yle +Ġaccount able +ĠS ak +ĠP il +ĠD omin +Ġpres um +ĠÐĴÑģ е +Ġvine gar +Ġguarante ed +çľĭ åĪ° +Ġhand led +éŁ ³ +c at +Ġcivil ization +Ġaccom p +ĠV M +é mon +Ġde ze +Ġgrad es +Ġsoll te +Ġst aring +×IJ× ª +ar nt +Ġhoriz on +Ġtrav ail +h our +第 ä¸Ģ +ĠE D +ĠD ak +Ġn y +Ġcon ve +ĠCh am +Ġfir ms +ĠL iu +ĠÑģÑĤ ÑĢан +Ġli bert +Ġlens es +Ġint ake +ĠвÑĭ б +Ġmens en +h el +Ġpract ition +Ġ3 50 +ãĤ ³ +F O +Ġbed s +Ġancest ors +ĠìĹĦ ì²Ń +Ġdistur b +ĠLast ly +ĠSupp ort +ี à¹ī +ĠCor ona +Ġenthus i +Ġвоз м +ĠìĤ¬ëŀ Įë +Ġ5 2 +b ird +Ġredu ces +ĠìŀĪ ìĿĦ +ĠG ene +êµ IJ +ÄĻ p +ĠÃľ ber +Ġconcer ning +us er +Ġconcent rate +ĠWH AT +ish op +onym ous +no ld +Ġsuggest ing +© ° +ĠF ish +.... .... +Ġvess el +Ġtrabaj o +ãģ µ +ĠO cean +å§ IJ +y g +Ġtown s +d el +Ġterr ifying +Ġçal Ä±ÅŁ +Ġs ino +Ġe ats +Ġge z +Ġg eme +ĠìĻ Ħ +Ġcomp art +Ġimplement ing +ĠPot ter +ĠGerm ans +Ġg ÅĤ +Ġt ennis +Ġcar pet +au er +ĠSaud i +ye ong +Ġcur ry +ĠFore st +Ñĭ л +Ġfif teen +Ġbol ts +Ġ{ \ +¬ ´ +Ġsett lement +Ġl ange +Ġb am +G et +íķ Ļ +Ġsw ap +ĠK han +Ġcomm ence +Ġquar antine +Ġsc ored +ç ĸ +Ġ19 50 +Ġthick er +Ġsû r +åı £ +ĠLar ry +Ġall ez +ìĭľ ëĬĶ +Ġg ü +Ġspect acular +/ / +b oth +Ġst ats +å¦ ³ +ĠN ancy +Ġbun u +Ġcr ust +Ġactiv ated +Ġê·¸ë ŀ +out he +Ġport s +Ġne ural +Ġj aw +Ġobserv ations +Ġvo it +ab an +ả i +¦¬ë ¥¼ +om es +௠ĭ +qu i +Ġkind ness +Ð ij +Ġ4 1 +Ġmoder ate +Ġang els +ĠT amb +è t +Ġch lor +ĠBill y +ì² ĺë +ac on +Ġselect ing +ĠDel ta +Ġn ull +den ly +Ġci ud +Ġtend ency +Ġbreak down +Ġm int +ÑĦ оÑĢм +or ph +Ġda wn +s pr +ĠW ILL +äch lich +Ġpu ppy +7 00 +Ġà® ¤ +Ġfail s +ĠCon c +Ġrel atives +Ġinv iting +Ġaut onom +Ġcomp osed +Ġun ity +Ġdec is +Ġaccess ories +ĠC ass +Ġb ist +ĠT ip +ì§ ¸ +Ġp unt +Ġr áp +éĢ ² +AN K +ãģ ļ +ex ist +Ġcompat ible +Ġn er +Ġе мÑĥ +Ġa plic +Ġb apt +Ġfail ing +ĠTam am +Ġos cill +Ġletz ten +Ġrepeated ly +Ġjung le +ĠP ush +h ai +ĠÎ · +Ġdead ly +Ñı ж +wi Äħ +ĠComm on +ĠÎ ķ +Ġsk ate +T C +ĠMin i +Ġhob by +ầ n +Ġrout es +Ġam igos +Ġcon jun +Ġpartners hips +Ġno vo +Ġa ver +Ġpou vez +br idge +Ġpre oc +h im +Ġtur b +Ġso b +ĠSn ap +Ġì° ¸ +min ute +Ġtra ject +uj ÄĻ +Ġe ager +Ġregul atory +Ġbank ing +b ling +ÑĪ ÑĮ +a ż +Ġbiz arre +it ated +d ire +Ġthreat ened +Ġsh ining +Ġn esse +Ġcor ps +ĠÑģ Ñĥ +Ġt eles +Ġtem p +t em +Ġк ан +Ġfe ver +N ew +Ġheav ier +ĠS ah +b ud +Ġout ros +Ġì° ¾ +Ġëª ħ +arr ing +Ġê´ľ ì°® +ĠN ap +Ġse min +ĠTh an +if s +Ġdes en +ĠÑĤак ое +Ġlos es +ĠB alt +k on +Ġнап ÑĢ +Ġvo is +ĠMosc ow +Ġch airs +h is +Ġrefuge es +k g +Ġk ole +į ¨ +аÑģ ибо +¦ ½ +ĠUn iverse +ĠDire ct +Ġche ating +ĠC in +Ġpat ri +Ġadv ise +ĠN ether +Ġprime iro +Ġmention ing +n ut +5 6 +ar ı +Ġpet ite +b led +Ġpens ar +ic io +IN D +Ġveter an +Ġlad der +Ġconsequ ence +ож ал +ĠB urn +Ġr ug +ĠM ade +Ġg it +" ... +Ġcompet itors +Ġprz ed +Ġapp arent +ĠArgent ina +ĠWork ing +Ġcollabor ate +w oman +Ġret ain +Ġle urs +Ġdash board +×Ļ× ĵ +ĠEar ly +B M +Ġе Ñij +ол ог +Ġsatisf ying +Ġoft entimes +Ġma pping +ünk ü +ar th +f old +Ġlaunch ing +Ġa ura +Ġprec ision +work s +G od +Ġstra p +ĠIm per +Ġr ivers +Ġ | +Ġcu er +reg on +Ġarri val +ка Ñħ +ĠM iami +ан Ñĭ +Ġsurviv ors +ĠSen ior +Dav id +Ġest ado +Ġse ctors +Ġpop ping +Ġch im +ay ı +Ġkun nen +Ġgall ery +Ġsun light +ese hen +Ġye lling +ĠMe in +ĠPho enix +Ġman o +Ġhistor ia +Ġoccur ring +æ¬ ¸ +ì ¸ +ад и +å¾ ħ +Ġinstitution al +ĠT ut +ç ² +Ġsl aves +ãģ© ãģĨ +Ġforg iveness +Ġtw in +ĠHy un +н ÑĮ +ĠK omm +and ra +sh ot +ss ä +ĠÑĨ е +at ta +Ġexp ense +ĠG PU +ĠP ast +rib ly +ĠëŃIJ ìķ¼ +Ġгод а +Ġresp ir +æĿ ± +ĠQue ens +h ops +Ġs érie +Ġpre f +Ġcom ed +Ġpl ut +ĠOver all +Ġãģ Ŀ +Ġc ush +Ġring ing +Ġincor rect +ĠÑģÑĤ ÑĢ +Ġgeomet ry +Ġadvert is +ĠÐ ¨ +Ġreview ed +ãģĤ ãģĤ +Ġdo zens +Ġdeterm ination +ĠPh ill +Ġcontrib uted +ĠC it +Ġpass engers +Ġcôt é +Ġre ver +Ġtechn ological +Ġall en +Ġr aining +av i +Ġsal ty +Ġtyp ing +ĠÑĤ е +Ġt ilt +Ġì¹ ĺ +Ġо ÑĢ +ĠпÑĢ Ñıм +Ġr ou +Ġare na +ar at +åĪ « +HH HH +Ġmanufact urers +ĠEd ward +Ġt uck +Ġbl ows +ing o +ĠMar c +ìķĦ ìĦľ +M ich +ĠCle an +è ´ +est o +ĠP ack +Ġsha ft +BRUN O +Ġa ven +u ur +Ñģк олÑĮко +ê´ Ģ +Ġautom ated +Ġvent ure +Ġsurve illance +ĠG row +ĠE mer +Ġд оÑĢ +Ġinvest or +ĠY ok +Ġl atter +ĠN I +Ġfunction ing +ĠHam ilton +Ġ5 1 +Ġmurder ed +Ġanch or +Ġc uc +ĠSC P +ĠMad am +Ġconstra ints +Ġb arn +ank en +Ġë§İ ìĿĢ +ĠMot or +ĠDo ing +Ġam en +et ts +Ġinst ructor +eg t +ak o +Ġpost ure +iv ia +ĠPol ish +Ġдв а +Ġcolor ful +Ġel bow +Ġpar le +Ġpass er +Ġcond em +ort al +Ġfert il +ا د +ĠCol omb +Ġalign ment +Ġastron aut +ĠM ut +Ġsal mon +Ġstructure d +ŀ ר +Ġclick s +Ġm iej +æĶ ¿ +ãģĦ ãĤĦ +ĠR ound +Ġrain bow +ĠV A +ãģĶ ãģĸ +ì§ Ī +ot z +, +Ġch ords +ĠSand ers +Ġë¶ Ħë +B en +Ġdar über +ili ans +Ġorder ing +ĠMan h +Ġkil ogram +Ġkar ÅŁ +Ġgr asp +Ġghost s +al en +ĠJ edi +Ġб ли +Ġdownload ed +Ġconduct ing +ĠH ak +Ġresearch er +il an +go od +ĠH annah +ĠdÃ¼ÅŁ ün +ĠMess iah +u ity +ion a +Ġprob able +ĠY E +Ġindepend ently +Ġbuff er +b urn +our d +ĠMc K +Ġl ingu +uj emy +еÑĢ ÑĤ +Ġintuit ive +Ġcrack s +app ropri +nt y +Ġge en +Ġl end +Ġcert ification +ID S +un ter +pe es +Ġtr ump +Ġbank rupt +Ġfe as +è Ĺ +Ġdu ż +æ¸ ħ +Ġvirus es +Ġ5 8 +g od +Ġж ел +Ġst alk +I nd +ach i +ĠC F +ĠC ond +Ġsan ct +Ġcont en +Ġfre ed +ĠR T +Ġment ors +ì¡ ± +Ġport able +ĠPaul o +r ane +HA HA +ĠS ection +ç Ĩ +hy un +ĠÎŃ Ïĩ +ĠP ub +ĠInd epend +Ġcomp ounds +ĠÑģ Ñĭ +Ġmess aging +Ġded ication +Ġnot icing +Ġdevot ed +ÑİÑĤ ÑģÑı +Ġsn akes +Ġbattle field +p ers +Ġdel a +9 2 +Ġha i +ill ä +ér er +e very +Ġrespons ive +×Ļ ×ķ +op f +é ī +Ĭ ¸ +Be cause +Ġtour ism +Ġê·¸ ê²Į +×ķ× ¦ +Ġcan s +st üt +Ġdon ne +ĠD ios +ĠU ber +act ory +Ġorient ed +ĠH erm +Ġpat ron +ur f +be i +Ġprogram a +ĠOh h +gen er +Ġf ist +ĠW endy +Ġand a +Ġguess ed +Ġfre ak +ä¸Ń åľĭ +ĠK ings +ch ool +Ġoff line +ĠIndian a +ĠAll iance +Ġ5 3 +Ġpartic ul +ĠF ocus +Ġinhab it +Ġê°ĻìĿĢ ëį° +ĠMc G +ows ki +ĠìĿ´ ê±´ +Ġpa ÅĦst +он и +itt a +Ġconfirm ation +ĠBrook lyn +Ġnood le +f und +it ud +Ġgrand parents +Ġbar becue +ει ÏĤ +Ġ á +Ġball ot +ĠV eter +Ġpip es +ig ious +ĠG raph +est ed +Ġë¸ Įë +ĠK E +ãģ¡ãĤĩ ãģ£ãģ¨ +Ġe ins +Ġhat red +ãģij ãģ© +Ġd ang +ee ee +Ġarch ae +ĠJes se +Ġdetect ed +Ġsen i +burg h +Ġdispl acement +Ġdo p +Ġcondition ing +Ġне ÑģколÑĮко +Ġdistur bing +P H +Ġthin ner +Ġwound ed +ĠCu ando +Ġcush ion +Ġwh ites +Ġprefer ences +Ġì¤Ģë ¹Ħ +Ġka ż +ĠG ate +ĠP ath +d les +à¸Ħ ร +im ore +Ġë³´ìĹ ¬ +Ġdiscipl ines +á» ı +Ġmes ma +Ġìĥ Īë +Ġìĭ ¬ +Ġg ing +Ġumbre lla +IGH T +Ġp ension +Ġcomb ining +S S +Ġrect angle +á»ĩ t +Ġpro xim +ĠC ow +¸ Į +Ġintention al +æķ Ļ +Ġdec id +ĠÑģк аж +ĠU ma +ias m +b uz +Ġdebr is +Ġc ass +ĠP rop +is ka +ë ł¥ +ester ol +uss ian +ìĿ´ë ŀij +Ġun limited +Ġadm ire +Ġtight ly +Ġgen ome +ĠJun ior +ven ir +g us +Ġc Äĥ +ĠV lad +Ġí Ĥ +Ġrel ativ +in ci +Ġaun que +ĠBo ys +ÑĨи он +ĠSw iss +Ġphys icians +Ġíı ī +ĠP ET +Ġw ounds +ab out +Ãł i +on z +ur ities +ĠÑĥв ид +å· ¦ +Ġment ality +Ġvari ance +Ġseg unda +Ġvol cano +al ie +ॠĩ +Ġt iles +ĠT erry +ĠاÙĦÙĦ Ùĩ +Ġcan on +Ġsc attered +pt on +Ġdefin itions +Ġal gebra +ot en +ab lo +ij uana +Ġwra pping +Ġses ame +ĠнаÑĩ ина +ĠAl f +ĠÐł оÑģÑģ +or no +Ġan kle +Ġspecial ty +Ġattempt ing +ili ation +Ġ19 20 +Ġphen omena +ĠPro duct +ĠB uck +ĠA ww +se en +Ġvo id +ĠFrank lin +Ġadvoc acy +ĠS ep +Ġcool est +ĠÑģ ÑĢазÑĥ +ĠQu and +Ġ9 00 +ĠTr ad +d ies +Ġhas h +æĪij å°± +ä¹Ł æĺ¯ +Ġpot s +Ġsad ly +Ġvi able +ĠT iger +ĠON E +Ġneur ons +ow anie +Ä Ĺ +ĠSh ar +ĠLand es +Ġconfer ences +è© ² +Ġcred ential +Ġl ime +ine e +x it +p ay +Ġinc ons +Ġ>> : +èª į +Ġí ŀĺë +Ġless er +Ġsp ill +Ġprem ise +Ġ36 5 +ĠH ost +Ġtom ar +×IJ× ľ +ë ²Ī +ĠWhat s +Ġlight weight +ĠM ap +f ia +ells chaft +Ġvend ors +uest o +ĠM ister +ĠÐŁ ÑĢи +åı ³ +h ma +Ġintention ally +ĠT ang +éĹ ® +Ġident ification +Ġetc etera +ĠN ee +ĠÑĤ ÑĢи +ê· ¸ +Ġcrypt ocur +Ġin hale +Ġadd ict +åIJĦ ä½į +Ġma u +ĠÑĤак аÑı +Ġë² Ħ +Ġcomp rar +ied zieÄĩ +ĠоÑĤ но +Ġbegin ner +Ġм Ñĥж +Ġobs c +Ġlim iting +asc ular +Ġins pection +ac i +Ġre jo +M us +Ġz aten +Ġsz cz +ĠMad rid +Ġvar ieties +Ġest Ãł +ĠSh akes +Ġk its +Ġad minister +Ġla va +Ġg Ã¥ +è© ¦ +ת ×Ļ +ĠWay ne +Ġinst agram +Ġr ated +p aper +Ġb ild +Ġpret ending +Ġobser ving +ĠÑģам ом +Ġtr or +Ġorgan isms +Ġfal ta +Ġh ometown +ç ± +Ġí ĭ +Ġche g +Ġì ¡ +Ġcomm a +is é +Ġlike lihood +av ored +Ġgel di +ни ков +Ġmed io +Ġjak ie +ĠJ up +Ġgreen house +Ġsp it +ко е +Ġк аж +ĠG ram +ĠCon ference +Ġdef icit +s ın +in se +u ÄŁ +Ġr icht +Ġcoinc idence +åı į +Ġeu rop +Ġbutter fly +p read +Ġìĸ ¼ +èĢ ¶ +Ġwa vel +ĠIn fin +ĠPlan et +Ġself ie +ient ras +Ġar rog +os er +id al +ł×Š׳×ķ +üt ün +Ġfresh man +ĠMach ine +Ïĥ ÏĦ +ĠD ia +ìĿ´ ëĭ¤ +ãģĵ ãģĨ +ne a +Ġlist ing +Ġconfig ure +ut or +U p +ts chaft +ri ère +Ġup wards +ĠÑħоÑĩ Ñĥ +Ġswe ep +B r +Ġexpress ing +Ġun happy +Ġmand atory +g ender +ĠA ÃŃ +Ġindic ators +Ġoil s +n ote +Ġseg ur +ож еÑĤ +yn asty +Ġdist ances +Ġmer ge +BER T +Ġsur render +Ġbu at +ĠA wards +Ġseñ or +od ox +Ġfl avour +Ġab dom +Ġconfig ur +8 6 +ĠDI Y +Ġrig id +° ĺ +Ġcorpor ation +Ġg room +j aw +ĠNe ar +ил о +Ġoper a +ĠIn nov +и ÑĢа +ĵ ± +Ġspec ified +Ġcos m +ĠFre edom +Ġcl own +ĠN em +Ġв ол +Ñij н +Ġchar ger +à¹ģ ล +Ġinflu ential +äs ident +é ¤ +ĠìĦ łë +Ġvol umes +æ IJ +Ġout ras +ĠTw itch +Ġfound ing +Ġa while +Ġco il +ê° Ļ +Ġc ả +ĠTh row +ĠH ence +omm t +ĠBen jamin +глÑı д +T ime +ob ic +Ġm our +Ġd read +ĠL Ãł +ĠCh ile +Ġpre val +Ġv ain +Ġart ık +Ġpres erved +ĠоÑĤ д +Ġware house +Ġbest e +ĠSever al +ĠS ituation +Ġcard board +T od +er na +Ġgar ant +Ġgest ure +Ġh en +Ġspe lling +ose xual +Ġan ne +Ġm ice +ĠMe ine +c ard +Ġre bell +Ġcert o +Ġìľ łë +Ġvers chied +ĠB os +Ġinv ention +Ġtr ze +Ġman ière +ĠCh ad +Ġsp re +Ġorganis ations +Ġpoor ly +Ġan terior +Ġst air +к ÑĢ +Ġatom ic +Ġsymp ath +Ġcontin ually +Ġkle ine +è te +и Ñī +ο ÏĤ +pe ut +Ġrep osit +Ġent ra +E m +Ġfinan cing +Ġмн ог +Ġthe sis +ĠCom puter +e au +ĠT ree +Ġbr ide +ons ieur +sh ire +w ic +D E +ĠìĪ ĺë +Ġac om +ĠP O +ers ch +Ġпом оÑī +ĠAr men +Ġì£ ½ +Ġz or +Ġprint s +ĠD ass +æ¸ ¯ +Ġdur able +ĠTrans port +ìŀIJ ê°Ģ +Ġл ег +Ġdé t +ô le +am ous +Y N +Ġcl iff +Ġgramm ar +ĠÐŁÐ¾ ÑįÑĤомÑĥ +ĠlÃł m +es ch +Ġmiser able +Ġvol ts +ĠC ad +uk an +ÑĤ ив +r ust +Ġìĺ¬ë Ŀ¼ +Ġver k +Ġchick ens +ĠY oo +Ġout fits +c ode +Ġhier archy +net es +Ġcounter part +Ġt ôi +Ġt ed +ĠB art +Ġë Ŀ¼ +ĠGen au +Ġinc oming +ĠA BC +ri que +ĠоÑĤ п +qu al +Ġincent ive +Ġih ren +׳ ×Ļ +lo e +Ġ19 30 +Ġbar g +Ġd iction +Ġön ce +IN S +Ġre h +isia j +m outh +Ġsc oring +l ık +ĠìķĦ 주 +OR IA +ĠEst ados +Ġcompan ion +Ġasse mble +Ġpun ished +Ġit al +Ġprev ents +ist es +ĠKent ucky +Ġloc ate +Ġfast ing +ãģ¨ æĢĿ +ĥ Ģ +ĠSe b +ĠCr own +op ia +Ġwh ip +us z +к ами +Ġdatab ases +åŃ Ĺ +Ġprose c +Ġ199 7 +ĠìĤ´ì §Ŀ +ĠSol ar +ĠP ues +ĠZ en +oll o +ĠG uru +Ġsque ez +ĠÐĹ Ð° +ĠÄ į +cept ions +c ca +iz able +m and +Ġbreak through +Ġtables poon +ĠS EC +ik h +ĠS ão +Ġп ло +am en +Ġpr ac +Ġdar ling +Ġtall er +Ġrend ering +Ġìļ°ë¦¬ ê°Ģ +ĠÏĦη ÏĤ +Ġm ã +Ġes os +uer do +ĠÑģ ÑĩиÑĤ +all er +ìĹĪ ìĸ´ìļĶ +Ġmill ones +ler in +Ġpe gar +on ne +Ġenroll ment +Ġli egt +Ġbo a +w iÄĻ +bs p +Ġcy cling +ĠBern ie +Ġ198 9 +Ġд алÑĮ +ĠDak ota +ĠÑģв Ñıз +ĠC P +Ġst are +íĤ ¤ +Ġprosper ity +Ġarrange ments +Ġarri ving +m ä +Ġkay ak +ip t +Ġp ardon +Ġrel at +Ġver ste +ĠF ig +Ġfo il +ĠTalk ing +pe are +Ġno i +ĠпÑĢи ÑĪ +Ġhoc key +Ġad o +ĠO UT +6 7 +Ġhorm ones +ĠAven ue +ĠSuper man +Ġpres cription +uber netes +C L +ot ive +N IS +ien en +Ġsad ness +ĠV it +T y +Ġstar ter +Ġbed e +Ġfound ations +Ġso re +åº Ĺ +Ñīе ÑģÑĤв +ìļ °ë +ĠÑĩ Ñĥв +l ink +Ġmane u +work ing +Ãł n +ĠAtt ack +ĠC art +ve is +ĠRes p +ens ing +Ġì¢ĭ ìķĦìļĶ +Ġesc uch +ĠR NA +Ĥ ´ +Ġad op +Ġb ending +ع د +Ġman ages +us p +Ġt art +Ġrout er +B o +Ġestab lishing +Ġbal ancing +Ġathlet ic +ĠS lo +Ġf ills +Ġн аб +Ġд ал +Ġpos so +ĠV ielen +Ġcrit ics +Ġlaws uit +ĠIsa ac +ĠÑĦилÑĮ м +Ġtr as +Ġpra w +ĠCra zy +Ġne u +Ġk ull +Ġtum or +ĠAP P +g ate +ĠA RE +9 8 +ĠSte am +Ġfuck ed +l age +ĠâĻ ¬ +ĠM D +f y +Ġshell s +ĠSe ems +iz ers +Ġr anges +ĠAnton io +AT ION +ĠB aba +Ġìĥ ī +k un +Ġpray ed +ÑĢ Ñı +ĠпÑĢоÑĤ ив +Ġse as +b ury +Ġ×Ķ× © +Ġtra it +ĠDep ending +Ġd re +Ġkön nt +ÑĨ Ñĥ +Ġlip stick +ee z +ĠпÑĢ имеÑĢ +Ġassign ments +B ob +Ġmet als +Ġspe cially +å°į ä¸įå°į +Ġìĺ Īë +ĠÅ ¡ +Ġv ista +ĠÎ ¬ +Ġtw ins +Ġnot able +ĠS au +Ġdé velop +Ġç ek +Ġpoly nom +av am +Ġtamb é +он ом +Ġpl asma +Ġe fect +Ġlä ng +Ġcas i +Ñģ а +ım ı +ãģĻ ãĤĭ +ĵ¤ ìĿĢ +Ġlab our +oss en +ĠP un +r if +Ġd oses +Ġoper ates +ил ли +Ġja ar +st aw +ĠìĤ¬ëŀ ij +Ġat m +Ġprotect s +Ġimp ed +H O +Ġc ima +Ġto ch +ab is +Ġsend o +la us +Ġcur l +ĠN um +Ġspons ors +Ġdé but +ĠAlex a +ĠB ür +ĠA mer +Ġc ope +Ġиз в +j al +Ġ199 5 +ap at +res se +ĠPri ze +ĠCla ire +ĠBrand on +Ġwszyst ko +Ġval ued +à¸Ļ ะ +Ġse ct +Ġsecret ly +Ġdiam onds +ĠEv an +ĠRP G +ãģ« ãģª +Īë ıĦ +ĠUnivers al +Ġdoub ts +ĠP in +wiÄħ z +ļ © +Ġal bo +Ġbra ucht +AU L +ĠM obile +gr ades +Ġsch em +wh y +ĠN icht +p i +g le +Ġchor us +Ġg ly +Ġrein force +Ġm uff +ĠSh en +ĠH ola +Ñĥ г +vid emment +v ial +ac ious +laim ed +ĠR ico +Ġve gg +Ġillust ration +ĠBut ter +ow ad +Ġeu x +Ġenf ants +ĠLe ader +ĠVill age +et ically +ÙĨ ÙĬ +Ġst ew +Ġsurpr ises +Ġc ue +ĠGrand ma +ĠC elsius +ĠR icht +en c +Ġpet ition +Ġher b +Ġw icked +Ġsch le +oc aly +Ġtrans f +Ġtok ens +ĠGr ay +ĠB BC +I K +Ġ15 00 +z n +ĠNe v +Ġk oy +Ġz ar +Ġbull shit +ĠColomb ia +ul ative +Ġwides pread +y ect +k it +Ġempres a +Ġn our +Ġburn s +at in +a ired +Ġrevolution ary +Ġгод Ñĥ +ĠLog an +Ġ199 6 +ĠGra ham +re b +ĠN HS +æľ Ľ +Ġcost umes +Ġnaw et +Ġlo vers +ĠLuc y +ĠInd igenous +íķĺ 기 +Ġimmun ity +¥ ´ë +uit o +Ġexcess ive +Ġdon ations +Ġ×Ķ ר +Ġì² « +éī Ħ +Ġdry ing +mel on +Ġsurve ys +Ġ무ì Ĭ¨ +é¢ ¨ +aa a +Ġpro be +an cial +Ġlou der +Ġhot els +ü ÄŁ +ag ner +Ġorig ins +Ġë§Ī ì§Ģë§ī +Ġ* * +Ġstr angers +ĠHa us +com ed +Ġan throp +Ġus o +ĠìķĦ ì§ģ +ĠY uan +ĠíķĦ ìļĶ +pl er +ress ive +Ġsp raw +ĠSt ew +Ġ199 4 +Ġeld ers +Ġme inen +Ġj unt +Ġac oust +ĠW ohn +Ġban anas +Ġproject ion +ĠSt ick +leg t +spe ed +ĠcÅ ©ng +ĠW ort +ĠBalt imore +ĠÑĨ ел +Ġdun no +å¼ · +? , +ãĥī ãĥ³ +ĠLoc al +ost o +Ð Ń +од а +ĠPort uguese +Ġtheir s +Ġdé m +åı ¦ +Ġdra uf +ĠBuddh ist +ert a +G e +Ġcar rot +ĠWonder ful +Ġso ak +Ġchair man +gg i +IC A +f ried +Ġfl ick +ĠThrough out +Ġìļ °ë +Ġc ough +Ġfl uffy +sch ool +Ġr ipped +---- ---- +ĠZuk unft +Ġн еб +Ġst o +ĠB O +p ent +ĠLaw rence +Ïī ÏĤ +st icks +ĠE ins +ĠÑĢ Ñĭ +ĠStr ong +Ġcar amel +Ġsp ite +az ar +éĥ½ æĺ¯ +Ġcrit ically +Ġob ra +ow itz +ĠZ one +ĠÑĢ ек +Ġsu g +ard ed +Ġg ì +ff entlich +an che +Ø Ł +ast ically +ìĿ ¼ë +л ав +Ġsimpl est +ĠF riend +Ġque llo +Ġamb ition +Ġabb iamo +åº ķ +ĠÑĦ оÑĢм +ĠEs sa +Ġeduc ators +Ġstatist ical +éĢĻ éĤĬ +Ġchang er +Ġat au +éta is +ĠShakes peare +ë IJĺ +Ġtr iggers +Ġreal iz +Ġcel ui +whe el +Ġloyal ty +Ġscream s +ke hr +ĠM ega +e ast +Ġtop s +ĠTot ally +ount ain +l ord +Ġviol ation +ĠG A +Ġnic er +ĠF resh +ĠMel issa +fun ction +Ġra pe +Ġexcept ions +Ġsil icon +Ġliber ty +Ġhousehold s +ãģį ãģ¾ãģĻ +ĠC A +ĠÐŀ б +Ġli b +ŀ Į +c ific +Ġtrop ical +Ġinvestig ating +H D +Ġad apter +ĠP itt +an cia +ĠShe ll +friend ly +Ġconclus ions +Ġtur tle +Ġdec omp +Ġanim ations +ĠÑģ ек +ins i +Ġret ention +k ie +Ġinject ion +ĠMad ison +ì° ° +Ġv ient +Ġvar ied +Ġviol in +ĠB il +Ġluck ily +Ġh tt +l ä +Ġr anch +çľĭ çľĭ +Ġsó lo +ìķ ħ +ĠD erek +ĠScript ure +оÑĢ а +Ġclassroom s +av il +form ed +Ġbefore hand +ĠG em +pre ch +Ġl in +Ġgre ens +ÑĨ ев +ĠMer cedes +Ġdr ought +gas ps +Ġab ortion +Ġter ribly +Ġspos ób +Ġsec ured +Ġat rás +Ġwavel ength +Ġgra ins +ect ive +Ġspace craft +Ġtour s +Ġprof es +Ġsur geon +ĠP ie +Ġide ally +arn er +U P +op ard +s ce +Ġimm ense +ĠOr t +roll er +ĠD allas +ĠNich olas +Ġs ulf +ĠToy ota +Ġquant ities +ce ans +Ġcu i +an ça +ĠC AN +itzer land +åĦ ¿ +Ġz ou +ĠCy ber +le gen +ĠIn it +ed u +Ġa pert +Ġad jac +ou v +èĢĮ ä¸Ķ +r s +Ġcab bage +Ġwheel chair +iny l +ĠD ynam +ĠìķĦëĭĪë Ŀ¼ +Ġl ing +h l +Ġмог Ñĥ +Ġcris p +Ġm ij +Ġd ug +n in +Ġbl oss +Ġbelong ing +Ġloud ly +Ġminer als +Ġconclud ed +Ġsearch ed +9 6 +ĠMe et +ĠS EO +ĠС к +ĠH ob +ot ta +Ġpropag anda +Ġcin namon +Ġhun ter +Ġgeme ins +Ġsculpt ure +uls ion +Ġv äl +Ġmagaz ines +Ġcontrovers y +ä¸Ģ 樣 +Ġsequ ences +ãģĦ ãĤĭ +Ġíļ Į +Ġdel eted +ä½ ¿ +IJë ıĦ +Ġvary ing +ãĥ Ĩ +Ġmount ing +Ġaff air +Ġpath ways +æ ¦ +Ġdig o +äº ® +Ġд ок +A lex +Ġtob acco +ĠC V +Ġbother ed +Ġamb ient +ink y +ĠS L +Ġh ates +Ġje żeli +Ġcon greg +Ġel as +Ġde uts +ĠStud ios +ch ÄĻ +Ġdocument ed +ĠCru z +ĠL en +ĠDoug las +ĠPort ugal +ent i +Ġsp ouse +Ġanal ys +av ia +Ġed ited +Ġl ại +bu ilt +Ġv ille +ad ora +Ġbrac elet +Ġs ushi +Ġp m +Ġtra ils +Ġl ug +Ġö ver +Ġs orrow +Ġcol ony +ado x +Ġser ie +any ak +ĠØ · +ĠG ulf +æĺ¯ ä¸įæĺ¯ +ĠP V +ĠSam uel +ĠK it +ĠR al +ont in +ex pl +Ġent ries +Ġactiv ists +P s +Ġs ant +ĠÑĤо Ñĩ +ĠBr uno +ke ley +Ġtut to +é Ķ +Ġv intage +Ġterr ified +Ġпо Ñħ +us ive +ow ers +ай ÑĤ +ë ıĻ +Ġtwist ed +ĠTh ought +Ġt ah +Ġshr ink +Ġshe er +l it +Ġdal am +Ġd ib +Ġv ard +ow ane +Ġdo br +ĠR ena +ĠÑģво Ñİ +ĠpaÃŃs es +ĠE ra +ãģ® ãģ§ +ĠB UT +s ighs +Ġê·¸ ê±° +Ġgro ÃŁen +Ġë¹ ¨ë¦¬ +Ġn erves +Ġconst it +Ġpreoc up +ĠG ay +ĠX u +keep er +he ure +.. ) +ĠCal m +ĠUn idos +ĠìĿ´ ê²ĥ +ĠAqu i +Ġìłľ ìĿ¼ +d ır +ì¦ ĺ +y our +ĠÑįÑĤ им +20 20 +Ġr und +ĠH O +ĠC atherine +iel i +Ġf usion +Ġide ology +Ġfor am +sh aped +ĠíĽ Ħë +Ġw t +Ġret r +Ġpr éc +Ġê° ij +Ġopen ly +v ity +구 ìļĶ +Ġobst acle +Ġbo o +Ġse iner +ic orn +Ġeigen lijk +Ġhead er +are mos +Ġso fter +ĠÐŁ од +Ġpre jud +Ġdefin es +ier te +Ġbl ending +Ġbelie vers +ĠWo chen +Ġник ак +ĠÐļ огда +ĠTyp ically +Ġíģ ¬ +ç® ¡ +ci os +Ġmiss iles +Ġsp onge +ĠK itchen +Ġt ren +ning en +Ġsc rap +Ġser ait +´ì ł +ç ¹ +Ġë° ĺë +Ġrest ored +Ġprzy kÅĤad +ĠK ubernetes +Ġsa it +Ġu w +Ġen abling +Ġtra vers +amp s +åı Ĺ +ĠOM G +ens or +Ġz osta +Ġpronoun ced +A ng +norm al +Ġeconom ies +t in +ĠChamp ion +iz en +Ġar beiten +ĠG ospel +ĠZ u +ng a +Ġliter acy +ĠM ans +Ġcircul ation +Ġad ap +ĠTot al +Ġmere ka +Ġol acak +ÑģÑĤ аÑĤи +J ack +Ġm und +Ġth ief +b ies +Ġê² ģ +a que +ĠÚ© ÛĮ +ĠSc ar +å ² +Ġab ol +Ġdev ote +Ġ0 1 +Ġs itten +ĠVis ual +we ek +s ome +ing t +Ġjournal ism +ĠH ir +ĠB achelor +in ery +Ãľ ND +ãĥ Ł +ç» Ļ +Ġcolor ing +ĠCr ist +Ġcelebr ities +ĠÑĩ иÑģ +ĠC rit +Ġdifferent iate +ĠÐľ не +el im +Ġse afood +Ġalgum as +otherap y +æĪ ° +Ġgla ub +Ġarbitr ary +g ens +ĠбÑĥд ем +Ġt av +Ġcream y +ĠCount ry +a ñ +м еÑĤ +Ġh inter +Ġm ism +Ġillust rate +ÃľND NIS +Ġdecre asing +Ġwen iger +AK I +ix on +Ġн ей +Ġfat to +Ġn erd +ç ł +Ġb itte +P er +Ġt ane +Ġgö z +Ġfor te +ĠE y +Ġнав еÑĢ +è¢ « +ĠWord Press +ĠM is +Å ¯ +z äh +Ġinté ress +osa urs +ĠFall s +Ġn essa +9 7 +Ġmuseum s +Ġcorrespond s +Ġs ings +f our +Ġed er +ĠCommun ist +o a +ne k +ĠWH O +Ġcor po +Ġmess ing +ÏĦ αι +Ġbrush es +Ġb isc +ĠAr beits +ĠT ax +Ġse le +Ġflag s +ou pe +Ġanticip ated +ãĥ ij +ĠN ad +Ġpou red +Ġm l +Ġll ama +Ġvisual ize +Ġlisten ers +ÙĦ Ùĥ +al ten +Mich ael +Ġcos ì +Õ¡ Õ +op us +Ġíķ´ì £¼ +Ġh ike +ĠAtt orney +ĠHill ary +ud ed +Ġíķĺ ì§Ģë§Į +Ġdo ve +Ġstorm s +ак Ñģ +Ġdoct rine +Ġhe x +ik s +no ÅĽÄĩ +Ġscript s +Ġδ εν +ĠÑįÑĤи Ñħ +ĠÐ Ĩ +ab er +ĠV as +Ġcent imeters +×ŀ ×Ķ +ни б +Ġrid ers +ĠT rib +åĮ ħ +Ġtak że +Ġn oun +Ġic ons +Ġsole ly +mind ed +Ġdisp on +ĠSw itzerland +Ġcl usters +Ġqu eda +ail ing +Ġman ga +Ġ6 8 +Ħ Ī +Ġt et +g ins +ha us +ç© º +å· ¥ +ĠO P +ot ed +Ġnouve au +AL LY +ÙĪ د +ò n +Ġmort ality +ĠGit Hub +d rop +Ġdis gu +Ġrec om +Ġloc als +Ġhome made +amb a +Ġpron unciation +Ġal phabet +ан ÑĮ +ow any +ir as +id ency +OM E +ĠÑĢаÑģ Ñģ +ar ak +v iamente +Ġnon profit +ĠYouT uber +Ġp arenth +ĠB oo +v at +ĠSt ir +Ġpre cip +Ġan ts +Ġall y +ĠMa ori +ĠëĮĢ íķľ +åı¯ æĺ¯ +og ene +ĠLab our +aret te +Ġrecy cling +ens a +Ġpurs uit +Ġs ak +ĠÐĹд еÑģÑĮ +Ġtoler ance +Ġsa at +Ġclick ed +âĻ ¥ +Ġface book +ĠInt o +Ġincent ives +기 ëĬĶ +ĠD ennis +ĠW ik +ges ch +à¹ĢภĽ +ĠÏĢ α +ĠWh oo +Ġround ed +Ġdo pe +Ġcapt uring +ĠWar ri +Ġcivil ian +Ġchar ming +Ġes as +Ġsust ained +Ġle aning +Ġabund ance +ÃŃ lia +алÑĮ нÑĭй +Ġph ải +ac ja +Ġê°Ļ ìķĦ +act iv +า ย +Ġ9 7 +Ġм ой +c ro +ĠJack ie +itt ees +br acht +ul ent +Ġìł ľë +Ġplug in +v antage +part y +Ġsu as +Ġan te +Ñĥ л +ÐĿ ÐIJ +æĤ ¨ +ĠÏĥ Ïħ +Ġmet h +Ġenthus iasm +ÑıÑĤ ÑģÑı +íĻ Ķë +Ġsynth etic +Ġseason ing +ĠL ost +on omy +ĠSp ark +Ġb ure +Ġass ured +Ġimag in +Ġcar ro +S ha +Äħ t +нÑĥ ÑĤÑĮ +át ica +T Y +Ġk ern +ĠBrazil ian +à ° +Ġsusp ended +ĠCar ib +Ġbiz im +ĠOl iver +ãģ ¶ +T om +Ġпл ан +Ġn ope +omet hing +Ġbe iden +ÑĨ ен +Ġflu ct +Ġμ οÏħ +Ġf athers +ĠBl ake +Ġup ward +ĠD ash +ĠL il +ĠìĪ ĺëıĦ +Ġrevel ation +Ġelev ated +ĠJi ang +LE D +ĠThom pson +Ġмог ÑĥÑĤ +ÑģÑĤ ÑĢÑĥ +if iers +Ġcome back +Ġbuy ers +ê² ° +ĠS ales +иÑĩ е +c iones +Ġwh istle +Ġd ull +LE X +Ġíķĺ ê²łìĬµëĭĪëĭ¤ +Ġcrimin als +Ġdes cent +ipp le +mas ı +Ġfool ish +ĠдÑĥм аÑİ +t ar +Ġman go +Ġchore ography +M att +Ġterr itor +Ġac aba +ĠEin stein +ĠI BM +ĠMet al +ĠCry stal +Ġr ah +Ġf oul +ĠIsland s +Ġint act +ĠR ail +. : +Ġac á +ĠпÑĢ оп +еÑĢ е +ĠWr ite +he he +ĠF O +ĠÏĥ ÏĦη +Ġdo in +h eld +Ġappropri ately +Ġdeliber ately +Ġarch ive +Ġgive away +ãģĵ ãģĵ +Ġfin ale +л аÑģ +ен о +Æ¡ n +æ£ Ĵ +og o +çī © +ĠAud ience +ãħ ł +Ġsub ur +Ġhead ache +ан нÑı +ĠW itch +ĠSwed ish +ĠB I +Ġer ase +Ġk hi +Ġcomment ary +ĠS ultan +íĥ Ŀ +ĠLe ban +Ġë³´ì ĭ +ĠP am +pe kt +mon th +Ġground ed +ê ¾ +ĠÅŁek ilde +2 50 +ĠS CH +ios o +Ġin aug +he imer +Ġreflect ing +ĠR uth +ĠO il +Ġtrou ver +u ep +.. ] +Ġìŀ Īë +Ġol ha +Ġreason ably +Ġgl itch +U B +ĠGr an +Ġad alah +Ġl ent +ر ا +Ġtr action +Ġadjust ing +´ ¤ +ниб ÑĥдÑĮ +Ġд оп +Ġstretch ed +Ġor t +Ġcos ine +vi ol +Ġì ħ +c ir +Ġbast ard +ä¸ ĩ +ĠÑħ од +Ġqu ier +Ġpress ures +ĠAn h +å¹ ¾ +Ġell es +Ġд ÑĢÑĥз +ĠможеÑĤ е +Ġch á» +ĠM é +ö k +ầ u +ìł Ī +z in +Ġca ution +ib an +Ġjud ging +ÑĥÑİ ÑĤ +Ġb aj +ĠС ейÑĩаÑģ +ĠPo or +ĠNaz i +Ġup beat +y ang +Ġweek ends +ĠEss entially +Ġol uyor +Ġspat ial +ack er +Ġsell er +Ġ×IJ ×ķת +ij ׾ +Ġv ivid +ĠB ond +ê ¶Į +is kt +ãĤ µ +Ġgo at +dri ver +Ġm ug +ict ional +Ġall t +ĠIn iti +ĠR and +Ġfinish es +Ġê° Ī +Ġvit am +Ġteen agers +ĠMor ris +ì¤ Ħ +ĠO ri +i ya +Ġmy ös +St ep +ĠK re +è¾ ¦ +Ġdin osaur +Ġëª ĩ +aff e +ĠëIJ ©ëĭĪëĭ¤ +Ġz eg +åĪ ĩ +ĠManh attan +Ġsu jet +ue lle +st off +Ġd ür +Ġsub mar +es es +Ġa quele +Ġn ou +ĠFa ith +t z +ĠÑĤ омÑĥ +ace ut +li ers +Ġband width +Æ°á» Ŀ +Ġrespect ive +ĠA ve +Ġspread she +ĠS ent +ic amente +Ġinf ra +Ġlearn ers +Ġà® ī +ai ah +ren al +Ġmust ard +Ġhab t +ç ĥ +ĠQu é +Ġanaly zing +æ¯ ı +Ġso lic +Ġ×Ķ ×ķ×IJ +Ġcaus a +Ġwel comed +ĠS uccess +Ġfac ile +ĠÐŁÐ¾ÑĤ омÑĥ +sche in +Ġf etch +Ġstr at +ĠÑģÑĤо иÑĤ +ìĹIJìĦľ ëĬĶ +ĠÑģп оÑģоб +m am +Ġser ÃŃa +nam ents +wr iter +Ġconsult ing +íĺ Ģ +ĠBer keley +e u +as ive +U U +ĠAnal yt +Ġsubm ission +Ġmagnific ent +en za +Ġe con +Ġprof iles +Ġinc ar +A b +ĠN un +Ġh ic +scream ing +Ġresil ient +åĪ © +gr und +Ġconc ur +Ġbere its +L D +Ġnur t +ì ī +Ġfe ast +Ġenc uent +ĠMich el +Ġsup rem +" ] +Ġfeed s +ĠKoll egen +iss er +ĠF eng +ĠW en +m un +Ġten ÃŃa +ĠW rest +Ġìĺ¤ëĬĺ ìĿĢ +Ġst ead +Ġrest oration +Ġdon ated +Ġdel s +Ġc ensus +Ġdesper ately +worth y +H E +ĠSp a +ĠBry an +Ġh j +ĠR aw +ìķĦ ë +ĠCam era +Ġz ien +Ġst yl +ĠT W +ĠChe ese +bor ne +Ġob l +ĠAl ready +Ġunst able +Ġfl ames +p ost +H a +rom agn +ĠìĹ Ħë§Ī +d est +Ġkole j +Ġtempor arily +Ġdeterm ining +ĠGl ass +ÑĢ он +ol an +Ġdom inated +åĮ ĸ +__ __ +ĠÙĩ ذا +ĠD ana +Ġdin heiro +a qu +ë ¯¼ +ĠÃł s +ĠJo ey +ĠGr iff +Ġatt ain +Ġtrans itions +ĠLiter ally +ен д +ĠHa ven +Ġgrab bing +Ġcryst als +ĠFour th +Ġcand les +ĠÑģлÑĥÑĩ а +ric o +Ġ5 000 +et to +Ġund o +Ġk to +Ġdi vert +Ġch ir +Ġper sec +Ġh iking +Ġannounce ments +çĶ ± +з Ñĭ +Ġa uc +Ġsystem ic +ĠR M +Ïĥ α +ĠÐĶ ж +Ġy ar +ĠW ard +Ġpiss ed +Ġcar n +Ġautonom ous +ãħİ ãħİ +so ver +æ²Ĵ éĮ¯ +å¾Ī 好 +Ġref lex +Ġgard ens +Ġd ated +ì ± +ami ÄĻ +Ġcontinu ity +Ġcitizens hip +Ġsch wer +Ġz ak +t able +ĠÑģ Ñĩ +è§ ģ +ĠÏĥ ε +Ġgener ates +구ë Ĥĺ +ö h +ó m +al am +ĠJUD Y +ĠB ug +Ġãģ ¦ +Ġdr ones +Ġá gua +ac aks +æ ļ +ĠÐļ он +× ĸ×Ķ +Ġstri ve +ĠAl tern +Ġne arest +Ġpro yect +ter a +ĠASH LEY +Ġwor m +Ġre play +Ġt ara +ĠInd ians +ãĤ ° +ica id +ĠìĪ ľ +Ġappe aling +ĠW es +Ġment ions +Ġдел е +Ġk w +Ġfrag ile +is z +k ów +h ang +col or +Ġpresident e +8 7 +е ÑĦ +çĪ ¸ +Ġдоб ав +ĠN elson +á fic +ĠMIC HAEL +Ġmechan ic +Ġmet res +Ġo czywiÅĽcie +ĠC ind +Ġog sÃ¥ +Ġlands ca +AC E +Ġhead lines +Ġcat alyst +ĠC atch +ink les +Ġp ills +ord o +Ġimmig rant +Ġexam ination +Ġacc idents +zÄħ d +Ġqui ere +Ġne lla +Ġ6 7 +Ġpass a +Ġsuper fic +ist or +Ġno v +ëĭ µ +Ġmand ate +is ons +ĠVirt ual +Ġsel ber +Ġcounsel ing +ĠN BA +Ġse pt +Ġbelie ver +Ġmar vel +ĠInte gr +Ġм Ñĸ +Ġor ph +Ġback ward +ĠGen eration +ĠP ict +ĠÑĤо ÑĤ +Ġtap i +pro chen +Ġhall way +ht e +ĠÛģ ÛĴ +ĠZ um +èĢģ 師 +ach ment +iqu er +fol g +ĠEd die +ĠK il +Ġwell ness +st ock +è¼ ĥ +Ġka ç +Ġterror ism +Ġpo inter +O f +her ic +ĠUlt imately +Ġmes es +ĠTr ade +Ġp int +Ġtu ition +Ġdisag re +Ġê²Į ìŀĦ +Ġmanus cript +Ġro omm +Ġoutput s +е ÑĨи +Ġr ies +Ġsal ud +otz dem +Ġmass es +Ġby ÅĤa +Ġclear ing +Ġdisc ourse +ats on +Ġfold ed +ĠJ ar +ÙĦ Ùī +9 00 +ĠÑĥ Ñģп +Ġprophe cy +Ġinterf ere +иÑħ од +๠Į +Ġth ri +Ġ×ŀ× © +Ġlaz ım +Ġ199 2 +Ġfut uro +Ġlock ing +Ġembar go +ĠNe ither +iv amente +ĠmÃ¥ ste +Ġm ik +Ġcollect or +еко ÑĤоÑĢ +ĠG and +Ġsent ir +ĠM ight +å¡ Ķ +Ġgan zen +U C +Ġrel ating +S D +Ġmos quito +G R +Ġho llow +âĺ ħ +ĠWalk er +Ġaffili ate +Ġduplic ate +н ем +Ġgra pe +ĠOrgan ization +Ġsy nt +J oe +Ġg eg +Ġreve aling +ĠEth an +out er +Ġy ay +é« Ķ +л аÑĢ +Ġreported ly +Ġihr er +Ġrecogn ise +Ġbum per +ĠR andy +ĠVen us +t les +Ġappet ite +Ġgluc ose +Ġch odzi +ĠFurther more +t ir +Ġcont a +Ġint uition +Ġalt itude +Ġch unks +ĠJosh ua +ıģ ım +ry lic +le ans +ĠíĶ ¼ë +L L +Q ue +Ġg or +Ġзна ÑĩиÑĤ +Ġpo ems +Ġexc el +Ġexpl ored +Ġpop ul +Ġinclus o +st ä +ĠG avin +all ing +ĠÏĦο ν +é © +ar beit +ĠG as +Ġgl orious +rie ben +Ġsp am +Ġindo or +Ġthr ust +ĠA ld +ĠPri or +Ġon board +ãģł ãģķãģĦ +o ca +AS H +£ ł +ĠChrist ine +Ġdra wer +Ġno on +Ġìŀ ĺë +Ġperman ently +æ· ± +ĠнапÑĢ имеÑĢ +Ġpodcast s +era peut +pr it +Ġstain less +ĠÚ© ÛĴ +Ġfamil ia +ĠÑĢаз ÑĢ +un to +ĠÑģÑĤ ол +Ġh ä +ĠH ai +ĠP B +iz on +Ġkon nte +Ġbüy ük +Ġutil izar +Ú Ĩ +Ġaqu esta +Ġmix er +ud ent +лек Ñģ +ÅĤ u +ĠÑģиÑģÑĤ ем +Ġн оÑĢм +Ġfat al +Ġconsider ations +Ġvalid ation +Ġo li +Ġk ardeÅŁ +ĠGL ORIA +Ġp all +еÑģÑĤ е +Ġrect ang +Ġmed ieval +allah i +ast i +ĠSy rian +Ġshe ar +Ġdeb ug +ĠM ai +Ġknock ing +ĠLe x +ard an +ro v +Ġmem orial +æ° £ +ook y +Ġstuff ed +Ġpass é +Ġw ig +Ĥ ł +Ġpróxim a +Ġ199 1 +Ġм еждÑĥ +Ġnuest ros +ĠBe ast +Ġsm o +atch ed +olog ia +Ġм од +Ġge e +Ġconcept ual +Ġà ´ +Ġdecre ases +Ġquer ies +олÑĮ ÑĪ +ĠA part +Ġex empl +å± ± +Ġfl ed +ĠO FF +gg ak +Ġbe ad +h ir +l ies +ĠClear ly +ı lar +Ġch ess +Ġwhich ever +Ġ9 6 +Ạ± +Ġrespect s +Ġм оÑĢ +Ġorgan ism +Ġgrand pa +ĠV ie +è·Ł ä½ł +Ġflo oding +Ġupgrad ed +Ñij ÑĢ +Ġcheek s +Ġcon quer +Ġstub born +Ġpuzz les +Ġau ction +Ġre lying +ĠPRO F +ĠEs per +ĠÐľ У +Ġhy pe +Ġposs ibil +Ġimp rison +ĠEr n +ìĹĪ ìĬµëĭĪëĭ¤ +Ġenv ie +Ġresur rection +ä¸į è¡Į +Ġs per +ĠVenez uela +s om +Ġìŀł ê¹ +Ġnouve lle +Ġclos es +Ġ19 40 +Ġqu a +ĠJ ared +ĠP ir +Ġind e +Ġscr ub +uk u +Ġrequ iring +Ġв ами +Ġconsider able +åIJ Ľ +il ia +Ġin ne +Ġmein em +Ġhard ship +Ġtra ps +ro c +ĠìĦ ¤ë +Ġresearch ing +ĠMarg aret +Ġpen ny +Ġbı rak +Ñij л +Ġw ool +Ġr het +Ġflat ten +ç ĩ +à¹Ģภ£ +Ġp ied +ĠCh ap +Ġunder m +Ġf ret +Ġcrash ed +ĠFra uen +Ø° Ùĩ +iv an +Ġliter ary +late go +Ġsp äter +Ġsimilar ities +â Ĩ +ĠCor on +ĠC reek +Ġboss es +Ġaccompan ied +Ġdeb ates +Ġassemb led +Ġà ģ +ĠV ai +Ġtr act +Ġsimple ment +ĠAr in +Ġvulner ability +Ġhorm one +I EL +OO K +Ġrel ay +ĠAnd rea +r il +Ġnecess ity +aceut ical +Ñİ Ñī +ous ing +nah men +Ġfoot print +m ap +ĠT ier +ann ya +int end +åĸ ® +å ¢ +Ġdecor ate +Ġzomb ies +ĠHy d +ĠSu z +Ġcampus es +ĠE mb +Ġthr ottle +Ġad min +Ġop ortun +Ġmir rors +Ġident ities +ĠCl in +Ġë¹ Ħë +á¹ £ +ĠO tt +Ġbl ues +Ġimpress ions +- , +Ġv ague +a fe +Ġinfer ior +eral d +Ġmedic ines +Ġpre gunta +os ely +Ġt élé +ĠMon th +ĠLe aders +ĠEgypt ian +Ġr ation +k ers +he its +Ġre cht +P lay +Ġe g +Ġpoll s +ĠWOO DR +Ġsl ots +j am +B oth +ĠR at +ÑĢ аж +ĠBr ight +ä¸Ģ å®ļ +á»ij i +ur ious +Ġsing ers +Ġlo gin +Ġt êm +l ation +ĠM um +Æ°á»Ŀ ng +ĠEd itor +åIJ ij +Ġinnov ations +h ave +ĠS ek +Ġwe aker +ĠG ob +A fter +´ì §Ģ +Ġ문 ìłľ +ãĥ¼ ãĥ¼ +Ġdisad vantage +ç¢ º +Ġg aze +ĠM ack +Ïģ ί +ĠK iss +ĠH olo +ĠBir th +iz i +b ab +ä¿ Ŀ +ìĭľ ê³ł +д еÑĢж +Ġsqu at +кÑĥ Ñģ +un i +ĠComm e +ĠWOODR UFF +ĠChampions hip +Ġwel che +ĠY outh +z em +Ġod pow +Ġpersist ent +r ut +ìĶ © +íĸ ¥ +la ir +ik u +Ġvend or +Ġch úng +Ġfinan ci +Ġover ly +â u +Ġgl uten +Ġ18 00 +Ġdiv isions +Ġciud ad +Ġob ed +Ġwar um +Ġe her +Ġel im +ĠÐĴ о +Ġpeu vent +ĠW anna +Ġattend ance +Ġassess ments +ĠB og +Ġimag ery +Ġcollect ively +Ġinform al +ĠSch we +Ġde utlich +ĠCh el +ĠP E +ow ed +Ġb anner +Ġshel ves +ĠRet urn +æĭ ¿ +LAUGH S +Ġcongrat ulate +ĠNor way +Ġd well +ĠCarib bean +Ġnorm s +ĠAn imal +ĠValent ine +Ġext ending +ĠV ou +or r +ĠCh eng + ¡ +ĠдоÑĢ ог +Ġve g +Ġh Ã¥ +ĠX in +Ġì¹ ´ë +em et +Ġhyp oth +Ġinteress ante +ric es +I Z +ĠUS D +Ġrun ner +ĠB ag +Ġê ½ +Ġcomeç ar +Ġpig s +Ġweakness es +P h +ĠVi ol +ä¸į çĶ¨ +Ġdra gging +ĠAqu ÃŃ +ĠCS S +Ġmill imeters +Ġest ás +Ġac ute +Ġde jar +i ÄŁ +ob ra +L ove +Ġsil k +** ** +Ġjo ins +Ġpro l +Ġê°IJìĤ¬ íķ©ëĭĪëĭ¤ +æĶ ¯ +ØŃ Ø¯ +agh etti +än ner +Ġstr ang +Ġdoub led +Ġdescri ptions +Ġst ellen +Ġpart i +ç« ĭ +² Ħë +Ġö ÄŁ +ig hing +Ġang ular +Ġnat uur +ĠSh el +Æ° Æ¡ +Ġr ays +Ġse per +st art +v ised +Ġrush ed +Ġinternation ally +Ġnive l +Ġbox ing +fall en +á»ij c +Ġse inen +plic ity +Ġcarb oh +ĠTra vis +us o +ĠPh ase +Ġactiv ation +Ġop io +· ¨ +Ġdecre ased +C ar +Ġbund le +Ġexp end +orm al +Ġadjac ent +Ġme e +ĠоÑĢ г +Ġtrans cript +ĠLang uage +G S +è§ ī +Ġse ul +Ãł nh +Ġn ya +ning s +Ġìĭ ľë +ĠëĶ°ë Ŀ¼ +ĠA gr +ÃŃ d +çķ Ļ +Ġab y +ĠNe o +ıyor uz +ĠThink ing +a ime +Ġv ite +Ġtrav és +Ġ×ij× ¢ +Ġм ед +O ur +ho ot +Ġl iner +ĠP izza +Ġhy g +fl ies +ĠContin ue +Ġdent al +ĠT ib +Ġreg ulate +lie ÃŁ +AL K +ĠTa e +ê¸ ¸ +ĠBre xit +ĠG ut +Ġoccup ation +Ġz robi +â m +Ġwh isk +ä¸ĸ çķĮ +Ġkans ke +om on +ro be +Ġwar fare +Ġth á»ĥ +Ġjak i +Ġstro kes +Ġpe as +ĠDam it +H AN +Ġinter ference +Ġмин ÑĥÑĤ +N ER +out ing +Ġtext ures +Ł ī +ow i +Ġíķ Ļ +Ġd ens +Ġprotagon ist +än n +Ġgod dess +Ġwoll te +ij o +ĠWo che +ĠV PN +st ory +Ġkind erg +Ġfun nel +Ġdist ress +ноÑģÑĤÑĮ Ñİ +Ġno isy +ĠпÑĢод олж +Ġdar an +Ġenzy me +л ож +Ġm ute +Ġd war +Ġا س +Ġkom pl +Ġmer it +Ġf osse +ĠDr ink +Ġfor a +Ġw ohl +Ġbree ze +Ġsan it +Ġdr in +ĠìĿ´ê±° ëĬĶ +Ġ6 2 +Ġì° ¨ë +aby tes +Ġde eds +ĠÐ ¹ +i ème +igg ling +Ġ" ' +ĠÑĩа ÑģÑĤÑĮ +ĠAns wer +Ġev angel +Ġ10 80 +ĠVis it +ic ient +Ġreli ability +Ñİ ÑģÑĮ +ĠEar lier +Ġf id +çŃī ä¸Ģä¸ĭ +Ġslee ves +iy orsun +Ġb ib +ĠAcc ount +Ñı ли +cipl inary +z as +Ġб еÑĢ +Ġneck lace +Ġbl ender +ĠPhill ips +et i +ĠJup iter +Ġprov oc +ĠYe ars +ent re +ac io +Ġk ü +Ġanten na +Ġnovel s +Ġf art +ĠS ugar +ĠJud y +Ġcollaps ed +ç ° +rit is +Ġìĥģ íĻ© +ÐĹ Ð« +ĠVer f +rane an +ere um +ĠTar get +Ġ8 8 +ĠÐĺ з +ide o +Ġreg ression +ì¶ ľ +Ġmów i +Ġstud ios +i ens +ip h +Ġfr ying +Ġfasc inated +ĠW ah +b ucks +m aya +ĠSat urn +ĠM ommy +Ġrating s +Ġaut umn +Æ°Æ¡ ng +Ġlos er +Ġcent ro +érie ur +ĠF old +Ġsuper visor +ĠNo bel +Ġunder est +ob ia +Ġв ÑģÑı +Ġver w +Ġfu els +Ġartif acts +Ġë¶ Ļ +ĠAut om +çļĦ æĺ¯ +Û Ķ +×ķ× ¡ +Ġih nen +Ġ5 9 +ound ing +еÑĢ Ñĭ +in ars +ch ant +Ġadd icted +Ġexplos ive +Ġdisp ers +â ĸĪ +ax is +AR Y +Ġl um +ĠÑĥ Ñģл +ĠØ Į +Ġru pees +ĠPe arl +c amp +t v +oy a +Ġconclud es +Ġcoll ision +Ġbuy er +Ġplay ground +Ġspr ings +Ġfemin ine +ĠR as +Ġincar cer +íĹ ĺ +Ġdial ect +Ġclos ure +Ġchat ting +Ġb abe +Ġspot light +Ġnot ation +è· ¯ +St ar +i ão +Ġt ête +Ġt ide +Ġjun to +Ġsen ator +Ð ¥ +Ġexcus es +Ġbl ink +Ġadm ission +ĠL ily +Ñĭ ми +Ġam igo +Ġl ust +ëĭ ¬ +Ġam ino +äºĭ æĥħ +Ġconsult ant +ĠElect ric +Ġëħ¸ë ŀĺ +uj ah +Ġshoot er +icht en +ĠUkrain ian +Ġaim s +ĠEnter tain +Ġmir acles +èŃ ° +Ġze igen +Ġl am +Ġres s +ĠJ ill +yl an +Ġro ok +Ġh aya +Ġpass port +ad ata +Ġju icy +con f +л ей +ĠS z +Ġinter cept +ãģĤãĤĬãģĮãģ¨ãģĨ ãģĶãģĸ +ĠTe ams +Ġmak en +ir rel +ĠLI KE +áºŃ y +êµ ° +Ġshort age +Ġparad igm +Ġpap el +Ġast ero +ãģ¾ ãģŁ +Ġsoll en +ĠMic key +ĠOr leans +Ġchol esterol +Ġgo ose +ÑĨи Ñİ +ãģĤ ãĤĭ +ĠF L +Ġгол ов +Ġtrib ute +ĠG am +Ġé videmment +Ñı Ñħ +å® ŀ +çĶ ° +Ġin appropri +uh an +Ġorganiz ational +ail ed +Ġend ure +Ġ7 6 +Ġshot gun +Ġliv re +Ġsu ited +Ġwarm th +ĠS IM +Ġenv ision +Ġde grad +î ne +La ughing +ĠWho ever +ĠBuddh ism +Ġspr inkle +ceÄŁ iz +Ġru ins +Ġst arch +ĠHer z +Ġinjust ice +Ġhum idity +ожал Ñĥй +ĠOb ject +ĠI gn +ĠEx am +ig ers +Ġth ou +ĠSo y +iv as +Ġpol es +m ath +Ġв ним +ING ING +ed ral +Ġexpl or +Ġroast ed +Ġcraw l +Ġco ff +Ġan om +Ġw ij +Ġimpro ves +Ġtreat y +Ġdiscover ing +Ġstat ute +Ġmerc ado +ĠÑģ ил +Ġint el +ĠChance llor +ĠMed icaid +ug i +Ġver bal +Ġd ön +Ġscript ure +Ġit eration +ek s +ĠOx ford +Ġw äh +ĠV ad +ĠA K +ĠìķĦ ìĿ´ë +Ġi ets +Ġneed les +Ùĥ Ùħ +Ġpas ado +Ġalbum s +Ġye a +et zen +Ħë ıĦ +Ġdeterm ines +Ġthe e +ĠPlay ing +är t +Ġ× ¦ +c led +Ġdown ward +al one +Ġsol u +Ġpart ition +Ġw z +d d +Ġpesso al +å ª½ +Ġfact ories +Ġble ibt +ม า +als a +ĠNF L +Ġfu era +Ġres erved +ĠE arn +Ġhel t +Ġshort cut +Ġconvin cing +sp ace +Ġen force +Ġc ores +Ġe fter +Ġrecess ion +x ico +Ġprop osition +ar ians +rop ol +Ġëª °ë +ĠÎ ľ +ĠìļĶ ì¦ĺ +Ġactiv ist +Ġconv iction +Ġz ab +Ġcancel ed +ÑĤо Ñĩно +ĠÎ ® +éĢĻ樣 åŃIJ +n ite +Ġfund ra +buz zer +ел о +ic ations +Ġz ona +Ġte ens +Ġmethod ology +Ġì¤ij ìļĶ +th an +ĠU l +ĠG rey +Ġh og +IN K +ĠS ung +ĠC laud +ĠCN N +Ġdel ivers +al in +ĠAd obe +ot he +ĠDes wegen +ภ³ +Ġwer de +Ġgre ase +Ġup grades +ĠFin land +ac cept +Ġinter rog +be e +Ġãģ « +Ġpre de +ĠN ep +ĠCam bridge +Ġgraph s +Ġha unted +Ñģ ем +æ § +åħ ĭ +S ome +ĠM all +Ġrehears al +ĠUr ban +ĠL ag +Ġn im +ê° ķ +Ġposition ed +Ġavo ided +EM A +Ġlleg ar +Ġráp ido +Ġgou vern +Ġh ing +Ġdeal er +Ġreform s +Ġfat ty +к ол +ĠA ce +Ġne p +Ġì² Ń +Ġcomput ation +ĠSt ream +bour ne +t ur +P or +Ġsleep y +Ġbang et +ãģĤ ãģ® +Ġwe ighs +Ġble iben +ĠG ren +Ġun ions +Ġêµ IJ +Ġap render +uit ar +ĠJ est +um ing +ĠPlay er +ĠExt rem +Ġinteg er +аÑĩ е +Ġconcert s +×ķ× Ľ +Ġtro chÄĻ +ĠRe pe +éĩį è¦ģ +๠Ĥ +ż en +Ġsound ing +Ġan onymous +Ġex ca +ĠIran ian +Ġener getic +Ġw ives +ĠÑĨ веÑĤ +Ġa is +ãģĭ ãģª +Ġsud ah +Ġunder wear +Ġcrunch y +ĠP ain +Ġger çek +red ict +Ġm isma +Ñĸ ÑĤ +Ġsurv iving +ÎŃ ÏĤ +Ġparticip ant +ĠH essen +ári as +Ġsub way +ist ä +Ġcor al +Ġmar ijuana +ĠMem orial +ÑĪ ий +ri z +Ġsatell ites +Ġle ase +ĠCam eron +um ph +Ġclass mates +äh än +ÑģÑĤв е +Ġh ue +ĵ¤ ìĿĦ +Ġproport ional +Ġn oss +Ġl aps +r Ã¥ +Ġbit coin +ÐĹЫ ÐļÐIJ +Ġì¶ © +ĠÙĦ ÙĦ +ĠM ort +ĠEs p +arn os +ĠÑģказ ал +Ġä nd +åħ Ħ +×Ļ ×Ļ×Ŀ +ĠGe b +ge hen +I naudible +bor ough +ÑĦ ÑĦ +Ġfellow ship +ĠP aper +Ġcur ved +ĠGE OR +Ġcalcul ator +ĠCat al +ĠvÃł o +Ġby pass +л еÑĤ +à ³ +tr ans +ren cies +ì ¡Į +ig ent +Ġtast ed +Ġo ceans +u ft +erv ice +ĠÐľÐ£ ÐĹЫÐļÐIJ +ĠClass ic +Ġrespect ively +~ ) +î tre +ĠN ash +Ġz it +ĠìĽ ĥ +ĠëĨ Ĵ +qu ote +ĠUn s +Ġt ac +Ġpro ves +ĠPort land +b ly +Ġ ere +ì¶ Ķ +Ġépo ca +ĠÑĤÑĭ ÑģÑıÑĩ +7 6 +Ġhad e +ĠF ro +ĠpolÃŃt ica +t ag +Ġíķ Ń +Ġsch ö +are tt +Ġprov isions +Ġmot ors +Ġimag ing +Ġdo k +ul ously +Ġme ille +çİ° åľ¨ +ë IJ +ĠIS O +ĠST EM +ĠBow l +Ġto wers +ĠE e +ĠPerform ance +Ġlo in +cuss ion +Ġcoast al +ial e +com pass +Ġspell s +Ġdisappoint ing +Ġë²Ī 째 +E ER +Ġvers atile +as ury +Ġen fin +Ġdown side +Ġgu iding +ĠاÙĦ ÙĤ +Ġnin ety +char ged +ĠF ans +Ġphilosoph ical +Ġg arn +ĠmÃ¥ nga +Ġwilling ness +Ġport ions +ab en +Ġ ï + ¿ +ra ul +Ġspr int +if en +ıy la +Ġк Ñĥп +ãģı ãģłãģķãģĦ +Ġens uite +ĠCap itol +Ġ6 3 +ĠговоÑĢ иÑĤ +Ġappoint ments +æī ¾ +omi ast +Ġcare g +Ġpubl isher +Ġher aus +Ġε ί +ĠV S +ãģĿ ãģĹãģ¦ +ä¸Ń åħ± +Ġsacrific es +th ird +Ġhuman itarian +ĠëĤ ´ì +im on +Ġine qu +Ġz ob +Ġcomfort ably +ĠD inge +Ġcancell ed +ĠPS AKI +ĠRob inson +Ġfin s +) ? +ĠHist or +ĠÑĩеловек а +Ġt bsp +te xt +k im +Ġupd ating +Ġgel d +f eld +ı ¼ +Ġm ä +Ġcaf é +Ö Ģ +ĠS ri +ĠReg ion +ĠH ahaha +Ġfin ances +ĠاÙĦØ ´ +Ġb unk +ru k +ha ft +Ġlater al +Ġext ensions +ĠìķĦ ìĿ´ +Ġdefin ite +ĠZ hao +ĠLu is +st y +Ġcas os +ĠK lim +Ġ199 3 +Ġreal ization +Ġhistor ian +Ġcrack ed +ëĤ ´ +Ġsyst ème +ĠC IA +ĠÑĤ во +osp heric +Ġfle e +Ġr ất +ĠRegard less +Ġrel uct +Ġtim ely +ĠJul ian +G M +é Ĵ +ad ura +é£ Ł +Ġdress es +çģ £ +ĠëĶ Ķ +Ġnom inated +Ġadvoc ates +ym ph +Ġrecord ings +Ġdev iation +Ġpriorit ize +Ġspir al +ĠYOU R +Ġtransp ose +amp oo +ĠìĽIJë ŀĺ +ĠV ision +Ġpol ite +Ġha mb +ĠPat ient +æ¯Ķ è¼ĥ +íģ ¬ë +Ġs ia +Ġê³ ³ +Ġž e +è§ Ģ +Ġsuper market +ë ¹ +ĠS ierra +Ġgr illed +ĠUp on +Ġabs ent +Ġme c +ĠAp ollo +Ġp unk +ĠPa ÅĦst +ĠÑģв ой +Ġê±° 기 +G irl +Ġskin ny +ĠPrem ier +Ġterrit ories +Ġli ability +Ġj erk +r atic +Ġdan cers +ĠÑĥ ÑĢов +Ġê´ Ģë +on ly +ĠSt u +Ġske leton +ĠëŃ IJë +Ġзак он +ı kt +ĠMI KE +Ġl ö +m ie +Ġre iter +ãģĵãĤĮ ãģ¯ +ĠKoll eg +ĠAd ams +lich er +Ġçoc uk +Ñı г +Ġbl ush +Ġsun shine +Ġe z +ĠDev il +Ġê¸ ¸ +Ġãģ Ĭ +ad d +Ġlic ensed +Ġv inyl +ĠC zech +im ag +Ġcrack ing +Ġì º +Ġud ah +Ġs ommes +Ġìĸ¼ êµ +wa Äĩ +Ġf res +åij ½ +ĠWal mart +ĠТ епеÑĢÑĮ +at isf +C I +l ang +Ġdiff usion +çĶ · +Ġsom os +ĠM akes +æĪij æĥ³ +ĠRick y +Ġmuch a +íķ ¨ +Ġhorse power +as ia +Ġfib ers +Ġ erm +Ñģ кие +Ġjest e +Ġfire fight +Ġcu isine +Ġbesond ers +d ig +Ġì¢ ħ +ĠÑĥ ж +Ġtr acing +Ġcertain s +ĠApp ly +Ñĭв аÑĤÑĮ +ç Į +Ġbr u +ĠY ES +ĠB ai +ĠD it +ĠB is +Ġun le +ÑģÑĤа ÑĤоÑĩно +ĠAw ak +.. " +Ġ12 5 +Ġroot ed +Ġcaut ious +con st +Ġorchest ra +çľ ¼ +Ġвн ÑĥÑĤ +Ġquel qu +ĠоÑĤ веÑĤ +ĠMet hod +ì¹ ľ +Ġμ αÏĤ +l ü +ĠìķĦ ê¹Į +Ġn aming +C har +ĠS icher +Ġprivile ged +ĠF ly +Ġãģ ĭ +áºŃ t +Ġadv ances +ĠZel da +Ġand ra +Ġgr inding +ĠEd ition +p f +Ġwarri ors +Ġh edge +Ġuns eren +ĠÑģÑİ Ð´Ð° +el iness +Ġpersonal ities +Ġf ö +' M +ĠÑĤо Ñĩно +Ġsh ipped +Ġmete or +Ġsurround ings +ĠF ill +u esta +ĠPerson al +ĠAll e +OR T +ä¹ ħ +ĠS che +V I +Ġcompar able +dam n +Ġd itch +Y AN +ism us +Ġpick up +Ġd ak +ĠE P +b est +ĠS ue +äll t +Ġpop corn +Ġfold ing +h ome +ив аеÑĤ +å·² ç¶ĵ +Ġan not +ch uck +Ġfier ce +Ġdam aging +Ġfl op +Ġpas ar +Ġre ef +ĠÑģво ей +Ġz oo +o vers +j ets +Ġpr ès +ĠSil icon +te ok +ĠS eth +at amente +Ġtransm itted +Ġrepl icate +Ġsl im +ĠC ream +æĦŁ ãģĺ +Ġside walk +ìĪ ĺë +Ġжиз нÑĮ +ĠMon ica +ä¾Ĩ äºĨ +Ġcop ied +ĠTer ra +ist ent +ç³ » +Ġо но +Ġwh ale +ĠW ITH +л ÑĥÑĪ +å½± çīĩ +ĠE en +ĠÑģво и +Ġord in +Ġpl ural +Ġsp okes +Ġdisp ute +Ġsens ible +Ġpre aching +Ġktó rzy +pt ed +av ier +Ġpist ol +ĠTap i +Ġ ÅĤ +ff ff +Ġac rylic +Ġignor ance +ĠZ iel +r ans +Ġweld ing +m id +æĪij ä¸į +Ġзан им +Ġlan es +Ġmin es +Ġmom s +×ķ× Ĺ +ĠCham ber +t ier +Ġmod est +ĠìĹ¬ê¸° ìĦľ +Ġun as +Ġw rench +hand ed +Ġsatur ated +ĠF ang +ĠCommission er +ठ° +Ġ× ĸ +ĠLouis iana +ĠM ask +Ġcub es +ìĶ ¨ +Ġvidé os +ĠnÃ¥ gon +Ġr ider +Ġì¶ ľ +Ġs ón +ĠLat ino +b ank +íķ´ì £¼ +ĠB rend +Ġsexual ity +... , +Ġforget ting +Ġ ÛĮ +ĠAven gers +ĠBon jour +cess or +кÑĢа ÑĹ +c ence +Ġge ograph +cul o +о ÑģÑĤÑĮ +Ġswe ating +íĥ Ģ +Ġsymm etry +ts Ã¥ +Ġj an +ĠFer r +é¦ ĸ +Ġamb assador +ziÄĻ k +Ġmus un +ĠÑĥ ÑĤ +ĠL G +iss ent +comm un +Ġcour s +Ġdevelop s +Ġbron ze +Ġsubst ances +dri ven +주 ìĦ¸ìļĶ +Ġa os +åĦ Ħ +ĠPROF ESS +h alf +Ġsort ed +ĠB omb +л аг +ĠMalays ia +ĠChrist ina +Ġteam mate +èģ ŀ +F T +Ġk ı +heart ed ++ + +ogen ic +Ġbell s +ĠOu ais +Ġspecial ists +б Ñĭ +dep th +lass es +g ies +ĠCo ffee +Ġmark ing +Ġfo ll +ul i +Ġad hesive +ĠB ot +ĠP unkt +e ye +ĠB ub +el ong +åĪ ¶ +ĠпÑĢ ик +Ġdon or +8 4 +Ġen for +Ġcatch es +Ġbr icks +Ġkn itting +ĠKnow ing +ok s +H Y +r ide +ĠFant asy +im an +Ġp se +Ġìĺ ¨ +Ġв д +Ġrest ra +Ġevalu ated +ÑĢ ев +Ġfortun ately +Ġche gar +ر ب +Ġdom ains +ib i +ar ry +Ġshut ter +Ġfic ou +M ike +Ġinc lu +Ġdon ors +Ġa pl +ĠL ower +Ġimport ed +Ġacad emy +Ġfin als +Ġdisappe ars +ÙĬ ا +Ġadministr ator +j s +Ġcut ter +Ġr anging +ör per +Ġconstra int +ĠT able +ĠSh an +v ic +ĠF ix +ĠSw ift +oun ces +ĠWar um +Ġlett uce +app elle +Ġsh ave +Ġb ás +Ġ7 7 +ĠO oo +a o +ĠMc M +ĠD rew +Ġl ump +Ġl ashes +schein lich +R ep +in is +ĠC ette +Ġcompos ite +emet ery +Ġsort e +ĠFin ancial +он е +ron es +ĠV oy +Ġt éc +ł ¹ +ĠNin ja +ĠCor in +ен нÑı +ìĿ´ìĹ Ī +Ġn ich +Ġdetect ive +âĢ¦ " +Ïĥ ε +Ŀ¼ë ıĦ +Ġë³ Ģ +Ġë¸ Ķë +Ġpro pe +ĠW right +Ġ×Ķ× ª +ĠSh i +Ġãģ Ł +Ġinvestig ations +éĤĦ æĺ¯ +ĠPower Point +ĠCh u +Ġìĺ ¤í +ĠìĻĦ ìłĦ +ĠFra gen +un ning +Ġpour rait +Ġtext book +м Ñĭ +Ġf ahren +Ġ ÑĤоÑĢ +Ġl akes +ünd e +I nt +ĠMet ro +Ġmans ion +Ġа б +ĠZh ou +Ġcorrid or +Ġesc ol +Ġindic ating +ia ÅĤa +Ġm ommy +Ġarch ives +Ġfound ers +eng ine +ĠDie u +Ġsick ness +Ġë³´ ëĭĪê¹Į +Ġar b +Ġn ed +ĠCh op +Ġco vid +Ġsl am +Ġpublic ations +D C +Ġsp ends +æ ¾ +Ġrefuge e +Ġd ile +Ġ×IJ× ĸ +ific ar +ĠS ach +G u +Ġre load +?? ?? +Ġje ÅĽli +ĠÑģ оÑģÑĤо +Ġsim plicity +Ġbull ying +Ġм ол +Ġreal idad +Ġuncle ar +app a +le vant +ĠIS IS +ĠW atson +Ġde in +ĠMic ro +íķ ľë +ü g +Ġdev am +Ġtwe eted +å° İ +Ġunderstand able +at an +Ġvers a +Ġpre ca +Ġv á»ģ +ĠCop y +ĠOr acle +Ġmindful ness +Ġdisc ret +ern en +ĠP le +H ave +Ġisol ate +Ġde u +Ġsevent y +ĠH ills +Ġarc ade +ĠÑģп еÑĨи +Ġsigu iente +ĠB ÃľNDNIS +lig a +ĠвÑģÑĤÑĢ еÑĩ +ô m +Ġtwe ets +Ġsch auen +Ġcrit ique +ĠðŁİ µ +Ġst att +ĠÑģам ое +ân cia +Ġsuper natural +Ġplug ged +F l +yn ı +ĠTamb ién +Ġencourage ment +ĠSer ver +ëĤ ľ +up a +Ġast on +Ġhe ars +ÑĢа Ñħ +Ġsch e +Ġr ats +Ġrec uper +Ġun ten +ĠFight ing +Ġacadem ics +ç¤ º +ĠS ü +Ñģ киÑħ +Ġpa ired +Ģ ìĿĦ +Ġá rea +Ġsweet ness +åı Ĭ +Ġde fer +Ġmuit as +ĠAud io +Ġlock er +ÙĬ د +ĠÑģÑĤ ав +Ġbu ena +AN S +Ġdetect or +av o +be k +Ġα ν +íİ ¸ +Ġdra gged +Ġдолж ен +à ĸ +ر Ø© +ìĿ´ì §Ģ +Ġcell e +ck ing +ĠاÙĦØ ¬ +ĠCan vas +Ġespa ñ +Ġgl imp +Ġspread s +ong o +ĠM ason +ĠIn g +Ġê°Ģ ëĬ¥ +ÏĦ ικ +Ġsec ular +Ġb ater +Ġinqu iry +Ġenerg ies +Ġmanufact ured +Ġveget arian +Ġpine apple +ÑıÑĤ а +Ġpractition ers +2 000 +Ġíķ´ì ļĶ +ĠìĹ¬ëŁ¬ë ¶Ħëĵ¤ +Ġë¶ Īë +ĠJeff erson +ĠJo an +Ġtr am +å® ¹ +ch mal +ĠH ait +á¹ ĩ +Ġun real +Ġsymbol ic +Ġste alth +Ġspl ash +ĠEntertain ment +Ġmetall ic +?" . +è¶ Ĭ +ar ound +Ġdesp air +ĠNev ada +ĠFin ance +Ġk rie +ĠL ux +ĠSm ash +ke eping +Ġз аг +Ġnarc iss +Ġdz isiaj +Ġtoler ate +o ard +Ġlink ing +ĠEconom ic +Ġì ¼ +Ġmor ph +ĠN ak +ĠB aker +at on +r ings +ĠP eng +ĠAir port +ãģĭ ãģ£ãģŁ +íķĺ ëĭ¤ +§ ģ +pr ints +Ġhad i +Ġemp ir +ĠL ives +ann ers +Ġн им +ĠPROFESS OR +Ġpositive ly +ant om +Ġbad ge +ke lt +Ġinter fer +Ġfulf illing +Ġvisual ization +éĹľ ä¿Ĥ +ĠPr ice +� � +Ġscen ery +Ġpr one +Ġw izard +Ġb anyak +ver b +s ky +Ġwish ed +Ġrail way +Ġü zer +Ġalgu ien +ĠA W +Ġкол иÑĩе +Ġreact ing +ĠB uch +ภ¶ +Ġan th +Ġsi h +Ġh ust +ĠSc reen +il ant +ah o +Ġfragr ance +Ġelev ation +ĠMed iter +Ġë ¿ +Ġé qu +Ġwra ps +Ġin ert +Ġrecre ate +л аÑĤ +Ġbo leh +Ġharass ment +unk y +Ġglimp se +reg ierung +Ġfut ur +Ġreposit ory +Ġeng ra +Ġtraff icking +ass is +ĠTre k +Ġë² Į +Ġë§ Īë +ĠK ab +ani u +g ive +Ġdin osaurs +Ġfe ather +Ġatt itudes +Ġpl um +ĠR S +ĠAn fang +ill ery +ĠìĬ ¤ +M Y +Ġtrze ba +Ġsk ies +ĠA j +ur able +C U +ĠSh ane +Ġdepart ure +ĠT ON +iet en +r ats +æ° Ĺ +is u +Ġb ord +Ġinteresting ly +çĻ » +oug hing +Ġr ushing +Ġvol atility +Ġp yt +Ġform ats +Ġз аÑĤ +Ġê¼ Ń +Ġwhat not +Ġcomp ort +s w +ore an +ĠRel ax +Ġcl an +ĠA H +Ġpe w +Ġdiction ary +T ake +sh irts +ĠH ugh +ĠعÙĦ ÙĬ +ĠP ic +Ġenroll ed +Ġjed nak +Ġoffer ings +Ġcor az +L ife +Ġ !!! +Ġcl er +ĠVide os +ĠRod rig +ĠId ent +ĠP os +ĠSt age +ĠR ace +Ġen act +ãģĦ ãģ¾ãģĹãģŁ +ĠG y +ĠHis pan +Ġdef ence +ĠCamp bell +m atic +Ġrele v +Ġpe ach +Ħ¸ ìļĶ +Ġparad ise +Ġcere mon +Ġannoy ed +æĮ ĩ +la x +Ġexplo it +Ġcla use +ek er +ĠBlo om +n ant +ate urs +Ġhe ights +E ven +Ñģ он +Ġoutra ge +ĠVietnam ese +ãģ¯ ãģ¯ +T R +Ġe er +Ġcann on +ĠCom b +IJë §Į +è» Ĭ +Ġê²ĥ ëıĦ +Ġaccomplish ments +ĠAnalyt ics +Ġshap ing +re iben +Ġb achelor +Ġfing ert +ack ed +Ġpyram id +ĠStew art +á st +Ġsurviv or +Ġdu ct +Ġdeal ers +æ´ » +ع Ùħ +ли н +Ġed e +×ķ× ¢ +ĠÙĥ اÙĨ +ĠÏĦ ι +Ġcho oses +ĠO wn +го ÑĤов +h ire +алÑĮ нÑĭе +ĠÐĽ Ñİ +Ġо ÑģÑĤав +te ch +Ġdro it +Ġsubject ive +en es +Ġdiv is +ave z +Ġmaneu ver +à¹Ħ à¸Ķ +ade ce +ĠEn s +ac ial +ĠProt ection +ĸ ´ +Ġform ally +Ġwy d +ingu ém +Ġz iem +Ġrecru iting +×Ļ× ļ +n em +Ġforb idden +ĠB apt +×IJ× ł×Ļ +Ġsubs et +ĠMag az +n ement +Ġaqu ela +rag on +Ġcomm ittees +Ġéta ient +ud i +ĠDa wn +Ġb ore +Ġcompos er +ĠwiÄĻ cej +ang a +Ġdis like +ĠD ays +åŁ º +Ġpar al +Ġm ientras +Ġheaven s +ãģ Ĵ +he id +Ġtrad ers +on ce +Ġmasc ara +ĠÏĢ Ïģο +Ġwhis per +ĠMus k +éĽ Ĩ +ĠFamil ie +All ah +ĠOl ivia +ĠPr os +Ġol ika +il im +Ġrép ond +ĠP eters +Ġ å¾Ī +Ġbit es +Ġv ic +ĠN Y +em ption +Ġ4 50 +Ġvisual s +Ġlie u +ück en +ĠSte el +ĠG P +w ait +Ġnotice able +uch a +Ġreh abil +Ġreject ion +ĠÑģлед ÑĥÑİÑī +Ġsl ider +Ġregard ed +Ġgrav it +ĠRes erve +c ount +Ġbre eding +Ġlon ge +ale b +Ġkn ight +Ġв ой +Ġprés ent +Ĥĺ ìļĶ +ĠSpec ifically +Ġpos es +Ġve ure +ok ay +em as +Ġ ãģ§ãģĻ +Ġma jÄħ +Ġweb inars +Ġcann abis +Ġdam als +ĠNorth west +Ġp ada +Ġcrowd s +Ġfut ures +Ġä n +Ġciv ilians +ĠS achen +æ į +Ġtr aces +Ġ먹 ê³ł +Q U +é¡ĺ ãģĦ +ĠI F +an ın +ìĤ ´ +Ġb iblical +ĠV ed +Ġst oring +ÑĢав лÑı +æĩī 該 +Ġn ast +Ġd ö +ÑĢ оп +el ia +Ġside ways +ĠUnder stand +ĠQ ur +Ġper pend +ĠMill ionen +Ġwater melon +ĠDiv ine +ult ur +ab ord +Ġsuccess es +Ġhom bre +Ġcar p +Ġsus cept +ung kin +Ġk ij +ul us +Ø§Ø ¬ +Ġnot ch +Ġpolynom ial +å¹ ² +å © +Ġún ico +Ġteles cope +Ġpolit ique +k iem +ĠÎŃ Î½Î± +Ġaggreg ate +ĠGe off +Ġtr il +ĠG RA +Ġsubscri ber +im et +Ġдол лаÑĢ +op ing +Ġth erapeut +ĠCan cer +Ġpar ade +Ġir rig +âĻª âĻª +Ġclear er +Ġb og +ĠM aur +า à¸ĩ +ĠShang hai +acht e +ĠK ol +el ujah +Ġha v +ĠCr ime +se k +Ġë ¡ľ +ien na +ĠG or +è Ľ +ĠпоÑĤ ÑĢ +Ġкаж еÑĤÑģÑı +ĠL ift +ĠS ort +ĠP sal +Ġp ing +ĵ Ŀ +ph is +ĠF UCK +ĠS yn +Ġbam boo +¬ ìĺģ +c uts +Ġm mm +Ġfunktion iert +Ġ _ +ÃŃ cio +St op +Ġimag inary +Ġnot amment +ĠIniti ative +ãĥ ¥ +ĠK urt +Ġlo osen +Ġbus car +çģ « +Ġz elf +Ġpro ps +åĽ ī +Ġmoet en +Ġmill i +Ġhall s +ĠM atch +Ġbrack ets +ĠC ou +æ¦ Ĥ +ĠÐľ аÑĢ +IS A +Ġcig arette +Ġcompet itions +ĠM IN +Ġbeh ö +vo or +Ġ ust +ĠZ i +ĠO cc +ul ates +Ġball oons +Ġpr onto +ĠM iy +ĠF ile +Ġкл аÑģÑģ +нÑĥ л +Ġcere al +Ġincre ment +Ġref ined +åı¦ å¤ĸ +pr ising +ĠR F +Ġrespect ful +Ġlo ot +ask et +Ġdeix a +ing le +Ġfuncion a +ĠRe vel +Ġso ber +Ġperform s +ĠG entle +ãĤ ¨ +Ġrecip ient +ĠHa use +Ġë ĥ +F rom +Ġmin isters +Ġpar adox +å°±æĺ¯ èªª +Ġtast ing +Ġ×Ķ× Ĺ +Ġre use +ĠL ane +ĠÑģов еÑĢÑĪ +Ġremem bers +Ġfemin ist +Ġcommit ments +Ġproject ed +Ġg az +iyor uz +Ġoblig ations +R o +z ar +Ġch w +ĠJ AM +ĠbÄĻd Äħ +asp berry +Ġм еÑģÑĤо +ë² ķ +Ġreg ulated +Ġw icht +ĠTre vor +Ġsecond ly +ĠIh re +els h +Ġrep orters +ÑĤоÑĢ а +oy o +G I +Ġinter connect +é IJĺ +OS H +æŃ ² +Ġbr ass +Ġign oring +ä»Ĭ æĹ¥ +in fect +Ġpro jekt +ore t +ÏĦα ν +ĠÑĤ ип +Ġmut ta +Ġunbox ing +Ħ ° +å¡ Ĭ +Ġadv ised +ĠDen ver +Ġsevere ly +ĠM hm +Ġfl ipped +Ġp ien +Ġkomm un +ĠF RE +Ġà®ĩ à®° +aint ed +Ġkn ives +Ġhab l +Ġgew orden +arett es +C S +Ġмал енÑĮ +Ġgal ax +Ġnin ete +ê±°ë Ĥĺ +Ġs is +Ġadvis ory +Ġdr illing +ĠWould n +ün f +gest ellt +ĠHel en +Ġ×ŀ× IJ +ap olis +Ġrze czy +Ġter ra +Ġhe p +Ġalg ún +ik k +Ġastron om +ĠStar bucks +k Äħ +Ġpat rol +Ġì½ Ķ +Ġg on +Ġ ãĢIJ +Ġson st +Ġencoun ters +Ġret rou +Ġshark s +Ġd or +ĠR ever +Ġev apor +Ġreserv oir +Ġalleg ed +ul er +Ġver m +Ġcommer ce +Ġf itted +ge m +Ġtact ical +Ġl ith +éīĦ å¡Ķ +h ad +è® Ĭ +Ġcarboh yd +Ġlength s +ι ο +Ġdem ographic +R ob +ĠS kin +cc oli +Ġsimpl ified +Ġread ily +ĠC um +ades h +ĠD Ã¥ +us st +ig ne +et on +Ġmen or +q i +OO M +à¸Ń à¸Ļ +Ġpsych iat +Ġeight y +Ġм илли +ĠT ob +ed o +ç¶ ² +ĠÄij ến +Ġcirc uits +ĠLAU GH +ic ism +em or +Ġreg ener +eg ree +Ġbure auc +ĠAl ber +ä¹ĭ å¾Į +ĠW or +å¤ « +Ġres in +Ġby ÅĤy +ĠI G +à¯į , +Ġ7 8 +Ġwe eds +ĠMy th +9 3 +æ ¿ +ĠëĤĺ ìĻĶ +é v +á ½ +ö ren +ç ar +ĠP AUL +Ġdisad vant +Ġposition ing +Ġcock tail +Ġagre es +n n +ĠS ally +M s +Ġinher ent +Ġmonet ary +Ġnat ur +ĠN h +ĠImp ort +Ġle ben +Ġw i +uss y +Ġob es +Ġwand ering +Ġìĭ łë +Äħ da +etch up +Ġdispos al +ĠJ A +ĠC er +z illa +Ġvir gin +ĠSl ide +and el +Ġrighteous ness +ĠÎ £ +Ġide ia +ä½ł 好 +иÑĢов аÑĤÑĮ +ר ×IJ +Com ment +Ġpre lim +ĠV ale +Ġì§Ģë Ĥľ +ĠV anc +OM AN +Ġп Ñĸд +Ġy um +st re +ce m +Ġpo cz +Ġfrag ment +ĠÑģлÑĥÑĩа е +Ġunder go +ĠH ank +ce ks +ĠF PS +Ġoc ur +Ġdeter ior +æ³ ¨ +Ġempres as +Pa ul +Ġ) )) +ĠвÑĢем ени +Ġsc old +×Ļ× ¢ +Ġsuspect ed +Ġaccess ing +Ġsubst it +Ġhistor ians +ä» » +Ġдел о +Ġsoci ed +r one +Ġre den +Ġext ends +epher d +Ġbal con +ä¸į èµ· +ĠSol o +Ġpolit ician +олÑĮ но +Ġirgend w +Ġtraum atic +Ġrapp er +ĠRO BERT +Re ally +æģ ¯ +Ġline up +AS E +Ġcontract or +ĠCorpor ation +g or +ĠTod o +ÑģÑĤÑĢ ой +F BE +Ġnews letter +Ġko ÅĦ +alt ies +ĠпÑĢ иÑĩ +ĠHe avy +Ġsw ords +Ġmanip ulation +Ġfun k +Ġv Ã¥r +ĠTal iban +Ġë° ¥ +Ġac ne +ür ü +Ġdes wegen +ĠD ust +Ġsil ic +Ġhook s +Ġbl ij +Ġpet its +Ġfil me +ĠBere ich +ĠSa id +Ġimp osed +Ġdi ary +Ġго ÑĢ +ĠG ates +Ġal ta +å¸ Į +Ġch cia +ple asant +Ġë° Ŀ +Ġmoż emy +ĠAust ria +Ġbro ker +Ġsuck ed +èĢ ĥ +Ġcomp artment +Ġcl one +Ġ×Ķ× ¢ +ĠDan ke +Ġnoch mal +ез д +Ġad renal +Ġkle inen +ãģ¾ ãģĹãĤĩãģĨ +Ġsubsequ ently +Ġdecent ral +Ġgen etics +Ġê´ ij +Ġmon itors +ĠApp lic +ĠRep orter +w ert +Ġwie m +ĠMove ment +Ġinterview ing +Ġhair s +Ġpu ò +ĠChel sea +Ġco her +Ġc ot +Ġz as +Ġpatch es +Ġl ah +Ñĥн к +ĠRe agan +ĠMar co +c ity +Ġdef ender +Ġdecor ation +ij i +Ġl itter +Ð ¨ +Ġj ego +RE W +ĠP ik +ĠHe e +ĠI v +Ġи де +ĠThe ater +ĠÑĩаÑģ ÑĤо +Ġswe ater +Ġhighlight ing +Ġa insi +Ġdipl omatic +ĠNever theless +å ³ +AS ON +Ġpúblic o +Ġf erm +reat ed +c od +Ġë¬ ¼ë +Ġm ister +ĠVanc ouver +Ġrecogn izes +ec d +Ġcomplic ations +en cial +ãģĹ ãģı +Ġê°Ģ ì§Ģ +ĠUlt imate +Ġva ig +ĠM erry +×ķ× Ĵ +ĠMar cus +ç¸ ½ +ow ego +Ġm ente +S m +Ġa ja +ĠTa o +Ġjud icial +Ġentrepreneurs hip +Ġнем ного +Ġp is +Ġer g +Ġch rist +ĠC urt +ĠÑĢаÑģ п +λ ε +ens ch +ÃŃ re +Ġfo cal +ĠDiam ond +av ÃŃa +Ġh anno +ĠSqu ad +Ġassoci ations +ĠCreat ive +Ġmess enger +Ġbe gging +Ġdec imal +Ġd Ä±ÅŁ +Ġmet adata +sel s +ĠÄ° ÅŁ +ữ a +Ġdiffic ile +d ı +Ġs laughter +ĠVer g +Ġ×Ĵ ×Ŀ +ç° ¡ +æĮ ī +ĠTe a +ass es +O k +Ġsynth es +ot iation +Ġpain ter +Ġel bows +Ġarchitect ural +ĠÑĢ ад +Ġgl or +im age +amp a +cul iar +ł ¨ +Ġte ve +ĠSt elle +ĠB am +Ġì´ Ī +as is +ip edia +ĠG I +ĠAct ive +çĦ¶ åIJİ +az i +ãĤĮ ãģ¦ +ĠL ucky +íķ © +ĠпÑĢ иÑħод +Ġrun way +Ġauthent ication +Ġpos ible +Ġsupp lements +Ġsurg ical +G en +Ġfeas ible +D O +Ġout look +Ġinter vals +Ġan ecd +Ãł ng +Ġstra ps +ĠSh u +ud d +iss enschaft +Ġport e +Ġcomm itting +Ġall ey +Ġco venant +ĠPed ro +less ness +ĠSol id +ĠM olly +Ġн екоÑĤоÑĢ +Ġcooper ate +åĮ Ĺ +oll en +Ġtun a +Ġkinderg arten +ĠS iz +Ġduż o +ĠM BA +ĠGEOR GE +ĠF isher +å¿ ĺ +ĠCa esar +ĠкÑĢаÑģ ив +ĠDel hi +zy m +Ġexpl icar +ê°Ģ ì§Ģ +un s +gr ow +ĠпÑĢ иÑģ +Ġ8 6 +Ġst ating +Ġmass a +ch ter +Ġì»¬ë Ł¬ +Ġdep uty +S M +n oc +Ġge ography +ĠEnter prise +ĠC ant +ö z +Ġun pack +ĠíĻ Ķë +Ġsearch es +Ġpres idency +Ġtri vial +Ġp ige +ou bt +ãĤ ļ +ì¼ ĢìĿ´ +Ġbudget s +Ġu b +Ġp ne +ĠY ale +ĠÅŁ öyle +reg ular +Ġimper fect +AR A +Ġfam ÃŃlia +ur m +ĠAdvent ure +ãĥ Ĭ +c is +em ark +Ġne go +Ġinappropri ate +ĠпÑĢи з +ĠÑĢ ол +Ġdream ed +B ry +Ġshut tle +Ġpill ars +Ġb ik +in um +ĠÑĥ Ñģ +ĠNe br +Ġperpend icular +Ġbook ed +ber y +Ġv ikt +be ar +es us +Ġвозм ожно +¨ ¹ +Ġpresum ably +ĠMem phis +Ġambul ance +×ķ× ŀר +Ġthumbna il +Ġmod ification +éĩ ı +Ġinterpret ed +Ġprom o +Ġκ ά +Ġε ÏĢ +Ġacoust ic +ĠD B +åĵ İ +Ġnon etheless +ou le +Ġpe qu +Ġkn ob +ãĤ £ +ĠëıĮ ìķĦ +Ġpurch ases +ĠÃĩ ünkü +Ġdivid ing +per form +ract ion +health y +ĠTit le +Ġu k +Ġcer ca +Ġargu ably +Ġf ale +ë³ µ +Ġgam ers +Ġutil izing +Ġoff ended +Ġt ava +al ı +Ġmed ian +Ġinfect ious +ĠAn nie +Ġsmart phones +Ġpar ole +åĸ Ŀ +ĠEp ic +z za +Ġun ified +Ġê·¸ë ķĮ +Ġcur tain +ĠÄ ĥ +Ġsex ually +Ġuns erem +ĠCon vention +Ġalleg edly +Y a +ĠH oo +en ment +æĢ ª +íĽ Ħ +Ġgig antic +Ġnot ing +Ġre bo +ĠJ ama +ĠAl z +Ġborrow ed +ì¹ ¨ +Ġper ipher +оÑĤ а +ĠG B +ĠGe ar +Ġeconom ically +Ġtele fon +Ġqu eremos +ĠдалÑĮ ÑĪе +Ġr as +ĠTe ach +ic ios +at os +Ġpl edge +b au +ĠHim self +L ink +Ġesper o +Ġchrom os +ĠP ER +Ġer le +Ġpod ium +ç os +Ġnie u +Ġf en +ĠGO D +ĠCh ocolate +wer k +Ġt ừ +Ġsupp ress +λ η +Ġ24 0 +Ġsit ä +Ġhonest y +ĠB io +ĠB ard +ĠобÑī ем +Ġм Ñĥз +Ġmar ble +ĠÑĨ енÑĤ +Ġproc ure +Ġrot or +ber n +Ġtu h +Ġhead set +at em +Ġwarrant y +à® ´ +Ġfil ing +ι ά +Ġcomp rendre +Ġimp ulse +Ġsal v +wr itten +Ġinstit ute +K im +ĠLGBT Q +fic iente +H is +ĠαÏħÏĦ ÏĮ +Ġteen age +or us +ĠÑĢаз б +S ee +ĠCons erv +á»ģ n +ful ness +Ġstraw berries +ĠAb u +и он +Ġo lla +NO ISE +ĠEm ploy +Ġwip ed +ur ger +Ġmod ifications +Ġíķĺ ì§Ģ +Ġfoot steps +Ġhon ors +Ġad ul +Ġfl ipping +ĠH U +Z Y +Ġintegr ating +ب ر +ull a +Ġnatuur lijk +ĠíĹ Ī +ĠEth ereum +ÙĬ ÙĦ +w ed +Ġpe aks +ĠK es +Ġblo om +Ġcr ashing +Ġ9 11 +ĠоÑĤ лиÑĩ +Ġcontro llers +ĠD od +Ġвм еÑģÑĤе +Ġsort ir +å¥ ĩ +ĠStra ight +ĠGrac ias +Ġgro ove +Ġto gg +Ġìĭ¶ ìĿĢ +é ro +Ġout ward +ĠW A +ĠRock y +Ġsc am +Ġhay at +ig nty +â Ħ +pl ings +Ġantibiot ics +Ġ ä¸Ģ +Ġnever theless +j ang +com merce +Ġspo iler +Ġglo ve +Ġch atter +ĠB Y +~ ? +Ġíĺ ¸ +Ġdem ol +we chsel +im ir +Ġra id +еÑĢ Ñħ +ìŀIJ 기 +en f +Ġcomment ed +Ġoptim ized +Ġconv icted +Ġb ats +ĠS B +ĠA ur +ĠT ong +Ġimplic it +ĠJan et +Ġre ag +ãģ ² +ĠAdv anced +Ġimp ose +ש ×Ķ +Ġschem es +oug her +ab olic +Ġê±° ì£ł +Ġslow ing +Ġwt edy +Ġdest ructive +Ġоп ÑĢед +Ġland mark +Ġëı Ī +ĠWalk ing +Ạ¹ +Ġt ijd +ĠK N +ĠQu ant +ìĺ ¤ë +Ġк ÑĢÑĥ +Ġper der +Ġno ve +änd e +Ġãģ Ĺ +b ia +Ġcust ody +Ġb iod +æĿ± 西 +Ġdirect ing +... âĢĭ +Ġre loc +Ġdemand e +ãĤĵ ãģł +Ġo ÄŁlum +Ġод на +ĠMil k +åı · +ĠK ra +ĠH onda +Ġp ue +Ġele kt +Ġbegin ners +Ġspe ar +ÃŃ nh +ĠLu ft +Ġn ig +ĠSchool s +Ġfor ums +ĠQ in +pp o +Ġz ag +ĠÐ ® +Ġtooth p +ĠSt yle +ì´ Ī +Ġpun ct +Ġrep s +ĠA ly +Ġamend ments +Ġö z +Ġdig its +ur ai +Ġcha otic +ĠMas ters +e on +ĠC ash +ĠC uz +Ġbede utet +Ġscan ning +Ġж д +н еÑĤ +Ġcertain ty +j ek +Ġdi jo +ĠCl imate +Ġr inse +Ġk rij +vel and +Ġsound track +ĠSa fe +ĠNo va +9 4 +Ġa the +ĠVer b +ol er +ìĿ´ì £ł +Ġv in +Ġrespir atory +ĠStud y +ĠC AM +Ġav ocado +ĠZ hen +Ġlat ency +Ġfe athers +Ġcont ar +Ġв еÑī +Ġf ark +Ġbl ended +Ġexpl oded +ĠX X +ĠBen im +Ġalgu ém +isto ire +Ġconfident ial +Ġm ast +Ġì ¿ +ge h +Ġdis respect +ĠSystem s +Æ° a +E d +Ġw ys +Ġex otic +Ġgl owing +ù ng +oun ge +è Ħ +ани з +Ġpal av +ĠSw ord +Ġg im +ĠC row +Ġpot ent +b ish +Ġab used +ĠJ ed +Ġg ambling +ĠS pect +Ġinvestig ators +æĻ ļ +Ġr att +Ġdo b +ĠD ES +h og +ĠоÑĤк ÑĢÑĭ +íĮ ħ +ĠденÑĮ ги +Ġíĺ ¹ +Ġë¨ ¸ë¦¬ +Ġsat uration +Ġinher ited +ĠInnov ation +ìĹ Īëįĺ +Ġtang ible +Ġdep ri +h ed +Ġпом ог +Ġslic ed +ॠį +Ġth ế +Å ¥ +6 8 +Ġcor ona +Ġgift ed +Ġso ir +Ġhum ility +ĠìĿ´ 걸 +Ġflaw s +ĠпÑĢ акÑĤи +Ġk ald +wa ż +y w +ãĤĵ ãģ§ãģĻ +ir teen +Ġcroch ets +¦¬ ê°Ģ +ĠìłĦ ìĹIJ +Ġdes e +æ¥ Ń +Ġм аг +Ġdz iaÅĤ +Ġl ég +ch anging +Ġlle v +ÅĦ sk +çĶ » +Ġ198 4 +orn s +ĠW elsh +Ġpharm aceutical +Ġpump ing +ĠSh aw +p unk +Ġva ult +Ġkin etic +Ġhur ricane +ĠInc luding +ứ c +ĠGrand pa +ans hip +é¦Ļ 港 +ĠвÑĭ Ñħод +н ож +ľ ł +ut ta +Ġê²ģ ëĭĪëĭ¤ +Ġb az +Ġпо ÑĪ +Ġpe culiar +zy Äĩ +ĠEll ie +Ġlearn s +ĠKr ishna +Ġconse cut +Ġemp ath +ĠD in +Ġtrad ed +ĠBor is +ugg age +oll a +Ġназ в +Ġetern ity +Ġв п +è mes +Ġgra pp +b é +ĠпÑĢед ÑģÑĤав +ĠF C +į ëĭĪëĭ¤ +e ven +ĠNebr aska +ortun e +Ġk arena +ĠAg ent +Ġst ing +ĠP I +Ġmunicip al +power ed +Ġconse gue +ĠMan chester +Ġrain y +Ġbl i +Ġk ost +Ġhal ten +ĠAh hh +ins ula +er ting +ĠاÙĦ Ùģ +Ġrel acion +Ġk omen +Ġd ome +Ġpri ests +ĠInt rodu +rop he +sh ore +vel t +clip se +ĠÑĢ ÑĥÑģ +×Ļ× ¡ +Ġsab emos +ĠHoll and +og i +ank i +ĠM ats +Ġsm oked +ull ie +Ġeuro pe +ĠдейÑģÑĤв иÑĤелÑĮно +Ġbard ziej +Ġtransform ing +ĠE z +op ath +Ġìĸ¸ ëĭĪ +ĠÑģÑĤ ан +ằ ng +ั à¹ī +ĠO uch +Ġclear ance +ust ain +Ġsolid arity +Ġpro ving +ĠÐĺ н +ĠÑģ ÑĬ +Ġpro long +ад но +Ġs os +ĠDe al +Ġ17 0 +m ons +Ġз ем +Ġlo gged +Ġlif elong +Ġsens ory +Ġbe hold +ĠF AR +èt ement +ĠFed eration +Ġdod ge +ĠSh ir +Ġdrag ons +ĠAr ctic +Äħ ż +Å į + º +Ġden ke +Ġpodr ÃŃa +co le +ÑĥлÑĮÑĤ аÑĤ +Ġsystem atic +ам а +ch os +Ġclin ics +ĠB S +Ġtal es +us ions +Ġí Ī¬ +Ġpres ervation +Ġl ore +ĠProt est +á» Ľ +å¸ Ĥ +Ġacknowled ged +ĠIs aiah +ĠëķĮ ëĬĶ +Ġ× ĺ +Ġcompet itor +Ġadv ancing +z ip +Ġtent h +ĠLa ure +Ġh ints +Ġexerc ising +ŀ ľë +ĠIntell igence +u ated +OU T +op ed +Ġaut onomy +Ġbrand ing +ĠMediter ranean +Ñĸ к +Ġscrew driver +Ġsu pre +Ġst ap +Ġjurisd iction +ĠSetting s +Ġfore front +ĠF emale +com fort +Ġmultiplic ation +ĠMur ray +Ġbo b +ĠT as +Ġt ahu +Ġon un +et ter +Ġproph ets +l ag +Ġreven ues +Ġpr á +Ġupload ing +Ġmach inery +asc al +ĠEst á +ĠG oth +ĠB ald +ĠS aw +Ġstri pes +ìł ij +Ġpow in +æĹ¥ æľ¬ +Ġhost ile +Ġdar um +Ġprevent ed +ожалÑĥй ÑģÑĤа +Ġalgun as +Ġhop eless +Ġz naj +Ġread ings +Ġcra ving +t at +ĠP ig +Ġli ar +çĪ ± +Ġmulti player +Ġd ale +ĠCour se +íģ ¼ +ĠK ita +Ġcustom s +Ġrespond s +end ra +è¦ ĸ +Ġmet ro +Ñģ ол +Ġmitig ate +Ġopp ression +Ġ æĪijåĢij +qu inho +Ġam mo +Ġen fer +Ġp ony +Ġ ounces +° Ķ +ĠìĪĺ ê°Ģ +Ġdich o +ĠDe b +Ġwond ers +ĠRo ose +Ġpri zes +ĠA LEX +Ġthank fully +Ġtiss ues +ĠÑĢав но +ĠL una +intell igible +ĠìĻ ¸ +ê° ij +ĠHe at +ĠÑģ ид +ĠQu i +Ġ ions +Ġaccommod ation +ä¾ ¿ +ĠK art +ien st +Ġt arde +Ġso aked +ĠCase y +Ġì´ Ŀ +ĠÑĢ Ñĥб +Ġdifferent i +Ġleft over +Ġexch anges +sec ond +Ġfirst ly +Ġbuild er +ri en +Ġd w +Ġboun cing +? < +olog ÃŃa +we alth +Ġmed itate +ĵ¤ ìĿĺ +ĠC raft +è§ī å¾Ĺ +æĻ ® +ri v +ĠAgain st +Ġcer amic +esp ère +Ġcompet ent +ĠHop kins +Ġkil os +Ġgra vel +Ġpist on +Ġfriends hips +Ġesc re +Ġvo z +ĠGes ellschaft +Ġunter stüt +Ġmu j +Ġwarning s +p os +ĠProfess ional +w szy +od le +b ands +Ġteam work +stell ung +Ġd x +åį Ĭ +Ġatt orneys +Ġweit ere +ãħĭãħĭ ãħĭ +ĠOrig inal +×Ļ× Ĺ +Ġbroadcast ing +ĠпеÑĢв Ñĭй +uch i +Ġhe ure +Ġgra bs +ĠW OR +ĠPla id +M in +Ġp az +ĠP uis +um u +it ates +Ġco ats +Ġbu en +Ġhe ir +Ġpne um +ש ר +ens er +ĠJUD GE +Ġbl onde +á¹ Ľ +Ġg ak +Ġs ık +Ġquot ed +Ġequip o +Ġw ishing +ÃŃ cia +Ġver bs +çµ Ħ +ĠCanad ians +Ġgover ning +ĠEv ans +E uro +Ġgen res +Ġunters chied +ĠBeck y +³¼ ê²ĮìļĶ +Ġe inge +ĠRa ise +ol and +ĠStr ateg +Ġer es +ĠVeter ans +Ġbreak out +Ġsant é +Ġad el +Ġinvestig ated +Ġpe ur +Ġag ile +Ġrail road +ans ka +Ġе й +Ġexp os +ator ies +ĠCont ent +Ġtruth s +ĠTra il +Ġgu a +Ġp ores +Ġwrit ings +ĠU hr +ĠThat s +Ġic ing +O C +ĠProdu ction +Ġcar ne +IS S +Ġn inguém +n on +Ġv icious +×ķ× Ķ +Ġrecon nect +Ġcent res +ĠK em +Ġcre ase +ĠìĿ´ë ¯¸ +айÑĤ еÑģÑĮ +Ġб оÑĢ +ĠHay ır +ĠÑģ Ñĥд +Ġún ica +owa ÅĤ +Ġad her +h ua +Z Z +Ġprecis o +Ġcurrent s +Ġseason ed +ĠIo T +ĠB ishop +è¨ Ī +st ed +ĠBern ard +ì¤ ĺ +æ² » +ĠGl enn +Ġktóry m +ื à¹Ī +Ġast rolog +ĠK ot +å¤ ľ +Ġparf ois +Ġfor wards +ĠW iÄĻ +ĠÎ ĺ +Ġn ano +è» į +s ub +ĠBr ill +Ġgr it +Ġc ited +g ado +Ġmel ts +Ġfor cé +âĸĪ âĸĪ +Ġb ajo +Ġdiscret ion +° ° +at ivity +Ġsitu ated +ãĥ« ãĤ¯ +Ñīе е +åľ° æĸ¹ +ĠпÑĢин ÑĨип +am az +Ġaqu arium +Ġdissol ve +ĠGod s +S uper +Ġam id +z k +Ġ ãģĦ +éł IJ +amp f +Ġhel a +' ! +Ġdevelopment al +ĠD ise +ĠÑĢабоÑĤ аеÑĤ +Ġsnaps hot +好 好 +Õ ¸ +ĠY ue +ĠH ulk +ĠDo om +ĠFel ix +Ġré f +M ale +ç· Ĭ +ph ants +EN S +ĠMe chan +ĠG olf +åĨį è¦ĭ +Ġgener osity +ät ze +Ġunlock ed +Ġ ãĤĴ +íĥ ģ +ocaly pse +Al right +Ġê° ľë +Ġ×IJ× ij׾ +ĠKeep ing +Ġcollabor ating +ch ief +ĠFern ando +Ġchef s +ĠíĶ¼ë ¶Ģ +Ġsk ipped +Ġperson n +Ġax e +che z +Ġextract ion +ĠA V +ĠGib bs +Ġí ľ +Ġs ı +I AM +V iew +ĠGR ANT +Ġëª ¸ +Ġver ification +Ġdep icted +ĠMo z +ou x +Ġt ul +Ġsc anner +Ġcomed ian +ĠVol ks +ĠJE FF +è¨Ĥ éĸ± +§ Ħ +Ġdistract ion +r á +ĠIN TER +Ġsin cer +Ġ×ŀ× ª +Ġש ׳ +Ġconstruct ive +ar f +ĠëĪ Ħë +Ġe co +r amos +Ġrenew ed +in ement +ĠU b +ĠPe pper +ì§Ģ ê°Ģ +ĠDar win +Ġmerch and +Ġv árias +è ce +N G +ĠìľĦ íķ´ìĦľ +Ġак ÑĤив +ĠUn ters +ع ÙĦ +Ġint ric +omm a +ie ving +ĠCarol ine +åĵ ģ +ĠPR ES +Ġperform er +Ġaut our +ãģ¾ãģĽ ãĤĵ +Ġutter ly +Ġsynth esis +Ġles bian +Ġretrie ve +Ġmane ira +Ġimp air +Ġment oring +ĠSoul s +ĠGo Pro +ÑĢ аÑĤÑĮ +Ġc ose +ĠSS D +I RE +Ġup front +ĠA un +Ġgam er +Ġl itt +Ġag gression +ĠLike wise +ĠBet ty +ĠD art +ĠD LC +ish ment +ìŀ¥ ìĿĦ +Ġ 对 +ç» ı +c ream +ĠBaby lon +Ġn ug +br ar +Ġa ynı +am ily +b ike +ahah aha +lo yd +Ġmir a +Ġper me +ĠG aming +Ġfirm ware +M a +Ġassist ed +at ics +Ġìķŀ ìľ¼ë¡ľ +ĠM ental +niej s +ĠI z +ow Äħ +Ġt ougher +Ġde ed +èĭ ¦ +Ġsty lish +ĠTool s +ĠH amp +Ġsun screen +Ġartic ulate +i ye +и ÑĦ +ĠSp read +ĠHA VE +Ġsw irl +Ġspons oring +ä» ĭ +iov ascular +mes i +Ġrelax ation +ĠÑģво иÑħ +Ġmar gins +Ġsa ÄŁ +ĠPr ide +ĠÏĦοÏħ ÏĤ +и ÑĨи +en ci +Do es +Ġcor pse +Ġend urance +Ġí ŀĺ +ì¹ ´ +Ġhair cut +Ġinterrupt ed +Ġwind y +ĠC aleb +Ïģ Ïĩ +ĠPour quoi +Ġhol istic +uc lear +ĠWho le +å£ « +A ct +Ġgall on +c ade +ĠReg ional +ro ads +ĠSch ne +á ng +Ġиз мен +ãĤĪ ãģŃ +Ġmen us +Ġspl itting +Ġpr iced +ĠÎ ĵ +Ġus ername +ĠÐŀ Ñĩ +Ġcomp ressed +y in +Ġguard ian +Ġgo of +Ġcheck list +Ġinter change +Ġexped ition +Ġex tern +Ġinfra red +eng o +Ġden ying +Ġpack ets +on ent +B B +ĠInc re +Ġsin i +ÃŁ er +è g +ma al +gen eration +Ġminor ities +Ġlle var +Ġnom ination +Ġcons id +Ġ×ľ× ¢ +m uÅŁ +ĠEs c +Ġnumer ator +Ġka ik +Ġktóry ch +ies en +Ġv ê +ĠUS S +ĠPri vate +Ġод но +Ġal ém +ÃŃt ulo +Ġlim b +Ġforg iven +Ġdiscl osure +ÏĦ ί +Ġning ún +Ġtherapeut ic +Ġnegoti ating +ĠN ike +ense ful +Ġin cap +Ġflag ship +t own +â Ī +ĠÏĢ ολ +Ġwol ves +Ġviol ations +ĠAr nold +Ġinterven e +Ġhe ater +Ġrecurs os +Ġma id +ê² ¼ +Ġдав айÑĤе +ĠCe lebr +Ġca pe +ĠSt y +ain en +s ite +b ij +Ġп олÑĮз +Ġfr amed +Ġpublish ers +ĠÑĩ ÑĥÑĤÑĮ +Ġtempt ation +Ġcert eza +Ġex empt +ìĬ ¹ +se lling +ĠT ask +ho on +ĠC oc +ĠPark s +Ġrepet ition +ĠÑĤ Ñĥда +Ġens l +ĠdeÄŁ iÅŁ +ĠOr lando +ĠMain ten +æŃ ¢ +oc ument +ĠH C +Ġscoot er +Ġнап иÑģ +Ġtight er +Ġte ase +Ġremo ves +Ġkij ken +ĠÑģÑĥ ÑīеÑģÑĤв +Ġth é +ĠвÑĭ глÑıд +Ġrel ieve +Ġmit ä +Ġstation ary +ö ff +p able +Ġar ter +Ġdé f +r ative +Ġcon ect +Ġsad dle +ĠD iane +Ġcomm emor +fend im +S ÃŃ +Ġíģ ´ë +Ġman ge +at te +Ġarrog ant +Ġrobot ic +Ġgi Ãł +æĺ¯ çļĦ +Ġneighbour hood +iss on +Ġдв иж +ĠR I +ĠNorm an +b rand +am ation +Ġraz or +Ġmur ders +ĠÑĤ Ñĥ +Ġwszystk im +Ġut ilities +Ġmicros cop +ê ¿ +Ġda qui +oll ar +ĠÐĶав айÑĤе +Ġann ée +Ġkilomet res +Ġhom osexual +Ġarchitect s +ãģ¡ ãģ¯ +Ġni ye +L ER +Ġmicro phones +ĠSt unden +Ġconsecut ive +iend a +v änd +D ER +Ġlif ts +ĠMe at +Ġsave z +íĸ Īëįĺ +M en +Ġdism ant +ê±°ë ¥¼ +Ġins ulation +Ġsc all +Ġsp ooky +Ġpar c +Ġball et +ĠWhats App +Ġfr anc +Ġdeliber ate +Ġíħ Į +Ġm ars +ĠZ ur +P r +dis ciplinary +Ġobs ession +м е +Ġmarch ing +ĠEmer gency +ig uous +Ġs zy +ĠL ands +Ġboard ing +ĠпоÑĩ ÑĤи +Ġenv y +Ġcompassion ate +Ġmer ci +Ġdes irable +d ale +Ġcan ım +ĠAnt ar +tem ps +Ġconfig ured +ĠComp ared +ne h +ic ating +Ġnic kel +ÙĪ ÙĤ +Ùĥ ÙĪÙĨ +op es +Ġform ulas +ĠÐķ ÑģÑĤÑĮ +Ġpo bl +ĠP J +ĠL ud +ä»Ĭ åĽŀ +ĠBr id +ĠH og +ĠBr is +J en +Ġshad ing +ĠY as +Ġdistur bed +Ġrecomm ending +Ġc é +ĠH OW +ìĹĪ ìĸ´ +Ġrevers ed +ĠInteresting ly +iox id +åħ Ń +Ġìĺ¤ ì¼ĢìĿ´ +ế u +x x +Ġou ais +ĠYouT ubers +ĠR osa +ĠH aupt +j adi +Ġvlog s +Ġcult ura +ĠLeaders hip +ĠH ep +Ġill um +´ë ıĻ +Ġcustom ized +Ġmar ca +Ġqu atro +Ġн аг +ĠSpace X +ĠE igen +ast ing +ĠolduÄŁ u +Ġfor ts +ãģ ī +r iment +ien cia +Ġten ir +ro ffen +Ġ197 9 +Ġc ie +ĠëIJĺ ê³ł +Ġes cri +ÏĮ ÏĤ +íı ¬ +uz zy +C ong +ìĿ¸ ìĿ´ +G reat +s il +é ch +ãģ¨ ãģĭ +Ġmult ic +ĠDis k +² ķ +Ġfaz la +Ġle vant +Ġab ajo +ur ry +st ru +Ġ먹 ëĬĶ +Ġaccess ory +Ġдв иг +ĠR id +20 19 +Ġdown stream +æķ ¸ +Ġk az +ut an +Ġchar coal +Ġa fect +w u +Ġcontext s +Ġfe ared +ĠìĦ ¤ +Ġhist ories +Ġf as +ens ible +Ġcoco a +ill ar +ge ons +Ġspiritual ity +ĠP ew +Ġpharm acy +Ġpass ions +Ġb os +Ġall á +Ġthri ving +ĠRe act +Ġoccup y +Ġwithdraw al +Ġallow ance +ĠFra ktion +Ġbud dies +Ġid le +Ġdissol ved +Ġpreval ent +Ġmil itar +Ġsens ing +Ġpo jaw +Ġanc ora +Ġabund ant +Ġha irst +ãģĤ ãĤĮ +Ġtw ee +Ġnäch ste +ĠMöglich keit +Ġho o +uff icient +Ġfant ast +Ġed ible +Ġëĸ¨ ìĸ´ì +ìĽ ĥ +Ġve in +uc ci +Ġdevot ion +Ġconce aler +in come +Ġrecy cled +ĠìĬ¤í ĥĢ +Ġpont os +Ġdess us +Ġvé rit +Ġreflect ions +ĠA A +Ġtake away +b are +ĠCont act +e il +ĠHe ar +Ġmir ac +ĠGer ilim +ĠÑģам Ñĭй +Ġv ivo +Ġkilogram s +ĠCr im +û t +7 8 +Ġsincere ly +ra z +Ġë³ µ +Ġarri v +Ġconcept ion +ĠPers ian +Ġsj äl +Ġst arring +ĠìķĦë ¬´ +ĠFore ver +е ÑģÑĤÑĮ +Ġve il +Ġsubt it +od ka +ĠоÑĤно ÑĪ +Ġcook s +ен Ñı +K ay +Ġni ños +ĠPh one +Ġstitch ing +Ġfinger print +é¢ ĺ +λ ά +Ġded icate +ĠL ob +Ġblack s +ĠB le +b out +ĠÄij ang +Ġe ks +Ġsqu ash +ĠK ü +od i +Ġn Æ°á»Ľc +Ġvoy age +Ġplay ful +ĠØ¥ ÙĦÙī +an ic +Ġcondem n +ĠB öyle +ĠPol ize +ãĤ¿ ãĥ¼ +Ġay uda +Ġp am +à¹Ħ à¸Ľ +ĠK athy +ед ин +нов а +Ġbr ig +eg er +Ġe agle +Ġvis ions +ĠíķŃ ìĥģ +Ġsh itty +Ġh ott +ĠBr itt +ut ors +ENT E +æĽ ² +Ġph on +ĠB ing +Ġпод деÑĢж +spr ing +æĸ ¯ +et ten +Ġpil gr +Ġed iyor +енÑĤ Ñĭ +ag gio +Ġj ul +Ġcomp rend +te il +ĠØ ² +Ġperform ers +Ġinf amous +ĠM K +ç ª +æ³ ģ +ot le +e ff +ĠH ash +Ġcow ard +ĠB RA +ĠD D +Ġcom ida +Ġpl ata +Ġfl ap +ĠMe hr +rib ution +ĠY emen +Ġmyster ies +ĠÄ° yi +Ġst ell +Ġeyel iner +Ġdel es +Ġnail ed +Ġillness es +Ġst acks +Ġtrabaj ar +fl ower +ci u +Ġcr ude +Ġsubstant ially +Ġhome m +Ġnep hew +Ġstamp s +Ġcar bs +ÑĮ ÑĤе +mo oth +Ġtun nels +ac ie +æ³ ¢ +ĠSe ñ +ĠH era +ĠìķĦëĭĪ ìĹIJìļĶ +ĠWy oming +ĠHD MI +ĠL is +u ción +Ġste er +о Ñİ +иÑĤ а +N T +Ġìĸ¼êµ ´ +Ġpal ms +Ġne on +ов аниÑı +Ġfilter ing +Ġjou er +ĠH ö +Ġне Ñģ +ê²ł ìĸ´ìļĶ +Ġ8 1 +Ġstory line +Ġprz ep +Ġthank ing +ĠBo eing +Ġsoft ly +j em +алÑĮ нÑĭÑħ +Ġflash light +Ġп Ñĥ +ĠW OMAN +ắ c +ÃŃ ch +Ġlux urious +Ġw ün +Ġimpact ful +Ġcons on +re u +ir ring +if ter +Ġconstitu ents +èIJ ½ +Ġ9 4 +ĠT ou +g om +ĠìĥĿê°ģ ìĿĦ +Ġstere otypes +Ġmoż li +åĪĨ 享 +Ĥ ¨ +Ġpencil s +ĠÑģл ож +Ġih rem +ĠBes ch +ĠK oh +ĠEnt scheid +Ġle k +Ġför s +Ġtotal mente +Ġlive ly +Ġent ropy +Ġdisc ern +ĠÐĹ Ð½Ð° +Ġdo v +Ġmyth ology +è¨ĺ å¾Ĺ +apan ese +Ġapprox imate +аÑĤ ив +if iable +ĠSe o +åĢ Ĵ +´ìĭ¬ íŀĪ +Ġìĺ · +Ġtempor al +Ġi T +Ġest at +к им +Ġspr ink +Ġgr und +Ġinfant ry +Ġsch affen +ç´ Ħ +Ġan k +ri ages +ĠYe on +ĠMor oc +Ġinv asive +ģ Ķ +Ġparent ing +ĠR is +ib ile +Ġmod s +å½ ¢ +ĠпÑĢов еÑĢ +ĠTh ing +ĠWhere ver +Ġacknowled ging +Ġpa wn +um mer +or b +6 9 +Ġretr ouve +Ġrel ies +ĠHigh way +Ġa we +ãģ§ãģĻ ãģĭ +ita ire +Ġapplic ant +Ġais le +w orm +Ġpay load +Ġcar re +ĠB ach +æł ¼ +Ġì¹ľ 구ë +ни е +Ġit ÃŃs +onna ise +s ol +èı ¯ +alg ia +Ġrock ing +Ġbest en +rit es +^ ^ +ин ой +Ġba ixo +Ġ기 ìĸµ +оÑĤ ÑĢи +s im +Ġinc arn +ëĭ¤ ìĿĮ +Ġl ick +s ided +Ġ7 1 +f order +Ġreson ance +Ġte gen +Ġmet aph +ows er +Ġ×IJ× ł×Ĺ׳×ķ +? ãĢį +Ġsp ielen +Ġvoll ey +ĶìĿ´íģ¬ ìĹħ +lo oked +Ġsent enced +Ġmultip lying +Ġide als +Ġwahr scheinlich +Ġdepos its +bil ir +Ġeff et +ill on +Īë §Į +Ġtestim on +Ġz awsze +ĠпÑĢоÑĨ еÑģÑģ +ĠL av +ä¸į éĮ¯ +Ġtrava iller +Ġla isse +ĠMount ains +ĠÑĢ об +Ġexam ined +it us +W as +л Ñĭ +Ġattrib uted +ĠìĬ ¹ +ĠBar on +Ġg ep +Ġatt ent +ĠColl ection +Ġthe at +ĠC ai +Ġwell s +Ġhuman o +çĹ ħ +ĠH ast +ĠÑħоÑĤ Ñı +cz as +Ġperm its +Ġle gg +Ġe po +ĠF en +Ġth i +ĠF oi +Ġé lect +Ġ8 3 +Ġover th +Ġ è¬Ŀè¬Ŀ +Ġten ant +è² · +N ext +Ġpra ised +sec urity +ĠImp act +为 ä»Ģä¹Ī +Ġv ouch +Ġneg ó +Ġun ve +Ġcritic ize +ĠKen ya +Ġtact ic +Ġlo gr +Ġpo is +Ġpap a +spe aks +ðŁ ij +isp ers +Ġsur plus +Ġcold er +åį Ĺ +åIJ ¬ +pl ets +ĠV ienna +ĠLe ad +Ġaer ial +ĠT ah +енÑĤ ов +ĠGree ks +C am +Ġmá xim +Ġk uin +ch io +Ġdemonst rates +an os +ĠC ert +ĠÑį н +Ġblog s +ĠìĦľ ìļ¸ +Ġbe ams +ик ов +Ġprompt ed +Ġfright ening +ĠPors che +ãģĪ ãģ¦ +lar ını +Ġch illing +is phere +Ġfl ashing +ĠK ard +b read +Ġex h +Ġty cker +Ġec ological +ĠMa e +Ġ×ŀ×IJ ×ķ×ĵ +ĠëĤ ĺëıĦ +л он +ys s +Ġper gunt +Ġpri x +izz ard +Ġcan cers +Ġ9 1 +s usp +ĠIt em +ÅŁ a +Ġp est +Ġtak Äħ +Ġl ymph +ĠPat ri +f ill +Ġrec onna +Ġoptim ism +Ġmim ic +Ġì² ľ +ĠMad ame +oc y +l ining +åijĬ 訴 +erm e +Ġfold ers +Ġcz ÅĤ +uch ar +Ġcur so +Ġbre ach +ни ÑĤÑĮ +Ġp amiÄĻ +Ġel ig +Ġaut op +F low +Ġprogram med +ĠPro cess +Ġfig ur +ĠS F +ĠE les +Ġprogram mes +Ġdiz zy +ìĭľ ê°Ħ +Ġли бо +Ġsn iff +ĠSeb astian +ĠH ye +Ġ4 000 +Ġperm ite +æ¢ Ŀ +Ġза Ñī +Ġgu it +ĠD ais +Ġaccord ance +Ġmod ular +ogene ous +æĭ į +Ġpou quinho +Ġart illery +Ġlub ric +Ġvol can +ĠN H +ðŁ ¤ +Ġde an +R h +Ġminist re +åĿ IJ +ĠIn v +ĠBul gar +ĠD aten +è İ +I m +Ġorigin ated +ĠN ixon +inte gr +Ġlack s +ĠN acht +ìĸ´ë Ĥĺ +cam era +Ġrad ish +ki ye +Ġang es +Ġpré f +j uk +ĠBe e +ĠB U +ĠвоÑģ п +ĠB T +ê mes +ĠSt ück +ĠIn k +æĪĸ èĢħ +ĠSerge ant +ĠMult ip +Ġhiç bir +ĠС ам +ĠD é +ol ph +ìĸ ¸ +Ġimp at +ĠìķĬ ê³ł +ĠÑĤак ого +ĠнавеÑĢ ное +Ġunpredict able +Ġm end +ĠìĹĨ ìĸ´ìļĶ +Ġjakie ÅĽ +Ġann i +Ġdon né +ĠK irsty +Ġrectang ular +Ġempez ar +ĠEx change +ê° Ķ +Ġé conom +ãģĵ ãĤĵ +el in +re ibt +Ġ×Ķ× ¤ +Ġc emetery +Ġespañ ol +ol in +лÑİ Ð´ +Ġgr âce +all en +ĠPh ilos +ĠEr st +Ġìĥ Ī +ĠV id +G ive +O H +μ ο +ĠP are +Ġmetabol ism +Ġma ple +Ġax le +ĠD y +Ġkomm e +Ïİ Î½ +Ġgreat ness +Ġver ified +Ġsp é +ĠFahren heit +ĠB ren +ĠConf eder +Ġhist oire +Ġelimin ating +ĠAd ding +ĠAb i +æĿ İ +Ġhospital ity +t im +Ġbon ito +Ġpart es +ĠдÑĢÑĥг иÑħ +ĠSh ay +ĠS ed +Ġreg rets +Ñı ми +Ġten ants +éĢ Ł +ĠP TS +Ġdev i +ĠL ate +ue z +Ġsö yl +ãĤ » +Ġìŀ¬ë °Į +Ġtogg le +Ġmas king +алÑĮ ного +Ġpers ön +Ġamer ican +f ik +ĠR GB +ens on +ĠK A +ww ww +ĠÑĢ ег +met ics +Ġeduc ator +ãĤ· ãĥ«ãĤ¯ +p ark +елÑĮ зÑı +ar us +ÑĢ еÑĤ +Ġfe ito +Ġcho ir +Ġlar go +Ġe ens +Ġwat ts +ĠSing le +Ġsuscept ible +ic er +Ġв клÑİÑĩ +Ġp us +íĻ ĺ +E ng +Ġfant as +Ġspecific ation +Ġconfront ed +ĠColumb us +ив еÑĤ +ar ım +Ġcaffe ine +mun ition +Ġmig rants +l ide +it ations +ĠG eme +Ạ« +Ġpl anner +Ġstim ulate +Ġapro xim +ce u +ĠN om +Ġv og +ĠÑĢ аÑģÑĤ +Ġense ñ +Ġsell ers +Ġgut en +z d +C al +Ġdescri pt +Ġrecon ciliation +z inho +á¹ĩ a +ãģĺãĤĥ ãģĤ +acy j +ĠCO L +s aw +ĠíĻķ ìĿ¸ +Ġvar it +Ġpartner ing +Ġdet ention +Ġbomb ing +c lapping +ien cies +ond u +AM E +Ġê°Ļ ìĬµëĭĪëĭ¤ +c ÃŃa +ĠпоÑģ ÑĤо +ĠAS MR +Ġhome page +Ġsi è +an tha +ĠP oll +Ġ igen +cy ch +Ġê°ij ìŀIJ기 +Ġconsider ably +ä»ĸ çļĦ +ĠAr ist +Ġwith stand +Ġqual itative +ĠK raft +ĠÑį лекÑĤ +ĠBe ad +екÑĤ ив +Ġcr ushing +ì³ IJ +Ġnav y +ÙĪ Úº +s ho +Ġo ak +ipp ers +Ġso ils +Ġpig ment +Ġev itar +ãĥ ĩ +Ġf use +ĠD ale +: " +Ġcompl ètement +Ġke l +๠Ĩ +Ġqu atre +ĠU M +Ġë§ IJë +æł ¹ +ÃŃ r +Ġle isure +ĠH ousing +Ġfold s +est ion +AR S +Ġm ash +urp ose +Ġaccum ulated +ĠSt uff +èª ŀ +Ġtap es +ĠÑģ илÑĮно +ĠLO VE +Ġ198 2 +Ġsc ars +Ġcapital ist +ĠN ed +Ġsoft en +Ġnot ably +Ġforcé ment +ĠRa um +Ġнеоб Ñħод +Ġtrad emark +Ġfert ig +Ġ? ! +æĹ ł +Ġreinfor ced +Ġre charge +ĠPut ting +Ġvill ains +Ġhand ic +Ġadvertis ement +ت ÙĬ +ĠÑģ Ñĥм +ĠR iley +×ķ× ij× +äº ¬ +O s +Ø§Ø ² +B oy +Ġsqu ish +ock et +Ġtest ify +æ¼ Ķ +Ġ×ľ× ŀ× +Ġм аÑģÑģ +man uel +ĠArk ansas +if fe +Ġanalyst s +ĠDe af +Ġj ó +Ġgrocer ies +ĠWhe el +ĠÑĢ иÑģ +Ġc òn +ĠC ob +Ġpris ons +è ve +ĠCab inet +Ġpos ed +Ġguer re +ĠL loyd +Ġcl erk +Ġcr ises +ĠSh o +ĠO re +ĠFoot ball +ĠAd vis +ĠZh eng +è į +ĠAM Y +Ġun for +Ġmon aster +Ġcomp ile +Ġimm ortal +at able +Ġpar ano +Ġt iver +ĠStep h +ĠFu ÃŁ +Ġdisc ontin +Ġr ipe +Ġhack ing +Ġs iendo +Ġsegu ro +alt res +Ġand eres +Ġë ¦¬ë +Ġexp orts +æŃ ¥ +Ġtab ii +Ġ기 ëĭ¤ë +Ġbother ing +Ġpick le +ĠBRI AN +Ġalt ar +ĠпÑĢи б +Ġtransfer ring +ĠV ors +ĠÙĩ ÙĪ +ĠZ a +ĠFr ances +Ġbrow se +em it +Ġche wing +ĠFred dy +Ġedit ors +ä lle +Ġí ĮĢ +ĠS que +ĠC ultural +aw k +ĠS ache +ĠCar bon +ắ t +F L +ĠN GO +pe ÅĤ +ĠS ou +Ġh vor +un intelligible +Ġë² ķ +Ġ ° +i in +Ġ×¢ ×Ŀ +Ġder rière +Ġczy m +ĠAp ost +Ġregard er +Ġag rade +ĠC andy +Ġma re +Ġintrodu ces +bird s +Ġuniqu ely +Ġm uk +Ġcook er +Ġcrew s +Ġje ito +ER T +¶ Ħë +n isse +Ġe f +Ġcart e +ĠY ak +ĠP AT +и но +bok ki +Ġm ates +Ġdist int +Ġì½Ķë¡ľ ëĤĺ +Ġy ıl +Ġκ άν +Ġconfigur ations +eng a +re cht +H appy +ãĤĦ ãģ£ãģ¦ +in vest +Ġreconst ruct +ĠÑįÑĤ омÑĥ +Ġmos que +ra um +Ġvoy ez +ĠN BC +ĠìŀIJ ìĭł +Ġstur dy +Ġк ап +Ġans ch +al id +Ġmas ih +ĠR EP +Ġì½ Ķë +Ġded uct +Ġsal ir +w urf +il ot +ĠM utter +old s +ĠF EMA +ĠB ib +Ġneighb oring +Ġbl iss +Ġíĺ ¼ +ли ÑģÑĮ +ĠÑĤÑĢ еб +Ġ å°±æĺ¯ +Ġgren ade +Ġe gal +Ġfin ely +Ġpet als +Ġke er +Ġch yba +Ġsk ipping +Ġth irteen +Ġgrav y +ĠS AT +6 1 +Ġн ог +Ġmin s +IT E +Ġso zial +íķĺë ©´ìĦľ +rukt ur +Ġвозм ож +Ġоп ÑıÑĤÑĮ +Ġar th +ĠCub an +Ġtre asures +Ġfertil izer +Ġawak ening +Ġë°± ìĭł +Ġr all +Ġdep ict +ĠP ablo +Ġninete en +Ġw att +Ġentire ty +K S +ĠWood s +S ch +ĠÚ© ÙĪ +ĠD ry +ãģ ŀ +u ve +Ġreconst ruction +Ġanat omy +Īë ¥¼ +Ġb aba +Ġlisten er +Ġshar pen +ĠPer u +ĠвÑĭ з +Ġrecre ation +Ġiniti ate +Ġcal or +ĠN aj +ge e +ĠFe els +ĠSnap chat +ĠT et +ĠN est +ĠD af +ĠFin ish +ĠÑĤак им +ú c +iz ens +Ġsp ins +Ġemb ry +Ġpass ages +Ġc ient +Ġjust ification +ä»ĸ 說 +Ġolm az +Ġflood ed +Ġemo ji +Ġembr acing +Ġdisc ard +ĠBas ic +ag og +ĠìľĦ íķ´ +Ġas ylum +er in +Ġf im +Ġnin ja +Ġautom ate +Ġaller gic +ÿÿ ÿÿ +am am +Ġм аÑĢ +ĠO i +ä us +Ġin duct +ĠB EN +Ġz ÅĤ +Ġkaż dy +ĠAM P +n ÄĽ +S ure +Ġqu il +Ġespe c +ro k +BS CRI +Ġlie be +p us +ach sen +Ġcr icket +ëĬ IJ +ĠFr ame +ekk ür +ar b +Ġp ÅĻ +иÑģ Ñģ +Ġzeg gen +Ġdou bles +ĠD re +t est +ins p +bo ys +Ġm ão +ĠVer se +Ġmus cular +ĠMA LE +Ġd ulu +Ġoccas ional +L o +conom ic +Ġv ak +Ġrem edy +å¤ ł +ĠâĻªâĻª âĻª +ve m +Ġön em +ĠkarÅŁ ı +ĠSh arp +h ur +Ġë°© ë²ķ +Ġgrand son +Ġakt iv +ĠTh rones +ĠìķĪ ìĹIJ +Ġto ts +Ġsub d +ĠPa ula +Ġgra ves +ĠB rent +Ġник ÑĤо +Ġsö z +Ġcre c +ĠVlad imir +çĸ « +Ġп ой +Ġ" - +Ġp sy +at ri +id an +Ġa ún +Ġstandard ized +ì¹ ĺë +Ġк ÑĢов +ĠZh u +s omething +Ġ7 50 +Ġmuj eres +Ġa it +éĹ ´ +ag u +Ġcorrect ed +ik ka +el ed +ĠCare er +ow ym +Ġroomm ate +Ġdescend ants +ĠNapole on +ĠÐĶ о +íĸĪ ìĸ´ìļĶ +Ġbun un +ĠMich a +ç· ļ +Ġdesc ob +P I +Ġpalab ra +Ġtrack ed +Ġdepend ence +ĠBar ack +åģ ĩ +Ġfert ility +ĠSouth west +Ġincom plete +Ġcomun ic +Ġcomp ris +ĠRest aur +Ġac ron +κ α +Ġapprent ices +Ġmus st +ĠA br +Ġpent ru +ĠCons ort +ĠAve c +Ġdum plings +L R +Ġwszystk ie +Ġsw amp +н ев +ugg le +Ġwater color +Ġprot on +ĠEspa ña +ock ing +ов ал +Ġtak im +V ery +Ġdement ia +ĠÅŁey i +J ac +ĠMac Book +ĠL iv +ffic ients +ĠH unt +Ġover lay +æĦŁ 覺 +ĠSky pe +p unkt +Ġconf ined +ĠAd rian +ر Ùĥ +ĠJe ep +Ġenqu anto +Ġan est +оÑĤ веÑĤ +Ġм енÑĮ +Ġirrig ation +á»ij n +Ġeight een +ĠP on +Ġresc ued +Ġ198 3 +r ü +ja e +ĠJe ong +Ġamazing ly +ĠF DP +Ġback stage +c ue +ĠÏĥÏĦη ν +ĠاÙĦØ µ +Ġlivest ock +ĠW arner +Ġmaj ors +ãĥģ ãĥ£ +Ġcooper ative +ĠBr ady +ra ined +rie b +Ġ×ij× ŀ× +Ġдов олÑĮно +ĠF E +Ġle aked +ĠMerc ury +Ġpersu ade +Ġtransform er +ĠNor weg +ĠìĹ¬ë Ł¬ +Ġzrobi Äĩ +Ġcard iovascular +ĠCr ash +Ġg ossip +а ÑģÑĤÑĮ +Ġì ª½ +Ġsw ept +ĠH orn +ĠAt é +Ġbu kan +ĠK aw +K Y +ĠSt ories +G ary +Ġgard ening +ĠQuick ly +ĠFal con +Ġov at +c ı +ĠCom plet +ĠD ate +ĠпÑĢ им +Ġlä uft +ĠAud rey +ĠW ent +Ġpel ÃŃcul +Ġcar riage +Ġun acceptable +ny mi +ĠÑģл ÑĭÑĪ +Ġter re +uell ement +EE EE +Ġpharm ac +h ões +Ġz ich +Ġmig rate +ĠF ry +ñ ana +ĠM uito +EO VER +Ġfort ress +ĠCom pan +ĠJ SON +ord nung +Ġw arto +Ġun gef +ìħĶ ìĦľ +ĠÑĢ ок +Ġpad dle +J ared +Ġsubm itting +Ġl atch +Ġf ug +Ġк оÑģ +ĠE f +Ġlaunch es +Ġf t +ote chn +Ġtrave lled +ا Ùģ +éģ ķ +Ġpro ch +Ġded im +8 3 +Ġreb ound +ĠL U +p ath +ĠÑģп ÑĢав +Ġö l +ĠíĤ ¤ +Ġpriv at +Ġtr actor +ĠAtt ention +S er +Ġcos es +á ria +p al +ĠìĿ Ģ +Ġsuccess or +Ġconnect ors +ĠÑĥÑģÑĤ анов +Ġgen ocide +Ġsufficient ly +ĠA ixò +Ġstabil ize +Ġcon gest +Ġcar ving +Ġz ost +ĠбÑĭ ÑģÑĤÑĢо +Ġshort est +Ġli vel +Ġ8 9 +éģ Ĭ +Ġer k +Ġport raits +ॠĢ +è ĺ +bo at +ll ah +AN C +Ġempir ical +ĠE cho +ĠNeder land +è¿Ļ ä¹Ī +N et +Ġcuid ado +ĠR oma +Ġc alf +Ġgi ants +ĠExpl orer +ĠColl ect +al ition +ĠDest iny +Ġaus ge +ĠE du +ĠC lo +Ġear rings +ĠTr ack +ĠR OS +ĠBe lle +çĻ ¾ +Ġpu eda +Ġday time +Ġsupp lier +ĠS V +ĠEx hale +Ġgal era +c ourse +Ġcent imeter +ĠB ast +m ud +Ġsang at +ĠPhys ical +Ġpriv ately +Ġtr ata +lyn n +ill i +Ġë© ĶìĿ´íģ¬ìĹħ +Ġcryst all +Ġpod s +ả n +in ator +ĠRec ords +å® ĺ +ÄŁim iz +isse ment +h are +h adow +ĠD K +ĠìķĮ ê³ł +Ġw yn +Ġrequest ing +ĠD onna +ĠìĹ ´ìĭ¬íŀĪ +ine a +Ġex ert +ĠDun can +Ġв еÑĩ +ĠH ah +ठĤ +ĠL if +ĠF inding +ĠNo v +Ġзн ак +Ġо ÑĦ +ĠQu è +Ġquarter back +ĠÑĦ ак +Ġbipart isan +ÄŁ in +Ġné cess +Ġrefer endum +Ġcomp iler +Ġprob abil +ед и +Ġtrad er +æĺ ĵ +ĠR um +ge me +Ġd io +ĠbÄĻdzie my +ĠÏĢ ά +ê¾ ¸ +×ķ× ĺ +Ġठķ +Ġбл аг +Ġscal p +ĠPa use +Ġcapt ion +Ġend anger +Ġen lar +Ġrot ten +ãĥĥ ãĥĪ +Ġw ah +èĤ ī +Ġd zi +ĠInst all +A y +Ġcre ar +енÑĤ а +Ġwe ighing +Ġbutter flies +ĠG ast +äº ķ +h orn +war z +IC EOVER +Ġнай ÑĤи +Ġcoe fficients +ç°¡ åĸ® +ĠSp encer +ĠH igher +Ġcow ork +å¨ ĺ +ĠкоÑĤоÑĢ ое +Ġmon it +Ġdys function +ĠÑģÑĤ анов +Ġtour naments +Ġoy ster +B N +Ġtr ud +sl ow +ĠPen ny +ĠOd ys +æ r +Ġf ou +Ġenjoy ment +аÑĤ Ñĭ +Ġwygl Äħda +алÑĮ наÑı +ĠProt ect +Ġmo y +Ġcl aw +Ġsusp icion +Ġsacrific ed +Ġgost o +B ig +Ġaggress ively +Ġvor ne +ãĥ ł +Ġbl amed +ĠSe hr +פ ר +c ito +Ġse als +Ġmu jer +ĠWe ird +Ġfore ns +Ġcontrib utes +est ra +Ġp og +L OL +Ġhacer lo +о ÑĤÑĮ +f iction +7 9 +λ ο +大 æ¦Ĥ +å£ ° +ĠÑĤ об +ĠG S +ĠCl ara +ite z +Ġadvoc ating +ĠíĶ Ħë +s ung +Ġvert ices +Ġnavig ating +Ġeurop é +çļ Ĩ +Ġslow ed +Ġfore ground +ĠIndust rial +Ġad ore +ìĭ Ń +Ġcré er +æŀ Ĺ +chn itt +Ġun aware +Ġcur ly +ent ar +Ġl er +Ġprohib ited +ĠHero es +ĠRe ed +u ca +Ġsm ok +Ġkun na +zeit ig +im men +ĠL un +Ġаб ÑģолÑİÑĤ +Ġdeg li +Ġvill agers +Ġpres et +z ept +ud s +Ġem it +ä½ł è¦ģ +Ġë ī +ëĬĶ ì§Ģ +нак о +Ġos ób +Ġ196 9 +ĠÐIJ ÑĢ +Ġman chmal +ĠBro ck +Ġmant ra +ĠW IL +b ach +in ä +el as +kel n +Ġdisci ple +Ġqual c +Ġde hyd +ìĿ´ë Ŀ¼ëĬĶ +A f +ìĦ± ìĿ´ +R yan +Ġpupp et +ĠдÑĢÑĥг ие +Ġr ud +Ġp ending +P lus +ĠìķĬ ìĿĦ +Ġb á»ĭ +ĠSe ga +ç e +Ġprogram mer +b li +Ġun l +Ġensl aved +Ġsoci été +Äģ h +Ġinherit ance +ĠBang l +erm aid +Ġpractition er +ĠSt alin +ĠUs er +ci ble +Ġcard iac +ĠKore ans +Ġdump ed +Ġ×Ķ ×Ļ×Ķ +á is +Ġhydraul ic +oubt edly +ĠP it +Ġpic nic +Ġbehö ver +ĠÑģм ог +Ġbra king +é» ij +ut ar +ĠìĦ ¸ë +ub l +Ġü z +Ġmaj esty +Ġb ers +ut able +Ġhot ter +çħ § +ÛĮ ÙĨ +Ġbi ases +Ġsubject ed +Ġnaught y +Ġcir cus +ãģĹ ãģĭ +ĠIm medi +ĠSte fan +ĠTri ple +en k +Ġw it +Ġrecy cle +em ie +d ated +Ġun load +Ġpop ula +ch in +Ġyield s +Ġeng lish +ĠBon nie +Ġsp iders +à ģ +Ġer osion +éĥ¨ åĪĨ +ĠN ICK +иÑı Ñħ +Ġimp art +Ġк ни +Ġres olutions +Ġlith ium +Ġconver gence +ĠT ara +Ġдв е +th s +ĠCind y +æĪij è¦ģ +å¹ « +ĠD IE +Ġass urance +Ġоп иÑģ +Ġbu ckets +Ġc ues +ĠQu iet +Ġsimilar ity +Ġfound ational +ĠMin ist +æ» ¿ +Ġp ian +Ġcent r +Ġnum b +Ġmon ks +uj ourd +en zie +Ġskate board +Ġd latego +ĠÑģ оÑĤ +ĠA E +Ġmaster piece +ĠSol omon +ĠRed dit +Ġr iot +ab l +ĠJ azz +Ġelectromagn etic +Ġinsec ure +ĠComp et +ger ies +об од +ł ×ķ +ðŁ Ĵ +Ġsen ators +ĠBris bane +ĠAl b +utter ing +ĠAll ow +z ero +Ġp ai +ĠÐIJ лекÑģ +ĠDis play +ĠBl ade +ĠApp s +Ġp ä +Ġд еÑģÑı +Ġque lla +ĠGa o +ен нÑĭÑħ +Ġspoil ers +Ġgall ons +ĠÙĦ ÙĬ +ĠZ ion +æľī ä¸Ģ +on ie +rag t +ĠCh and +Ġë³ ij +Ġbl unt +Ġus u +ĠK ad +ra kt +Ġcin ematic +Ġam munition +re ne +Ġfour teen +ĠC arn +c rit +Ġten ure +v u +Ġprincipal mente +Ġalle en +éĢĻ ä¸Ģ +Ġkompl ett +Ġdü ny +J ames +Ġrecept or +Ġones elf +g uru +Ġmerch ant +l iness +Ġover looked +Ġharmon ic +éķ ¿ +ies o +×ķ× ŀ +col m +ĠпÑĢо екÑĤ +ĠAd a +ا س +T im +Ġrecur ring +Ġproceed s +ĠPart icularly +ĠDown load +et rical +Ġmat rices +Ġproyect o +anc ies +ĠUh m +Ġc aves +Ġìĸ´ë ł¤ +ĠLe af +Ġоб ÑĭÑĩ +ĠìĿ´ì ľł +Euro pe +Ġt Äħ +Ġpul s +Ġtak iego +ÐĿ е +G U +Ġfor s +Ïģ γ +Ġfot os +Ġ) ) +Ġë© ¤ë +Ġaqu ilo +ĠK urd +ï¸ ı +pt ic +ĠD ort +Ġmis ery +aus o +åĬ Ł +chuck ling +ĠR idge +ĠíĸĪ ìĬµëĭĪëĭ¤ +Ġ* ** +å® ¢ +ĠHmm m +Ġge ographic +Ġany s +Ġtal vez +Ġske let +Ġsign atures +Ġlit ers +IJë ©´ +ĠÑģво его +Ġski ing +ĠÐľ оÑģ +Ġadop ting +Ġha ft +Ġsymm etric +ĠL iqu +Ġthy roid +Ġmis in +lud e +Ġh ull +ĠX D +ĠG ust +ze ich +Ġvibr ations +Ġes emp +ĠвÑģ Ñİ +ĠQu em +Ġü brig +ĠS ke +ĠLyn ch +room s +art et +f est +Ġfr üher +Ġl ure +ä¸į好 æĦıæĢĿ +ĠìķĮ ìķĦ +ĠW IN +ĠR YAN +ĠкоÑĤоÑĢ ÑĥÑİ +ĠK ash +Ġ×Ķ× ŀ +Ġsaf eg +ĠHall elujah +Ġдв ÑĥÑħ +Ġstap le +Ġsed iment +ĠAct s +Ġbl aming +Ġmain land +Ġsport ing +Ġdecor ations +Ġexecut ing +Ġpar an +ĠDoll ar +Ġproject ions +Ġcommission ed +Ġb our +ö m +Ġste amed +ĠëŃ ĺ +Ġpet rol +Ġcel ular +å¸ ¶ +ĠHung ary +Ġrent ed +Ġв аÑĢи +bb ie +Ġsé cur +ü ll +Ġsw ings +bet ween +Ġи ÑĤ +est ro +Ġnie mand +ĠìĤ ¼ +ĠP ardon +ess es +ĠM ID +Ġcentral ized +ĠAl ien +cul os +Ġcr ise +裡 éĿ¢ +Ġcl asse +beit et +i ÄŁi +Ġwh ales +Ġper imeter +Ġty ing +Ġstr ony +Ġlike wise +ĠP unch +D a +ĠBapt ist +Ġsort ing +Ġ iv +Ġíķ © +Ġre hab +Ġet a +ri ver +Ġsa i +ãģĦãģŁ ãģł +od us +ãģĬé¡ĺãģĦ ãģĹãģ¾ãģĻ +Ġess ayer +Ġtur tles +ĠHaz rat +Ġfab rics +Ġcav ity +Ġpon ieważ +Ġschle cht +Ġs alsa +ÅŁ ekkür +Ġse ating +Ġeconom ists +Ġman g +Ġsegu inte +Ġr ang +Ġrat ios +Ġconst ell +Ġlong temps +u ating +Ġspo iled +Ġrecip ients +Ġsn iper +ä¹ĭ åīį +ìĬµ ëĭĪê¹Į +Ġw p +ĠLIN KE +Ġfl are +ĠAd ri +ñ as +Ġback l +mä ÃŁ +ĠB end +Ġworkload s +ĠÑģ Ñĥп +Ġ197 5 +им ÑģÑı +ан е +Ġм он +Ġaspir ations +ĠA er +ĠговоÑĢ иÑĤÑĮ +ĠQ ian +å¦ Ī +Ġcomprom ised +Ġyol k +ла ÑģÑĤ +Ġhe men +ro ve +d ens +Ġком менÑĤ +Ġ- -- +Ġflu ores +но Ñģ +ĠLiver pool +ĠÑģоб ой +ĠZ we +Ġl umin +ĠO G +á ¸ +hol m +pro fits +S N +Ġproport ions +Ġm ica +ĠB oh +ĠAt las +Ġuns ure +Ġtour ing +Ġn ied +Ġt ÄĻ +Ġimper ative +Ġdem ek +ĠSher iff +r ance +Ġhom eland +ĠH ail +ĠG anz +y mm +M on +åĨ · +v ida +Ġdesar roll +æĬ Ģ +Ġintrig uing +ĠH ugo +Ġ ãĤĤ +é ¬ +а ÑĨ +ĠWiÄĻ c +att ed +ĠìķĦëĭĪ ê³ł +ĠV ari +á d +Ġsur real +Ġdispar ities +Ġm ó +ull en +ĠìŀĪ ëĭ¤ê³ł +Ġп ожалÑĥйÑģÑĤа +Ġma ins +Ġe ject +Ġmeth ane +Ġmarginal ized +Ġchill i +r ès +Ġy em +ä½ł æĺ¯ +ĠCh un +Ġdeb ts +Ġdownload ing +ĠAth ens +is ierung +ry n +Ġte kn +ĠQu indi +éľ Ģ +Ġtara f +Ġh é +Ġconscious ly +Ġfix es +uck le +may ın +Ġfre i +Ġsp a +Ġì§Ħ íĸī +ĠاÙĦØ ° +ĠÑĥ к +let t +Ġolm uÅŁ +Ġche esy +า à¸ģ +na ire +Ġw iden +Ġli en +Ġesca ping +igg s +ĠBl ick +c Äħ +ĠìĦ ľë +Ġ×Ķ× ¡ +Ġв пеÑĢ +oph one +ie ll +ĠSU BSCRI +Ġl ions +Ġê·¸ ê²ĥ +Ġinsp ires +Ġguarante es +Ġcome ça +ĠGrow ing +Ġneg lig +ĠFrank f +Ġge geben +ĠÄij ầu +Ġend lich +Ġì į¨ +ĠT T +ĠL ith +ÏĢ α +aster n +ĠA zer +Ġlun ar +h ic +Ġна ÑĢод +Ġnen hum +è· ij +ĠSalv ador +ĠPro gress +Ġprivile ges +ĠëıĻ ìķĪ +Ġant agon +ĠImp f +Ġdesc ub +ĠLe i +ĠìĥĪë ¡ľ +Ñĩ е +Ġdó lares +ĠMeg han +ĠW ire +to o +ay ing +us c +Ġt ud +Ġappe als +ed uc +Ġp ane +Ġj i +Ġde cks +ĠAl ter +Ġ å°± +ìĦ ¤ +åĪĨ éIJĺ +Ġproduct ions +ĠWILL IAM +Ġimpl ied +Ġfulfill ment +ĠA ah +Ġsa ja +x us +ĠÎļ αι +Ãł s +uc ch +ок о +ĠDisc ord +ĠS Y +j sk +ĠWall ace +un ction +Dan iel +Ġk öt +ij ah +Ġmarch e +Ġdis gr +Ġm ungkin +Ġal ma +³ µ +Ġextensive ly +ĠFl oren +ĠAll ison +ãĤ ± +ÙĬ Ùħ +Ġju ven +ĠRena issance +Ġfundra ising +ĠCha os +Ġpar aly +Ġnarr ator +Ġecosystem s +A sh +Ġmitig ation +ĠA ujourd +ĠIde e +! , +Ġ ½ +Ġland lord +Ġdefect s +Ġac re +uls ive +Ġalg ae +pe k +Ġem ba +ĠR oc +éĽ ¢ +ks om +ä che +Ġle uk +Ġlever aging +Ġê·¸ëłĩ ì§Ģ +ĠPal m +Ġä ven +Ġl is +ĠIn sp +ĠR ita +ĠAb b +ith m +Ġsuper vision +Ġrevis it +Ġpi ÄĻ +Ġeu h +Ġf ades +Ġmot to +åį ¡ +ез ж +ĠSh im +Ġrelev ance +Ġo o +Ġo stat +n ica +Ġcho ix +ĠFac ulty +Ġì¤ij ìĹIJ +ĠAb ove +Ġнеб олÑĮÑĪ +Ġsequ encing +Ġnutri ent +Ġconqu ered +Ġdigest ive +Ġback drop +ĠL ori +ail able +G ame +Ġneglect ed +om orph +ill ah +Ġkn e +Ġsi itä +Ġworks pace +ĠVen ice +ĠK ne +Ñī о +ħ Ģ +ĠH ass +Ġv ita +Ŀ¼ë ©´ +Ġlay s +ên cias +é rica +ĠL l +æ± Ĥ +ĠCo ca +ĠWH Y +èĪ ŀ +Ġrout ing +Ġperm issions +Ġd ings +pre nd +pro gram +Ġcro cod +br al +AAAA AAAA +ag it +ĠN ä +Ġgek ommen +at ten +Ġrefer enced +Ġpair ing +ĠPart ner +ĠCoron avirus +Ñĸ Ñģ +è½ ī +Ġ×Ķ× ĵ +Ġespec ÃŃfic +ars i +qu elle +Ġspont aneous +çĨ ± +Ġê²ĥ ìĿĦ +ĠÐŁÐ¾Ñģ ле +ĠاÙĦ د +ĠSh out +Ġн ал +Ġdisgu ise +ĠJ ord +Ġwe e +Ġmiej sc +Ġser um +Ġplais ir +Ġcred ible +Ġb Ã¥ +ĠA J +ma res +Ġrod s +Ġer an +ãģ¾ ãģĤ +Ġp ää +ĠU A +ĠUn known +ĠÙĦ Ùħ +ĠRab bi +Ġla at +Ġhairst yle +ĠØ º +éģ ĭ +Ġc ach +ĠWr iting +оÑĩ ки +ab ad +Ġstraight en +-- " +w ife +Ġhott est +Ġpun ya +ĠF ashion +gr iff +ĠQ R +ot ch +ĠÐľ ожеÑĤ +Cl oud +ĠStri ke +ĠHe in +Ġ 羣çļĦ +Ġle i +ĠFl ow +weg s +Ġha br +åīĽ åīĽ +nah me +Ì ģ +Ġple asing +op ping +Ġ구ë ıħ +Ġdr an +Ġbang s +Ġ7 9 +Ġsk et +Ġcav al +ĠMac ron +Ġweight ed +Ġm uted +Ġnuest ras +EE P +Ġmath ematic +ĠM RI +ag us +Ġtherap ies +θ ε +Ġun pl +Ġcomm encer +f ull +Ġtow els +Ġpr ue +Ġlic enses +׼ ×ķ׾ +ĠÐŁ оÑĩемÑĥ +Ġpoint less +B ye +Ġelig ibility +Ġscra pe +Ġab usive +ĠM ant +Ġje unes +t al +ĠPrin cip +ĠOrth odox +Ġmel od +ĠмаÑĤ еÑĢи +Ġprosecut or +Ġopio id +ĠÑĥ веÑĢ +ĠBe en +Ġìłij ì¢ħ +Ġd ynasty +Ġajud a +Ġent reg +Ġweigh ed +Ġe ure +ĠB em +Ġab normal +8 2 +ĠJ R +ĠA kt +ĠB ri +ú t +Ġst agn +! * +Ġwe gen +Ġle aking +ĠW ords +ĠM au +Ġv ue +ĠL iam +ани ем +Ġclin icians +ĠP ump +Ġför st +? ... +Ġautom otive +ĠOw en +zus agen +ĠH undred +Ġdecentral ized +Ġbul bs +Ġ×ľ× Ľ +Ġprovin ces +ĠMil an +8 1 +k as +Ġëĵ £ +Ġfor ça +Ġright ly +å³ ¶ +r Äħ +Ġven ues +Ġw ai +Ġpred icting +ĠWi Fi +Ġê¶ģ ê¸Ī +ر ÙĪ +Ġ×Ķ× ĸ +cent ury +Ġgrad ual +ĠProblem e +ĠìĹ ħ +Ġcop ing +ĠBr us +Ġpean uts +irts chaft +Ġз ал +ĠT roy +Ġsper m +ĠM itar +ĠTür kiye +g rand +¦ Ń +Ġ×ŀ× ¡ +Ġp ans +ĠKnow ledge +ber ly +ĠÐķ го +Ġdan ced +ĠFr ost +ĠB urg +Ġbit ing +ìłķ ìĿĦ +me al +Ġhero ic +Ġmother board +ĠL icht +ãģ£ ãģ +ll an +ай н +ĠÑĢ Ñıд +Ġ à¹Ģภ+on en +ir ie +Ar t +r ang +ν η +Ġnew born +Ġam is +Ġا ÙĪر +Ġsoph om +ĠCare ful +Ġprospect s +ens en +Ġthr ill +ĠVi á»ĩt +A dam +r ition +ent ric +ud en +Ġcertific ates +Ġas hes +èª ¿ +play ing +Ġs adece +Ġo st +Ġairpl anes +ÑĢ ок +on er +Ġmagnes ium +Ġgod damn +Ġ197 2 +ĠSch ule +Ġtem at +Ġpart out +௠Ĥ +Ġin ve +ĠScient ists +ĠHud son +win ning +ceks in +Ġcongress ional +or u +Ġro pes +в ед +Ġmad re +Ġf erry +ĠCoh en +ĠP red +Ġvag y +Ġб еÑģп +Ġmult im +Ġdrain age +Ġsim ulator +g iggles +ĠSt adium +об Ñī +Ġnot ices +Ġcraw ling +Ġgr oupe +åı ¸ +Ġkto ÅĽ +ĠY oga +Ġmed ida +ĠÑħ ваÑĤ +ĠL ite +Ġr av +or ama +Ġdisc ord +ĠDI RE +Ġte h +ĠN urs +ç² ī +Ġpitch ed +Ġbark ing +ĠC oke +wi ad +Ġpop ulated +éĻ ¤ +pe lled +Ġб ог +Ġpe wno +ĠC ube +Ġrecru ited +éĢĻ 種 +ĠC ara +ıģ ını +im ated +ĠÑĪ кол +ic ional +ĠпÑĢо ÑĦ +Ġcontam ination +Ġúlt imos +Ġfear ful +Ġele phants +us i +ĠiT unes +ĠSw ami +ê ¼ +ĠìĦ¤ë ªħ +ĠRich ards +Ġmagn ets +ĠRicht ung +ĠLeg ion +èı ľ +Ġk itty +Ġkiss ed +Ġwater ing +Ġcon o +ĠPalest ine +id ir +Ġma ze +Ġflu ids +ĠProdu cer +ĠKr sna +好 åķ¦ +la f +Ġ×IJ ×ķ +Ġm iesz +ĠX ing +oint ed +se in +ĠF uk +ĠDep ression +ĠD uty +ĠPan ther +Ġsu nd +Ġref ere +Ġexc lusion +Ġnav al +ĠWin ston +Ġsl ogan +Ġhypoth etical +Ġelev ate +ë ł¹ +Ġcabe ça +ĠGes und +m eter +ĠìķĦëĭĪë ©´ +Ġcloud y +âĢ¦ ? +ĠSch ritt +ĠJ S +ì į +ĠSpr ings +ĠB atter +· ° +Ġtail or +ĠPTS D +ĠG ent +Ġba ÄŁ +Ġspat ula +Ġcr ay +ĠLeg isl +Ġs ú +Ġle ve +า ม +Ġer ad +Ġdon g +Ġd erm +ĠBank s +ich o +åħĪ çĶŁ +ĠFr anz +ra vel +éģ Ķ +ол о +Ġfl ute +ĠE k +Ġjoy ful +Ġch ased +ĠLar ge +O ver +Ġentrepreneur ial +Ġcons iders +Ñĥ ем +op a +Ġdorm ir +ĠElement ary +Ġprzy pad +ÑĥÑģ ка +ĠоÑĩ еÑĢ +ug ene +Ġten ido +Ġlug ares +ë ¥ +ĠÑĩ аÑģÑĤ +Ġsa o +Ġbra id +ĠV ere +ĠRe ich +ĠP oss +Ġin an +w and +re f +Ġmont rer +Ġ198 1 +çķ ª +as ında +Ġch rome +ĠTr inity +Ġexplo itation +ĠS ense +ĠC MS +ĠNo ble +ĠìĦł íĥĿ +Ġswe lling +elect ronic +] ? +Ġbr ushing +Ġliquid ity +ĠH ook +ĠCon nor +ĠAl um +Ġgu cken +su ite +Ġwie le +Ġbarrel s +ĠReg el +ĠM ent +ĠT rip +ĠBr ush +ĠE rik +ur ate +ÉĻ r +ĠC yr +ou ble +ĠBe cca +Ġpass words +Å ± +bor g +Ġv endo +ĠCla us +ĠF az +ind est +Ġdece ased +Ġcompar isons +ĠL CD +ĠP ork +Ġevent ual +Ġpat reon +Ġin ability +Ġext inction +Ġì¢ĭìķĦ íķĺëĬĶ +ĠÑģ оÑģ +aj u +Ġ×ij× IJ× +Ġso fort +Ġdest ined +ĠR in +Ġmouth s +ĠNat ürlich +Ġpres erving +Ġlim p +é» ¨ +oc used +ин г +Ġexp osing +ĠÎ ¾ +ë į +la ugh +Ġhis s +ãģł ãģĭãĤī +Ġind ie +Ġdet al +ÑĢав ÑģÑĤв +Ġtr ên +æķ ° +Ġog ni +Ġsimple mente +Ġ197 8 +Ġgo o +Ġ196 7 +Ġgen ug +h ö +Ġhist ó +å® Ł +Ġlob ster +c endo +Ġte il +Ġalle vi +00 00 +OL D +Ġpes os +Ġbon uses +Ġam i +Ġrev ival +ĠHor se +Ġs ack +T alk +Ġmul her +ĠпоÑģÑĤо Ñıн +ĠH ood +H uh +Ġë¶ ģ +Ġhy ung +ĠMe eting +Ġimport a +Ġì°¾ ìķĦ +ĠV ern +Ġstri pped +Ġref uses +Ġqual ifications +op l +Ģë ıĦ +ix ÃŃ +Ġdi ab +it ime +fl ows +Ġin ac +ĠG ong +Ġmeaning less +Ġcourage ous +Ġmicro bi +az y +h ist +Ġvolunte ering +V IE +Ġviol ated +Ġsymp athy +ĠEd it +好 åĥı +elect ric +produ ct +Ġpand emia +Ġgeomet ric +ĠCon vers +g re +Ġgl ut +ist ed +ĠاÙĦ Ùĥ +ĠCh ain +ĠPres ent +ĠY in +ĠÑģ ог +ĠV log +Ġìĸ´ë ¨¸ +Ġdon n +Ġh itch +uck ing +ãģĬ ãģĦ +w ald +ris k +Ġhar i +ĠK ens +ĠId ol +Ġвним ание +Ġtod d +Ġsm ashed +Ġinv ari +Ġкон ÑĤÑĢ +Ġaut istic +ìŀ¥ ëĭĺ +R es +д Ñĭ +ch au +Ġsel v +Ġhät ten +ठ¿ +Ġexpect s +Ïģ η +Ġaç ık +ĠHT TP +le ÅŁ +Ġswe eping +ĠBet a +Ġcounterpart s +ab ile +ĠSim s +C s +Ġrep ar +s qu +Ġprovin cial +Ġshare holders +Ġrun ter +Ġged acht +ĠTe en +Ġgrand s +çĶ ¢ +ag les +Ġrock y +ven s +Ġr ivals +un al +Ġreact s +ë © +Ġmerc ury +ĠLu igi +Ġо г +ĠJ UST +Ġl od +Ġcort ex +w ig +Ġl akh +ì¤ij ìĹIJ +ĠV ic +ĠM und +Ġma pped +ĠD ell +ĠD ruck +Ġlif es +алÑĮ ное +ivid ual +ad ım +Ġat rav +ĠFl ug +ĠKle in +ê±° ìķ¼ +ห à¸Ļ +Ġapp li +ா ? +ü yorum +ĠинÑĤеÑĢеÑģ но +Ġdis infect +> - +Ġchamp agne +Ġk la +op ers +Tr ans +ĠDes ert +Ġcultiv ate +ĠFuck ing +idel ity +ĠÑĤ ан +Ġinc ub +Ġtem u +Ġlearn er +found er +ĠSy l +ãĤ Ģ +Ġf ato +z ier +ĠìĹĨ ìĿ´ +ĠìĪ ¨ +Ġpsych o +ĠÑĤел еÑĦ +Ġregard e +Ġrepresent ations +Ġlit igation +Ġsp ann +ult s +b ior +è¦ĭ ãģ¦ +ä¸į å¤ļ +ĠSur vey +ĠLED s +Ġtr ä +Ġl ên +Ġant ioxid +еÑĢ ом +Ġindu ction +Ġfool ed +ät zlich +ĠговоÑĢ ÑıÑĤ +ĠF act +umb ai +Ġw iggle +NO UN +Ġdévelop p +ĠCl aro +Ġì ¸ +ë ¬ +ãģªãĤĵ ãģł +Ġaccum ulate +Ġmaint ains +ë Ħ +ĠFight er +íĨ ł +Ġmat in +Ġcoup on +Ġst unt +Ġdeb uted +å¾ħ ãģ£ãģ¦ +Ġpra g +ив аем +7 3 +Ġexp res +Ġìĺ¤ë ¹ł +ĠпеÑĢ Ñģон +Ġcalcul us +Ġab rupt +ĠInspect or +our t +æĸ Ļ +ź niej +int ense +B a +Ġl ounge +Ġast hma +ĠHi ç +ª » +Ġeditor ial +Ġse ize +Ġk ır +Ġm ouve +Ġtier ra +Ġtestoster one +Ġr h +ĠKing ston +EL LE +ĠRepresent ative +Ġ197 4 +Ġi ba +T s +Ġsort a +Ġ( ?) +Ġت ÙĪ +ĠëĤ´ë ł¤ +Ġbek ommt +Ġspirit ually +Ġdist orted +M ad +Ġre im +á nh +ĠOtt oman +ĠRel ig +ĠEl s +Ġret ained +ĠLa ughs +æĢ » +ĠS AS +ĠколиÑĩе ÑģÑĤво +×ķת ר +Ġinnov ate +Ġk ork +ĠÑĢаÑģÑģк азÑĭв +ond ere +iv i +ay e +ount y +ĠполÑĥÑĩ аеÑĤÑģÑı +Ġbun s +åħ « +Ġyüz den +Ġsur geries +Ø£ ÙĨ +Ġbankrupt cy +w elt +Ġsi amo +Ġdark est +ĠH ann +gg a +Ġform as +ĠD j +n amed +Ġshield s +ue ller +ĠF ew +Ġl ace +Ġfur ious +ĠY U +Ġsociet al +Ġjudge ment +ĠD os +Ġj ab +law s +Ġrein vent +ĠK atherine +ĠCh oi +ad ows +Ġr ans +od en +ĠMid west +n ın +Ġdep ort +ĠD ip +ç´ ħ +Ġaten ción +ĠCourt ney +ivid ad +ĠÚ© Ûģ +Ġeffic acy +ĠBrook s +Ġrefer ral +Ġкон ÑĨ +Ġmal icious +Ġk ir +ĠGod dess +Ġfun ky +Ġinter im +ĠK örper +Ġìĸ¼ë § +k ur +Ġк ли +Ġtruc s +ges etz +Ġz ug +ĠGl ück +ĠMin ute +Ġprest igious +Ġnie z +Ġconcent rations +ла ÑģÑĤи +ĠS is +ĠVit amin +ko v +ĠP BS +Ġне е +Ġretail ers +Ġcon ventions +ĠSam antha +Ġproud ly +J ordan +ĠJ ASON +at k +Ġtr iste +Ġst är +Ġreiter ate +Ġpos terior +Ġ197 3 +ĠP ine +ĠJul iet +Ġped ir +k il +Ġover lapping +Ġexclud e +Ġecon óm +Ġaccept s +ĠS ter +æ± º +Ġìļ ´ëıĻ +est ab +Ġt ug +ar g +Ġliv ro +Ø§Ø µ +Ġse ams +Ġbur aya +Ġe llo +ĠT M +ĠP aw +ĠInd ex +Ex c +Ġinspir ational +Ġd unk +è° ģ +ak ter +Ġcondition er +ĠSal ut +ÅĤ ec +Ġìī ½ +ĠÑĥз на +ĠRome o +f ruit +ĠY O +Ġchá» ī +б Ñĥ +b ons +Ġreprodu ctive +Ġor ada +Ġíļ ¨ +Ġtent ar +Ġma ñana +ãĤ ¬ +Ġsol vent +Jess ica +ĠLeg al +Ġtu a +Ġs ic +ĠE Q +au kee +ìĭľ ëĭ¤ +ĠÅŀ u +Ġad here +ĠT ul +Ġà® Ĩ +Ġtext books +ĠFif th +Ġexper i +Ġch ic +Ġhe ap +in ely +at ra +T wo +Ġhele maal +Ġf ren +æİ ¨ +Ġbis her +Ø§Ø ´ +ĠìĦł ìĥĿ +ĠT ages +Ġs á»± +Ġbull ied +Ø ¤ +Ġbenef ited +ĠPre viously +ĠÑį ÑĦÑĦ +Ù į +Ġsen ate +ĠM orm +ij ke +ĠF lu +Ġincorpor ating +j ack +Ġп иÑĤ +Ġimp ly +Ġha cks +ĠR ICH +Ġк ваÑĢ +ĠпÑĢек ÑĢаÑģ +Ġdepend ency +Ġìļ © +Ġì± ħ +Ġwäh rend +Ġsu lla +ĠPitts burgh +Ġesemp io +¼ë ¡ľ +pr ot +ĠR osen +ĠIndepend ence +Ġpars ley +ie gen +Ġha w +Ġaqu ell +ĠC AP +ĠÑĢабоÑĤ аÑĤÑĮ +ĠCl iff +ion ar +Ġsec uring +æĪijåĢij çļĦ +ν ε +Ġutil is +Ġcou le +ĠP ing +Ġtre k +Ġf ak +Ġenorm e +Ġìĭ « +è® © +Ġdoub ling +ĠнÑĢав иÑĤÑģÑı +Ġh ed +ho ven +ĠStand ing +Ġm ÃŃn +ĠJ imin +Ġmon arch +Ġco ke +Ġm r +Ġcl ic +à į +Ġimpe achment +Ġdur ability +Ġvar ios +Ġcommercial s +Ġgreet ings +ĠR i +ĠApp reci +ìŀĪ ëĬĶ +Ġrés ult +ér t +Ġsal ute +Ġpoder ia +Ġsun rise +ve ck +Ġreluct ant +Ġcommission er +å¿ µ +â te +ĠKen ny +ĠSir i +ãĥĥ ãĥĹ +ĠëĬ ĺ +ĠE E +Ġun ch +к он +ĠاÙĦØ ¥ +Ġbel ts +Ġhas s +Ġмо Ñı +Ġdispl aced +Ġab ra +ÎŃ Î» +Ġscratch es +Ġcom et +Ġauthor ization +ĠL LC +Ġprodu k +Ġrehabil itation +å ŀ +Ñĸ Ñĩ +ud ing +ol it +Ġ10 5 +Ġexp ands +Ġalt ri +ĠKom ment +Ġan f +P l +ĠM ana +f ed +Ġb ri +Ġor a +G s +ĠG ur +uck land +Ġjun ction +Ġiron ic +ĠFe ed +Ġpra kt +ĠHam mer +Įë ıĦ +ĠTr acy +çµ ± +ĠAs ide +н его +ĠиÑģполÑĮз оваÑĤÑĮ +Ġz aj +Ġequ itable +Ġcur b +Ġãģĵ ãĤĮ +Ġderiv atives +Ġpupp ies +ĠKenn eth +ĠCom pl +ig ram +ĠGar cia +) " +ĠHar bor +est ial +Ġ ä¾Ĩ +Ġ ers +æ ¹ +Ġunw anted +Ġbel ang +аР³Ð¾ +em b +d os +ĠìĻ ľë +ĠBud get +Ġbatt ling +ØŃ Øª +k ok +наÑĩ ала +Ġpl ag +Ġcant idad +Ġgrup os +Ġplug ins +ler ini +Ġиме еÑĤ +Ġso zusagen +ol ics +Ġpue blo +Ġrem inis +r än +ĠMor rison +Ġl inha +Ġbreath s +ĠT aste +Ġenf rent +ĠDo cker +Ġд ен +Ġethnic ity +Ġw ob +Ġsuff ers +Ġtransition ing +ĠR ange +ÄĻd zy +Ġк аÑĤ +Ġsy ner +Ġdon ut +Ġprob abilities +ĠO mar +Wh ich +u ish +is in +Ġdem os +ĠìłĢ 기 +Ġëĺij ê°Ļ +Ġед ин +Ġc erve +Ġj oka +I AN +Ġkilomet er +Ġhorizont ally +ĠBh ag +Ġ- > +ĠMon itor +Ġknowledge able +Ġf av +Ġpin ned +Ġe Bay +ick er +Ġìŀłê¹ IJë§Į +ĠXia omi +Ġcap it +Ġn p +Ġ196 5 +ho e +Ġn ok +ĠS age +Ġн елÑĮзÑı +ĠT ow +g am +Ġdic en +ĠSUBSCRI BE +Ġrebo ot +Ġp aj +Ġë³´ìĹ ¬ë +Ġth icken +ĠRe ality +id än +N a +Ġê²ĥ ìĿĢ +!! ) +Ġrout ines +Ġод ного +Ġex ting +Ġì¦ Ŀ +Ġsulf ur +Ġcar ve +Ġastero id +ĠWarri or +Ġphotograph ers +Ġpe ll +Ġcros sover +æĪij çŁ¥éģĵ +Ġhace mos +ĠNe j +Ġsett ling +Ġir m +ĠBook s +ient ôt +Ġesp acio +ĠSchol ars +Ġdo omed +ĠIR S +w ohl +Ġseg ue +ĠëĪĦ ê°Ģ +Ġpr atic +B T +ĠConsider ing +ĠBuff alo +Ġtrain ings +Ġge bru +ĠG leich +Ġpir ates +Ġen velop +Ġre open +im at +Ġte e +Ġsu ed +fe h +Ġ×Ķ× § +Ġdi ets +Ġjunt os +ast o +Ġmisunder stood +Ġru im +Ġclass ify +ĠпÑĢод Ñĥк +Ġin se +Ġillust rated +Ġcorros ion +Ġacc red +ĠAunt ie +ĠпÑĢив еÑĤ +ĠLI VE +Ġre k +Ġrece ipt +åĪ° åºķ +ĠBar bie +ĠSn ake +t urn +Je ff +ãģĬ ãģĬ +ķ Ħ +VO ICEOVER +co ll +Ġrun ners +ìł ľë +os os +mo on +Ġkey note +ĠInst it +S PEAK +Ġplug s +Ġcur v +ĠY uri +ĠTh eres +ĠP s +Ġμ ÏĢο +Ġconver ter +Ġref ine +Ġbad ass +Ġο ι +Ġreg en +az zi +ÙĬ Ùģ +Ġse ized +Ġiç er +ile e +Ġup stream +Ġbud s +Ġp im +Ġíķĺë £¨ +Ġall uded +Ġthem ed +Ġconsist ing +Ġb ons +un uz +ĠпÑĢов од +ĠLove ly +ॠĭ +Ġpar ach +ĠSta ats +éļ Ĭ +Ġselect ive +Ġf ase +ĠGeor get +Ġcoc aine +Ġreprodu ction +ĠL ara +ĠL D +Ġg h +J on +Ġl Ã¥ +Ġëij IJë +Ġtyp ed +ĠB ana +ë ĵľë +Ġsav ory +ĠZ omb +stand en +Ġpedest rian +Ġdifférent s +Ġìĭ ¸ +èī ¯ +Ġcompl ained +ç¦ ı +ĠÐļ ÑĤо +Ġ×ľ× ¤ +ali ÅĽmy +Ġmort ar +Ġverd ict +Ġsu ficiente +ĠMill ion +mitt el +in als +ĠاÙĦØ ® +аÑİ ÑģÑĮ +Ġmi ÄĻdzy +ĠO le +Ġin vert +czy Äĩ +озм ожно +star ter +Ġaud itor +ĠSc out +ch ien +ĠSver ige +uff led +Ġze hn +ĠA uckland +Ġarg ent +Ġ197 6 +ĠHo e +Ġboth ers +Ġsocial ist +Ġpl iers +Ġemer gen +ĠX P +еÑĢ ов +M ore +ĠLe vi +ĠAnd ers +ibil idad +ĠP arents +Ġindu ced +ìĸ´ì ¤ +Ġbal ances +ĠвÑĭ ÑĪ +Ġsubmar ine +St art +Ġdri es +Ġvol ver +Ġtick ing +c ott +Ġf aj +pr és +ĠS abb +Ġза Ñĩ +Ġпок Ñĥп +Ġbapt ized +ĠBrill iant +ĠÐij ог +Ġm ots +b its +Ġlatt ice +æĪij è·Łä½ł +Ġcor iander +Ġresid ency +yn c +Ġpier wszy +ĠKn ock +ĠZ ap +ĠÐķ в +ê² ¬ +å°ı å¿ĥ +Ġune ven +ĠJ as +od or +ç¿ Ĵ +7 4 +ĠS ite +Ġacontece u +ym pt +Ġtril ogy +Ġlan tern +ĠZ ucker +v ari +we lling +ĠPot ato +gom ery +Ġreact ed +ĠChr on +Ġj ede +be eld +Ġtw ent +Ġl act +æ¨ Ĥ +Ġré se +Ġrel ent +Ġfurn ace +Ġwid get +Ġearthqu akes +ĠAd just +il it +ĠØ£ ÙĪ +Ġhear ings +Ġdefend ant +irs iniz +Ġbas k +c ja +ľ ¨ +Ġrif les +Ġinst al +ĠFor give +p ical +ĠÐŀÑĩ енÑĮ +Ġpet ites +Ġh p +Ġren owned +ĠIn n +Ġ주 ìĦ¸ìļĶ +Ġemphas ized +éĹ® é¢ĺ +ĠìŀĪ ì£ł +Ġê²ĥ ìľ¼ë¡ľ +ãĤ Ĩ +Å ĵ +g ili +D ave +Ġexha usting +ÅĤ ug +Ġsch ema +μ ά +cy cl +Ġaut ant +Ġpar cel +Ġmater ia +ĠB erry +ĠÑģ ами +Ġextract ed +ĠSay ing +ism atic +Ġпоп ÑĢоб +Ġneur on +g raph +ľë ©´ +Ġencl osure +ĠJoh ann +Ġafter math +ÑĤ об +Ġu ży +Ġs amp +3 60 +ĠMe i +Ġt aco +Ġrecept ors +Ġpunch es +ĠHo je +ĠÙĩ ÙĨا +=" # +ĠAng ular +Ġmus ique +Ġro l +Ġà ± +ster reich +Ġcl am +ĠTre asury +chem ical +Ġap ar +Ġapp end +Ġforb id +ĠHamb urg +ак ов +Ġê¸ Ī +ild a +Ġprepar ations +Ġmog Äħ +Ġcam ino +E ric +ĠBl ind +èĪ ĩ +å¹´ çļĦ +ĠDis covery +ì¸ ł +çĪ ¶ +Ġinterpre ter +Ġb red +ĠPsal m +Ġdef ended +ìī ¬ +ĠEr fahr +ĠPe ach +Ġmo ons +ĠO st +Ġspé cial +Ġarri ver +ĠW is +u ci +Ġrobot ics +I VE +Ġsie ge +ar la +Ġsepar ates +ĠT C +íı ° +quis ite +Ġparenth eses +ик е +ç« Ļ +Ġtr ous +å» º +ĠÑģ илÑĮ +Ġbe ers +Ġпл аÑĤ +ãģĻãģĶ ãģĦ +Ġso la +Ġd ès +ming ham +ik te +Ġo ops +Ġtw itch +å° ĩ +Ï Ī +ĠShould n +uv re +Ġle er +cript ions +Ġeyes hadow +ĠGu o +ĠPow ell +Ġsup uesto +Ġan a +r als +ĠMont real +Ġsurf ing +ĠÐŁÐµÑĢ в +×ŀ ×ķ +Ġmillise conds +Ġsubur bs +Ġplanet a +ÑĥÑĪ ка +hr lich +ĠH Y +Ġس ÛĴ +ĠM M +ĠE ff +åı¯ æĦĽ +ĠH S +ans on +Ġì§ģ ìłij +Ġsu o +Ġdeploy ing +Ġk unt +ter ing +Ġere ct +ìŀ¥ ìĿ´ +ĠìĿĮ ìĭĿ +Ġspec imen +! ... +æĪij 說 +Ġlig ne +Ġk onst +ade qu +Ġìĥģ íĥľ +Ġaccess ed +ĠP ole +k ill +Ġë² Ħë +Ġauthentic ity +Ġapp elle +ull e +Ġrev ision +Ġgo ats +г ли +Ġp au +ĠR anger +ĠIm ag +aut hor +Ġe ve +ĠMess enger +Ġn ay +Ġwh oles +ät te +Ġon wards +ĠDep ois +Ġíijľ íĺĦ +ĠSAR S +Ġwszystk ich +Ġdest ru +umb ing +Ġcompat ibility +Ġmis information +od ore +ĠF avor +ek o +ı Į +w aukee +ĠTe aching +ĠK O +Ġbet ting +Ġquest s +Ġviv re +ĠмÑĥз Ñĭ +Ġs aga +Ġswe ll +Ġge he +æĢİ麼 樣 +ĠоÑĢг аниз +Ġg ide +ĠG ross +Ġdale j +Ġcl aws +á»Ļ c +Ġprejud ice +Ġins ign +i hood +Ġpl ed +Ġdó nde +ĠPolit ical +Ġprem ises +und ert +ع ت +on nen +Ġespa ço +Ġf é +ĠHarr ison +ĠC ensus +Ġcard io +Ġdi y +Ġmil ieu +Ġjourn ée +ĠRe lease +N IE +ĠM uk +id ée +á»į i +Ġiç inde +ŀ Ļ +Ġreson ate +Ġm oles +ĠF lying +ĠGl oria +ĠPast or +ĠAre na +好 ä¸į好 +N ON +ол ов +Ġall ÃŃ +om at +ìĸ´ë ıĦ +Ġcaracter ÃŃst +Ġdecl ining +Ñĸ Ñı +an co +ĠIn form +Ġbarg ain +Ġbus hes +ĠNat urally +Ġre chts +ĠT ensor +ĠPat ricia +Ġprincip io +ĠM umbai +Ġwom b +Ġnost ra +Ġdile mma +Ġirgendw ann +Ġ196 4 +Ġenerg ÃŃa +Ġна ÑĢ +Ġseg regation +ĠA thlet +Ġ» , +Ġy eni +ĠSe it +Ġven om +Ġdak ika +Ġëı Įë +ĠÃī l +Ġf us +ĠM og +¦½ ëĭĪëĭ¤ +Ġrem ar +ĠTed dy +Ġbreast s +ic ans +æĶ¶ çľĭ +k ap +Ġh Æ¡n +ĠJ P +ãĥ³ ãĤ¿ +Ġresur rect +ĠìĿ ¸ë +her ical +Ġfot ograf +ĠJos é +Ġlivel ihood +Ġbib li +ter i +Ġvor stellen +ĠA AA +Ġassess ing +Y A +Ġspl end +Ġexca v +Ġbapt ism +y ll +w ow +M ac +Ġpl astics +teok bokki +Ġintéress ant +Ġcommand ed +Ġfamous ly +ĠÐĺ ли +ĠMan uel +Ġsouth west +Ġde formation +ÃŃcul o +ĠнаÑħод иÑĤÑģÑı +ĠP atter +d egree +ĠczÄĻ sto +" - +Ġìħ ĭ +Ġman ger +ĠTrust ee +Ģë ¦¬ +Ġpunt os +iv able +Ġvol atile +ĠëĬ IJ +Ġinst ability +Ġc iel +ci Äħ +Ġpur ity +но ÑģÑĤ +S il +ed ar +åĻ ¨ +NOUN CER +Ġspe lled +G ER +Ġsanct uary +Ġacceler ating +Ġsc out +ĠпÑĢ ев +f ahren +ãģĵ ãģ¡ãĤī +ĠëĤĺìĺ ¨ +Ġpocz Äħt +ĠMe u +ka ar +³´ ê³ł +ak ra +D own +ĠÃĦ r +ĠEl ite +Ġall ons +Ġmay onnaise +ĠS ustain +prising ly +Ġsuper vis +Ġê·¸ëłĩ ì£ł +Ġunemploy ed +Ġfresh ly +Ġ×ŀ× ¢ +ĠD h +Ġtack ling +Ġo gr +Ġì´ Īë +ãĤĪ ãĤį +Ġlo ft +ar ah +ĠA irl +ĠD ir +ĠÐľ ожно +Ġbook ing +ĠC RA +Ġhtt ps +Ġcho ke +Ġg own +Ġno ite +Ġz ac +ist ol +Ġsec re +Ġresemb les +Ġcu ad +ìĤ¬ ê°Ģ +sh ow +Ġbl anc +Ġag u +ĠPr int +ast ed +ĠWe ather +i pl +Ġobsc ure +Ġcont e +ough s +) ; +ĠD ame +ä¸Ģ 缴 +Ġclar ification +Ġintim acy +Ġup hold +ĠMir ror +Ġw agon +x ide +Ġcl og +app er +ĠImmedi ately +ú de +Ġtouch down +Ġro oft +аÑĪ а +Ġç ıkt +Ġla isser +ĠUn real +ens itive +Ġ12 3 +Ġpl aster +Ġduck s +Ġet me +Ġb ishop +bre vi +Ġb ic +ä¸ĭ åİ» +Ġrun time +Ġamb itions +м аÑĤ +ĠWe in +ĠMar i +ĠíĬ ¸ë +Ġresol ver +Ġng Ãły +ĠR ise +ãĤĪãģĨ ãģ« +ĠCr us +Ġmerchand ise +Ġel i +Ġstate wide +Ġow l +éģ ł +æĶ ¹ +Ġtwist ing +Ġcontam inated +ĠCom merce +hy thm +Ġà Ī +Ġìĭ ¤ë +Ġmus ste +u ir +Ġsum s +ĠSome where +ãĥ İ +Ġk ami +Ġa ired +ĠAND REW +Ġê º +Ġv iendo +Ġantib ody +Ġabsol ument +Ġprotest ers +ĠQué bec +st adt +Sha un +Ġcham bers +ĠWe ar +ĠEffect s +Ġhaz ards +Ġne i +Ġcoraz ón +Ġá ¼ +ĠS G +Ķ © +ĠìĹŃ ìĭľ +Ġcom fy +ĠC ody +Ġpens ando +Ġg anska +ĠAc ross +öll ig +aby te +Ġwed ge +Ġkal ian +Ġsig ue +end es +ĠGro ÃŁ +Ġutil iser +Ġfl own +ани Ñİ +Ġle var +rest rial +Ġillust rations +Ġas lında +BLE EP +Ġдо ÑģÑĤ +Ġtur ret +Ġsuit case +ziÄĻ ki +Ġsket ches +Ġac red +ĠRe i +Ġt sun +ĠS ag +Ġthird s +ĠKIR BY +ra i +Ġhuman os +Ġrecomm ends +Ġextraordin arily +Ġcommence ment +K N +ope z +Ġ×ij× © +Ġlet hal +ĠEst amos +Ġinspect or +ĠSe ok +e un +Ġoff shore +Ġget tin +ye ars +ĠSil ence +ĠNat ur +up un +Ġtr zy +Ġno get +Ġhamb urger +ĠPra ise +é nd +Ġ197 1 +yl ie +k rit +ĠìĥĿê°ģ ìĿ´ +çļ ® +Ġmoment os +Ġest é +Ġdisse min +Ġgig s +Ġdes af +Ġav is +ĠZ oo +ĠìķĬ ìĿĢ +h äng +åı ¥ +h ake +ĠB ism +Ġre think +ĠMal colm +Ġident ifies +l ower +ix el +Ġtv Ã¥ +k ed +ier z +Ġö ffentlich +Ġproc laim +so on +l ol +Ġlo i +Ġb itten +ro llo +Ġser mon +Ġes qu +Ġjack ets +Ġgr áfic +Ġпок азÑĭв +Ġcabe za +ch odzi +Ġpel vis +Ġnost algia +Ġbre w +Ġshort cuts +ĠAd emás +Ġsuperfic ial +åħ© åĢĭ +Ġbo ca +ĠæĪij æĺ¯ +iment os +åĽł 为 +Ġspr outs +é£ Ľ +ĠJon as +ĠFloren ce +st atic +da ughter +* ) +ÅĤ by +f ashion +ĠG inger +Ġë§ ¤ë +Ġhust le +ut os +ĠÑĤ Ñıж +ĠL ös +ש ×Ļ×Ŀ +any ch +tu ber +Ġtid y +Ġfront al +Ġwhis key +Ġhum id +ĠÎ Ł +Ġr idge +Ġmar in +Ġb ientôt +ĠCarr ie +ch w +Ġtah un +ĠEr geb +F R +Ġìłķ ë¶Ģ +ĠSold ier +Ġenlight enment +Ġexam ining +ĠNot re +Ġer am +ĠSun ny +Ġlay ered +ĠD azu +r ades +好 åIJĥ +ĠнаÑĪ ей +Ġtim ber +Ġman ners +ĠBir mingham +Ġmini ature +omet ers +Ġfill er +ĠR ip +ĠK omb +own er +ì ¿ +id ian +Ġdem ás +ĠÙĪ ت +Ġpreca utions +Ġgovern o +z elf +ĠCom plete +å¸ ĥ +ĠPh antom +ãģ¾ ãģļ +Ġн ез +ĠкаÑĢ ÑĤ +ĠAnt wort +ĠPf izer +ĠFran co +Ġw ÅĤ +Ġfr ig +es per +Ġk ale +Ġfilm maker +Ġk urt +Ġinv alid +å± Ģ +are lla +Äĥ ng +ram ento +Ġnutr itional +Ġdict ators +Ġaf in +Ġf uzzy +ĠG ina +ó t +ĠExtrem adura +Ġdemonst rations +ĠMont gomery +íķ´ì Ħ¤ +ĠGand hi +ãĥ Ŀ +ç½ ® +Ġreun ion +Ġjaki ÅĽ +ĠZ ug +OU GH +l ifting +Ġ ಠ+á¹Ľ á¹£ +e b +ĠW OW +ĠSh iva +omet ry +Ġwild ly +Ġt ended +Ġmeg ap +ì² ĺ +Ġna use +Ġg erek +ãĥ ĭ +ĠMar cel +Ġn este +Ø® ر +Ġfe h +åĨ ħ +susp enseful +ĠWrest le +ĠPalestin ians +ĠG ORD +iy et +ĠÑĢ ади +Ġvers uchen +Ġtrans istor +ĠÐŁÑĢ оÑģÑĤо +Ġпон ÑĢав +Ġrhy me +ĠVerm ont +pl atz +è® ° +ĠÄ°ÅŁ te +ĠH ag +ĠÐĺ м +ĠÑĢаÑģÑģк аз +Ġmet ros +ĠInfin ity +w olf +ib al +ft ig +Ġ ÚĨ +Ġíĺ¹ ìĭľ +Ġo ggi +Ġdisp osit +ĠпÑĢ ил +ĠвÑĭ пол +Ġth ôi +ĠK ENN +Ġhand ing +act us +Ġtac os +Ġformer ly +ĠCorinth ians +ãģ« ãģ¯ +ÑĨÑĸ ÑĹ +Ġpad re +Ġcongreg ation +æ ij +fer t +Ġsub ir +ais er +qu a +ara oh +ĠCur ry +ĠìķĬ ëĬĶ +ел Ñİ +Ġf uss +Ġbo oty +Ġl ows +Ġh ommes +ĠM H +ĠDisney land +w ent +Ġresid ue +Ġbe eping +è¼ ķ +ät ta +Ġm ould +ĠPro jekt +st alk +Ġartif act +ĠAnt rag +ĠAM D +ĠCry pt +Ġë© Ķ +ĠFel ipe +ĠCO B +el u +Ġself ies +ĠS anti +ch utz +ĠУ кÑĢаÑĹ +ges amt +Ġflo ck +j az +pl ain +Ġwr inkles +Ġre ais +Ġpal jon +Ġempower ment +Ġattend ees +pp a +Ġn eden +он Ñĭ +Ġtime frame +ĠCher ry +Ġid ée +Ġg ag +Ġdon key +Ġô ng +ĠH are +éļ Ľ +ĠK ara +Ġacom pan +pl aces +im ientos +ĠH amm +б и +ub en +ili yor +Ġth irst +Ġk ry +ĠGeorget own +׳ ×Ķ +Ġor ch +Ġheart beat +Ġtransform ations +est ones +ĠK H +Ġcart oons +Ġan ci +Ġworth less +Ġtail ored +p u +Americ ans +Ġp iles +ĠMon key +Ġbas in +ĠTem per +ĠP aint +Ġpunch ing +Ġba ik +ĠOak land +v re +ÅŁ allah +yd d +Ġcas ually +od u +Ġc oded +ĠNorweg ian +ĠV ince +Ġprem ature +ĠProm ise +ек ÑģÑĤ +Ġdevast ated +ĠPrem ium +ĠPar am +ĠÃĸ yle +um uz +P O +r ators +Ġlamp s +Ġterritor ial +Ġback bone +list ed +D Y +ĠاÙĦ ر +Ġpurs ued +ĠComm ons +Ġê³ ¡ +lo cks +ed or +Ġconce ived +g ere +Ġdisappe aring +ĠS ull +ĠìĹ °ë +Ġho ffe +Ġdet ox +íĶ Į +Ġret ir +ĠëģĿ ëĤ +Ġper gunta +ĠB OY +ç² ¾ +Ġp enn +æĿ¥ äºĨ +h és +h on +Ġcatastroph ic +Ġa ust +Ġtor so +Ġìĸ´ ëĬIJ +ĠìĤ¬ëŀĮë ĵ¤ìĿ´ +Ġmarvel ous +ĠHar ley +ach ine +Ġti ế +itt o +ĠI ÃŃm +yl on +Ġshut down +.' ' +Ġap ologies +ĠCommun ication +ĠговоÑĢ Ñİ +ãģĤ ãĥ¼ +âĦ ¢ +ÃŃ veis +ac un +Ġret aining +Ġcontrad iction +ĠAD AM +C OM +Bry an +ĠM onsieur +Ġadap ting +Ш ÐIJ +ĠSc r +änd ert +Ġpl aus +ä»Ĭ天 çļĦ +Ġon set +Ġassist ants +Ġval ves +Ġsc atter +ĠR ust +aw ia +Ġread iness +Ġp ais +Ġb ible +Ġamb iente +Ġа меÑĢик +Ġunc ond +Ġk alk +åĬ ¨ +Ġmo c +un n +Ġact u +Ġhum ming +iss imo +ĠPat rol +g ow +ãĥ ¤ +ĠTHE Y +ĠBod en +ĠB ie +Ġre el +ĠÑĥÑģл ов +Ġende avor +ĠPer iod +ustom ed +m als +al on +B ox +ĠÏĥ αÏĤ +Ġom dat +Ġal tre +ĠHe h +k ad +Ġprotect or +Ġdomin ance +odynam ic +Ġcommunic ated +k ö +Ġprede cessor +ĠL uk +ĠFl ower +Ġãģ © +po que +ÑĤи ÑĢов +Ġret rospect +Ġdecis ive +Ġexem pel +{ \ +ĠR ück +r ite +ĠZe us +Ġcal orie +Ġattract ions +ĠH inter +Ġuh m +ĠíĮ IJ +Ġrul ers +Ġdiscour aged +Ġaconte cer +Ġacc ents +ĠOpt im +ĠAl g +k ids +20 21 +ĠLind say +Ġfilm makers +pr owad +Ġter ug +ëĭ ´ +ĠSom mer +20 18 +Ġborrow ing +ĠTrans fer +н оп +ari as +Ġhead phone +ì¼ ľ +Ġtransl ating +Ġauf ge +ப à®Ł +we is +av ant +pa id +b aby +Ġtough est +Ġrepe ats +ĠTer esa +L ord +Ġacab ar +ĠR ide +d ir +Ġl eng +Ġd wa +Ġhead aches +Ġn ữa +ĠнаÑģ ÑĤоÑıÑī +Ġbo ils +Ġlong ing +ri as +ó rio +ĠParad ise +ĠSeñ or +erd em +Ġrein st +Ġsal aries +Ġinsec urity +ÅĤo ÅĽci +ĠабÑģолÑİÑĤ но +ink en +ĠEd dy +ud os +Ġd ummy +Ðļ ак +s ix +Ġin box +Ạ© +Pe ople +á»ĵ ng +Ġorganiz ers +f ind +Ġü l +ĠCO M +ż a +we ile +Comment ary +íĬ¸ë ¥¼ +ĠMitt el +k us +èĽ ĭ +ठ¨ +ir al +Ġgar ment +ικ ά +Ġst ool +pay ers +Ġsh immer +ĠO llie +ĠJe żeli +è¿ĺ æľī +Ġ197 7 +Ġje ux +Ġext inct +ĠTransport ation +ĠM aker +Ġj ohn +Ġrich est +Ġtraum at +Ġli egen +´ë ¥¼ +è¿Ļ éĩĮ +Ġun rest +ĠSt raw +æĭľ æĭľ +Ġcom a +ĠKr isten +ĠÐļон еÑĩно +ĠBry ce +ĠÑıк Ñĸ +Ġpearl s +Ġпоним аÑİ +Ġadd itions +Ġas ympt +ĠменÑĮ ÑĪе +Ġsc ans +Ch ild +ĠH ide +к ÑĥÑİ +et as +Ġd ank +Ġple as +Ġess ays +Ġj ets +åħ Ĵ +Ġв ед +Ġposit ives +ho f +- ) +zz o +Ġstar ters +Ġsm iled +Ġ194 4 +qu iera +Ġro k +Ġpu esto +N ico +Ġsim ulations +Ġ ච+Ġintrig ued +ĠOver watch +åĸ Ĥ +s igh +b ai +Ġë§IJ ê³ł +id é +Ġcra bs +áºŃ p +ĠIraq i +ìĿ´ë ¥¼ +ÑĤ Ñı +ĠSoph ia +ĠDN S +Ġönem li +ĠLu o +Ŀ ¤ +ĠCoun sel +l igen +анÑĮ ÑĪе +Ġtrump et +Ġd apat +ĠJ M +ĠEVER Y +Ġå°į ä¸įå°į +å¤ ¢ +ĠL ayer +Ġc ô +н ал +ĠJ oo +ĠH ack +Ġs unt +ĠLeon ard +ĠFire base +äng er +Ġexpl oding +v oy +Ġì¦ IJ +ĠÑģ еÑĢÑĮ +Ġsever ity +Ġbest imm +çµIJ æŀľ +Ġt iring +Ġprocure ment +Ġdiplom acy +Ġdecor ative +ĠÙĬ ا +Ġpenet ration +Õ « +Ġout right +EN E +ĠUn i +od les +Ġz eros +Ġdelight ful +j m +Ġdo po +没 äºĭ +Ġposit ivity +ĠVIS TA +ĠRes ource +íĥ Ģë +ÑĪ ие +C arl +Ġpip ing +Ġchop ping +ĠGan ze +ü ss +ĠA o +Ġsh attered +ĠDet ective +Ġund oubtedly +Ġhall uc +Ġen ch +Ñĭ Ñĩно +ÑĥлÑı ÑĢ +is esti +Ġped als +Ġdur um +¤í Ķ +la imer +Ġprop re +C u +Ġtransl ator +Ġca ÅĤ +Ġê·¸ 걸 +Ġca ÅĤy +U A +Ġrev ised +Ġпод об +ĠArt icle +ĠHait i +Ġà ĵ +ĠC trl +Ġroz m +la it +Ġletz te +is pering +dis play +Ġalumin ium +Ġpalab ras +Ġconoc er +Ġz itten +Ġdir ig +åıª æľī +Ġbrain storm +Ġw ifi +ĠPart icip +Ġview point +ĠQu an +Ġhier arch +W elcome +å¯ ¾ +Ġoff en +ĠRe covery +gan o +W ould +Ġrep ro +Ġper ceptions +Ġdem asi +ĠBangl adesh +ĠIncred ible +Ġlet zt +Ġbehav ing +Ġaston ishing +Ġâ Ĩ +ĠëĤ¨ ìŀIJ +èµ° äºĨ +ãĥ Ķ +ĠGORD ON +C AR +? !" +ĠP rest +Ġë§ŀ ìķĦìļĶ +Ġt and +Ġl ash +ç Ĭ +ific ant +Ġint oler +Ġг еÑĢо +Ġte u +as o +ĠÑģов еÑĤ +Ġtravel ers +ĠSy nd +ĠвеÑĢ Ñģ +F onda +ad ı +Ġtrans cription +Ġtit anium +Ġtw ists +Ġgear box +ens ation +f at +C oll +ĠCommon wealth +z on +ĠPolize i +ĠAPP LAUSE +f ry +ĠJud a +este em +Ġso ck +ĠJug end +Ġк ÑģÑĤаÑĤи +ĠD ro +Ġproch aine +ãĥ¼ ãĥ« +Ġli ksom +ĠEner gie +ĠMar ina +Ġ2 30 +Ġê°Ģ ìĦľ +ump ing +Ġl one +ç´ ļ +Ġfont s +Ġbusiness man +Ġp ly +Ġdo e +gr id +ĠMil waukee +ĠE den +! ". +ĠÛĮ Ûģ +og ens +Ġteas er +Ġqui én +Ġincent iv +go vern +Ġchild care +Ġsneak ers +Ġimprison ed + ® +иÑĤ еÑģÑĮ +an bul +Ġreg ain +Ġtranqu il +Red ner +éĽ ¨ +IF A +Ġide ological +Ġmayor ÃŃa +Ġb ureau +et erm +ĠD ID +ìĬ · +Ġw aving +Ġbe b +Ġá r +Ġк в +Ġenv oy +an ut +ик Ñĥ +ĠEnviron ment +ĠAss ass +ãĤĵ ãģ§ +ĠB read +ĠТ ÑĥÑĤ +Ġstair case +ĠDise ase +Ġauc un +Ġëĭ Ī +Ġconfront ation +Ġ194 1 +Ġiron y +Ġwor sh +ãĤĮ ãĤĭ +Ġf ick +ĠNa omi +Ġback side +ie ux +K ap +Ġved ere +Ġlength y +Ġbreak er +ĠRoll e +Ġpred ator +Ġnoss os +Ġadvert ise +è³ ĩ +ÑĢод е +Redner wechsel +re ten +Ġcollect ors +ıģ ımız +Ġtr ig +Ġax es +in ters +Ġpen alties +ĠOs man +ĠJen na +Ġfl akes +Ġtrain ers +Ġstun ned +ĠSc roll +ĠP ip +Ġна ÑģÑĤ +Ġnh Ãł +ĠSm ack +ẫ n +rat os +ĠÑĢабоÑĤ Ñĭ +Ġu cz +ĠLem on +ĠS ind +Ġpsych ic +ĠAb g +Ġmamm als +Ġimmers ive +Ġb ots +Ġverschied ene +Ġg eral +Ġfoll ower +Ġ ä»ĸ +Ġsegur idad +Ġimmers ed +fe ito +c ross +Ġö ld +íĥ Ħ +Ġãģĵ ãģ® +Ġ×Ķ ×Ļ×IJ +ĠJ ian +Ġbili yor +are a +Ġk af +Ġgod t +缸 ä¿¡ +Ġë°© ìĨ¡ +Ġdet riment +æ¥ ļ +Ñĸ л +ĠÄij âu +Ġchlor ide +ø re +le i +Ġmont e +Ġdifférent es +à¯ģ . +Ġcareg ivers +Ġin adequ +Ġfare well +ĠÑĤип а +ont ec +ĠE ph +HH H +ĠTod os +ĠС ШÐIJ +Ġtro v +Ġl ige +Ġc ông +ĠC iv +Ġcap az +ĠV allahi +Ġquest e +Ġrepl ica +س ب +z na +ĠÑģл Ñĥж +ĠP T +w ave +ien i +Ġrel ied +de velop +Ġdem e +ĠA man +Ġ[ ...] +Ġcompl iments +u ais +ĠíĮ ¨ +Ġsmell ing +Ġdad urch +ÙĪ ت +Ġor anges +Ġл ай +Ġstabil ization +åĢ į +ãĤĮ ãģŁ +æ¥ ½ +Ġappl iances +Ġh m +ĥ IJë©´ +odynam ics +Ġc iÄĻ +ĠC ott +M ON +ĠM ang +æĶ¯ æĮģ +Ġall erdings +ικ ή +sh ots +Ġt s +ĠG ör +ĠCH AR +Ġ: ( +Ġwr ath +Ġf ique +Ġfüh ren +Ġtest ament +Ġ^ ^ +á¹Ľá¹£ á¹ĩa +AL D +Ġtext o +ĠDog s +Ġs ib +Ġpath etic +ock s +Ġrad ically +ĠM ORE +ĠJAM ES +Ġing l +ĠTechn ical +Ġpor ch +ĠU T +ĠобÑıз аÑĤелÑĮно +Ġrenew al +Ġaesthet ics +ik um +Ġbe verage +der n +Ġpredict ive +Ġch uy +ĠRegard ing +ĠFor ward +ĠÙĪ ÙĦ +Ġcontext ual +Ġdwar f +Ġpre he +Ġgovern ed +ħ Ħ +Ġtrabal har +Ġnegó cio +ĠболÑĮÑĪ ой +еÑĩ аÑĤ +Ġд ÑĥÑħ +Ġflood s +Ġbow ling +ĠO B +ĠH är +Ġgrad ing +주 ëĬĶ +Ġg ars +d ling +Ġr ak +ë Ī +c reat +ĠÑī е +Ġneighb ours +f ood +Qu ery +Ġhero in +ice ps +ĠK inda +N ET +Ġmar i +Ġim itate +Ġach ter +Ġsettle ments +ra re +cc iones +Ġë ĵľ +Ġf ik +it ung +Ġм акÑģим +Ġel f +Ġd alla +ĠPol sce +ĠP ul +Ч ÑĤо +ĠMor gen +ØŃ Ùħ +Ġsuprem acy +Ġk ys +ĠHur ricane +ĠG TA +ĠFe h +Ġfinal mente +m und +ĠK rie +é poque +ĠT ucker +IT T +Ġl ur +Ġdi pping +ä v +Ġeer ste +ĠFl int +bild ung +ู à¹ī +Ġto im +Ġpr acy +Ġtransform s +Ġspeed ing +Ġpresent er +Ġfellow s +f illed +ie za +Ġadv ising +ĠInter view +и гÑĢ +we hr +ĠD ante +pt ure +Īë¬ ¸ +¯ ¸ë +IJ IJ +ĠCoun ter +Ġcr ist +Ġì§ ľ +Ġje une +ĠÑģÑĤ ÑĢаÑĪ +Ġmie Äĩ +Ġtut or +Ġmas ala +Ġpowder ed +Ġn au +ĠFreder ick +Ġbill ing +ĠE isen +Ġд обÑĢ +Ġm est +æ ½ +Ġsn ipp +Ġmon o +ĠA lo +ĠMer cy +éri ence +Ġcasual ties +ĠAN NOUNCER +ä» İ +Ġto car +Ġbacter ial +H o +Ġstre ak +ĠJ ENN +Ġpl ast +Ñģ лед +Ġre app +Ġpay check +Ġmin ers +hab t +ĠJ ap +н ÑĥÑĤ +Ġred emption +Ġqu ir +hn lich +Ġaccum ulation +Ġsh ove +Ġadrenal ine +M ake +ĠH ern +oss ing +ĠV il +ub by +her tz +bre aks +Ġsp ur +ĠD aha +US TIN +Ġcontinu er +ĠSa ul +ãģ® ãģ¯ +Ġíı Ń +ĠëIJĺë ©´ +Ġë§IJìĶ Ģ +Ġо ж +Ġsuspect s +Ġla quelle +ĠMuch as +Ġv öllig +ul en +Ġimp res +Ġlo bb +ene e +Ġн аж +T a +Ġréal ité +ĠRe x +Ġharvest ing +Ġest r +æ ¶ +osp ace +OS S +Ġdisturb ance +ass ic +ĠIs ab +Ġdéc ouv +ĠHamp shire +Ġor nament +Ġlu ôn +ĠU W +Ġj Äħ +éĤ£ ä¹Ī +Ġrespect o +Ġcomun idad +Ġcom igo +ag na +Ġintrins ic +ĠAlum ni +Ġses leri +Ġestim ation +âĢĶ âĢĶ +Ġprodu it +ãĢĤ ãĢį +Ġв ÑĢ +Ġwh irl +Ġac ces +ç u +Ġvari ability +Ġv odka +its u +Ġinternship s +Ġalloc ate +R R +íĽ Ī +Ġinstruction al +t ant +Ġà®ħ த +Ġinv ites +Ġha k +Ġsca res +Ġe clipse +п ов +к олÑĮ +ativ as +Ġstab bed +ĠD OM +ä¸į åĪ° +ro ots +ĠPict ure +íĺ ¼ +ĠC HA +ie c +ı ı +han ol +Ġmisunder stand +R ay +Ġroad map +ocument ed +iz ione +ĠOl ive +r ift +Ġ×Ķ× ł +æ¯ į +l est +; ; +ĠE A +éľĢ è¦ģ +од Ñĥ +Ġhob bies +Ġbur ial +ãģ« ãģ¡ãģ¯ +Ð ¤ +le ge +ĠH J +Ġobject ion +Ġãģ Ń +ct ory +Ġincre mental +Ġgym n +Ġepid emi +Ñģ Ñĭл +à ij +Ġadvance ment +Ġpar ch +New s +Ġa yr +л ам +Ġ×ľ× © +Ġdipl oma +ãģ¡ãĤĥ ãĤĵ +Ġrob bed +On ly +Ġinc ur +Ġch anting +Ġíķ´ë ıĦ +Ġrich es +ĠCar men +Ġnost ro +λ ÎŃ +ĠPow der +à¹Ģภ« +ĠìŀĪ ìľ¼ë©´ +Ġgerçek ten +ĠPik achu +ем он +OL L +Ġplanet ary +Ġsl ows +Ġclock wise +al ion +Ġì Į +Ġver n +Ġh omme +Ġend point +Ġinnoc ence +Ġelement os +Ġsophom ore +Ġnot ions +ĠCould n +p ur +Ġz at +Ġobs ess +Ġmotiv o +ĠK ub +ĠDr ug +A nt +ĠPlay ers +ĠHum ans +Ġme lee +ĠWild life +ĠV P +Ġvolcan ic +Ġcom in +ĠGu ang +ĠÏĦι ÏĤ +ĠоÑģоб енно +ĠS ize +L isten +ĠA aa +app ro +Ġbar bar +ĠPark inson +нÑı ÑĤÑĮ +å į° +Ġunderest imate +Ġsubst itution +Ġcosm etic +ä¸ĭ 次 +Ġwill en +Ġbe ide +ann i +Ġcondition ed +ĠDe bbie +Ġis to +ĠEd wards +ìĽĮ ìļĶ +ĠÑĤ ов +Ġab brevi +ĠM ün +ĠPr inc +ĠLi ang +Ġst ink +Ġradio active +ãģĨ ãĤı +Ġac ontec +Ġun con +ĠTur bo +ãģ IJ +Ġkiss es +æĺ¯ ä»Ģ麼 +еÑĤ ÑĢов +Ġfront ier +ĠSp y +ĠBel arus +ĠC BS +á» Ĺ +am oto +íķľë į° +ĠÑģÑĤ ÑĢо +ĠEn fin +Ġbread th +éĺ ² +ĠCa fe +ĠDaf ür +ĠB our +ar as +Ġbl ueprint +an ı +Ġconst ants +Ġattack er +ĠForm ula +za Äĩ +Ġs owie +Ġeyebr ow +ob ook +Ġset zen +第 ä¸ī +ons ider +aw ning +Ġsöyle ye +Ġinv aded +Ġpronoun s +Ġdob ry +S i +ĠÐ¥ оÑĤ +Ġvolley ball +Ġl ament +is ches +ar me +ap i +ĠW iki +ли ÑĪ +Ġkas ih +Ġp ess +ĠÑĦ оÑĤ +ĠS ul +å¾ · +Ġpse udo +Ġmem o +ĠìĹ° ìĬµ +ĠдоллаÑĢ ов +ĠпеÑĢ ем +ĠRe ach +mir al +alt ed +Ġstat ut +read ing +Ġsöy led +ĠLind sey +ĠAh mad +ë ¶Ģë +ĠС егоднÑı +Ġprzy got +Ġhy ster +U RE +ĠNe igh +Rep orter +ĠB unu +ĠTreat y +ĠR ank +ĠF ame +in ished +Ġge ared +Ġcomp ose +od ia +ĠL on +Ġjeste ÅĽmy +ĠDIRE CTOR +Ġel kaar +ĠV iel +×IJ× © +ynth ia +ä¸ ¦ +Ġm ère +ĠTom ato +Ġex atamente +ni ÄĻ +ĠFre i +ĠD if +Ġopen ings +Ġgraph ical +ĠÑĥд об +ĠвÑģ п +ĠWeek ly +ев а +Ġhang s +Ġuns afe +Ġem blem +ĠKolleg innen +al ay +Ġk si +Ġh ides +Ġol may +Ġent ste +Ġarth ritis +ÃŁ erdem +Ġbin nen +Ġlist ens +ĠH ess +åĨį ä¾Ĩ +ĠLou ise +ld en +ен Ñģ +ĠVers ion +ĠAgric ulture +ìĬ¤ë ¥¼ +м ан +ë Ħ¤ìļĶ +Ġw ines +ĠIN F +r ul +ĠJ K +ıyor lar +sh ield +reat h +Ġter us +ĠL um +Ġanticip ation +Ġacc ustomed +ĠM ina +Ġw ield +io è +mer a +Ġcount down +Ġcl ing +Ġcomm end +Ġfakt iskt +Ġdef enses +Ġcock pit +Ġком анд +Ġdish was +ĠThan os +Ġkid neys +Ġse he +Ġmicro bes +Ġc uff +ĠвÑĭÑģ ок +ĠSp icy +çŃī çŃī +வ à®° +cul us +or c +ç¾ ħ +ix es +ĠC redit +Ġr aj +Ġbring t +ĠN iss +Ġgr im +ĠS OL +Ġten im +ĠSud an +ĠSp art +Ġpromot es +ĠN ossa +ĠÑģоÑģÑĤо Ñıни +Ġì° © +Ġunc ont +ĠLiber al +ĠТ олÑĮко +ĠV iele +Ġktóre j +Ġ* *** +M ax +ĠЧ ÑĤобÑĭ +3 50 +Ġíĺ¼ ìŀIJ +Ġë¶Ħë ĵ¤ìĿ´ +Ġwar p +Ġteng a +Ġsympath etic +Ġbiz i +ĠZ ack +ied o +Ġëī ´ì +p iel +ĠÑĤ ол +Ġsc aled +ĠPET ER +ĠCO MM +ĠC ame +Ġcatast rophe +Ġsweat y +ig ration +Ġstuff ing +ĠÏĢολ Ïį +ĠDri ver +zy st +T ech +Ġassess ed +ĠSur face +ır ım +s ur +ler weile +Ġд ог +Ġshut ting +Ġfr actions +ĠÑģ ол +every one +Ġer n +ĠÐĿ ов +Ġdefend ers +Ġvers ucht +ãĥ³ãĥ Ģ +Ġpol ity +ĠÐŁ он +ver ständ +Ġbrows ers +Ġtransform ative +Ġdict ate +ĠLE GO +Ġning una +ê´ ij +Ġp izz +ĠHar old +ĠL opez +Ú¾ ÛĮ +an ız +atch et +ÙĬ ت +Ġl ernen +Ġê·Ģ ìŬ +Ġhous ed +Ġclean se +ĠW AT +lar ation +Ġby tes +Ġtuck ed +Ġfault s +д о +F X +Ġìĸ¼ë§ ĪëĤĺ +Ġde form +Ġcontract ing +ĠTIM E +ir se +Ġne ben +Ġc erc +ĠArm strong +Ġtest er +Ġparf ait +Ġjealous y +Ġtox ins +Ġdis bel +ÑĥÑĢ Ñĭ +imp ression +Ġprost ate +Ġfire wall +Ġclass ics +еÑĩ ÑĮ +Ġsocial ism +Ġgrac ious +ĠÑģ нова +Ġд нÑı +Ġburn er +ĠMin or +Ġìļ°ë ¦¬ë +Ġjed es +Ġcontinu um +Ġh ots +Ġoccur rence +Ġadminister ed +Ġзам еÑĤ +Ġhes itation +Ġdr ills +er ca +ĠвÑĤоÑĢ ой +Ġstead ily +Ġinsan lar +Ġi han +í ij +Ġhel per +ĠSen in +åģ ľ +ов ание +ĠER IC +b la +ĠAcad emic +Ġhuman ities +bl ack +ump y +ort ex +Ġìł Īë +ĠØ¥ ÙĨ +Ġdiscl ose +ĠEl ijah +Ġλ ÎŃ +ĠQu er +ب ÙĦ +ãĤ ¡ +T ell +ar le +Ñĸ ÑĢ +Ġaug mented +Ġë¹Ħ ìĬ· +Ġand roid +ठ¤ +ar ma +Ġs zer +ge ord +Ġge ek +Ġye ux +Ġp ong +ĠãģĿ ãģĨ +Ġtort ured +ĠB ath +z ig +ason able +Ġn ets +Ġbar u +ĠFl at +ĠV ater +ĠTer ror +ĠA vo +Ġceremon ies +ro e +Ùģ س +O ps +Ġhy vin +Ġap resent +ol or +ĠигÑĢ Ñĭ +ort on +Ġê·¸ëŀ ¬ +Ġlook in +ĠT Y +ĠM int +Ad d +Ġm ite +ĠSm oke +Ġnot a +Ġm oss +ĠAb end +Ġì» ¨ +Ġexagger ated +f ires +Ġred ist +ff iti +Ġopen ness +ê°IJ ìĿ´ +ende u +ен ной +W atch +Ġav atar +ĠP ey +ur un +Ġsen za +Ġì§Ģ ìĹŃ +ĠNat omiast +Ġemer gence +ray s +Ġcraft ed +g ary +ãģł ãģij +ü ng +- " +Ġhack ed +Ġstr ay +en cie +em o +Ġcom en +ĠK ız +ĠJ asmine +ĠH indi +man as +Ġinfin itely +em on +ìĿ¸ëį° ìļĶ +j ak +Ġro aring +éri que +s weise +ĠRo lex +åł± å°İ +ĠStu art +bn b +Ġdiagn ose +Ġcoher ent +ĠM J +æºĸ åĤĻ +Ġp ike +l av +Ġorchest ral +а ÑģÑĤи +Ġterm inar +Ġgather ings +Ġcompl iant +Ġupgrad ing +Ġregul ator +Ġlan ç +éĢ £ +Ġmerch ants +ta wa +Ġmonit ored +Ġrend re +ä¸ ¤ +Ġunter wegs +ang uard +g ard +ĠBel ow +du ino +ĠЦ е +Ġimped ance +ìľ ¡ +ä» ½ +Ġakt uell +ĠV atic +åŃ © +Ġste wards +Ġbright est +Ġk enn +Ġk au +ĠMat rix +ĠB ark +ĠðŁ ij +Ġt aper +Ġcas ino +ר ×Ķ +ys ical +Ġbuild ers +ĠczÅĤ owie +ĠNep al +Ġ! " +Ġterm e +Ġin nych +Ġmath s +Ġdraft ed +ĠB alk +Ġhesit ant +Ġvolt ar +Ġrev ive +ĠÑĦилÑĮ ма +Ġassass in +ĠS olutions +Ġdu el +Ġbear ings +à¸Ħ ะ +Ġrook ie +ik at +Ġbisc uits +Ġc ords +Ñĥв аÑĤи +AR IN +Ġprogress ing +ĠG ir +Ġpenet rate +ĠSt orage +e ight +ĠÑĤ ÑĢÑĥ +Ġdon ÃŃt +Ġsiz in +Ġout dated +ĠнаÑĪ и +Ġaff ir +Ġspo ons +Ġon i +Ġfl ank +ĠG ol +h ã +Ġp éri +Ġhonor able +ĠBreat he +sc enes +Ġob viamente +ик Ñģ +Ġש ×ŀ× +Ġsmooth ie +ŀ Īë +Ġd ime +ĠíĸĪ ìĸ´ìļĶ +Ġapp el +ĠCath olics +Ġsing les +Ġlat en +Ġç ünkü +ĠV ader +æı Ľ +Ġvard ı +ĠIst anbul +gr é +ĠEl sa +ë l +Ġinve ce +Ġcr ane +Ġo be +ĠSh ark +Ġsm ack +Ġrest oring +. \ +Ġë¹ łë +Ġf aded +um bers +S inging +Ġdep ressing +th est +ĠW ahr +Ġmult itude +ÑĢавÑģÑĤв ÑĥйÑĤе +rij k +ek a +Ġcomplet es +ĠWell s +Ġro y +ĠPr ay +ĠKal au +iz in +iaÅĤ em +Ġlo com +ĠNash ville +ĠPent agon +ë ¯¸ +ĠNE W +Äħ Äĩ +ÃŃ ss +Ġmarry ing +Ġfe ud +íĻ ķ +æĢ ¥ +) ! +ĠOper ations +Ñĥ ÑĶ +Ġmo je +Ġinstruct ed +ĠëĪĦ 구 +Ġ×Ķ× Ĵ +ĠпомоÑī ÑĮÑİ +Ġsab ia +ìķĺ ìĸ´ìļĶ +pl ane +p ri +Ġпол ноÑģÑĤÑĮÑİ +ĠK itty +Ġpróp rio +ed ere +Ġinteres ante +Ġд е +Ġcond ensed +Ġav ent +T OR +Ġgre asy +AR K +ort a +A J +Ġdis reg +Ġcorrect ions +Ġst ero +Ġinfluen za +Ġdess es +Ġball ots +Ġme get +Ġma fia +Ġb öl +n ost +ĠÑģÑĤ аÑĤÑĮ +Ġrespond er +Ġhint en +g rav +à¸Ń ะ +yn chron +Ġvi ens +Ġsam o +Ġd t +pan nt +ĠÅĽwi at +Ġзап иÑģ +Ġmer ged +Ġke p +Ġmis leading +Ġdig amos +Ġam mon +è¾ Ľ +ch et +Ġê°Ģ ìł¸ +Ġun i +ĠëIJĺ ëĬĶëį° +Ġнап ÑĢав +ĠкоÑĤоÑĢ ого +Ġanim ate +×ķ× IJ× +еÑĢ в +Ġmin ced +Ġka um +ãģĤ ãģģ +ÏĢ ε +л ег +exist ing +Ġplata form +ĠK RIS +ìĽ ł +ĠFamil ien +ĠLib ya +Ġbiod iversity +Ġidi ots +ird i +Ġszy b +ĠRoll ing +ü cht +ĠÑĥд ив +Ñģ Ñĥд +Ġreal izar +Ġcan ned +ĠÑĢ ан +Ġmet abolic +ĠBe ef +Ġkil ka +лÑİ Ñģ +Ġreg istry +моÑĤÑĢ иÑĤе +Ġviel ä +Ġod c +Ġcondem ned +æ© ĭ +f al +ĠD il +wo ÅĽci +A w +Ġstatist ically +Ġso gen +ĠB ETH +Ġsh aving +å¹ ¸ +oc al +ĠFun ny +Ġpeace fully +Ġaddict ive +ĠIns ert +la uf +Ġexperien cia +é¦ĸ åħĪ +иÑĤ елÑı +ÃŃ gen +ág ina +Ġabdom en +íķľ ëĭ¤ +ic us +im ana +ì į¨ +arch ing +Ġkonk ret +ìķ ĺë +ек а +ou fl +ive l +Ġn ude +èt res +Ġm onsieur +Ġcl ash +Ġtherap ists +Ġcub ed +Ġretrou ver +Ġwave form +Ġpot em +ĠForm er +is ión +åº ľ +Ġ×IJ× Ŀ +und os +ĠMein ung +ص ÙĦ +ĠJ ude +Ġn Ã¥r +ĠLeon ardo +ĠCr isto +ĠG OT +ÑģÑĤÑĢÑĥ к +L AN +Ġg Ã¥ng +Ġdé b +ĠFrankf urt +Ġcra ppy +Ġli l +ann ée +ĠмеÑģÑĤ е +RE T +ĠN er +ĠCO STA +Ġjed em +Ġcurt ains +Ġiter ations +Ġun av +Ġpla que +or um +ĠÎ ¶ +Ġnúmer os +Ġdes ap +² ½ +Ġcomp iled +Ġref le +Ġrank ings +Ġrep aired +ĠÐĿап ÑĢ +Ġdownload s +Ġarm our +Ġ×Ļ ×ķתר +Ġlonge vity +ĠTON ER +ĠкомменÑĤ аÑĢ +Ġcz ego +Ġnot ify +Ġairport s +Ġend uring +let te +Ġapp arat +Ġhab il +á»ĩ c +n ad +IC O +ĠBra h +Ġseg ún +Ġgovern ors +k aha +ĠSchl uss +Ġodpow ied +ir ting +Ġrem pl +ĠAb original +ident ally +Ġenhan cing +lic ting +ĠHawai ian +Ġstri ving +ĠN iet +Ġzn aczy +Ġobed ience +ĠnÃ¥ got +Ġexp ired +Ġ19 18 +pres ented +Ġpr owad +ĠTer r +ĠPrinc eton +Ġmor gen +Ġattract ing +ĠS igma +ign er +ĠRe chts +ĠP eki +Ġmet hy +Ġha mm +Ġdire ito +Ġdeleg ation +ив аÑİÑĤ +Ġg in +You ng +Ġdepend encies +ĠBrad ley +bud s +Ġf is +Ġpyt anie +Ġinterconnect ed +Ġemba ixo +ĠS as +Ġr uh +ĠS icht +S ur +Ġsuper b +ĠSabb ath +ĠD anger +k ol +Ġh ou +s upp +ĠN acional +Ġsuccess ion +Ġv á +ĠMaÃŁ nahmen +ĠJess ie +ĠId aho +fore st +ħ ĺ +Ġ×ŀ× ĵ +ĠØ£ ÙĬ +Ġsweet heart +Ġneat ly +ĠEv angel +ê³ ¡ +ĠSu ite +úblic a +ĠÑĥ ли +ĠAnn ouncer +l igh +Ġsens ations +Ġshel ters +Ġh art +Ġsqueez ing +ĠR ivers +ĠCook ing +ì± ħ +person al +Ġman os +ÑijÑĤ ÑģÑı +w ij +Ġgo gg +ĠMill i +ĠF P +ün st +ĠL S +Ġspray ing +Ġf aux +Ġaut ograph +olog ic +Ġtor ment +Ġencry pted +á» ħ +Ġest re +ç¹ ¼ +à ± +Ġst umbled +Ġa ider +Ġsab en +x ter +ĠC ities +ĠTür k +ëĭ ¥ +ch ine +Ġto pping +Ġpoison ed +ĠRoman ia +×ĵ ×Ļ +Ģë ¡ľ +ĠпоÑĢ Ñıд +Ġchir ping +ĠìĻ Ħë +×ij× ¢ +Ġcu anto +Ġdon ating +ĠReg ent +ĠBer uf +Ġdistract ing +Ġstam ina +ĠDar ren +Ġì¶ ķ +l ists +d al +ch uss +Ġeconom ist +ãģĪ ãĥ¼ +org t +Ġist iyorum +è¿ Ľ +ĠSur prise +ĠHa o +Ġìµľ ê³ł +ĠG W +ĠIn ner +Ġqu ieren +Ġmind ed +Ġsupercom puter +Ġdiagram s +íĬ ľë +ê²ł ìĸ´ +ĠобÑĬ ÑıÑģ +Ġestab an +Ġdestro ys +ĠBre aking +Ġkar Ä±ÅŁ +Ġrebuild ing +ľë ĮĢ +ли во +ĠSau ce +ĠF usion +×ķ× ŀ× +ĠQu inn +Ġga uche +ĠÙĪ Ø£ +Ġ È +ç ĵľ +Ġtechn o +Ġdisp atch +ĠaÅŁ k +Ġein zel +ĠG mail +ç ŀ +Ġê°ľ ìĿ¸ +ĠÑģем ÑĮ +Ġjour neys +Ġi ht +Ġfib re +Ġdram as +ouch ed +Ġren ame +Ġоп еÑĢ +Ġpo o +ĠD ru +ĠиÑĤ ог +Ġz ast +Ġco z +Ġz ucch +Ġobt aining +Ġcomm ute +Ġsub mer +ĠV ish +ĠR abb +og g +Ġh ut +íĸĪ ìĸ´ +æ¯Ķ å¦Ĥ +ere mi +Ġμ α +Ġdisk ut +Ġб Ñĥк +Ġimp aired +d epend +ĠÙĪ ا +ĠÑĢ Ñĥк +Ġб аÑĢ +Ġoxid ation +Ġsitu ação +ÉĻ n +u ção +Ġsag te +ĠS ER +ĠC ake +Ġtur meric +ĠK ak +b ung +ĠK á¹Ľá¹£á¹ĩa +Ġpoison ing +Ġsl ipping +ĠS ays +å°± åı¯ä»¥ +ò ng +çŁ ³ + « +ĠClaud ia +ĠChar acter +ни ÑĨ +co at +Ġprogress ed +ĠFer gus +Ġìĺ¤ ëĬ +Ġo at +ord able +ĠLe y +ĠHera us +Ġresult ados +ĠKay la +Ġr iff +Ġcheg ou +Ġx i +Ġsp acious +Ġrecogn ised +Ġe ch +ĠT ie +Ġlaunch er +J im +Ġsupp ression +ĠImp ossible +Ġguit ars +ĠFour ier +иÑĩеÑģ кий +ĠTh erap +ĠK af +cent ered +ĠÑģо оÑĤвеÑĤ +Ġk lim +Ġcarbohyd rates +ign ant +ĠAst ron +Ġem ple +Ġdr astic +ĠмиÑĢ е +в ин +u w +Ġpret tier +Ġdon uts +ĠAth ena +Ġdiss ert +Ġpl ante +Ġur anium +ìĿ Įë +ar é +Ġrze cz +Ġdisplay ing +æĪ ² +Ġsar c +r ão +Ġtamp oco +Ġphilosoph ers +ĠRe cht +æĵ ļ +Ġcoment arios +y se +Ġìľ ¤ +Ġm ise +ĠG in +Ġн ом +ĠFR OM +l iner +at if +Ġspo ÅĤec +x a +ĠÑĤ ÑĢÑĥд +Ġw ag +기 ìĹIJ +ĠM G +Ġoff spring +ĠUnder standing +åıª æĺ¯ +OR A +Ġwh irring +Ġsur rend +Ġpok er +Ġmon uments +ĠâĻ © +Ġorgan ised +ĠSo zial +ĠF actory +Ñħ а +Ġrese mble +з д +Ġexplos ions +Ġpay roll +Ġom n +ĠJ orge +ι Ïĥ +Ġfract ure +Ġpersec ution +Ġdem ais +E CH +, ) +Ġcri ar +ĠJ OSH +Ġdem ographics +Ġ16 00 +Ġcur rencies +ĠT ips +Ġ éĢĻåĢĭ +ĠRe fer +ĠDan cing +Ġincons istent +Ġde h +Ġimm ens +Ġme ist +Ġimpat ient +Ġbehav es +æĿ ¾ +ĠëĤ´ì ļ© +Ġback story +Ġagree ing +ĠÅ ģ +ih in +Ġtemper atura +ĠBack ground +Ġnut zen +Ġëħ ¹ +ĠM änner +Ġcollabor ations +ĠK os +éģİ åİ» +Ġnight mares +ë ĵ± +ĠQueens land +Ġassoci ates +ĠK ok +Ġfact orial +ĠHy ung +Ġê·¸ ëĭ¤ìĿĮ +Ġfil ho +Ġel ét +Ġíĸī ë³µ +° ± +Ġgef unden +Ġsemic ondu +Ġcounsel ors +ĠU pper +ĠA ub +ick ers +V er +Ġnorth west +ĠMainten ant +ĠL akes +аÑı в +int é +ì° ½ +Ġг аз +Ġgi orn +Ġdigit ally +ĠCirc uit +ì¼ Ģ +ãĤĬ ãģ¾ãģĹãģŁ +Ġcheer ful +ĠPet erson +ĠDan ish +ativ os +Ġli ken +Ġhar bor +али ÑģÑĤ +x e +Ġcur ls +ĠR hod +E nd +ĠE T +Ġacqu aint +ĠKel vin +Ġtr if +ĠA way +ìŀIJ ëĬĶ +v s +Ġp ágina +Ġin let +ĠSant os +Ġìļ° ìĻĢ +Ġyap ıyorsun +th eme +Ġsou ff +Ġinject ed +Ġpó źniej +iver so +amp ed +Ġda her +Ġd agger +ĠлÑİб им +Ġt ummy +Ġenlight ened +c ents +ĠD ah +Ġcu est +ä¾Ĩ 說 +IL Y +Ġ×ij ר +Ġbang ing +ĠEm il +ĠC ler +ĠB order +иж Ñĥ +Ġpresent ers +ĠST UD +co ins +ĠíĻ į +Ġper ks +Ġpar ap +Ġcertain es +ĠL ore +ö st +ĠMAR TIN +Ġb ios +Ġwhere by +ver ts +ĠMir anda +Ġst ip +æ¾ ¤ +and ez +׼ ׾ +uj in +Ġê ¾ +Ġaller gies +pl ate +Ġyap ıl +Ġundert ake +ĠëĤĺ ê°Ģ +P art +Ġkız ım +h guru +ãģĤ ãģ¨ +ĠJohn s +Ġeyel ashes +Ġdra ined +Ġst Ã¥r +ãģĤãĤĬ ãģ¾ãģĻ +ĠJ ade +Ġcal end +fil m +Ġmes a +Ġlud zie +Ġattract s +Ġju ices +Ġк ил +Ġnieu we +Ġmen cion +Ġign ition +Ġbl adder +anda ag +ĠExt ension +íĤ ¨ +fe ed +ĠÙĪ Ùĩ +Ġsp un +Ġt ät +оÑĢ оÑĤ +ty ard +ron ics +ĠH uge +Ñĥж д +st ring +Ġun just +Ġpra wn +Ġfrost ing +Ġdisappear ance +ios a +Ġcard i +ĠPri est +Ġcient ÃŃfic +åĵª 裡 +ĠÐĴ аÑģ +Ġë¶Ģ íĥģ +Ġth ieves +Ġphys ique +ĠE ugene +Ġбли з +Ġmon opoly +Ġbi ography +Ġho ÅŁ +Ġt ö +m ac +Ġshock s +ìĦ ¸ë +h it +Ġsn ug +Ġinc l +Ġded ic +Ġult ras +Ġизв еÑģÑĤ +Ġutil ization +ĠÑģовеÑĢÑĪ енно +Ġserv i +st ag +1 80 +Ġse wer +ĠCh oice +Ġdis charged +ĠJ D +ол еÑĤ +ĠкваÑĢ ÑĤи +Ġteles cop +ĠJe ÅĽli +ĠN ana +c ale +ĠÑĤ он +mm m +äºĨ åIJ§ +Ġge habt +ëĤ ł +æĬ ķ +à¸Ļ à¸Ļ +Ġet her +Ġz en +Ġresearch ed +ĠCzy li +å®Į åħ¨ +work ers +Ġê²½ ì°° +Ġsher iff +all o +Ġtip os +Ġprosec ution +Ġfrog s +Ġf alt +j d +ĠíĮ Ķ +Ġfilter ed +ĠO ft +Ġì į +Ġdis fr +ĠMust ang +Ġwo ah +ĠRE ALLY +Ġмог ли +Ġentr ada +Ġиг ÑĢа +Ġmix es +ĠавÑĤом об +Ð Ļ +Ġsh in +Ġparan ormal +Ġsome place +Ġdish on +eta an +Ġfu erte +Ù ¹ +Ġdo om +ìĪ ľ +Ġexist ential +Ġbu ld +ĠSD K +ĠпÑĢав да +Ġturn over +ĠìĹ¬ê¸° ìĹIJ +Ġठ¹ +Ġmodel ed +Ġbug ün +Ġexperiment ation +Ġmorning s +Ġmed o +Ste vie +Ġplay able +Ġairl ines +g ments +Ġê¸°ë ¶Ħ +ĠT omb +ĠMV P +AUDI ENCE +Ġcheck out +Ġpas st +Ġbe ispiel +ĠLink s +he avy +Ġquestion able +Ġìĵ °ë +Ġs ill +Ġmanip ulated +ĠL oren +Ġìľ ¼ +Ġver ge +á k +I ES +Ġsab ot +ĠCustom er +ale ży +Ġnom inee +ĠG ad +Ġnouve lles +ĠS PE +ist ling +Ġo val +обÑĢ аж +if ty +éĩ İ +Ġbez el +y et +Ġfre ight +ĠHan ım +r ÃŃa +Ġz oning +Ġind em +ĠB ü +Ġfemin ism +Ġvo ix +Ġof icial +Ġdi yorum +» IJ +Ġar ose +Ġpar ar +ìĿ¸ ì§Ģ +ĠMart ine +ĠL ect +Ġrest er +Ġdrown ing +u ya +c ida +ĠAri el +Ġ0 2 +Ġ×Ķ ×Ķ +ç´ ł +ĠW ert +Т Ñĭ +Ġwid ow +Ġparch ment +Ġcott age +ĠX L +ĠSl ack +ĠN ES +Ġro be +Ġg imm +Ġcam inho +ĠHar per +Ġcit rus +Ġfirefight ers +Ġdop amine +el ets +Ġdemocr at +ìł ľë¡ľ +Ġplay back +o j +ĠпÑĢ ок +ĠSull ivan +se mble +ĠW orth +ĠMust afa +า ร +Ġmet s +éĸ Ģ +л оÑģÑĮ +Ġinert ia +Ġuniform s +è¶ ³ +é rio +×ķר ×Ķ +é nt +Ġà® Ĵ +ĠÑģам ÑĭÑħ +Ġvou lais +ĠZ immer +ê² łë +Ġн оÑģ +en cias +Ġrel ación +Ġê± ¸ë +Ġfact ion +Ġg osp +пол ож +n ap +h ak +Ġproceed ings +ĠìĨ Ķ +ìķĦ ëĭĪ +ĠìŀIJ 기 +Ġwer d +Ġso f +Ġsch lim +Ġfl avored +Ġquad ratic +ĠBo ot +Ġpublic ity +ĠCar o +Ġ ?" +ни ÑĨа +man ia +ĠS UR +ĠB UR +l ance +ét ica +Ġzob aczy +Ġtri o +s ama +Ġta ÅŁ +Ġas ymm +ress er +Ġت ع +Ġп еÑģ +Ġbeginning s +lad ım +ĠбÑĭ ÑģÑĤÑĢ +Ġmo o +ĠGene va +Ġ åľ¨ +er us +bor ah +Ġref using +b ull +ĠWait ing +ĠInd ividual +Ġan onym +im ens +Ġmed idas +Ġfragr ant +Ġdirect ement +ĠìķĦ ë§Ī +ur ia +Ġsp herical +Ġab ge +ĠVictor ian +Ġspect acle +ĠRodrig uez +Ġoc up +ĠN är +mark s +ng ulo +ĠLu ci +Ġshout ed +Ġregul ators +ÄŁ ini +Ġdis ent +ĠÑĢÑĭ н +ëĤ ¨ +ĠìĤ ´ë +Ġprobl èmes +ĠF inger +asse mble +Ġpe ar +Ġdro ite +ĠEvery where +t am +оÑĤ ив +в ой +ordin ate +ĠL ak +Ġm Ỽi +ĠTele vision +Ġexpon entially +av as +Ġble v +ĠM T +ä¿ º +Con nell +ĠêµŃ 민 +ĠÑģво им +Ġach a +ĠD ynasty +J in +Ġto re +Ġfl or +Ġмног ие +æ²Ĵ äºĭ +ow an +b ah +Ġì£ Ħ +ĠC ela +Ġìµľ ê·¼ +Ġpermett re +Ġab ras +Ġverste hen +Ġesc ort +ĠThe m +är ke +por ter +Ġkah kaha +Ġhe ct +Ġda u +w ah +ol ve +ĠAg es +s chaft +ĠSt ell +ne lle +ĠEn suite +ĠÐĴÑģ ем +Ġcr éd +ĠP P +l ords +gr unting +Ġcontract ion +G ot +Ġacqu iring +Ġso pr +Ġpoison ous +R NA +Ġan ar +ĠH of +' ) +Ġremark ably +Ġintern acional +ü cke +in qu +Ġdu y +Ġbeast s +ĠL AN +Ġpreced ent +ĠRP M +åij ¨ +Ġsel on +Ġmort e +Ġcomeç ou +Ñı ла +Ġinterpre ting +ĠBur ke +ÑĤ ÑĢа +ĠìĿ´ë Ł¬ +Ġpess im +ĠN ok +íĮ Ŀ +F emale +Ġìĭ ¤í +Ļ Ģ +Ġstim ulation +Ġsl ick +Ġê°Ģ ëĬĶ +Ġк аз +ĠH BO +Ġpap ier +Ġkön nten +Ñĥб ли +ĠConst ant +SPEAK ING +Ġktó rÄħ +Ġcos metics +ĠT rend +Ġrob bery +Ġt itt +Ġgj ort +Ġdiet ary +ł Į +ĠKir by +ĠпÑĢимеÑĢ но +Ġqual ification +Ġìķ ī +Ġcabin ets +Ġhtt p +ĠEric a +ç¾ © +Ġdisadvant ages +Ġch attering +y z +fe it +Ġgu ild +ĠE TF +ĠDrag ons +ĠH ERE +vent h +ÙĦ اÙħ +Ġmarch é +D am +Ġphot on +Ġest able +M ag +Ġol har +Ġcou pling +ĠHil fe +ĠW izard +Ġм ало +hel p +ĠlÃŃ nea +Ġì « +Ġstand alone +Ġmor ale +Ġzwe ite +ãĤĪãĤį ãģĹãģı +ähr t +Ġd otted +Ġdri pping +ĠFl ag +éĿ Ĵ +ro cket +rate gy +ir im +Ġíķĺë ©´ìĦľ +Ġsogen an +ĠUn o +ĠSch utz +Ġest ilo +ĠS ubs +ĠDais y +ÐĿ еÑĤ +' ... +Ġplat inum +Ġb irl +ĠSo vi +Ġviol ate +Ñĥ еÑĤÑģÑı +r ill +Ġtra z +Ġsn ip +Ġcum pl +à¸Ń à¸ģ +Ġc uk +éħ Ĵ +ĠParl ament +Ġhyper t +Ġpul p +Ġtong ues +at to +Ġbus ca +ih n +ER O +ĠÙĬ ع +Ġvari as +ĠMar ian +Ġbound ed +Ġpitch ing +Ġdefic iency +ĠBless ed +ĠEx erc +uch s +ĠnhÆ° ng +æľ¬ å½ĵ +Ġrap ed +h ales +Ġmal a +p ic +Ġ40 1 +ÅĽ niej +ar ina +ëĵ¤ ìĿĦ +ott i +Ġдол го +Ġtrack er +ĠShel by +Ġvan ished +Ġbak ery +Kap ı +J esus +ĠK R +J O +ħ ¸ +Ġdisc s +ìĦ ¯ +ì§Ģ ë +×Ļ× ¦ +em ary +K endra +Ġy ük +ück t +Ġv az +Ġk up +akt u +ĠÑģп аÑģибо +Ġa ik +Ġnurs ery +Ġendanger ed +êm ement +emat ics +Ġrespond ers +ĠRepresent atives +Ġsculpt ures +ig keiten +Ġde pl +Ġinterpret ations +Ġdead lines +Ġ194 2 +Ã Ĺ +Ġsug ars +em u +l ively +Ġrecre ational +Ġdist ort +Ġunders core +Ġun quote +Ġsaf est +Ġsw ollen +Ġanalys es +Ġcommen cé +å¦ ¹ +and in +ĠÐ¥ оÑĢоÑĪо +Ġdi arr +ãģ¾ ãģģ +zi est +Ġtooth brush +éł» éģĵ +u ations +Ġc ade +Ġbackl ash +h ind +Ġris que +z ess +ĠìĿ´ìķ¼ 기 +Ġesper ar +Ġtransl ations +ion ed +gro ans +Ġп ÑĥÑĤ +Ġgen etically +éĢ ł +Ġhapp iest +Ġwer k +ato on +Ġmus i +Ġfun ção +Ġìŀħ ëĭĪëĭ¤ +ĠÑĢ ай +Ġbe vor +BL ANK +Ġrepent ance +P ut +Ġpotrze b +Ġsal a +Ġcamp a +W ER +Ġdec ÃŃa +Ġsécur ité +ĠAppreci ate +Ñĩ и +ĠR andom +ë³ Ħ +k ah +Ġmö j +Ġsä ger +Ġ×Ļ ׼×ķ׾ +Ġ19 0 +xt ures +E u +Ġg ä +Ġ×ij× ª +ĠC roat +ap o +P LE +Ġpersist ence +åĬ © +Ġbl ends +Ġtre ffen +ĠSanti ago +yd ia +al do +ĠTensor Flow +ĠD ual +ãĥ ľ +Ġch iff +ìĹ ´ +Ġcontract ed +Ġseg reg +ĠFair y +Ġwis ely +Ġvulner abilities +Ġhand held +Ġgad gets +Ġbo ÅŁ +ĠPop ular +Ġcurv ature +ë ¬¸ +ĠMAR Y +ìĿ´ì Ĭ +Ġform ulation +Ġcel ery +Ġblur ry +ĠT S +ale z +Ġw s +Ġprogram m +ĠSt ack +ĠJ IM +ов али +ı ll +Ġp ère +ĠKan ye +ĠDel aware +Ġãģ ł +Ġda unting +Ġб еÑģ +ĠSt upid +b ig +ffic ial +Ġprecip itation +Ġpl ung +ụ c +bur se +Ġdar le +Ġcri pp +Ġpione er +Ġdis put +Ġse an +ãģĵ ãĤĵãģª +Ġresist or +Ġalle in +ipp les +are l +Ġend ors +z ust +ĠÑĢеб ÑıÑĤа +ed ed +Ġì¹´ë ©Ķë +Ġlle va +Ġken nt +Ġб ал +ĠDoc ument +ĠKn ights +Ġbuck le +Ġìī ¬ +Ġal k +ĠEvery day +atter s +Ġtoil ets +Ġj ugar +ĠìŀĪ ì§Ģ +Ġgen auso +ĠLandes regierung +ãģ£ãģ ± +ij e +Ġtrail ers +ĠT igers +Ġg itti +Ġforg iving +Ġconcur rent +ĠV u +ĠíĬ¹ íŀĪ +ĠBR OWN +ound ed +" ; +Ġtre mb +Ġt iet +ĠÑĢеж им +Ġnuts hell +ел иÑĩ +Ġlos ers +ric ting +Ġrede em +def ined +N ice +Ġbroad band +K O +Ġte asing +Ġpart isan +ı ma +Ġìŀ¬ë ¯¸ +ĠJour ney +Ġslop es +un ing +gr unts +Ġt äll +Ġuncover ed +Ġmy ÅĽlÄĻ +ĠEst her +äº İ +ĠHealth y +Ġë° ij +r ée +Ġpolar ization +Ġfl av +Ġcambi ar +Ġy r +ĠR anch +Ġspl its +Ġtrou vé +åľĭ 家 +Ġrecord er +Ġdé part +ÙĪ ب +ĠK ry +Ġinteress ant +Ġeder im +ÅĽ wiad +il ateral +w right +Ġpour ra +ê ter +Ġcam el +á ŀ +Ġrapid ement +Ġme j +Ġstiff ness +AD AS +Ġdiff ers +Ġal ot +ĠS ig +ÑıÑĤ елÑĮ +Ġabstract ion +åľ ĺ +Ġke iner +gr upp +ĠSher lock +íĺ Ķ +Ġc ite +Ġover flow +Ġt ại +ú car +b ula +Ġconjun to +ĠC I +Ġmoder ator +Ġindirect ly +Ġalle ine +â Ĥ +ÑĪ иб +Ġб аб +Ġdan ach +Ġ19 39 +Ġpr omet +Ġdest inations +ĠIll ust +ικ ÏĮ +Ġsab es +Ġhe h +ĠGesetz ent +ĠM iz +ен ко +ĠM ys +Ð ¬ +ĠJuda ism +Ġmust ache +Ġst immt +ĠG aza +Ġvol te +Ġnu o +Ġm ón +ĠCom put +ู à¹Ī +ĠR adi +Ġexception ally +Ġassum es +éĸĭ å¿ĥ +ãģĪ ãģ° +in form +Ġshr ine +æĵ Ĭ +Ġimplic ation +ĠF itz +æ²Ĵ éĹľä¿Ĥ +! . +Ġl t +Ġall oy +Ġeth ic +Ġmonaster y +ìĭľ ì£ł +ica ção +Ġcoordin ating +ĠM oto +Ġover look +Ġcho is +Ġantibiot ic +ĠMin ne +ĠB J +ĠA pa +or ian +Ġsp illed +J am +Ġhus bands +Ġcre ations +Ġa ñ +üs sel +ĠìĿ´ì ļ© +Ġanaly se +r ose +Ġpunch ed +Ġpres que +Ġastron omy +Ġschwier ig +ĠEb ola +Ġc is +Ġac et +ĠF X +end re +ĠìĿĮ ìķħ +Ġweb page +Ġfre aked +Ġlat te +Ġì¿ ł +Ġë¨ ¸ë +N ever +G ra +íĻĶë ¥¼ +ey ed +Ġë°ľë Ŀ¼ +Ġesper a +Ġapare ce +ra ção +Ġdisrupt ive +ĠJo int +ur ous +re as +Ġquer ÃŃa +Ġdistrib utions +Ġexpon ent +ì¹ ĺ를 +Ġd l +z hou +ĠHe aring +å·® ä¸įå¤ļ +ĠC raw +Ġflo ats +oun ced +L ab +W orld +Ġbur dens +Ġauthor itarian +ĠB olt +Ġод нÑĥ +Ġpige on +Ġdistract ions +ĠHeraus forder +Ġz est +es c +Ġsh akes +at as +ĠÙħ Ø´ +hol es +Ġthink ers +al ta +Ġar che +ĠS uk +an ha +Ġtempt ing +Ġyou tuber +Ġv ì +Ġdz iaÅĤa +ĠVatic an +P ark +Ġsup ers +ĠNik ki +ëĬ IJë +or ang +ram ient +é ¬¼ +Ġê°ĸ ê³ł +Ġdessert s +Ġav ere +ĠGreg ory +Ġëĵ¤ìĸ´ì ĺ +Ġcost ing +ĠClin ic +Ġreb els +ĠM ob +Ġbun lar +ĠYour s +ert ime +Ġret ali +m ara +at us +all es +Ġд ÑĢ +Ġд иÑģ +Ġdiscount s +ĠGU Y +Ġкак ое +ĠExper iment +re ment +ĠXi ang +Ġb ate +W E +Ġspecial ize +Ġde ity +ĠL oki +m ag +ĠN it +W est +Ġmater nal +Ġqu is +åŁº æľ¬ +bro ken +Ġlas ers +Ġha kk +ĠAng els +Ġmaster y +ant is +T iffany +ee e +ç ij +ore m +Ġin acc +Ġjurisd ictions +ĠKard ash +æľ º +I l +ĠS inn +åĭķ çĶ» +Ġathlet ics +c ÄĻ +Ġlo osely +Ġdiet a +A g +Ġ? ? +ĠëĮĢ íijľ +Ġsuper v +Ġnut rit +Ġdr ifting +ĠìĦłìĥĿ ëĭĺ +Ġпон Ñıл +ĠVict ory +ÙĦ Ø© +×ķ׳ ×Ķ +Ġп иÑĪ +Ġsh aved +Ġmes ure +ond en +Ùĥ ر +Ġex ile +ĠDes de +ĠP interest +Ġattach ments +Ġh ombres +Ġfin es +ĠìĦ¸ ìĥģ +Ġsleep s +ĠT aco +ĠI RA +ri os +Ġo ll +et es +Ġun ut +fashion ed +Ġtre ball +ĠNear ly +ĠÑĢе алÑĮно +Ġch il +éĢ ± +ÄŁ a +ĠM EL +ros cop +ĠC G +Ġv enge +Ġdishwas her +al gic +Ġmod ifier +Ġemb assy +t imer +em ics +Ġintric ate +Ġev et +ĠëĮĢë °ķ +Ġis ot +Ġна ÑĥÑĩ +ĠQu iz +res o +δ Ïİ +Ġye lled +Ġfed er +ELL ER +Ġexceed ed +on as +ic ano +Ġжив оÑĤ +ĠMa o +ĠKaz uto +Ġ ãħĭãħĭãħĭãħĭ +Ġfront line +ĠHung arian +Ġüber all +aw at +Ġgri ps +i ções +arn ya +ĠÍ ¡ +Ġse id +Ġan ak +Ġacab ou +íķ ij +Ġnot orious +ĠGod zilla +Ġover coming +ĠP end +Ġol abilir +ül me +Ġer halten +ãĤī ãģĦ +ê· ¹ +ĠM eter +Ġsta an +O l +Ġch ats +ĠBu enos +ÃŃ ve +alu able +Ġstrateg ically +Ġcompr ised +ĠпеÑĢÑģон аж +Ġw ann +ĠC en +н иÑĤе +Ł ģ +ĠÑĤоб ой +i ad +ĠkardeÅŁ im +ĠCongress man +ream ing +h omme +Ġcommun aut +Ġalcohol ic +Ġpick led +Ġac ord +p osition +eg ól +Ġtrou bling +ĠMarch eg +Ġzum indest +Ġseam lessly +Ġol un +ĠTV s +ĠпÑĢакÑĤи ÑĩеÑģки +Ġback end +ãģĵãĤĵ ãģ«ãģ¡ãģ¯ +id able +Ġgad get +Ġfa ço +ĠMarcheg iani +Ġë° ¤ +Ġaccident al +ĠL P +Ġeld est +ĠAd miral +Ġn Äĥm +le ver +Ġpast el +Ġfond o +Con nie +Ġter cer +Ġp act +ĠMont e +Ġme ats +ĠS MS +ĠAustral ians +ç ¼ +Rh ett +Ġexact ement +Ġë¹ ¼ +ĠM OD +ç ¡ +ĠR apt +ĠNo ch +Ġab ort +ĠNav al +ĠFu ji +IN TER +Ġнов Ñĭй +Ġmiej sce +ĠIC U +ĠGrad uate +ĠGl en +ard i +ĠÈ ĺ +Ġsold er +Ġprofess ions +Ġorth og +om n +int rodu +ĠDen ise +ìŀIJë ¥¼ +Ġcorrespond ence +AM A +Ġinf lict +Ġf and +ĠG ü +ĠÑĩ еÑĤ +Ġtr aced +Ġpat ents +Ġamb ush +Ġlot ta +ff er +ĠW agner +Ġimp erson +Ġextr êmement +ÙĤ ت +cond uct +A tt +ĠM ueller +ĠAl icia +Ġcy c +Ġha cker +Ġt ys +Ġha il +Ġз аÑıв +Ġpas so +Ġì¶ Ķê°Ģ +ĠÎ Ī +Ġpack aged +ĠC ynthia +he et +ä¸Ń åĽ½ +ĠNiss an +ĠQuest o +é ¨ +d id +Ġμ ια +ĠEll is +ĠAnal ysis +ce mos +Ġas eg +ĠMy ster +ĠCa o +Ġtu v +ĠIndust ry +주 ê³ł +ot al +Ġpeque ño +br as +Ġcompreh end +ĠSim pson +ÑģÑĤв ие +ocr acy +иÑĩеÑģ ки +ĠM ush +ĠLaur ie +Ġtriang ular +ĠPres ents +ĠK unden +ç´ ¹ +æŃ ¦ +ĠIs s +ĠDe ck +á»ĥ n +ĠDark ness +Ġinflamm atory +eremi ah +Ġwar med +vey ard +ĠMem ory +et ty +Ġtax payers +ภĵ +Ø ¡ +Ġpract ise +ëĭ ¬ë +Ġdr illed +m Ã¼ÅŁ +log o +ĠF ach +¤ë ¡ľ +Ġübrig ens +Ġkon nten +Ġnormal mente +Ġarg ues +iling ual +°ë ¥¼ +eg al +Ġtrava ill +ov y +а ÑĤо +Ġr uth +ĠL ights +Ġconsist ed +×ijר ×Ļ×Ŀ +Ġstere otype +Ġpay er +ĠRe e +ĠAir bnb +Ġdr owned +ĠZ oe +Ġcan opy +Ġbar r +Ġн оÑĩ +Ġpag an +Ġj ars +Ġr ê +er ver +æĪ ¿ +ie ben +Ġes pect +ĠF i +Ġunw illing +Ġtechn ician +ặ t +m ember +ĠCan al +س Ùħ +Ġlie ber +Ġin ference +Ġhon oring +åij µ +ĠCamp aign +Ġline age +ĠSt ress +Ġvict ories +Ġde ja +× £ +ê tes +bl ick +Ġмен ее +oth s +ĠCou ple +J ason +ĠNic olas +ек Ñģ +l ib +Ġher ramient +Ġ×IJ ×ķ×ŀר +Ġвид им +mill imeter +Ġsil houette +Ġdrive way +Ġcher ish +ãħł ãħł +Ġrans om +Ġinter disciplinary +ĠPort al +Ġtra g +th ood +Ġted ious +Ġgloss y +Ġpré par +ĠC ay +ĠT ook +ĠBott om +Ġz ig +å « +åį ± +re presented +à¹Ģล ย +Ġdesar rollo +ìĦ ľë +Ġvis cos +Ġmill igram +ĠG und +Ġfer ment +d rum +Ġdraw ers +La ugh +Ġpel os +Ġpave ment +Ġmem oir +av ait +Ġ20 50 +¤ë ¥¼ +Ġraz ón +Ġflour ish +Ġst ern +ä¸ Ī +ĠCh ung +Ġser pent +ĠGentle men +羣çļĦ å¾Ī +k ook +Ġl ut +import e +p arent +Ġw sz +Ġsc ree +ĠMitar beiter +å· ´ +m ut +Ġìĸĺ 기를 +Ġsem ble +ĠO W +Ġinvestig ator +ĠCher yl +ĠG erald +Ġpr ere +Ġcomp ares +ny t +Ġdiferen ça +? - +Ġqu á +ר ×Ļ +S en +Ġhe ps +Ġgrat uit +Ġcons ort +ĠST OP +ĠProtest ant +Ġelectro de +â Ĺ +Ġsecure ly +иÑĩеÑģ кой +Ġt ää +Ġreg isters +ĠHeaven ly +og ly +iss ä +ĠPhys ics +ĠMer kel +Ġré v +éĻ ¢ +Ġer ased +ĠSac ramento +Ġcoff in +Ġex acer +Ġl anz +Ġpo ets +ul if +Ġì¹ ĺë +ĠN erd +ĠN CT +ĠH our +neh mer +ŀ ĺëıĦ +ĠPrin ci +S w +m ies +ar med +ĠBeat les +Ġpropag ation +Ġexch anged +Ġcum ulative +Ġì§ij ìĹIJ +Ġdefe ating +æĬ ± +b els +Ġw es +ĠOdys sey +ä½ł æĥ³ +av ior +ĠìľĦ ìĹIJ +Ġbr it +Ġhij o +D AY +ĠاÙĦت ÙĬ +ĠС еÑĢг +Ñĥ ка +eds iÄĻ +Ġimp os +Ġell as +Ġfire arms +ĠN R +Ġ×ij× IJ +ĠÐŁ ока +aw i +ĠìĦ± ê³µ +Ġpup ils +ĠT ack +Ġfr ase +ĠSh ip +Ġst ad +ä¸ ľ +ĠGreat er +un un +imm ung +gr own +ĠN XT +ĠAmeric as +f ox +Ġmant en +éłIJ åĤĻ +ĠÑģ ок +Ġr ikt +lect ric +de ep +Ġзна еÑĪÑĮ +Ġben ut +ĠInf rast +ĠEm ir +ĠоÑĤп ÑĢав +ĠKim chi +ĠFinn ish +´ìł ģ +ina ire +Ġo ike +æ¸ħ æ¥ļ +Ġhost age +ĠBut ton +ÙĤ ÙĬ +ek ing +ĠKaz akh +Ġcomfort ing +Ġso g +Ġgreet ed +g uitar +p ayer +Ġrel ational +Ġconstru ir +çī¹ åĪ¥ +op ian +ĠVol ume +iet h +ÑģÑĤв ом +ur rection +li ÅĽmy +Ġhem isphere +ĠBe an +IG N +Ġköt ü +ĠFall out +Ġbr ace +ç¹¼ çºĮ +ÏĢ ά +ĠH AS +Ġg é +Ġcharacter ize +ặ c +ĠMil ky +Ġtum ors +Ġn uit +ĠG az +ĠìŀĪ ëĭ¤ëĬĶ +Ġг аÑĢ +ess ment +ĠA be +Ġë½ ij +ĠEins atz +J IN +j ä +C ry +ĠProm ised +ĠÑģеÑĢ д +ok us +Ġscal able +ĠпоÑģмоÑĤÑĢ еÑĤÑĮ +ück lich +Ġreal ism +Ġmay o +Ġjuven ile +Ġhead lights +Ġgör Ã¼ÅŁ +ĠRe form +Ġhal ves +cz ne +Ġbreak up +że j +Ġr ätt +D ay +ĠìĿ¼ë ³¸ +Ġmu erte +Ġtun es +ĠSm ile +rec ord +Ġrecher che +atisf ied +Ġpo zi +Ġcelebr ations +ise xual +ĠRO B +third s +ĠF ortune +ĠÑĤ ой +Ġbrand ed +lo o +Ġd ud +Ġrandom ized +Ġcomb in +ä¸Ģ äºĽ +ier an +c zenia +į ãĥ« +Ġcur ator +Ġar tery +ĠÑĥ ÑĪ +ĠÑĩ иÑĤ +Ġsubsid ies +Ġbloss om +ĠTw ilight +Ġhy vä +ĠPom pe +ĠC isco +ĠÐŁÑĢ о +Ġbir i +Ġg ern +Ġre built +Ġw cze +Ġbenefic i +Ġdrum mer +Ġsol ids +Ġdi yorsun +ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ ãģĦãģ¾ãģĹãģŁ +l ated +Ġmud dy +Ġh olog +Ġcl aps +ĠR ings +ĠO key +ĠBra ve +Ġvalu ation +Ġmig rant +Ġinter mitt +Ġeig ene +ili ary +ãĥ¼ ãĥĪ +mark t +k r +ĠR ib +á»Ļ i +Ġaccus ations +Ġa rab +w ash +ĠBard zo +Ġu gh +est ers +oph ren +Ġaliment os +ĠU z +Ö Ĥ +Ġ6 50 +ĠпÑĢи еÑħ +F I +Ġsamp ai +Ġparl é +hes ion +Ġs ır +Ġapparat us +Ġcor related +ĠPrincip al +Ġcor r +ĠOffic ial +иÑĩеÑģ кие +Ġtermin als +Sh ould +Ġvac un +Ġst ellt +Ġmo oi +etz ung +Ġк ÑĢа +Ġda i +Ġп ож +Te am +ĠP PE +ĠÐŀ Ñģ +ĠLe ah +ĠI vy +y st +Ġuh hh +Ġnight time +Ġtrend y +Ġsec urities +Ġcontin ents +Ġfirst hand +ĠVer on +ĠëĤ ® +Ġbrows ing +ĠC ada +t ro +Ġtr amp +re ib +Ġerst mal +irl er +Ġps ic +Ġget ir +ĠN P +Ġdzie ci +об ÑĢаз +Ġmagic ian +Ġscrut iny +Ġsl ab +ĠO T +ist y +ir ies +ore st +Ġtask ed +Ġmor ally +ìķ¼ ì§Ģ +ust ered +Ġfool s +Ġir respons +Ġein f +Ġvi á»ĩc +Ġsc or +Ġpill ows +ĠG egen +Ġtut te +Ġquarter ly +Ġdid nt +ĠG ym +ĠE ther +ĠØ « +лиÑĪ ком +Ġsign aling +ĠN ode +ĠDonc s +Ġy ah +ĠKan al +Ġf ading +et in +Ġinfluen cers +Ġmed als +Ġengine ered +Ġfer mented +ê²ł ì§Ģë§Į +ĠBeet hoven +×ŀ× © +inent al +ĠìķĮë ł¤ +üt fen +al nya +Ġo vere +Ġden kt +ак ÑĤеÑĢ +Ġâ ĺ +Ġneces it +Ġgener ators +gr ass +Ġпод Ñĥм +lie ÃŁen +B ar +ľë ıĻ +ĠдеÑĤ ей +Ġsuck ing +Ġsten cil +Ġprim o +ĠBreat h +st rom +Ġimmens ely +Ġapp reh +ìłķ ìĿ´ +P op +Ġj ong +ĠGi ul +ĠAD HD +Ġhö ren +Ġe lo +iv ent +Ġr us +Ġoutrage ous +Ġmaster ed +Ġì» ¤ +ÙĪ Ùģ +ip es +ĠRud y +Jac ob +Ġbull ish +Ġt apped +Ġfa ud +iz ophren +ĠÑģо Ñħ +ĠDar ling +Ġ196 3 +ĠPre vention +² Ķ +Ġabdom inal +st ones +Ġav aient +á»ķ i +m ake +Ġs are +ĠInst ant +к ам +Ġkeep er +Ġblank ets +ãģ§ ãģĹãĤĩãģĨ +Ġswe ats +ĠMinne apolis +åħ¨ éĥ¨ +Ġgen ommen +Ġfast en +ĠBrus sels +åij ¼ +Ġcaf eter +Ġabsor bing +Ġha go +ĠEl mo +Ġgust o +ĠY ap +M úsica +Ġt ert +Ġband a +Ġm ily +Ġthere after +ĠStock holm +ĠC arson +Ġcalib ration +ava ÅŁ +ans a +ik ke +Ġfore see +Ġqual che +Ġdest e +æ ¤ +ün üz +Ġfor ge +D is +est en +Ġδ ια +Ġenca ps +ĠGes pr +Ġcher cher +ick ets +ÑĤоÑĢ Ñĭ +C r +ĠТак же +Ġrabb its +ĠD ot +he iten +Ġcaus al +ĠF oster +ajÄħ c +Ġbere it +Ġayud ar +é« Ļ +ãģ ³ +s ong +com b +Ġfr inge +Ġcyber security +Ġëľ ¨ +Ġk ier +Ġbesch äft +Ġкон ÑĨе +Ġfacil it +ĠNam en +Ġbil ateral +t x +ĠW issenschaft +Ġnu ances +Ġr ipping +Ġf y +ĠSicher heit +ĠGh ana +ol on +Ġto pped +ĠMoroc co +Ġrad ial +ĠL EE +ĠAndre as +ed d +ĠìĹ ´ë +ĠAirl ines +ãģĵ ãĤį +Ġval ores +ê· ľ +H y +Ġзад аÑĩ +ĠKend all +ĠÑħ аÑĢ +ĠV amp +Ġpy thon +Ġmanage able +ĠG ente +o ise +ici ary +Ġimp oss +ĠBun ny +iest a +And rew +Ġser t +ĠC ec +zz arella +Ġautom obile +ĠT iere +all ows +åĨ Ĩ +Ġë° Ģ +ĠSc orp +ĠJ elly +ag ara +ĠSt retch +Ġrede f +Ġexacer b +ĠS HA +é f +ors a +Ġflaw ed +ĠNo el +?! ? +Ġpro cent +Ġmen stru +ĠпÑĢо Ñĩ +Ġinf ants +ðŁİ µ +pa use +ĠR acing +Ġ194 8 +Ġsuper intendent +id ores +id y +bra him +Ġunl ucky +Ġper k +an ci +Ġë§Įë Ĥĺ +ĠÐľÐ¾Ñģ кв +Ġfin ans +Ġdiferen cia +łĪ ìĿ´ +éħ į +OR Y +ĠT ac +ÛĮ ا +Ġdes em +Ġваж но +ĠJ U +ĠìŀĪ ìŀĸìķĦìļĶ +ĠÎ Ŀ +Ġinform ations +ĠH EL +h st +Ġпог овоÑĢ +Ġvo iture +Ġre us +änd ig +ĠпоÑħ ож +j ing +Ġd ru +alt ra +Ġprodu its +Ġk ite +Ġeye ball +ĠB elt +ĠRestaur ant +Ġg amb +Ġpor ridge +it ters +Ġconver ts +Ġyard ım +Ġmáxim o +w irtschaft +Ġíķĺë Ĥĺë +Ġì¤ Ģ +Ġice berg +Ġvor bei +Ġ25 6 +ocr atic +Ġreck less +on ner +Ġm ús +Ġlog ically +ĠPr ison +ĠNet z +Ġvac ant +Ġn immt +ĠH ARR +Ġз ов +ĠDe e +ring e +ni est +ĠR ules +ìĬ¤ë Ł½ +cuss ions +Ġfl oral +Ġconstra ined +Ġdifferent iation +ĠQue bec +ĠÛģ ÛĮÚº +Ġpúblic a +it el +Ġaccommod ations +ĠGr ü +í ľ +Ġpick les +иÑĩеÑģ киÑħ +Ġcomm issions +ĠBa ek +Ġçoc uÄŁ +ĠMed ium +Ġperiod ically +Ġwonder fully +Ġstaff ing +ìĽ IJë +ri re +f le +ĠMc L +ĠÑĤ еп +ĠпеÑĢ ек +н олог +Ġíģ¬ ê²Į +çĻ¼ çı¾ +Ġprosper ous +ĠSpirit ual +ĠCh ick +DI A +ĠÐŁÑĢ ивеÑĤ +Ġper ÃŃ +ÑĮ ÑİÑĤ +Ġconsult ants +ĠEar l +ä»Ĭ å¹´ +Ġru ining +оÑĢ е +Ġpens er +Ġtak iej +Ġstrength ened +ĠLiqu id +он еÑĨ +ав аÑĤÑĮ +Ġcam er +Ġdisagre ement +Ġbat hing +ĠY osh +a al +pre chen +RIS ADAS +Ġsuper star +æģ Ń +лÑı ÑĤÑĮ +Ġn ib +ĠTh erm +ĠDAN IEL +Ġp aw +Ġliqu ids +Ġcapac it +ark en +Ġvag ina +Ġm ashed +Ġemer ges +ys cy +Ġun related +ĠGu ild +Ġin verted +it ives +T ra +Ġbe gr +Ġal te +ì§ ķ +ãĤģ ãģ¦ +ĠÑĢазÑĢ абоÑĤ +f inder +Ġдал ее +Ġблаг одаÑĢ +walk er +Ġcr ater +ass adors +ren ces +ins ki +ĠK IM +ĠEll iot +20 17 +ĠS r +ink a +ano v +Ġìŀĺë ª» +Ġpropriet ary +display style +ĠÑģ им +Ġиз б +ĠPan el +Ġinstinct s +ĠCommun ications +éº » +mid t +Ġë§Įëĵ¤ ìĸ´ +ĠÑģл ова +ĠGil bert +缮 åīį +Т ак +voor beeld +е ÑİÑģÑĮ +ary n +que z +Ġd art +Ñĸ ÑĪ +ĠH ut +S al +Ġs outheast +Ġpestic ides +Ġhelicop ters +Ġend ured +i ada +Ġbre wing +ìĹ ¬ë +ĠÑģв обод +ĠS aints +ĠFr ançais +ĠEconom ics +Ġdis loc +oph obia +C amer +Ġnegoti ated +ĠÑģÑĤ али +ìĬ¤í ģ +og ie +Ġtsun ami +Ġpeel ed +Ġmotiv ations +è¨ Ń +ost at +fl an +ĠD AC +Ġk av +' RE +ĠPe arson +b be +c zenie +Ġaten ção +íĨµ ëł¹ +ãģ£ ãģ¡ +ĠÑĥд аÑĢ +Ġintrodu ctory +ĠI ci +ë ĮĢë +ak at +Ġt rench +Ġproceed ed +ĠCo in +Ġdere cho +ĠRed e +æ¯ Ľ +ан нÑĭй +Ġincarcer ated +ĠRich mond +R ock +ĠP av +ĠKar ma +ug es +Ġconte ú +ë ¹Ħ +Ġê·¸ë §Į +ĠG one +Ġwsp óÅĤ +ĠRah men +un ken +Ġì¤ijìļĶ íķľ +Ġi b +Ġatt aching +H ay +Ġsu ka +ìį ¹ +Ġpivot al +ĠRes pect +ÃŃ da +I B +ĠVer antwort +w iet +Ġforens ic +ÑĢи ÑģÑĤ +ĠпÑĢинÑĨип е +Ġmark ings +Ġk ettle +ĠOper a +ĠDo ctors +Ġshred ded +Ġrec uer +Ġvig il +ĠF ail +Ġentre v +Ġд ÑĥÑĪ +Ġout breaks +èµ° åIJ§ +ĠÏĢ ο +Ġro gue +ang led +Ġyear ly +ĠCre ed +Ġw am +Ġlot us +ê³ ¼ë +ãĢģ ãĢģ +ĠSp it +ĠIt u +Ġstra ins +Ġstamp ed +Ġpl aint +Ġpot ion +Ġconsolid ation +è© ķ +оÑĩ кÑĥ +Ġvlog ging +Ġsl ate +ĠAu ft +ĠInc or +ừ ng +§ IJ +en h +Ġhe iÃŁ +Ġdom est +ĠSt rom +åį ³ +ak is +Ġfra gen +Ġfin er +ĠS ug +Ġup hill +Ġé én +âĢ¦ ) +ĠÑģ оп +ĠCore y +Ġsie bie +Ġm use +Ġclo ves +Ġp ous +ĠFin anz +ĠR oute +am at +Ġmut ually +ĠвнÑĥÑĤ ÑĢи +ĠSel ena +ë Ķ +ĠGa ussian +ë ¶ĢíĦ° +Ġ×ij× Ľ +Ġej erc +å¾ ® +ke a +ĠG erry +ĠS ic +大 çļĦ +Ġ196 6 +ies e +Ġfoss ils +Ġest ad +ĠK ane +ci Äĩ +Ġìľł íĬľë +Ġп ам +ĠCru ise +int érieur +Ġbe kannt +ĠP ode +Ġdem ander +R em +Ġinv ade +Ġdecor ating +rop ic +Ġcow boy +ĠPh oto +opol it +Ġì»¬ë Ł¬ë +Ġre ap +Ġhand writing +à¹Ħ ร +Ġë ļ +Ġب عد +ĠM t +Ù Ģ +Ġspaces hip +Ġnational ism +Ġcouncil s +ĠGriff in +ĠAh med +Ġcl ich +ĠO L +w l +ĠPil ot +å® ® +Ġacron ym +Ġg els +Ġelectro ly +è ĵ +Ġм ной +Ġepis od +ĠDies es +ĠAT P +Ġed iyorum +Ġexpress es +Ġexhib its +C omm +Ġк ÑĢÑĥп +Ġmat ar +Ġ20 25 +ĠArt em +vas ive +r Ãł +Ġbe ÅŁ +é» ĥ +Ġliz ard +Ġfill e +Ġì§ Ī문 +Ġмо Ñī +Ġt ür +Ġcul prit +Ġwo ven +ĠAN Y +n im +Ġt ay +Ġprom in +Ġacom pa +Ġid é +Ġbo iler +ĠThe men +Ġaven ue +ĠM ud +Ġнов Ñĭе +Ġwitness ing +Ġl ance +ĠCH AN +ĠBe ver +ت Ùħ +Ġchem otherapy +K ing +ĠbÄĻd ÄĻ +Ġat ual +Ġt ive +Ġtalk in +Ġqued ar +ie ÃŁ +ed el +Ġìĸ´ì łľ +Ġjog ar +Ġö r +Ġundert aking +ĠStre ngth +Ġmil hões +ĠW ine +ĠM olt +è® ² +ãģij ãĤĮ +Ġunderm ine +ĠArch ives +v ana +mer cial +M C +Ġcast e +п ÑĢ +Ġlegisl ators +ul ators +ên io +Ġëį °ë +ĠÑħоÑĤ иÑĤе +Ġн ек +Ġs urn +Ġcons ci +ĠP OW +Ġcul inary +ĠK AT +ĠFol ks +Ñĭв аем +Ġв ок +ãģij ãĤĭ +s ervice +pt s +Ġпоб ед +æĺ¯ åķĬ +Ġt ents +Ġn ord +ST E +Ġrepublic an +Ġwy k +Ġmin ions +èĻ ķ +Ġmem ang +j est +Ġcompar ative +Ġty le +car bon +bed ingt +ks en +Ġneg ativity +Ġsjäl v +Ġd ú +æīĢ æľī +Ġrec alled +c ra +ĠT ada +ĠÑĢÑĥ ки +ĠопÑĢед ел +Ġproc rast +Ġjog os +ĠO o +ĠHe arts +Ġé ch +Ġksi Äħż +Ġco arse +ĠT ube +ĠG reens +Ġé n +Ġdumb bell +ĠÑĤ и +Ġquer er +ا ØŃ +Ïĥ ει +ĠпÑĢав илÑĮно +Ġп ап +Ġcomp ra +Ġt ér +ĠAnt es +Ġoptim um +Ġbisc uit +κ ι +acz ego +Ġìĭľê°Ħ ìĿ´ +ĠMar ines +ver o +Ġvacc inations +Ġpet ty +rit ers +Ġа л +count ry +Ġcoun ters +Ġattend ant +ĠH ui +ãģ¨ãģĦãģĨãģĵãģ¨ ãģ§ +ck a +ÑģÑĤвен нÑĭй +gu y +Ġtrick ed +ĠR ED +Ġthr illing +ÏĢο ι +Ġpig gy +Ġan unci +OR TER +ĠVal ue +Ġr ond +ĠA DA +Ġpos er +h ores +ĠR oland +ĵ ¯ +Ġno ir +Ġש ×IJ× +ë° ľ +iem and +ĠпоÑĤ еÑĢ +ê³ ³ +Ġê± ± +Ġformat ting +ĠL ed +è§Ģ çľ¾ +Ġkill ers +ĠÄij ấy +Ġha ar +ag ain +! > [ +min ster +Ġв ли +Ġident ifier +ĠLamb da +Ġtr os +Ġflaw less +Ġdetriment al +Ġbun ları +W ar +Ġreg ião +羣çļĦ æĺ¯ +ĠB ike +cess ors +Ġc ùng +ĠR N +Ġê½ ĥ +Ġküç ük +ĠBegin ning +íĺ ¸ë +Ġge we +Ġden ote +ĠAlber to +Ġprob iot +Ġo de +Ġmol ar +Ġburst ing +ass umed +Ġfoot prints +ved a +Ġstero ids +Ġfl aming +ĠE ller +Ġerk ennen +ät zen +Ġlife cycle +ĠD OU +ĠK arena +ĠGuer ra +è¿ĺ æĺ¯ +Ġsin ister +Ġpod éis +Ġpar ab +Ġok o +Ġmat éri +Ġcar ic +son aro +Ġpratic amente +ÑĥÑģ а +Ġcomun que +Ġvig ilant +Ġreg imes +ĠShoot ing +Ġra ids +ĠN ora +ĠW ieder +m ens +ĠÑģ од +Ġê²½ìļ° ìĹIJëĬĶ +Ġв Ñħод +Ġaut obi +ĠS chn +ĠRob bie +ĠF itness +Ġкон ÑĦ +Ġpeng uin +моÑĤÑĢ Ñı +Ġми ним +play s +Ġdeleg ates +M er +Ġsist em +ĠMicha els +m ale +ا ع +Ġcá ch +ĠH ä +Ġ×Ļ ×ķ×ĵ×¢ +Ġsuper power +Ġstr on +Ġro ver +Ġdé pend +éĻ ³ +Ġret iring +Ġvamp ires +Ġmer de +ĠCh anging +Ġt ame +Ġspokes person +Ġc ay +Ġfl irting +ĠGr ö +Ġw är +Ġwy b +Ġcoe ur +ạ nh +ĠìĻĢ ìĦľ +Ġconna is +ĠHundred s +ĠBe a +Ġα ÏĢ +pr uch +Ġsocied ade +ĠWh ilst +ĠK ait +esp ace +Ġch ia +ĠEr m +Ġë°Ķ ê¿ +Ġf ences +ĠM ortal +ê² ģ +Ġг ÑĢаÑĦ +ĠHom eland +ĠJ UN +is st +Ġpar lar +Ġsport y +é o +Ġdeep en +ĠBeh avior +éĢ ı +åĵĪåĵĪ åĵĪ +Ġer rand +Ġrot ary +ĠWell ington +W ind +Ġmes ela +ả ng +iend e +Ġex cell +ĠGen ius +ĠEdu ardo +æľī 人 +ĠÅŁ unu +ĠÄ° stanbul +Ġprod uto +Ġ ãħİãħİ +O FF +Ġwoll t +çĪ Ĩ +Ġëī´ì Ĭ¤ +Ġl ass +Ġher tz +Ġar omatic +Ġзв он +Ġaut oc +ĠL ust +Ġ11 2 +ĠÎ Ĺ +Ġreview ers +Ġrecept ive +å°į äºĨ +â nd +og lo +ĠìķĦëĭ Ļ +Ġn go +Ñĸ ÑĤи +Ã¥ t +con o +Ġtek rar +Ġ주 ê³ł +Ġgel miÅŁ +Ġbed time +ĠAr gh +AD A +ĠгоÑĢод а +ĠÄ ĩ +Ġall iances +g iggling +Ġyer de +Ġsp ies +Ġg utes +ç i +Ġallt id +ĠL ah +ŀ IJë +Ġdo kÅĤad +ÙĪ ÙĬ +Ġtoxic ity +Ġcancell ation +Ġ195 8 +d ro +Ġìŀij ìĿĢ +ĠMotor ola +Ġmult in +Ġenthusi asts +ĠM ighty +ĠCoc onut +: ãĢĮ +ĠPict ures +Ġsang re +Ġbl inking +ol esome +ĠìĬ¤íĥĢ ìĿ¼ +F P +Ġboom ing +ĠдеÑģÑı ÑĤ +Ġr atchet +Ġtim elines +len ess +Ġc ages +ĠGood night +omet imes +Ġc unning +ĠR isk +ul ed +d ade +Ġpr ata +Ġgust arÃŃa +am us +ĠJin ping +Ġest rut +Ġdescob rir +ĠM Äģ +ĠAll an +Ġ åĪĨ +Ġ×ľ× § +Ġpres erv +ĠStraw berry +Ä ı +L u +Ġk ro +ĠRep orts +ìħĶ ìķ¼ +Ġval t +Ġpouv ait +Ġapp ar +ĠB one +Ġprefer ably +ĠRep ública +å°± åĪ° +Ġher zlich +Ġchim ney +Ġç ev +Ġvis as +Ġver r +Ġcultiv ation +ĠArmen ia +Ġвд ÑĢÑĥг +Ġcock ro +retch ed +art z +ĠлÑİд Ñıм +ĠpolÃŃt icas +ĠP anz +ĠA KA +ĠëĪ Į룬 +Ġer ro +Ġcam per +Ġ10 2 +ठ¸ +d one +Ġho ard +ĠÐŁÐ¾ÑĤ ом +je ong +Ġdest a +p ak +Ġin im +Ġgrow ers +ĠMess age +Ġele ctor +eng age +ĠFor bes +ĠCincinn ati +Ġdiffé rence +d f +Ġsp ar +Ġawait s +ĠUSS R +ĠR ising +ĠHo ÅŁ +Ġfoot ing +Ġcond iciones +ÑĤоÑĢ ов +Ġclin ician +ĠDisk uss +å£ ĵ +ר ×Ĵ +× ¥ +ite it +g ren +Ġchar isma +Ġle uke +Ġirrit ating +Ġcir ca +ĠRhod es +Ġp ior +Ġhandic ap +roy able +Ġv ull +O G +Ġin ÃŃcio +ier i +Ġspl ashing +Ġdem ise +Ġassist ir +Ñĩ ÑĤо +Ġcover t +ĠG ud +ภī +kl är +ĠìŀIJ 꾸 +Ġver ändert +ĠR EM +ĠCon ven +at ge +Ġpierws ze +Ġcler gy +ling ton +l iv +V PN +ĠÑģ ожал +ĠH ate +ãģ¨ ãģĵãĤį +ÏĨ ο +ĠResp ons +оз д +Ġet mek +Ġchem in +Ùħ Ø© +Ġê°Ģ 족 +T re +Ġum as +ĠBur ton +Ġpatri arch +ĠSmithson ian +¥ ĺ +M oon +A ir +Ġmed ios +Ġer aser +Ġwoll ten +Ġpare il +ĠBill ie +æĬ ½ +еÑĢÑĤ в +Ġparl ament +Ġag ony +ĠQU E +sequ ently +An other +ĠWh ew +ĠAnn ual +Ġse ben +ìĥģ ìĿĦ +val ues +ŀľë §Į +Ġsin on +ere al +ĠEn light +ĠChem istry +ĠCatal unya +Ġdoct r +ant on +Ġst uk +ĠPl ate +ĠKardash ian +Ġfil os +ĠW et +Ġпоп ÑĭÑĤ +Ġunknown s +ĠSch on +ĠBald win +Ġtelescop es +ĠG ucci +ox ide +ĠConserv ative +ìĦ± ìĿĦ +Ġhina us +P ower +Ġê±´ ê°ķ +Ġprev ail +orm an +m achine +Ġ194 6 +Ġun bel +Ġsch aut +Ġp iel +e enth +Ġobject ively +Ġch akra +aud io +Ġch icos +ĠV ault +å° Ī +Ġmedic inal +ĠT ail +Wh ile +Ġas phalt +Ġfro ze +ĠE K +unch ing +n osis +20 15 +ĠG ri +Ġodd ly +ĠM är +ĠA eg +c olo +P ar +Ġëĵ¤ ìĸ´ë +Ġv inden +ĠO VER +Ġ iced +Ġsc orp +Ġha c +qual ified +ĠÑĥвид еÑĤÑĮ +erm o +H EN +Ġso i +Ġmulti ples +Ġlay outs +Ġblind ness +ĠB owser +Ġпод ÑĤ +ĠÃ İ +vention al +Ġm ata +mad ı +Ġge ez +Ġcad ence +Ġważ ne +ĠChrist ie +ven ge +C all +Ġturn around +Ġblo b +ĠЯ к +ĠVoice over +Ġper il +ĠJa ime +ĠH OY +l ane +Ġse bel +ĠDu o +ĠHistor ical +Ġd ni +Ġg ema +y k +Ġsab em +ắ ng +Ġv ars +ĠRon nie +ĠRon aldo +ĠPer què +ns inn +h air +Ġrelent less +Ġl yn +Ġtravel er +æĢİ麼 äºĨ +n ine +Ġant im +Ġì¼ Ģ +Ġsnow ball +ĠÑħаÑĢ акÑĤеÑĢ +Ġintern s +Ġconstitu ency +ĠÐĿ ам +׾ ׾ +V EL +Ġvikt igt +Ġap oyo +ÙĦ ب +Ġj ard +Ġheight ened +ÑĢо ÑģÑĤ +ĠSM ITH +Ġдел а +Ġrepair ing +Ġr igt +ĠShe ikh +ĠBrit ney +Ġevery time +Ġadvent urous +oc key +er nt +Ġat aque +ĠAltern atively +e ffect +Ġpalav ras +ĠElli ott +Ġréuss i +Ġhypert ension +ĠMan ual +Ġproph etic +Ġhand c +ÑĮ е +Ġref rain +ĠSqu id +ìŀ ¡ +Ġком ан +äll en +Ġlleg ó +Ġbas h +ion y +ĠÑģк лад +Ġк аб +Ġcare less +ĠP ool +Ġtr ás +Ġfil s +ĠSch r +Ġsp rawd +ĠMon aten +Ġunfor gettable +ĠCott on +Ġinconven ient +ĠR X +or is +Ġhum bled +ת ×Ĺ +ĠØ¢ Ù¾ +Ġincre ÃŃ +ĠKomment are +èĪ Ĵ +r ación +Ġv antage +ĠSe al +ĠìĿ´ 거를 +Ġjou e +ãģĿãģĨ ãģ§ãģĻãģŃ +Ġìĺ¤ë ŀĺ +ĠиÑģп ÑĭÑĤ +ob en +Ġgr ate +Ġcontro le +ĠPer cy +ÅĤ ada +Ġsimult aneous +Ġprot oty +ĠgroÃŁ er +Ġbew usst +iniz i +Ġpass ieren +ĠHapp iness +åī ĩ +sh i +ge ht +Ġstation ed +ĠErgeb nis +Ġdirect amente +Ġsurv ives +Ġperson es +BER G +Ġvom iting +Ġconhe cer +Ġad jour +ĠCiv ic +pe i +bur st +Ġëĭ¤ ëĭĪ +é ı +Ġsl ed +Ġplataform a +ĠS ect +ĠDe fin +çĻ» éĮ² +én om +chn et +Ġprofit ability +Ġerre icht +á»ı i +c ation +Ġì§Ģ ê¸ +Ġperd re +Ġfel ony +Ġ195 7 +æĪij å¾Ī +Ġunsuccess ful +Ġnag yon +Ġelastic ity +Ġfac ade +Ġearth ly +ĠамеÑĢик ан +Ġcon n +c la +D u +Ġpolit iques +Ġhal o +iant es +Ġмо ей +ãĥ³ ãĥī +ton es +el ier +è® ļ +ht aking +Ġwicht ige +Ġan no +ĠL ok +ill ions +Ġv iver +Ġsol chen +Ġsu f +ĠSal z +ĠN vidia +z uge +ĠSp ike +V ideo +Ġtw or +ĠA la +èij ī +Ġh anya +ĠAd m +ìĿ µ +ĠPatient en +ĠOn ion +ĠKo be +ĠSc ene +ĠR ash +æ¨ Ļ +ÑĢа ÑģÑĤ +ist ani +Gen eral +le ye +imb ap +Ġconce aled +ĠFr idays +ĠW ool +Ġнов ÑĭÑħ +Ø´ ر +Ġê²° ê³¼ +Ġjed och +´ìĭ ľ +ĵ¤ ëıĦ +Ġìŀ¥ ëĤľ +uk t +L ou +Ġ먹 ìĸ´ +ĠEx pect +Ġдом ой +Ġirrespons ible +Ġac erca +ĠZ ust +ר ×ĺ +U I +Ġyout ubers +ĠPos itive +Ġsoci oe +Ġsn atch +èĥ Į +Ġrefresh ed +Ġnom inations +ĠP att +Ġobsol ete +Ġdem iÅŁ +åı ¤ +orm uÅŁ +ĠìĨĶì§ģ íŀĪ +Ġf la +Ġcra ziest +ĠZ ie +ĠT ú +z ep +ic em +Ġë©ĭ ìŀĪ +Ġcyn ical +ãģĿ ãĤĵãģª +Ġt resp +Ġcra z +Õ¥ Õ +Ġne lle +Ġm ph +ĠN ered +ĠK ob +ĠE ck +¨¸ ëĭĪ +J an +ĠТ огда +Ġde ci +ĠV og +Ġbubb ling +éĢ Ģ +ú a +Ġproduct os +iber al +Ġrepl icated +ĠImp rove +ill ary +C ha +Ġré du +ĥIJ íķĺë©´ +Ġcon not +ĠK rit +ĠдÑĥÑħ ов +Ġtread mill +ĠP W +Ġзов ÑĥÑĤ +Ġcl ams +Ġdra fting +Ġ195 6 +un ta +Ġexpend itures +ĠHoo ver +W OO +ÑĪе е +Ġded uction +mon ary +Ġreci b +Ġpo vo +Ġëį Ķë +ĠP AL +ĠBl ow +Ġwy p +Ġdest ac +de al +Gra eme +Ġnécess aire +Ġdamn ed +Ġ19 38 +Ġìĭ¤ ìłľë¡ľ +Ġtro op +Ġinsight ful +ĠT J +ĠоÑģ в +Ġf idelity +ĠSk ip +ĠMay o +ë§ Ŀ +app e +Ġbl as +ĠW Y +ĠG N +ct ar +S u +Ġcu ent +he ws +Ġcorps es +A bs +Ġwaste water +Ġc iek +ĠOn u +Ġexplos ives +Ġar ma +ĠSTEP HAN +polit ik +ĠOs aka +ta ÅĤ +Ġyap ıyor +Ġiz quier +Ġbele za +ĠWy att +åIJ ¸ +Ġsu k +Ġspec jal +Ġdan ke +wh istle +ĠfÃŃs ica +ĠHar riet +ĠìķĦ íĮĮ +Ġwill kommen +ip ing +ĠÑģмоÑĤÑĢ иÑĤе +Ġмож еÑĪÑĮ +Ġinacc urate +Ġarrog ance +ĠRem o +γ ά +ass ed +Ġdeliver ies +Ġst inky +ĠпеÑĢ еж +j ay +Ġtrans itional +Ġr ere +ĠNGO s +ĠAT M +Ø® ت +i ology +Ġв лад +Ġsch me +ĠSh ine +ìķ ¡ +p ants +Ġser ge +Ġsen hor +Ġab duct +ĠBry ant +V ES +Ġawak ened +ĠL az +rop olis +ĠLa o +è¾Ľ èĭ¦ +Ġvill a +Ġsumm ers +Ġent hal +Ġ194 9 +V ia +Ġìĸ´ì ¨ +Ġtend on +Ġviol et +Ġintellect ually +Ġboun ced +ara us +Ġ19 19 +Ġvra ag +Ġsp el +ĠSch war +Sc ott +ĠInd o +Ġë§ Ŀ +Ġcanon ical +ĠI KE +Ġthat ÃŃs +Ġme llan +æ¯ Ĵ +ig mat +C ould +... ?) +Ġfo arte +ĠKum ar +rend o +Ġél é +à ´ +val uation +c ases +Ġintuit ively +h ong +ett ed +Ġsou ven +Ġmor b +Ġc ors +ĠN V +ĠHas an +æĥħ åĨµ +ie ved +Ġì§Ģê¸Ī ìĿĢ +Ġdum pling +Ġcontr ôle +Ġambigu ity +æ©Ł æľĥ +Ġco g +ĠScript ures +Ġc ai +Ġbe ver +大家 éĥ½ +Ġhu is +Ġa ime +Ġerkl ären +ĠL M +ĠF ey +éļ ¾ +à®± த +Ġsuper vised +Ġje we +s pl +ĠÑĨенÑĤ ÑĢ +Ġcoll isions +ÙĦ Ùģ +ĠHog warts +ĠDur ham +×ķ× £ +Ġphosph ate +Ġoverse e +Ġinspect ions +Ġbr inc +ĠZ ak +Ġpay off +Ġch aud +ĠHung er +ã os +v ir +Ġf iance +Ġb oug +l ived +c ry +åĽŀ ä¾Ĩ +Ġjoint ly +Ġgirl friends +ĠNe xus +¦¬ ê²łìĬµëĭĪëĭ¤ +ĠK wang +åĵĪ åĽī +å§ ij +ÅĤ ÄĻ +ĠN eden +ie ce +Ġins erting +æŁ ĵ +ĠM ummy +ĠGlo be +Ġle e +Ġg erman +Ġcre ams +ach o +Ġch Æ°a +ĠGal ile +Ġfür s +Ġest iver +c idos +Christ ian +Ġlors qu +Ġcut est +v ale +ĠкÑĢ еп +Ġw ary +Ġslic ing +Ġesper ando +ĠV ander +ĠDe ixa +Ġ195 4 +Ġmów iÄħ +Ñĸ ÑĶ +Ġtool ing +Ġrest or +Ġpos ición +Ġintent ar +ĠAp ache +OU L +ĠÙĪ ب +Ġmat ière +ãĥ¼ ãĤĵ +Ġl inen +Ġestrat ég +ĠMut ta +é¡ ¯ +è¡Į äºĨ +Ġpart ing +Ġminim izing +Ġapp rendre +æľ Ŀ +Ġан глий +ĠDo o +ĠFire fox +c ómo +Ġge opolit +Ġmak an +Ġmog elijk +ĠÏĢε Ïģι +Ġcá» © +Ġinstall er +Ġdib uj +ĠHe ath +lo op +ĠBro ken +HY UN +sh elf +Ġf izer +Ġenh ances +ä¾ĭ ãģĪãģ° +Ġдо ÑģÑĤи +ĠP UB +ĠKolleg in +Ġatt ained +Ä ¾ +Ġmist ress +ĠOft entimes +×ŀ ×Ļ×Ŀ +Ġbe we +ĠS ora +ra uen +ba um +Ġroll ers +Ġm ering +ĠP AC +Ġн Ñĸ +ĠRép ublique +ĠÑĤ ÑĢав +ĠV anguard +uc iones +Ġ무ë ĮĢ +Ġg our +¯ ¤ +ĠÏ ī +Ġsa una +Ġpe ine +ĠVal erie +ĠS ikh +fend imiz +ber o +ĠÑĩ и +Ġdo ÅĽwiad +ĠE uros +Ġcomment aires +Ġtwe aks +ĠF aster +ĠÑĢаÑģ к +Ġprogress ively +ĠE uch +bor o +ĠIng red +C ap +Ġun check +Ġìĺ¤ë ¥¸ +Ġw re +ĠF T +ör ung +Ġmemor ized +ĠD inner +ĠP hew +ou bl +Ġput a +Ġadm its +ез де +op od +Ġpand a +Ġhing es +ci pe +Ġtrans act +Ġpod ia +Ġp ics +Ġcriter ion +ĠOrchest ra +ĠBl og +Ġsolem n +ĠPix ar +Th ree +Ġв низ +ĠVol unte +ĠSav age +ĠPV C +ĠC af +Ġwy kon +Ġgrad ers +Ġcr ouch +Ġcl iche +Ġsoy beans +ĠM UR +ĠGonz alez +ĠM imi +ĠBol sonaro +Ġdi aphrag +Ġbil ang +ëIJĺ ëĬĶ +éĤ£ æĪijåĢij +Ġregul ating +M c +J udge +Ġн ож +Ġjak Äħ +ites se +ĠW ij +Ġl ata +gro aning +POS ING +Ġ×IJ×ķת ×ķ +Ġha ga +Ġground ing +Ġviol ently +Ġt ills +Ġeng ag +ĠHo llow +Ġпоп ÑĥлÑıÑĢ +Ġw prowad +Ġrepl aces +Ġfluores cent +urg ical +igg ly +ĠTrad itional +t te +ĠÙĦ Ùĩ +Ġphosph orus +Ġapr on +ĠWat ers +ĠK ultur +ав ай +Ġol ives +Ġ×Ķ×IJ× ľ +Ġteil weise +Ġsen cill +Ġprend s +Ġnarr ower +Ġj ätte +ĠInformation en +ìĥģ ìĿ´ +Ġstar ve +Ġfr ick +ĠBe weg +ठ² +Ġdolph in +ĠLAUGH TER +ĠINTER VIE +åĶ ī +Ġyan lÄ±ÅŁ +Ġtor pedo +Ġshort ages +ìĿ´ë ĵľ +ıld ı +Ġp aws +Ġo zone +Ġcultiv ated +ĠF ot +Ġnot or +н оз +Ġко ÑĪ +Ġtouch screen +ĠAll y +æľĢ è¿ij +Ġ맼ìŀĪ ìĸ´ìļĶ +ĠС еÑĢ +Ġв полне +Ġpap rika +ĠDust in +Ġefect o +Ġop ini +Ġmu ut +Ġhá»į c +Ġinter ject +ÄĻ t +Ġbut ts +ure z +ĠP ike +ĠH ok +ĠGu inea +ĠCath edral +Ġ14 00 +C ra ++ , +ë§ Ľ +³´ë ıĦë¡Ŀ +aby rin +Ġvide og +Ġо ÑĢÑĥж +Ġu ž +Ġbus cando +ĠAss istance +éĻ ½ +Ġmel hores +ì¡ ´ +Ġëģ ¼ +ĠR J +Ġت Ùħ +Ġo min +Ġmotor cycles +ĠS app +Ġsupply ing +ĠAl gun +Ġaer ospace +×¢ ׾ +oc cup +le ist +Ġê±° ëĬĶ +Ġcomplet a +b res +! ( +ĠÐŁÑĢ ед +Ġdisadvant aged +ĠAtt end +ĠJud ah +á»ĭ ch +yl ene +act ly +Ġset ups +Ġammon ia +ĠSchwe iz +ĠSh ame +Ġband e +ĠF uel +Ġtroubles ome +Ġnum ero +ĠM OM +ĠпÑĢед лаг +ment ioned +ĠболÑĮÑĪ ое +ĠVikt or +ĠSty les +Ġcruc ified +ructure d +en viron +Ġmor als +Ġmed itating +Ġax ial +is ance +ĠAb st +G reen +Ġê± ´ì +Ġquad rant +Ġper gi +Ġcamer aman +ĠSe qu +Ġpa used +ĠLa ughing +ê· Ģ +? .. +ĠÅ» e +Ġpermit ir +Ġdetect ors +ĠH UD +av al +ĠìĹ¬ê¸° ê¹Įì§Ģ +Ġh ubs +Ġbest immt +ĠбÑĥдеÑĤ е +INTER POSING +Ġten gan +Ġcra ve +ĠBundes regierung +ĠBlo ody +Ġus ability +ĠE as +ĠÄijá»Ļ ng +Ġ195 5 +Ġkrie gen +Ġhabit ual +Ġessential s +rim inal +Ġroomm ates +éĤ£ å°± +ĠпеÑĢе Ñħод +Ġng hi +Ġmen ing +ĠSym phony +ĠH ug +ag gi +Ġw ied +Ġmit ad +ãģ£ãģ¦ ãģĦãģĨ +te enth +ida Äĩ +S ave +Ġrob iÄĩ +Ġboun ces +° ĸìĹIJ +st ars +Ġprag matic +Ġcogn ition +Ġwra pper +Ġw arten +ad h +Ġpens a +ĠHert z +Ġn ÄĽ +ĠRe id +ĠPC s +ĠMo le +Ġ.. ... +Ġpre cio +ĠChampions hips +ê°Ģë Ŀ½ +Ġv ér +Ġcorrid ors +ĠElect ronic +S l +Ġа ле +Ġoverth row +Ġk abul +ĠR ES +ĠCyber punk +ог од +ĠÐĿ ав +Ġw an +Ġmanifest ations +Ġcual es +ĠW ise +ĠLös ung +Ġex fol +Ġearn s +ÑĥÑģÑĤ иÑĤÑĮ +Ġsa pp +ĠBra un +ĠBRAND ON +ì¹ Ļ +Ġs ano +ĠF EL +Ñĭв айÑĤеÑģÑĮ +ожд ениÑı +Ġse wn +F un +Ġrecipro cal +Ġexpans ive +ĠTra ffic +Ġktóre go +ĠÙĪ س +æĺ ¥ +Ġë¹ ¨ +pro ve +ig are +Ġlo h +Ø§Ø ¶ +H ope +Ġdevote es +ĠG om +Ġste als +ĠU ms +ĠTw ice +ãĤ ² +iy im +Ġrhythm ic +ĠV orte +Ġpref ix +om ination +Ġdat o +Ġcust ard +ĠVO ICE +å· ŀ +Ġmen y +ist ors +Ġíĺ ij +ĠìĤ´ì ķĦ +Ġíĥ Ħ +Ġk ort +Ġab a +ĠV era +ep y +Ġì¹´ë©Ķë Ŀ¼ +Ġsubmer ged +ĠC lock +Ġthumbna ils +Ġbo ast +ĠF are +!! ] +ĠÅĽ m +Ġkaik ki +ĠTechn ologies +ìĻ ¸ +ãĥ Ĵ +иÑĤ ай +å°ı æĻĤ +Ġа ÑĤ +Ġkn obs +Ġre icht +ượ ng +gl io +Ġ맼 ìĿ´ +ê°IJ ìĿĦ +Ġjot ka +ĠHand y +ĠHab en +n ous +Ġin land +Ġam azon +ho oting +S L +Ġle isten +~ " +Ġprov oke +ĠTw ist +Ġ×ij× Ĺ +Ġdepart ed +ê° ľë¥¼ +Ġk onse +ĠCar wyn +íķĺ ìĭł +ident al +ES CO +Ġt teokbokki +Ġdiz endo +ç· ´ +ınd aki +imas u +af ar +Ġland fill +Ġcorrect ing +Ġcle ars +ĠNum mer +H AM +Ġcart ridges +ĠDies el +p aced +Ġobl iv +Ġmoy ens +ĠSin ne +ĠPre is +il iz +ĠÑģм ож +Ġbroad en +ä»ĸ æĺ¯ +x es +Ġcarbohyd rate +íĺ ¹ +se ok +Ġecho es +Ġc ess +ë° Ķ +Ġб изнеÑģ +Ġllam ado +Ġess ent +ĠìĿ¼ë °ĺ +ĠA ires +ph en +Ġze bra +Ġsymbol ism +On ce +Ġr acks +ĠKaf ka +ĠÑģеÑĢÑĮ ез +Ġsin n +p icious +ka a +Ġmotherf ucker +Ġapprentices hip +Ġr pm +Ġtax ation +Ġfur ry +ĠSac red +ĠÑĢаз м +por a +eng es +ĠíĹ Īë +ĠÑģ ин +Ġsanit izer +Ġcr inge +ĠS ca +оÑĩ но +Ġof ere +Ġmel odies +ĠVel vet +ĠIhr er +ĠHy brid +ĠG iov +Ġirgend was +Ġdep ende +ĠUs ers +Ġh ump +dri ving +Ġs f +Ġruth less +à¹ĢภĦ +Ġlem ons +Ġfö ret +ĠO j +Ġм ама +Ġinter personal +Ġge v +Ġab norm +иÑģ л +Ġин д +Ġkont roll +Ġreg res +Ġled ge +Ġerzäh lt +ĠT act +Ġarri vé +Ġsubstant ive +Ġspoon ful +zw ischen +oooo o +Ġconten ido +Ġbes l +á»ĥ m +k ten +Jam ie +Ġsand y +ä¸į åIJĮ +â ĭ +Ġp ase +Ġdet te +ĠBelg ian +ê° ľë +ula res +r ud +ig or +ĠíĮ ¬ë +Ġremed ies +Ġblast ing +ĠS ich +Ġож ид +Ġmon str +Ġmanif old +Ġglaub en +ĠE ST +Ġstream line +Ġlobb ying +ĠGoth ic +to ire +.. ' +Ġdém ocr +Ġнаб лÑİд +Ġwsp ól +ĠczÄĻ ÅĽÄĩ +ä¸ĭ éĿ¢ +is és +g angen +Ġbez pie +rem lin +ê° Ŀ +St ill +Ġres ides +Ġgele cek +Ġtélé phone +Ġpe wn +Ġle opard +Ġcompliment ary +Ġc rib +ĠAnim als +Ġge il +ess el +Ġgard er +Ġcatch y +æ¨ ¹ +ĠE ts +ĠCom mercial +ĠD ENNIS +ĠCoordin ator +ĠAb igail +ffff ff +ấ p +Ġpeque ña +Ġinject ions +ce kt +Ġphilanthrop y +Ġp uck +Ġcelebr ates +ĠD unk +ĠD latego +ãģ¾ ãģł +δ ή +grad uate +ĠM obil +t ill +ac am +Ġyol ks +Ġtang led +Ġman iac +Ġoblig ed +ĠLa ink +Ġver der +ĠDam on +Ġmut ant +Ġhop ping +Ġre ins +Ġinver ter +Ġcont empt +׳ ס +le arning +M iss +ĠÐĵ оÑģ +ĠMe yer +ê»ĺ ìĦľ +é£ İ +×ķ׳ ×Ļ×Ŀ +ask ing +Ġtrim ming +Ġtre asury +Ġs ente +A ust +ĠUnterstüt zung +ĠCom edy +ĠAn akin +é ¹ +ÑĢÑĥ ÑĤ +ĠH ari +ograph ers +Ġoat meal +ĠB ots +ä¸į äºĨ +Ġп алÑĮ +Ġacknowledge ment +x ic +Ġê´Ģ ìĭ¬ +gas ping +Ġãģ ķ +Ġterr ace +Ġor naments +ĠM ER +comm ittee +ĠìĹĨ ìĬµëĭĪëĭ¤ +Ġr ij +é ³ +צ ×Ŀ +le me +Ġlibert ies +Ġfell as +ĠCop per +ben ch +ĠIde a +á»į n +ÑĪ а +Ġvers ión +ÏĦο Ïį +ĠÐľ и +ĠпÑĢил ож +Ġbox er +ĠT anner +ĠM oy +ì¹ĺ ëĬĶ +T hr +Ġtin ham +Ġpol ishing +Ġconsequ ently +Ġamen ities +ĠK I +ĠGRE EN +ĠFrank ie +н иÑĤ +itt el +Ñģ кое +urs ed +Ġup bringing +Ġth ứ +ĠìĭĿ ìľ¼ë¡ľ +Ġwh im +Ġchin ese +conf idence +ĠJ eder +ãģª ãģ®ãģ§ +aj cie +ĠT ous +ĠPow ers +ừ a +other mal +ĠвÑĭ ÑĪе +r ale +Ø§Ø ® +Ġì§Ģ ìĽIJ +Ġép isode +Ġsul ph +Ġenc ara +k raft +alar ı +ĠCom es +Ġdiv ul +ĠRud olph +ĠM use +Ġut ens +ĠìŀIJ 주 +Ġp ana +ĠVeget a +ĠPH P +ĠN SA +ent in +ĠCarne gie +ا ÙĬ +iÄĻ cy +H arry +Ġf ır +С п +Ġglad ly +Ġaver aging +íķĺ ê²łìĬµëĭĪëĭ¤ +лÑı ÑİÑĤÑģÑı +ĠÐľ енÑı +Ġquot ation +ri res +itch ens +ay ed +Ġun att +ĠP erez +ĠоÑĤ меÑĤ +Ġtact ile +ĠEu h +is ini +b uh +Ġhat ır +ĠìŀĪ ìľ¼ +Ġpolicy makers +³´ì Ħ¸ìļĶ +ac ı +Ġκ ι +Ġregister ing +re to +ĠSpr inkle +ĠGram my +ax ter +Ġб и +Ġsit ter +Ġpred ic +Ġthin ly +Ġstr um +Ġag grav +Ġa ha +ر ج +m ellow +Ġconst ante +ĠL aut +ist on +Ġtransition ed +ĠCamb odia +ãģĦ ãģįãģ¾ãģĻ +è·Ł 大家 +art ed +Ġmis f +ĠPunk te +Įë ĵł +Ġtremb ling +Ġges pannt +ĠعÙĦÙĬ Ùĩ +Ġникак иÑħ +Ġë¶Ģë ĵľë +ĠÑĢазв иÑĤ +Ġit chy +Ġc iento +Ġpl ains +Ġk ittens +Ġback log +ĠPres iding +pt a +Ġha voc +ĠDarr in +ĠÐĽÑİ Ð± +Ġsegreg ated +Ġg hetto +Ġerle bt +Ġdrug iej +ĠSi xt +åı ĥ +ร ะ +uen cia +Ġíķĺ 기 +ĠëĨ į +Ġrob i +Ġpione ers +Ġmilli ards +ĠWitch er +Ġ무ìĹ ĩ +or ro +m ass +Ġdiver gence +ĠRiver a +ĠNo odles +Ġend roit +ĠK osten +ĠдÑĢÑĥг а +ĠmÃŃn imo +ĠKazakh stan +ت Ùĩ +Ġвоз дÑĥ +Ġgesch rieben +ĠN il +Ñģ ки +ĠFr üh +Ġbever ages +æº IJ +ĠG on +æĺ ¨ +Ar in +ĠInt ro +ocaly ptic +Ġexhaust ion +ĠStat us +ĠBatter y +és z +£ ¼ë +air y +Ġë³´ìŬë ĵľë +Ġdispar ity +Ù Į +ĠTuc son +Ġbright ly +pro blem +Ġbiom ass +éĻ į +§ ī +Ġhur dle +Ġwavelength s +Ġ< < +Ġteam ed +FF FF +ĠS lim +om ial +Ġunve iled +ĠVere in +ÙĤ Ø· +est ry +Ġcl ás +Ġch eddar +Ġaccus ing +ĠScient ific +ĠбÑĥд е +ĠCyr us +ε ÏĦε +Ĩĵ ê³ł +Ġë³ Ħ +Ġcur d +Ġrefer rals +sh ift +åį ķ +nik ów +Ġm ier +Ġconf ronting +ê²ĥ ëıĦ +aw l +Ġtry in +Ġê·¸ëŀĺ ìļĶ +Ġch iar +Ġìĺ¤ëĬ ĺëıĦ +æĶ¿ æ²» +es que +Ġmism os +ĠSh ak +Ġsoci aux +Ġpi ÅŁ +ĠkiÅŁ i +Ġcy an +h ay +be w +b od +ĠÎ ¹ +ĠMain ly +Ñİ ÑĤÑĮ +hab itude +ĠÑģп окой +è·Ł æĪij +Ġpre con +ĠM andy +ðŁ¤ £ +ill os +Ġgr upp +Ġcr umble +Ġconstru ctor +erv ices +Ġlight house +ĠCon cept +ан ÑĤи +alt ro +h ope +ĠAll eg +ìĸ´ë ¥¼ +pie ces +oun ter +Ġíķĺ ëĭĪê¹Į +ĠìĿ¸ íĦ°ë +Ġvérit able +Ġthread ed +bl ind +Ĥĺë Ŀ¼ +Ġtr ays +ĠEd ison +ĠÃĸ z +ĠSte vie +Ġl ender +Ġbrig ade +Ġdeuts che +m uffled +b art +Ġinsan ity +Ġsav vy +Ġsens ational +Ġdere chos +ĠM X +ĠпÑĢ еп +Ġthreat ens +Ġrealt Ãł +Ġindic ative +Ġch ops +Ġbenef iting +ĠVern on +ĠSt rand +n un +qu ently +10 1 +Ġe el +ìĪ Ļ +r ints +ĠÙħ س +Ġب د +Ġпо ÑģÑĤÑĢо +Ġyap mÄ±ÅŁ +Ġol ması +Ġi edereen +ol é +ke f +Ġë°ľ ìĥĿ +Ġr ained +Ġalm ighty +ĠвÑĭ д +ĠC PR +F re +Ġinhab ited +Ġarb ets +Ġa kin +а ÑģÑĤв +v ania +Ġhäuf ig +ĠMat te +s orry +Jen ny +ĠгÑĢ ад +Ġwh it +Ġbro kers +å¯ Ł +Ġh ine +ast en +Ġг ÑĢÑĥ +M B +ĠP RI +S ab +Ġwrest ler +Ġfacil itating +Ġeh kä +ĠC red +Ġ12 7 +Ġnot hin +Ġmand ated +å¯ Į +ÑĥÑĤ ÑģÑĤв +F rank +Ġwor s +Ġdzie ÅĦ +ĠUnder ground +Ġznaj du +ĠB ä +ĠPrin zip +аÑĤ елей +Ġveter inar +Ġsplend id +Ġroz p +Ġpsych opath +ig on +Ġh ops +Ġc ần +ĠX ian +Ġtro isième +Ġproduct o +ĠdeÄŁ er +ĠContin uing +ив ал +c ık +Ġmoistur izer +Wh ite +Ġsi is +ĠEver est +ien ced +Ġcả m +ĠJ apon +´ìł Ħ +Ġten ÃŃan +Ġenc anta +M m +Ġdrop down +ĠI ya +³´ë ©´ +Ġword ing +ĠSque eze +ĠMap le +Ġclar ified +ĠMun icip +ĠRou ge +ĠNick i +ĠGo o +v olt +t ek +fect ure +f red +ar rive +ãĥ¼ ãģĦ +te z +E p +Ġob ras +ĠV ID +ĠR iv +ĠMod i +i be +Ġacontec endo +Ġim itation +Ġcamoufl age +Ġspan ning +ĠSEC RET +ĠOre o +ìĨĮë ¦¬ +Ġh unch +Ġca ÅĤe +Ġspont aneously +ĠPer d +Ġet ap +ĠHo le +ĠDis ability +Ġafter life +æģ © +Ġtest ified +Ġpres up +Ġpet roleum +Ġcontr ario +ĠAss essment +ÄŁ lu +Ġp ests +Ġdil ig +ĠвÑģÑĤÑĢ еÑĤ +Ġcons équ +Ġcann ons +Ġcan oe +ĠM ile +Ġcit oy +Ġbe gged +ĠMin nie +ÅĤy ch +Ġprinci pe +ÏĢÏĮ ν +m niej +Ġw ert +Ġëĭ¤ë ĵ¤ +an se +Ġunc les +Ġprovoc ative +Ġinter sections +Ġdemocr ats +ĠJul ius +ин ки +yg usal +Ġ׾ ×ķ +Ġgj orde +Ġg asket +ĠB ock +ĠÄ° n +b reat +ĠEqu ity +ard ı +Ġкан але +Ġд ней +Ġt Ỽi +Ġfi xture +Ġab uses +Ġv aya +Ġou vert +Ġmultic ultural +Ġcontext o +ĠSes ame +Ġdé pl +Ġcons omm +ĠPart e +Ġp em +ĠCon an +Ġб ÑĸлÑĮ +Ġpersu aded +Ġdra ins +M oo +F ORE +Ġб аÑĤ +Ġf od +ĠProduct s +ì§Ħ ì§ľ +Ġ" [ +ĠW ick +ĠNar uto +н али +ry w +Ġl odge +Ġin h +Ġvont ade +Ġdi j +ĠJes ús +Look ing +Ġfore arm +ĠIntegr ation +ĠHARR IS +Ġtool bar +le ader +Ġsel dom +Ġб ÑĢоÑģ +ĠK ook +он д +Ġmon opol +Ġmill et +Ġl ira +ĠAs ians +Ġ18 90 +ci ÄŁim +Ġed en +ĠIKE A +ĠNeigh bor +ĠKazu ya +ü d +Ġpsych edel +Ġenvision ed +åĿ Ĺ +Ġï· » +Ġw under +ĠBulgar ia +B rid +Ġmar row +Ġdep iction +ĠT in +ĠPhar ise +Ġeinz ige +Ġblind ly +ãģĽ ãģ¦ +Ġdef ens +D ire +Ġvibr ating +Ġtroll s +Ġdisrespect ful +Ġw od +Ġstimul i +Ġcreep ing +Ġcla irement +Ġsc ariest +Ġdécouv rir +Ġ10 4 +ĠвеÑĢ Ñħ +ĠÅĤ at +Ġróż ne +Ġbar ley +ĠRe pl +ĠT we +k ke +ĠãģĿ ãĤĮ +ĠRed mi +ĠMet roid +Ġή ÏĦαν +Che ck +ĠS EN +Ġ ido +ÑĤоÑĢ ии +ó p +UN KNOWN +Ġänd ern +ĠJu ice +ĠGes icht +å°± æľĥ +ĠнаÑģÑĤ олÑĮко +íĥ ķ +Â Ń +ex hales +Ġì´ ī +Ġj sem +ÏĢ ÏīÏĤ +Ġit t +ëªħ ìĿ´ +Ġrem ix +Ġbloss oms +ĠR enee +is ations +ìĬ¤í Ħ° +Ġë³´ ìĿ´ëĬĶ +uest as +op edia +ĠA im +ìĿ´ì¦ Ī +sc ene +Ġleak age +uck t +S ad +A sk +Ġsusp ense +Ġimp ost +ĠStrateg ic +ĠIt ÃŃs +âĢ Į +Ġkey boards +Ġam using +og r +id erman +ŀ ĸ +Ġв ижÑĥ +Ġd ips +Ġapolog ized +ĠST AR +Ġesc uela +ĠC hing +н ениÑı +Ġë¶Ģë¶Ħ ìĿ´ +ĠFle et +Ġs amb +Ġentsprech end +Ġelectrod es +ĠFrei heit +æĪij ä¸įçŁ¥éģĵ +ĠSh rim +iÃŁ e +Ġselect ions +Ġfor di +Ġd oss +Ñı Ñĩ +Ġdiscrimin ate +ĠAu ÃŁerdem +Ġdesenvol v +ĠIntern al +ĠBened ict +å¯ Ĩ +ĠSh iv +M issy +Ġоб наÑĢÑĥж +Ġна ÑģÑĤÑĢо +Ġcontrol ar +ĠL ia +Ġopio ids +ant u +Ġcup board +æģ IJ +г е +acht s +Ġcur ated +Ġx em +Ġwe ary +Ġbre thren +Ġbudget ing +Ġpour tant +éļ » +ais ia +ĠоÑĤв еÑĩ +ĠG IS +μ αι +Ġש×Ķ ×ķ×IJ +Ġsa ud +Ġl Ỽ +Ðķ Т +ub ine +ĠнÑĥж ен +Ġkidna pping +Ġbr at +ĠTer re +ĠMon et +Ġë§Ī ìĬ¤íģ +Ġflash y +ĠIS BN +Ġfreel ance +i age +Ġjun ge +ì¶ © +cer al +ĠÑĤоÑĩ ки +Ġform ulate +ĠF ER +ĠDart mouth +ìľ¼ë ©´ìĦľ +å¢ ĥ +ow iÄħ +ĠëĶĶ ìŀIJ +Ġreg iment +Ġmetabol ismo +ĠP arr +Ġ충 ë¶Ħ +Ġsan ity +ĠL al +ĠG ö +ĠG la +Ġprot o +Ġmicroscop ic +Ġk ang +ĠSc alia +Ġp ug +ĠSc ore +ĠSav annah +Ġgard e +ĠN OR +å°į åIJ§ +Ġsche int +Ġp óÅĤ +Ġcor ri +Ġbr ute +Ġ ÅĤad +ä»ĸ 们 +Ġsucceed ing +Ġbicy cles +N on +Ġseek ers +Ġuncond itional +Ġrhy mes +ĠGar age +Ġinv oice +Ġcan vi +ne ck +Ġcustom izable +irit ual +Que en +íķĺ ìĭľëĬĶ +Ġpower less +Ġcs ak +ä¸į ä¼ļ +is oft +Ġìłķ íĻķ +Ġnh ân +ĠM AND +ĠH af +Ġrevol ves +ä¹Ł åı¯ä»¥ +ov an +ar oo +ĠGr ind +éĽ ª +Ġindispens able +Ġconsult ed +ĠClin ical +A cc +Ġol hos +Ġmon ter +ĠH ana +et ah +Ġva an +Ġt igers +Ġcau cus +ðŁĺ Ĥ +³´ì ŀIJ +pow ers +ium s +ĠíĨ łë +Ġtrad icional +Ġreson ated +Ġìĭł 기 +th em +Ro bert +Ġelement o +Ġant id +Ġоб Ñģ +Ġnat ives +Ġlo ca +ow ment +ĠT ight +Ġ æĢĿ +Ġmel an +ĠN ue +am is +Ġsor gen +as ına +H ome +ĠPUB G +Ġaw fully +ĠSh ore +ĠPer ché +ĠL au +ĠCind erella +ĠCh est +Ġsem antic +Ġdesert ed +ĠMom o +ĠHern andez +gen es +ĠAd ult +иÑĩеÑģ кого +osh ima +ĠcaracterÃŃst icas +ĠK L +´ìŀ ¥ +oc ar +Ġfeh lt +Ġd ruk +ĠPop py +EN GLISH +ĠVerg leich +B rien +Ġrec omp +ĠÑģ д +Ġmer ger +Ġmarket ers +Ġhoney moon +Ġpen so +Ġbell i +еÑĤ Ñĥ +Ġbank er +Cam era +ĠSt all +ĠSt amp +ĠB ite +еж де +Ġs ür +Ġgü ç +ĠPas sover +ĠBug ün +ĠÑģожал ениÑİ +Ġн из +Ġman ure +Ġglac ier +è« ĩ +RA Y +ter ror +Ġsal ads +Ġhur ricanes +ĠDesign er +ator io +Ġfact ual +ĠTam my +Ġзв ÑĥÑĩ +Ġintrodu ctions +Ġhouse keeping +Ġh anger +ëĭ ĺë +ak te +ĠCol a +' ] +ĠG ender +оÑĢ он +ip se +ic ias +Ġsuccess ive +Ġpolit ic +Ġhö her +ĠQ iao +ĠG imme +Ġл ож +Ġse b +ĠWe iter +ĠSak ura +ĠB oulder +ĠAm érica +peÅĤ nie +Ġtecn ologÃŃa +ish ops +f ur +Ġmoon light +Ġdispers ed +Ġre z +ен ное +алÑĮ нÑĥÑİ +ĠTw elve +ĠH OR +ìĭ¤í ŀĪ +il age +Ġshad ed +Ġres umes +ĠPe anut +ĠM ILL +ap ons +ĠU FC +ĠSo le +Ġjoy stick +ĠOliv ier +war ming +Ġsyll abus +Ġоб Ñīе +Ġhi á»ĩn +Ġfest a +Ġcr adle +ĠZ ac +Ġremem brance +Ġê°Ļ ìķĦìĦľ +ĠpiÄĻ k +Ġco exist +ĠV II +Ġá reas +Ġu waż +Ġobser vers +Ġmännisk or +co on +ĠD AM +Ġnas zym +Ġall igator +ĠFree ze +ĠEst ate +ĠÑĤÑĢ ади +Ġunder cover +Ġn ies +ĠFeh ler +pl in +ĠK abul +il ate +Ġê³ł ìĸij +Ġm op +ìĦ ¼ +Ġand erer +ĠK ELL +ок и +Ġж еÑģÑĤ +Ġgra zing +Ġda ÃŃ +Ġcapital ize +Ġa pex +Ġnurt uring +Ġcort ar +Ġcontr ac +ımız ı +Ġtand em +éĥ½ æľī +ge ment +ĠÑģиÑģÑĤем а +Ġman que +ia jÄħ +W OR +Ġا ب +Ġcart s +AN O +Ġë°Ľ ê³ł +ĠC ena +ĠBi ology +id ar +Ġa ż +er ne +an u +Ġthank ed +Ġsubmar ines +Ġman ic +Ġм оз +ä¼ Ĭ +inst ant +ess ential +Ġsam urai +Ġpast i +Ġal an +Ġbro ch +Ġb aker +ĠGu ill +¨ ¼ +Ġwithd rawn +ëĭ Ŀ +Per fect +qu ency +Ġstream lined +Ġ13 00 +´ë ıĦ +Ġëĸ łë +Ġãģ¯ ãģĦ +Ġh vad +ä¸Ģå®ļ è¦ģ +Ġverb ally +ĠK ons +Ġì¡° ìĭ¬ +Ġdie z +æİ° æİ° +Ġchuck ling +ĠM ih +Ġrall ies +Ġman ter +Ġearn est +s uper +Ġge ce +ĠR end +ĠGer ade +jen igen +ĠV all +Ġìŀ ĪëĤĺ +ĠÑģказ ала +Ġtrabal h +ĠнаÑĪ ем +Ġм еÑħ +ik it +Ġnoun s +Ġneurolog ical +Ġmotiv ational +ĠMcM ahon +ĠFin ished +Ġë³´ ìĿ´ +ĠField s +Ġadoles cents +ĠT isch +ĠNe ben +ĠFl owers +ĠEner g +Ġdire t +ĠTh i +ĠP icas +æĥ ľ +æĢİä¹Ī æł· +Ġav ete +ĠF ors +ĠChap el +N ão +E t +ĠÑģод еÑĢж +ren o +Ġs ven +Ġdost ÄĻp +ne e +ĠSnap dragon +ĠID s +ìķĺ ëĬĶëį° +ר ×ļ +Ġsun flower +Ġperpet ual +ç³ ĸ +Ġkn ights +Ġg ird +ĠTo ld +Ġvolcano es +Ġadvers ary +ĠEconom y +Ġextra pol +Ġbl uetooth +Ġzoom ing +Ġsk ys +Ġgen ial +ÃŃcul os +amb re +Ġм еÑĢ +Ġteen y +Ġstress ing +ìķ Į +ON Y +Ġtransluc ent +Ġround ing +Ġgr ues +×Ļ׳ ×Ķ +ap rès +Ġprue ba +Ġpoly gon +Ġblue berry +ĠProgram m +Ġtren ches +Ġse bagai +Ġpal ate +Ġla ude +Ġbehav ed +Ġlongitud inal +ĠMod ule +Ġadm ir +λ ι +G reg +Ġwy st +Ġpropag ate +Ġmold s +ĠT ub +ĠL oud +ust o +Ġun stoppable +Ġreinfor cing +éĿŀ常 çļĦ +ĠпÑĢоблем а +Ġpot encial +Ġhe mp +ìŀ Ķ +ठ¯ +Ġopt ic +Ġerfolg reich +Ñģ Ñĭ +олÑĮ ÑĪе +ur st +ĠPo is +Ġrespond ents +Ġneh me +ĠEx ternal +ol ate +H yun +Ġquart z +Ġmathematic ian +Ġbás icamente +Ġa il +ìł ľë¥¼ +att utto +Ġno oit +Ġaff lict +ĠOl ga +èŃ · +Ġна ÑĤ +Ġd ites +Ġreal idade +Ġk än +Ġuniqu eness +Ġpad res +Ġsubs idi +Ġpige ons +β α +st ad +Ġder en +ĠС лед +d oo +ĠопиÑģ ании +Ġam ber +Ġgoose bumps +ĠfrÃ¥ gor +ĠV ital +ĠIsrael ites +w asser +Is n +Ġcomm its +ĠSTE VEN +ĠBev ölker +uit ive +Ġleg en +Ġbr uk +иÑĢов ан +yn en +hel m +Ġgener ational +ĠL ändern +οι ÏĢÏĮν +uz u +Ġcall er +он ÑĮ +üm ü +Ġbes ar +Ġpl ats +Ġmig rated +Ġj ap +ĠW AR +Ġdis sect +ĠZus ch +ĠZe iten +ĠL ions +ĠD F +â Ķ +ки в +Ġpedest rians +ĠMar ilyn +d ock +Ġy ht +Ġre incarn +ĠSon o +ĠGrow th +ÑĥÑģ ов +Ġdun geons +Ġbag us +k ich +ĠÑĥ кÑĢаÑĹ +éĨ « +ĠK eller +chem istry +J apanese +Ġwill st +Ġdecomp osition +ĠÑģÑĤ ен +Ġrev ived +íķĻ êµIJ +ĠÅ ĵ +ä½ IJ +ìĭ ¸ +ipp y +Ġhour ly +j än +ĠWork shop +Ŀ¼ ìĦľ +Ġcu arto +Ġpat rim +ĠB urch +ĠìŀĪ 기 +Ġhe pat +Ġh Ãłng +ĠëĮĢ íķ´ +ĠваÑĪ и +Ġre work +Ġpar se +Ġçıkt ı +ĠS ax +ĠMong o +ĠAa ah +ram ble +D J +Ġstabil ized +ĠSpe ech +Book s +Ġhur dles +ĠW O +ĠLamb org +Ġ19 33 +Ġvor bere +Ġclin ically +Ġbreat htaking +ĠGate way +пеÑĢв ÑĭÑħ +ut ers +Ġë¹ µ +Ġyet er +Ġpull ey +Ġmuff in +ĠPre fer +ĠP ence +Ġinform ação +ìĬ¤í Ĭ¸ë +ãĤ¸ ãĥ£ +ĠTur tle +ĠReg ina +ĠLo ad +do es +pan ze +¸ Ķ +Ġmin a +ĠLatin os +amm ers +ĠT ort +ĠBey once +имо ÑģÑĤи +ĠвопÑĢоÑģ Ñĭ +Ġbul un +èĢĮ å·² +ine k +bere ich +Ġpast ure +ĠO A +ĠM elt +ĠEt t +ĠD Y +Ġob wohl +Ġle agues +ÑĤ еÑģÑĮ +Ġк ÑĥÑģ +Ġv ors +Ġto pp +ograph ical +as st +Ġl indo +Ġë°Ŀ íĺĶ +Ġré fl +Ġclim bs +Ġv arsa +Ġmethy l +ĠKar ere +Æ°á» Ł +R ad +Ġprepared ness +он Ñĩ +ĠO D +ĠC GI +Ġठ® +Ġspeech less +Ġlas ci +Ġbol ag +ĠÑħоÑĩ еÑĤÑģÑı +Ġgr ieving +ĠJohann es +ĠCar roll +ad aki +Ī ¬ë +ĠsÅĤ u +Ġinner halb +Ġgymn astics +п ÑĢи +if iques +Ġkar ate +Ġdom u +ãģĿãĤĮ ãģ§ +OTH ER +Ġdemand é +Ġbook let +ĠKy oto +Ġw oh +ĠMar ÃŃa +viol ent +J E +Ġl óg +Ġbrut ally +c ot +ĠÙħ ÛĮ +ĠWars z +å® Ī +w ol +Ġmik ä +ĠPron ounce +ĠBrend an +Ġr oup +Ġital iano +å¦Ĥ æѤ +Ġкомп ÑĮÑİÑĤ +Ġur ging +ed es +Ġcarbon o +ĠRichards on +ĠÐĿ аÑĩ +ĠTra iner +ĠCrime a +Ġdi apers +Ġco vet +ĠMah ar +ĠH utch +ĠAus w +ber ty +Ġind ifferent +кÑĢ еÑĤ +uld ade +Ġhar ms +¢ ÙĨ +les ia +Ġg io +ĠMist ress +ĠK nox +ĠFRE E +Ġë £¨ë +ĠнаÑĪ а +Ġinvinci ble +Ġma iden +ĠJ eez +Ġbre ve +po le +Ġcritic isms +ĠRus ia +ठ® +ph in +ĠComp are +ĠB ON +Ġsne aking +ĠR ails +ĠG eral +Ġ195 3 +H ola +Ġоп ÑĭÑĤ +Ġrain forest +Ġbel um +ĠOb i +ĠIS S +ãĤĮ ãģªãģĦ +ĠС в +Ġbl ond +Ġwz gl +Ġpowiedz iaÅĤ +Ġch oking +ĠSong s +ĠBir az +Ġyell s +Ġstyl ist +ÏĮ ÏĦε +Ġsch reiben +ĠJ aw +ĠEle ven +ĠR if +/ . +Ġìĺ¤ë ŀľë§Į +Ġtreat ies +uff ed +ĠâĪ Ĵ +Ġroof s +à¹Ģภª +Ġë » +Ġspark le +ĠK iev +ĠAr gu +ere cht +ĠÐĿад о +ĠF IL +Ġmol ta +ĠDe vi +Ġcam pe +Ġbene vol +ĠT ough +Ġmo im +Ġevac uate +Ġer rado +å© Ĩ +ÑĢÑĥ го +Ġíİ ĺ +ĠÎĵ ια +Ġweak en +Ġillum inated +Ġsig lo +ĠV acc +и ей +al is +ĠÑĥ ÑģÑĤÑĢой +Ġdon a +ÅĤ os +ü man +Ġprodu cción +Ġcl ot +ĠM ango +Ġune asy +Ġsh uts +ĠExam ples +ve ll +e be +Ġprompt ly +ĠT eles +ĠпÑĢоÑĪ л +Ġpu erta +Ġüber zeug +Ġco ch +so cial +ĠB enson +ĠM eth +ĠEx ped +Ġsupplement al +Ġconce ive +Ġ×ĺ ×ķ×ij +Ġcapt ivity +ıĻ ìķĪ +ĠÑħ Ñĥд +form ing +Ġupload s +Ġturbul ence +j oint +Ġsatisf actory +ĠAn ime +Ġwash es +Ġliber als +ĠSun shine +ĠRE AL +ub lik +b inary +T ony +Ġpolar ized +Ġenrich ed +t aking +ĠëģĿ ëĤĺ +Ġple asures +Ġex termin +in ese +at l +v är +аÑĢ Ñĭ +Ġmy ÅĽ +n arrator +Ġод ном +Ġnaj wiÄĻ +Ġmobil ize +Ġmill or +Ġat a +æ· · +ĠpolÃŃt ico +Ġple ad +Ġpain ters +ĠS ow +о ÑĦ +ĠìĺĽ ëĤł +ĠÑĩ ÑĤоб +Ġs abor +ĠUnd ert +ĠJER RY +Å¡ ÃŃ +Ġë° ĸìĹIJ +Ġpréc éd +Ġannot ation +ĠI naudible +Ġtext ured +Ġfisher man +v ordan +icher ung +Ġìłģ ìĿ´ +Ġge zeigt +Ġmand ates +Ġbe ak +ĠTW O +ĠAk bar +il ian +Ġtiế p +Ġsuperior ity +ink u +Ġl ys +ĠF CC +ĠC PA +ust ering +nic os +an ja +Ġch ills +ĠC age +Ġse aling +Ġsa ç +Ġded ans +ĠAl ger +Ġspe zie +Ġcol oss +ıy ı +clock wise +Ġexact amente +Ġ iemand +am ı +Ġmand ar +ra j +f aced +ag ua +Ġê¹ Ķë +Ġins besondere +Ġdri zzle +Ġdimin ish +ĠY oda +A I +Ġbil miyorum +ĠM MA +ateg ory +ĠпеÑĢ еп +Ġparticip ar +Ġnormal ized +Ġcomplex ities +æ´ ² +æİ § +аÑĢ ов +m ist +ich a +Gr oup +Ġresil iency +Ġnog le +ĠCN C +pr ü +Ġphysic ists +н ок +L I +Ġstuff s +Ġsist emas +Ġinterfer ing +ĠMar vin +ér cito +ĠìĹĨ ê³ł +Ġson ic +Ġequ iv +Ġab ord +ĠRam en +Ġ0 9 +med im +at iques +Ġдел аÑİÑĤ +Ġunanim ously +Ġsk irts +ĠíĬ¹ ë³Ħ +ĠP rix +k ami +Ġfr uition +Ġbirthday s +ик ом +Ġinaug ural +Ġcorrel ate +ĠT ory +ĠëĤĺ ìģ +Ġde w +ĠPre cis +ih i +Ġë¬¸ìłľ ê°Ģ +Ġc iting +ĠL ana +ĠK ag +Ġplay through +ĠProt ocol +fr ist +hov ah +Ġmerc iful +Ġb ilingual +ĠG uitar +r h +Ġglam orous +ĠVik ings +ĠOoo oh +íķĺ ëĬĶëį° +ĠUg anda +Ġcollaps es +ent ry +Ġantioxid ants +ëĤ ĺë +ÑĪ аÑı +Ġtri via +Ġgä ller +Ġfun gi +Ġmil ks +Ġd icht +μ η +po ke +ĠвÑĭп ÑĥÑģк +Ġfeed er +ĠAl cohol +h ower +Ġdes erving +ĠRe bel +ios is +Ġ10 3 +Ġhand out +Ġen m +Ġland lords +Ġge ology +r ils +Ġco bra +ĠV old +ĠP anch +ĠGRE G +Ġpr oss +Ġbrac elets +ĠV ega +Ġroz um +æ¬ ¾ +аз д +ĠLy nd +ĠHon ors +Ġsurrend ered +Ġlibr arians +12 5 +ĠÑģ иг +Ġuniform ly +ĠE agles +ìķ Ļ +иÑĤ ан +and id +ĠìłĪë ĮĢ +ĠØ ¶ +Ġarrest s +ĠCS V +ĠAzerbai jan +ort ic +ĠD X +ĠAdvent ures +Ġab us +ĠF au +Ġschlim m +Ġratt ling +Ġconsum es +ĠTol kien +Ġresurrect ed +ĠX Y +íĬ¸ ê°Ģ +ĠвÑĭ ÑģÑĤÑĥп +ĠAng ie +żen ia +M ic +ĠShe ila +acht et +Ġover st +Ġl â +Ġine ffective +æĿ ¡ +æĢİä¹Ī äºĨ +å¿ Ļ +Ġwicht iger +Ġv ino +Ġp um +Ġang led +ĠP ione +ĠM ỹ +ãģĿãĤĮ ãģ¯ +wo ÅĽÄĩ +d raw +ั à¹Ī +mark ets +Ġcaf es +ĠC em +â Ŀ¤ +ĠS uit +M K +Ġemphas izes +Ġtort illa +Ġmejor ar +ĠSur viv +cast ing +Ġeduc ación +ĠG um +u ely +ĠìĹ¬ê¸° ëĬĶ +Ġstretch y +en ça +Ġwith hold +Ġex iting +Ġenthal py +ĠTrans it +ıl mÄ±ÅŁ +al ies +Ġsal var +Ġlean ed +ĠgroÃŁ es +Ġf itt +ак и +S arah +Ġhost el +Ġfinger na +Ġnadzie jÄĻ +w ives +R ec +Ġsp ool +аÑĤ ов +ĠEn emy +Ġf ury +Ġdet ta +ĠF ay +éļ ¨ +Ñı ÑİÑĤ +Ġaproxim adamente +Ġsil os +Ġmag ist +Ġc ree +ĠKr ank +ĠD OWN +Ġstart led +Ġre born +ĠUm welt +ĠSuz anne +ни ÑĨÑĭ +out ez +ĠJ AC +y ards +rad as +ra u +ip ts +h ail +Ġparagraph s +Ġme glio +Ġisol ating +Ġace ite +ĠH arsh +Ġcy st +ĠBlock chain +ĠÑħоÑĢоÑĪ ий +Ġvirt uous +Ġinvestig ación +Ġdev oir +Ġmast urb +ĠS ale +ÙĬر Ø© +ĠÎ § +ĠStra ÃŁen +Ġdi kk +Ġa fore +ĠJung kook +Ġcho ciaż +ĠDebat te +Ġweird ly +Ġvia je +reg ist +H elp +Ġkind eren +Ġform ulated +Ġenf im +ĠTow ards +ко ÑĹ +iver ing +ĠдеÑĤ и +char ger +Ġpur l +Ġacadem ically +ĠNur se +Ġdel eting +ay o +Ġref usal +Ġdepict s +ĠDr acula +Ġtoast ed +ĠZomb ie +ĠSuper ior +ĠB old +Ġquizz es +Ġg le +4 50 +Ġcome ço +yn n +Ġver st +ĠO laf +Ġpom oc +ĠS ask +ë ĺ +ĠT CP +ĠProper ty +íķĺ ì£ł +à¸ľ ม +bo om +ar os +ĠÑĢоÑģÑģ ий +ĠбÑĭв аеÑĤ +åĩº åİ» +ĠìĿ´ìķ¼ 기를 +Ġcomb ien +v acc +Ġeben falls +par a +Ġз м +Ġdesper ation +ord re +Ġש׾ ×Ļ +Ġgener ously +ĠÐŀ к +Ġorb iting +> ", + "archeological": "archaeological", + "ardour": "ardor", + "armour": "armor", + "armoured": "armored", + "armourer": "armorer", + "armourers": "armorers", + "armouries": "armories", + "armoury": "armory", + "artefact": "artifact", + "artefacts": "artifacts", + "authorise": "authorize", + "authorised": "authorized", + "authorises": "authorizes", + "authorising": "authorizing", + "axe": "ax", + "backpedalled": "backpedaled", + "backpedalling": "backpedaling", + "bannister": "banister", + "bannisters": "banisters", + "baptise": "baptize", + "baptised": "baptized", + "baptises": "baptizes", + "baptising": "baptizing", + "bastardise": "bastardize", + "bastardised": "bastardized", + "bastardises": "bastardizes", + "bastardising": "bastardizing", + "battleax": "battleaxe", + "baulk": "balk", + "baulked": "balked", + "baulking": "balking", + "baulks": "balks", + "bedevilled": "bedeviled", + "bedevilling": "bedeviling", + "behaviour": "behavior", + "behavioural": "behavioral", + "behaviourism": "behaviorism", + "behaviourist": "behaviorist", + "behaviourists": "behaviorists", + "behaviours": "behaviors", + "behove": "behoove", + "behoved": "behooved", + "behoves": "behooves", + "bejewelled": "bejeweled", + "belabour": "belabor", + "belaboured": "belabored", + "belabouring": "belaboring", + "belabours": "belabors", + "bevelled": "beveled", + "bevvies": "bevies", + "bevvy": "bevy", + "biassed": "biased", + "biassing": "biasing", + "bingeing": "binging", + "bougainvillaea": "bougainvillea", + "bougainvillaeas": "bougainvilleas", + "bowdlerise": "bowdlerize", + "bowdlerised": "bowdlerized", + "bowdlerises": "bowdlerizes", + "bowdlerising": "bowdlerizing", + "breathalyse": "breathalyze", + "breathalysed": "breathalyzed", + "breathalyser": "breathalyzer", + "breathalysers": "breathalyzers", + "breathalyses": "breathalyzes", + "breathalysing": "breathalyzing", + "brutalise": "brutalize", + "brutalised": "brutalized", + "brutalises": "brutalizes", + "brutalising": "brutalizing", + "busses": "buses", + "bussing": "busing", + "caesarean": "cesarean", + "caesareans": "cesareans", + "calibre": "caliber", + "calibres": "calibers", + "calliper": "caliper", + "callipers": "calipers", + "callisthenics": "calisthenics", + "canalise": "canalize", + "canalised": "canalized", + "canalises": "canalizes", + "canalising": "canalizing", + "cancelation": "cancellation", + "cancelations": "cancellations", + "cancelled": "canceled", + "cancelling": "canceling", + "candour": "candor", + "cannibalise": "cannibalize", + "cannibalised": "cannibalized", + "cannibalises": "cannibalizes", + "cannibalising": "cannibalizing", + "canonise": "canonize", + "canonised": "canonized", + "canonises": "canonizes", + "canonising": "canonizing", + "capitalise": "capitalize", + "capitalised": "capitalized", + "capitalises": "capitalizes", + "capitalising": "capitalizing", + "caramelise": "caramelize", + "caramelised": "caramelized", + "caramelises": "caramelizes", + "caramelising": "caramelizing", + "carbonise": "carbonize", + "carbonised": "carbonized", + "carbonises": "carbonizes", + "carbonising": "carbonizing", + "carolled": "caroled", + "carolling": "caroling", + "catalogue": "catalog", + "catalogued": "cataloged", + "catalogues": "catalogs", + "cataloguing": "cataloging", + "catalyse": "catalyze", + "catalysed": "catalyzed", + "catalyses": "catalyzes", + "catalysing": "catalyzing", + "categorise": "categorize", + "categorised": "categorized", + "categorises": "categorizes", + "categorising": "categorizing", + "cauterise": "cauterize", + "cauterised": "cauterized", + "cauterises": "cauterizes", + "cauterising": "cauterizing", + "cavilled": "caviled", + "cavilling": "caviling", + "centigramme": "centigram", + "centigrammes": "centigrams", + "centilitre": "centiliter", + "centilitres": "centiliters", + "centimetre": "centimeter", + "centimetres": "centimeters", + "centralise": "centralize", + "centralised": "centralized", + "centralises": "centralizes", + "centralising": "centralizing", + "centre": "center", + "centred": "centered", + "centrefold": "centerfold", + "centrefolds": "centerfolds", + "centrepiece": "centerpiece", + "centrepieces": "centerpieces", + "centres": "centers", + "channelled": "channeled", + "channelling": "channeling", + "characterise": "characterize", + "characterised": "characterized", + "characterises": "characterizes", + "characterising": "characterizing", + "cheque": "check", + "chequebook": "checkbook", + "chequebooks": "checkbooks", + "chequered": "checkered", + "cheques": "checks", + "chilli": "chili", + "chimaera": "chimera", + "chimaeras": "chimeras", + "chiselled": "chiseled", + "chiselling": "chiseling", + "circularise": "circularize", + "circularised": "circularized", + "circularises": "circularizes", + "circularising": "circularizing", + "civilise": "civilize", + "civilised": "civilized", + "civilises": "civilizes", + "civilising": "civilizing", + "clamour": "clamor", + "clamoured": "clamored", + "clamouring": "clamoring", + "clamours": "clamors", + "clangour": "clangor", + "clarinettist": "clarinetist", + "clarinettists": "clarinetists", + "collectivise": "collectivize", + "collectivised": "collectivized", + "collectivises": "collectivizes", + "collectivising": "collectivizing", + "colonisation": "colonization", + "colonise": "colonize", + "colonised": "colonized", + "coloniser": "colonizer", + "colonisers": "colonizers", + "colonises": "colonizes", + "colonising": "colonizing", + "colour": "color", + "colourant": "colorant", + "colourants": "colorants", + "coloured": "colored", + "coloureds": "coloreds", + "colourful": "colorful", + "colourfully": "colorfully", + "colouring": "coloring", + "colourize": "colorize", + "colourized": "colorized", + "colourizes": "colorizes", + "colourizing": "colorizing", + "colourless": "colorless", + "colours": "colors", + "commercialise": "commercialize", + "commercialised": "commercialized", + "commercialises": "commercializes", + "commercialising": "commercializing", + "compartmentalise": "compartmentalize", + "compartmentalised": "compartmentalized", + "compartmentalises": "compartmentalizes", + "compartmentalising": "compartmentalizing", + "computerise": "computerize", + "computerised": "computerized", + "computerises": "computerizes", + "computerising": "computerizing", + "conceptualise": "conceptualize", + "conceptualised": "conceptualized", + "conceptualises": "conceptualizes", + "conceptualising": "conceptualizing", + "connexion": "connection", + "connexions": "connections", + "contextualise": "contextualize", + "contextualised": "contextualized", + "contextualises": "contextualizes", + "contextualising": "contextualizing", + "cosier": "cozier", + "cosies": "cozies", + "cosiest": "coziest", + "cosily": "cozily", + "cosiness": "coziness", + "cosy": "cozy", + "councillor": "councilor", + "councillors": "councilors", + "counselled": "counseled", + "counselling": "counseling", + "counsellor": "counselor", + "counsellors": "counselors", + "crenelated": "crenellated", + "criminalise": "criminalize", + "criminalised": "criminalized", + "criminalises": "criminalizes", + "criminalising": "criminalizing", + "criticise": "criticize", + "criticised": "criticized", + "criticises": "criticizes", + "criticising": "criticizing", + "crueller": "crueler", + "cruellest": "cruelest", + "crystallisation": "crystallization", + "crystallise": "crystallize", + "crystallised": "crystallized", + "crystallises": "crystallizes", + "crystallising": "crystallizing", + "cudgelled": "cudgeled", + "cudgelling": "cudgeling", + "customise": "customize", + "customised": "customized", + "customises": "customizes", + "customising": "customizing", + "cypher": "cipher", + "cyphers": "ciphers", + "decentralisation": "decentralization", + "decentralise": "decentralize", + "decentralised": "decentralized", + "decentralises": "decentralizes", + "decentralising": "decentralizing", + "decriminalisation": "decriminalization", + "decriminalise": "decriminalize", + "decriminalised": "decriminalized", + "decriminalises": "decriminalizes", + "decriminalising": "decriminalizing", + "defence": "defense", + "defenceless": "defenseless", + "defences": "defenses", + "dehumanisation": "dehumanization", + "dehumanise": "dehumanize", + "dehumanised": "dehumanized", + "dehumanises": "dehumanizes", + "dehumanising": "dehumanizing", + "demeanour": "demeanor", + "demilitarisation": "demilitarization", + "demilitarise": "demilitarize", + "demilitarised": "demilitarized", + "demilitarises": "demilitarizes", + "demilitarising": "demilitarizing", + "demobilisation": "demobilization", + "demobilise": "demobilize", + "demobilised": "demobilized", + "demobilises": "demobilizes", + "demobilising": "demobilizing", + "democratisation": "democratization", + "democratise": "democratize", + "democratised": "democratized", + "democratises": "democratizes", + "democratising": "democratizing", + "demonise": "demonize", + "demonised": "demonized", + "demonises": "demonizes", + "demonising": "demonizing", + "demoralisation": "demoralization", + "demoralise": "demoralize", + "demoralised": "demoralized", + "demoralises": "demoralizes", + "demoralising": "demoralizing", + "denationalisation": "denationalization", + "denationalise": "denationalize", + "denationalised": "denationalized", + "denationalises": "denationalizes", + "denationalising": "denationalizing", + "deodorise": "deodorize", + "deodorised": "deodorized", + "deodorises": "deodorizes", + "deodorising": "deodorizing", + "depersonalise": "depersonalize", + "depersonalised": "depersonalized", + "depersonalises": "depersonalizes", + "depersonalising": "depersonalizing", + "deputise": "deputize", + "deputised": "deputized", + "deputises": "deputizes", + "deputising": "deputizing", + "desensitisation": "desensitization", + "desensitise": "desensitize", + "desensitised": "desensitized", + "desensitises": "desensitizes", + "desensitising": "desensitizing", + "destabilisation": "destabilization", + "destabilise": "destabilize", + "destabilised": "destabilized", + "destabilises": "destabilizes", + "destabilising": "destabilizing", + "dialled": "dialed", + "dialling": "dialing", + "dialogue": "dialog", + "dialogues": "dialogs", + "diarrhoea": "diarrhea", + "digitise": "digitize", + "digitised": "digitized", + "digitises": "digitizes", + "digitising": "digitizing", + "disc": "disk", + "discolour": "discolor", + "discoloured": "discolored", + "discolouring": "discoloring", + "discolours": "discolors", + "discs": "disks", + "disembowelled": "disemboweled", + "disembowelling": "disemboweling", + "disfavour": "disfavor", + "dishevelled": "disheveled", + "dishonour": "dishonor", + "dishonourable": "dishonorable", + "dishonourably": "dishonorably", + "dishonoured": "dishonored", + "dishonouring": "dishonoring", + "dishonours": "dishonors", + "disorganisation": "disorganization", + "disorganised": "disorganized", + "distil": "distill", + "distils": "distills", + "dramatisation": "dramatization", + "dramatisations": "dramatizations", + "dramatise": "dramatize", + "dramatised": "dramatized", + "dramatises": "dramatizes", + "dramatising": "dramatizing", + "draught": "draft", + "draughtboard": "draftboard", + "draughtboards": "draftboards", + "draughtier": "draftier", + "draughtiest": "draftiest", + "draughts": "drafts", + "draughtsman": "draftsman", + "draughtsmanship": "draftsmanship", + "draughtsmen": "draftsmen", + "draughtswoman": "draftswoman", + "draughtswomen": "draftswomen", + "draughty": "drafty", + "drivelled": "driveled", + "drivelling": "driveling", + "duelled": "dueled", + "duelling": "dueling", + "economise": "economize", + "economised": "economized", + "economises": "economizes", + "economising": "economizing", + "editorialise": "editorialize", + "editorialised": "editorialized", + "editorialises": "editorializes", + "editorialising": "editorializing", + "edoema": "edema", + "empathise": "empathize", + "empathised": "empathized", + "empathises": "empathizes", + "empathising": "empathizing", + "emphasise": "emphasize", + "emphasised": "emphasized", + "emphasises": "emphasizes", + "emphasising": "emphasizing", + "enamelled": "enameled", + "enamelling": "enameling", + "enamoured": "enamored", + "encyclopaedia": "encyclopedia", + "encyclopaedias": "encyclopedias", + "encyclopaedic": "encyclopedic", + "endeavour": "endeavor", + "endeavoured": "endeavored", + "endeavouring": "endeavoring", + "endeavours": "endeavors", + "energise": "energize", + "energised": "energized", + "energises": "energizes", + "energising": "energizing", + "enrol": "enroll", + "enrols": "enrolls", + "enthral": "enthrall", + "enthrals": "enthralls", + "epaulette": "epaulet", + "epaulettes": "epaulets", + "epicentre": "epicenter", + "epicentres": "epicenters", + "epilogue": "epilog", + "epilogues": "epilogs", + "epitomise": "epitomize", + "epitomised": "epitomized", + "epitomises": "epitomizes", + "epitomising": "epitomizing", + "equalisation": "equalization", + "equalise": "equalize", + "equalised": "equalized", + "equaliser": "equalizer", + "equalisers": "equalizers", + "equalises": "equalizes", + "equalising": "equalizing", + "eulogise": "eulogize", + "eulogised": "eulogized", + "eulogises": "eulogizes", + "eulogising": "eulogizing", + "evangelise": "evangelize", + "evangelised": "evangelized", + "evangelises": "evangelizes", + "evangelising": "evangelizing", + "exorcise": "exorcize", + "exorcised": "exorcized", + "exorcises": "exorcizes", + "exorcising": "exorcizing", + "extemporisation": "extemporization", + "extemporise": "extemporize", + "extemporised": "extemporized", + "extemporises": "extemporizes", + "extemporising": "extemporizing", + "externalisation": "externalization", + "externalisations": "externalizations", + "externalise": "externalize", + "externalised": "externalized", + "externalises": "externalizes", + "externalising": "externalizing", + "factorise": "factorize", + "factorised": "factorized", + "factorises": "factorizes", + "factorising": "factorizing", + "faecal": "fecal", + "faeces": "feces", + "familiarisation": "familiarization", + "familiarise": "familiarize", + "familiarised": "familiarized", + "familiarises": "familiarizes", + "familiarising": "familiarizing", + "fantasise": "fantasize", + "fantasised": "fantasized", + "fantasises": "fantasizes", + "fantasising": "fantasizing", + "favour": "favor", + "favourable": "favorable", + "favourably": "favorably", + "favoured": "favored", + "favouring": "favoring", + "favourite": "favorite", + "favourites": "favorites", + "favouritism": "favoritism", + "favours": "favors", + "feminise": "feminize", + "feminised": "feminized", + "feminises": "feminizes", + "feminising": "feminizing", + "fertilisation": "fertilization", + "fertilise": "fertilize", + "fertilised": "fertilized", + "fertiliser": "fertilizer", + "fertilisers": "fertilizers", + "fertilises": "fertilizes", + "fertilising": "fertilizing", + "fervour": "fervor", + "fibre": "fiber", + "fibreglass": "fiberglass", + "fibres": "fibers", + "fictionalisation": "fictionalization", + "fictionalisations": "fictionalizations", + "fictionalise": "fictionalize", + "fictionalised": "fictionalized", + "fictionalises": "fictionalizes", + "fictionalising": "fictionalizing", + "fillet": "filet", + "filleted": "fileted", + "filleting": "fileting", + "fillets": "filets", + "finalisation": "finalization", + "finalise": "finalize", + "finalised": "finalized", + "finalises": "finalizes", + "finalising": "finalizing", + "flautist": "flutist", + "flautists": "flutists", + "flavour": "flavor", + "flavoured": "flavored", + "flavouring": "flavoring", + "flavourings": "flavorings", + "flavourless": "flavorless", + "flavours": "flavors", + "flavoursome": "flavorsome", + "flyer / flier": "flier / flyer", + "foetal": "fetal", + "foetid": "fetid", + "foetus": "fetus", + "foetuses": "fetuses", + "formalisation": "formalization", + "formalise": "formalize", + "formalised": "formalized", + "formalises": "formalizes", + "formalising": "formalizing", + "fossilisation": "fossilization", + "fossilise": "fossilize", + "fossilised": "fossilized", + "fossilises": "fossilizes", + "fossilising": "fossilizing", + "fraternisation": "fraternization", + "fraternise": "fraternize", + "fraternised": "fraternized", + "fraternises": "fraternizes", + "fraternising": "fraternizing", + "fulfil": "fulfill", + "fulfilment": "fulfillment", + "fulfils": "fulfills", + "funnelled": "funneled", + "funnelling": "funneling", + "gage": "gauge", + "gaged": "gauged", + "gages": "gauges", + "gaging": "gauging", + "galvanise": "galvanize", + "galvanised": "galvanized", + "galvanises": "galvanizes", + "galvanising": "galvanizing", + "gambolled": "gamboled", + "gambolling": "gamboling", + "gaol": "jail", + "gaolbird": "jailbird", + "gaolbirds": "jailbirds", + "gaolbreak": "jailbreak", + "gaolbreaks": "jailbreaks", + "gaoled": "jailed", + "gaoler": "jailer", + "gaolers": "jailers", + "gaoling": "jailing", + "gaols": "jails", + "gasses": "gases", + "generalisation": "generalization", + "generalisations": "generalizations", + "generalise": "generalize", + "generalised": "generalized", + "generalises": "generalizes", + "generalising": "generalizing", + "ghettoise": "ghettoize", + "ghettoised": "ghettoized", + "ghettoises": "ghettoizes", + "ghettoising": "ghettoizing", + "gipsies": "gypsies", + "glamor": "glamour", + "glamorise": "glamorize", + "glamorised": "glamorized", + "glamorises": "glamorizes", + "glamorising": "glamorizing", + "globalisation": "globalization", + "globalise": "globalize", + "globalised": "globalized", + "globalises": "globalizes", + "globalising": "globalizing", + "glueing": "gluing", + "goitre": "goiter", + "goitres": "goiters", + "gonorrhoea": "gonorrhea", + "gramme": "gram", + "grammes": "grams", + "gravelled": "graveled", + "grey": "gray", + "greyed": "grayed", + "greying": "graying", + "greyish": "grayish", + "greyness": "grayness", + "greys": "grays", + "grovelled": "groveled", + "grovelling": "groveling", + "groyne": "groin", + "groynes": "groins", + "gruelling": "grueling", + "gruellingly": "gruelingly", + "gryphon": "griffin", + "gryphons": "griffins", + "gynaecological": "gynecological", + "gynaecologist": "gynecologist", + "gynaecologists": "gynecologists", + "gynaecology": "gynecology", + "haematological": "hematological", + "haematologist": "hematologist", + "haematologists": "hematologists", + "haematology": "hematology", + "haemoglobin": "hemoglobin", + "haemophilia": "hemophilia", + "haemophiliac": "hemophiliac", + "haemophiliacs": "hemophiliacs", + "haemorrhage": "hemorrhage", + "haemorrhaged": "hemorrhaged", + "haemorrhages": "hemorrhages", + "haemorrhaging": "hemorrhaging", + "haemorrhoids": "hemorrhoids", + "harbour": "harbor", + "harboured": "harbored", + "harbouring": "harboring", + "harbours": "harbors", + "harmonisation": "harmonization", + "harmonise": "harmonize", + "harmonised": "harmonized", + "harmonises": "harmonizes", + "harmonising": "harmonizing", + "homoeopath": "homeopath", + "homoeopathic": "homeopathic", + "homoeopaths": "homeopaths", + "homoeopathy": "homeopathy", + "homogenise": "homogenize", + "homogenised": "homogenized", + "homogenises": "homogenizes", + "homogenising": "homogenizing", + "honour": "honor", + "honourable": "honorable", + "honourably": "honorably", + "honoured": "honored", + "honouring": "honoring", + "honours": "honors", + "hospitalisation": "hospitalization", + "hospitalise": "hospitalize", + "hospitalised": "hospitalized", + "hospitalises": "hospitalizes", + "hospitalising": "hospitalizing", + "humanise": "humanize", + "humanised": "humanized", + "humanises": "humanizes", + "humanising": "humanizing", + "humour": "humor", + "humoured": "humored", + "humouring": "humoring", + "humourless": "humorless", + "humours": "humors", + "hybridise": "hybridize", + "hybridised": "hybridized", + "hybridises": "hybridizes", + "hybridising": "hybridizing", + "hypnotise": "hypnotize", + "hypnotised": "hypnotized", + "hypnotises": "hypnotizes", + "hypnotising": "hypnotizing", + "hypothesise": "hypothesize", + "hypothesised": "hypothesized", + "hypothesises": "hypothesizes", + "hypothesising": "hypothesizing", + "idealisation": "idealization", + "idealise": "idealize", + "idealised": "idealized", + "idealises": "idealizes", + "idealising": "idealizing", + "idolise": "idolize", + "idolised": "idolized", + "idolises": "idolizes", + "idolising": "idolizing", + "immobilisation": "immobilization", + "immobilise": "immobilize", + "immobilised": "immobilized", + "immobiliser": "immobilizer", + "immobilisers": "immobilizers", + "immobilises": "immobilizes", + "immobilising": "immobilizing", + "immortalise": "immortalize", + "immortalised": "immortalized", + "immortalises": "immortalizes", + "immortalising": "immortalizing", + "immunisation": "immunization", + "immunise": "immunize", + "immunised": "immunized", + "immunises": "immunizes", + "immunising": "immunizing", + "impanelled": "impaneled", + "impanelling": "impaneling", + "imperilled": "imperiled", + "imperilling": "imperiling", + "individualise": "individualize", + "individualised": "individualized", + "individualises": "individualizes", + "individualising": "individualizing", + "industrialise": "industrialize", + "industrialised": "industrialized", + "industrialises": "industrializes", + "industrialising": "industrializing", + "inflexion": "inflection", + "inflexions": "inflections", + "initialise": "initialize", + "initialised": "initialized", + "initialises": "initializes", + "initialising": "initializing", + "initialled": "initialed", + "initialling": "initialing", + "instal": "install", + "instalment": "installment", + "instalments": "installments", + "instals": "installs", + "instil": "instill", + "instils": "instills", + "institutionalisation": "institutionalization", + "institutionalise": "institutionalize", + "institutionalised": "institutionalized", + "institutionalises": "institutionalizes", + "institutionalising": "institutionalizing", + "intellectualise": "intellectualize", + "intellectualised": "intellectualized", + "intellectualises": "intellectualizes", + "intellectualising": "intellectualizing", + "internalisation": "internalization", + "internalise": "internalize", + "internalised": "internalized", + "internalises": "internalizes", + "internalising": "internalizing", + "internationalisation": "internationalization", + "internationalise": "internationalize", + "internationalised": "internationalized", + "internationalises": "internationalizes", + "internationalising": "internationalizing", + "ionisation": "ionization", + "ionise": "ionize", + "ionised": "ionized", + "ioniser": "ionizer", + "ionisers": "ionizers", + "ionises": "ionizes", + "ionising": "ionizing", + "italicise": "italicize", + "italicised": "italicized", + "italicises": "italicizes", + "italicising": "italicizing", + "itemise": "itemize", + "itemised": "itemized", + "itemises": "itemizes", + "itemising": "itemizing", + "jeopardise": "jeopardize", + "jeopardised": "jeopardized", + "jeopardises": "jeopardizes", + "jeopardising": "jeopardizing", + "jewelled": "jeweled", + "jeweller": "jeweler", + "jewellers": "jewelers", + "jewellery": "jewelry", + "judgement": "judgment", + "kilogramme": "kilogram", + "kilogrammes": "kilograms", + "kilometre": "kilometer", + "kilometres": "kilometers", + "labelled": "labeled", + "labelling": "labeling", + "labour": "labor", + "laboured": "labored", + "labourer": "laborer", + "labourers": "laborers", + "labouring": "laboring", + "labours": "labors", + "lacklustre": "lackluster", + "legalisation": "legalization", + "legalise": "legalize", + "legalised": "legalized", + "legalises": "legalizes", + "legalising": "legalizing", + "legitimise": "legitimize", + "legitimised": "legitimized", + "legitimises": "legitimizes", + "legitimising": "legitimizing", + "leukaemia": "leukemia", + "levelled": "leveled", + "leveller": "leveler", + "levellers": "levelers", + "levelling": "leveling", + "libelled": "libeled", + "libelling": "libeling", + "libellous": "libelous", + "liberalisation": "liberalization", + "liberalise": "liberalize", + "liberalised": "liberalized", + "liberalises": "liberalizes", + "liberalising": "liberalizing", + "licence": "license", + "licenced": "licensed", + "licences": "licenses", + "licencing": "licensing", + "likeable": "likable", + "lionisation": "lionization", + "lionise": "lionize", + "lionised": "lionized", + "lionises": "lionizes", + "lionising": "lionizing", + "liquidise": "liquidize", + "liquidised": "liquidized", + "liquidiser": "liquidizer", + "liquidisers": "liquidizers", + "liquidises": "liquidizes", + "liquidising": "liquidizing", + "litre": "liter", + "litres": "liters", + "localise": "localize", + "localised": "localized", + "localises": "localizes", + "localising": "localizing", + "louvre": "louver", + "louvred": "louvered", + "louvres": "louvers", + "lustre": "luster", + "magnetise": "magnetize", + "magnetised": "magnetized", + "magnetises": "magnetizes", + "magnetising": "magnetizing", + "manoeuvrability": "maneuverability", + "manoeuvrable": "maneuverable", + "manoeuvre": "maneuver", + "manoeuvred": "maneuvered", + "manoeuvres": "maneuvers", + "manoeuvring": "maneuvering", + "manoeuvrings": "maneuverings", + "marginalisation": "marginalization", + "marginalise": "marginalize", + "marginalised": "marginalized", + "marginalises": "marginalizes", + "marginalising": "marginalizing", + "marshalled": "marshaled", + "marshalling": "marshaling", + "marvelled": "marveled", + "marvelling": "marveling", + "marvellous": "marvelous", + "marvellously": "marvelously", + "materialisation": "materialization", + "materialise": "materialize", + "materialised": "materialized", + "materialises": "materializes", + "materialising": "materializing", + "maximisation": "maximization", + "maximise": "maximize", + "maximised": "maximized", + "maximises": "maximizes", + "maximising": "maximizing", + "meagre": "meager", + "mechanisation": "mechanization", + "mechanise": "mechanize", + "mechanised": "mechanized", + "mechanises": "mechanizes", + "mechanising": "mechanizing", + "mediaeval": "medieval", + "memorialise": "memorialize", + "memorialised": "memorialized", + "memorialises": "memorializes", + "memorialising": "memorializing", + "memorise": "memorize", + "memorised": "memorized", + "memorises": "memorizes", + "memorising": "memorizing", + "mesmerise": "mesmerize", + "mesmerised": "mesmerized", + "mesmerises": "mesmerizes", + "mesmerising": "mesmerizing", + "metabolise": "metabolize", + "metabolised": "metabolized", + "metabolises": "metabolizes", + "metabolising": "metabolizing", + "metre": "meter", + "metres": "meters", + "mhm": "hmm", + "micrometre": "micrometer", + "micrometres": "micrometers", + "militarise": "militarize", + "militarised": "militarized", + "militarises": "militarizes", + "militarising": "militarizing", + "milligramme": "milligram", + "milligrammes": "milligrams", + "millilitre": "milliliter", + "millilitres": "milliliters", + "millimetre": "millimeter", + "millimetres": "millimeters", + "miniaturisation": "miniaturization", + "miniaturise": "miniaturize", + "miniaturised": "miniaturized", + "miniaturises": "miniaturizes", + "miniaturising": "miniaturizing", + "minibusses": "minibuses", + "minimise": "minimize", + "minimised": "minimized", + "minimises": "minimizes", + "minimising": "minimizing", + "misbehaviour": "misbehavior", + "misdemeanour": "misdemeanor", + "misdemeanours": "misdemeanors", + "misspelt": "misspelled", + "mitre": "miter", + "mitres": "miters", + "mm": "hmm", + "mmm": "hmm", + "mobilisation": "mobilization", + "mobilise": "mobilize", + "mobilised": "mobilized", + "mobilises": "mobilizes", + "mobilising": "mobilizing", + "modelled": "modeled", + "modeller": "modeler", + "modellers": "modelers", + "modelling": "modeling", + "modernise": "modernize", + "modernised": "modernized", + "modernises": "modernizes", + "modernising": "modernizing", + "moisturise": "moisturize", + "moisturised": "moisturized", + "moisturiser": "moisturizer", + "moisturisers": "moisturizers", + "moisturises": "moisturizes", + "moisturising": "moisturizing", + "monologue": "monolog", + "monologues": "monologs", + "monopolisation": "monopolization", + "monopolise": "monopolize", + "monopolised": "monopolized", + "monopolises": "monopolizes", + "monopolising": "monopolizing", + "moralise": "moralize", + "moralised": "moralized", + "moralises": "moralizes", + "moralising": "moralizing", + "motorised": "motorized", + "mould": "mold", + "moulded": "molded", + "moulder": "molder", + "mouldered": "moldered", + "mouldering": "moldering", + "moulders": "molders", + "mouldier": "moldier", + "mouldiest": "moldiest", + "moulding": "molding", + "mouldings": "moldings", + "moulds": "molds", + "mouldy": "moldy", + "moult": "molt", + "moulted": "molted", + "moulting": "molting", + "moults": "molts", + "moustache": "mustache", + "moustached": "mustached", + "moustaches": "mustaches", + "moustachioed": "mustachioed", + "multicoloured": "multicolored", + "nationalisation": "nationalization", + "nationalisations": "nationalizations", + "nationalise": "nationalize", + "nationalised": "nationalized", + "nationalises": "nationalizes", + "nationalising": "nationalizing", + "naturalisation": "naturalization", + "naturalise": "naturalize", + "naturalised": "naturalized", + "naturalises": "naturalizes", + "naturalising": "naturalizing", + "neighbour": "neighbor", + "neighbourhood": "neighborhood", + "neighbourhoods": "neighborhoods", + "neighbouring": "neighboring", + "neighbourliness": "neighborliness", + "neighbourly": "neighborly", + "neighbours": "neighbors", + "neutralisation": "neutralization", + "neutralise": "neutralize", + "neutralised": "neutralized", + "neutralises": "neutralizes", + "neutralising": "neutralizing", + "normalisation": "normalization", + "normalise": "normalize", + "normalised": "normalized", + "normalises": "normalizes", + "normalising": "normalizing", + "odour": "odor", + "odourless": "odorless", + "odours": "odors", + "oesophagus": "esophagus", + "oesophaguses": "esophaguses", + "oestrogen": "estrogen", + "offence": "offense", + "offences": "offenses", + "omelette": "omelet", + "omelettes": "omelets", + "optimise": "optimize", + "optimised": "optimized", + "optimises": "optimizes", + "optimising": "optimizing", + "organisation": "organization", + "organisational": "organizational", + "organisations": "organizations", + "organise": "organize", + "organised": "organized", + "organiser": "organizer", + "organisers": "organizers", + "organises": "organizes", + "organising": "organizing", + "orthopaedic": "orthopedic", + "orthopaedics": "orthopedics", + "ostracise": "ostracize", + "ostracised": "ostracized", + "ostracises": "ostracizes", + "ostracising": "ostracizing", + "outmanoeuvre": "outmaneuver", + "outmanoeuvred": "outmaneuvered", + "outmanoeuvres": "outmaneuvers", + "outmanoeuvring": "outmaneuvering", + "overemphasise": "overemphasize", + "overemphasised": "overemphasized", + "overemphasises": "overemphasizes", + "overemphasising": "overemphasizing", + "oxidisation": "oxidization", + "oxidise": "oxidize", + "oxidised": "oxidized", + "oxidises": "oxidizes", + "oxidising": "oxidizing", + "paederast": "pederast", + "paederasts": "pederasts", + "paediatric": "pediatric", + "paediatrician": "pediatrician", + "paediatricians": "pediatricians", + "paediatrics": "pediatrics", + "paedophile": "pedophile", + "paedophiles": "pedophiles", + "paedophilia": "pedophilia", + "palaeolithic": "paleolithic", + "palaeontologist": "paleontologist", + "palaeontologists": "paleontologists", + "palaeontology": "paleontology", + "panelled": "paneled", + "panelling": "paneling", + "panellist": "panelist", + "panellists": "panelists", + "paralyse": "paralyze", + "paralysed": "paralyzed", + "paralyses": "paralyzes", + "paralysing": "paralyzing", + "parcelled": "parceled", + "parcelling": "parceling", + "parlour": "parlor", + "parlours": "parlors", + "particularise": "particularize", + "particularised": "particularized", + "particularises": "particularizes", + "particularising": "particularizing", + "passivisation": "passivization", + "passivise": "passivize", + "passivised": "passivized", + "passivises": "passivizes", + "passivising": "passivizing", + "pasteurisation": "pasteurization", + "pasteurise": "pasteurize", + "pasteurised": "pasteurized", + "pasteurises": "pasteurizes", + "pasteurising": "pasteurizing", + "patronise": "patronize", + "patronised": "patronized", + "patronises": "patronizes", + "patronising": "patronizing", + "patronisingly": "patronizingly", + "pedalled": "pedaled", + "pedalling": "pedaling", + "pedestrianisation": "pedestrianization", + "pedestrianise": "pedestrianize", + "pedestrianised": "pedestrianized", + "pedestrianises": "pedestrianizes", + "pedestrianising": "pedestrianizing", + "penalise": "penalize", + "penalised": "penalized", + "penalises": "penalizes", + "penalising": "penalizing", + "pencilled": "penciled", + "pencilling": "penciling", + "personalise": "personalize", + "personalised": "personalized", + "personalises": "personalizes", + "personalising": "personalizing", + "pharmacopoeia": "pharmacopeia", + "pharmacopoeias": "pharmacopeias", + "philosophise": "philosophize", + "philosophised": "philosophized", + "philosophises": "philosophizes", + "philosophising": "philosophizing", + "philtre": "filter", + "philtres": "filters", + "phoney": "phony", + "plagiarise": "plagiarize", + "plagiarised": "plagiarized", + "plagiarises": "plagiarizes", + "plagiarising": "plagiarizing", + "plough": "plow", + "ploughed": "plowed", + "ploughing": "plowing", + "ploughman": "plowman", + "ploughmen": "plowmen", + "ploughs": "plows", + "ploughshare": "plowshare", + "ploughshares": "plowshares", + "polarisation": "polarization", + "polarise": "polarize", + "polarised": "polarized", + "polarises": "polarizes", + "polarising": "polarizing", + "politicisation": "politicization", + "politicise": "politicize", + "politicised": "politicized", + "politicises": "politicizes", + "politicising": "politicizing", + "popularisation": "popularization", + "popularise": "popularize", + "popularised": "popularized", + "popularises": "popularizes", + "popularising": "popularizing", + "pouffe": "pouf", + "pouffes": "poufs", + "practise": "practice", + "practised": "practiced", + "practises": "practices", + "practising": "practicing", + "praesidium": "presidium", + "praesidiums": "presidiums", + "pressurisation": "pressurization", + "pressurise": "pressurize", + "pressurised": "pressurized", + "pressurises": "pressurizes", + "pressurising": "pressurizing", + "pretence": "pretense", + "pretences": "pretenses", + "primaeval": "primeval", + "prioritisation": "prioritization", + "prioritise": "prioritize", + "prioritised": "prioritized", + "prioritises": "prioritizes", + "prioritising": "prioritizing", + "privatisation": "privatization", + "privatisations": "privatizations", + "privatise": "privatize", + "privatised": "privatized", + "privatises": "privatizes", + "privatising": "privatizing", + "professionalisation": "professionalization", + "professionalise": "professionalize", + "professionalised": "professionalized", + "professionalises": "professionalizes", + "professionalising": "professionalizing", + "programme": "program", + "programmes": "programs", + "prologue": "prolog", + "prologues": "prologs", + "propagandise": "propagandize", + "propagandised": "propagandized", + "propagandises": "propagandizes", + "propagandising": "propagandizing", + "proselytise": "proselytize", + "proselytised": "proselytized", + "proselytiser": "proselytizer", + "proselytisers": "proselytizers", + "proselytises": "proselytizes", + "proselytising": "proselytizing", + "psychoanalyse": "psychoanalyze", + "psychoanalysed": "psychoanalyzed", + "psychoanalyses": "psychoanalyzes", + "psychoanalysing": "psychoanalyzing", + "publicise": "publicize", + "publicised": "publicized", + "publicises": "publicizes", + "publicising": "publicizing", + "pulverisation": "pulverization", + "pulverise": "pulverize", + "pulverised": "pulverized", + "pulverises": "pulverizes", + "pulverising": "pulverizing", + "pummelled": "pummel", + "pummelling": "pummeled", + "pyjama": "pajama", + "pyjamas": "pajamas", + "pzazz": "pizzazz", + "quarrelled": "quarreled", + "quarrelling": "quarreling", + "radicalise": "radicalize", + "radicalised": "radicalized", + "radicalises": "radicalizes", + "radicalising": "radicalizing", + "rancour": "rancor", + "randomise": "randomize", + "randomised": "randomized", + "randomises": "randomizes", + "randomising": "randomizing", + "rationalisation": "rationalization", + "rationalisations": "rationalizations", + "rationalise": "rationalize", + "rationalised": "rationalized", + "rationalises": "rationalizes", + "rationalising": "rationalizing", + "ravelled": "raveled", + "ravelling": "raveling", + "realisable": "realizable", + "realisation": "realization", + "realisations": "realizations", + "realise": "realize", + "realised": "realized", + "realises": "realizes", + "realising": "realizing", + "recognisable": "recognizable", + "recognisably": "recognizably", + "recognisance": "recognizance", + "recognise": "recognize", + "recognised": "recognized", + "recognises": "recognizes", + "recognising": "recognizing", + "reconnoitre": "reconnoiter", + "reconnoitred": "reconnoitered", + "reconnoitres": "reconnoiters", + "reconnoitring": "reconnoitering", + "refuelled": "refueled", + "refuelling": "refueling", + "regularisation": "regularization", + "regularise": "regularize", + "regularised": "regularized", + "regularises": "regularizes", + "regularising": "regularizing", + "remodelled": "remodeled", + "remodelling": "remodeling", + "remould": "remold", + "remoulded": "remolded", + "remoulding": "remolding", + "remoulds": "remolds", + "reorganisation": "reorganization", + "reorganisations": "reorganizations", + "reorganise": "reorganize", + "reorganised": "reorganized", + "reorganises": "reorganizes", + "reorganising": "reorganizing", + "revelled": "reveled", + "reveller": "reveler", + "revellers": "revelers", + "revelling": "reveling", + "revitalise": "revitalize", + "revitalised": "revitalized", + "revitalises": "revitalizes", + "revitalising": "revitalizing", + "revolutionise": "revolutionize", + "revolutionised": "revolutionized", + "revolutionises": "revolutionizes", + "revolutionising": "revolutionizing", + "rhapsodise": "rhapsodize", + "rhapsodised": "rhapsodized", + "rhapsodises": "rhapsodizes", + "rhapsodising": "rhapsodizing", + "rigour": "rigor", + "rigours": "rigors", + "ritualised": "ritualized", + "rivalled": "rivaled", + "rivalling": "rivaling", + "romanticise": "romanticize", + "romanticised": "romanticized", + "romanticises": "romanticizes", + "romanticising": "romanticizing", + "rumour": "rumor", + "rumoured": "rumored", + "rumours": "rumors", + "sabre": "saber", + "sabres": "sabers", + "saltpetre": "saltpeter", + "sanitise": "sanitize", + "sanitised": "sanitized", + "sanitises": "sanitizes", + "sanitising": "sanitizing", + "satirise": "satirize", + "satirised": "satirized", + "satirises": "satirizes", + "satirising": "satirizing", + "saviour": "savior", + "saviours": "saviors", + "savour": "savor", + "savoured": "savored", + "savouries": "savories", + "savouring": "savoring", + "savours": "savors", + "savoury": "savory", + "scandalise": "scandalize", + "scandalised": "scandalized", + "scandalises": "scandalizes", + "scandalising": "scandalizing", + "sceptic": "skeptic", + "sceptical": "skeptical", + "sceptically": "skeptically", + "scepticism": "skepticism", + "sceptics": "skeptics", + "sceptre": "scepter", + "sceptres": "scepters", + "scrutinise": "scrutinize", + "scrutinised": "scrutinized", + "scrutinises": "scrutinizes", + "scrutinising": "scrutinizing", + "secularisation": "secularization", + "secularise": "secularize", + "secularised": "secularized", + "secularises": "secularizes", + "secularising": "secularizing", + "sensationalise": "sensationalize", + "sensationalised": "sensationalized", + "sensationalises": "sensationalizes", + "sensationalising": "sensationalizing", + "sensitise": "sensitize", + "sensitised": "sensitized", + "sensitises": "sensitizes", + "sensitising": "sensitizing", + "sentimentalise": "sentimentalize", + "sentimentalised": "sentimentalized", + "sentimentalises": "sentimentalizes", + "sentimentalising": "sentimentalizing", + "sepulchre": "sepulcher", + "sepulchres": "sepulchers", + "serialisation": "serialization", + "serialisations": "serializations", + "serialise": "serialize", + "serialised": "serialized", + "serialises": "serializes", + "serialising": "serializing", + "sermonise": "sermonize", + "sermonised": "sermonized", + "sermonises": "sermonizes", + "sermonising": "sermonizing", + "sheikh": "sheik", + "shovelled": "shoveled", + "shovelling": "shoveling", + "shrivelled": "shriveled", + "shrivelling": "shriveling", + "signalise": "signalize", + "signalised": "signalized", + "signalises": "signalizes", + "signalising": "signalizing", + "signalled": "signaled", + "signalling": "signaling", + "smoulder": "smolder", + "smouldered": "smoldered", + "smouldering": "smoldering", + "smoulders": "smolders", + "snivelled": "sniveled", + "snivelling": "sniveling", + "snorkelled": "snorkeled", + "snorkelling": "snorkeling", + "snowplough": "snowplow", + "snowploughs": "snowplow", + "socialisation": "socialization", + "socialise": "socialize", + "socialised": "socialized", + "socialises": "socializes", + "socialising": "socializing", + "sodomise": "sodomize", + "sodomised": "sodomized", + "sodomises": "sodomizes", + "sodomising": "sodomizing", + "solemnise": "solemnize", + "solemnised": "solemnized", + "solemnises": "solemnizes", + "solemnising": "solemnizing", + "sombre": "somber", + "specialisation": "specialization", + "specialisations": "specializations", + "specialise": "specialize", + "specialised": "specialized", + "specialises": "specializes", + "specialising": "specializing", + "spectre": "specter", + "spectres": "specters", + "spiralled": "spiraled", + "spiralling": "spiraling", + "splendour": "splendor", + "splendours": "splendors", + "squirrelled": "squirreled", + "squirrelling": "squirreling", + "stabilisation": "stabilization", + "stabilise": "stabilize", + "stabilised": "stabilized", + "stabiliser": "stabilizer", + "stabilisers": "stabilizers", + "stabilises": "stabilizes", + "stabilising": "stabilizing", + "standardisation": "standardization", + "standardise": "standardize", + "standardised": "standardized", + "standardises": "standardizes", + "standardising": "standardizing", + "stencilled": "stenciled", + "stencilling": "stenciling", + "sterilisation": "sterilization", + "sterilisations": "sterilizations", + "sterilise": "sterilize", + "sterilised": "sterilized", + "steriliser": "sterilizer", + "sterilisers": "sterilizers", + "sterilises": "sterilizes", + "sterilising": "sterilizing", + "stigmatisation": "stigmatization", + "stigmatise": "stigmatize", + "stigmatised": "stigmatized", + "stigmatises": "stigmatizes", + "stigmatising": "stigmatizing", + "storey": "story", + "storeys": "stories", + "subsidisation": "subsidization", + "subsidise": "subsidize", + "subsidised": "subsidized", + "subsidiser": "subsidizer", + "subsidisers": "subsidizers", + "subsidises": "subsidizes", + "subsidising": "subsidizing", + "succour": "succor", + "succoured": "succored", + "succouring": "succoring", + "succours": "succors", + "sulphate": "sulfate", + "sulphates": "sulfates", + "sulphide": "sulfide", + "sulphides": "sulfides", + "sulphur": "sulfur", + "sulphurous": "sulfurous", + "summarise": "summarize", + "summarised": "summarized", + "summarises": "summarizes", + "summarising": "summarizing", + "swivelled": "swiveled", + "swivelling": "swiveling", + "symbolise": "symbolize", + "symbolised": "symbolized", + "symbolises": "symbolizes", + "symbolising": "symbolizing", + "sympathise": "sympathize", + "sympathised": "sympathized", + "sympathiser": "sympathizer", + "sympathisers": "sympathizers", + "sympathises": "sympathizes", + "sympathising": "sympathizing", + "synchronisation": "synchronization", + "synchronise": "synchronize", + "synchronised": "synchronized", + "synchronises": "synchronizes", + "synchronising": "synchronizing", + "synthesise": "synthesize", + "synthesised": "synthesized", + "synthesiser": "synthesizer", + "synthesisers": "synthesizers", + "synthesises": "synthesizes", + "synthesising": "synthesizing", + "syphon": "siphon", + "syphoned": "siphoned", + "syphoning": "siphoning", + "syphons": "siphons", + "systematisation": "systematization", + "systematise": "systematize", + "systematised": "systematized", + "systematises": "systematizes", + "systematising": "systematizing", + "tantalise": "tantalize", + "tantalised": "tantalized", + "tantalises": "tantalizes", + "tantalising": "tantalizing", + "tantalisingly": "tantalizingly", + "tasselled": "tasseled", + "technicolour": "technicolor", + "temporise": "temporize", + "temporised": "temporized", + "temporises": "temporizes", + "temporising": "temporizing", + "tenderise": "tenderize", + "tenderised": "tenderized", + "tenderises": "tenderizes", + "tenderising": "tenderizing", + "terrorise": "terrorize", + "terrorised": "terrorized", + "terrorises": "terrorizes", + "terrorising": "terrorizing", + "theatre": "theater", + "theatregoer": "theatergoer", + "theatregoers": "theatergoers", + "theatres": "theaters", + "theorise": "theorize", + "theorised": "theorized", + "theorises": "theorizes", + "theorising": "theorizing", + "tonne": "ton", + "tonnes": "tons", + "towelled": "toweled", + "towelling": "toweling", + "toxaemia": "toxemia", + "tranquillise": "tranquilize", + "tranquillised": "tranquilized", + "tranquilliser": "tranquilizer", + "tranquillisers": "tranquilizers", + "tranquillises": "tranquilizes", + "tranquillising": "tranquilizing", + "tranquillity": "tranquility", + "tranquillize": "tranquilize", + "tranquillized": "tranquilized", + "tranquillizer": "tranquilizer", + "tranquillizers": "tranquilizers", + "tranquillizes": "tranquilizes", + "tranquillizing": "tranquilizing", + "tranquilly": "tranquility", + "transistorised": "transistorized", + "traumatise": "traumatize", + "traumatised": "traumatized", + "traumatises": "traumatizes", + "traumatising": "traumatizing", + "travelled": "traveled", + "traveller": "traveler", + "travellers": "travelers", + "travelling": "traveling", + "travelog": "travelogue", + "travelogs": "travelogues", + "trialled": "trialed", + "trialling": "trialing", + "tricolour": "tricolor", + "tricolours": "tricolors", + "trivialise": "trivialize", + "trivialised": "trivialized", + "trivialises": "trivializes", + "trivialising": "trivializing", + "tumour": "tumor", + "tumours": "tumors", + "tunnelled": "tunneled", + "tunnelling": "tunneling", + "tyrannise": "tyrannize", + "tyrannised": "tyrannized", + "tyrannises": "tyrannizes", + "tyrannising": "tyrannizing", + "tyre": "tire", + "tyres": "tires", + "unauthorised": "unauthorized", + "uncivilised": "uncivilized", + "underutilised": "underutilized", + "unequalled": "unequaled", + "unfavourable": "unfavorable", + "unfavourably": "unfavorably", + "unionisation": "unionization", + "unionise": "unionize", + "unionised": "unionized", + "unionises": "unionizes", + "unionising": "unionizing", + "unorganised": "unorganized", + "unravelled": "unraveled", + "unravelling": "unraveling", + "unrecognisable": "unrecognizable", + "unrecognised": "unrecognized", + "unrivalled": "unrivaled", + "unsavoury": "unsavory", + "untrammelled": "untrammeled", + "urbanisation": "urbanization", + "urbanise": "urbanize", + "urbanised": "urbanized", + "urbanises": "urbanizes", + "urbanising": "urbanizing", + "utilisable": "utilizable", + "utilisation": "utilization", + "utilise": "utilize", + "utilised": "utilized", + "utilises": "utilizes", + "utilising": "utilizing", + "valour": "valor", + "vandalise": "vandalize", + "vandalised": "vandalized", + "vandalises": "vandalizes", + "vandalising": "vandalizing", + "vaporisation": "vaporization", + "vaporise": "vaporize", + "vaporised": "vaporized", + "vaporises": "vaporizes", + "vaporising": "vaporizing", + "vapour": "vapor", + "vapours": "vapors", + "verbalise": "verbalize", + "verbalised": "verbalized", + "verbalises": "verbalizes", + "verbalising": "verbalizing", + "victimisation": "victimization", + "victimise": "victimize", + "victimised": "victimized", + "victimises": "victimizes", + "victimising": "victimizing", + "videodisc": "videodisk", + "videodiscs": "videodisks", + "vigour": "vigor", + "visualisation": "visualization", + "visualisations": "visualizations", + "visualise": "visualize", + "visualised": "visualized", + "visualises": "visualizes", + "visualising": "visualizing", + "vocalisation": "vocalization", + "vocalisations": "vocalizations", + "vocalise": "vocalize", + "vocalised": "vocalized", + "vocalises": "vocalizes", + "vocalising": "vocalizing", + "vulcanised": "vulcanized", + "vulgarisation": "vulgarization", + "vulgarise": "vulgarize", + "vulgarised": "vulgarized", + "vulgarises": "vulgarizes", + "vulgarising": "vulgarizing", + "waggon": "wagon", + "waggons": "wagons", + "watercolour": "watercolor", + "watercolours": "watercolors", + "weaselled": "weaseled", + "weaselling": "weaseling", + "westernisation": "westernization", + "westernise": "westernize", + "westernised": "westernized", + "westernises": "westernizes", + "westernising": "westernizing", + "womanise": "womanize", + "womanised": "womanized", + "womaniser": "womanizer", + "womanisers": "womanizers", + "womanises": "womanizes", + "womanising": "womanizing", + "woollen": "woolen", + "woollens": "woolens", + "woollies": "woolies", + "woolly": "wooly", + "worshipped": "worshiped", + "worshipper": "worshiper", + "worshipping": "worshiping", + "yodelled": "yodeled", + "yodelling": "yodeling", + "yoghourt": "yogurt", + "yoghourts": "yogurts", + "yoghurt": "yogurt", + "yoghurts": "yogurts" +} diff --git a/preprocessor_config.json b/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..931c77a740890c46365c7ae0c9d350ba3cca908f --- /dev/null +++ b/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 128, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..16e06c81028351f32d5445f7db8f7730accdfa7c --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,16 @@ +[tool.black] +line-length = 119 +target-version = ['py37'] + +[tool.ruff] +# Never enforce `E501` (line length violations). +ignore = ["C901", "E501", "E741", "W605"] +select = ["C", "E", "F", "I", "W"] +line-length = 119 + +# Ignore import violations in all `__init__.py` files. +[tool.ruff.per-file-ignores] +"__init__.py" = ["E402", "F401", "F403", "F811"] + +[tool.ruff.isort] +lines-after-imports = 2 diff --git a/run_distillation.py b/run_distillation.py new file mode 100644 index 0000000000000000000000000000000000000000..3f4ff343f44872de6501c8788f29fed362d62294 --- /dev/null +++ b/run_distillation.py @@ -0,0 +1,1737 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. +""" +# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments. + +import logging +import os +import re +import shutil +import sys +import time +from dataclasses import dataclass, field +from functools import partial +from pathlib import Path +from typing import Any, Dict, List, Optional, Union + +import datasets +import evaluate +import numpy as np +import torch +import torch.nn as nn +import transformers +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import set_seed +from datasets import ( + DatasetDict, + IterableDataset, + IterableDatasetDict, + concatenate_datasets, + interleave_datasets, + load_dataset, +) +from huggingface_hub import create_repo, get_full_repo_name, upload_folder +from torch.utils.data import DataLoader +from tqdm import tqdm +from transformers import ( + AddedToken, + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperConfig, + WhisperFeatureExtractor, + WhisperForConditionalGeneration, + WhisperProcessor, + WhisperTokenizerFast, + get_scheduler +) +from transformers.modeling_outputs import BaseModelOutput +from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.34.0.dev0") + +require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") + +logger = get_logger(__name__) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to distill from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} + ) + teacher_model_name_or_path: str = field( + metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + token: str = field( + default=None, + metadata={ + "help": ( + "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " + "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." + ) + }, + ) + attn_implementation: Optional[str] = field( + default=None, + metadata={ + "help": ( + "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" + "1. `eager` or `None`: default Transformers attention implementation.\n" + "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." + ) + }, + ) + + def __post_init__(self): + if self.attn_implementation not in [None, "eager", "sdpa", "flash_attention_2"]: + raise ValueError( + f"Got `--attn_implementation={self.attn_implementation}`, which is an invalid attention type. Should be one of:\n" + "1. `eager` or `None`: default Transformers attention implementation.\n" + "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + train_dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the training dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech " + "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`." + }, + ) + train_dataset_config_name: Optional[str] = field( + default=None, + metadata={ + "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should " + "match the order of the datasets." + }, + ) + train_dataset_samples: str = field( + default=None, + metadata={ + "help": "Number of samples in each dataset when loading multiple datasets with streaming mode. " + "Not required when using one dataset or non-streaming mode. The sample values provide the sampling " + "probability for each dataset. Setting them equal to the number of sample values ensures that every " + "sample from every dataset is used once per epoch." + }, + ) + eval_dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training " + "dataset name if unspecified. Load multiple evaluation datasets by separating dataset " + "ids by a '+' symbol." + }, + ) + eval_dataset_config_name: Optional[str] = field( + default=None, + metadata={ + "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the " + "training dataset config name if unspecified." + }, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."}, + ) + preprocessing_batch_size: Optional[int] = field( + default=256, + metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."}, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of training examples to this value if set." + ) + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set." + ) + }, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data in the training set."}, + ) + eval_text_column_name: str = field( + default="text", + metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")}, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, + ) + min_duration_in_seconds: float = field( + default=0.0, + metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, + ) + max_label_length: int = field( + default=448, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + pad_target_to_multiple_of: Optional[int] = field( + default=None, + metadata={ + "help": ( + "If set will pad the target sequence to a multiple of the provided" + " value. This is important to avoid triggering recompilations on TPU." + " If unspecified, will default to padding the targets to max length." + ) + }, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + train_split_name: str = field( + default="train", + metadata={ + "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" + }, + ) + eval_split_name: str = field( + default="validation", + metadata={ + "help": ( + "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."}, + ) + wer_threshold: float = field( + default=None, + metadata={ + "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` " + "WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets." + "If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text" + "transcriptions." + }, + ) + use_pseudo_labels: bool = field( + default=True, + metadata={ + "help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels " + "must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is " + "not currently yet configurable." + }, + ) + timestamp_probability: float = field( + default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} + ) + condition_on_prev_probability: float = field( + default=0.2, metadata={"help": "Probability for conditioning on the previous text example."} + ) + return_timestamps: bool = field( + default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} + ) + language: str = field( + default=None, + metadata={ + "help": ( + "Language for multilingual distillation. This argument should be set for multilingual distillation " + "only. For English speech recognition, it should be left as `None`." + ) + }, + ) + task: str = field( + default="transcribe", + metadata={ + "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." + "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_dir: str = field( + default="./wandb", + metadata={"help": "The dir where wandb metadata will be stored."}, + ) + + +@dataclass +class DistillationTrainingArguments(Seq2SeqTrainingArguments): + freeze_encoder: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " + "copied from the teacher model." + ) + }, + ) + freeze_decoder: Optional[bool] = field( + default=False, + metadata={ + "help": ( + "Whether to freeze the entire decoder model. Note that the decoder input embeddings are **not** frozen, since they are tied to the LM head." + ) + }, + ) + freeze_embed_positions: Optional[bool] = field( + default=False, + metadata={"help": "Whether to freeze the decoder embedding positions."}, + ) + temperature: Optional[float] = field( + default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} + ) + kl_weight: Optional[float] = field( + default=1.0, + metadata={ + "help": ( + "Weighting assigned to the MSE loss in the KD formulation. MSE loss is " + "computed between the teacher-student hidden states and attentions." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "The data type (dtype) in which to run training. One of `float32` (full-precision), " + "`float16` or `bfloat16` (both half-precision)." + ) + }, + ) + + +@dataclass +class DataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The start-of-sequence token id of the decoder. + decoder_prev_token_id (:obj: `int`) + The start-of-prompt token id of the decoder + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + """ + + processor: Any + decoder_start_token_id: int + decoder_prev_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + + # dataloader returns a list of features which we convert to a dict + input_features = {"input_features": [feature["input_features"] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="pt", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="pt", + ) + + # shift labels to the right to get decoder input ids + labels = labels_batch["input_ids"] + decoder_input_ids = labels[:, :-1] + labels = labels[:, 1:] + labels_mask = labels_batch.attention_mask[:, 1:] + + # replace padding with -100 to ignore correctly when computing the loss + labels = labels.masked_fill(labels_mask.ne(1), -100) + + # replace initial prompt tokens with -100 to ignore correctly when computing the loss + bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1) + bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index) + prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None] + labels = torch.where(prompt_mask, -100, labels) + + batch["labels"] = labels + batch["decoder_input_ids"] = decoder_input_ids + + return batch + + +def log_metric( + accelerator, + metrics: Dict, + train_time: float, + step: int, + epoch: int, + learning_rate: float = None, + prefix: str = "train", +): + """Helper function to log all training/evaluation metrics with the correct prefixes and styling.""" + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + log_metrics[f"{prefix}/epoch"] = epoch + if learning_rate is not None: + log_metrics[f"{prefix}/learning_rate"] = learning_rate + accelerator.log(log_metrics, step=step) + + +def log_pred( + accelerator, + pred_str: List[str], + label_str: List[str], + norm_pred_str: List[str], + norm_label_str: List[str], + step: int, + prefix: str = "eval", + num_lines: int = 200000, +): + """Helper function to log target/predicted transcriptions to weights and biases (wandb).""" + if accelerator.is_main_process: + wandb_tracker = accelerator.get_tracker("wandb") + # pretty name for current step: step 50000 -> step 50k + cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step + prefix_pretty = prefix.replace("/", "-") + + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data[:num_lines], + step=step, + ) + + # log incorrect normalised predictions + str_data = np.asarray(str_data) + str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data_incorrect[:num_lines], + step=step, + ) + + +def convert_dataset_str_to_list( + dataset_names, + dataset_config_names, + splits=None, + text_column_names=None, + dataset_samples=None, + default_split="train", +) -> List[Dict]: + """ + Given three lists of dataset names, configs and splits, this function groups the corresponding + names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the + function returns a list of dictionaries, one for each dataset. + """ + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_samples is not None: + if len(dataset_samples) != len(dataset_names): + raise ValueError( + f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_samples)} samples." + ) + dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] + else: + dataset_samples = [None] * len(dataset_names) + + dataset_config_names = ( + dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))] + ) + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "samples": dataset_samples[i], + } + ) + return dataset_names_dict + + +def load_multiple_datasets( + dataset_names: Union[List, str], + dataset_config_names: Union[List, str], + splits: Optional[Union[List, str]] = None, + text_column_names: Optional[List] = None, + sampling_rate: Optional[int] = 16000, + stopping_strategy: Optional[str] = "first_exhausted", + dataset_samples: Optional[Union[List, np.array]] = None, + streaming: Optional[bool] = True, + seed: Optional[int] = None, + accelerator: Optional[Accelerator] = None, + use_pseudo_labels: float = None, + **kwargs, +) -> IterableDataset: + dataset_names_dict = convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits, text_column_names, dataset_samples + ) + + if dataset_samples is not None: + dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] + probabilities = np.array(dataset_samples) / np.sum(dataset_samples) + else: + probabilities = None + + all_datasets = [] + # iterate over the datasets we want to interleave + for dataset_dict in tqdm( + dataset_names_dict, + desc="Combining datasets...", + disable=not accelerator.is_local_main_process if accelerator is not None else False, + ): + dataset = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + streaming=streaming, + **kwargs, + ) + # resample to specified sampling rate + dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) + dataset_features = dataset.features.keys() + columns_to_keep = {"audio", "text"} + + if dataset_dict["text_column_name"] not in dataset_features: + raise ValueError( + f"Text column name {dataset_dict['text_column_name']} not found in dataset" + f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the" + f" correct text column - one of {', '.join(dataset_features)}." + ) + + # blanket renaming of all transcription columns to text + if dataset_dict["text_column_name"] != "text": + dataset = dataset.rename_column(dataset_dict["text_column_name"], "text") + + if use_pseudo_labels: + if "whisper_transcript" not in dataset_features: + raise ValueError( + f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure" + "pseudo-labels are present in the dataset under this column name, or train directly on the text " + "labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`." + ) + columns_to_keep.add("whisper_transcript") + + if "condition_on_prev" in dataset_features: + columns_to_keep.add("condition_on_prev") + + dataset_features = dataset.features.keys() + dataset = dataset.remove_columns(set(dataset_features - columns_to_keep)) + all_datasets.append(dataset) + + if len(all_datasets) == 1: + # we have a single dataset so just return it as is + return all_datasets[0] + + if streaming: + interleaved_dataset = interleave_datasets( + all_datasets, + stopping_strategy=stopping_strategy, + probabilities=probabilities, + seed=seed, + ) + else: + interleaved_dataset = concatenate_datasets(all_datasets) + + return interleaved_dataset + + +def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]: + """Helper function to sort saved checkpoints from oldest to newest.""" + ordering_and_checkpoint_path = [] + + glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] + + for path in glob_checkpoints: + regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) + if regex_match is not None and regex_match.groups() is not None: + ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) + + checkpoints_sorted = sorted(ordering_and_checkpoint_path) + checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] + return checkpoints_sorted + + +def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None: + """Helper function to delete old checkpoints.""" + if save_total_limit is None or save_total_limit <= 0: + return + # Check if we should delete older checkpoint(s) + checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix) + if len(checkpoints_sorted) <= save_total_limit: + return + + number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) + checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] + for checkpoint in checkpoints_to_be_deleted: + logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") + shutil.rmtree(checkpoint, ignore_errors=True) + + +_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$") + + +def get_last_checkpoint(folder): + content = os.listdir(folder) + checkpoints = [ + path + for path in content + if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path)) + ] + if len(checkpoints) == 0: + return + return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0]))) + + +def get_parameter_names(model, forbidden_layer_types, forbidden_module=None): + """ + Returns the names of the model parameters that are not inside a forbidden layer or forbidden module. + Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser + (e.g. if the module is frozen). + """ + result = [] + for name, child in model.named_children(): + result += [ + f"{name}.{n}" + for n in get_parameter_names(child, forbidden_layer_types, forbidden_module) + if not ( + isinstance(child, tuple(forbidden_layer_types)) + or (child in tuple(forbidden_module) if forbidden_module is not None else False) + ) + ] + # Add model specific parameters (defined with nn.Parameter) since they are not in any child. + result += list(model._parameters.keys()) + return result + + +def main(): + # 1. Parse input arguments + # We keep distinct sets of args, for cleaner separation of model/data/training related args + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # 2. Initialize the accelerator + # We will let the accelerator handle device placement for us in this example + # We simply have to specify the training precision and any trackers being used + # We'll use the same dtype arguments as our JAX/Flax training script and convert + # it to accelerate format + if training_args.dtype == "float16": + mixed_precision = "fp16" + teacher_dtype = torch.float16 + elif training_args.dtype == "bfloat16": + mixed_precision = "bf16" + teacher_dtype = torch.bfloat16 + else: + mixed_precision = "no" + teacher_dtype = torch.float32 + + accelerator = Accelerator( + gradient_accumulation_steps=training_args.gradient_accumulation_steps, + mixed_precision=mixed_precision, + log_with=training_args.report_to, + project_dir=training_args.output_dir, + ) + + accelerator.init_trackers( + project_name=data_args.wandb_project, + init_kwargs={ + "wandb": {"name": data_args.wandb_name, + "dir": data_args.wandb_dir} + } + + ) + + # 3. Set-up basic logging + # Create one log on every process with the configuration for debugging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + # Log a small summary on each proces + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" + ) + + # Set the verbosity to info of the Transformers logger (on main process only) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + logger.info("Training/evaluation parameters %s", training_args) + + # 4. Detecting last checkpoint and eventually continue from last checkpoint + last_checkpoint = None + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + + # 5. Handle the repository creation + if accelerator.is_main_process: + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(training_args.output_dir).absolute().name, + token=training_args.hub_token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, exist_ok=True, token=training_args.hub_token) + + with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore: + if "wandb" not in gitignore: + gitignore.write("wandb\n") + elif training_args.output_dir is not None: + os.makedirs(training_args.output_dir, exist_ok=True) + accelerator.wait_for_everyone() + + # 6. Load dataset - either streaming or non-streaming (offline) + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + # set seed for determinism + set_seed(training_args.seed) + + if training_args.do_train: + raw_datasets["train"] = load_multiple_datasets( + data_args.train_dataset_name, + data_args.train_dataset_config_name, + splits=data_args.train_split_name, + text_column_names=data_args.text_column_name, + use_pseudo_labels=data_args.use_pseudo_labels, + streaming=data_args.streaming, + dataset_samples=data_args.train_dataset_samples, + seed=training_args.seed, + accelerator=accelerator, + cache_dir=data_args.dataset_cache_dir, + token=model_args.token, + ) + raw_datasets_train_features = list(raw_datasets["train"].features.keys()) + + if training_args.do_eval: + dataset_names_dict = convert_dataset_str_to_list( + data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, + ( + data_args.eval_dataset_config_name + if data_args.eval_dataset_config_name + else data_args.train_dataset_config_name + ), + splits=data_args.eval_split_name, + text_column_names=data_args.eval_text_column_name, + ) + all_eval_splits = [] + if len(dataset_names_dict) == 1: + # load a single eval set + dataset_dict = dataset_names_dict[0] + all_eval_splits.append("eval") + raw_datasets["eval"] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + token=model_args.token, + streaming=data_args.streaming, + ) + if data_args.eval_text_column_name != "text": + raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text") + else: + # load multiple eval sets + for dataset_dict in dataset_names_dict: + if dataset_dict["name"] == "esb/diagnostic-dataset": + # for the ESB diagnostic dataset, the dataset name is effectively the config + pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}" + else: + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + all_eval_splits.append(pretty_name) + raw_datasets[pretty_name] = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + token=model_args.token, + streaming=data_args.streaming, + ) + # make column names consistent (text, audio) + if dataset_dict["text_column_name"] != "text": + raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( + dataset_dict["text_column_name"], "text" + ) + raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( + set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"} + ) + + if not training_args.do_train and not training_args.do_eval: + raise ValueError( + "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." + ) + + # 7. Load pretrained model, tokenizer, and feature extractor + config = WhisperConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=model_args.token, + ) + feature_extractor = WhisperFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=model_args.token, + ) + tokenizer = WhisperTokenizerFast.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + token=model_args.token, + ) + + # override timestamp tokens until tokenizer issues are fixed in transformers + timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] + tokenizer.add_tokens(timestamps) + + # The teacher model can safely be cast to the dtype of training since we don't + # update the params + teacher_model = WhisperForConditionalGeneration.from_pretrained( + model_args.teacher_model_name_or_path, + cache_dir=model_args.cache_dir, + token=model_args.token, + low_cpu_mem_usage=True, + torch_dtype=teacher_dtype, + attn_implementation=model_args.attn_implementation, + ) + + student_model = WhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + subfolder=model_args.subfolder, + token=model_args.token, + low_cpu_mem_usage=True, + attn_implementation=model_args.attn_implementation, + ) + + if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: + raise ValueError( + f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " + f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " + f"student and {teacher_model.config.decoder_start_token_id} for the teacher." + ) + + # enable gradient checkpointing if necessary + if training_args.gradient_checkpointing: + student_model.gradient_checkpointing_enable() + + def set_trainable_parameters(module, requires_grad=False): + for param in module.parameters(): + param.requires_grad = requires_grad + module._requires_grad = requires_grad + + # freeze student encoder if necessary + if training_args.freeze_encoder: + set_trainable_parameters(student_model.model.encoder, requires_grad=False) + student_model.model.encoder.gradient_checkpointing = False + + if training_args.freeze_decoder: + set_trainable_parameters(student_model.model.decoder, requires_grad=False) + student_model.model.decoder.gradient_checkpointing = False + # un-freeze LM head parameters (and consequently word embeddings), frozen when frozing decoder since tied word embedding and LM head + set_trainable_parameters(student_model.proj_out, requires_grad=True) + + + if training_args.freeze_embed_positions: + # set_trainable_parameters(student_model.model.decoder.embed_tokens, requires_grad=False) + set_trainable_parameters(student_model.model.decoder.embed_positions, requires_grad=False) + if student_model.model.decoder.gradient_checkpointing: + logger.info( + "Disabling gradient checkpointing in the decoder since it's incompatible with `freeze_embed_positions`." + ) + + logger.info( + f"Number of trainable parameters: {sum(p.numel() for p in student_model.parameters() if p.requires_grad):.3e}" + ) + + share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model + if share_hidden_states: + # tie the weights for the teacher encoder if we're freezing the student and it's the same as the teacher + teacher_model.model.encoder = student_model.model.encoder + + if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: + # We need to set the language and task ids for previously multilingual checkpoints + is_multilingual = True + tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False) + student_model.generation_config.update( + **{ + "language": data_args.language, + "task": data_args.task, + } + ) + elif data_args.language is not None: + raise ValueError( + "Setting language token for an English-only checkpoint is not permitted. The language argument should " + "only be set for multilingual checkpoints." + ) + else: + is_multilingual = False + + # 8. Create a single speech processor - make sure all processes wait until data is saved + if accelerator.is_main_process: + feature_extractor.save_pretrained(training_args.output_dir) + tokenizer.save_pretrained(training_args.output_dir) + # save the config and generation config as well + config.save_pretrained(training_args.output_dir) + student_model.generation_config.save_pretrained(training_args.output_dir) + + accelerator.wait_for_everyone() + processor = WhisperProcessor.from_pretrained(training_args.output_dir) + + # 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + sampling_rate = feature_extractor.sampling_rate + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=sampling_rate), + ) + + # 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets. + # 10.1: Define the pre-processing constants + max_input_length = int(data_args.max_duration_in_seconds * sampling_rate) + min_input_length = int(data_args.min_duration_in_seconds * sampling_rate) + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length + ) + + timestamp_probability = data_args.timestamp_probability + condition_on_prev_probability = data_args.condition_on_prev_probability + return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False + + timestamp_ids = tokenizer.timestamp_ids() + timestamp_begin = tokenizer.all_special_ids[-1] + timestamp_position = 3 if is_multilingual else 1 + + decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|> + decoder_prev_token_id = tokenizer.all_special_ids[-3] # <|startofprev|> + prompt_cutoff_length = max_label_length // 2 + + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + prefetch_factor = training_args.dataloader_prefetch_factor + + metric = evaluate.load("wer") + normalizer = ( + BasicTextNormalizer() + if data_args.language is not None + else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + ) + wer_threshold = data_args.wer_threshold + use_pseudo_labels = data_args.use_pseudo_labels + train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text" + + # 10.2: filter based on maximum number of training/evaluation samples + if training_args.do_train and data_args.max_train_samples is not None: + raw_datasets["train"] = ( + raw_datasets["train"].take(data_args.max_train_samples) + if data_args.streaming + else raw_datasets["train"].select(range(data_args.max_train_samples)) + ) + + if training_args.do_eval and data_args.max_eval_samples is not None: + for eval_split in all_eval_splits: + raw_datasets[eval_split] = ( + raw_datasets[eval_split].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) + ) + + # 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance + def is_wer_in_range(ground_truth, whisper_transcript): + norm_ground_truth = normalizer(ground_truth) + if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript: + # filter entirely upper-case transcriptions: these are erroneous generations from large-v3 + return False + elif len(norm_ground_truth) > 0 and whisper_transcript is not None: + norm_whisper_transcript = normalizer(whisper_transcript) + wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth]) + return wer < wer_threshold + else: + # filter automatically since we can't know the WER + return False + + filter_by_wer_threshold = partial( + raw_datasets["train"].filter, + function=is_wer_in_range, + input_columns=["text", "whisper_transcript"], + ) + + if wer_threshold is not None and use_pseudo_labels: + with accelerator.main_process_first(): + raw_datasets["train"] = ( + filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer") + if not data_args.streaming + else filter_by_wer_threshold() + ) + + # 10.4: pre-process training/evaluation datasets + def prepare_train_dataset(batch): + """ + Pre-process the raw dataset in a three stage process: + 1. Convert the audio arrays to log-mel spectrogram inputs + 2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability) + 3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability) + """ + # process audio input + audio = [sample["array"] for sample in batch["audio"]] + inputs = feature_extractor(audio, sampling_rate=sampling_rate) + batch["input_features"] = inputs.input_features + batch["input_length"] = [len(sample) for sample in audio] + + # process text targets - for training these are the Whisper-generated pseudo-labels + input_str_batched = batch[train_text_column_name] + condition_on_prev_batched = batch.get("condition_on_prev", len(input_str_batched) * [None]) + + all_token_ids = [] + all_token_ids_unprompted = [] + for prev_ids, input_str in zip(condition_on_prev_batched, input_str_batched): + token_ids = tokenizer(input_str, add_special_tokens=not use_pseudo_labels).input_ids + + # check whether we have timestamps in the PLs and filter if required + has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0 + if has_timestamps: + # sample from binomial distribution to get probability of training on timestamps + predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) + if not predict_timestamps: + # filter timestamps and insert the <|notimestamps|> task token + token_ids = [token for token in token_ids if token < timestamp_begin] + token_ids.insert(timestamp_position, timestamp_begin) + + all_token_ids_unprompted.append(token_ids) + # check whether to condition on previous text - we do this with probability condition_on_prev_probability + condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability)) + if not condition_on_prev: + prev_ids = None + elif "condition_on_prev" not in batch and len(all_token_ids_unprompted) > 1: + # prompt ids are the penultimate token ids in the batch + prev_ids = all_token_ids_unprompted[-2] + + if prev_ids is not None: + if has_timestamps and not predict_timestamps: + # filter timestamp ids from prompt when not predicting timestamps + prev_ids = [token for token in prev_ids if token < timestamp_begin] + + # check that the length of the prompt does not exceed more than half the max label length (224) + if len(prev_ids) > prompt_cutoff_length: + prev_ids = prev_ids[-prompt_cutoff_length + 1 :] + prev_ids = [decoder_prev_token_id] + prev_ids + + # and that the total length of the labels does not exceed the max label length (448) + if len(prev_ids + token_ids) > max_label_length: + trim_length = len(prev_ids + token_ids) - max_label_length + 1 + prev_ids = prev_ids[trim_length:] + prev_ids = [decoder_prev_token_id] + prev_ids + + token_ids = prev_ids + token_ids + + all_token_ids.append(token_ids) + + batch["labels"] = all_token_ids + return batch + + def prepare_eval_dataset(batch): + # process audio input + sample = batch["audio"] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + batch["input_features"] = inputs.input_features[0] + batch["input_length"] = len(sample["array"]) + + # process targets - for evaluation these are the ground-truth transcriptions + input_str = batch["text"] + batch["labels"] = tokenizer(input_str).input_ids + return batch + + vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + if training_args.do_train: + # with streaming mode we can only have 1 worker, whereas with non-streaming + # we can use `num_workers` (which is much faster) + # We gate the pre-processing function accordingly + map_fn_train = partial( + raw_datasets["train"].map, + function=prepare_train_dataset, + remove_columns=raw_datasets_train_features, + batched=True, + batch_size=data_args.preprocessing_batch_size, + ) + with accelerator.main_process_first(): + vectorized_datasets["train"] = ( + map_fn_train(num_proc=num_workers, desc="preprocess train dataset") + if not data_args.streaming + else map_fn_train() + ) + if training_args.do_eval: + for eval_split in all_eval_splits: + raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) + map_fn_eval = partial( + raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features + ) + with accelerator.main_process_first(): + vectorized_datasets[eval_split] = ( + map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") + if not data_args.streaming + else map_fn_eval() + ) + + # 10.5: Filter training data with inputs longer than `max_input_length` + def is_audio_in_length_range(length): + return min_input_length < length < max_input_length + + filter_by_audio_fn = partial( + vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"] + ) + with accelerator.main_process_first(): + vectorized_datasets = ( + filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length") + if not data_args.streaming + else filter_by_audio_fn() + ) + + # 10.6: Filter training data with labels longer than `max_label_length` + def is_labels_in_length_range(labels): + return 0 < len(labels) <= max_label_length + + filter_by_labels_fn = partial( + vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] + ) + with accelerator.main_process_first(): + vectorized_datasets = ( + filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") + if not data_args.streaming + else filter_by_labels_fn() + ) + + # Pre-processing complete! + # For large datasets it is advised to run the preprocessing on a + # single machine first with `--preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step, `--preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + if data_args.streaming: + raise ValueError( + "When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion" + "of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing " + "on the fly with streaming mode." + ) + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + # 11. Define Evaluation Metrics + def compute_metrics(preds, labels): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str + + # 12. Define Training Schedule + # Store some constants + per_device_train_batch_size = int(training_args.per_device_train_batch_size) + train_batch_size = per_device_train_batch_size * accelerator.num_processes + gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + + if not data_args.streaming and training_args.max_steps < 0: + num_epochs = int(training_args.num_train_epochs) + steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) + total_train_steps = steps_per_epoch * num_epochs + elif training_args.max_steps > 0: + logger.info("max_steps is given, it will override any value given in num_train_epochs") + total_train_steps = int(training_args.max_steps) + if not data_args.streaming: + steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) + num_epochs = int(np.ceil(total_train_steps / steps_per_epoch)) + else: + # Setting a very large number of epochs so we go as many times as necessary over the iterator. + num_epochs = sys.maxsize + steps_per_epoch = total_train_steps + else: + raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") + + if training_args.eval_steps is None: + logger.info( + f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" + ) + eval_steps = steps_per_epoch + else: + eval_steps = training_args.eval_steps + + # 13. Define optimizer, LR scheduler, collator + + forbidden_module = [ + module + for module, flag in [ + (student_model.model.encoder, training_args.freeze_encoder), + (student_model.model.decoder, training_args.freeze_decoder) + ] + if flag + ] or None + + decay_parameters = get_parameter_names( + student_model, + [nn.LayerNorm], + forbidden_module=forbidden_module, + ) + decay_parameters = [name for name in decay_parameters if "bias" not in name] + optimizer_grouped_parameters = [ + { + "params": [param for name, param in student_model.named_parameters() if name in decay_parameters], + "weight_decay": training_args.weight_decay, + }, + { + "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters], + "weight_decay": 0.0, + }, + ] + optimizer = torch.optim.AdamW( + params=optimizer_grouped_parameters, + lr=training_args.learning_rate, + betas=(training_args.adam_beta1, training_args.adam_beta2), + eps=training_args.adam_epsilon, + ) + + # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps + lr_scheduler = get_scheduler( + name=training_args.lr_scheduler_type, + optimizer=optimizer, + num_warmup_steps=training_args.warmup_steps * accelerator.num_processes, + num_training_steps=total_train_steps * accelerator.num_processes, + ) + + data_collator = DataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=decoder_start_token_id, + decoder_prev_token_id=decoder_prev_token_id, + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + ) + + # 14. Define generation arguments - we need to do this before we wrap the models in DDP + # so that we can still access the configs + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else getattr(student_model.generation_config, "num_beams", 1) + ) + + gen_kwargs = { + "max_length": max_label_length, + "num_beams": num_beams, + "return_timestamps": return_timestamps, + } + if is_multilingual: + # forcing the language and task tokens helps multilingual models in their generations + gen_kwargs.update( + { + "language": data_args.language, + "task": data_args.task, + } + ) + + # 15. Prepare everything with accelerate + student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare( + student_model, teacher_model, optimizer, lr_scheduler + ) + + def kl_divergence(target_distribution, log_predicted_distribution, labels): + kl_loss = nn.KLDivLoss(reduction="none") + divergence = kl_loss(log_predicted_distribution, target_distribution) + # ignore padded tokens from divergence, i.e. where labels are not set to -100 + padding_mask = labels >= 0 + padding_mask = padding_mask.unsqueeze(-1) + divergence = divergence * padding_mask + # take the average over the mini-batch + divergence = divergence.sum() / padding_mask.sum() + return divergence + + # Define gradient update step fn + def train_step( + batch, + temperature=2.0, + ): + student_model.train() + teacher_model.eval() + + student_outputs = student_model(**batch) + with torch.no_grad(): + if share_hidden_states: + # if the student and teacher share the same frozen encoder then we don't have to recompute the + # encoder hidden-states for the teacher model, we can just re-use from the student + encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype)) + teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) + else: + # do the full forward pass for the teacher model (encoder + decoder) + teacher_outputs = teacher_model(**batch) + + # CE (data) loss + ce_loss = student_outputs.loss + # rescale distribution by temperature to ensure gradients scale correctly + teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1) + # log softmax of student predictions for numerical stability + student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1) + # KL-divergence loss (scaled by temperature) + kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 + + # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight) + loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss + metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} + return loss, metrics + + # Define eval fn + def eval_step(batch): + student_model.eval() + teacher_model.eval() + + with torch.no_grad(): + student_outputs = student_model(**batch) + if share_hidden_states: + encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype)) + teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) + else: + teacher_outputs = teacher_model(**batch) + + # CE (data) loss + ce_loss = student_outputs.loss + + # log softmax / softmax for numerical stability + student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1) + teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1) + # temperature is always 1 for eval + kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) + + # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight) + loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss + metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} + return metrics + + def generate_step(batch): + student_model.eval() + output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs) + output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id) + return output_ids + + logger.info("***** Running training *****") + logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") + if not data_args.streaming: + logger.info(f" Num epochs = {num_epochs}") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") + logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") + logger.info( + f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" + ) + logger.info(f" Total optimization steps = {total_train_steps}") + + # ======================== Training ================================ + train_time = 0 + train_start = time.time() + steps_trained_progress_bar = tqdm( + range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process + ) + continue_training = True + epochs_trained = 0 + cur_step = 0 + + checkpoint = None + if training_args.resume_from_checkpoint is not None: + checkpoint = training_args.resume_from_checkpoint + elif last_checkpoint is not None: + checkpoint = last_checkpoint + + if checkpoint is not None: + accelerator.load_state(checkpoint) + # Find num steps and epoch from saved state string pattern + pattern = r"checkpoint-(\d+)-epoch-(\d+)" + match = re.search(pattern, checkpoint) + cur_step = int(match.group(1)) + epochs_trained = int(match.group(2)) + + logger.info(" Continuing training from checkpoint, will skip to saved global_step") + logger.info(f" Continuing training from epoch {epochs_trained}") + logger.info(f" Continuing training from global step {cur_step}") + + steps_trained_progress_bar.update(cur_step) + + for epoch in range(0, epochs_trained): + vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) + + if not data_args.streaming and training_args.max_steps < 0: + # we know exactly the number of steps per epoch, so can skip through the required number of batches + resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps + else: + # Currently we don't know how many steps we've taken in the current epoch + # So we just shuffle the dataset one extra time and start from a fresh epoch + # This is "good enough" for our purposes but not fully correct + resume_step = None + vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) + else: + resume_step = None + + for epoch in range(epochs_trained, num_epochs): + vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) + train_dataloader = DataLoader( + vectorized_datasets["train"], + collate_fn=data_collator, + batch_size=per_device_train_batch_size, + num_workers=dataloader_num_workers, + prefetch_factor=prefetch_factor, + pin_memory=training_args.dataloader_pin_memory, + ) + train_dataloader = accelerator.prepare(train_dataloader) + if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset): + train_dataloader.dataset.set_epoch(epoch) + + if resume_step is not None: + # Skip the first N batches in the dataloader when resuming from a checkpoint + train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) + resume_step = None + + for batch in train_dataloader: + with accelerator.accumulate(student_model): + loss, train_metric = train_step(batch, temperature=training_args.temperature) + accelerator.backward(loss) + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm) + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Check if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + steps_trained_progress_bar.update(1) + cur_step += 1 + + if cur_step % training_args.logging_steps == 0: + steps_trained_progress_bar.write( + f"Step... ({cur_step} / {total_train_steps} | Loss:" + f" {train_metric['loss']}, Learning Rate:" + f" {lr_scheduler.get_last_lr()[0]})" + ) + log_metric( + accelerator, + metrics=train_metric, + learning_rate=lr_scheduler.get_last_lr()[0], + train_time=train_time + time.time() - train_start, + step=cur_step, + epoch=epoch, + prefix="train", + ) + + # save checkpoint and weights after each save_steps and at the end of training + if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps: + intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}") + accelerator.save_state(output_dir=intermediate_dir) + accelerator.wait_for_everyone() + if accelerator.is_main_process: + rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir) + + if training_args.push_to_hub: + upload_folder( + folder_path=training_args.output_dir, + repo_id=repo_name, + repo_type="model", + commit_message=f"Saving train state of step {cur_step}", + ) + + if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps): + train_time += time.time() - train_start + student_model.eval() + # ======================== Evaluating ============================== + for eval_split in all_eval_splits: + eval_metrics = [] + eval_preds = [] + eval_labels = [] + eval_start = time.time() + + validation_dataloader = DataLoader( + vectorized_datasets[eval_split], + collate_fn=data_collator, + batch_size=per_device_eval_batch_size, + drop_last=False, + num_workers=dataloader_num_workers, + prefetch_factor=prefetch_factor, + pin_memory=training_args.dataloader_pin_memory, + ) + validation_dataloader = accelerator.prepare(validation_dataloader) + + for batch in tqdm( + validation_dataloader, + desc=f"Evaluating {eval_split}...", + position=2, + disable=not accelerator.is_local_main_process, + ): + # Model forward + eval_metric = eval_step(batch) + eval_metric = accelerator.gather_for_metrics(eval_metric) + eval_metrics.append(eval_metric) + + # generation + if training_args.predict_with_generate: + generated_ids = generate_step(batch) + # Gather all predictions and targets + generated_ids, labels = accelerator.gather_for_metrics( + (generated_ids, batch["labels"]) + ) + eval_preds.extend(generated_ids) + eval_labels.extend(labels) + + eval_time = time.time() - eval_start + # normalize eval metrics + eval_metrics = { + key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0] + } + + # compute WER metric + wer_desc = "" + if training_args.predict_with_generate: + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( + eval_preds, eval_labels + ) + eval_metrics.update(wer_metric) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + log_pred( + accelerator, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + step=cur_step, + prefix=eval_split, + ) + + # Print metrics and update progress bar + steps_trained_progress_bar.write( + f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |" + f" {wer_desc})" + ) + + log_metric( + accelerator, + metrics=eval_metrics, + train_time=eval_time, + step=cur_step, + epoch=epoch, + prefix=eval_split, + ) + + # flush the train metrics + train_start = time.time() + + # break condition + if cur_step == total_train_steps: + + # un-wrap student model for save + student_model = accelerator.unwrap_model(student_model) + student_model.save_pretrained(training_args.output_dir) + + if training_args.push_to_hub: + upload_folder( + folder_path=training_args.output_dir, + repo_id=repo_name, + repo_type="model", + commit_message=f"Saving final weights of step {cur_step}", + ) + + continue_training = False + break + + if not continue_training: + break + + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/run_eval.py b/run_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..768ac33624edc9e33ee4db68e1c2575fb95f005a --- /dev/null +++ b/run_eval.py @@ -0,0 +1,822 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Evaluating a Whisper model on one or more speech recognition datasets. +""" +# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments. + +import json +import logging +import os +import sys +import tempfile +import time +from dataclasses import dataclass, field +from typing import Optional + +import datasets +import evaluate +import numpy as np +import torch +import transformers +from datasets import DatasetDict, IterableDatasetDict, load_dataset +from tqdm import tqdm +from transformers import ( + HfArgumentParser, + WhisperForConditionalGeneration, + WhisperProcessor, + is_wandb_available, + pipeline, + set_seed, +) +from transformers.models.whisper.english_normalizer import EnglishTextNormalizer, BasicTextNormalizer +from transformers.models.whisper.modeling_whisper import WhisperForCausalLM +from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE +from transformers.utils import check_min_version, is_accelerate_available +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.34.0.dev0") + +require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") + +logger = logging.getLogger(__name__) + +PIPELINE_BATCH_SIZE = 16 + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={ + "help": "The name of the dataset to use (via the datasets library). Load and combine " + "multiple datasets by separating dataset hours by a '+' symbol." + }, + ) + model_name_or_path: str = field( + default=None, + metadata={"help": "The name of the model to use (via the transformers library). "}, + ) + subfolder: str = field( + default="", + metadata={"help": "If specified load weights from a subfolder in the model repository"}, + ) + model_variant: str = field( + default=None, + metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model..bin. "}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + assistant_model_name_or_path: str = field( + default=None, + metadata={ + "help": "The name of the assistant model to use to do speculative decoding. If None, no speculative decoding will be done." + }, + ) + dtype: Optional[str] = field( + default="float16", + metadata={ + "help": ( + "Floating-point format in which the model weights should be initialized" + " and the computations run. Choose one of `[float32, float16, bfloat16]`." + ) + }, + ) + use_pipeline: bool = field( + default=False, + metadata={"help": "Whether to evaluate with Transformers pipeline"}, + ) + chunk_length_s: float = field( + default=30.0, metadata={"help": "Chunk length to use when `use_pipeline` is enabled."} + ) + return_timestamps: bool = field( + default=True, + metadata={ + "help": "Whether to decode with timestamps. This can help for improved WER for long form evaluation." + }, + ) + language: str = field( + default=None, + metadata={ + "help": ( + "Language for multilingual evaluation. This argument should be set for multilingual evaluation " + "only. For English speech recognition, it should be left as `None`." + ) + }, + ) + task: str = field( + default="transcribe", + metadata={ + "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." + "This argument should be set for multilingual evaluation only. For English speech recognition, it should be left as `None`." + }, + ) + attn_implementation: Optional[str] = field( + default=None, + metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"}, + ) + batch_size: int = field( + default=1, + metadata={"help": "The batch size to be used for generation."}, + ) + num_beams: int = field( + default=1, + metadata={"help": "The beam size to be used for evaluation. Set to 1 for greedy, or >1 for beam search."}, + ) + temperature_fallback: bool = field( + default=True, + metadata={"help": "Whether to use temperature fallback for evaluation."}, + ) + logprob_threshold: float = field( + default=-1.0, + metadata={"help": "Whether to use temperature fallback for evaluation."}, + ) + no_speech_threshold: float = field( + default=0.6, + metadata={ + "help": "Only relevant for long-form transcription. If defined, the 'no-speech' token combined with the `logprob_threshold`" + "is used to determine whether a segment contains only silence. In this case, the transcription for this segment" + "is skipped." + }, + ) + compression_ratio_threshold: float = field( + default=1.35, + metadata={ + "help": "Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of" + "a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is" + "repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates" + "suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. " + "If `compression_ratio_threshold` is defined make sure that `temperature` is a list of values. The default value for `compression_ratio_threshold` is 1.35." + }, + ) + condition_on_prev_tokens: bool = field( + default=False, + metadata={"help": "Whether to condition on previous tokens or not"}, + ) + samples_per_dataset: Optional[int] = field( + default=None, + metadata={"help": "Number of samples per dataset used to measure speed."}, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_split_name: Optional[str] = field( + default=None, + metadata={"help": "The split name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."}, + ) + generation_max_length: int = field( + default=256, metadata={"help": "Generate up until `generation_max_length` tokens."} + ) + log_predictions: Optional[bool] = field( + default=True, + metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."}, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + wandb_project: str = field( + default="distil-whisper-speed-benchmark", + metadata={"help": "The name of the wandb project."}, + ) + wandb_name: str = field( + default=None, + metadata={"help": "The name of the wandb run."}, + ) + wandb_job_type: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb job type."}, + ) + wandb_dir: str = field( + default=None, + metadata={"help": "The absolute path to save the wandb logs."}, + ) + save_code_to_wandb: bool = field( + default=False, + metadata={ + "help": ( + "Whether to save main script to wandb. This is valuable for improving" + " experiment reproducibility and to diff code across experiments in" + " the UI." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, + ) + seed: int = field(default=42, metadata={"help": "RNG seed for reproducibility."}) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + prompt_text: str = field( + default=None, + metadata={ + "help": "Text prompt to condition the generation on. Useful for controlling the style of transcription and predicting named entities." + }, + ) + + +def write_metric(summary_writer, eval_metrics, step, prefix="eval"): + for metric_name, value in eval_metrics.items(): + summary_writer.scalar(f"{prefix}/{metric_name}", value, step) + + +def write_wandb_metric(wandb_logger, metrics, prefix): + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + wandb_logger.log(log_metrics) + + +def write_wandb_pred( + wandb_logger, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + wer_per_sample, + prefix="eval", +): + columns = ["WER", "Target", "Pred", "Norm Target", "Norm Pred"] + # convert str data to a wandb compatible format + str_data = [ + [wer_per_sample[i], label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] + for i in range(len(pred_str)) + ] + + # log as a table with the appropriate headers + wandb_logger.log( + {f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)}, + ) + + +def convert_dataset_str_to_list( + dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" +): + if isinstance(dataset_names, str): + dataset_names = dataset_names.split("+") + + # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary + for i in range(len(dataset_names)): + ds_name = dataset_names[i] + dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name + + dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None + splits = splits.split("+") if splits is not None else None + text_column_names = text_column_names.split("+") if text_column_names is not None else None + dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None + + # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs + if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names): + raise ValueError( + f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(dataset_config_names)} configs." + ) + + if splits is not None and len(splits) != len(dataset_names): + raise ValueError( + f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." + ) + + if text_column_names is not None and len(text_column_names) != len(dataset_names): + raise ValueError( + f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" + f" {len(text_column_names)} text column names." + ) + + if dataset_hours is not None: + if len(dataset_hours) != len(dataset_names): + raise ValueError( + f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " + f"{len(dataset_hours)} hours." + ) + dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] + else: + dataset_hours = [None] * len(dataset_names) + + dataset_config_names = ( + dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))] + ) + text_column_names = ( + text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] + ) + splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] + + dataset_names_dict = [] + for i, ds_name in enumerate(dataset_names): + dataset_names_dict.append( + { + "name": ds_name, + "config": dataset_config_names[i], + "split": splits[i], + "text_column_name": text_column_names[i], + "hours": dataset_hours[i], + } + ) + return dataset_names_dict + + +def language_to_id(language: str, generation_config) -> str: + language = language.lower() + if language in generation_config.lang_to_id.keys(): + language_token = language + elif language in TO_LANGUAGE_CODE.keys(): + language_token = f"<|{TO_LANGUAGE_CODE[language]}|>" + elif language in TO_LANGUAGE_CODE.values(): + language_token = f"<|{language}|>" + else: + is_language_code = len(language) == 2 + raise ValueError( + f"Unsupported language: {language}. Language should be one of:" + f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." + ) + if language_token not in generation_config.lang_to_id: + raise ValueError( + f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`." + "(You should just add it to the generation config)" + ) + + return language_token + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser([DataTrainingArguments]) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] + else: + data_args = parser.parse_args_into_dataclasses()[0] + + # 2. Setup logging + # Make one log on every process with the configuration for debugging. + logger.setLevel(logging.INFO) + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + + # 3. Set seed for reproducibility + set_seed(data_args.seed) + + if data_args.use_pipeline and data_args.batch_size > 1: + raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.") + + has_wandb = is_wandb_available() + if has_wandb: + import wandb + import wandb as wandb_logger + + # store generation HPs for runs + generation_arguments = { + "torch_version": str(torch.__version__), + "transformers_version": str(transformers.__version__), + "attn_implementation": data_args.attn_implementation, + "model_name_or_path": data_args.model_name_or_path, + "subfolder": data_args.subfolder, + "assistant_model_name_or_path": data_args.assistant_model_name_or_path, + "seed": data_args.seed, + "batch_size": data_args.batch_size, + "num_beams": data_args.num_beams, + "return_timestamps": data_args.return_timestamps, + "condition_on_prev_tokens": data_args.condition_on_prev_tokens, + "temperature_fallback": data_args.temperature_fallback, + "logprob_threshold": data_args.logprob_threshold, + "no_speech_threshold": data_args.no_speech_threshold, + "use_pipeline": data_args.use_pipeline, + "chunk_length_s": data_args.chunk_length_s, + } + + # Set up wandb run + wandb_logger.init( + project=data_args.wandb_project, + name=data_args.wandb_name, + job_type=data_args.wandb_job_type, + dir=data_args.wandb_dir, + save_code=data_args.save_code_to_wandb, + config=generation_arguments, + ) + + else: + raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") + + # 3. Load dataset + raw_datasets = IterableDatasetDict() + + # Convert lists of dataset names/configs/splits to a dict + # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation" + # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"} + dataset_names_dict = convert_dataset_str_to_list( + data_args.dataset_name, + data_args.dataset_config_name, + splits=data_args.dataset_split_name, + text_column_names=data_args.text_column_name, + ) + + # load multiple eval sets + for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."): + sub_dataset = load_dataset( + dataset_dict["name"], + dataset_dict["config"], + split=dataset_dict["split"], + cache_dir=data_args.dataset_cache_dir, + streaming=data_args.streaming, + num_proc=data_args.preprocessing_num_workers, + ) + if dataset_dict["text_column_name"] not in list(sub_dataset.features.keys()): + raise ValueError( + f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation " + f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " + f"for the target text. Should be one of {' '.join(list(sub_dataset.features.keys()))}" + ) + if dataset_dict["text_column_name"] != "text": + sub_dataset = sub_dataset.rename_column(dataset_dict["text_column_name"], "text") + if not data_args.streaming: + sub_dataset = sub_dataset.to_iterable_dataset() + + # Clean-up the dataset name for pretty logging + # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean" + pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" + raw_datasets[pretty_name] = sub_dataset + + # 5. Load pretrained model, tokenizer, and feature extractor + processor = WhisperProcessor.from_pretrained( + data_args.model_name_or_path, + subfolder=data_args.subfolder, + cache_dir=data_args.cache_dir, + use_fast=data_args.use_fast_tokenizer, + ) + dtype = getattr(torch, data_args.dtype) + model = WhisperForConditionalGeneration.from_pretrained( + data_args.model_name_or_path, + subfolder=data_args.subfolder, + torch_dtype=dtype, + attn_implementation=data_args.attn_implementation, + low_cpu_mem_usage=is_accelerate_available(), + cache_dir=data_args.cache_dir, + variant=data_args.model_variant, + ) + model.to("cuda:0", dtype=dtype) + + model_pipeline = None + if data_args.use_pipeline: + model_pipeline = pipeline( + "automatic-speech-recognition", + model=model, + tokenizer=processor.tokenizer, + feature_extractor=processor.feature_extractor, + torch_dtype=dtype, + device=model.device, + chunk_length_s=data_args.chunk_length_s, + ) + model_pipeline_forward = model_pipeline._forward + + assistant_model = None + if data_args.assistant_model_name_or_path is not None: + logger.info("Loading assistant model...") + + if data_args.assistant_model_name_or_path.startswith("openai"): + assistant_model = WhisperForConditionalGeneration.from_pretrained( + data_args.assistant_model_name_or_path, + torch_dtype=dtype, + attn_implementation=data_args.attn_implementation, + low_cpu_mem_usage=is_accelerate_available(), + cache_dir=data_args.cache_dir, + ) + else: + assistant_model = WhisperForCausalLM.from_pretrained( + data_args.assistant_model_name_or_path, + torch_dtype=dtype, + attn_implementation=data_args.attn_implementation, + low_cpu_mem_usage=is_accelerate_available(), + cache_dir=data_args.cache_dir, + ) + + assistant_model.cuda() + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + audio_column_name = data_args.audio_column_name + language = language_to_id(data_args.language, model.generation_config) if data_args.language else None + if language is None or language == "<|en|>": + normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer) + else: + normalizer = BasicTextNormalizer() + + sampling_rate = processor.feature_extractor.sampling_rate + + if data_args.samples_per_dataset is not None: + for split in raw_datasets: + raw_datasets[split] = raw_datasets[split].take(data_args.samples_per_dataset) + + def prepare_dataset(batch): + # process audio + audio = [sample["array"].astype(np.float32) for sample in batch[audio_column_name]] + + if model_pipeline is None: + inputs = processor.feature_extractor( + audio, + sampling_rate=sampling_rate, + return_tensors="pt", + truncation=False, + padding="longest", + return_attention_mask=True, + ) + if inputs.input_features.shape[-1] < 3000: + inputs = processor.feature_extractor( + audio, + sampling_rate=sampling_rate, + return_tensors="pt", + return_attention_mask=True, + ) + batch["input_features"] = inputs.input_features.to(dtype) + batch["attention_mask"] = inputs.attention_mask + else: + batch["input_features"] = audio + + # process audio length + batch["length_in_s"] = [len(sample) / sampling_rate for sample in audio] + # process targets + batch["reference"] = batch["text"] + return batch + + vectorized_datasets = IterableDatasetDict() + + for split in raw_datasets: + raw_datasets_features = list(raw_datasets[split].features.keys()) + + vectorized_datasets[split] = raw_datasets[split].map( + function=prepare_dataset, + remove_columns=raw_datasets_features, + batch_size=data_args.batch_size, + batched=True, + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + metric = evaluate.load("wer") + + def compute_metrics(pred_str, label_str): + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + return wer + + gen_kwargs = { + "max_length": data_args.generation_max_length, + "return_timestamps": data_args.return_timestamps, + "num_beams": data_args.num_beams, + "top_k": 0, + } + + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + gen_kwargs["language"] = data_args.language + gen_kwargs["task"] = data_args.task + elif data_args.language is not None: + raise ValueError( + "Setting language token for an English-only checkpoint is not permitted. The language argument should " + "only be set for multilingual checkpoints." + ) + + if assistant_model is not None: + gen_kwargs["assistant_model"] = assistant_model + + if data_args.prompt_text is not None: + gen_kwargs["prompt_ids"] = processor.get_prompt_ids(data_args.prompt_text, return_tensors="pt").to("cuda:0") + + long_form_gen_kwargs = { + "condition_on_prev_tokens": data_args.condition_on_prev_tokens, + "compression_ratio_threshold": data_args.compression_ratio_threshold, + "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) if data_args.temperature_fallback else 0, + "logprob_threshold": data_args.logprob_threshold, + "no_speech_threshold": data_args.no_speech_threshold, + } + + def benchmark(batch): + if model_pipeline is None: + inputs = torch.stack(batch["input_features"], dim=0).cuda() + attention_mask = torch.stack(batch["attention_mask"], dim=0).cuda() + # automatically use long-form args if required + inner_batch_size, num_mels, seq_len = inputs.shape + if seq_len == 3000: + batch_gen_kwargs = gen_kwargs + else: + batch_gen_kwargs = {**gen_kwargs, **long_form_gen_kwargs} + + set_seed(data_args.seed) + start_time = time.time() + output_ids = model.generate(inputs, attention_mask=attention_mask, **batch_gen_kwargs) + batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size] + + batch["transcription"] = processor.batch_decode( + output_ids, skip_special_tokens=True, decode_with_timestamps=data_args.return_timestamps + ) + + else: + inputs = batch["input_features"] + # Time forward: let's make sure that only forward is timed and not pre- and post-processing + time_result = [] + + def _forward_time(*args, **kwargs): + start_time = time.time() + result = model_pipeline_forward(*args, **kwargs) + end_time = time.time() - start_time + time_result.append(end_time) + return result + + model_pipeline._forward = _forward_time + + result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"] + batch["transcription"] = [result] + batch["time"] = [sum(time_result)] + + batch["num_words"] = [len(r.split()) for r in batch["reference"]] + return batch + + result_datasets = DatasetDict() + + for split in vectorized_datasets: + result_datasets[split] = vectorized_datasets[split].map( + function=benchmark, + remove_columns=["input_features"], + batch_size=data_args.batch_size, + batched=True, + ) + + stats_dataset = DatasetDict() + + all_stats = {"rtf": 0, "wer": 0} + rtf_stats = { + "times_audio_total": 0, + "times_transcription_total": 0, + } + + logger.info("***** Running Evaluation *****") + for key in generation_arguments: + logger.info(f" {key}: {generation_arguments[key]}") + + datasets_evaluated_progress_bar = tqdm(result_datasets, desc="Datasets", position=0) + for split in datasets_evaluated_progress_bar: + transcriptions = [] + references = [] + stats = {} + times_audio_total = 0 + times_transcription_total = 0 + + datasets_evaluated_progress_bar.write(f"Start benchmarking {split}...") + result_iter = iter(result_datasets[split]) + for result in tqdm(result_iter, desc="Samples", position=1): + times_audio_total += result["length_in_s"] + times_transcription_total += result["time"] + # ensure prompt is removed from the transcription (awaiting fix in Transformers) + if data_args.prompt_text is not None: + result["transcription"] = result["transcription"].replace(data_args.prompt_text, "") + transcriptions.append(result["transcription"]) + references.append(result["reference"]) + + norm_transcriptions = [normalizer(pred) for pred in transcriptions] + norm_references = [normalizer(label) for label in references] + + transcriptions = [transcriptions[i] for i in range(len(transcriptions)) if len(norm_references[i]) > 0] + references = [references[i] for i in range(len(references)) if len(norm_references[i]) > 0] + + norm_transcriptions = [ + norm_transcriptions[i] for i in range(len(norm_transcriptions)) if len(norm_references[i]) > 0 + ] + norm_references = [norm_references[i] for i in range(len(norm_references)) if len(norm_references[i]) > 0] + + stats["wer"] = compute_metrics(norm_transcriptions, norm_references) + + wer_per_sample = [] + for pred, ref in zip(norm_transcriptions, norm_references): + wer_per_sample.append(compute_metrics([pred], [ref])) + + stats["rtf"] = times_audio_total / times_transcription_total + stats_dataset[split] = stats + + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in stats.items()]) + datasets_evaluated_progress_bar.write(wer_desc) + + write_wandb_metric(wandb_logger, stats, prefix=split) + + if data_args.log_predictions: + write_wandb_pred( + wandb_logger, + transcriptions, + references, + norm_transcriptions, + norm_references, + wer_per_sample, + prefix=split, + ) + + rtf_stats["times_audio_total"] += times_audio_total + rtf_stats["times_transcription_total"] += times_transcription_total + all_stats["wer"] += stats["wer"] + + all_stats["wer"] = all_stats["wer"] / len(result_datasets) + # technically this is the reciprocal of the RTF, but it makes the scale easier to read on wandb + all_stats["rtf"] = rtf_stats["times_audio_total"] / rtf_stats["times_transcription_total"] + + stats_dataset["all"] = all_stats + + write_wandb_metric(wandb_logger, all_stats, prefix="all") + + benchmark_artifact = wandb.Artifact("Benchmark", type="datasets") + with tempfile.TemporaryDirectory() as temp_dir: + for split in stats_dataset: + file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json") + + with open(file_name, "w") as json_file: + json.dump(stats_dataset[split], json_file) + + benchmark_artifact.add_file(file_name, split) + + wandb_logger.log_artifact(benchmark_artifact) + + +if __name__ == "__main__": + main() diff --git a/run_pseudo_labelling.py b/run_pseudo_labelling.py new file mode 100644 index 0000000000000000000000000000000000000000..d1a9234faeff0bc6c9e08ff95fbeb5cb3d41f4e8 --- /dev/null +++ b/run_pseudo_labelling.py @@ -0,0 +1,1021 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Pseudo-labelling audio data using the Whisper model in preparation for distillation. +""" +# You can also adapt this script for your own pseudo-labelling tasks. Pointers for this are left as comments. + +import csv +import logging +import os +import sys +import time +import warnings +from dataclasses import dataclass, field +from datetime import timedelta +from pathlib import Path +from typing import Any, Dict, List, Optional, Union + +import datasets +import evaluate +import numpy as np +import torch +import transformers +from accelerate import Accelerator, InitProcessGroupKwargs +from accelerate.logging import get_logger +from datasets import ( + DatasetDict, + IterableDatasetDict, + load_dataset, +) +from huggingface_hub import HfFolder, create_repo, get_full_repo_name, snapshot_download, upload_folder +from torch.utils.data import DataLoader +from tqdm import tqdm +from soundfile import LibsndfileError +from datasets.arrow_dataset import table_iter +from transformers import ( + HfArgumentParser, + Seq2SeqTrainingArguments, + WhisperConfig, + WhisperFeatureExtractor, + WhisperForConditionalGeneration, + WhisperProcessor, + WhisperTokenizerFast, +) +from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.34.0.dev0") + +require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") + +logger = get_logger(__name__) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to distill from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} + ) + config_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained config name or path if not the same as model_name"}, + ) + tokenizer_name: Optional[str] = field( + default=None, + metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, + ) + feature_extractor_name: Optional[str] = field( + default=None, + metadata={"help": "feature extractor name or path if not the same as model_name"}, + ) + processor_name: Optional[str] = field( + default=None, + metadata={"help": "processor name or path if not the same as model_name"}, + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + subfolder: str = field( + default="", + metadata={ + "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" + "specify the folder name here." + }, + ) + token: str = field( + default=None, + metadata={ + "help": ( + "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " + "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." + ) + }, + ) + dtype: Optional[str] = field( + default="float32", + metadata={ + "help": ( + "The data type (dtype) in which to load the model weights. One of `float32` (full-precision), " + "`float16` or `bfloat16` (both half-precision)." + ) + }, + ) + attn_implementation: Optional[str] = field( + default=None, + metadata={ + "help": ( + "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" + "1. `eager` or `None`: default Transformers attention implementation.\n" + "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." + ) + }, + ) + attn_type: Optional[str] = field( + default=None, + metadata={"help": "Deprecated. Use `attn_implementation` instead."}, + ) + + def __post_init__(self): + if self.attn_type is not None and self.attn_implementation is None: + # set attn_implementation in a backwards compatible way + if self.attn_type == "flash_attn": + self.attn_implementation = "sdpa" + elif self.attn_type == "flash_attn_2": + self.attn_implementation = "flash_attention_2" + elif self.attn_type in [None, "eager", "sdpa", "flash_attention_2"]: + self.attn_implementation = self.attn_type + else: + raise ValueError( + f"Argument `--attn_type` is deprecated, and set to an invalid option `{self.attn_type}`. You should omit the argument `--attn_type`, and instead set `-attention_implementation` to one of the following:\n" + "1. `eager` or `None`: default Transformers attention implementation.\n" + "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" + "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." + ) + warnings.warn( + f"Argument `--attn_type` is deprecated. Use `--attn_implementation` instead. Inferring `--attn_implementation={self.attn_implementation} from argument `--attn_type={self.attn_type}`." + ) + elif self.attn_type is not None and self.attn_implementation is not None: + raise ValueError( + "`--attn_type` and `--attn_implementation` are both specified. Only the argument `--attn_implementation`." + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, + metadata={"help": "The name of the dataset to use (via the datasets library)."}, + ) + dataset_config_name: Optional[str] = field( + default=None, + metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, + ) + dataset_cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Path to cache directory for saving and loading datasets"}, + ) + overwrite_cache: bool = field( + default=False, + metadata={"help": "Overwrite the cached training and evaluation sets"}, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + preprocessing_batch_size: Optional[int] = field( + default=500, + metadata={"help": "The batch size to use for the dataset pre-processing."}, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default="text", + metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, + ) + id_column_name: str = field( + default="id", + metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"}, + ) + speaker_id_column_name: str = field( + default=None, + metadata={"help": "The name of the dataset column containing the speaker id data. Defaults to None."}, + ) + max_duration_in_seconds: float = field( + default=30.0, + metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, + ) + max_label_length: int = field( + default=256, + metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, + ) + concatenate_audio: bool = field( + default=True, + metadata={"help": "Whether or not to concatenate the audio samples to `max_duration_in_seconds`."}, + ) + preprocessing_only: bool = field( + default=False, + metadata={ + "help": ( + "Whether to only do data preprocessing and skip training. This is" + " especially useful when data preprocessing errors out in distributed" + " training due to timeout. In this case, one should run the" + " preprocessing in a non-distributed setup with" + " `preprocessing_only=True` so that the cached datasets can" + " consequently be loaded in distributed training" + ) + }, + ) + dataset_split_name: str = field( + default="train+validation+test", + metadata={ + "help": ( + "The name of the data set splits to use (via the datasets library)." + " Defaults to 'train+validation+test'. Multiple splits can be passed by splitting a" + " list through the '+' character, e.g. 'train+validation' will" + " pseudo-label both the 'train' and 'validation' splits sequentially." + ) + }, + ) + wandb_project: str = field( + default="distil-whisper", + metadata={"help": "The name of the wandb project."}, + ) + streaming: bool = field( + default=False, + metadata={"help": "Whether to use dataset's streaming mode to load and pre-process the data."}, + ) + max_samples_per_split: Optional[int] = field( + default=None, + metadata={"help": "For debugging purposes, truncate the number of examples per split to this value if set."}, + ) + return_timestamps: bool = field( + default=False, + metadata={ + "help": "Whether to return the timestamps with the text. This enables the `FlaxWhisperTimestampsLogitsProcessor`." + }, + ) + language: str = field( + default=None, + metadata={ + "help": ( + "Language for multilingual distillation. This argument should be set for multilingual distillation " + "only. For English speech recognition, it should be left as `None`." + ) + }, + ) + task: str = field( + default="transcribe", + metadata={ + "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." + "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." + }, + ) + decode_token_ids: bool = field( + default=True, + metadata={"help": "Deprecated. The predicted token ids should always be decoded to text transcriptions."}, + ) + private_dataset: bool = field( + default=False, + metadata={"help": "Whether or not to create a private dataset for the pseudo-labelled data."}, + ) + + def __post_init__(self): + if not self.decode_token_ids: + raise ValueError( + "The argument `--decode_token_ids` is deprecated. The token ids are now always decoded to " + "their corresponding text string. This is following a fix to the merges of the Whisper tokenizer" + "on the Hugging Face Hub: https://huggingface.co/openai/whisper-large-v2/discussions/100. " + "You should either omit the argument `--decode_token_ids`, or set it to True explicitly." + ) + + +def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: + """ + Shift label ids one token to the right. + """ + shifted_label_ids = np.zeros_like(label_ids) + shifted_label_ids[:, 1:] = label_ids[:, :-1] + shifted_label_ids[:, 0] = decoder_start_token_id + + return shifted_label_ids + + +@dataclass +class DataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`Wav2Vec2Processor`]) + The processor used for proccessing the data. + decoder_start_token_id (:obj: `int`) + The start-of-sequence token id of the decoder. + input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) + among: + * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the + maximum acceptable input length for the model if that argument is not provided. + * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of + different lengths). + target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): + Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). + See above for details. + max_target_length (:obj:`int`, `optional`): + Maximum length of the ``labels`` of the returned list and optionally padding length (see above). + """ + + processor: Any + decoder_start_token_id: int + input_padding: Union[bool, str] = "max_length" + target_padding: Union[bool, str] = "max_length" + max_target_length: Optional[int] = None + + def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + + # dataloader returns a list of features which we convert to a dict + input_features = {model_input_name: [feature[model_input_name] for feature in features]} + label_features = {"input_ids": [feature["labels"] for feature in features]} + + # reformat list to dict and set to pytorch format + batch = self.processor.feature_extractor.pad( + input_features, + padding=self.input_padding, + return_tensors="pt", + ) + + labels_batch = self.processor.tokenizer.pad( + label_features, + max_length=self.max_target_length, + padding=self.target_padding, + return_tensors="pt", + ) + + # replace padding with -100 to ignore correctly when computing the loss + labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): + labels = labels[:, 1:] + + batch["labels"] = labels + return batch + + +def log_metric( + accelerator, + metrics: Dict, + train_time: float, + prefix: str = "eval", +): + """Helper function to log all evaluation metrics with the correct prefixes and styling.""" + log_metrics = {} + for k, v in metrics.items(): + log_metrics[f"{prefix}/{k}"] = v + log_metrics[f"{prefix}/time"] = train_time + accelerator.log(log_metrics) + + +def log_pred( + accelerator, + pred_str: List[str], + label_str: List[str], + norm_pred_str: List[str], + norm_label_str: List[str], + prefix: str = "eval", + num_lines: int = 200000, +): + """Helper function to log target/predicted transcriptions to weights and biases (wandb).""" + if accelerator.is_main_process: + wandb_tracker = accelerator.get_tracker("wandb") + # pretty name for split + prefix = prefix.replace("/", "-") + + # convert str data to a wandb compatible format + str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"{prefix}/all_predictions", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data[:num_lines], + ) + + # log incorrect normalised predictions + str_data = np.asarray(str_data) + str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] + # log as a table with the appropriate headers + wandb_tracker.log_table( + table_name=f"{prefix}/incorrect_predictions", + columns=["Target", "Pred", "Norm Target", "Norm Pred"], + data=str_data_incorrect[:num_lines], + ) + + +def main(): + # 1. Parse input arguments + # We keep distinct sets of args, for cleaner separation of model/data/training related args + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # 2. Initialize the accelerator + # We will let the accelerator handle device placement for us in this example + # We simply have to specify the training precision and any trackers being used + # We'll use the same dtype arguments as our JAX/Flax training script and convert + # it to accelerate format + if model_args.dtype == "float16": + mixed_precision = "fp16" + torch_dtype = torch.float16 + elif model_args.dtype == "bfloat16": + mixed_precision = "bf16" + torch_dtype = torch.bfloat16 + else: + mixed_precision = "no" + torch_dtype = torch.float32 + + kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) + + accelerator = Accelerator( + gradient_accumulation_steps=training_args.gradient_accumulation_steps, + mixed_precision=mixed_precision, + log_with=training_args.report_to, + project_dir=training_args.output_dir, + kwargs_handlers=[kwargs], + ) + + accelerator.init_trackers(project_name=data_args.wandb_project) + + # 3. Set-up basic logging + # Create one log on every process with the configuration for debugging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + # Log a small summary on each proces + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" + ) + + # Set the verbosity to info of the Transformers logger (on main process only) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + logger.info("Training/evaluation parameters %s", training_args) + + # 3. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + token = model_args.token if model_args.token is not None else HfFolder().get_token() + + data_splits = data_args.dataset_split_name.split("+") + for split in data_splits: + with accelerator.main_process_first(): + raw_datasets[split] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=split, + cache_dir=data_args.dataset_cache_dir, + token=token, + streaming=data_args.streaming, + num_proc=data_args.preprocessing_num_workers if not data_args.streaming else None, + ) + + if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" + " the correct audio column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: + raise ValueError( + f"--text_column_name {data_args.text_column_name} not found in dataset" + f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" + " correct text column - one of" + f" {', '.join(next(iter(raw_datasets.values())).column_names)}." + ) + + # 7. Load pretrained model, tokenizer, and feature extractor + config = WhisperConfig.from_pretrained( + (model_args.config_name if model_args.config_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + feature_extractor = WhisperFeatureExtractor.from_pretrained( + (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + tokenizer = WhisperTokenizerFast.from_pretrained( + (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + token=token, + ) + processor = WhisperProcessor.from_pretrained( + (model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + token=token, + ) + + model = WhisperForConditionalGeneration.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + subfolder=model_args.subfolder, + token=token, + low_cpu_mem_usage=True, + torch_dtype=torch_dtype, + attn_implementation=model_args.attn_implementation, + ) + model.eval() + + if model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + return_timestamps = data_args.return_timestamps + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + is_multilingual = True + # We need to set the language and task ids for multilingual checkpoints + tokenizer.set_prefix_tokens( + language=data_args.language, task=data_args.task, predict_timestamps=return_timestamps + ) + elif data_args.language is not None: + raise ValueError( + "Setting language token for an English-only checkpoint is not permitted. The language argument should " + "only be set for multilingual checkpoints." + ) + else: + is_multilingual = False + + # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio, + # so we just need to set the correct target sampling rate. + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, + datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) + max_label_length = ( + data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length + ) + audio_column_name = data_args.audio_column_name + sampling_rate = feature_extractor.sampling_rate + + preprocessing_batch_size = data_args.preprocessing_batch_size + num_workers = data_args.preprocessing_num_workers + dataloader_num_workers = training_args.dataloader_num_workers + + text_column_name = data_args.text_column_name + model_input_name = feature_extractor.model_input_names[0] + id_column_name = data_args.id_column_name + speaker_id_column_name = data_args.speaker_id_column_name + normalizer = ( + BasicTextNormalizer() + if data_args.language is not None + else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) + ) + + timestamp_position = 3 if is_multilingual else 1 + decoder_prev_token_id = tokenizer.convert_tokens_to_ids("<|startofprev|>") + decoder_eot_token_id = tokenizer.eos_token_id + + if data_args.max_samples_per_split is not None: + for split in data_splits: + raw_datasets[split] = ( + raw_datasets[split].take(data_args.max_samples_per_split) + if data_args.streaming + else raw_datasets[split].select(range(data_args.max_samples_per_split)) + ) + + if speaker_id_column_name is not None: + raw_datasets = raw_datasets.sort(speaker_id_column_name) + + def concatenate_dataset(batch): + audio_arrays, texts, speaker_ids = [], [], [] + + # skip corrupted samples + for row in table_iter(batch.pa_table, batch_size=1): + row = batch.formatter.format_row(row) + try: + sample_audio = row[audio_column_name]['array'] + sample_text = row[text_column_name] + sample_speaker_id = row[speaker_id_column_name] if speaker_id_column_name else None + except LibsndfileError: + logger.warning(f"{row[id_column_name]} is corrupted! Skipping sample.") + continue + audio_arrays.append(sample_audio) + texts.append(sample_text) + speaker_ids.append(sample_speaker_id) + + # initialize concatenations + concat_audio = [audio_arrays[0]] + concat_text = [texts[0]] + concat_speaker_id = [speaker_ids[0]] + condition_on_prev = [0] + + for audio_array, text, speaker_id in zip(audio_arrays[1:], texts[1:], speaker_ids[1:]): + is_same_speaker = speaker_id == concat_speaker_id[-1] + is_concatenable = len(audio_array) + len(concat_audio[-1]) <= max_input_length + if is_same_speaker and is_concatenable: + # inplace concatenation + concat_audio[-1] = np.append(concat_audio[-1], audio_array) + concat_text[-1] = concat_text[-1] + " " + text + else: + concat_audio.append(audio_array) + concat_text.append(text) + concat_speaker_id.append(speaker_id) + condition_on_prev.append(1 if is_same_speaker else 0) + + batch[audio_column_name] = [{"array": array, "sampling_rate": sampling_rate} for array in concat_audio] + batch[text_column_name] = concat_text + batch[id_column_name] = concat_speaker_id + batch["condition_on_prev"] = condition_on_prev + + return batch + + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + if data_args.concatenate_audio and not data_args.streaming: + with accelerator.main_process_first(): + raw_datasets = raw_datasets.map( + concatenate_dataset, + batched=True, + batch_size=preprocessing_batch_size, + num_proc=num_workers, + remove_columns=set(raw_datasets_features) + - {audio_column_name, text_column_name, id_column_name, "condition_on_prev"}, + desc="Concatenating dataset...", + ) + + raw_datasets = raw_datasets.cast_column( + audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate) + ) + pretty_name = data_args.dataset_name.split("/")[-1] + + def postprocess_ids(speaker_ids, indices): + speaker_ids_formatted = [] + for speaker, idx in zip(speaker_ids, indices): + formatted_idx = f"{pretty_name}-{speaker}-{idx}" if speaker is not None else f"{pretty_name}-{idx}" + speaker_ids_formatted.append(formatted_idx) + return {id_column_name: speaker_ids_formatted} + + with accelerator.main_process_first(): + raw_datasets = raw_datasets.map( + postprocess_ids, + input_columns=[id_column_name], + with_indices=True, + desc="Setting sample idxs...", + batched=True, + batch_size=preprocessing_batch_size, + num_proc=num_workers, + ) + elif data_args.concatenate_audio and data_args.streaming: + raise ValueError( + "Streaming mode is not yet compatible with concatenating audios to `max_duration_in_seconds`." + "Either set `--streaming=False` and download the audios locally, or open an issue on the Distil-Whisper repo to request this feature." + ) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + + # process targets + input_str = batch[text_column_name] + batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids + return batch + + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + file_ids_dataset = IterableDatasetDict() if data_args.streaming else DatasetDict() + for split in raw_datasets: + file_ids_dataset[split] = raw_datasets[split][id_column_name] + if data_args.streaming: + with accelerator.main_process_first(): + vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=raw_datasets_features) + else: + with accelerator.main_process_first(): + vectorized_datasets = raw_datasets.map( + prepare_dataset, + remove_columns=raw_datasets_features, + num_proc=num_workers, + desc="preprocess dataset", + ) + + # for large datasets it is advised to run the preprocessing on a + # single machine first with `args.preprocessing_only` since there will mostly likely + # be a timeout when running the script in distributed mode. + # In a second step `args.preprocessing_only` can then be set to `False` to load the + # cached dataset + if data_args.preprocessing_only: + cache = {k: v.cache_files for k, v in vectorized_datasets.items()} + logger.info(f"Data preprocessing finished. Files cached at {cache}.") + return + + if data_args.streaming and dataloader_num_workers > 0: + logger.warning( + "Using multiple dataloader num workers with streaming mode will result in different shards of " + "data being transcribed in parallel. This is not advised if you want to preserve the order of the " + "audio-text data." + ) + + # Handle the repository creation + output_dir = training_args.output_dir + if accelerator.is_main_process: + if training_args.push_to_hub: + if training_args.hub_model_id is None: + repo_name = get_full_repo_name( + Path(output_dir).absolute().name, + token=training_args.hub_token, + ) + else: + repo_name = training_args.hub_model_id + create_repo(repo_name, repo_type="dataset", exist_ok=True, token=training_args.hub_token) + snapshot_download(repo_id=repo_name, local_dir=output_dir) + + # Ensure large txt files can be pushed to the Hub with git-lfs + with open(os.path.join(output_dir, ".gitattributes"), "r+") as f: + git_lfs_extensions = f.read() + if "*.csv" not in git_lfs_extensions: + f.write("*.csv filter=lfs diff=lfs merge=lfs -text") + + elif output_dir is not None: + # this is where we'll save our transcriptions + os.makedirs(output_dir, exist_ok=True) + + accelerator.wait_for_everyone() + + # 8. Load Metric + metric = evaluate.load("wer") + + def compute_metrics(preds, labels, file_ids): + # replace padded labels by the padding token + for idx in range(len(labels)): + labels[idx][labels[idx] == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(preds, skip_special_tokens=False, decode_with_timestamps=return_timestamps) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) + + # normalize everything and re-compute the WER + norm_pred_str = [normalizer(pred) for pred in pred_str] + norm_label_str = [normalizer(label) for label in label_str] + # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here + pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + file_ids = [file_ids[i] for i in range(len(file_ids)) if len(norm_label_str[i]) > 0] + # filtering step to only evaluate the samples that correspond to non-zero normalized references: + norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] + norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) + + return {"wer": wer}, pred_str, label_str, norm_pred_str, norm_label_str, file_ids + + def filter_eot_tokens(preds): + for idx in range(len(preds)): + # remove the EOT tokens to get the 'true' token length + token_ids = [token for token in preds[idx] if token != decoder_eot_token_id] + token_ids = token_ids + [decoder_eot_token_id] + preds[idx] = token_ids + return preds + + # 12. Define Training Schedule + per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) + + data_collator = DataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=model.config.decoder_start_token_id, # <|startoftranscript|> + input_padding="longest", + target_padding="max_length", + max_target_length=max_label_length, + ) + + # 14. Define generation arguments - we need to do this before we wrap the models in DDP + # so that we can still access the configs + num_beams = ( + training_args.generation_num_beams + if training_args.generation_num_beams is not None + else getattr(model.generation_config, "num_beams", 1) + ) + + gen_kwargs = { + "max_length": max_label_length, + "num_beams": num_beams, + "return_timestamps": return_timestamps, + } + if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: + # forcing the language and task tokens helps multilingual models in their generations + gen_kwargs.update( + { + "language": data_args.language, + "task": data_args.task, + } + ) + # remove any preset forced decoder ids since these are deprecated + model.generation_config.forced_decoder_ids = None + model.config.forced_decoder_ids = None + + # 15. Prepare everything with accelerate + model = accelerator.prepare(model) + + def eval_step_with_save(split="eval"): + # ======================== Evaluating ============================== + eval_preds = [] + eval_labels = [] + eval_ids = [] + pred_str = [] + eval_start = time.time() + + eval_loader = DataLoader( + vectorized_datasets[split], + batch_size=per_device_eval_batch_size, + collate_fn=data_collator, + num_workers=dataloader_num_workers, + pin_memory=True, + ) + file_loader = DataLoader( + file_ids_dataset[split], + batch_size=per_device_eval_batch_size * accelerator.num_processes, + num_workers=dataloader_num_workers, + ) + + eval_loader = accelerator.prepare(eval_loader) + batches = tqdm(eval_loader, desc=f"Evaluating {split}...", disable=not accelerator.is_local_main_process) + + # make the split name pretty for librispeech etc + split = split.replace(".", "-").split("/")[-1] + output_csv = os.path.join(output_dir, f"{split}-transcription.csv") + + for step, (batch, file_ids) in enumerate(zip(batches, file_loader)): + # Generate predictions and pad to max generated length + generate_fn = model.module.generate if accelerator.num_processes > 1 else model.generate + generated_ids = generate_fn(batch["input_features"].to(dtype=torch_dtype), **gen_kwargs) + generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id) + # Gather all predictions and targets + generated_ids, labels = accelerator.gather_for_metrics((generated_ids, batch["labels"])) + eval_preds.extend(generated_ids.cpu().numpy()) + eval_labels.extend(labels.cpu().numpy()) + eval_ids.extend(file_ids) + + if step % training_args.logging_steps == 0 and step > 0: + batches.write(f"Saving transcriptions for split {split} step {step}") + accelerator.wait_for_everyone() + pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)) :] + pred_ids = filter_eot_tokens(pred_ids) + pred_str.extend( + tokenizer.batch_decode( + pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps + ) + ) + csv_data = [[eval_ids[i], pred_str[i]] for i in range(len(eval_preds))] + + with open(output_csv, "w", encoding="UTF8", newline="") as f: + writer = csv.writer(f) + # write multiple rows + writer.writerow(["file_id", "whisper_transcript"]) + writer.writerows(csv_data) + + if training_args.push_to_hub and accelerator.is_main_process: + upload_folder( + folder_path=output_dir, + repo_id=repo_name, + repo_type="dataset", + commit_message=f"Saving transcriptions for split {split} step {step}.", + ) + + accelerator.wait_for_everyone() + eval_time = time.time() - eval_start + + # compute WER metric for eval sets + wer_desc = "" + if "validation" in split or "test" in split: + eval_preds = filter_eot_tokens(eval_preds) + wer_metric, pred_str, label_str, norm_pred_str, norm_label_str, eval_ids = compute_metrics( + eval_preds, eval_labels, eval_ids + ) + wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) + # Save metrics + predictions + log_metric( + accelerator, + metrics=wer_metric, + train_time=eval_time, + prefix=split, + ) + log_pred( + accelerator, + pred_str, + label_str, + norm_pred_str, + norm_label_str, + prefix=split, + ) + else: + pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)) :] + pred_ids = filter_eot_tokens(pred_ids) + pred_str.extend( + tokenizer.batch_decode(pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps) + ) + + batches.write(f"Saving final transcriptions for split {split}.") + csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))] + with open(output_csv, "w", encoding="UTF8", newline="") as f: + writer = csv.writer(f) + # write multiple rows + writer.writerow(["file_id", "whisper_transcript"]) + writer.writerows(csv_data) + + # Print metrics + logger.info(wer_desc) + + if not data_args.streaming: + raw_datasets[split] = raw_datasets[split].add_column("whisper_transcript", pred_str) + raw_datasets[split] = raw_datasets[split].add_column("eval_preds", eval_preds) + + def add_concatenated_text(eval_preds, condition_on_prev): + concatenated_prev = [None] + for token_ids, condition in zip(eval_preds[:-1], condition_on_prev[1:]): + if condition is False: + concatenated_prev.append(None) + else: + prompt_ids = [token for token in token_ids if token != decoder_eot_token_id] + prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:] + concatenated_prev.append(prompt_ids) + return {"condition_on_prev": concatenated_prev} + + if data_args.concatenate_audio: + with accelerator.main_process_first(): + raw_datasets[split] = raw_datasets[split].map( + add_concatenated_text, + input_columns=["eval_preds", "condition_on_prev"], + remove_columns=["eval_preds"], + desc="Setting condition on prev...", + batched=True, + batch_size=preprocessing_batch_size, + num_proc=num_workers, + ) + + logger.info("***** Running Labelling *****") + logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") + logger.info( + f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size * accelerator.num_processes}" + ) + logger.info(f" Predict labels with timestamps = {return_timestamps}") + for split in data_splits: + eval_step_with_save(split=split) + accelerator.wait_for_everyone() + if training_args.push_to_hub and accelerator.is_main_process: + upload_folder( + folder_path=output_dir, + repo_id=repo_name, + repo_type="dataset", + commit_message=f"Saving final transcriptions for split {split.replace('.', '-').split('/')[-1]}", + ) + if not data_args.streaming and accelerator.is_main_process: + raw_datasets.save_to_disk(output_dir, num_proc=num_workers) + if training_args.push_to_hub: + raw_datasets.push_to_hub(repo_name, config_name=data_args.dataset_config_name) + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/setup.py b/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..75077f52633ffd41652eae95e36da4ba6e6c5750 --- /dev/null +++ b/setup.py @@ -0,0 +1,52 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import os + +import setuptools + +_deps = [ + "torch>=1.10", + "transformers>=4.35.1", + "datasets[audio]>=2.14.7", + "accelerate>=0.24.1", + "jiwer", + "evaluate>=0.4.1", + "wandb", + "tensorboard", + "nltk", +] + +_extras_dev_deps = [ + "ruff==0.1.5", +] + +here = os.path.abspath(os.path.dirname(__file__)) + +with open(os.path.join(here, "README.md"), encoding="utf-8") as f: + long_description = f.read() + +setuptools.setup( + name="distil_whisper", + description="Toolkit for distilling OpenAI's Whisper model.", + long_description=long_description, + long_description_content_type="text/markdown", + packages=setuptools.find_packages(), + install_requires=_deps, + extras_require={ + "dev": [_extras_dev_deps], + }, +) + diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..312bc106291bb51bf2cc1648df070bef963a0639 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,139 @@ +{ + "additional_special_tokens": [ + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|yue|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nospeech|>", + "<|notimestamps|>" + ], + "bos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tokenizer.json b/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..45c4df3f3a2e0e3dc4b867d4160168aa9c89e8bf --- /dev/null +++ b/tokenizer.json @@ -0,0 +1,114883 @@ +{ + "version": "1.0", + "truncation": null, + "padding": null, + "added_tokens": [ + { + "id": 50257, + "content": "<|endoftext|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50258, + "content": "<|startoftranscript|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50259, + "content": "<|en|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50260, + "content": "<|zh|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50261, + "content": "<|de|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50262, + "content": "<|es|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50263, + "content": "<|ru|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50264, + "content": "<|ko|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50265, + "content": "<|fr|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50266, + "content": "<|ja|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50267, + "content": "<|pt|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50268, + "content": "<|tr|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50269, + "content": "<|pl|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50270, + "content": "<|ca|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50271, + "content": "<|nl|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50272, + "content": "<|ar|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50273, + "content": "<|sv|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50274, + "content": "<|it|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50275, + "content": "<|id|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50276, + "content": "<|hi|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50277, + "content": "<|fi|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50278, + "content": "<|vi|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50279, + "content": "<|he|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50280, + "content": "<|uk|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50281, + "content": "<|el|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50282, + "content": "<|ms|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50283, + "content": "<|cs|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50284, + "content": "<|ro|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50285, + "content": "<|da|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50286, + "content": "<|hu|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50287, + "content": "<|ta|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50288, + "content": "<|no|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50289, + "content": "<|th|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50290, + "content": "<|ur|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50291, + "content": "<|hr|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50292, + "content": "<|bg|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50293, + "content": "<|lt|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50294, + "content": "<|la|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50295, + "content": "<|mi|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50296, + "content": "<|ml|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50297, + "content": "<|cy|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50298, + "content": "<|sk|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50299, + "content": "<|te|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50300, + "content": "<|fa|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50301, + "content": "<|lv|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50302, + "content": "<|bn|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50303, + "content": "<|sr|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50304, + "content": "<|az|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50305, + "content": "<|sl|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50306, + "content": "<|kn|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50307, + "content": "<|et|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50308, + "content": "<|mk|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50309, + "content": "<|br|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50310, + "content": "<|eu|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50311, + "content": "<|is|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50312, + "content": "<|hy|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50313, + "content": "<|ne|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50314, + "content": "<|mn|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50315, + "content": "<|bs|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50316, + "content": "<|kk|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50317, + "content": "<|sq|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50318, + "content": "<|sw|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50319, + "content": "<|gl|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50320, + "content": "<|mr|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50321, + "content": "<|pa|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50322, + "content": "<|si|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50323, + "content": "<|km|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50324, + "content": "<|sn|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50325, + "content": "<|yo|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50326, + "content": "<|so|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50327, + "content": "<|af|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50328, + "content": "<|oc|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50329, + "content": "<|ka|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50330, + "content": "<|be|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50331, + "content": "<|tg|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50332, + "content": "<|sd|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50333, + "content": "<|gu|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50334, + "content": "<|am|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50335, + "content": "<|yi|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50336, + "content": "<|lo|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50337, + "content": "<|uz|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50338, + "content": "<|fo|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50339, + "content": "<|ht|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50340, + "content": "<|ps|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50341, + "content": "<|tk|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50342, + "content": "<|nn|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50343, + "content": "<|mt|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50344, + "content": "<|sa|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50345, + "content": "<|lb|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50346, + "content": "<|my|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50347, + "content": "<|bo|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50348, + "content": "<|tl|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50349, + "content": "<|mg|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50350, + "content": "<|as|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50351, + "content": "<|tt|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50352, + "content": "<|haw|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50353, + "content": "<|ln|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50354, + "content": "<|ha|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50355, + "content": "<|ba|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50356, + "content": "<|jw|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50357, + "content": "<|su|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50358, + "content": "<|yue|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50359, + "content": "<|translate|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50360, + "content": "<|transcribe|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50361, + "content": "<|startoflm|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50362, + "content": "<|startofprev|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50363, + "content": "<|nospeech|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50364, + "content": "<|notimestamps|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 50365, + "content": "<|0.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50366, + "content": "<|0.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50367, + "content": "<|0.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50368, + "content": "<|0.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50369, + "content": "<|0.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50370, + "content": "<|0.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50371, + "content": "<|0.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50372, + "content": "<|0.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50373, + "content": "<|0.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50374, + "content": "<|0.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50375, + "content": "<|0.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50376, + "content": "<|0.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50377, + "content": "<|0.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50378, + "content": "<|0.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50379, + "content": "<|0.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50380, + "content": "<|0.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50381, + "content": "<|0.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50382, + "content": "<|0.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50383, + "content": "<|0.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50384, + "content": "<|0.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50385, + "content": "<|0.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50386, + "content": "<|0.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50387, + "content": "<|0.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50388, + "content": "<|0.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50389, + "content": "<|0.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50390, + "content": "<|0.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50391, + "content": "<|0.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50392, + "content": "<|0.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50393, + "content": "<|0.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50394, + "content": "<|0.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50395, + "content": "<|0.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50396, + "content": "<|0.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50397, + "content": "<|0.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50398, + "content": "<|0.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50399, + "content": "<|0.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50400, + "content": "<|0.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50401, + "content": "<|0.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50402, + "content": "<|0.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50403, + "content": "<|0.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50404, + "content": "<|0.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50405, + "content": "<|0.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50406, + "content": "<|0.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50407, + "content": "<|0.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50408, + "content": "<|0.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50409, + "content": "<|0.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50410, + "content": "<|0.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50411, + "content": "<|0.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50412, + "content": "<|0.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50413, + "content": "<|0.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50414, + "content": "<|0.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50415, + "content": "<|1.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50416, + "content": "<|1.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50417, + "content": "<|1.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50418, + "content": "<|1.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50419, + "content": "<|1.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50420, + "content": "<|1.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50421, + "content": "<|1.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50422, + "content": "<|1.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50423, + "content": "<|1.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50424, + "content": "<|1.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50425, + "content": "<|1.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50426, + "content": "<|1.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50427, + "content": "<|1.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50428, + "content": "<|1.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50429, + "content": "<|1.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50430, + "content": "<|1.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50431, + "content": "<|1.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50432, + "content": "<|1.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50433, + "content": "<|1.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50434, + "content": "<|1.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50435, + "content": "<|1.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50436, + "content": "<|1.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50437, + "content": "<|1.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50438, + "content": "<|1.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50439, + "content": "<|1.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50440, + "content": "<|1.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50441, + "content": "<|1.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50442, + "content": "<|1.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50443, + "content": "<|1.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50444, + "content": "<|1.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50445, + "content": "<|1.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50446, + "content": "<|1.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50447, + "content": "<|1.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50448, + "content": "<|1.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50449, + "content": "<|1.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50450, + "content": "<|1.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50451, + "content": "<|1.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50452, + "content": "<|1.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50453, + "content": "<|1.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50454, + "content": "<|1.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50455, + "content": "<|1.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50456, + "content": "<|1.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50457, + "content": "<|1.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50458, + "content": "<|1.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50459, + "content": "<|1.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50460, + "content": "<|1.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50461, + "content": "<|1.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50462, + "content": "<|1.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50463, + "content": "<|1.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50464, + "content": "<|1.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50465, + "content": "<|2.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50466, + "content": "<|2.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50467, + "content": "<|2.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50468, + "content": "<|2.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50469, + "content": "<|2.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50470, + "content": "<|2.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50471, + "content": "<|2.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50472, + "content": "<|2.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50473, + "content": "<|2.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50474, + "content": "<|2.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50475, + "content": "<|2.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50476, + "content": "<|2.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50477, + "content": "<|2.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50478, + "content": "<|2.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50479, + "content": "<|2.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50480, + "content": "<|2.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50481, + "content": "<|2.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50482, + "content": "<|2.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50483, + "content": "<|2.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50484, + "content": "<|2.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50485, + "content": "<|2.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50486, + "content": "<|2.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50487, + "content": "<|2.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50488, + "content": "<|2.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50489, + "content": "<|2.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50490, + "content": "<|2.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50491, + "content": "<|2.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50492, + "content": "<|2.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50493, + "content": "<|2.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50494, + "content": "<|2.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50495, + "content": "<|2.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50496, + "content": "<|2.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50497, + "content": "<|2.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50498, + "content": "<|2.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50499, + "content": "<|2.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50500, + "content": "<|2.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50501, + "content": "<|2.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50502, + "content": "<|2.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50503, + "content": "<|2.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50504, + "content": "<|2.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50505, + "content": "<|2.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50506, + "content": "<|2.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50507, + "content": "<|2.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50508, + "content": "<|2.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50509, + "content": "<|2.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50510, + "content": "<|2.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50511, + "content": "<|2.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50512, + "content": "<|2.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50513, + "content": "<|2.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50514, + "content": "<|2.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50515, + "content": "<|3.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50516, + "content": "<|3.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50517, + "content": "<|3.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50518, + "content": "<|3.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50519, + "content": "<|3.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50520, + "content": "<|3.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50521, + "content": "<|3.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50522, + "content": "<|3.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50523, + "content": "<|3.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50524, + "content": "<|3.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50525, + "content": "<|3.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50526, + "content": "<|3.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50527, + "content": "<|3.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50528, + "content": "<|3.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50529, + "content": "<|3.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50530, + "content": "<|3.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50531, + "content": "<|3.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50532, + "content": "<|3.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50533, + "content": "<|3.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50534, + "content": "<|3.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50535, + "content": "<|3.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50536, + "content": "<|3.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50537, + "content": "<|3.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50538, + "content": "<|3.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50539, + "content": "<|3.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50540, + "content": "<|3.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50541, + "content": "<|3.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50542, + "content": "<|3.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50543, + "content": "<|3.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50544, + "content": "<|3.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50545, + "content": "<|3.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50546, + "content": "<|3.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50547, + "content": "<|3.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50548, + "content": "<|3.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50549, + "content": "<|3.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50550, + "content": "<|3.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50551, + "content": "<|3.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50552, + "content": "<|3.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50553, + "content": "<|3.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50554, + "content": "<|3.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50555, + "content": "<|3.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50556, + "content": "<|3.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50557, + "content": "<|3.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50558, + "content": "<|3.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50559, + "content": "<|3.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50560, + "content": "<|3.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50561, + "content": "<|3.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50562, + "content": "<|3.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50563, + "content": "<|3.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50564, + "content": "<|3.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50565, + "content": "<|4.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50566, + "content": "<|4.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50567, + "content": "<|4.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50568, + "content": "<|4.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50569, + "content": "<|4.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50570, + "content": "<|4.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50571, + "content": "<|4.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50572, + "content": "<|4.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50573, + "content": "<|4.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50574, + "content": "<|4.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50575, + "content": "<|4.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50576, + "content": "<|4.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50577, + "content": "<|4.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50578, + "content": "<|4.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50579, + "content": "<|4.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50580, + "content": "<|4.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50581, + "content": "<|4.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50582, + "content": "<|4.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50583, + "content": "<|4.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50584, + "content": "<|4.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50585, + "content": "<|4.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50586, + "content": "<|4.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50587, + "content": "<|4.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50588, + "content": "<|4.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50589, + "content": "<|4.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50590, + "content": "<|4.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50591, + "content": "<|4.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50592, + "content": "<|4.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50593, + "content": "<|4.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50594, + "content": "<|4.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50595, + "content": "<|4.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50596, + "content": "<|4.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50597, + "content": "<|4.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50598, + "content": "<|4.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50599, + "content": "<|4.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50600, + "content": "<|4.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50601, + "content": "<|4.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50602, + "content": "<|4.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50603, + "content": "<|4.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50604, + "content": "<|4.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50605, + "content": "<|4.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50606, + "content": "<|4.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50607, + "content": "<|4.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50608, + "content": "<|4.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50609, + "content": "<|4.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50610, + "content": "<|4.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50611, + "content": "<|4.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50612, + "content": "<|4.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50613, + "content": "<|4.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50614, + "content": "<|4.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50615, + "content": "<|5.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50616, + "content": "<|5.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50617, + "content": "<|5.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50618, + "content": "<|5.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50619, + "content": "<|5.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50620, + "content": "<|5.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50621, + "content": "<|5.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50622, + "content": "<|5.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50623, + "content": "<|5.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50624, + "content": "<|5.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50625, + "content": "<|5.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50626, + "content": "<|5.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50627, + "content": "<|5.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50628, + "content": "<|5.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50629, + "content": "<|5.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50630, + "content": "<|5.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50631, + "content": "<|5.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50632, + "content": "<|5.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50633, + "content": "<|5.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50634, + "content": "<|5.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50635, + "content": "<|5.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50636, + "content": "<|5.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50637, + "content": "<|5.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50638, + "content": "<|5.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50639, + "content": "<|5.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50640, + "content": "<|5.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50641, + "content": "<|5.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50642, + "content": "<|5.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50643, + "content": "<|5.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50644, + "content": "<|5.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50645, + "content": "<|5.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50646, + "content": "<|5.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50647, + "content": "<|5.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50648, + "content": "<|5.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50649, + "content": "<|5.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50650, + "content": "<|5.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50651, + "content": "<|5.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50652, + "content": "<|5.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50653, + "content": "<|5.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50654, + "content": "<|5.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50655, + "content": "<|5.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50656, + "content": "<|5.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50657, + "content": "<|5.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50658, + "content": "<|5.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50659, + "content": "<|5.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50660, + "content": "<|5.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50661, + "content": "<|5.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50662, + "content": "<|5.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50663, + "content": "<|5.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50664, + "content": "<|5.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50665, + "content": "<|6.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50666, + "content": "<|6.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50667, + "content": "<|6.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50668, + "content": "<|6.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50669, + "content": "<|6.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50670, + "content": "<|6.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50671, + "content": "<|6.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50672, + "content": "<|6.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50673, + "content": "<|6.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50674, + "content": "<|6.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50675, + "content": "<|6.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50676, + "content": "<|6.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50677, + "content": "<|6.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50678, + "content": "<|6.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50679, + "content": "<|6.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50680, + "content": "<|6.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50681, + "content": "<|6.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50682, + "content": "<|6.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50683, + "content": "<|6.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50684, + "content": "<|6.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50685, + "content": "<|6.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50686, + "content": "<|6.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50687, + "content": "<|6.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50688, + "content": "<|6.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50689, + "content": "<|6.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50690, + "content": "<|6.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50691, + "content": "<|6.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50692, + "content": "<|6.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50693, + "content": "<|6.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50694, + "content": "<|6.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50695, + "content": "<|6.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50696, + "content": "<|6.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50697, + "content": "<|6.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50698, + "content": "<|6.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50699, + "content": "<|6.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50700, + "content": "<|6.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50701, + "content": "<|6.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50702, + "content": "<|6.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50703, + "content": "<|6.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50704, + "content": "<|6.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50705, + "content": "<|6.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50706, + "content": "<|6.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50707, + "content": "<|6.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50708, + "content": "<|6.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50709, + "content": "<|6.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50710, + "content": "<|6.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50711, + "content": "<|6.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50712, + "content": "<|6.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50713, + "content": "<|6.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50714, + "content": "<|6.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50715, + "content": "<|7.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50716, + "content": "<|7.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50717, + "content": "<|7.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50718, + "content": "<|7.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50719, + "content": "<|7.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50720, + "content": "<|7.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50721, + "content": "<|7.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50722, + "content": "<|7.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50723, + "content": "<|7.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50724, + "content": "<|7.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50725, + "content": "<|7.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50726, + "content": "<|7.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50727, + "content": "<|7.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50728, + "content": "<|7.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50729, + "content": "<|7.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50730, + "content": "<|7.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50731, + "content": "<|7.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50732, + "content": "<|7.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50733, + "content": "<|7.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50734, + "content": "<|7.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50735, + "content": "<|7.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50736, + "content": "<|7.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50737, + "content": "<|7.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50738, + "content": "<|7.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50739, + "content": "<|7.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50740, + "content": "<|7.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50741, + "content": "<|7.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50742, + "content": "<|7.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50743, + "content": "<|7.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50744, + "content": "<|7.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50745, + "content": "<|7.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50746, + "content": "<|7.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50747, + "content": "<|7.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50748, + "content": "<|7.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50749, + "content": "<|7.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50750, + "content": "<|7.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50751, + "content": "<|7.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50752, + "content": "<|7.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50753, + "content": "<|7.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50754, + "content": "<|7.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50755, + "content": "<|7.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50756, + "content": "<|7.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50757, + "content": "<|7.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50758, + "content": "<|7.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50759, + "content": "<|7.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50760, + "content": "<|7.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50761, + "content": "<|7.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50762, + "content": "<|7.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50763, + "content": "<|7.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50764, + "content": "<|7.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50765, + "content": "<|8.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50766, + "content": "<|8.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50767, + "content": "<|8.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50768, + "content": "<|8.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50769, + "content": "<|8.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50770, + "content": "<|8.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50771, + "content": "<|8.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50772, + "content": "<|8.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50773, + "content": "<|8.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50774, + "content": "<|8.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50775, + "content": "<|8.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50776, + "content": "<|8.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50777, + "content": "<|8.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50778, + "content": "<|8.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50779, + "content": "<|8.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50780, + "content": "<|8.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50781, + "content": "<|8.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50782, + "content": "<|8.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50783, + "content": "<|8.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50784, + "content": "<|8.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50785, + "content": "<|8.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50786, + "content": "<|8.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50787, + "content": "<|8.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50788, + "content": "<|8.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50789, + "content": "<|8.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50790, + "content": "<|8.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50791, + "content": "<|8.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50792, + "content": "<|8.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50793, + "content": "<|8.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50794, + "content": "<|8.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50795, + "content": "<|8.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50796, + "content": "<|8.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50797, + "content": "<|8.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50798, + "content": "<|8.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50799, + "content": "<|8.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50800, + "content": "<|8.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50801, + "content": "<|8.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50802, + "content": "<|8.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50803, + "content": "<|8.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50804, + "content": "<|8.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50805, + "content": "<|8.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50806, + "content": "<|8.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50807, + "content": "<|8.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50808, + "content": "<|8.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50809, + "content": "<|8.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50810, + "content": "<|8.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50811, + "content": "<|8.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50812, + "content": "<|8.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50813, + "content": "<|8.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50814, + "content": "<|8.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50815, + "content": "<|9.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50816, + "content": "<|9.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50817, + "content": "<|9.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50818, + "content": "<|9.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50819, + "content": "<|9.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50820, + "content": "<|9.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50821, + "content": "<|9.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50822, + "content": "<|9.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50823, + "content": "<|9.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50824, + "content": "<|9.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50825, + "content": "<|9.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50826, + "content": "<|9.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50827, + "content": "<|9.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50828, + "content": "<|9.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50829, + "content": "<|9.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50830, + "content": "<|9.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50831, + "content": "<|9.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50832, + "content": "<|9.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50833, + "content": "<|9.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50834, + "content": "<|9.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50835, + "content": "<|9.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50836, + "content": "<|9.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50837, + "content": "<|9.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50838, + "content": "<|9.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50839, + "content": "<|9.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50840, + "content": "<|9.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50841, + "content": "<|9.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50842, + "content": "<|9.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50843, + "content": "<|9.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50844, + "content": "<|9.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50845, + "content": "<|9.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50846, + "content": "<|9.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50847, + "content": "<|9.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50848, + "content": "<|9.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50849, + "content": "<|9.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50850, + "content": "<|9.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50851, + "content": "<|9.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50852, + "content": "<|9.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50853, + "content": "<|9.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50854, + "content": "<|9.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50855, + "content": "<|9.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50856, + "content": "<|9.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50857, + "content": "<|9.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50858, + "content": "<|9.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50859, + "content": "<|9.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50860, + "content": "<|9.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50861, + "content": "<|9.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50862, + "content": "<|9.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50863, + "content": "<|9.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50864, + "content": "<|9.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50865, + "content": "<|10.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50866, + "content": "<|10.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50867, + "content": "<|10.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50868, + "content": "<|10.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50869, + "content": "<|10.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50870, + "content": "<|10.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50871, + "content": "<|10.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50872, + "content": "<|10.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50873, + "content": "<|10.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50874, + "content": "<|10.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50875, + "content": "<|10.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50876, + "content": "<|10.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50877, + "content": "<|10.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50878, + "content": "<|10.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50879, + "content": "<|10.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50880, + "content": "<|10.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50881, + "content": "<|10.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50882, + "content": "<|10.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50883, + "content": "<|10.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50884, + "content": "<|10.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50885, + "content": "<|10.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50886, + "content": "<|10.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50887, + "content": "<|10.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50888, + "content": "<|10.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50889, + "content": "<|10.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50890, + "content": "<|10.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50891, + "content": "<|10.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50892, + "content": "<|10.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50893, + "content": "<|10.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50894, + "content": "<|10.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50895, + "content": "<|10.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50896, + "content": "<|10.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50897, + "content": "<|10.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50898, + "content": "<|10.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50899, + "content": "<|10.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50900, + "content": "<|10.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50901, + "content": "<|10.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50902, + "content": "<|10.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50903, + "content": "<|10.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50904, + "content": "<|10.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50905, + "content": "<|10.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50906, + "content": "<|10.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50907, + "content": "<|10.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50908, + "content": "<|10.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50909, + "content": "<|10.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50910, + "content": "<|10.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50911, + "content": "<|10.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50912, + "content": "<|10.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50913, + "content": "<|10.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50914, + "content": "<|10.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50915, + "content": "<|11.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50916, + "content": "<|11.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50917, + "content": "<|11.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50918, + "content": "<|11.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50919, + "content": "<|11.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50920, + "content": "<|11.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50921, + "content": "<|11.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50922, + "content": "<|11.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50923, + "content": "<|11.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50924, + "content": "<|11.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50925, + "content": "<|11.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50926, + "content": "<|11.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50927, + "content": "<|11.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50928, + "content": "<|11.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50929, + "content": "<|11.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50930, + "content": "<|11.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50931, + "content": "<|11.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50932, + "content": "<|11.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50933, + "content": "<|11.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50934, + "content": "<|11.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50935, + "content": "<|11.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50936, + "content": "<|11.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50937, + "content": "<|11.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50938, + "content": "<|11.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50939, + "content": "<|11.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50940, + "content": "<|11.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50941, + "content": "<|11.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50942, + "content": "<|11.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50943, + "content": "<|11.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50944, + "content": "<|11.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50945, + "content": "<|11.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50946, + "content": "<|11.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50947, + "content": "<|11.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50948, + "content": "<|11.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50949, + "content": "<|11.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50950, + "content": "<|11.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50951, + "content": "<|11.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50952, + "content": "<|11.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50953, + "content": "<|11.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50954, + "content": "<|11.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50955, + "content": "<|11.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50956, + "content": "<|11.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50957, + "content": "<|11.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50958, + "content": "<|11.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50959, + "content": "<|11.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50960, + "content": "<|11.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50961, + "content": "<|11.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50962, + "content": "<|11.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50963, + "content": "<|11.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50964, + "content": "<|11.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50965, + "content": "<|12.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50966, + "content": "<|12.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50967, + "content": "<|12.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50968, + "content": "<|12.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50969, + "content": "<|12.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50970, + "content": "<|12.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50971, + "content": "<|12.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50972, + "content": "<|12.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50973, + "content": "<|12.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50974, + "content": "<|12.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50975, + "content": "<|12.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50976, + "content": "<|12.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50977, + "content": "<|12.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50978, + "content": "<|12.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50979, + "content": "<|12.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50980, + "content": "<|12.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50981, + "content": "<|12.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50982, + "content": "<|12.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50983, + "content": "<|12.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50984, + "content": "<|12.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50985, + "content": "<|12.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50986, + "content": "<|12.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50987, + "content": "<|12.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50988, + "content": "<|12.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50989, + "content": "<|12.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50990, + "content": "<|12.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50991, + "content": "<|12.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50992, + "content": "<|12.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50993, + "content": "<|12.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50994, + "content": "<|12.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50995, + "content": "<|12.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50996, + "content": "<|12.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50997, + "content": "<|12.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50998, + "content": "<|12.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 50999, + "content": "<|12.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51000, + "content": "<|12.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51001, + "content": "<|12.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51002, + "content": "<|12.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51003, + "content": "<|12.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51004, + "content": "<|12.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51005, + "content": "<|12.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51006, + "content": "<|12.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51007, + "content": "<|12.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51008, + "content": "<|12.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51009, + "content": "<|12.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51010, + "content": "<|12.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51011, + "content": "<|12.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51012, + "content": "<|12.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51013, + "content": "<|12.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51014, + "content": "<|12.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51015, + "content": "<|13.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51016, + "content": "<|13.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51017, + "content": "<|13.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51018, + "content": "<|13.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51019, + "content": "<|13.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51020, + "content": "<|13.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51021, + "content": "<|13.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51022, + "content": "<|13.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51023, + "content": "<|13.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51024, + "content": "<|13.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51025, + "content": "<|13.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51026, + "content": "<|13.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51027, + "content": "<|13.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51028, + "content": "<|13.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51029, + "content": "<|13.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51030, + "content": "<|13.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51031, + "content": "<|13.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51032, + "content": "<|13.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51033, + "content": "<|13.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51034, + "content": "<|13.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51035, + "content": "<|13.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51036, + "content": "<|13.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51037, + "content": "<|13.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51038, + "content": "<|13.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51039, + "content": "<|13.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51040, + "content": "<|13.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51041, + "content": "<|13.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51042, + "content": "<|13.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51043, + "content": "<|13.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51044, + "content": "<|13.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51045, + "content": "<|13.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51046, + "content": "<|13.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51047, + "content": "<|13.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51048, + "content": "<|13.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51049, + "content": "<|13.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51050, + "content": "<|13.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51051, + "content": "<|13.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51052, + "content": "<|13.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51053, + "content": "<|13.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51054, + "content": "<|13.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51055, + "content": "<|13.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51056, + "content": "<|13.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51057, + "content": "<|13.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51058, + "content": "<|13.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51059, + "content": "<|13.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51060, + "content": "<|13.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51061, + "content": "<|13.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51062, + "content": "<|13.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51063, + "content": "<|13.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51064, + "content": "<|13.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51065, + "content": "<|14.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51066, + "content": "<|14.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51067, + "content": "<|14.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51068, + "content": "<|14.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51069, + "content": "<|14.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51070, + "content": "<|14.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51071, + "content": "<|14.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51072, + "content": "<|14.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51073, + "content": "<|14.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51074, + "content": "<|14.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51075, + "content": "<|14.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51076, + "content": "<|14.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51077, + "content": "<|14.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51078, + "content": "<|14.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51079, + "content": "<|14.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51080, + "content": "<|14.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51081, + "content": "<|14.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51082, + "content": "<|14.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51083, + "content": "<|14.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51084, + "content": "<|14.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51085, + "content": "<|14.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51086, + "content": "<|14.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51087, + "content": "<|14.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51088, + "content": "<|14.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51089, + "content": "<|14.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51090, + "content": "<|14.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51091, + "content": "<|14.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51092, + "content": "<|14.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51093, + "content": "<|14.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51094, + "content": "<|14.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51095, + "content": "<|14.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51096, + "content": "<|14.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51097, + "content": "<|14.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51098, + "content": "<|14.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51099, + "content": "<|14.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51100, + "content": "<|14.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51101, + "content": "<|14.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51102, + "content": "<|14.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51103, + "content": "<|14.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51104, + "content": "<|14.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51105, + "content": "<|14.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51106, + "content": "<|14.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51107, + "content": "<|14.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51108, + "content": "<|14.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51109, + "content": "<|14.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51110, + "content": "<|14.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51111, + "content": "<|14.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51112, + "content": "<|14.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51113, + "content": "<|14.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51114, + "content": "<|14.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51115, + "content": "<|15.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51116, + "content": "<|15.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51117, + "content": "<|15.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51118, + "content": "<|15.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51119, + "content": "<|15.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51120, + "content": "<|15.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51121, + "content": "<|15.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51122, + "content": "<|15.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51123, + "content": "<|15.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51124, + "content": "<|15.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51125, + "content": "<|15.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51126, + "content": "<|15.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51127, + "content": "<|15.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51128, + "content": "<|15.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51129, + "content": "<|15.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51130, + "content": "<|15.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51131, + "content": "<|15.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51132, + "content": "<|15.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51133, + "content": "<|15.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51134, + "content": "<|15.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51135, + "content": "<|15.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51136, + "content": "<|15.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51137, + "content": "<|15.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51138, + "content": "<|15.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51139, + "content": "<|15.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51140, + "content": "<|15.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51141, + "content": "<|15.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51142, + "content": "<|15.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51143, + "content": "<|15.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51144, + "content": "<|15.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51145, + "content": "<|15.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51146, + "content": "<|15.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51147, + "content": "<|15.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51148, + "content": "<|15.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51149, + "content": "<|15.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51150, + "content": "<|15.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51151, + "content": "<|15.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51152, + "content": "<|15.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51153, + "content": "<|15.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51154, + "content": "<|15.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51155, + "content": "<|15.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51156, + "content": "<|15.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51157, + "content": "<|15.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51158, + "content": "<|15.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51159, + "content": "<|15.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51160, + "content": "<|15.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51161, + "content": "<|15.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51162, + "content": "<|15.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51163, + "content": "<|15.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51164, + "content": "<|15.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51165, + "content": "<|16.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51166, + "content": "<|16.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51167, + "content": "<|16.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51168, + "content": "<|16.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51169, + "content": "<|16.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51170, + "content": "<|16.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51171, + "content": "<|16.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51172, + "content": "<|16.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51173, + "content": "<|16.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51174, + "content": "<|16.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51175, + "content": "<|16.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51176, + "content": "<|16.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51177, + "content": "<|16.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51178, + "content": "<|16.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51179, + "content": "<|16.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51180, + "content": "<|16.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51181, + "content": "<|16.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51182, + "content": "<|16.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51183, + "content": "<|16.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51184, + "content": "<|16.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51185, + "content": "<|16.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51186, + "content": "<|16.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51187, + "content": "<|16.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51188, + "content": "<|16.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51189, + "content": "<|16.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51190, + "content": "<|16.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51191, + "content": "<|16.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51192, + "content": "<|16.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51193, + "content": "<|16.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51194, + "content": "<|16.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51195, + "content": "<|16.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51196, + "content": "<|16.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51197, + "content": "<|16.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51198, + "content": "<|16.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51199, + "content": "<|16.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51200, + "content": "<|16.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51201, + "content": "<|16.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51202, + "content": "<|16.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51203, + "content": "<|16.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51204, + "content": "<|16.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51205, + "content": "<|16.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51206, + "content": "<|16.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51207, + "content": "<|16.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51208, + "content": "<|16.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51209, + "content": "<|16.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51210, + "content": "<|16.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51211, + "content": "<|16.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51212, + "content": "<|16.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51213, + "content": "<|16.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51214, + "content": "<|16.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51215, + "content": "<|17.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51216, + "content": "<|17.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51217, + "content": "<|17.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51218, + "content": "<|17.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51219, + "content": "<|17.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51220, + "content": "<|17.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51221, + "content": "<|17.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51222, + "content": "<|17.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51223, + "content": "<|17.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51224, + "content": "<|17.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51225, + "content": "<|17.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51226, + "content": "<|17.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51227, + "content": "<|17.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51228, + "content": "<|17.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51229, + "content": "<|17.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51230, + "content": "<|17.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51231, + "content": "<|17.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51232, + "content": "<|17.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51233, + "content": "<|17.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51234, + "content": "<|17.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51235, + "content": "<|17.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51236, + "content": "<|17.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51237, + "content": "<|17.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51238, + "content": "<|17.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51239, + "content": "<|17.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51240, + "content": "<|17.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51241, + "content": "<|17.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51242, + "content": "<|17.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51243, + "content": "<|17.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51244, + "content": "<|17.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51245, + "content": "<|17.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51246, + "content": "<|17.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51247, + "content": "<|17.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51248, + "content": "<|17.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51249, + "content": "<|17.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51250, + "content": "<|17.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51251, + "content": "<|17.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51252, + "content": "<|17.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51253, + "content": "<|17.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51254, + "content": "<|17.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51255, + "content": "<|17.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51256, + "content": "<|17.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51257, + "content": "<|17.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51258, + "content": "<|17.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51259, + "content": "<|17.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51260, + "content": "<|17.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51261, + "content": "<|17.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51262, + "content": "<|17.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51263, + "content": "<|17.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51264, + "content": "<|17.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51265, + "content": "<|18.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51266, + "content": "<|18.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51267, + "content": "<|18.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51268, + "content": "<|18.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51269, + "content": "<|18.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51270, + "content": "<|18.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51271, + "content": "<|18.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51272, + "content": "<|18.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51273, + "content": "<|18.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51274, + "content": "<|18.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51275, + "content": "<|18.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51276, + "content": "<|18.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51277, + "content": "<|18.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51278, + "content": "<|18.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51279, + "content": "<|18.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51280, + "content": "<|18.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51281, + "content": "<|18.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51282, + "content": "<|18.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51283, + "content": "<|18.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51284, + "content": "<|18.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51285, + "content": "<|18.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51286, + "content": "<|18.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51287, + "content": "<|18.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51288, + "content": "<|18.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51289, + "content": "<|18.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51290, + "content": "<|18.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51291, + "content": "<|18.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51292, + "content": "<|18.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51293, + "content": "<|18.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51294, + "content": "<|18.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51295, + "content": "<|18.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51296, + "content": "<|18.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51297, + "content": "<|18.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51298, + "content": "<|18.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51299, + "content": "<|18.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51300, + "content": "<|18.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51301, + "content": "<|18.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51302, + "content": "<|18.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51303, + "content": "<|18.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51304, + "content": "<|18.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51305, + "content": "<|18.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51306, + "content": "<|18.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51307, + "content": "<|18.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51308, + "content": "<|18.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51309, + "content": "<|18.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51310, + "content": "<|18.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51311, + "content": "<|18.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51312, + "content": "<|18.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51313, + "content": "<|18.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51314, + "content": "<|18.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51315, + "content": "<|19.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51316, + "content": "<|19.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51317, + "content": "<|19.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51318, + "content": "<|19.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51319, + "content": "<|19.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51320, + "content": "<|19.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51321, + "content": "<|19.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51322, + "content": "<|19.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51323, + "content": "<|19.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51324, + "content": "<|19.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51325, + "content": "<|19.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51326, + "content": "<|19.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51327, + "content": "<|19.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51328, + "content": "<|19.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51329, + "content": "<|19.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51330, + "content": "<|19.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51331, + "content": "<|19.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51332, + "content": "<|19.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51333, + "content": "<|19.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51334, + "content": "<|19.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51335, + "content": "<|19.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51336, + "content": "<|19.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51337, + "content": "<|19.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51338, + "content": "<|19.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51339, + "content": "<|19.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51340, + "content": "<|19.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51341, + "content": "<|19.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51342, + "content": "<|19.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51343, + "content": "<|19.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51344, + "content": "<|19.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51345, + "content": "<|19.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51346, + "content": "<|19.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51347, + "content": "<|19.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51348, + "content": "<|19.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51349, + "content": "<|19.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51350, + "content": "<|19.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51351, + "content": "<|19.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51352, + "content": "<|19.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51353, + "content": "<|19.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51354, + "content": "<|19.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51355, + "content": "<|19.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51356, + "content": "<|19.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51357, + "content": "<|19.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51358, + "content": "<|19.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51359, + "content": "<|19.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51360, + "content": "<|19.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51361, + "content": "<|19.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51362, + "content": "<|19.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51363, + "content": "<|19.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51364, + "content": "<|19.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51365, + "content": "<|20.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51366, + "content": "<|20.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51367, + "content": "<|20.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51368, + "content": "<|20.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51369, + "content": "<|20.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51370, + "content": "<|20.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51371, + "content": "<|20.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51372, + "content": "<|20.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51373, + "content": "<|20.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51374, + "content": "<|20.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51375, + "content": "<|20.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51376, + "content": "<|20.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51377, + "content": "<|20.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51378, + "content": "<|20.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51379, + "content": "<|20.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51380, + "content": "<|20.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51381, + "content": "<|20.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51382, + "content": "<|20.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51383, + "content": "<|20.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51384, + "content": "<|20.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51385, + "content": "<|20.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51386, + "content": "<|20.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51387, + "content": "<|20.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51388, + "content": "<|20.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51389, + "content": "<|20.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51390, + "content": "<|20.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51391, + "content": "<|20.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51392, + "content": "<|20.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51393, + "content": "<|20.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51394, + "content": "<|20.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51395, + "content": "<|20.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51396, + "content": "<|20.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51397, + "content": "<|20.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51398, + "content": "<|20.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51399, + "content": "<|20.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51400, + "content": "<|20.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51401, + "content": "<|20.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51402, + "content": "<|20.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51403, + "content": "<|20.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51404, + "content": "<|20.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51405, + "content": "<|20.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51406, + "content": "<|20.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51407, + "content": "<|20.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51408, + "content": "<|20.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51409, + "content": "<|20.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51410, + "content": "<|20.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51411, + "content": "<|20.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51412, + "content": "<|20.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51413, + "content": "<|20.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51414, + "content": "<|20.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51415, + "content": "<|21.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51416, + "content": "<|21.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51417, + "content": "<|21.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51418, + "content": "<|21.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51419, + "content": "<|21.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51420, + "content": "<|21.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51421, + "content": "<|21.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51422, + "content": "<|21.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51423, + "content": "<|21.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51424, + "content": "<|21.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51425, + "content": "<|21.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51426, + "content": "<|21.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51427, + "content": "<|21.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51428, + "content": "<|21.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51429, + "content": "<|21.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51430, + "content": "<|21.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51431, + "content": "<|21.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51432, + "content": "<|21.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51433, + "content": "<|21.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51434, + "content": "<|21.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51435, + "content": "<|21.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51436, + "content": "<|21.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51437, + "content": "<|21.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51438, + "content": "<|21.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51439, + "content": "<|21.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51440, + "content": "<|21.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51441, + "content": "<|21.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51442, + "content": "<|21.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51443, + "content": "<|21.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51444, + "content": "<|21.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51445, + "content": "<|21.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51446, + "content": "<|21.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51447, + "content": "<|21.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51448, + "content": "<|21.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51449, + "content": "<|21.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51450, + "content": "<|21.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51451, + "content": "<|21.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51452, + "content": "<|21.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51453, + "content": "<|21.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51454, + "content": "<|21.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51455, + "content": "<|21.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51456, + "content": "<|21.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51457, + "content": "<|21.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51458, + "content": "<|21.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51459, + "content": "<|21.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51460, + "content": "<|21.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51461, + "content": "<|21.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51462, + "content": "<|21.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51463, + "content": "<|21.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51464, + "content": "<|21.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51465, + "content": "<|22.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51466, + "content": "<|22.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51467, + "content": "<|22.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51468, + "content": "<|22.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51469, + "content": "<|22.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51470, + "content": "<|22.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51471, + "content": "<|22.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51472, + "content": "<|22.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51473, + "content": "<|22.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51474, + "content": "<|22.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51475, + "content": "<|22.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51476, + "content": "<|22.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51477, + "content": "<|22.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51478, + "content": "<|22.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51479, + "content": "<|22.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51480, + "content": "<|22.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51481, + "content": "<|22.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51482, + "content": "<|22.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51483, + "content": "<|22.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51484, + "content": "<|22.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51485, + "content": "<|22.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51486, + "content": "<|22.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51487, + "content": "<|22.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51488, + "content": "<|22.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51489, + "content": "<|22.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51490, + "content": "<|22.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51491, + "content": "<|22.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51492, + "content": "<|22.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51493, + "content": "<|22.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51494, + "content": "<|22.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51495, + "content": "<|22.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51496, + "content": "<|22.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51497, + "content": "<|22.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51498, + "content": "<|22.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51499, + "content": "<|22.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51500, + "content": "<|22.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51501, + "content": "<|22.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51502, + "content": "<|22.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51503, + "content": "<|22.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51504, + "content": "<|22.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51505, + "content": "<|22.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51506, + "content": "<|22.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51507, + "content": "<|22.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51508, + "content": "<|22.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51509, + "content": "<|22.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51510, + "content": "<|22.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51511, + "content": "<|22.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51512, + "content": "<|22.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51513, + "content": "<|22.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51514, + "content": "<|22.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51515, + "content": "<|23.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51516, + "content": "<|23.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51517, + "content": "<|23.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51518, + "content": "<|23.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51519, + "content": "<|23.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51520, + "content": "<|23.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51521, + "content": "<|23.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51522, + "content": "<|23.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51523, + "content": "<|23.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51524, + "content": "<|23.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51525, + "content": "<|23.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51526, + "content": "<|23.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51527, + "content": "<|23.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51528, + "content": "<|23.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51529, + "content": "<|23.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51530, + "content": "<|23.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51531, + "content": "<|23.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51532, + "content": "<|23.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51533, + "content": "<|23.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51534, + "content": "<|23.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51535, + "content": "<|23.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51536, + "content": "<|23.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51537, + "content": "<|23.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51538, + "content": "<|23.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51539, + "content": "<|23.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51540, + "content": "<|23.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51541, + "content": "<|23.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51542, + "content": "<|23.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51543, + "content": "<|23.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51544, + "content": "<|23.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51545, + "content": "<|23.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51546, + "content": "<|23.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51547, + "content": "<|23.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51548, + "content": "<|23.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51549, + "content": "<|23.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51550, + "content": "<|23.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51551, + "content": "<|23.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51552, + "content": "<|23.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51553, + "content": "<|23.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51554, + "content": "<|23.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51555, + "content": "<|23.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51556, + "content": "<|23.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51557, + "content": "<|23.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51558, + "content": "<|23.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51559, + "content": "<|23.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51560, + "content": "<|23.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51561, + "content": "<|23.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51562, + "content": "<|23.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51563, + "content": "<|23.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51564, + "content": "<|23.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51565, + "content": "<|24.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51566, + "content": "<|24.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51567, + "content": "<|24.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51568, + "content": "<|24.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51569, + "content": "<|24.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51570, + "content": "<|24.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51571, + "content": "<|24.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51572, + "content": "<|24.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51573, + "content": "<|24.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51574, + "content": "<|24.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51575, + "content": "<|24.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51576, + "content": "<|24.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51577, + "content": "<|24.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51578, + "content": "<|24.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51579, + "content": "<|24.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51580, + "content": "<|24.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51581, + "content": "<|24.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51582, + "content": "<|24.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51583, + "content": "<|24.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51584, + "content": "<|24.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51585, + "content": "<|24.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51586, + "content": "<|24.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51587, + "content": "<|24.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51588, + "content": "<|24.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51589, + "content": "<|24.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51590, + "content": "<|24.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51591, + "content": "<|24.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51592, + "content": "<|24.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51593, + "content": "<|24.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51594, + "content": "<|24.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51595, + "content": "<|24.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51596, + "content": "<|24.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51597, + "content": "<|24.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51598, + "content": "<|24.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51599, + "content": "<|24.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51600, + "content": "<|24.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51601, + "content": "<|24.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51602, + "content": "<|24.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51603, + "content": "<|24.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51604, + "content": "<|24.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51605, + "content": "<|24.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51606, + "content": "<|24.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51607, + "content": "<|24.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51608, + "content": "<|24.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51609, + "content": "<|24.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51610, + "content": "<|24.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51611, + "content": "<|24.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51612, + "content": "<|24.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51613, + "content": "<|24.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51614, + "content": "<|24.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51615, + "content": "<|25.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51616, + "content": "<|25.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51617, + "content": "<|25.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51618, + "content": "<|25.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51619, + "content": "<|25.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51620, + "content": "<|25.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51621, + "content": "<|25.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51622, + "content": "<|25.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51623, + "content": "<|25.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51624, + "content": "<|25.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51625, + "content": "<|25.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51626, + "content": "<|25.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51627, + "content": "<|25.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51628, + "content": "<|25.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51629, + "content": "<|25.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51630, + "content": "<|25.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51631, + "content": "<|25.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51632, + "content": "<|25.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51633, + "content": "<|25.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51634, + "content": "<|25.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51635, + "content": "<|25.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51636, + "content": "<|25.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51637, + "content": "<|25.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51638, + "content": "<|25.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51639, + "content": "<|25.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51640, + "content": "<|25.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51641, + "content": "<|25.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51642, + "content": "<|25.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51643, + "content": "<|25.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51644, + "content": "<|25.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51645, + "content": "<|25.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51646, + "content": "<|25.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51647, + "content": "<|25.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51648, + "content": "<|25.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51649, + "content": "<|25.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51650, + "content": "<|25.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51651, + "content": "<|25.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51652, + "content": "<|25.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51653, + "content": "<|25.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51654, + "content": "<|25.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51655, + "content": "<|25.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51656, + "content": "<|25.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51657, + "content": "<|25.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51658, + "content": "<|25.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51659, + "content": "<|25.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51660, + "content": "<|25.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51661, + "content": "<|25.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51662, + "content": "<|25.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51663, + "content": "<|25.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51664, + "content": "<|25.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51665, + "content": "<|26.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51666, + "content": "<|26.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51667, + "content": "<|26.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51668, + "content": "<|26.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51669, + "content": "<|26.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51670, + "content": "<|26.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51671, + "content": "<|26.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51672, + "content": "<|26.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51673, + "content": "<|26.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51674, + "content": "<|26.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51675, + "content": "<|26.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51676, + "content": "<|26.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51677, + "content": "<|26.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51678, + "content": "<|26.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51679, + "content": "<|26.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51680, + "content": "<|26.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51681, + "content": "<|26.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51682, + "content": "<|26.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51683, + "content": "<|26.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51684, + "content": "<|26.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51685, + "content": "<|26.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51686, + "content": "<|26.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51687, + "content": "<|26.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51688, + "content": "<|26.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51689, + "content": "<|26.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51690, + "content": "<|26.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51691, + "content": "<|26.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51692, + "content": "<|26.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51693, + "content": "<|26.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51694, + "content": "<|26.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51695, + "content": "<|26.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51696, + "content": "<|26.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51697, + "content": "<|26.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51698, + "content": "<|26.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51699, + "content": "<|26.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51700, + "content": "<|26.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51701, + "content": "<|26.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51702, + "content": "<|26.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51703, + "content": "<|26.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51704, + "content": "<|26.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51705, + "content": "<|26.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51706, + "content": "<|26.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51707, + "content": "<|26.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51708, + "content": "<|26.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51709, + "content": "<|26.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51710, + "content": "<|26.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51711, + "content": "<|26.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51712, + "content": "<|26.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51713, + "content": "<|26.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51714, + "content": "<|26.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51715, + "content": "<|27.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51716, + "content": "<|27.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51717, + "content": "<|27.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51718, + "content": "<|27.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51719, + "content": "<|27.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51720, + "content": "<|27.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51721, + "content": "<|27.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51722, + "content": "<|27.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51723, + "content": "<|27.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51724, + "content": "<|27.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51725, + "content": "<|27.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51726, + "content": "<|27.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51727, + "content": "<|27.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51728, + "content": "<|27.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51729, + "content": "<|27.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51730, + "content": "<|27.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51731, + "content": "<|27.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51732, + "content": "<|27.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51733, + "content": "<|27.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51734, + "content": "<|27.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51735, + "content": "<|27.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51736, + "content": "<|27.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51737, + "content": "<|27.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51738, + "content": "<|27.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51739, + "content": "<|27.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51740, + "content": "<|27.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51741, + "content": "<|27.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51742, + "content": "<|27.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51743, + "content": "<|27.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51744, + "content": "<|27.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51745, + "content": "<|27.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51746, + "content": "<|27.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51747, + "content": "<|27.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51748, + "content": "<|27.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51749, + "content": "<|27.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51750, + "content": "<|27.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51751, + "content": "<|27.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51752, + "content": "<|27.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51753, + "content": "<|27.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51754, + "content": "<|27.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51755, + "content": "<|27.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51756, + "content": "<|27.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51757, + "content": "<|27.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51758, + "content": "<|27.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51759, + "content": "<|27.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51760, + "content": "<|27.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51761, + "content": "<|27.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51762, + "content": "<|27.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51763, + "content": "<|27.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51764, + "content": "<|27.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51765, + "content": "<|28.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51766, + "content": "<|28.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51767, + "content": "<|28.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51768, + "content": "<|28.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51769, + "content": "<|28.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51770, + "content": "<|28.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51771, + "content": "<|28.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51772, + "content": "<|28.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51773, + "content": "<|28.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51774, + "content": "<|28.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51775, + "content": "<|28.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51776, + "content": "<|28.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51777, + "content": "<|28.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51778, + "content": "<|28.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51779, + "content": "<|28.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51780, + "content": "<|28.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51781, + "content": "<|28.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51782, + "content": "<|28.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51783, + "content": "<|28.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51784, + "content": "<|28.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51785, + "content": "<|28.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51786, + "content": "<|28.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51787, + "content": "<|28.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51788, + "content": "<|28.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51789, + "content": "<|28.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51790, + "content": "<|28.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51791, + "content": "<|28.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51792, + "content": "<|28.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51793, + "content": "<|28.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51794, + "content": "<|28.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51795, + "content": "<|28.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51796, + "content": "<|28.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51797, + "content": "<|28.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51798, + "content": "<|28.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51799, + "content": "<|28.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51800, + "content": "<|28.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51801, + "content": "<|28.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51802, + "content": "<|28.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51803, + "content": "<|28.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51804, + "content": "<|28.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51805, + "content": "<|28.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51806, + "content": "<|28.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51807, + "content": "<|28.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51808, + "content": "<|28.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51809, + "content": "<|28.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51810, + "content": "<|28.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51811, + "content": "<|28.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51812, + "content": "<|28.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51813, + "content": "<|28.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51814, + "content": "<|28.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51815, + "content": "<|29.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51816, + "content": "<|29.02|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51817, + "content": "<|29.04|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51818, + "content": "<|29.06|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51819, + "content": "<|29.08|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51820, + "content": "<|29.10|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51821, + "content": "<|29.12|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51822, + "content": "<|29.14|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51823, + "content": "<|29.16|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51824, + "content": "<|29.18|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51825, + "content": "<|29.20|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51826, + "content": "<|29.22|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51827, + "content": "<|29.24|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51828, + "content": "<|29.26|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51829, + "content": "<|29.28|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51830, + "content": "<|29.30|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51831, + "content": "<|29.32|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51832, + "content": "<|29.34|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51833, + "content": "<|29.36|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51834, + "content": "<|29.38|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51835, + "content": "<|29.40|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51836, + "content": "<|29.42|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51837, + "content": "<|29.44|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51838, + "content": "<|29.46|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51839, + "content": "<|29.48|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51840, + "content": "<|29.50|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51841, + "content": "<|29.52|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51842, + "content": "<|29.54|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51843, + "content": "<|29.56|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51844, + "content": "<|29.58|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51845, + "content": "<|29.60|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51846, + "content": "<|29.62|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51847, + "content": "<|29.64|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51848, + "content": "<|29.66|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51849, + "content": "<|29.68|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51850, + "content": "<|29.70|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51851, + "content": "<|29.72|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51852, + "content": "<|29.74|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51853, + "content": "<|29.76|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51854, + "content": "<|29.78|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51855, + "content": "<|29.80|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51856, + "content": "<|29.82|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51857, + "content": "<|29.84|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51858, + "content": "<|29.86|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51859, + "content": "<|29.88|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51860, + "content": "<|29.90|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51861, + "content": "<|29.92|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51862, + "content": "<|29.94|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51863, + "content": "<|29.96|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51864, + "content": "<|29.98|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + }, + { + "id": 51865, + "content": "<|30.00|>", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": true, + "special": false + } + ], + "normalizer": null, + "pre_tokenizer": { + "type": "ByteLevel", + "add_prefix_space": false, + "trim_offsets": true, + "use_regex": true + }, + "post_processor": { + "type": "TemplateProcessing", + "single": [ + { + "SpecialToken": { + "id": "<|startoftranscript|>", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "<|transcribe|>", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "<|notimestamps|>", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "A", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "<|endoftext|>", + "type_id": 0 + } + } + ], + "pair": [ + { + "SpecialToken": { + "id": "<|startoftranscript|>", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "<|transcribe|>", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "<|notimestamps|>", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "A", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "B", + "type_id": 1 + } + }, + { + "SpecialToken": { + "id": "<|endoftext|>", + "type_id": 1 + } + } + ], + "special_tokens": { + "<|endoftext|>": { + "id": "<|endoftext|>", + "ids": [ + 50257 + ], + "tokens": [ + "<|endoftext|>" + ] + }, + "<|notimestamps|>": { + "id": "<|notimestamps|>", + "ids": [ + 50364 + ], + "tokens": [ + "<|notimestamps|>" + ] + }, + "<|startoftranscript|>": { + "id": "<|startoftranscript|>", + "ids": [ + 50258 + ], + "tokens": [ + "<|startoftranscript|>" + ] + }, + "<|transcribe|>": { + "id": "<|transcribe|>", + "ids": [ + 50360 + ], + "tokens": [ + "<|transcribe|>" + ] + } + } + }, + "decoder": { + "type": "ByteLevel", + "add_prefix_space": true, + "trim_offsets": true, + "use_regex": true + }, + "model": { + "type": "BPE", + "dropout": null, + "unk_token": null, + "continuing_subword_prefix": "", + "end_of_word_suffix": "", + "fuse_unk": false, + "byte_fallback": false, + "ignore_merges": false, + "vocab": { + "!": 0, + "\"": 1, + "#": 2, + "$": 3, + "%": 4, + "&": 5, + "'": 6, + "(": 7, + ")": 8, + "*": 9, + "+": 10, + ",": 11, + "-": 12, + ".": 13, + "/": 14, + "0": 15, + "1": 16, + "2": 17, + "3": 18, + "4": 19, + "5": 20, + "6": 21, + "7": 22, + "8": 23, + "9": 24, + ":": 25, + ";": 26, + "<": 27, + "=": 28, + ">": 29, + "?": 30, + "@": 31, + "A": 32, + "B": 33, + "C": 34, + "D": 35, + "E": 36, + "F": 37, + "G": 38, + "H": 39, + "I": 40, + "J": 41, + "K": 42, + "L": 43, + "M": 44, + "N": 45, + "O": 46, + "P": 47, + "Q": 48, + "R": 49, + "S": 50, + "T": 51, + "U": 52, + "V": 53, + "W": 54, + "X": 55, + "Y": 56, + "Z": 57, + "[": 58, + "\\": 59, + "]": 60, + "^": 61, + "_": 62, + "`": 63, + "a": 64, + "b": 65, + "c": 66, + "d": 67, + "e": 68, + "f": 69, + "g": 70, + "h": 71, + "i": 72, + "j": 73, + "k": 74, + "l": 75, + "m": 76, + "n": 77, + "o": 78, + "p": 79, + "q": 80, + "r": 81, + "s": 82, + "t": 83, + "u": 84, + "v": 85, + "w": 86, + "x": 87, + "y": 88, + "z": 89, + "{": 90, + "|": 91, + "}": 92, + "~": 93, + "¡": 94, + "¢": 95, + "£": 96, + "¤": 97, + "¥": 98, + "¦": 99, + "§": 100, + "¨": 101, + "©": 102, + "ª": 103, + "«": 104, + "¬": 105, + "®": 106, + "¯": 107, + "°": 108, + "±": 109, + "²": 110, + "³": 111, + "´": 112, + "µ": 113, + "¶": 114, + "·": 115, + "¸": 116, + "¹": 117, + "º": 118, + "»": 119, + "¼": 120, + "½": 121, + "¾": 122, + "¿": 123, + "À": 124, + "Á": 125, + "Â": 126, + "Ã": 127, + "Ä": 128, + "Å": 129, + "Æ": 130, + "Ç": 131, + "È": 132, + "É": 133, + "Ê": 134, + "Ë": 135, + "Ì": 136, + "Í": 137, + "Î": 138, + "Ï": 139, + "Ð": 140, + "Ñ": 141, + "Ò": 142, + "Ó": 143, + "Ô": 144, + "Õ": 145, + "Ö": 146, + "×": 147, + "Ø": 148, + "Ù": 149, + "Ú": 150, + "Û": 151, + "Ü": 152, + "Ý": 153, + "Þ": 154, + "ß": 155, + "à": 156, + "á": 157, + "â": 158, + "ã": 159, + "ä": 160, + "å": 161, + "æ": 162, + "ç": 163, + "è": 164, + "é": 165, + "ê": 166, + "ë": 167, + "ì": 168, + "í": 169, + "î": 170, + "ï": 171, + "ð": 172, + "ñ": 173, + "ò": 174, + "ó": 175, + "ô": 176, + "õ": 177, + "ö": 178, + "÷": 179, + "ø": 180, + "ù": 181, + "ú": 182, + "û": 183, + "ü": 184, + "ý": 185, + "þ": 186, + "ÿ": 187, + "Ā": 188, + "ā": 189, + "Ă": 190, + "ă": 191, + "Ą": 192, + "ą": 193, + "Ć": 194, + "ć": 195, + "Ĉ": 196, + "ĉ": 197, + "Ċ": 198, + "ċ": 199, + "Č": 200, + "č": 201, + "Ď": 202, + "ď": 203, + "Đ": 204, + "đ": 205, + "Ē": 206, + "ē": 207, + "Ĕ": 208, + "ĕ": 209, + "Ė": 210, + "ė": 211, + "Ę": 212, + "ę": 213, + "Ě": 214, + "ě": 215, + "Ĝ": 216, + "ĝ": 217, + "Ğ": 218, + "ğ": 219, + "Ġ": 220, + "ġ": 221, + "Ģ": 222, + "ģ": 223, + "Ĥ": 224, + "ĥ": 225, + "Ħ": 226, + "ħ": 227, + "Ĩ": 228, + "ĩ": 229, + "Ī": 230, + "ī": 231, + "Ĭ": 232, + "ĭ": 233, + "Į": 234, + "į": 235, + "İ": 236, + "ı": 237, + "IJ": 238, + "ij": 239, + "Ĵ": 240, + "ĵ": 241, + "Ķ": 242, + "ķ": 243, + "ĸ": 244, + "Ĺ": 245, + "ĺ": 246, + "Ļ": 247, + "ļ": 248, + "Ľ": 249, + "ľ": 250, + "Ŀ": 251, + "ŀ": 252, + "Ł": 253, + "ł": 254, + "Ń": 255, + "Ġt": 256, + "Ġa": 257, + "Ġth": 258, + "in": 259, + "er": 260, + "Ġw": 261, + "Ġs": 262, + "ou": 263, + "Ġthe": 264, + "re": 265, + "on": 266, + "at": 267, + "en": 268, + "Ġc": 269, + "it": 270, + "is": 271, + "Ġb": 272, + "nd": 273, + "Ġd": 274, + "Ġm": 275, + "Ġh": 276, + "Ġo": 277, + "ing": 278, + "es": 279, + "Ġp": 280, + "Ġto": 281, + "an": 282, + "Ġf": 283, + "or": 284, + "ll": 285, + "ĠI": 286, + "Ġl": 287, + "Ġy": 288, + "ar": 289, + "Ġg": 290, + "Ġyou": 291, + "ed": 292, + "Ġand": 293, + "Ġin": 294, + "Ġof": 295, + "as": 296, + "Ġn": 297, + "om": 298, + "ic": 299, + "Ġthat": 300, + "us": 301, + "et": 302, + "ve": 303, + "al": 304, + "ow": 305, + "le": 306, + "Ġis": 307, + "Ġe": 308, + "Ġit": 309, + "ot": 310, + "'s": 311, + "Ġbe": 312, + "ion": 313, + "ĠT": 314, + "Ġwh": 315, + "ĠA": 316, + "ent": 317, + "ĠS": 318, + "Ġre": 319, + "ay": 320, + "Ġwe": 321, + "Ġon": 322, + "ere": 323, + "Ġha": 324, + "ut": 325, + "ac": 326, + "id": 327, + "ig": 328, + "os": 329, + "ke": 330, + "ver": 331, + "im": 332, + "ĠÐ": 333, + "ĠTh": 334, + "am": 335, + "all": 336, + "Ġfor": 337, + "el": 338, + "ch": 339, + "ro": 340, + "Ġthis": 341, + "Ġst": 342, + "ĠW": 343, + "Ġu": 344, + "ad": 345, + "out": 346, + "ir": 347, + "ld": 348, + "ct": 349, + "Ġk": 350, + "if": 351, + "Ġgo": 352, + "..": 353, + "о": 354, + "ith": 355, + "ly": 356, + "ht": 357, + "qu": 358, + "Ġ-": 359, + "Ġdo": 360, + "Ġj": 361, + "Ġhave": 362, + "ĠB": 363, + "Ġan": 364, + "Ġwith": 365, + "Ġare": 366, + "Ġr": 367, + "Ġde": 368, + "Ġse": 369, + "Ġso": 370, + "Ġv": 371, + "st": 372, + "ill": 373, + "ur": 374, + "Ġli": 375, + "ĠM": 376, + "est": 377, + "od": 378, + "ally": 379, + "'t": 380, + "ust": 381, + "Ġas": 382, + "ĠC": 383, + "ce": 384, + "Ġme": 385, + "а": 386, + "е": 387, + "il": 388, + "ĠH": 389, + "Ġwas": 390, + "ter": 391, + "th": 392, + "Ġcan": 393, + "ant": 394, + "Ġcom": 395, + "our": 396, + "ight": 397, + "ĠY": 398, + "ation": 399, + "ĠAnd": 400, + "ol": 401, + "Ġsh": 402, + "ÑĤ": 403, + "op": 404, + "se": 405, + "Ġnot": 406, + "ĠSo": 407, + "Ġne": 408, + "un": 409, + "Ġab": 410, + "Ġlike": 411, + "Ġat": 412, + "ĠD": 413, + "ie": 414, + "Ġhe": 415, + "Ġcon": 416, + "Ġch": 417, + "ore": 418, + "Ġal": 419, + "Ġor": 420, + "Ġqu": 421, + "ĠO": 422, + "ome": 423, + "ra": 424, + "ul": 425, + "ĠN": 426, + "pp": 427, + "Ġyour": 428, + "ould": 429, + "ĠP": 430, + "Ġfr": 431, + "ge": 432, + "ers": 433, + "'re": 434, + "и": 435, + "Ġthey": 436, + "Ġwhat": 437, + "use": 438, + "Ġall": 439, + "ĠThe": 440, + "ĠL": 441, + "ess": 442, + "em": 443, + "Ġkn": 444, + "Ġjust": 445, + "art": 446, + "Ġpro": 447, + "very": 448, + "um": 449, + "Ġlo": 450, + "Ġì": 451, + "Ġmy": 452, + "ok": 453, + "Ġex": 454, + "ab": 455, + "Ġthere": 456, + "Ġbut": 457, + "Ġknow": 458, + "Ġsu": 459, + "ĠG": 460, + "Ñģ": 461, + "ĠE": 462, + "Ġma": 463, + "оÐ": 464, + "Ġen": 465, + "Ġabout": 466, + "ĠIt": 467, + "ist": 468, + "Ġwor": 469, + "ri": 470, + "ind": 471, + "Ġone": 472, + "ate": 473, + "and": 474, + "ink": 475, + "Ġle": 476, + "ort": 477, + "'m": 478, + "ĠF": 479, + "ich": 480, + "ÑĢ": 481, + "ide": 482, + "Ġget": 483, + "Ġout": 484, + "...": 485, + "Ġwill": 486, + "ãģ": 487, + "ive": 488, + "н": 489, + "Ġfrom": 490, + "ain": 491, + "ĠWe": 492, + "Ġup": 493, + "pe": 494, + "res": 495, + "ca": 496, + "ĠR": 497, + "Ġif": 498, + "Ġpl": 499, + "Ġdon": 500, + "ack": 501, + "Ġ1": 502, + "Ġ\"": 503, + "Ġtr": 504, + "Ġus": 505, + "ĠWh": 506, + "ity": 507, + "ĠJ": 508, + "ĠYou": 509, + "Ġhere": 510, + "her": 511, + "Ġsome": 512, + "oug": 513, + "ak": 514, + "ard": 515, + "Ġgoing": 516, + "Ġun": 517, + "ment": 518, + "Ġthink": 519, + "Ġpe": 520, + "end": 521, + "Ġ(": 522, + "cause": 523, + "Ġtim": 524, + "ast": 525, + "é": 526, + "Ġour": 527, + "Ġwant": 528, + "ame": 529, + "ies": 530, + "Ġë": 531, + "ud": 532, + "ine": 533, + "Ġreally": 534, + "Ġte": 535, + "Ġsee": 536, + "ci": 537, + "Ġby": 538, + "so": 539, + "ure": 540, + "ose": 541, + "Ġ[": 542, + "are": 543, + "Ġmore": 544, + "ah": 545, + "one": 546, + "ck": 547, + "ople": 548, + "аÐ": 549, + "Ġthen": 550, + "Ġthing": 551, + "Ġthem": 552, + "ven": 553, + "ound": 554, + "ost": 555, + "ong": 556, + "ect": 557, + "Ġright": 558, + "ag": 559, + "Ġint": 560, + "Ġpeople": 561, + "Ġwhen": 562, + "ous": 563, + "pl": 564, + "Ġtime": 565, + "Ġim": 566, + "Ġwho": 567, + "Ġ2": 568, + "ap": 569, + "Ġbecause": 570, + "hing": 571, + "Ġno": 572, + "ice": 573, + "Ġlook": 574, + "Ġhas": 575, + "Ġwould": 576, + "Ġhow": 577, + "act": 578, + "Ġfe": 579, + "nt": 580, + "ough": 581, + "Ġpr": 582, + "ĠBut": 583, + "Ġsay": 584, + "Ñĥ": 585, + "Ġnow": 586, + "Ġman": 587, + "Ġvery": 588, + "Ġwork": 589, + "iz": 590, + "ĠK": 591, + "iv": 592, + "itt": 593, + "Ġar": 594, + "ep": 595, + "Ġcl": 596, + "Ġwhich": 597, + "Ġco": 598, + "ans": 599, + "'ve": 600, + "Ġsa": 601, + "ff": 602, + "'ll": 603, + "Ġany": 604, + "Ġact": 605, + "Ġye": 606, + "ber": 607, + "ach": 608, + "age": 609, + "per": 610, + "Ġalso": 611, + "fer": 612, + "Ġthese": 613, + "Ġad": 614, + "еÐ": 615, + "ther": 616, + "ace": 617, + "ick": 618, + "ake": 619, + "reat": 620, + "ire": 621, + "ue": 622, + "Ġag": 623, + "ĠU": 624, + "uch": 625, + "ions": 626, + "ry": 627, + "00": 628, + "na": 629, + "Ġdid": 630, + "Ġque": 631, + "Ġhad": 632, + "Ġevery": 633, + "ĠHe": 634, + "Ġla": 635, + "Ġway": 636, + "Ġsp": 637, + "ble": 638, + "ĠThis": 639, + "ass": 640, + "Ġtheir": 641, + "ite": 642, + "Ġneed": 643, + "Ġpart": 644, + "Ġwere": 645, + "Ġback": 646, + "ip": 647, + "own": 648, + "omet": 649, + "be": 650, + "ase": 651, + "Ġmake": 652, + "irst": 653, + "ia": 654, + "ence": 655, + "ang": 656, + "ank": 657, + "Ġgot": 658, + "Ġpre": 659, + "Ġcont": 660, + "Ġother": 661, + "pt": 662, + "ĠThat": 663, + "og": 664, + "Ġgood": 665, + "Ġinto": 666, + "alk": 667, + "Ġbeen": 668, + "Ġam": 669, + "Ġover": 670, + "ually": 671, + "Ġâ": 672, + "ìĿ": 673, + "Ġund": 674, + "he": 675, + "way": 676, + "Ġgr": 677, + "ÑĮ": 678, + "Ġdif": 679, + "Ġper": 680, + "Ñı": 681, + "ĠIn": 682, + "Ġtw": 683, + "ond": 684, + "ars": 685, + "int": 686, + "orm": 687, + "Ġlot": 688, + "Ġwhere": 689, + "ĠÃ": 690, + "ĠV": 691, + "Ġsomet": 692, + "л": 693, + "ens": 694, + "Ġgu": 695, + "Ġac": 696, + "ug": 697, + "Ñĭ": 698, + "ı": 699, + "Ġfirst": 700, + "ree": 701, + "Ġhis": 702, + "ittle": 703, + "Ġimp": 704, + "Ġmo": 705, + "av": 706, + "Ġlittle": 707, + "ĠWhat": 708, + "Ġmuch": 709, + "Ġz": 710, + "Ġê": 711, + "able": 712, + "Ġп": 713, + "Ġpo": 714, + "Ġcomp": 715, + "ne": 716, + "Ġdis": 717, + "Ġlet": 718, + "ance": 719, + "Ġher": 720, + "Ġthings": 721, + "Ġstart": 722, + "ult": 723, + "Ġapp": 724, + "Ġres": 725, + "Ġfo": 726, + "Ġcould": 727, + "Ġinter": 728, + "Ġthose": 729, + "Ġdes": 730, + "Ġwell": 731, + "Ġtwo": 732, + "Ġkind": 733, + "xt": 734, + "ress": 735, + "ely": 736, + "ä": 737, + "Ġbr": 738, + "Ġthr": 739, + "Ġв": 740, + "Ġi": 741, + "ish": 742, + "Ġdiffer": 743, + "Ġro": 744, + "ĠSt": 745, + "Ġsomething": 746, + "Ġtake": 747, + "Ġbo": 748, + "ys": 749, + "Ġshe": 750, + "Ġtalk": 751, + "lo": 752, + "Ñĩ": 753, + "Ġeven": 754, + "к": 755, + "ãĢ": 756, + "Ġн": 757, + "Ġbu": 758, + "ĠIf": 759, + "Ġdown": 760, + "ĠCh": 761, + "ade": 762, + "ations": 763, + "Ġuse": 764, + "ord": 765, + "Ġoff": 766, + "Ġactually": 767, + "Ġspe": 768, + "du": 769, + "ated": 770, + "ater": 771, + "oss": 772, + "ning": 773, + "ü": 774, + "Ġdoes": 775, + "ĠÑģ": 776, + "Ġnew": 777, + "Ġbet": 778, + "vel": 779, + "cess": 780, + "ple": 781, + "Ġhapp": 782, + "ting": 783, + "onna": 784, + "Ġes": 785, + "Ġday": 786, + "Ġonly": 787, + "ign": 788, + "kay": 789, + "sel": 790, + "ents": 791, + "ount": 792, + "ild": 793, + "ile": 794, + "Ġsc": 795, + "Ġhim": 796, + "Ġagain": 797, + "ving": 798, + "Ġgonna": 799, + "Ġcomm": 800, + "Ġhel": 801, + "other": 802, + "Ġke": 803, + "ical": 804, + "Ġ3": 805, + "Ġel": 806, + "Ġthrough": 807, + "Ġcome": 808, + "ark": 809, + "day": 810, + "ier": 811, + "ó": 812, + "Ġthan": 813, + "ĠThey": 814, + "Ġmay": 815, + "Ġser": 816, + "íķ": 817, + "Ġcall": 818, + "Ġdifferent": 819, + "Ġshould": 820, + "ĠThere": 821, + "ary": 822, + "ĠNow": 823, + "ãĤ": 824, + "thing": 825, + "we": 826, + "ory": 827, + "fter": 828, + "Ġput": 829, + "ors": 830, + "ial": 831, + "ëĭ": 832, + "Ġunder": 833, + "Ġinc": 834, + "ĠYe": 835, + "ub": 836, + "form": 837, + "Ġvide": 838, + "à¸": 839, + "vers": 840, + "Ġfeel": 841, + "á": 842, + "ody": 843, + "ft": 844, + "fore": 845, + "Ġem": 846, + "get": 847, + "Ġsaid": 848, + "ition": 849, + "Ġrec": 850, + "ious": 851, + "atch": 852, + "Ġtry": 853, + "Ġhelp": 854, + "Ġshow": 855, + "д": 856, + "Ġbit": 857, + "ull": 858, + "в": 859, + "ÑĤо": 860, + "gr": 861, + "Ġplay": 862, + "ife": 863, + "ail": 864, + "ĠYeah": 865, + "Ġquest": 866, + "Ġmany": 867, + "Ġpers": 868, + "Ġgreat": 869, + "ÃŃ": 870, + "Ġest": 871, + "ng": 872, + "ĠâĻ": 873, + "ty": 874, + "la": 875, + "ĠOh": 876, + "Ġ×": 877, + "à®": 878, + "ĠBe": 879, + "ady": 880, + "Ġmost": 881, + "ction": 882, + "ĠNo": 883, + "Ġdoing": 884, + "Ġbeing": 885, + "Ġtoo": 886, + "ces": 887, + "Ġbl": 888, + ".\"": 889, + "Ġrem": 890, + "iss": 891, + "ons": 892, + ">>": 893, + "ru": 894, + "wn": 895, + "ont": 896, + "ib": 897, + "ell": 898, + "Ġsm": 899, + "oth": 900, + "ual": 901, + "Ġ>>": 902, + "Ġph": 903, + "les": 904, + "oc": 905, + "ful": 906, + "Ġsec": 907, + "ise": 908, + "Ġadd": 909, + "igh": 910, + "ert": 911, + "Ġsame": 912, + "âĢ": 913, + "Ġmean": 914, + "Ġfind": 915, + "ek": 916, + "Ġend": 917, + "--": 918, + "м": 919, + "Ġstill": 920, + "az": 921, + "Ġ'": 922, + "Ġmin": 923, + "Ġyears": 924, + "urn": 925, + "Ġaround": 926, + "self": 927, + "Ġwr": 928, + "bs": 929, + "ought": 930, + "ĠâĻª": 931, + "Ġfl": 932, + "ange": 933, + "Ġafter": 934, + "Ġpoint": 935, + "mer": 936, + "ved": 937, + "Ġlong": 938, + "oy": 939, + "ä¸": 940, + "Ġcr": 941, + "ways": 942, + "Ġsy": 943, + "Ġtra": 944, + "Ġ20": 945, + "ave": 946, + "Ġche": 947, + "Ġent": 948, + "Ġbefore": 949, + "ph": 950, + "Ġatt": 951, + "ian": 952, + "ily": 953, + "Ġperson": 954, + "Ġbig": 955, + "Ġsch": 956, + "Ġreal": 957, + "Ġnext": 958, + "Ġlove": 959, + "Ġvideo": 960, + "ĠLet": 961, + "Ġfin": 962, + "Ġmak": 963, + "ible": 964, + "Ġtoday": 965, + "erm": 966, + "ĠAl": 967, + "ower": 968, + "ann": 969, + "ix": 970, + "Ġpar": 971, + "Ġstud": 972, + "ö": 973, + "Ġimport": 974, + "te": 975, + "Ġgive": 976, + "ves": 977, + "Ġdie": 978, + "Ġdec": 979, + "Ġtell": 980, + "Ġк": 981, + "ÑģÑĤ": 982, + "Ġwhy": 983, + "ically": 984, + "ict": 985, + "red": 986, + "Ġbas": 987, + "Ġsure": 988, + "Ġbel": 989, + "ating": 990, + "Ġtak": 991, + "Ġset": 992, + "Ġlife": 993, + "Ġdidn": 994, + "ا": 995, + "ob": 996, + "und": 997, + "ath": 998, + "Ġop": 999, + "Ġо": 1000, + "ait": 1001, + "Ġworld": 1002, + "Ġsupp": 1003, + "io": 1004, + "Ġcour": 1005, + "Ġи": 1006, + "ward": 1007, + "ен": 1008, + "Ġalways": 1009, + "up": 1010, + "Ġhand": 1011, + "ĠHow": 1012, + "cial": 1013, + "Ġcons": 1014, + "ĠÑ": 1015, + "Ġind": 1016, + "Ġ4": 1017, + "ĠAs": 1018, + "Ġfun": 1019, + "ject": 1020, + "Ġimportant": 1021, + "Ġsur": 1022, + "ew": 1023, + "ates": 1024, + "Ġ5": 1025, + "Ġdi": 1026, + "Ġmade": 1027, + "Ġins": 1028, + "Ġask": 1029, + "Ġet": 1030, + "Ġnum": 1031, + "Ġcar": 1032, + "ĠOkay": 1033, + "Ġsim": 1034, + "ik": 1035, + "Ġlast": 1036, + "ĠGo": 1037, + "Ġmus": 1038, + "Ġrel": 1039, + "ular": 1040, + "´ì": 1041, + "ĠWell": 1042, + "pect": 1043, + "ĠThank": 1044, + "Ġthree": 1045, + "ã": 1046, + "ãĥ": 1047, + "Ġinv": 1048, + "Ġgen": 1049, + "lic": 1050, + "Ġhappen": 1051, + "ëĬ": 1052, + "ien": 1053, + "ever": 1054, + "ов": 1055, + "Ġstr": 1056, + "ĠAll": 1057, + "Ġinst": 1058, + "ĠâĢ": 1059, + "Ġdef": 1060, + "Ġsl": 1061, + "Ġmight": 1062, + "ung": 1063, + "Ġyear": 1064, + "Ġown": 1065, + "Ġkeep": 1066, + "body": 1067, + "der": 1068, + "ĠÑĤ": 1069, + "Ġд": 1070, + "Ġanother": 1071, + "Ġmod": 1072, + "Ġev": 1073, + "Ġguys": 1074, + "Ġable": 1075, + "ão": 1076, + "que": 1077, + "ident": 1078, + "ĠYes": 1079, + "Ġits": 1080, + "Ġplace": 1081, + "Ġprodu": 1082, + "arn": 1083, + "Ġм": 1084, + "Ġrep": 1085, + "Ġexper": 1086, + "Ġfam": 1087, + "ities": 1088, + "ific": 1089, + "Ġhigh": 1090, + "ied": 1091, + "ool": 1092, + "iew": 1093, + "еÑĤ": 1094, + "ren": 1095, + "Ġdone": 1096, + "Ġ...": 1097, + "ëĬĶ": 1098, + "stem": 1099, + "ĠSe": 1100, + "Ġbetter": 1101, + "come": 1102, + "Ġdel": 1103, + "Ġty": 1104, + "Ġum": 1105, + "Ġho": 1106, + "ĠAn": 1107, + "Ġmon": 1108, + "ings": 1109, + "Ġsk": 1110, + "Ġob": 1111, + "com": 1112, + "blem": 1113, + "ope": 1114, + "stand": 1115, + "'d": 1116, + "ments": 1117, + "Ġele": 1118, + "ĠIs": 1119, + "Ġda": 1120, + "Ġreg": 1121, + "lease": 1122, + "ike": 1123, + "als": 1124, + "ize": 1125, + "ê°": 1126, + "Ġcare": 1127, + "Ġnever": 1128, + "ìĿ´": 1129, + "ese": 1130, + "Ġmet": 1131, + "olog": 1132, + "ĠWhen": 1133, + "uck": 1134, + "еÑĢ": 1135, + "Ġé": 1136, + "Ġdat": 1137, + "ç": 1138, + "Ġexam": 1139, + "ility": 1140, + "Ġdet": 1141, + "cri": 1142, + "Ġused": 1143, + "ĠDo": 1144, + "Ġtrans": 1145, + "eg": 1146, + "ten": 1147, + "Ñİ": 1148, + "cus": 1149, + "Ġsecond": 1150, + "Ġbest": 1151, + "Ġhard": 1152, + "Ġide": 1153, + "Ġproblem": 1154, + "ê³": 1155, + "ĠUn": 1156, + "Ñħ": 1157, + "ĠÎ": 1158, + "Ġwatch": 1159, + "ĠSh": 1160, + "atter": 1161, + "Ġpret": 1162, + "Ġder": 1163, + "Ġcourse": 1164, + "ÅŁ": 1165, + "ative": 1166, + "ics": 1167, + "Ġquestion": 1168, + "ute": 1169, + "ìĹ": 1170, + "ĠFor": 1171, + "ather": 1172, + "Ġcol": 1173, + "iend": 1174, + "Ġí": 1175, + "ĠZ": 1176, + "Ġdoesn": 1177, + "arch": 1178, + "Ġinterest": 1179, + "Ġpol": 1180, + "Ġcor": 1181, + "ience": 1182, + "Ġpres": 1183, + "Ġeach": 1184, + "Ġsystem": 1185, + "Ġfact": 1186, + "iel": 1187, + "ably": 1188, + "Ġer": 1189, + "Ġrun": 1190, + "ĠìĿ": 1191, + "Ġtop": 1192, + "ner": 1193, + "Ġthought": 1194, + "Ġeas": 1195, + "ient": 1196, + "Ġcre": 1197, + "ÑĪ": 1198, + "Ġcommun": 1199, + "ye": 1200, + "ready": 1201, + "llow": 1202, + "Ġeverything": 1203, + "omm": 1204, + "Ġmed": 1205, + "ļĶ": 1206, + "Ġcount": 1207, + "its": 1208, + "Ġcompl": 1209, + "hip": 1210, + "ÙĦ": 1211, + "ook": 1212, + "Ġtoget": 1213, + "Ġtogether": 1214, + "amp": 1215, + "Ġgame": 1216, + "Ġalready": 1217, + "ал": 1218, + "Ġcalled": 1219, + "ale": 1220, + "ÅĤ": 1221, + "ĠMy": 1222, + "Ġunderstand": 1223, + "Ġdr": 1224, + "Ġmom": 1225, + "ited": 1226, + "ол": 1227, + "Ġusing": 1228, + "zy": 1229, + "Ġnumber": 1230, + "ãĢģ": 1231, + "ced": 1232, + "Ġcle": 1233, + "но": 1234, + "ëĭ¤": 1235, + "ince": 1236, + "Ġlooking": 1237, + "Ġpretty": 1238, + "Ġprob": 1239, + "ĠShe": 1240, + "Ġve": 1241, + "Ġgetting": 1242, + "Ġweek": 1243, + "Ġeff": 1244, + "uff": 1245, + "air": 1246, + "ues": 1247, + "ern": 1248, + "ĠQ": 1249, + "oup": 1250, + "ention": 1251, + "Ġside": 1252, + "ом": 1253, + "Ġform": 1254, + "Ġbus": 1255, + "Ġass": 1256, + "Ġed": 1257, + "ason": 1258, + "ween": 1259, + "âĢ¦": 1260, + "Ġturn": 1261, + "Ġcur": 1262, + "Ġcoll": 1263, + "Ġdire": 1264, + "ĠGod": 1265, + "Ġ10": 1266, + "Ġequ": 1267, + "Ġб": 1268, + "Ġopen": 1269, + "Ġsuch": 1270, + "ird": 1271, + "ак": 1272, + "Ġear": 1273, + "ÄĻ": 1274, + "gan": 1275, + "Ġpartic": 1276, + "Ġfriend": 1277, + "Ġexp": 1278, + "Ġext": 1279, + "Ġhome": 1280, + "Ġwater": 1281, + "ĠOn": 1282, + "ÑĤÑĮ": 1283, + "ork": 1284, + "ĠпÑĢ": 1285, + "Ġmove": 1286, + "ness": 1287, + "ense": 1288, + "ho": 1289, + "Ġchar": 1290, + "co": 1291, + "ins": 1292, + "Ġboth": 1293, + "Ġ19": 1294, + "Ġgra": 1295, + "Ġbetween": 1296, + "á»": 1297, + "Ġìķ": 1298, + "ash": 1299, + "ĠRe": 1300, + "ai": 1301, + "alth": 1302, + "ures": 1303, + "ember": 1304, + "Ġav": 1305, + "Ġver": 1306, + "ê": 1307, + "oney": 1308, + "Ġthank": 1309, + "Ġmaybe": 1310, + "uc": 1311, + "ime": 1312, + "ê³ł": 1313, + "Ġaway": 1314, + "Ġname": 1315, + "ouse": 1316, + "Ġacc": 1317, + "Ġmusic": 1318, + "Ġchange": 1319, + "Ġpass": 1320, + "ger": 1321, + "Ġbuild": 1322, + "Ġval": 1323, + "iness": 1324, + "any": 1325, + "Ġfew": 1326, + "´ë": 1327, + "ta": 1328, + "Ġlist": 1329, + "Ã¥": 1330, + "Ġold": 1331, + "Ġìŀ": 1332, + "Ġsort": 1333, + "Ġmem": 1334, + "Ġca": 1335, + "cept": 1336, + "Ġgener": 1337, + "Ġyeah": 1338, + "Ġwhile": 1339, + "Ġanything": 1340, + "ric": 1341, + "gram": 1342, + "Ġein": 1343, + "cy": 1344, + "uring": 1345, + "ĠDe": 1346, + "Ġpower": 1347, + "Ġcoming": 1348, + "Ġword": 1349, + "Ġ--": 1350, + "Ġbelie": 1351, + "Ġfound": 1352, + "to": 1353, + "п": 1354, + "Ġmeans": 1355, + "Ġinform": 1356, + "ĠØ": 1357, + "ĠÑĩ": 1358, + "Ġsmall": 1359, + "000": 1360, + "Ġcame": 1361, + "Ġíķ": 1362, + "wh": 1363, + "Ġworking": 1364, + "Ġexample": 1365, + "Ġpos": 1366, + "Ġdep": 1367, + "ê²": 1368, + "äº": 1369, + "ote": 1370, + "Ġdem": 1371, + "ì§": 1372, + "ts": 1373, + "Ġvar": 1374, + "aut": 1375, + "Ġtri": 1376, + "chn": 1377, + "Ġhead": 1378, + "Ġwhole": 1379, + "×Ļ": 1380, + "ze": 1381, + "Ġtrying": 1382, + "Ġtem": 1383, + "Ġcou": 1384, + "ets": 1385, + "Ġ6": 1386, + "Ġfil": 1387, + "velop": 1388, + "Ġcase": 1389, + "à¯": 1390, + "Ġprobably": 1391, + "Ġokay": 1392, + "Ġplan": 1393, + "Ġsit": 1394, + "Ġschool": 1395, + "ĠThen": 1396, + "¸ë": 1397, + "me": 1398, + "Ġprocess": 1399, + "Ġfar": 1400, + "Ġread": 1401, + "Ġposs": 1402, + "Ġbre": 1403, + "Ġsol": 1404, + "icht": 1405, + "Ġsupport": 1406, + "ĠTo": 1407, + "ertain": 1408, + "Ġstarted": 1409, + "Ġcap": 1410, + "Ġleft": 1411, + "Ġdata": 1412, + "Ġtimes": 1413, + "ел": 1414, + "Ġwanted": 1415, + "ан": 1416, + "Ġtalking": 1417, + "Ġist": 1418, + "Ġhaving": 1419, + "ump": 1420, + "Ġcontin": 1421, + "Ġsub": 1422, + "Ġз": 1423, + "pr": 1424, + "ëĭĪ": 1425, + "ina": 1426, + "ż": 1427, + "Ġcreat": 1428, + "ode": 1429, + "×ķ": 1430, + "æĺ": 1431, + "!!": 1432, + "Ġterm": 1433, + "ism": 1434, + "од": 1435, + "ĠBecause": 1436, + "Ġwent": 1437, + "ider": 1438, + "Ġprov": 1439, + "Ġchild": 1440, + "Ġden": 1441, + "Ġlight": 1442, + "br": 1443, + "³Ð¾": 1444, + "oh": 1445, + "Ġbook": 1446, + "ĠÙ": 1447, + "ution": 1448, + "ĠJust": 1449, + "ene": 1450, + "Ġfour": 1451, + "Ġvis": 1452, + "ê°Ģ": 1453, + "Ġhope": 1454, + "Ġmaking": 1455, + "ĠLe": 1456, + "ìķ": 1457, + "Ġopp": 1458, + "au": 1459, + "Ġmoney": 1460, + "Ġprogram": 1461, + "è": 1462, + "Ġstand": 1463, + "IN": 1464, + "Ġsign": 1465, + "Ġlearn": 1466, + "Ãł": 1467, + "ĠDon": 1468, + "Ġteam": 1469, + "Ġна": 1470, + "lud": 1471, + "Ġrest": 1472, + "ices": 1473, + "æľ": 1474, + "ĠÑĢ": 1475, + "Ġaut": 1476, + "Ġlead": 1477, + "ational": 1478, + "de": 1479, + "gy": 1480, + "Ġnice": 1481, + "Ġdas": 1482, + "Ġdist": 1483, + "Ġhum": 1484, + "ĠOne": 1485, + "æĪ": 1486, + "Ġcomes": 1487, + "Ġjo": 1488, + "Ġcent": 1489, + "Ġexpl": 1490, + "Ġmark": 1491, + "reen": 1492, + "led": 1493, + "gin": 1494, + "ìļĶ": 1495, + "Ġlevel": 1496, + "Ġconf": 1497, + "ush": 1498, + "Ġdevelop": 1499, + "Ġtest": 1500, + "eng": 1501, + "vious": 1502, + "ature": 1503, + "ем": 1504, + "ret": 1505, + "Ġje": 1506, + "Ġstuff": 1507, + "Ġclass": 1508, + "ows": 1509, + "Ġê·": 1510, + "Ġsi": 1511, + "Ġles": 1512, + "rop": 1513, + "çļ": 1514, + "Ġpor": 1515, + "Ġwar": 1516, + "ìĹIJ": 1517, + "Ġeveryone": 1518, + "Ġge": 1519, + "Ġcheck": 1520, + "ott": 1521, + "Ġsing": 1522, + "Ġart": 1523, + "Ġfollow": 1524, + "Ġ201": 1525, + "ĠFr": 1526, + "ais": 1527, + "ìĸ": 1528, + "α": 1529, + "å°": 1530, + "ĠÃł": 1531, + "imes": 1532, + "Ġret": 1533, + "Ġchang": 1534, + "Ġpub": 1535, + "Ġinf": 1536, + "Ġtechn": 1537, + "ada": 1538, + "ives": 1539, + "Ġbeh": 1540, + "æĺ¯": 1541, + "Ġlooks": 1542, + "ãĢĤ": 1543, + "з": 1544, + "ĠWhy": 1545, + "çļĦ": 1546, + "Ġenough": 1547, + "Ġbra": 1548, + "itch": 1549, + "ä»": 1550, + "Ġadv": 1551, + "б": 1552, + "Ġwithout": 1553, + "wer": 1554, + "meric": 1555, + "den": 1556, + "Ġcomplet": 1557, + "Ġidea": 1558, + "ters": 1559, + "ock": 1560, + "Ġdefin": 1561, + "Ġever": 1562, + "Ġgl": 1563, + "Ġonce": 1564, + "Ġbring": 1565, + "Ġsaying": 1566, + "Ġans": 1567, + "Ġhear": 1568, + "nect": 1569, + "Ġless": 1570, + "go": 1571, + "ream": 1572, + "ado": 1573, + "ìŀ": 1574, + "Ġmind": 1575, + "ente": 1576, + "Ġfull": 1577, + "Ġbad": 1578, + "Ġwom": 1579, + "Ġsomeone": 1580, + "Ġdu": 1581, + "Ġwon": 1582, + "Ġcontro": 1583, + "ortun": 1584, + "Ġhealth": 1585, + "Ġcho": 1586, + "ĠAr": 1587, + "Ġconc": 1588, + "Ġinformation": 1589, + "Ġstop": 1590, + "att": 1591, + "ately": 1592, + "ä½": 1593, + "Ġgroup": 1594, + "ĠÑĥ": 1595, + "Ġquite": 1596, + "Ġresp": 1597, + "ER": 1598, + "ught": 1599, + "ê¸": 1600, + "man": 1601, + "ized": 1602, + "ĠBr": 1603, + "Ġremember": 1604, + "Ġfamily": 1605, + "Ġbusiness": 1606, + "aw": 1607, + "Ġspec": 1608, + "Ġau": 1609, + "ĠOr": 1610, + "Äħ": 1611, + "Ġseen": 1612, + "Ġlar": 1613, + "Ġ7": 1614, + "gg": 1615, + "bers": 1616, + "Ġdra": 1617, + "Ġmonth": 1618, + "Ġsays": 1619, + "Ġiss": 1620, + "Ġlive": 1621, + "Ġline": 1622, + "Ġmoment": 1623, + "Ġexc": 1624, + "els": 1625, + "Ġsound": 1626, + "Ġcool": 1627, + "Ġloc": 1628, + "Ġcertain": 1629, + "Ġdri": 1630, + "оÑĤ": 1631, + "ames": 1632, + "Ġmust": 1633, + "ny": 1634, + "иÑĤ": 1635, + "Ġkid": 1636, + "Ġinclud": 1637, + "ìĿĦ": 1638, + "ator": 1639, + "ÄŁ": 1640, + "ha": 1641, + "ared": 1642, + "Ġseem": 1643, + "й": 1644, + "ìĦ": 1645, + "Ġelse": 1646, + "Ġìł": 1647, + "irl": 1648, + "Ġ8": 1649, + "Ġvo": 1650, + "Ġquestions": 1651, + "ines": 1652, + "ee": 1653, + "æĪij": 1654, + "ür": 1655, + "ĠAmeric": 1656, + "Ġstory": 1657, + "Ġserv": 1658, + "vern": 1659, + "ages": 1660, + "land": 1661, + "ĠâĢĵ": 1662, + "era": 1663, + "ĠCan": 1664, + "Ġpop": 1665, + "ether": 1666, + "Ġna": 1667, + "Ġorder": 1668, + "Ġmakes": 1669, + "Ġsince": 1670, + "con": 1671, + "ctor": 1672, + "Ġthough": 1673, + "Ġproduct": 1674, + "ли": 1675, + "Ġleg": 1676, + "Ġmeet": 1677, + "alf": 1678, + "ÑģÑı": 1679, + "unch": 1680, + "iter": 1681, + "ove": 1682, + "×ķ×": 1683, + "iet": 1684, + "ам": 1685, + "ital": 1686, + "Ġsuper": 1687, + "ling": 1688, + "Ġpay": 1689, + "Ġpara": 1690, + "Ġjob": 1691, + "ĠHere": 1692, + "Ġsw": 1693, + "ks": 1694, + "ption": 1695, + "ma": 1696, + "Ġbelieve": 1697, + "¬ë": 1698, + "Ġwait": 1699, + "ой": 1700, + "Ġunt": 1701, + "Ġquick": 1702, + "hr": 1703, + "ĠÑį": 1704, + "ĠPro": 1705, + "Ġmen": 1706, + "à¹": 1707, + "Ġdays": 1708, + "Ġgoes": 1709, + "Ġspeak": 1710, + "ĠAt": 1711, + "ement": 1712, + "Ġmiss": 1713, + "Ġaw": 1714, + "Ġdesign": 1715, + "Ġproject": 1716, + "оÑĢ": 1717, + "ij": 1718, + "ants": 1719, + "ats": 1720, + "ĠChr": 1721, + "Ġ9": 1722, + "Ġcut": 1723, + "Ġrequ": 1724, + "Ġне": 1725, + "ĠNot": 1726, + "aster": 1727, + "Ġmill": 1728, + "Ġparticular": 1729, + "Ġpie": 1730, + "Ġstudents": 1731, + "Ġfive": 1732, + "oun": 1733, + "ĠNe": 1734, + "Ġgi": 1735, + "Ġpas": 1736, + "Ġfree": 1737, + "ĠSp": 1738, + "lich": 1739, + "Ġprof": 1740, + "Ġeng": 1741, + "Ġprot": 1742, + "ĠLike": 1743, + "osed": 1744, + "Ġconnect": 1745, + "app": 1746, + "Ġë§": 1747, + "iting": 1748, + "Ġblo": 1749, + "Ġlos": 1750, + "ists": 1751, + "Ġexperience": 1752, + "rent": 1753, + "Ġstay": 1754, + "Ġfood": 1755, + "ton": 1756, + "ruct": 1757, + "Ġhist": 1758, + "view": 1759, + "ining": 1760, + "most": 1761, + "ivers": 1762, + "bo": 1763, + "ãģĦ": 1764, + "ĠTr": 1765, + "gen": 1766, + "Ġplease": 1767, + "Ġcommunity": 1768, + "Ġce": 1769, + "AN": 1770, + "no": 1771, + "Ġbody": 1772, + "Ġhour": 1773, + "Ġvers": 1774, + "áº": 1775, + "cer": 1776, + "Ġê°": 1777, + "Ġreason": 1778, + "ĠRight": 1779, + "Ġlater": 1780, + "ÏĦ": 1781, + "Ġhouse": 1782, + "ĠX": 1783, + "он": 1784, + "Ġstate": 1785, + "fic": 1786, + "å¤": 1787, + "ÅĽ": 1788, + "ield": 1789, + "Ġpri": 1790, + "Ġpast": 1791, + "Ġwalk": 1792, + "ology": 1793, + "ering": 1794, + "anna": 1795, + "Ġter": 1796, + "Ġhold": 1797, + "Ġorgan": 1798, + "ben": 1799, + "ο": 1800, + "ón": 1801, + "Ġeffect": 1802, + "Ġyourself": 1803, + "Ġplus": 1804, + "aj": 1805, + "ando": 1806, + "ural": 1807, + "Ġroom": 1808, + "lect": 1809, + "ê²Į": 1810, + "?\"": 1811, + "side": 1812, + "Ġbecome": 1813, + "ÑĨ": 1814, + "ĠÂ": 1815, + "ood": 1816, + "Ġconst": 1817, + "Ġnight": 1818, + "utes": 1819, + "ж": 1820, + "Ġbreak": 1821, + "Ġpain": 1822, + "Ġstep": 1823, + "ired": 1824, + "Ġnothing": 1825, + "Ġuntil": 1826, + "Ñĸ": 1827, + "ав": 1828, + "ÙĬ": 1829, + "Ġduring": 1830, + "ì§Ģ": 1831, + "less": 1832, + "oll": 1833, + "нÑĭ": 1834, + "ι": 1835, + "fect": 1836, + "iver": 1837, + "ıĦ": 1838, + "ither": 1839, + "ying": 1840, + "Ġbegin": 1841, + "×Ļ×": 1842, + "ivid": 1843, + "Ġç": 1844, + "Ġsal": 1845, + "Ġta": 1846, + "Ġpot": 1847, + "Ġ$": 1848, + "Ġmar": 1849, + "Ġclear": 1850, + "Ġface": 1851, + "Ġgrow": 1852, + "Ġ*": 1853, + "Ġinside": 1854, + "Ġfriends": 1855, + "Ġleave": 1856, + "enn": 1857, + "Ġeasy": 1858, + "Ġarea": 1859, + "ality": 1860, + "oud": 1861, + "Ġeat": 1862, + "ÙĨ": 1863, + "Ġpur": 1864, + "orn": 1865, + "Ġsaw": 1866, + "Ġanswer": 1867, + "Ġfront": 1868, + "Ġbeaut": 1869, + "¼ë": 1870, + "Ġmatter": 1871, + "Ġson": 1872, + "ĠNew": 1873, + "Ġresult": 1874, + "ides": 1875, + "che": 1876, + "Ġfut": 1877, + "ps": 1878, + "Ġfocus": 1879, + "Ġinteresting": 1880, + "å¥": 1881, + "Ġap": 1882, + "\".": 1883, + "Ġcreate": 1884, + "оÑģ": 1885, + "Ġpress": 1886, + "ross": 1887, + "Ġpick": 1888, + "line": 1889, + "Ġtook": 1890, + "ĠMay": 1891, + "row": 1892, + "Ġich": 1893, + "ĺë": 1894, + "Ġref": 1895, + "Ġmor": 1896, + "ract": 1897, + "arent": 1898, + "AR": 1899, + "Ġexact": 1900, + "Ġspace": 1901, + "work": 1902, + "ни": 1903, + "Ġbir": 1904, + "Ġdev": 1905, + "г": 1906, + "Ġtold": 1907, + "Ġpublic": 1908, + "cially": 1909, + "Ġview": 1910, + "ĠHey": 1911, + "med": 1912, + "llo": 1913, + "cc": 1914, + "Ġfac": 1915, + "Ġcouple": 1916, + "Ġheart": 1917, + "ler": 1918, + "Ġready": 1919, + "Ġalmost": 1920, + "aring": 1921, + "Ġhalf": 1922, + "ĠMe": 1923, + "avor": 1924, + "ique": 1925, + "Ġcharac": 1926, + "Ġpract": 1927, + "ON": 1928, + "ane": 1929, + "Ġil": 1930, + "на": 1931, + "Ġvi": 1932, + "lish": 1933, + "head": 1934, + "Ġleast": 1935, + "Ġbasically": 1936, + "ased": 1937, + "right": 1938, + "Ġyet": 1939, + "Ġtaking": 1940, + "Ġcountry": 1941, + "Ġwin": 1942, + "Ġisn": 1943, + "Ġpossible": 1944, + "Ġcam": 1945, + "Ġincre": 1946, + "Ġpat": 1947, + "Ġwanna": 1948, + "Ġconsider": 1949, + "Ġabs": 1950, + "Ġwithin": 1951, + "Ġhuman": 1952, + "Ġthinking": 1953, + "Ġoh": 1954, + "¡ľ": 1955, + "Ġqui": 1956, + "ases": 1957, + "Ġ0": 1958, + "itely": 1959, + "ä¸į": 1960, + "Ġkill": 1961, + "Ġmil": 1962, + "Ġinvest": 1963, + "ister": 1964, + "Ġsuc": 1965, + "ional": 1966, + "elf": 1967, + "Ġwhether": 1968, + "Ġcontrol": 1969, + "Ġagainst": 1970, + "ots": 1971, + "ëĭĪëĭ¤": 1972, + "ior": 1973, + "Ġpresent": 1974, + "Ġا": 1975, + "Ġwatching": 1976, + "ube": 1977, + "erv": 1978, + "Ġnicht": 1979, + "Ġgovern": 1980, + "ĠThese": 1981, + "Ġ:": 1982, + "uit": 1983, + "ugh": 1984, + "Ġworks": 1985, + "oo": 1986, + "Ġwir": 1987, + "Ġair": 1988, + "ĠTe": 1989, + "аз": 1990, + "ision": 1991, + "where": 1992, + "Ġtot": 1993, + "joy": 1994, + "ìĭ": 1995, + "Ġvol": 1996, + "Ġе": 1997, + "Ġclose": 1998, + "ĠAd": 1999, + "Ñī": 2000, + "ined": 2001, + "Ġuna": 2002, + "Ġê·¸ë": 2003, + "°ë": 2004, + "orry": 2005, + "Ġbro": 2006, + "Ġfilm": 2007, + "ift": 2008, + "20": 2009, + "Ġtype": 2010, + "Ġhappened": 2011, + "ĠAm": 2012, + "Ġgirl": 2013, + "ĠAre": 2014, + "wards": 2015, + "Ġpour": 2016, + "Ġcolor": 2017, + "elt": 2018, + "аÑģ": 2019, + "Ġsense": 2020, + "lex": 2021, + "ĠWith": 2022, + "uss": 2023, + "rib": 2024, + "Ġrese": 2025, + "Ġnorm": 2026, + "Ġfuture": 2027, + "Ġdeal": 2028, + "ending": 2029, + "ey": 2030, + "Ġx": 2031, + "ero": 2032, + "ĠCl": 2033, + "uk": 2034, + "Ġwhatever": 2035, + "selves": 2036, + "Ġyoung": 2037, + "ìĬ": 2038, + "ĠMar": 2039, + "ĠChrist": 2040, + "Ġguess": 2041, + "Ġperform": 2042, + "Ġener": 2043, + "ron": 2044, + "Ġhit": 2045, + "Ġwond": 2046, + "Ġdirect": 2047, + "ĠEvery": 2048, + "Ġoften": 2049, + "Ġfa": 2050, + "Ġalong": 2051, + "Ġclick": 2052, + "ĠLook": 2053, + "Ġsitu": 2054, + "Ġhappy": 2055, + "ead": 2056, + "Ġago": 2057, + "Ġenc": 2058, + "Ġmyself": 2059, + "Ġcover": 2060, + "об": 2061, + "Ġmid": 2062, + "Ġcost": 2063, + "Ġten": 2064, + "ĠSch": 2065, + "Ġexpect": 2066, + "Ġwasn": 2067, + "Ġstrong": 2068, + "iful": 2069, + "Ġopportun": 2070, + "inal": 2071, + "yle": 2072, + "Ġshare": 2073, + "Ġtrue": 2074, + "Ġappro": 2075, + "Ġchall": 2076, + "Ġminutes": 2077, + "Ġchann": 2078, + "ĠëĤ": 2079, + "ε": 2080, + "li": 2081, + "Ġmess": 2082, + "ories": 2083, + "pecially": 2084, + "Ġwrong": 2085, + "Ġyes": 2086, + "ĠìĹ": 2087, + "iron": 2088, + "Ġallow": 2089, + "Ġsubs": 2090, + "Ġfore": 2091, + "Ġfight": 2092, + "Ġsocial": 2093, + "Ġcra": 2094, + "ana": 2095, + "Ġaff": 2096, + "Ġess": 2097, + "Ġways": 2098, + "Ġshort": 2099, + "Ġfall": 2100, + "Ġlaw": 2101, + "ĠWho": 2102, + "Ġenjoy": 2103, + "Ġcal": 2104, + "Ġaccess": 2105, + "fe": 2106, + "Ġnon": 2107, + "Ġacross": 2108, + "ery": 2109, + "viously": 2110, + "ĠEx": 2111, + "ided": 2112, + "Ġlink": 2113, + "ĠPr": 2114, + "Ġterms": 2115, + "aces": 2116, + "Ġland": 2117, + "azing": 2118, + "Ġ15": 2119, + "Ġmult": 2120, + "Ġspecial": 2121, + "åĢ": 2122, + "iving": 2123, + "ìĿĢ": 2124, + "Ġtyp": 2125, + "Ġste": 2126, + "ĠÄ": 2127, + "Ġforward": 2128, + "åı": 2129, + "Ġfre": 2130, + "好": 2131, + "Ġresearch": 2132, + "à¯į": 2133, + "аÑĤ": 2134, + "Ġmain": 2135, + "Ġrecord": 2136, + "Ġhu": 2137, + "Ġdefinitely": 2138, + "Ġeither": 2139, + "Ġlisten": 2140, + "Ġkey": 2141, + "Ġmarket": 2142, + "ĠÑĩÑĤо": 2143, + "ization": 2144, + "Ġvideos": 2145, + "Ġguy": 2146, + "Ġfig": 2147, + "Ġstra": 2148, + "ĠPl": 2149, + "ully": 2150, + "amos": 2151, + "Ġmention": 2152, + "Ġsong": 2153, + "Ġintern": 2154, + "ral": 2155, + "urs": 2156, + "Ġhon": 2157, + "Ġvalue": 2158, + "Ġbar": 2159, + "cle": 2160, + "ож": 2161, + "Äĩ": 2162, + "ľë": 2163, + "Ġzu": 2164, + "им": 2165, + "ä½ł": 2166, + "Ġsingle": 2167, + "Ġauch": 2168, + "cuss": 2169, + "Ġgets": 2170, + "Ġsometimes": 2171, + "å¾": 2172, + "amb": 2173, + "mm": 2174, + "cing": 2175, + "Ġperfect": 2176, + "ĠBl": 2177, + "outh": 2178, + "ìł": 2179, + "Ġsci": 2180, + "par": 2181, + "Ġred": 2182, + "Ġpost": 2183, + "Ġmot": 2184, + "Ġelect": 2185, + "ĠEu": 2186, + "itive": 2187, + "ĠSome": 2188, + "Ġdescri": 2189, + "Ġcurrent": 2190, + "és": 2191, + "Ġtre": 2192, + "ĠEn": 2193, + "Ġmit": 2194, + "EN": 2195, + "Īë": 2196, + "ium": 2197, + "Ġheard": 2198, + "Ġsimple": 2199, + "lar": 2200, + "Ġeverybody": 2201, + "ilar": 2202, + "Ġneeds": 2203, + "Ġdiffic": 2204, + "ĠGood": 2205, + "ument": 2206, + "cent": 2207, + "Ġoper": 2208, + "аÑĤÑĮ": 2209, + "ety": 2210, + "Ġblack": 2211, + "Ġgiven": 2212, + "ones": 2213, + "Ġwel": 2214, + "éĢ": 2215, + "ĠìķĦ": 2216, + "Ġ30": 2217, + "AT": 2218, + "Ġstat": 2219, + "ouch": 2220, + "ĠMr": 2221, + "аÑĢ": 2222, + "Ġsho": 2223, + "Ġcond": 2224, + "×Ķ": 2225, + "my": 2226, + "Ġchildren": 2227, + "Ġeu": 2228, + "ед": 2229, + "ìķĦ": 2230, + "tern": 2231, + "Ġuh": 2232, + "Ġhar": 2233, + "Ġprom": 2234, + "Ġpull": 2235, + "rew": 2236, + "Ġcompany": 2237, + "Ġbeautiful": 2238, + "ustom": 2239, + "íķĺ": 2240, + "ки": 2241, + "Ġstre": 2242, + "Ġamazing": 2243, + "ries": 2244, + "Ġsuccess": 2245, + "Ġmach": 2246, + "not": 2247, + "Ġdiscuss": 2248, + "Ġnat": 2249, + "¦¬": 2250, + "Ġune": 2251, + "Ġdifficult": 2252, + "Ġris": 2253, + "ν": 2254, + "Ġcamp": 2255, + "Ġbuy": 2256, + "ä¸Ģ": 2257, + "Ġmag": 2258, + "po": 2259, + "ĠYour": 2260, + "Ġbehind": 2261, + "ica": 2262, + "ın": 2263, + "ĠOK": 2264, + "Ġlang": 2265, + "Ġwomen": 2266, + "Ġenv": 2267, + "Ġrece": 2268, + "Ġchannel": 2269, + "ially": 2270, + "ule": 2271, + "Ġ12": 2272, + "thers": 2273, + "Ġbott": 2274, + "Ġreport": 2275, + "ently": 2276, + "fully": 2277, + "The": 2278, + "Ġsent": 2279, + "Ġevent": 2280, + "Ġenergy": 2281, + "lt": 2282, + "Ġwords": 2283, + "arr": 2284, + "dle": 2285, + "Ġahead": 2286, + "ards": 2287, + "ر": 2288, + "äºĨ": 2289, + "Ġtool": 2290, + "conom": 2291, + "еÑģ": 2292, + "Ġexactly": 2293, + "Ġfavor": 2294, + "Ġlow": 2295, + "Ġproper": 2296, + "ĠìŀĪ": 2297, + "Ġ!": 2298, + "Ġrelations": 2299, + "Ġmas": 2300, + "Ġkids": 2301, + "Ġentire": 2302, + "ude": 2303, + "Ùħ": 2304, + "ĠWhere": 2305, + "Ġones": 2306, + "Ġcity": 2307, + "olut": 2308, + "Ġsix": 2309, + "ability": 2310, + "ör": 2311, + "ili": 2312, + "ĠEs": 2313, + "Ġhappens": 2314, + "ains": 2315, + "Ġmodel": 2316, + "Ġpict": 2317, + "Ġespecially": 2318, + "Ġ100": 2319, + "kt": 2320, + "Ġsoon": 2321, + "by": 2322, + "rodu": 2323, + "Ġann": 2324, + "Ġsubscri": 2325, + "ĠQu": 2326, + "Ġavail": 2327, + "iment": 2328, + "Ġvoc": 2329, + "ka": 2330, + "Ġ200": 2331, + "aper": 2332, + "ĠInd": 2333, + "Ġì§": 2334, + "hor": 2335, + "į°": 2336, + "jor": 2337, + "ил": 2338, + "Ġsqu": 2339, + "AU": 2340, + "arning": 2341, + "Ġг": 2342, + "IS": 2343, + "Ġл": 2344, + "ей": 2345, + "yes": 2346, + "åħ": 2347, + "ĠÐĴ": 2348, + "Ġorig": 2349, + "ого": 2350, + "Ġasked": 2351, + "ilt": 2352, + "ог": 2353, + "Ġcontinue": 2354, + "Ġìĺ": 2355, + "ram": 2356, + "Ġothers": 2357, + "ES": 2358, + "ohn": 2359, + "Ġlay": 2360, + "Ġbased": 2361, + "Ġpu": 2362, + "Ġappe": 2363, + "Ġlim": 2364, + "Ġprop": 2365, + "Ģë": 2366, + "min": 2367, + "Ġhot": 2368, + "ĠLa": 2369, + "Ġfast": 2370, + "Ġprotect": 2371, + "Ġamount": 2372, + "Ġaqu": 2373, + "Ġfund": 2374, + "Ġcustom": 2375, + "Ġcult": 2376, + "Ġhands": 2377, + "Ġhaven": 2378, + "Ġaud": 2379, + "Ġoutside": 2380, + "ĠAfter": 2381, + "aps": 2382, + "Ġanim": 2383, + "ploy": 2384, + "Ġhat": 2385, + "ĠFirst": 2386, + "Ġtreat": 2387, + "Ġep": 2388, + "Ġmater": 2389, + "Ġbuilding": 2390, + "Ġë°": 2391, + "åIJ": 2392, + "ìĦľ": 2393, + "za": 2394, + "ughter": 2395, + "ĠPe": 2396, + "ney": 2397, + "eter": 2398, + "atic": 2399, + "Ġeduc": 2400, + "기": 2401, + "Ġmov": 2402, + "ĵ¤": 2403, + "ama": 2404, + "ration": 2405, + "Ġsn": 2406, + "ÙĪ": 2407, + "Ġsum": 2408, + "Ġphot": 2409, + "ĠÐĿ": 2410, + "Ġ.": 2411, + "æľī": 2412, + "Ġfinish": 2413, + "itting": 2414, + "å®": 2415, + "Ġlarge": 2416, + "Ġìĸ": 2417, + "Ġwhite": 2418, + "ara": 2419, + "Ġmais": 2420, + "ĠHi": 2421, + "Ġdam": 2422, + "ĠاÙĦ": 2423, + "Ġbox": 2424, + "ĠHello": 2425, + "Ġsle": 2426, + "Ġopt": 2427, + "ried": 2428, + "¥¼": 2429, + "Ġactiv": 2430, + "Ġnão": 2431, + "ĠCom": 2432, + "Ġplaying": 2433, + "Th": 2434, + "Ġavailable": 2435, + "Ġport": 2436, + "åĪ": 2437, + "ĠAh": 2438, + "Ġlas": 2439, + "Ġearly": 2440, + "Ġwonder": 2441, + "±°": 2442, + "Ġ18": 2443, + "cul": 2444, + "Ġfunction": 2445, + "Ġmorning": 2446, + "lle": 2447, + "ients": 2448, + "ux": 2449, + "Ġcir": 2450, + "itions": 2451, + "Ġdeep": 2452, + "Ġpolit": 2453, + "yor": 2454, + "mp": 2455, + "aking": 2456, + "Įë": 2457, + "ĠMan": 2458, + "Ġmillion": 2459, + "Ġ/": 2460, + "Ġindivid": 2461, + "Ġpan": 2462, + "Ġgovernment": 2463, + "Ġwrite": 2464, + "ĠTod": 2465, + "ament": 2466, + "ĠÏ": 2467, + "Ġwind": 2468, + "ĠEng": 2469, + "chen": 2470, + "Wh": 2471, + "ìľ": 2472, + "Ġident": 2473, + "ãģ§": 2474, + "vent": 2475, + "urch": 2476, + "Ġhy": 2477, + "Ġya": 2478, + "Ġtrad": 2479, + "Ġrelationship": 2480, + "ú": 2481, + "Ġdou": 2482, + "OR": 2483, + "Ġswe": 2484, + "Ġneg": 2485, + "ination": 2486, + "Ġtext": 2487, + "ipp": 2488, + "Ġfine": 2489, + "ás": 2490, + "ĠDr": 2491, + "ĠCome": 2492, + "Ġmonths": 2493, + ",\"": 2494, + "ени": 2495, + "Ġhours": 2496, + "Ġpod": 2497, + "irt": 2498, + "Ġinvol": 2499, + "Ġcollect": 2500, + "Ġauf": 2501, + "Ġpa": 2502, + "Ġhistory": 2503, + "mb": 2504, + "ify": 2505, + "Ġ?": 2506, + "Ġbelow": 2507, + "asure": 2508, + "aby": 2509, + "Ġlangu": 2510, + "Ġant": 2511, + "Ġcomb": 2512, + "ato": 2513, + "Ġexist": 2514, + "Ġëĭ": 2515, + "Ġtakes": 2516, + "Ġcharacter": 2517, + "aff": 2518, + "Ġfield": 2519, + "Ġeconom": 2520, + "ief": 2521, + "Ġpiece": 2522, + "åľ": 2523, + "Ġreach": 2524, + "Ġê²": 2525, + "ony": 2526, + "Ġmaterial": 2527, + "Ġdig": 2528, + "Ġphys": 2529, + "Ġimpro": 2530, + "Ġsimilar": 2531, + "IC": 2532, + "Ġnet": 2533, + "yn": 2534, + "Ġposition": 2535, + "ÃŁ": 2536, + "Ġbene": 2537, + "read": 2538, + "Ġlearning": 2539, + "ume": 2540, + "Ġclean": 2541, + "ÑĤоÑĢ": 2542, + "Ġcook": 2543, + "Ġseems": 2544, + "Ġol": 2545, + "ĠUS": 2546, + "ĠJes": 2547, + "Ġà®": 2548, + "ential": 2549, + "iversity": 2550, + "acy": 2551, + "ĠÑı": 2552, + "olutely": 2553, + "rect": 2554, + "ĠPlease": 2555, + "Ġrepres": 2556, + "Ġtouch": 2557, + "men": 2558, + "Ġа": 2559, + "ión": 2560, + "ĠThanks": 2561, + "Ġang": 2562, + "Ġmajor": 2563, + "Ġitself": 2564, + "ills": 2565, + "\",": 2566, + "ians": 2567, + "Ġscreen": 2568, + "Ġhor": 2569, + "Ġknown": 2570, + "Ġenviron": 2571, + "Ġfinal": 2572, + "Ġfigure": 2573, + "ĠTw": 2574, + "Ġeyes": 2575, + "Ġimag": 2576, + "Ġseeing": 2577, + "Ġhair": 2578, + "rem": 2579, + "Ġapplic": 2580, + "ends": 2581, + "put": 2582, + "Ġnews": 2583, + "Ġcompletely": 2584, + "ughs": 2585, + "Ġknew": 2586, + "ified": 2587, + "ĠJe": 2588, + "ĠDid": 2589, + "Ġsituation": 2590, + "Ġflo": 2591, + "ms": 2592, + "Ġphone": 2593, + "Ġball": 2594, + "do": 2595, + "Ġparent": 2596, + "Ġsorry": 2597, + "ury": 2598, + "ин": 2599, + "ips": 2600, + "ад": 2601, + "Ġinstead": 2602, + "Ġhuge": 2603, + "Ġtu": 2604, + "Ġãģ": 2605, + "ĠGr": 2606, + "Ġdetail": 2607, + "ĠÐŁ": 2608, + "Ġindividual": 2609, + "Ġfire": 2610, + "Ġclos": 2611, + "Ġwer": 2612, + "une": 2613, + "Ġrunning": 2614, + "Ġconvers": 2615, + "Ġrecomm": 2616, + "Ġcomo": 2617, + "Ġsomebody": 2618, + "ĠJohn": 2619, + "ĠìĿ´": 2620, + "ĠOur": 2621, + "ples": 2622, + "ĠPh": 2623, + "Ġanal": 2624, + "Ġ50": 2625, + "Ġoffer": 2626, + "Ġ<": 2627, + "itional": 2628, + "gest": 2629, + "Ġvous": 2630, + "let": 2631, + "icy": 2632, + "Ġfeeling": 2633, + "LE": 2634, + "ros": 2635, + "Ġthird": 2636, + "ок": 2637, + "Ġseries": 2638, + "ĠAny": 2639, + "ised": 2640, + "old": 2641, + "Ġdraw": 2642, + "Ġservice": 2643, + "Ġcannot": 2644, + "bal": 2645, + "ãģĨ": 2646, + "Ġliving": 2647, + "ım": 2648, + "Ġdifference": 2649, + "Ġopportunity": 2650, + "Ġnear": 2651, + "orth": 2652, + "ken": 2653, + "Ġlocal": 2654, + "ت": 2655, + "ĠCon": 2656, + "Ġobject": 2657, + "Ġdass": 2658, + "ãģĻ": 2659, + "IJ×": 2660, + "Ġquickly": 2661, + "raph": 2662, + "Ġissues": 2663, + "éĢĻ": 2664, + "ĠAmerican": 2665, + "Ġprep": 2666, + "ences": 2667, + "Ġprofess": 2668, + "lling": 2669, + "of": 2670, + "Ġfoot": 2671, + "bre": 2672, + "Ġusually": 2673, + "Ġgeneral": 2674, + "da": 2675, + "ances": 2676, + "Ġdest": 2677, + "Ġocc": 2678, + "Ġmembers": 2679, + "Ġdans": 2680, + "Ġequal": 2681, + "zt": 2682, + "Ġbecom": 2683, + "Ġmoving": 2684, + "Ġspecific": 2685, + "ÃŃa": 2686, + "Ġfur": 2687, + "Ġnecess": 2688, + "Ġcommon": 2689, + "Ġattack": 2690, + "ĠÑįÑĤо": 2691, + "ĠToday": 2692, + "Ġuns": 2693, + "ĠGu": 2694, + "iod": 2695, + "Ġaccount": 2696, + "Ġgrand": 2697, + "Ġself": 2698, + "ĠEl": 2699, + "Ġtast": 2700, + "Ġcontent": 2701, + "Ġcu": 2702, + "Ħë": 2703, + "ĠMaybe": 2704, + "ĠJesus": 2705, + "ores": 2706, + "port": 2707, + "©´": 2708, + "Ġgives": 2709, + "Ġnormal": 2710, + "ÑĢÑĥ": 2711, + "Ġimpact": 2712, + "är": 2713, + "Ġdies": 2714, + "Ġlab": 2715, + "sh": 2716, + "ios": 2717, + "ĠPres": 2718, + "ĠUnd": 2719, + "ĠOf": 2720, + "Ġfinally": 2721, + "Ġdoll": 2722, + "Ġvocê": 2723, + "ply": 2724, + "ĠAg": 2725, + "Ġtaken": 2726, + "Ġground": 2727, + "fort": 2728, + "Ġgave": 2729, + "ĠInst": 2730, + "Ġlost": 2731, + "Ġworked": 2732, + "Ġliter": 2733, + "Ġissue": 2734, + "Ġindust": 2735, + "Ġreturn": 2736, + "Ġhappening": 2737, + "Ġwants": 2738, + "ив": 2739, + "Ġproblems": 2740, + "ĠCar": 2741, + "Ŀ¼": 2742, + "ĠAlso": 2743, + "Ġsize": 2744, + "Ġobviously": 2745, + "ĠSu": 2746, + "ĠSc": 2747, + "Ġrecommend": 2748, + "ources": 2749, + "astic": 2750, + "....": 2751, + "Ġmi": 2752, + "lier": 2753, + "ĠEven": 2754, + "cia": 2755, + "Ġhur": 2756, + "va": 2757, + "Ġmass": 2758, + "Ġwouldn": 2759, + "unt": 2760, + "cks": 2761, + "Ġfelt": 2762, + "osp": 2763, + "light": 2764, + "олÑĮ": 2765, + "nie": 2766, + "Ġbottom": 2767, + "ĠбÑĭ": 2768, + "ored": 2769, + "ison": 2770, + "Ġgrad": 2771, + "Ġuma": 2772, + "Ġva": 2773, + "ĠìĤ": 2774, + "ression": 2775, + "ulation": 2776, + "ID": 2777, + "idence": 2778, + "Ġbur": 2779, + "Ġgone": 2780, + "lu": 2781, + "ìĸ´ì": 2782, + "Ġredu": 2783, + "Ġja": 2784, + "ìĿĺ": 2785, + "ita": 2786, + "Ġsoft": 2787, + "Ġça": 2788, + "ico": 2789, + "eral": 2790, + "ñ": 2791, + "af": 2792, + "Ġpoints": 2793, + "gu": 2794, + "Ġdé": 2795, + "apt": 2796, + "ax": 2797, + "ĠAlright": 2798, + "Ġcamera": 2799, + "Ġach": 2800, + "Ġпо": 2801, + "Ġsever": 2802, + "50": 2803, + "Ġsie": 2804, + "Ïģ": 2805, + "Ġmal": 2806, + "Ġcomput": 2807, + "Ġmiddle": 2808, + "Ġcouldn": 2809, + "ming": 2810, + "Ġìĭ": 2811, + "ĠHis": 2812, + "Ġgames": 2813, + "Ġintrodu": 2814, + "Ġcell": 2815, + "por": 2816, + "Ġsleep": 2817, + "Ġë³": 2818, + "iding": 2819, + "Ġou": 2820, + "Ġdeg": 2821, + "Ġdrink": 2822, + "Ġenvironment": 2823, + "ĠUnited": 2824, + "Ġtalked": 2825, + "Ġchoose": 2826, + "Ġjour": 2827, + "ege": 2828, + "ĠMin": 2829, + "Ġinte": 2830, + "Ġrather": 2831, + "Ġoffic": 2832, + "ка": 2833, + "aching": 2834, + "Ġmentioned": 2835, + "Ġfill": 2836, + "Ġtrack": 2837, + "Ġnie": 2838, + "Ġut": 2839, + "ĠвÑĭ": 2840, + "ibility": 2841, + "Ġvac": 2842, + "Ġrad": 2843, + "Ġpack": 2844, + "Ġsend": 2845, + "ĠDas": 2846, + "ĠAb": 2847, + "Ġengine": 2848, + "ãģĹ": 2849, + "Ġcompet": 2850, + "ô": 2851, + "ĠвÑģ": 2852, + "Ġdoor": 2853, + "Ġlonger": 2854, + "å°į": 2855, + "Ġlanguage": 2856, + "Ġextra": 2857, + "play": 2858, + "Ġwebs": 2859, + "umb": 2860, + "room": 2861, + "çľ": 2862, + "Ġbeginning": 2863, + "Ġrefer": 2864, + "AM": 2865, + "nen": 2866, + "igher": 2867, + "face": 2868, + "erc": 2869, + "Ġforget": 2870, + "Ġcomment": 2871, + "ек": 2872, + "лÑı": 2873, + "ror": 2874, + "że": 2875, + "ĠGe": 2876, + "Ġdark": 2877, + "Ġanyone": 2878, + "ante": 2879, + "ges": 2880, + "ìĬµ": 2881, + "Ñij": 2882, + "bed": 2883, + "je": 2884, + "ructure": 2885, + "Ġprim": 2886, + "ida": 2887, + "è¦": 2888, + "ãģ¾": 2889, + "Ġmix": 2890, + "Ġstarting": 2891, + "ĠìĿ´ë": 2892, + "Ġprovide": 2893, + "action": 2894, + "Ġmother": 2895, + "Ġperiod": 2896, + "Ġstick": 2897, + "ĠYouT": 2898, + "Ġtechnology": 2899, + "ê¹": 2900, + "Ġbed": 2901, + "Ġgiving": 2902, + "Ġexplain": 2903, + "zen": 2904, + "imate": 2905, + "Ġrepresent": 2906, + "load": 2907, + "ĠHowever": 2908, + "Ġlives": 2909, + "uth": 2910, + "irit": 2911, + "ogn": 2912, + "Ġlik": 2913, + "Ġrespons": 2914, + "Ġpriv": 2915, + "Ġtom": 2916, + "ção": 2917, + "iam": 2918, + "Ġexcited": 2919, + "Ġcard": 2920, + "ground": 2921, + "Ġ×Ķ": 2922, + "Ġsens": 2923, + "Ġteach": 2924, + "ido": 2925, + "hod": 2926, + "Ġepis": 2927, + "Ġwelcome": 2928, + "Ġwall": 2929, + "ä¹": 2930, + "Ġchance": 2931, + "hen": 2932, + "ĠС": 2933, + "ĠÄij": 2934, + "Ġsimply": 2935, + "ĠÑĤак": 2936, + "ring": 2937, + "ja": 2938, + "book": 2939, + "Ġseveral": 2940, + "ste": 2941, + "Ġcreated": 2942, + "ĠоÑĤ": 2943, + "Ġpush": 2944, + "==": 2945, + "Ġhigher": 2946, + "uf": 2947, + "ource": 2948, + "oke": 2949, + "Ġonline": 2950, + "Ġrele": 2951, + "Ġton": 2952, + "ensive": 2953, + "Ġfavorite": 2954, + "Ñĥд": 2955, + "Ġlooked": 2956, + "Ġvon": 2957, + "âĢĶ": 2958, + "Ġfür": 2959, + "Ġbutton": 2960, + "Ġbill": 2961, + "Ġchanges": 2962, + "!\"": 2963, + "Ġslow": 2964, + "ables": 2965, + "Ġdeath": 2966, + "ands": 2967, + "ateg": 2968, + "Ġthemselves": 2969, + "ãģ£": 2970, + "Ġcop": 2971, + "ãģ®": 2972, + "Ġpersonal": 2973, + "ughing": 2974, + "Ġ11": 2975, + "gar": 2976, + "ades": 2977, + "Ġneeded": 2978, + "Ġstudy": 2979, + "aged": 2980, + "ÑģÑĤв": 2981, + "ino": 2982, + "Ġdisc": 2983, + "ki": 2984, + "Ġaddress": 2985, + "ר": 2986, + "itten": 2987, + "esome": 2988, + "Ġж": 2989, + "¤ë": 2990, + "ura": 2991, + "Ġmu": 2992, + "Ġcontinu": 2993, + "for": 2994, + "Ġmatch": 2995, + "ãģ¦": 2996, + "Ġstraight": 2997, + "IJë": 2998, + "ners": 2999, + "Ġdog": 3000, + "Ġdeb": 3001, + "ĠCO": 3002, + "Ġos": 3003, + "ged": 3004, + "came": 3005, + "Ġcorrect": 3006, + "ette": 3007, + "ĠSee": 3008, + "Ġincluding": 3009, + "ĠEuro": 3010, + "ester": 3011, + "Ġjump": 3012, + "ĠWhich": 3013, + "Ġкак": 3014, + "son": 3015, + "ya": 3016, + "ING": 3017, + "Ġeine": 3018, + "osh": 3019, + "ency": 3020, + "Ġmedia": 3021, + "Ġsubscribe": 3022, + "éĤ": 3023, + "Ġprin": 3024, + "Ġhab": 3025, + "ĠPer": 3026, + "ĠWas": 3027, + "Ġpage": 3028, + "itor": 3029, + "Ġtowards": 3030, + "Ġtried": 3031, + "enge": 3032, + "artment": 3033, + "Ġvari": 3034, + "Ġpaper": 3035, + "Ġpicture": 3036, + "Ġversion": 3037, + "Ġbrought": 3038, + "ware": 3039, + "ĠStates": 3040, + "Ġsich": 3041, + "ledge": 3042, + "Ġpercent": 3043, + "Ġgod": 3044, + "ec": 3045, + "ĠComm": 3046, + "Ġdecided": 3047, + "Ġselect": 3048, + "íķľ": 3049, + ").": 3050, + "urity": 3051, + "Ġfurther": 3052, + "Ġcomments": 3053, + "lement": 3054, + "Ġdream": 3055, + "Ġcenter": 3056, + "mi": 3057, + "Ġcas": 3058, + "Ġwoman": 3059, + "Ġroad": 3060, + "Ġfail": 3061, + "Ġbecame": 3062, + "lus": 3063, + "ilities": 3064, + "ãģ¯": 3065, + "ĠCo": 3066, + "Ġmanage": 3067, + "Ġrecogn": 3068, + "Ġaction": 3069, + "Ġbenef": 3070, + "Ġearlier": 3071, + "׾": 3072, + "Ġspeed": 3073, + "Ġment": 3074, + "Ġsoci": 3075, + "Ġshoot": 3076, + "ui": 3077, + "Ġä": 3078, + "Ġapply": 3079, + "vo": 3080, + "xim": 3081, + "Ġcause": 3082, + "Ġsurpr": 3083, + "Ġhaben": 3084, + "DI": 3085, + "Ġfather": 3086, + "ĠNext": 3087, + "ĠYouTube": 3088, + "Ġcode": 3089, + "Ġrole": 3090, + "gress": 3091, + "Ġgreen": 3092, + "ett": 3093, + "Ġbuilt": 3094, + "Ġflow": 3095, + "Ġbase": 3096, + "Ġtraining": 3097, + "Ġround": 3098, + "ĠWill": 3099, + "Ġpath": 3100, + "ĠRo": 3101, + "Ġinterested": 3102, + "ìĸ´": 3103, + "Ġrespect": 3104, + "Ġchanged": 3105, + "ission": 3106, + "Ġstudent": 3107, + "ograph": 3108, + "Ġapproach": 3109, + "Ġshows": 3110, + "å°±": 3111, + "Ġtar": 3112, + "Ġcrit": 3113, + "Ġglo": 3114, + "ìĬµëĭĪëĭ¤": 3115, + "Ġdead": 3116, + "ĠPresident": 3117, + "Ġthous": 3118, + "Ġbal": 3119, + "ster": 3120, + "ex": 3121, + "Ġabsolutely": 3122, + "Ġmic": 3123, + "Ġpractice": 3124, + "Ġquality": 3125, + "Ġlower": 3126, + "ogle": 3127, + "Ġsepar": 3128, + "ball": 3129, + "medi": 3130, + "Ġreview": 3131, + "ĠApp": 3132, + "Ġok": 3133, + "âĢĭ": 3134, + "Ġexperien": 3135, + "Ġconcern": 3136, + "entially": 3137, + "more": 3138, + "ĠJo": 3139, + "apan": 3140, + "ĠIch": 3141, + "istic": 3142, + "Ġfair": 3143, + "Ġwebsite": 3144, + "ires": 3145, + "ĠBy": 3146, + "Ġtravel": 3147, + "Ġrisk": 3148, + "Ġmir": 3149, + "Ġboard": 3150, + "Ġsen": 3151, + "Ġparents": 3152, + "ĠWow": 3153, + "Ġfeed": 3154, + "Ġsave": 3155, + "Ġserious": 3156, + "Ġinit": 3157, + "EL": 3158, + "undred": 3159, + "AS": 3160, + "Ġvan": 3161, + "orrow": 3162, + "Ġworth": 3163, + "Ġsearch": 3164, + "Ġ16": 3165, + "Ġparts": 3166, + "ÑģÑĤÑĮ": 3167, + "Ġcompan": 3168, + "Ġmovie": 3169, + "Ġmethod": 3170, + "Ġill": 3171, + "Ġwish": 3172, + "dy": 3173, + "Ġitem": 3174, + "Ġminus": 3175, + "anger": 3176, + "Ġvoice": 3177, + "Ġskin": 3178, + "Ġareas": 3179, + "Ġeight": 3180, + "Ġobs": 3181, + "Ġ,": 3182, + "ай": 3183, + "Ġoil": 3184, + "Ġcy": 3185, + "Ġbaby": 3186, + "sy": 3187, + "Ġemploy": 3188, + "ĠKe": 3189, + "Ġplaces": 3190, + "Ġfix": 3191, + "Ġestá": 3192, + "ãģ¨": 3193, + "ived": 3194, + "Ġlots": 3195, + "Ġseason": 3196, + "unk": 3197, + "alt": 3198, + "Ġtable": 3199, + "ĠТ": 3200, + "â": 3201, + "Ġattention": 3202, + "ãģª": 3203, + "ĠHer": 3204, + "Ġage": 3205, + "Ġpra": 3206, + "back": 3207, + "cil": 3208, + "Ġnetwork": 3209, + "rit": 3210, + "Ġdoc": 3211, + "Ġaren": 3212, + "igen": 3213, + "ĠëĦ": 3214, + "د": 3215, + "ender": 3216, + "Ġtotal": 3217, + "Ġprice": 3218, + "Ġcrazy": 3219, + "ìļ": 3220, + "iqu": 3221, + "though": 3222, + "You": 3223, + "Ùĩ": 3224, + "ãĤĵ": 3225, + "Ïħ": 3226, + "Ġsat": 3227, + "Ġbi": 3228, + "ĠDie": 3229, + "Ġsha": 3230, + "Ġthanks": 3231, + "uh": 3232, + "Ġstage": 3233, + "аж": 3234, + "ĠFl": 3235, + "Ġleav": 3236, + "Ġboy": 3237, + "Ġaf": 3238, + "ön": 3239, + "ĠGet": 3240, + "Ġaccept": 3241, + "Ġenter": 3242, + "Ġtur": 3243, + "ĠsiÄĻ": 3244, + "Ġhonest": 3245, + "ãĢĮ": 3246, + "Ġsam": 3247, + "Ġrepl": 3248, + "ging": 3249, + "Ġdevelopment": 3250, + "ĠAct": 3251, + "ora": 3252, + "ãĢį": 3253, + "ä¾": 3254, + "Ġknows": 3255, + "Ġimage": 3256, + "ĠLord": 3257, + "иÑĤÑĮ": 3258, + "Ġweeks": 3259, + "Ġsex": 3260, + "Ķë": 3261, + "Ġhundred": 3262, + "Ġsounds": 3263, + "Ġlearned": 3264, + "Ġbud": 3265, + "ĠÑģÑĤ": 3266, + "Ġincred": 3267, + "âĻ": 3268, + "Ġnos": 3269, + "Ġdrop": 3270, + "Ġben": 3271, + "ĠÐĺ": 3272, + "Ġsafe": 3273, + "ata": 3274, + "Ġfuck": 3275, + "soci": 3276, + "Ġdan": 3277, + "Ġcross": 3278, + "10": 3279, + "mo": 3280, + "vert": 3281, + "Ġ17": 3282, + "zie": 3283, + "åķ": 3284, + "Ġdom": 3285, + "ĠBo": 3286, + "Ġsetting": 3287, + "Ġinvolved": 3288, + "arily": 3289, + "Ġsind": 3290, + "Ġsus": 3291, + "Ġworry": 3292, + "eth": 3293, + "ê¹Į": 3294, + "Ġsun": 3295, + "Ġhier": 3296, + "Ġcertainly": 3297, + "oul": 3298, + "orts": 3299, + "ĠEr": 3300, + "ĠUm": 3301, + "Ġcaus": 3302, + "Ġnatural": 3303, + "Ġü": 3304, + "Ġcry": 3305, + "ĠSec": 3306, + "Ġsom": 3307, + "æ²": 3308, + "Ġeducation": 3309, + "аеÑĤ": 3310, + "Ġmultip": 3311, + "Ġalone": 3312, + "Ġeye": 3313, + "Ġrate": 3314, + "ĠEurope": 3315, + "è¿": 3316, + "mon": 3317, + "Ġfit": 3318, + "izing": 3319, + "pped": 3320, + "Ġpressure": 3321, + "the": 3322, + "иÑģ": 3323, + "ites": 3324, + "ĠAf": 3325, + "reci": 3326, + "attle": 3327, + "Ġservices": 3328, + "ĠGoogle": 3329, + "éģ": 3330, + "Ġcases": 3331, + "Ġdrive": 3332, + "Ġchalleng": 3333, + "uz": 3334, + "ĠMo": 3335, + "ìľ¼ë": 3336, + "val": 3337, + "åĢĭ": 3338, + "Ġfol": 3339, + "Ġì¢": 3340, + "ffic": 3341, + "Ġra": 3342, + "Ġsin": 3343, + "Ġblue": 3344, + "Ġaffect": 3345, + "Ġmis": 3346, + "Ġshot": 3347, + "Ġоб": 3348, + "asing": 3349, + "Ġsignific": 3350, + "ĠChe": 3351, + "Ġê³": 3352, + "Ġpositive": 3353, + "ì£": 3354, + "Ġwie": 3355, + "Ġ40": 3356, + "ording": 3357, + "ĠFrom": 3358, + "êµ": 3359, + "Ġbrand": 3360, + "Ġtrust": 3361, + "Ġple": 3362, + "Ġcommunic": 3363, + "Ġweight": 3364, + "Ġasking": 3365, + "Ġtax": 3366, + "ĠJapan": 3367, + "ãģŁ": 3368, + "Ġíķĺ": 3369, + "ops": 3370, + "ÏĤ": 3371, + "Ġputting": 3372, + "Ġroll": 3373, + "ĠAmerica": 3374, + "reg": 3375, + "ŀ×": 3376, + "atures": 3377, + "ension": 3378, + "ĠSomet": 3379, + "Ġoriginal": 3380, + "ping": 3381, + "ĠÅŁ": 3382, + "Ġproducts": 3383, + "ãĥ¼": 3384, + "Ġcontact": 3385, + "olution": 3386, + "Ġgoal": 3387, + "Ġpow": 3388, + "Ġperformance": 3389, + "Ġblood": 3390, + "ators": 3391, + "ĠMich": 3392, + "Ġtemper": 3393, + "ĠDan": 3394, + "Ġsugg": 3395, + "ÑĤи": 3396, + "Ġimm": 3397, + "Ġoffice": 3398, + "Ġarri": 3399, + "Ġcomfort": 3400, + "ĠÐĶ": 3401, + "Ġsuggest": 3402, + "Ġplat": 3403, + "Ĥĺ": 3404, + "19": 3405, + "Ġom": 3406, + "Ġseven": 3407, + "ĠCent": 3408, + "ille": 3409, + "Ġconcept": 3410, + "Ġbag": 3411, + "ün": 3412, + "ively": 3413, + "Ġdiv": 3414, + "mos": 3415, + "æī": 3416, + "Ġfeels": 3417, + "Ġir": 3418, + "akes": 3419, + "ley": 3420, + "Ġparticip": 3421, + "ĠÐļ": 3422, + "fl": 3423, + "just": 3424, + "Ġsil": 3425, + "ĠPa": 3426, + "AL": 3427, + "Ġgotta": 3428, + "Ġfan": 3429, + "Ġchallenge": 3430, + "Ġcompanies": 3431, + "ĠPeople": 3432, + "": 12331, + "Ġheroes": 12332, + "ĠBoston": 12333, + "Ġdependent": 12334, + "Ġmotivation": 12335, + "flix": 12336, + "Ġseam": 12337, + "кие": 12338, + "Ġdrain": 12339, + "oded": 12340, + "Ġguilty": 12341, + "ĠJenn": 12342, + "ingen": 12343, + "Ġgranted": 12344, + "ĠKelly": 12345, + "ĠSav": 12346, + "ĠUncle": 12347, + "ĠHonestly": 12348, + "ELI": 12349, + "Ġnavigate": 12350, + "Ġblessed": 12351, + "core": 12352, + "Ġearning": 12353, + "Ġsignals": 12354, + "Ġdisk": 12355, + "ials": 12356, + "Ġages": 12357, + "æħ": 12358, + "Ġparticle": 12359, + "ĠÑĩеÑĢ": 12360, + "Ġcann": 12361, + "Ġtier": 12362, + "Ġstatements": 12363, + "ê³łìļĶ": 12364, + "ĠëķĮ문ìĹIJ": 12365, + "ĠCho": 12366, + "Ġpolar": 12367, + "anç": 12368, + "ĠKenn": 12369, + "ĠNi": 12370, + "ĠFight": 12371, + "organ": 12372, + "éķ": 12373, + "ĠCha": 12374, + "ĠSÃŃ": 12375, + "ãĥª": 12376, + "Ġslic": 12377, + "Ġcertific": 12378, + "Ġtemplate": 12379, + "ĠFederal": 12380, + "Ġconsideration": 12381, + "Ġexplo": 12382, + "ĠMain": 12383, + "ĠNE": 12384, + "Ġalongside": 12385, + "Ġdressed": 12386, + "ĠPoint": 12387, + "Ġenvironments": 12388, + "Ġpróxim": 12389, + "Ġdaar": 12390, + "Ġprompt": 12391, + "Ġpursue": 12392, + "Ġentertainment": 12393, + "Ġthroat": 12394, + "Ġproblema": 12395, + "Ġmart": 12396, + "ì¼": 12397, + "Ġprovider": 12398, + "ØĮ": 12399, + "Ġ×Ĺ": 12400, + "inte": 12401, + "making": 12402, + "Ġstroke": 12403, + "Ġtissue": 12404, + "Un": 12405, + "Ġprecious": 12406, + "ĠArts": 12407, + "inking": 12408, + "ĠÐŀн": 12409, + "ĠиÑģ": 12410, + "nah": 12411, + "ĠÐķÑģли": 12412, + "Ġcorners": 12413, + "Ġtricky": 12414, + "inch": 12415, + "lijk": 12416, + "Ġpressing": 12417, + "level": 12418, + "ANG": 12419, + "Ġradiation": 12420, + "ìĦł": 12421, + "Ġconfront": 12422, + "Ġvet": 12423, + "Ġrepresentative": 12424, + "Ġpropag": 12425, + "Ġcrap": 12426, + "ĠDec": 12427, + "Ġramp": 12428, + "епеÑĢÑĮ": 12429, + "ués": 12430, + "essen": 12431, + "cription": 12432, + "Ġbills": 12433, + "ĠMatthew": 12434, + "Ġanime": 12435, + "ất": 12436, + "Ġlowest": 12437, + "has": 12438, + "screen": 12439, + "ograp": 12440, + "ало": 12441, + "inton": 12442, + "ĠJah": 12443, + "èĢħ": 12444, + "itÃł": 12445, + "Ġkay": 12446, + "Ġrotation": 12447, + "ĠWere": 12448, + "abei": 12449, + "Ġtrials": 12450, + "Ġlever": 12451, + "ighty": 12452, + "Ġspoon": 12453, + "Ġhunt": 12454, + "cling": 12455, + "Ġdism": 12456, + "ĠболÑĮÑĪ": 12457, + "Ġassault": 12458, + "Ġíĺķ": 12459, + "Ġweekly": 12460, + "Ġmismo": 12461, + "Ġgenetic": 12462, + "ulpt": 12463, + "ĠStudent": 12464, + "Ġrealistic": 12465, + "Ġauthentic": 12466, + "æīĵ": 12467, + "asta": 12468, + "Ġarrested": 12469, + "Ġguidelines": 12470, + "Ġ׾×IJ": 12471, + "Ġдав": 12472, + "ĠComing": 12473, + "für": 12474, + "Ġrequests": 12475, + "ĥIJ": 12476, + "Ġanalyze": 12477, + "Ġinteress": 12478, + "Ġhalt": 12479, + "ĠOper": 12480, + "onom": 12481, + "Ġduck": 12482, + "Ġwithd": 12483, + "ser": 12484, + "ĠÏĮ": 12485, + "ĠHistory": 12486, + "Ġyoutube": 12487, + "ãĤį": 12488, + "Ġsaber": 12489, + "walk": 12490, + "font": 12491, + "Ġoverview": 12492, + "39": 12493, + "üy": 12494, + "etti": 12495, + "Ġfrozen": 12496, + "Ġflesh": 12497, + "ÄŁi": 12498, + "ĠPM": 12499, + "ĠìĻĢ": 12500, + "é¢": 12501, + "ÑĨии": 12502, + "Ġ기ë": 12503, + "íģ¬": 12504, + "Ġprose": 12505, + "oooo": 12506, + "rates": 12507, + "WS": 12508, + "Ġautomatic": 12509, + "Ġcollecting": 12510, + "Åij": 12511, + "Ġneighbors": 12512, + "».": 12513, + "ĠExpl": 12514, + "Ġcircul": 12515, + "cover": 12516, + "weg": 12517, + "Ġsticks": 12518, + "Ġeller": 12519, + "Ġwww": 12520, + "Ġdorm": 12521, + "ĠExper": 12522, + "Ġstatistics": 12523, + "Ġemails": 12524, + "Ġgrave": 12525, + "imiz": 12526, + "HS": 12527, + "Ġuit": 12528, + ",'": 12529, + "Ġlaser": 12530, + "èī": 12531, + "ĠÑĤем": 12532, + "ÑĭÑĪ": 12533, + "ÑīÑij": 12534, + "Ġgenau": 12535, + "Ġtienen": 12536, + "Ġmeditation": 12537, + "ĠOrgan": 12538, + "Ġestimate": 12539, + "Ġ무ì": 12540, + "lets": 12541, + "ĠnÃły": 12542, + "Ġmindset": 12543, + "Ġreson": 12544, + "Ġmés": 12545, + "Ġnumerous": 12546, + "Ġvielleicht": 12547, + "ĠThird": 12548, + "uous": 12549, + "ĠDead": 12550, + "анд": 12551, + "HN": 12552, + "Ġracing": 12553, + "Ġagents": 12554, + "ĠUt": 12555, + "Ġtear": 12556, + "ĠHP": 12557, + "Ġchemistry": 12558, + "Ġsurvival": 12559, + "æĸ°": 12560, + "Ġconvinced": 12561, + "Ġ;": 12562, + "Ġregulations": 12563, + "ĠES": 12564, + "åĴĮ": 12565, + "300": 12566, + "Ġense": 12567, + "Ġìµ": 12568, + "Ġdict": 12569, + "GA": 12570, + "ĠahÃŃ": 12571, + "åĭķ": 12572, + "Ġtej": 12573, + "ĠоÑģÑĤ": 12574, + "ĠElect": 12575, + "Ġintellectual": 12576, + "Ġbias": 12577, + "Ġburden": 12578, + "çĤ¹": 12579, + "Ġìĸ´ëĸ»": 12580, + "Ġcheer": 12581, + "Ġsoph": 12582, + "Ġportfolio": 12583, + "uba": 12584, + "Ġestos": 12585, + "TV": 12586, + "For": 12587, + "Ġash": 12588, + "Ġkommer": 12589, + "Ġcollective": 12590, + "Ġwrest": 12591, + "ĠJetzt": 12592, + "ĠWat": 12593, + "reich": 12594, + "Ġprimer": 12595, + "active": 12596, + "Ġmie": 12597, + "icked": 12598, + "Ġhunting": 12599, + "Ġtestim": 12600, + "Ġcompassion": 12601, + "Ġر": 12602, + "Ġbrut": 12603, + "Ġsalad": 12604, + "обÑīе": 12605, + "Ġsolving": 12606, + "Ġfloating": 12607, + "ç·": 12608, + "Ġattractive": 12609, + "ÙĪÙĦ": 12610, + "Ġperd": 12611, + "iffer": 12612, + "Ġsculpt": 12613, + "hhh": 12614, + "ĠWeek": 12615, + "Ġenthus": 12616, + "Ġnad": 12617, + "Ġmerch": 12618, + "ĠíĻķ": 12619, + "Ġmile": 12620, + "好äºĨ": 12621, + "Ġθ": 12622, + "ĠëĤĺë": 12623, + "éĩį": 12624, + "38": 12625, + "Ġchains": 12626, + "ĠAlmost": 12627, + "Ġtickets": 12628, + "rin": 12629, + "ĠCC": 12630, + "Ġdistributed": 12631, + "abetes": 12632, + "Ġtemperatures": 12633, + "Ġgained": 12634, + "Ġflexibility": 12635, + "Ġscreaming": 12636, + "Ġabroad": 12637, + "uno": 12638, + "Ġentrepreneurs": 12639, + "ĠNetwork": 12640, + "ĠCanadian": 12641, + "Ġprev": 12642, + "Ġsö": 12643, + "ĠÑĤебÑı": 12644, + "ĠPoke": 12645, + "ĠPod": 12646, + "ĠTurkey": 12647, + "çı¾åľ¨": 12648, + "Ġabstract": 12649, + "Ġsnake": 12650, + "ĠAmy": 12651, + "ĠëĬIJëĤĮ": 12652, + "Ġbrave": 12653, + "ĠìŀĪìĸ´ìļĶ": 12654, + "ĠKal": 12655, + "Ġ2007": 12656, + "ário": 12657, + "Ġmarked": 12658, + "gines": 12659, + "Ġalloc": 12660, + "ONG": 12661, + "Ġscientist": 12662, + "Ġesca": 12663, + "Ġracism": 12664, + "×ij×": 12665, + "ĠSams": 12666, + "ĠPenn": 12667, + "Ġloads": 12668, + "Ġந": 12669, + "über": 12670, + "Me": 12671, + "ixò": 12672, + "Ġperò": 12673, + "anne": 12674, + "Ġexpressed": 12675, + "меÑĢ": 12676, + "Ġmoet": 12677, + "Ġreturning": 12678, + "nia": 12679, + "Ġexpon": 12680, + "Pro": 12681, + "Ġloyal": 12682, + "ML": 12683, + "Ġlamp": 12684, + "Ġshy": 12685, + "Ġcomposition": 12686, + "ĠLy": 12687, + "Ġmagnetic": 12688, + "Ġpremier": 12689, + "Ġmeasured": 12690, + "Ġsummary": 12691, + "Ġattacked": 12692, + "Ġfinishing": 12693, + "ÐĹ": 12694, + "ç¥": 12695, + "Ġsits": 12696, + "Ġhydrogen": 12697, + "Ġmai": 12698, + "ĠDeutsch": 12699, + "ası": 12700, + "Ġobtain": 12701, + "vie": 12702, + "Ġsoit": 12703, + "Ġë°Ķ": 12704, + "Ġlane": 12705, + "Ġconsegu": 12706, + "во": 12707, + "Ġease": 12708, + "akin": 12709, + "ĠFa": 12710, + "Ġuntuk": 12711, + "Ġburst": 12712, + "Ġcum": 12713, + "alım": 12714, + "úblic": 12715, + "idi": 12716, + "ĠRoyal": 12717, + "ĠKon": 12718, + "Ġcommonly": 12719, + "Ġremoving": 12720, + "Ġjur": 12721, + "ilib": 12722, + "Ġanch": 12723, + "íĸī": 12724, + "ượ": 12725, + "ĠÐľÑĭ": 12726, + "ĠAnth": 12727, + "ĠSÃ¥": 12728, + "Ġinterrupt": 12729, + "Ġstere": 12730, + "ĠOS": 12731, + "onym": 12732, + "tery": 12733, + "ĠMaria": 12734, + "ê²ĥ": 12735, + "Ġexploring": 12736, + "Ġtransparent": 12737, + "Ġfate": 12738, + "ĠJung": 12739, + "Ġgrup": 12740, + "Ġdarker": 12741, + "ĠDoug": 12742, + "Ġmane": 12743, + "æĶ¾": 12744, + "ại": 12745, + "dri": 12746, + "look": 12747, + "ĠDesign": 12748, + "Ġtutaj": 12749, + "Ġhorizontal": 12750, + "reon": 12751, + "orte": 12752, + "ĠCorrect": 12753, + "ĠSteven": 12754, + "Ġvine": 12755, + "02": 12756, + "iÄĩ": 12757, + "Ġsiempre": 12758, + "ĠKey": 12759, + "åĥı": 12760, + "ĠGames": 12761, + "Ġnaar": 12762, + "Ġshocked": 12763, + "elve": 12764, + "ĠRose": 12765, + "ìĭ¬": 12766, + "Ġstopping": 12767, + "ohl": 12768, + "ĠMix": 12769, + "Ġsuffered": 12770, + "Ġsigma": 12771, + "Ġweakness": 12772, + "ĠOw": 12773, + "ีà¹Ī": 12774, + "IF": 12775, + "Ġà®ħ": 12776, + "aded": 12777, + "ĠNetflix": 12778, + "anes": 12779, + "Ġremained": 12780, + "iry": 12781, + "Ġrip": 12782, + "ellt": 12783, + "Ġsilent": 12784, + "Ġproven": 12785, + "Ġtoxic": 12786, + "Ġalumin": 12787, + "Ġmultipl": 12788, + "aland": 12789, + "Ġ34": 12790, + "06": 12791, + "ĠBru": 12792, + "Ġìłķë§IJ": 12793, + "Just": 12794, + "boy": 12795, + "Ġshoe": 12796, + "Ġcreature": 12797, + "Ġheaded": 12798, + "ĠоÑĤк": 12799, + "æ±": 12800, + "Ġessence": 12801, + "Ġremarkable": 12802, + "Ġnúmer": 12803, + "Ġdrew": 12804, + "Ġpuzzle": 12805, + "ĠLibrary": 12806, + "ĠFu": 12807, + "ashes": 12808, + "kk": 12809, + "ĠIst": 12810, + "¦°": 12811, + "ĠBry": 12812, + "Ġceremony": 12813, + "Ġà®İ": 12814, + "Ġcri": 12815, + "equ": 12816, + "ãĤ¢": 12817, + "Ġprize": 12818, + "Ġdimensions": 12819, + "ogram": 12820, + "Ġleather": 12821, + "Ġpopulations": 12822, + "uum": 12823, + "Ġvegan": 12824, + "Ñıд": 12825, + "Ġcómo": 12826, + "åĦ": 12827, + "Ġstrip": 12828, + "å£": 12829, + "Ġvacation": 12830, + "ħķ": 12831, + "Ġmeals": 12832, + "ilipp": 12833, + "Ġents": 12834, + "aram": 12835, + "richt": 12836, + "Ġgrain": 12837, + "ĠSpain": 12838, + "Ġcheek": 12839, + "ĠAff": 12840, + "ION": 12841, + "ĠBring": 12842, + "Ġ38": 12843, + "ielen": 12844, + "ulu": 12845, + "ĠболÑĮÑĪе": 12846, + "Ġannouncement": 12847, + "ĠÑĤÑĥÑĤ": 12848, + "ĠProphet": 12849, + "ardo": 12850, + "37": 12851, + "Ġwoke": 12852, + "Ġtranslation": 12853, + "ĠNOT": 12854, + "ĠCL": 12855, + "ĠdÃ¼ÅŁ": 12856, + "ÑĨÑĸ": 12857, + "acer": 12858, + "ĠLoc": 12859, + "Ġperception": 12860, + "NO": 12861, + "Ġdiesen": 12862, + "Look": 12863, + "heart": 12864, + "aved": 12865, + "Ġboundary": 12866, + "Ġflows": 12867, + "Ñijм": 12868, + "Ġarguments": 12869, + "Ġelections": 12870, + "ıs": 12871, + "Ġheck": 12872, + "Ġsuitable": 12873, + "Ġfiber": 12874, + "ĠStra": 12875, + "xy": 12876, + "ĠHum": 12877, + "Ġmonthly": 12878, + "uper": 12879, + "Ġgolf": 12880, + "Ġlately": 12881, + "ĠGard": 12882, + "ĠRen": 12883, + "ĠAst": 12884, + "ĠFant": 12885, + "аÑģÑģ": 12886, + "Ġobser": 12887, + "ë¡ľ": 12888, + "Ġeasiest": 12889, + "įĶë": 12890, + "Ġwebsites": 12891, + "pol": 12892, + "Ġcocon": 12893, + "Ġà®ĩ": 12894, + "ĠVeg": 12895, + "Ġwalks": 12896, + "Ġintro": 12897, + "Ġdirected": 12898, + "ĠAnna": 12899, + "Ġëĵ¤ìĸ´": 12900, + "ĠEastern": 12901, + "ĠSaint": 12902, + "ĠBow": 12903, + "Ġroast": 12904, + "ĠURL": 12905, + "Ġjeden": 12906, + "uras": 12907, + "aja": 12908, + "Ġsemi": 12909, + "Ġrapidly": 12910, + "Ġtargets": 12911, + "ĠControl": 12912, + "Ġbah": 12913, + "Ġreflection": 12914, + "Ġcreativity": 12915, + "holders": 12916, + "Ġìĺ¬ë": 12917, + "Ġamongst": 12918, + "Ġfeeding": 12919, + "ÑįÑĤомÑĥ": 12920, + "Ġвиде": 12921, + "Ġë§Įëĵ¤": 12922, + "ĠSmart": 12923, + "Ġreliable": 12924, + "Ġvezes": 12925, + "Ġר": 12926, + "chuckles": 12927, + "azione": 12928, + "ĠWilliams": 12929, + "Ġaç": 12930, + "Ġslee": 12931, + "еÑī": 12932, + "Ġtimeline": 12933, + "Ġthorough": 12934, + "á»į": 12935, + "ĠOt": 12936, + "ạn": 12937, + "Ġimagination": 12938, + "Ġmechanics": 12939, + "rist": 12940, + "Ġclaimed": 12941, + "ÏĦη": 12942, + "ête": 12943, + "ĠHurry": 12944, + "ĠiPad": 12945, + "Ġconstru": 12946, + "ĠCla": 12947, + "ĠAls": 12948, + "ä¼ļ": 12949, + "utz": 12950, + "Ġcultures": 12951, + "Ġìĸ´ëĸ»ê²Į": 12952, + "Ġbelongs": 12953, + "Ġyer": 12954, + "ĠDoesn": 12955, + "Ġgeomet": 12956, + "Ġbid": 12957, + "Ġfoam": 12958, + "Ġhob": 12959, + "ĠBritain": 12960, + "Ġsubstance": 12961, + "Ġanniversary": 12962, + "ĠëĦĪ": 12963, + "Ġnoted": 12964, + "Ġgovernor": 12965, + "Ġstocks": 12966, + "31": 12967, + "Ġdiye": 12968, + "ìĬ¤ë": 12969, + "Ġreb": 12970, + "zel": 12971, + "Ġmultiply": 12972, + "Ġoperator": 12973, + "Ħ¤ìļĶ": 12974, + "Ġwaters": 12975, + "Ġdär": 12976, + "Ġunser": 12977, + "ĠElizabeth": 12978, + "é«ĺ": 12979, + "Ġincreasingly": 12980, + "ĠGro": 12981, + "Ġengines": 12982, + "irs": 12983, + "Ø«": 12984, + "Ġtreasure": 12985, + "PC": 12986, + "inction": 12987, + "iri": 12988, + "Ġaccum": 12989, + "Ġvariation": 12990, + "Ġpom": 12991, + "Ġtitles": 12992, + "ĠFest": 12993, + "ós": 12994, + "Ġelder": 12995, + "nym": 12996, + "run": 12997, + "Ñıв": 12998, + "Ġinnovative": 12999, + "Ġnombre": 13000, + "Ġcoinc": 13001, + "Ġfranch": 13002, + "Ġentonces": 13003, + "Ġnichts": 13004, + "Ġexclusive": 13005, + "ĠCheers": 13006, + "ĠBi": 13007, + "uje": 13008, + "æŃ¡": 13009, + "Ġpok": 13010, + "ĠPrem": 13011, + "Ġrocket": 13012, + "ELIPE": 13013, + "Ġhospitals": 13014, + "rium": 13015, + "Ġjuste": 13016, + "Ġhammer": 13017, + "Ġquantum": 13018, + "Ġresponses": 13019, + "lly": 13020, + "endi": 13021, + "Ġactively": 13022, + "Ġfridge": 13023, + "iate": 13024, + "long": 13025, + "Ġquem": 13026, + "Ġdeaths": 13027, + "Ġsuperior": 13028, + "cken": 13029, + "ìĿ´ìĹIJ": 13030, + "ktop": 13031, + "Ġgathered": 13032, + "£¨": 13033, + "Ġdazu": 13034, + "Ġrecipes": 13035, + "Ġbuzz": 13036, + "cen": 13037, + "Ġanytime": 13038, + "onsense": 13039, + "Ġcircles": 13040, + "Ġsolved": 13041, + "Ġìĭł": 13042, + "Ġcoronavirus": 13043, + "ĠLuke": 13044, + "Ġbubb": 13045, + "Ġcontempor": 13046, + "rzy": 13047, + "ĠJane": 13048, + "Ġдом": 13049, + "Ġscrews": 13050, + "Ġhybrid": 13051, + "Ġcasual": 13052, + "Ġselbst": 13053, + "being": 13054, + "ĠÄIJ": 13055, + "ĠColumb": 13056, + "ĠÑħоÑĩ": 13057, + "Ġbucket": 13058, + "Ġevaluate": 13059, + "Ġidol": 13060, + "Ġreputation": 13061, + "ĠìĨĮë": 13062, + "ÙĪر": 13063, + "Ġhecho": 13064, + "Ġpoem": 13065, + "Ġsubjects": 13066, + "plant": 13067, + "ĠBeh": 13068, + "ĠSpeaking": 13069, + "Ġbatteries": 13070, + "Ġfollowers": 13071, + "öl": 13072, + "Ġgently": 13073, + "Ġsixt": 13074, + "Ġparameter": 13075, + "Ġikke": 13076, + "ĠTour": 13077, + "ĠDJ": 13078, + "otte": 13079, + "ĠJahren": 13080, + "Ġpreparation": 13081, + "ĠдÑĥм": 13082, + "Ġ800": 13083, + "cop": 13084, + "iking": 13085, + "Ġ문": 13086, + "ĠнÑĥ": 13087, + "ĠлеÑĤ": 13088, + "åIJĮ": 13089, + "ĠIde": 13090, + "Ġì¡°ê¸Ī": 13091, + "Ġlaughter": 13092, + "Ġmolecules": 13093, + "ĠRest": 13094, + "Ġobserved": 13095, + "dzie": 13096, + "Ġadvertising": 13097, + "erto": 13098, + "Ġmoins": 13099, + "ĠMIT": 13100, + "Ġexcit": 13101, + "Ġtum": 13102, + "Ġtyl": 13103, + "Ġinvested": 13104, + "Ġpharm": 13105, + "Ġunexpected": 13106, + "Ġphi": 13107, + "otype": 13108, + "weise": 13109, + "Ġgeç": 13110, + "jourd": 13111, + "Ġhorses": 13112, + "nÄħ": 13113, + "=\"": 13114, + "ĠSM": 13115, + "Ġfib": 13116, + "Ġclips": 13117, + "çķ¶": 13118, + "å¦Ĥæŀľ": 13119, + "Ġregime": 13120, + "Ġrotate": 13121, + "rou": 13122, + "nik": 13123, + "Ġarmor": 13124, + "ðŁĺ": 13125, + "еÑĢа": 13126, + "度": 13127, + "ĠOch": 13128, + "Ġrichtig": 13129, + "üzel": 13130, + "aneously": 13131, + "mek": 13132, + "éĮ¯": 13133, + "ĠXiao": 13134, + "Ġexisted": 13135, + "worth": 13136, + "ãģ£ãģ¨": 13137, + "Ġnaught": 13138, + "ĠheiÃŁt": 13139, + "ĠBal": 13140, + "Ġresid": 13141, + "ivot": 13142, + "omatic": 13143, + "Ġhired": 13144, + "Ġgradually": 13145, + "Ġonions": 13146, + "Ġcompat": 13147, + "Ġintim": 13148, + "Ġjew": 13149, + "Ġcontribution": 13150, + "ĠIre": 13151, + "acji": 13152, + "Ġslice": 13153, + "Ġimmun": 13154, + "ĠRus": 13155, + "Ġgrows": 13156, + "ĠSimilarly": 13157, + "Ġhardest": 13158, + "Ġstruck": 13159, + "Ġmeasurement": 13160, + "...]": 13161, + "they": 13162, + "ĠìłĢë": 13163, + "Ġsneak": 13164, + "Ġapplies": 13165, + "Ġнем": 13166, + "æĵ": 13167, + "×ijר": 13168, + "ĠЧÑĤо": 13169, + "Ġoutro": 13170, + "Ġinnocent": 13171, + "Ġmog": 13172, + "ĠSamsung": 13173, + "Ġmercy": 13174, + "Ġhandling": 13175, + "Ġintervention": 13176, + "idays": 13177, + "got": 13178, + "Ġcurric": 13179, + "Ġboundaries": 13180, + "Ġconfusing": 13181, + "Ŀ¼ëĬĶ": 13182, + "æĩ": 13183, + "Ġstitches": 13184, + "ÃŃvel": 13185, + "Ġtunnel": 13186, + "itä": 13187, + "Ġgost": 13188, + "imy": 13189, + "Ġczas": 13190, + "Ġmé": 13191, + "Ġcatal": 13192, + "ĠSimon": 13193, + "ĠLIAM": 13194, + "mic": 13195, + "ĠФ": 13196, + "Ġeyel": 13197, + "isas": 13198, + "ĠCPU": 13199, + "ĠDou": 13200, + "Ġnäch": 13201, + "Ġinfinity": 13202, + "Ġrif": 13203, + "ĠPeace": 13204, + "ĠCu": 13205, + "Ġminimal": 13206, + "Ġlistened": 13207, + "Ġpole": 13208, + "halb": 13209, + "Ġloaded": 13210, + "Ġsteady": 13211, + "ĠBesides": 13212, + "êm": 13213, + "Ġlap": 13214, + "Ġcoop": 13215, + "Ġfriendship": 13216, + "world": 13217, + "Ġgeh": 13218, + "Ġtylko": 13219, + "ĠLaura": 13220, + "Ġsurrounded": 13221, + "ĠEvent": 13222, + "Ġchap": 13223, + "ĠWonder": 13224, + "break": 13225, + "Ġdrove": 13226, + "Ġbroader": 13227, + "Ġchi": 13228, + "Fi": 13229, + "Ġgehen": 13230, + "Ġwestern": 13231, + "Ġintelligent": 13232, + "Ġpersist": 13233, + "Ġfounded": 13234, + "ãģĵãģ¨": 13235, + "Ġhistoric": 13236, + "ĠfrÃ¥": 13237, + "cksÃ¥": 13238, + "Ġhandy": 13239, + "Ġsymp": 13240, + "Ġrows": 13241, + "Ġnutri": 13242, + "bur": 13243, + "ĠLeon": 13244, + "Ġsistema": 13245, + "Ġextensive": 13246, + "ĠÑĥв": 13247, + "íı": 13248, + "Ġnights": 13249, + "Ġcác": 13250, + "Ġcounting": 13251, + "ĠMust": 13252, + "allow": 13253, + "еÑģÑģ": 13254, + "Mom": 13255, + "Ġнадо": 13256, + "Ġbarrel": 13257, + "ãĥŀ": 13258, + "ARD": 13259, + "Ġinstallation": 13260, + "Ġinsect": 13261, + "Ġëħ¸ë": 13262, + "ujÄħ": 13263, + "ĠÄiji": 13264, + "Ġpacked": 13265, + "Ġfiction": 13266, + "Now": 13267, + "ĠYay": 13268, + "Ġpert": 13269, + "rons": 13270, + "unde": 13271, + "aches": 13272, + "Ġstyles": 13273, + "Ġaprès": 13274, + "oku": 13275, + "ĠVice": 13276, + "ınız": 13277, + "comm": 13278, + "Ġassigned": 13279, + "Ġinteractions": 13280, + "Ġacab": 13281, + "FELIPE": 13282, + "Ġrescue": 13283, + "Ġindustries": 13284, + "ĠAndy": 13285, + "Ġpraise": 13286, + "Ġflame": 13287, + "Ġsnack": 13288, + "íĤ": 13289, + "çģ": 13290, + "Ġswo": 13291, + "render": 13292, + "Ġboards": 13293, + "ĠÑĤом": 13294, + "enne": 13295, + "Ġpasta": 13296, + "Ġdevil": 13297, + "ĠFel": 13298, + "Ġhatte": 13299, + "Ġcolleg": 13300, + "eh": 13301, + "ì»": 13302, + "ãģĵãģ®": 13303, + "Ġproductive": 13304, + "forward": 13305, + "ип": 13306, + "Ġsmartphone": 13307, + "Ġinvis": 13308, + "Ġbum": 13309, + "Ġwhoa": 13310, + "ìŀĦ": 13311, + "ĠocksÃ¥": 13312, + "ĠLang": 13313, + "ĠSyria": 13314, + "Ġsesi": 13315, + "ία": 13316, + "Ġapproval": 13317, + "48": 13318, + "Ġодин": 13319, + "Ġëĸ": 13320, + "ĠHarr": 13321, + "ĠAdminist": 13322, + "Ġפ": 13323, + "ĠDean": 13324, + "fi": 13325, + "Ġcitizen": 13326, + "Ġshark": 13327, + "05": 13328, + "Ġboil": 13329, + "Ġindicate": 13330, + "å¡": 13331, + "Are": 13332, + "Ġlayout": 13333, + "Ġrefr": 13334, + "ĠPacific": 13335, + "AAAA": 13336, + "ĠAustralian": 13337, + "gression": 13338, + "Voice": 13339, + "алÑģÑı": 13340, + "Ġshelter": 13341, + "To": 13342, + "aupt": 13343, + "Ġevaluation": 13344, + "apor": 13345, + "Ġcurrency": 13346, + "Ġмного": 13347, + "igos": 13348, + "ãģ°": 13349, + "Ġoct": 13350, + "Ġroyal": 13351, + "è³": 13352, + "asil": 13353, + "ĠChildren": 13354, + "Ġrien": 13355, + "Ġëĵľë": 13356, + "Ġbarrier": 13357, + "Ġejemplo": 13358, + "Ġek": 13359, + "ND": 13360, + "esp": 13361, + "ена": 13362, + "Ġpic": 13363, + "Ġkiller": 13364, + "Ġintegrate": 13365, + "Ġfewer": 13366, + "Ġdisabilities": 13367, + "Ġ....": 13368, + "Ġtriangle": 13369, + "Ġfees": 13370, + "Ġwidely": 13371, + "emi": 13372, + "Ġoverwhelming": 13373, + "Ġzomb": 13374, + "Ġbere": 13375, + "Ġhood": 13376, + "ĠAye": 13377, + "ĠHarvard": 13378, + "ev": 13379, + "ĠÏĦοÏħ": 13380, + "Ġcups": 13381, + "ĠAuch": 13382, + "zona": 13383, + "Ġ1990": 13384, + "ĠweiÃŁ": 13385, + "Ġcrunch": 13386, + "æ¥": 13387, + "Ġзав": 13388, + "Ġmeasuring": 13389, + "Ġstations": 13390, + "ĠStephen": 13391, + "Ġshortly": 13392, + "Ġsigning": 13393, + "Ġcomedy": 13394, + "omo": 13395, + "Ġsuggestions": 13396, + "Ġsignature": 13397, + "ĠпÑĢив": 13398, + "Ġdisorder": 13399, + "aska": 13400, + "Ġworlds": 13401, + "Ġprecisely": 13402, + "norm": 13403, + "rav": 13404, + "ĠCivil": 13405, + "Inter": 13406, + "ĠCertain": 13407, + "Ġinjured": 13408, + "Ġsuggests": 13409, + "ĠGolden": 13410, + "Ġcyber": 13411, + "ĠØ´": 13412, + "Ġtemporary": 13413, + "Ġcooper": 13414, + "Ġvoted": 13415, + "Ġought": 13416, + "ấy": 13417, + "xual": 13418, + "Ġpanels": 13419, + "Ġ95": 13420, + "Ġhandsome": 13421, + "ĠпÑĢов": 13422, + "Ġpermit": 13423, + "Ġkein": 13424, + "Ġbadly": 13425, + "Ġnotifications": 13426, + "iza": 13427, + "ĠNotice": 13428, + "Ġinclusive": 13429, + "Ġanswering": 13430, + "ĠíĹ": 13431, + "uld": 13432, + "íħĮ": 13433, + "Ġnowadays": 13434, + "Ġ37": 13435, + "Ġbolt": 13436, + "Ġstatic": 13437, + "ĠHop": 13438, + "Ġavant": 13439, + "ajo": 13440, + "Ġ맼ìŀĪ": 13441, + "Ġfifty": 13442, + "ĠFinal": 13443, + "Ġscores": 13444, + "ĠTap": 13445, + "Ġcyl": 13446, + "Ġconvince": 13447, + "Ġanyways": 13448, + "oda": 13449, + "Ġìķ¼": 13450, + "Ġserves": 13451, + "ĠÑĤакой": 13452, + "ĠZoom": 13453, + "Ġsavings": 13454, + "ulo": 13455, + "Ġsouthern": 13456, + "viewer": 13457, + "Ġhoje": 13458, + "Ġseja": 13459, + "Ġrepresenting": 13460, + "Īëįĺ": 13461, + "lik": 13462, + "ĠSomebody": 13463, + "Ġbeast": 13464, + "Ġsticking": 13465, + "Ġinsist": 13466, + "Ġtalented": 13467, + "Ġexplaining": 13468, + "Ġattorney": 13469, + "éĥ¨": 13470, + "Ġstairs": 13471, + "ĠDog": 13472, + "íĭ": 13473, + "Ġcig": 13474, + "Ġshaped": 13475, + "Ġsons": 13476, + "Ïģι": 13477, + "utt": 13478, + "ĠìĶ": 13479, + "Ġparad": 13480, + "ìĿ¸ëį°": 13481, + "Ġhorn": 13482, + "ĠJour": 13483, + "anno": 13484, + "Ġworldwide": 13485, + "åĬĽ": 13486, + "Ġparticipation": 13487, + "¦Ħ": 13488, + "Ġmów": 13489, + "Ġburned": 13490, + "Ġwriters": 13491, + "allah": 13492, + "ĠFund": 13493, + "Ġclever": 13494, + "ĠLeute": 13495, + "bin": 13496, + "Ġbeating": 13497, + "foot": 13498, + "ĠìĽIJ": 13499, + "ĠStudio": 13500, + "Ġvag": 13501, + "bey": 13502, + "rze": 13503, + "Ġopposition": 13504, + "Ġжиз": 13505, + "who": 13506, + "Ġê±´": 13507, + "Ġtrace": 13508, + "ĠденÑĮ": 13509, + "Ġepid": 13510, + "Ġgesch": 13511, + "ĠNar": 13512, + "ĠBE": 13513, + "Ñĥй": 13514, + "ĠSign": 13515, + "edly": 13516, + "Ġclay": 13517, + "Ġinstantly": 13518, + "Ġgathering": 13519, + "ĠGalaxy": 13520, + "Ġbored": 13521, + "ĠBuddh": 13522, + "cé": 13523, + "Ġmam": 13524, + "Ġslope": 13525, + "Ġëĭ¤ìĿĮ": 13526, + "Ġschön": 13527, + "Ġpir": 13528, + "gef": 13529, + "amer": 13530, + "Ġhö": 13531, + "Ġcolleague": 13532, + "Ġpresents": 13533, + "adium": 13534, + "Ġவ": 13535, + "Ġfalar": 13536, + "beep": 13537, + "Ġdried": 13538, + "isms": 13539, + "Ġrope": 13540, + "Ġworkshop": 13541, + "Ġestud": 13542, + "Ġbands": 13543, + "Ġthemes": 13544, + "åħ¬": 13545, + "ÙĬر": 13546, + "åIJİ": 13547, + "Ġreminder": 13548, + "ÑĤÑĥ": 13549, + "ĠBh": 13550, + "Ġcoconut": 13551, + "ĠÑģÑĤо": 13552, + "ĠChannel": 13553, + "Ġimmigration": 13554, + "äs": 13555, + ".....": 13556, + "主": 13557, + "çĻ½": 13558, + "stop": 13559, + "ĠкаÑĢ": 13560, + "Ġcoins": 13561, + "ĠÑĩаÑģ": 13562, + "Ġdestruction": 13563, + "lined": 13564, + "Ġbarriers": 13565, + "antine": 13566, + "Ġprinted": 13567, + "Ġcongratulations": 13568, + "ĠHeart": 13569, + "Ġinqu": 13570, + "tha": 13571, + "Ġhardly": 13572, + "ĠAven": 13573, + "Ġtinha": 13574, + "ĠSony": 13575, + "ĠNF": 13576, + "Ġgraduates": 13577, + "Ġsqueeze": 13578, + "eremy": 13579, + "ÏĦι": 13580, + "Ġepic": 13581, + "ĠJu": 13582, + "Ġolm": 13583, + "ĠLaughter": 13584, + "Ġbeliefs": 13585, + "ĠCru": 13586, + "ĠTrue": 13587, + "ĠSoul": 13588, + "oween": 13589, + "Ġromantic": 13590, + "Ġзв": 13591, + "Ġanos": 13592, + "ĠYup": 13593, + "éĺ¿": 13594, + "dim": 13595, + "Ġinfer": 13596, + "Ġзам": 13597, + "Ġsoc": 13598, + "uka": 13599, + "Ġprecise": 13600, + "Ġdropping": 13601, + "Ġclue": 13602, + "Ġerrors": 13603, + "charge": 13604, + "ĠPu": 13605, + "ometer": 13606, + "Ġlambda": 13607, + "acional": 13608, + "ĠDong": 13609, + "Ġchamber": 13610, + "Ġthankful": 13611, + "ĠNu": 13612, + "ĠHawai": 13613, + "Ġinfo": 13614, + "Ġactivate": 13615, + "ĠQual": 13616, + "Ġqued": 13617, + "ÑĥлÑĮ": 13618, + "Ġcloth": 13619, + "åĸľ": 13620, + "Ġwichtig": 13621, + "55": 13622, + "Ġotra": 13623, + "ographer": 13624, + "Ġcurios": 13625, + "Ġ1980": 13626, + "Ġempres": 13627, + "dess": 13628, + "eur": 13629, + "Ġcluster": 13630, + "arter": 13631, + "obile": 13632, + "ĠYan": 13633, + "ĠAdv": 13634, + "Ġdiscipline": 13635, + "ĠìłķëıĦ": 13636, + "ĠPlace": 13637, + "ĠSelect": 13638, + "TE": 13639, + "ĠбÑĭла": 13640, + "Ġwhis": 13641, + "Ġbay": 13642, + "ĠDor": 13643, + "encing": 13644, + "Ġrepet": 13645, + "Ġficar": 13646, + "pad": 13647, + "Ġfog": 13648, + "uyor": 13649, + "Ġsnap": 13650, + "ibt": 13651, + "Ġsobie": 13652, + "Ġappointment": 13653, + "ĠRy": 13654, + "Ġceiling": 13655, + "ourse": 13656, + "Ġwrites": 13657, + "ĠAfghanistan": 13658, + "Ġmos": 13659, + "aze": 13660, + "Ġpenal": 13661, + "Ġcrystal": 13662, + "ICE": 13663, + "ê°IJ": 13664, + "éŁ": 13665, + "ĠTesla": 13666, + "Ġtheories": 13667, + "Ġappeal": 13668, + "Ġnewspaper": 13669, + "Ġcookies": 13670, + "æ©": 13671, + "ĠاÙĦÙĦ": 13672, + "Ġmaj": 13673, + "ĠGetting": 13674, + "kommen": 13675, + "ĠHeaven": 13676, + "ells": 13677, + "Ġdivine": 13678, + "Ä«": 13679, + "Ġakt": 13680, + "Ġhopes": 13681, + "ĠChen": 13682, + "wegen": 13683, + "***": 13684, + "ĠFrage": 13685, + "Ġни": 13686, + "ู": 13687, + "minister": 13688, + "nesota": 13689, + "which": 13690, + "Ġexplicit": 13691, + "Ġverdad": 13692, + "Ġgraduated": 13693, + "ĠPhilipp": 13694, + "QL": 13695, + "ĠMI": 13696, + "Ġdevot": 13697, + "Ġcure": 13698, + "Ġclosest": 13699, + "ĠÃĦ": 13700, + "Ġsexy": 13701, + "ãģĽ": 13702, + "ĠDeath": 13703, + "oko": 13704, + "ugu": 13705, + "ĠAnne": 13706, + "itarian": 13707, + "esa": 13708, + "егод": 13709, + "ĠDur": 13710, + "Ġ000": 13711, + "zeit": 13712, + "Ġtournament": 13713, + "Ġmelhor": 13714, + "ส": 13715, + "Ġindu": 13716, + "Ġflaw": 13717, + "Ġwars": 13718, + "ĠMind": 13719, + "ĠIron": 13720, + "ÑĤак": 13721, + "ĠVR": 13722, + "Ġsiz": 13723, + "ĠSouthern": 13724, + "Ġê·¸ëŁ¬ë": 13725, + "Ġawak": 13726, + "Ġìķŀ": 13727, + "Ġcube": 13728, + "believable": 13729, + "ifall": 13730, + "dis": 13731, + "Ġabandoned": 13732, + "mind": 13733, + "Ġparl": 13734, + "Ġclassical": 13735, + "èĭ": 13736, + "á»Ļt": 13737, + "ĠAuto": 13738, + "ĠBor": 13739, + "ç©": 13740, + "400": 13741, + "ĠSociety": 13742, + "Ġsubtle": 13743, + "Ġmissions": 13744, + "Ġremembered": 13745, + "ĠEither": 13746, + "Ġdafür": 13747, + "ORD": 13748, + "Ġintensity": 13749, + "ESIN": 13750, + "ĠCup": 13751, + "Ġrarely": 13752, + "Ġtoys": 13753, + "ĠCharlie": 13754, + "ợ": 13755, + "Ġglaube": 13756, + "Ġrounds": 13757, + "TIN": 13758, + "Ġcapability": 13759, + "Ġderivative": 13760, + "Ġreferring": 13761, + "ĠdÃ¥": 13762, + "ĠTALI": 13763, + "Ġcotton": 13764, + "Ġconfer": 13765, + "Ġcolumns": 13766, + "Ġliberal": 13767, + "Ġnunca": 13768, + "Ġμε": 13769, + "Ġindo": 13770, + "iben": 13771, + "ĠBeispiel": 13772, + "Ġê·¸ëłĩ": 13773, + "ĠÑĥÑĩ": 13774, + "Ġhoy": 13775, + "Ġfry": 13776, + "ĠScottish": 13777, + "èĬ": 13778, + "Ġciv": 13779, + "Ġconservative": 13780, + "Ġairpl": 13781, + "Ġsar": 13782, + "rus": 13783, + "Ġinvestments": 13784, + "Ġinfinite": 13785, + "Ġà®ķ": 13786, + "ĠTALIESIN": 13787, + "ĠGary": 13788, + "uell": 13789, + "Ġак": 13790, + "ĠCir": 13791, + "Ġritual": 13792, + "Ġ>>>": 13793, + "Ġtempt": 13794, + "ĠTech": 13795, + "ĠPokemon": 13796, + "Ġimprovements": 13797, + "Ġspare": 13798, + "Ġtranslate": 13799, + "Ġsonra": 13800, + "ĠFilm": 13801, + "wort": 13802, + "Ġми": 13803, + "Ġperiods": 13804, + "Ġjealous": 13805, + "ãģĦãģĦ": 13806, + "Ġtir": 13807, + "MI": 13808, + "Ġconducted": 13809, + "ĠìķĪëħķ": 13810, + "09": 13811, + "ĠPolit": 13812, + "ĠWhereas": 13813, + "Ġmoisture": 13814, + "Ġsins": 13815, + "Ġkap": 13816, + "ĠÑįк": 13817, + "Ġbenim": 13818, + "Ġeliminate": 13819, + "Ġathletes": 13820, + "ĠManager": 13821, + "Ġfeatured": 13822, + "apore": 13823, + "äºĽ": 13824, + "Ġë°ľ": 13825, + "Ġperf": 13826, + "ĠThus": 13827, + "Ġdebut": 13828, + "обÑĢ": 13829, + "Ġseñ": 13830, + "Ġmysterious": 13831, + "words": 13832, + "Ķê°Ģ": 13833, + "Ġchecks": 13834, + "Ġvolunteer": 13835, + "Ġwashing": 13836, + "ĠMarvel": 13837, + "ĠAB": 13838, + "issors": 13839, + "!'": 13840, + "ĠFull": 13841, + "yeon": 13842, + "Ġweigh": 13843, + "ĠJOHN": 13844, + "Ġvos": 13845, + "Ġprocedures": 13846, + "Ġaddressed": 13847, + "ĠBerlin": 13848, + "puter": 13849, + "ĠBan": 13850, + "Ġmedication": 13851, + "Ġdrone": 13852, + "ĠÑĥб": 13853, + "ĠJean": 13854, + "Ġcaps": 13855, + "Ġdisappointed": 13856, + "Ġwore": 13857, + "ĠêµŃ": 13858, + "Ġorganize": 13859, + "ĠHalloween": 13860, + "Ġfantasy": 13861, + "yard": 13862, + "Ġnosotros": 13863, + "Ġjumped": 13864, + "Ġphotography": 13865, + "ĠName": 13866, + "rec": 13867, + "AB": 13868, + "Ġblessing": 13869, + "ĠShut": 13870, + "Ġbitter": 13871, + "pop": 13872, + "ãģĿãĤĮ": 13873, + "Ġdei": 13874, + "Ġfulfill": 13875, + "çIJĨ": 13876, + "Ġdengan": 13877, + "Ġbelo": 13878, + "ĠMeanwhile": 13879, + "Ġdepois": 13880, + "Ġdiabetes": 13881, + "Ġbund": 13882, + "ĠZealand": 13883, + "Ġdigest": 13884, + "Ġtires": 13885, + "Ġdod": 13886, + "agne": 13887, + "ết": 13888, + "Ġpeel": 13889, + "Ġзаб": 13890, + "Ġnodes": 13891, + "Ġtrends": 13892, + "ĠSwitch": 13893, + "ĠAward": 13894, + "ĠOrig": 13895, + "ĠHal": 13896, + "Ġestas": 13897, + "Ġ360": 13898, + "Ġsimult": 13899, + "Ġcomic": 13900, + "ĠmÃł": 13901, + "Ġbalanced": 13902, + "ĠPrincess": 13903, + "Ġkilometers": 13904, + "ứ": 13905, + "Ġpartir": 13906, + "ì¤ij": 13907, + "soft": 13908, + "ĠView": 13909, + "Ġbiological": 13910, + "inst": 13911, + "44": 13912, + "Ġmanera": 13913, + "Ġcomprehensive": 13914, + "ĠSab": 13915, + "Ġcrimes": 13916, + "yers": 13917, + "ĠCompany": 13918, + "ĠPhot": 13919, + "Ġpouco": 13920, + "iac": 13921, + "Ġbeim": 13922, + "inate": 13923, + "Ġsubsequ": 13924, + "ĠMayor": 13925, + "Ġcenturies": 13926, + "ères": 13927, + "ìŀĸìķĦìļĶ": 13928, + "Ġê·¸ëŁ¼": 13929, + "ĠFrau": 13930, + "ĠOH": 13931, + "ĠëģĿ": 13932, + "ĠNah": 13933, + "ĠSeries": 13934, + "Ġovernight": 13935, + "íĴĪ": 13936, + "ĠâĢ¢": 13937, + "Ġtrave": 13938, + "attered": 13939, + "Ġwarri": 13940, + "ĠGrund": 13941, + "ĠIndones": 13942, + "Ġscra": 13943, + "oby": 13944, + "ĠBrook": 13945, + "Ġcurs": 13946, + "Ġë¸": 13947, + "Ġexplains": 13948, + "ramatic": 13949, + "Ġparticipating": 13950, + "Ġminut": 13951, + "Ġcontracts": 13952, + "Ġgegen": 13953, + "Ġdisappeared": 13954, + "ĠSN": 13955, + "Ġrobust": 13956, + "aph": 13957, + "Ġshrim": 13958, + "Ġdevast": 13959, + "cope": 13960, + "Ġmeets": 13961, + "Ġpeaceful": 13962, + "mate": 13963, + "Ġweld": 13964, + "Ġת": 13965, + "don": 13966, + "ÑĥÑĤÑĮ": 13967, + "Ġregistered": 13968, + "ĠNik": 13969, + "jin": 13970, + "Ġcav": 13971, + "Ġecht": 13972, + "iox": 13973, + "Ġflowing": 13974, + "ноÑģÑĤи": 13975, + "Ġtoe": 13976, + "Ġentity": 13977, + "ова": 13978, + "fits": 13979, + "ĠPatrick": 13980, + "ÑĤÑĢ": 13981, + "Ġleverage": 13982, + "Ġcorrel": 13983, + "iah": 13984, + "Ġstrings": 13985, + "istinct": 13986, + "Ġgue": 13987, + "archy": 13988, + "Ġtengo": 13989, + "ımız": 13990, + "Ġorbit": 13991, + "为": 13992, + "ĠеÑīÑij": 13993, + "cake": 13994, + "Ġ׾×Ķ": 13995, + "ĠMinnesota": 13996, + "Ġbrake": 13997, + "owie": 13998, + "Ġcraw": 13999, + "기를": 14000, + "Ġprogramme": 14001, + "ĠÑģлÑĥÑĩ": 14002, + "åıª": 14003, + "iences": 14004, + "ĠOui": 14005, + "ĠPers": 14006, + "imiento": 14007, + "ĠInvest": 14008, + "Ġslower": 14009, + "æĻĤåĢĻ": 14010, + "ĠBeth": 14011, + "Ġnurse": 14012, + "ĠSpring": 14013, + "Sp": 14014, + "Ġunemploy": 14015, + "ди": 14016, + "Ġgenius": 14017, + "ĠAaron": 14018, + "Ġê·¸ëŁ¬": 14019, + "Ġei": 14020, + "ãģĹãĤĩ": 14021, + "Ġtanks": 14022, + "Ġaujourd": 14023, + "Ġcomplexity": 14024, + "ĠÑĢеÑĪ": 14025, + "Ġoldest": 14026, + "Ġletz": 14027, + "åħ¥": 14028, + "Ġphenomenon": 14029, + "print": 14030, + "ĠBundes": 14031, + "itat": 14032, + "ê»ĺ": 14033, + "Ġ42": 14034, + "ĠWi": 14035, + "Ġincom": 14036, + "Ġgek": 14037, + "Ġembrace": 14038, + "Ġties": 14039, + "oute": 14040, + "Ġdose": 14041, + "ĠFriends": 14042, + "ÑĭÑĤ": 14043, + "егоднÑı": 14044, + "Ġorg": 14045, + "Ħë¡ľ": 14046, + "óg": 14047, + "Ġexceed": 14048, + "Ġgods": 14049, + "Ġê±°ìĺĪìļĶ": 14050, + "Ġsociet": 14051, + "ĠUnivers": 14052, + "ität": 14053, + "Ġworden": 14054, + "Ġsmoking": 14055, + "Ġintens": 14056, + "abul": 14057, + "emia": 14058, + "èij": 14059, + "47": 14060, + "fly": 14061, + "Ġ2006": 14062, + "ĠSeriously": 14063, + "Ġprzez": 14064, + "æ¼": 14065, + "cre": 14066, + "Ġnan": 14067, + "Ġmodes": 14068, + "оваÑĤÑĮ": 14069, + "ĠHang": 14070, + "emen": 14071, + "Ġbeneficial": 14072, + "Ġvoters": 14073, + "ĠBroad": 14074, + "Ġbent": 14075, + "Wow": 14076, + "Ġmul": 14077, + "åĵ¥": 14078, + "ĠUC": 14079, + "Ġdamaged": 14080, + "ĠUkraine": 14081, + "Ġwipe": 14082, + "Ġstones": 14083, + "Ġmanagers": 14084, + "Ġrab": 14085, + "ÑģÑĤÑĢо": 14086, + "lat": 14087, + "Ġdece": 14088, + "Ġgraphic": 14089, + "Ġfoss": 14090, + "Ġdisagree": 14091, + "ĠAmen": 14092, + "Ġsecrets": 14093, + "hole": 14094, + "inkle": 14095, + "Ġfortunate": 14096, + "Ġì±": 14097, + "ìľĦ": 14098, + "èIJ¬": 14099, + "Ġhabits": 14100, + "Ġburied": 14101, + "Ġhin": 14102, + "Ġvirtually": 14103, + "olas": 14104, + "ĠRP": 14105, + "ĠTab": 14106, + "low": 14107, + "Ġsacrific": 14108, + "Ġestimated": 14109, + "oln": 14110, + "Ùĭ": 14111, + "cur": 14112, + "ĠFeel": 14113, + "Ġcastle": 14114, + "Ġuseless": 14115, + "Ġdisg": 14116, + "ĠJacob": 14117, + "Ġgaan": 14118, + "Ġupside": 14119, + "Ġparece": 14120, + "ãĥ³ãĥ": 14121, + "Ġshipping": 14122, + "ĠCR": 14123, + "Ġdisrupt": 14124, + "acter": 14125, + "UND": 14126, + "fu": 14127, + "å®Į": 14128, + "ĠPick": 14129, + "ĠCharl": 14130, + "ĠBull": 14131, + "Ġenterprise": 14132, + "Ġpunishment": 14133, + "acking": 14134, + "Ġfraction": 14135, + "Ġtablet": 14136, + "Ġchord": 14137, + "Ġsimilarly": 14138, + "åħ¶å¯¦": 14139, + "ĠToronto": 14140, + "Ġcourts": 14141, + "ÄŁl": 14142, + "eszcze": 14143, + "Ġpronoun": 14144, + "ĠSister": 14145, + "ĠMP": 14146, + "Ġgreatly": 14147, + "ĠDank": 14148, + "icop": 14149, + "Ġgarbage": 14150, + "Ġresolve": 14151, + "ĠSaf": 14152, + "ĠGun": 14153, + "Ġcompound": 14154, + "Ġë°°": 14155, + "ĠMusik": 14156, + "âĻ«": 14157, + "Ġchaos": 14158, + "ĠWhenever": 14159, + "Ġeuros": 14160, + "Ġorchest": 14161, + "Ġrefriger": 14162, + "alan": 14163, + "ื": 14164, + "ĠAmazing": 14165, + "Ġpud": 14166, + "agan": 14167, + "Ġjeszcze": 14168, + "isy": 14169, + "Ġaccuracy": 14170, + "ĠAma": 14171, + "isode": 14172, + "ëĮĢ": 14173, + "Ġinterpretation": 14174, + "ĠLiber": 14175, + "æ·": 14176, + "cam": 14177, + "Ġevolved": 14178, + "ĠKay": 14179, + "ÑĨÑĭ": 14180, + "Ġcreator": 14181, + "itas": 14182, + "Ġalarm": 14183, + "Ġcelebration": 14184, + "zent": 14185, + "Ġfuncion": 14186, + "Ġov": 14187, + "umbling": 14188, + "Ġ%": 14189, + "à¸Ī": 14190, + "Ġrestrictions": 14191, + "Ġнав": 14192, + "ĠKinder": 14193, + "Ġbanana": 14194, + "ÑĮÑı": 14195, + "Ġdiameter": 14196, + "Ġnorthern": 14197, + "urers": 14198, + "ĠPas": 14199, + "æĪijçļĦ": 14200, + "Ġworkforce": 14201, + "Ġjung": 14202, + "Ġguarante": 14203, + "Ġequilib": 14204, + "Ġsuite": 14205, + "Ġeuro": 14206, + "Ġdeliber": 14207, + "Ste": 14208, + "Ġdowntown": 14209, + "Ġchin": 14210, + "Ġcodes": 14211, + "edia": 14212, + "Ġsheep": 14213, + "reshold": 14214, + "wnie": 14215, + "ób": 14216, + "Ġunderlying": 14217, + "lia": 14218, + "jer": 14219, + "ÏĢÏĮ": 14220, + "çĿ": 14221, + "throp": 14222, + "Ġzap": 14223, + "Ġvacuum": 14224, + "ĠHab": 14225, + "Ġwrapped": 14226, + "ì¢": 14227, + "Ġinventory": 14228, + "ма": 14229, + "Ġcoord": 14230, + "Ġplates": 14231, + "Ġsymm": 14232, + "Te": 14233, + "ĠwÅĤaÅĽnie": 14234, + "Ġreaches": 14235, + "Ġlonely": 14236, + "Script": 14237, + "lee": 14238, + "esser": 14239, + "Ġ걸": 14240, + "ĠGesch": 14241, + "ĠMoving": 14242, + "Ġrép": 14243, + "ĠVill": 14244, + "åIJĪ": 14245, + "ĠRachel": 14246, + "Ġtemos": 14247, + "ONE": 14248, + "Ġstrain": 14249, + "Ġangel": 14250, + "ĠfÃ¥": 14251, + "Tr": 14252, + "Ġacho": 14253, + "Ġhighlights": 14254, + "ĠWer": 14255, + "ĠCarl": 14256, + "Ġblur": 14257, + "Ġregards": 14258, + "·": 14259, + "илÑģÑı": 14260, + "Ġrecre": 14261, + "ĠYani": 14262, + "UCK": 14263, + "ł¸": 14264, + "Ġelectrons": 14265, + "ĠSpiel": 14266, + "Ġved": 14267, + "Ú¾": 14268, + "Ġbeam": 14269, + "Ġidiot": 14270, + "ëĵ¤": 14271, + "наÑĩ": 14272, + "idd": 14273, + "Ġski": 14274, + "itative": 14275, + "Ġhypothes": 14276, + "ãģ§ãģĻãģŃ": 14277, + "enter": 14278, + "ĠìķĦëĭĪë": 14279, + "Ġihre": 14280, + "Ġpreview": 14281, + "angel": 14282, + "Ġdemon": 14283, + "Ġdus": 14284, + "Ġdic": 14285, + "ĠKom": 14286, + "LEY": 14287, + "...!": 14288, + "Ġsieht": 14289, + "ĠSonic": 14290, + "Ġtenho": 14291, + "anas": 14292, + "Ġdigit": 14293, + "ĠMaar": 14294, + "Ġundergrad": 14295, + "ouncer": 14296, + "uffy": 14297, + "Ġconversion": 14298, + "Ġdisconnect": 14299, + "Ġecho": 14300, + "omer": 14301, + "Ġcurriculum": 14302, + "Ġperché": 14303, + "Ġwand": 14304, + "..?": 14305, + "Ġrolled": 14306, + "Ġentrepreneur": 14307, + "Ġtheoret": 14308, + "ĠÑīо": 14309, + "Ġinsights": 14310, + "Ġzusammen": 14311, + "oin": 14312, + "rett": 14313, + "produ": 14314, + "Ġvisitors": 14315, + "eous": 14316, + "Ġgrandmother": 14317, + "Ġhumor": 14318, + "ĠниÑħ": 14319, + "zenia": 14320, + "inson": 14321, + "Ġreset": 14322, + "Ġbaseball": 14323, + "Ġmatching": 14324, + "ëĭ¤ê°Ģ": 14325, + "Ġpunto": 14326, + "ì¡": 14327, + "Ġrede": 14328, + "Ġaddressing": 14329, + "Ġforecast": 14330, + "ĠBol": 14331, + "Ġcolored": 14332, + "Ġdocumentation": 14333, + "Ġexpectation": 14334, + "ĠNorthern": 14335, + "Ġcreo": 14336, + "Ġà®ļ": 14337, + "fon": 14338, + "Ġunsere": 14339, + "UM": 14340, + "Ġcopies": 14341, + "Ġexpanded": 14342, + "Ġveterans": 14343, + "ĠAlm": 14344, + "ĠвообÑīе": 14345, + "Ġpsychological": 14346, + "Ġnosso": 14347, + "Ġpayments": 14348, + "imeters": 14349, + "Ġ-->": 14350, + "ĠJennifer": 14351, + "Ġvolunteers": 14352, + "osse": 14353, + "orious": 14354, + "ĠбÑĭли": 14355, + "èĤ": 14356, + "ĠEss": 14357, + "ws": 14358, + "ĠBC": 14359, + "ĠIC": 14360, + "Woman": 14361, + "Ġvont": 14362, + "Ġethnic": 14363, + "ENN": 14364, + "имо": 14365, + "Ġlob": 14366, + "Ġoui": 14367, + "cs": 14368, + "Ġrehe": 14369, + "Ġìłģ": 14370, + "Ġchick": 14371, + "úsica": 14372, + "Ġkont": 14373, + "ĠDistrict": 14374, + "Ġpile": 14375, + "Ġав": 14376, + "ейÑģÑĤв": 14377, + "Ġ£": 14378, + "Ġissued": 14379, + "Ġкомп": 14380, + "Ġprosper": 14381, + "Ġprofound": 14382, + "ĠDear": 14383, + "Ġãģĵ": 14384, + "Ġfunded": 14385, + "Ġbisa": 14386, + "ŀĺë": 14387, + "ף": 14388, + "ĠìĿĺ": 14389, + "Ġtwelve": 14390, + "ĠChampions": 14391, + "éĿŀ常": 14392, + "Ñģл": 14393, + "Ġ2005": 14394, + "pm": 14395, + "Ġonde": 14396, + "Ġdiffé": 14397, + "ĠChall": 14398, + "Ġdifficulties": 14399, + "Ġgarage": 14400, + "Ġdá": 14401, + "ünk": 14402, + "Ġ물": 14403, + "Ġtran": 14404, + "Ġsubmitted": 14405, + "zw": 14406, + "ÙĪا": 14407, + "Ġark": 14408, + "ĠìĦ±": 14409, + "Ġgrocery": 14410, + "она": 14411, + "iere": 14412, + "Ġaest": 14413, + "Ġexhibition": 14414, + "Ġrés": 14415, + "Ġconsistency": 14416, + "Ġcookie": 14417, + "ней": 14418, + "Ġreplacement": 14419, + "æ²¹": 14420, + "ĠSem": 14421, + "ĠìĤ¬ìļ©": 14422, + "800": 14423, + "Ġgenes": 14424, + "Ġtransaction": 14425, + "ĠEL": 14426, + "Ġdurante": 14427, + "ibles": 14428, + "ĠEat": 14429, + "tail": 14430, + "issance": 14431, + "Ġtoss": 14432, + "Ġsurvived": 14433, + "Ġoffices": 14434, + "Ġsupportive": 14435, + "Where": 14436, + "Ġtoutes": 14437, + "Ġë§ī": 14438, + "Ġjokes": 14439, + "ieron": 14440, + "apers": 14441, + "Ġmature": 14442, + "ĠMarsh": 14443, + "Ġsido": 14444, + "kind": 14445, + "Ġrealmente": 14446, + "ĠChef": 14447, + "Ġquelque": 14448, + "Ġjudges": 14449, + "eft": 14450, + "ERS": 14451, + "Ġjet": 14452, + "Ġpersons": 14453, + "è»": 14454, + "izations": 14455, + "rik": 14456, + "Ġshops": 14457, + "ĠWy": 14458, + "Ġeleg": 14459, + "què": 14460, + "quoi": 14461, + "Ġjuga": 14462, + "Ġíķľë²Ī": 14463, + "ĠQuestion": 14464, + "ĠGlobal": 14465, + "Ġìķ½ê°Ħ": 14466, + "ĠStation": 14467, + "æİ¥": 14468, + "ĠOhio": 14469, + "Ġsticky": 14470, + "Ġstressed": 14471, + "Ġgün": 14472, + "ĠíĿ": 14473, + "ÑģÑĤÑĥп": 14474, + "é¡Į": 14475, + "ĠPhD": 14476, + "immer": 14477, + "Ġmentor": 14478, + "Ġinvented": 14479, + "Ġreun": 14480, + "Ġinevit": 14481, + "ĠpolÃŃt": 14482, + "Ġexecute": 14483, + "ĠStory": 14484, + "Ġoutstanding": 14485, + "Ġguer": 14486, + "ĠRain": 14487, + "Ġchoses": 14488, + "ĠTit": 14489, + "ĠÑģеÑĢ": 14490, + "ĠSingapore": 14491, + "ĠNone": 14492, + "Ġchronic": 14493, + "°ëį°": 14494, + "Ġego": 14495, + "æł·": 14496, + "EST": 14497, + "ãģĤãĤĬ": 14498, + "ĠWang": 14499, + "ĠNAT": 14500, + "Ġaug": 14501, + "Ġdesktop": 14502, + "Ġeternal": 14503, + "ĠìĤ¬ìĭ¤": 14504, + "ĠConstitution": 14505, + "ìĤ¬ë": 14506, + "×Ļ׾": 14507, + "pres": 14508, + "ĠТÑĭ": 14509, + "Ġinterf": 14510, + "Ġlists": 14511, + "Ġfights": 14512, + "ften": 14513, + "ĠIowa": 14514, + "Ġmotivated": 14515, + "ĠHosp": 14516, + "Ġelsewhere": 14517, + "Ġpaths": 14518, + "Ġinstances": 14519, + "Bl": 14520, + "range": 14521, + "á»±": 14522, + "ĠSit": 14523, + "mana": 14524, + "Ġìĭľìŀij": 14525, + "Ġmình": 14526, + "ansas": 14527, + "Ġsna": 14528, + "Ġphilosoph": 14529, + "Ġpasse": 14530, + "Æ°á»Ŀi": 14531, + "akh": 14532, + "ental": 14533, + "Ġihn": 14534, + "ructor": 14535, + "ĠваÑĪ": 14536, + "Ġgenerous": 14537, + "Ġpivot": 14538, + "пол": 14539, + "Ġjamais": 14540, + "Ġcoment": 14541, + "ĠLew": 14542, + "odzi": 14543, + "ĠXbox": 14544, + "Ġвод": 14545, + "Ġconsent": 14546, + "īìŀ¥": 14547, + "Ġdispar": 14548, + "lass": 14549, + "ĠGovernor": 14550, + "Beifall": 14551, + "Ġê°ľ": 14552, + "Ġbeloved": 14553, + "׳×ķ": 14554, + "sell": 14555, + "Ġhonored": 14556, + "leh": 14557, + "Ġwäre": 14558, + "unting": 14559, + "Ġfraud": 14560, + "ĠRAM": 14561, + "걸": 14562, + "Ġkills": 14563, + "Ġeconomics": 14564, + "04": 14565, + "пеÑĢ": 14566, + "Ġcoisas": 14567, + "ĠигÑĢ": 14568, + "ÃŃm": 14569, + "Ġmöchte": 14570, + "Ġìµľ": 14571, + "Ġstimul": 14572, + "Ġfastest": 14573, + "lv": 14574, + "Ġgén": 14575, + "ĠSounds": 14576, + "Ġ1970": 14577, + "Ġhomework": 14578, + "speaking": 14579, + "Ġencouraging": 14580, + "Ġquery": 14581, + "Ġrevers": 14582, + "profit": 14583, + "Ġdy": 14584, + "Ġìŀij": 14585, + "ëĬĶëį°ìļĶ": 14586, + "Ġsoap": 14587, + "ĠGall": 14588, + "ĠCN": 14589, + "ĠAns": 14590, + "Ġfic": 14591, + "anks": 14592, + "Ġdessert": 14593, + "ĠìłĢíĿ¬": 14594, + "ĠMaking": 14595, + "Ġcomeç": 14596, + "ê³Ħ": 14597, + "Ġassociation": 14598, + "Dad": 14599, + "hee": 14600, + "Ġhogy": 14601, + "Ġapro": 14602, + "Ġinvisible": 14603, + "American": 14604, + "íİ": 14605, + "Ġvibe": 14606, + "Ġemissions": 14607, + "Ġadvocate": 14608, + "Ġkicked": 14609, + "Ġvel": 14610, + "Ġsummar": 14611, + "Ġfreaking": 14612, + "chron": 14613, + "Ġpinch": 14614, + "Ġwszystk": 14615, + "iscal": 14616, + "Ġproved": 14617, + "Ġmindful": 14618, + "Ġtä": 14619, + "Ġnoises": 14620, + "Ġisolated": 14621, + "Ġcrossed": 14622, + "Ġê°ķ": 14623, + "ĠvoilÃł": 14624, + "Ġchore": 14625, + "ĠRA": 14626, + "Com": 14627, + "Ġrelaxed": 14628, + "atro": 14629, + "Ġprevention": 14630, + "Voiceover": 14631, + "OD": 14632, + "ĠCovid": 14633, + "Ġseparation": 14634, + "Ġ-[": 14635, + "иÑĩего": 14636, + "çĻ¼": 14637, + "ĠSD": 14638, + "bleep": 14639, + "Ġindependence": 14640, + "Ġpartial": 14641, + "Ġalgorithms": 14642, + "ĠAnyone": 14643, + "Ġassociate": 14644, + "hum": 14645, + "icular": 14646, + "Ġbạn": 14647, + "Ġbattles": 14648, + "Good": 14649, + "Applause": 14650, + "Ġbastante": 14651, + "Ġadvant": 14652, + "ĠSweet": 14653, + "Ġrefused": 14654, + "ãĤ¸": 14655, + "ĠÑĤебе": 14656, + "plet": 14657, + "Ġencouraged": 14658, + "åĵ¦": 14659, + "Ġmiracle": 14660, + "ĠBun": 14661, + "ĠVar": 14662, + "rimination": 14663, + "elect": 14664, + "ĠMult": 14665, + "Ġdelivering": 14666, + "eing": 14667, + "Ġcm": 14668, + "nehmen": 14669, + "ĠLine": 14670, + "Ġë§Į": 14671, + "enced": 14672, + "ĠSound": 14673, + "ĠContin": 14674, + "ijd": 14675, + "UNG": 14676, + "kle": 14677, + "Ġthreshold": 14678, + "Ġcompact": 14679, + "adt": 14680, + "Ġtoes": 14681, + "ĠPur": 14682, + "owned": 14683, + "mented": 14684, + "Ġdesigning": 14685, + "Ġvaccinated": 14686, + "Ġexhaust": 14687, + "Ġbasics": 14688, + "Ġconsists": 14689, + "ĠGuy": 14690, + "aczy": 14691, + "ĠmÃŃ": 14692, + "won": 14693, + "害": 14694, + "Ġ85": 14695, + "æĤ": 14696, + "Ġmum": 14697, + "Ġignor": 14698, + "Ġprinting": 14699, + "acular": 14700, + "pow": 14701, + "Ġexpanding": 14702, + "Ġgir": 14703, + "ĠCab": 14704, + "íĺ¸": 14705, + "ÑĤÑĮÑģÑı": 14706, + "ĠìŬ룬ë¶Ħ": 14707, + "Ġangles": 14708, + "Ġterminal": 14709, + "ĠWon": 14710, + "ĠInteresting": 14711, + "Ġcrossing": 14712, + "Ġbonds": 14713, + "Ġpueden": 14714, + "Ġorb": 14715, + "ların": 14716, + "Ġcreepy": 14717, + "Ġnutrition": 14718, + "Ġallies": 14719, + "Ġwireless": 14720, + "Ġdesired": 14721, + "Ġcompute": 14722, + "ĠArizona": 14723, + "ĠBeautiful": 14724, + "Ġproduces": 14725, + "Ġnuestro": 14726, + "ted": 14727, + "Ġeligible": 14728, + "ĠÑģоз": 14729, + "icial": 14730, + "ĠHero": 14731, + "Ġconsume": 14732, + "Ġrobots": 14733, + "Ġpurchased": 14734, + "cción": 14735, + "Ġiz": 14736, + "ược": 14737, + "ίναι": 14738, + "ĠØ£ÙĨ": 14739, + "Ġshadows": 14740, + "ĠMedia": 14741, + "Ġprincess": 14742, + "Ġklar": 14743, + "Ġwooden": 14744, + "Ġusar": 14745, + "Ġgüzel": 14746, + "Ġslot": 14747, + "rade": 14748, + "ĠëĴ": 14749, + "Ġharmon": 14750, + "Ġingredient": 14751, + "orship": 14752, + "eki": 14753, + "Ġgrandfather": 14754, + "Ġexcitement": 14755, + "Ġpoliticians": 14756, + "..!": 14757, + "Ġouts": 14758, + "Ġseparately": 14759, + "ĠÑıк": 14760, + "ĠWelt": 14761, + "ĠPow": 14762, + "jan": 14763, + "Ġorientation": 14764, + "åıĭ": 14765, + "LC": 14766, + "agem": 14767, + "ÛĮÚº": 14768, + "åIJĹ": 14769, + "Ġbranches": 14770, + "aden": 14771, + "rente": 14772, + "ĠIhr": 14773, + "asm": 14774, + "Ġestão": 14775, + "ĠNic": 14776, + "Ġslave": 14777, + "Ġcompress": 14778, + "crowd": 14779, + "Ġclimbing": 14780, + "ĠManagement": 14781, + "ĠBah": 14782, + "Ġpanic": 14783, + "Ġkor": 14784, + "Ġcooling": 14785, + "Ġbind": 14786, + "Ġзад": 14787, + "Ġrack": 14788, + "Ġentit": 14789, + "Ġsends": 14790, + "Ġyourselves": 14791, + "des": 14792, + "ĠMuslims": 14793, + "Ġíļ": 14794, + "isma": 14795, + "cycle": 14796, + "unkt": 14797, + "ĠCore": 14798, + "Ġinjuries": 14799, + "Ġidentical": 14800, + "каÑı": 14801, + "ĠDeutschland": 14802, + "Ġее": 14803, + "isan": 14804, + "Ġtruc": 14805, + "leton": 14806, + "Ġbackup": 14807, + "Ġultra": 14808, + "Ġabund": 14809, + "illeurs": 14810, + "ĠbyÅĤo": 14811, + "åħĥ": 14812, + "orted": 14813, + "Ġearthqu": 14814, + "Ġкл": 14815, + "Ġobservation": 14816, + "Ġmaintenant": 14817, + "elen": 14818, + "Ġsettled": 14819, + "Ġpela": 14820, + "ĠEconom": 14821, + "ĠÕ": 14822, + "Ġsteering": 14823, + "ĠALL": 14824, + "ĠCher": 14825, + "Ġpatience": 14826, + "ĠSnow": 14827, + "Ġbor": 14828, + "Ġworthy": 14829, + "Ġcái": 14830, + "Ġק": 14831, + "Ġκα": 14832, + "dog": 14833, + "ĠKaren": 14834, + "illes": 14835, + "β": 14836, + "Ġagriculture": 14837, + "×ķף": 14838, + "ĠSean": 14839, + "Ġsensors": 14840, + "íķ´ë": 14841, + "agh": 14842, + "Ġpublicly": 14843, + "Ġpeux": 14844, + "ĠAlexander": 14845, + "Ġpriorit": 14846, + "Ġlazy": 14847, + "ardon": 14848, + "attering": 14849, + "Ġcostume": 14850, + "ست": 14851, + "è¿ĺ": 14852, + "Ġunw": 14853, + "ÐĽ": 14854, + "Ġthickness": 14855, + "quito": 14856, + "gunt": 14857, + "istas": 14858, + "neys": 14859, + "ĠëIJĺê²Į": 14860, + "ĠBrasil": 14861, + "Ġtoken": 14862, + "Ġaffili": 14863, + "lon": 14864, + "ĠfÃ¥r": 14865, + "ĠBeach": 14866, + "Ġwitch": 14867, + "ĠSeven": 14868, + "Ġpant": 14869, + "λλ": 14870, + "Ġcaptain": 14871, + "åĿ": 14872, + "Ġveut": 14873, + "Ġpouvoir": 14874, + "acz": 14875, + "ĠBarb": 14876, + "Ġutility": 14877, + "Ġcontemporary": 14878, + "Ġobtained": 14879, + "Ġpaintings": 14880, + "ear": 14881, + "Ġpean": 14882, + "ĠOg": 14883, + "Ġcust": 14884, + "лем": 14885, + "Ĥĺë": 14886, + "ĠIsso": 14887, + "Ġaconte": 14888, + "ĠTele": 14889, + "ĠAssistant": 14890, + "Ãī": 14891, + "íĸĪìĬµëĭĪëĭ¤": 14892, + "Ġcounts": 14893, + "Ġbuck": 14894, + "ĠDeep": 14895, + "Ġtackle": 14896, + "Ġharsh": 14897, + "Ġdecides": 14898, + "éĹľ": 14899, + ".âĢĭ": 14900, + "éĤĬ": 14901, + "ĠAngel": 14902, + "Ġlaying": 14903, + "Ġcalories": 14904, + "Ġcontrolling": 14905, + "Ġadvantages": 14906, + "ĠÑįÑĤой": 14907, + "Ġapproaching": 14908, + "Ġthreats": 14909, + "akan": 14910, + "ematic": 14911, + "mann": 14912, + "ê³µ": 14913, + "mumbles": 14914, + "ació": 14915, + "Ġmaintaining": 14916, + "Ġfounder": 14917, + "lah": 14918, + "fight": 14919, + "Ġadmitted": 14920, + "âĢ¦.": 14921, + "ķĮ": 14922, + "abol": 14923, + "Ġusage": 14924, + "Ġnonsense": 14925, + "ĠPalest": 14926, + "Ġcontre": 14927, + "ĠDemocratic": 14928, + "ĠER": 14929, + "jekt": 14930, + "Ġarbit": 14931, + "Ġгол": 14932, + "ĠMichelle": 14933, + "icher": 14934, + "esh": 14935, + "ĠPho": 14936, + "ком": 14937, + "49": 14938, + "ĠEnergy": 14939, + "οÏį": 14940, + "Ġcents": 14941, + "Ġrefers": 14942, + "Ġgospel": 14943, + "ĠSha": 14944, + "ĠShare": 14945, + "×Ļ׳": 14946, + "Ġclinic": 14947, + "ĠëĦ£": 14948, + "Ġequality": 14949, + "ugs": 14950, + "Ġshed": 14951, + "Ġplanes": 14952, + "Ġtoute": 14953, + "reck": 14954, + "Ġstrand": 14955, + "Ġbiology": 14956, + "Ġleague": 14957, + "ĠPok": 14958, + "Ġnúmero": 14959, + "ĠCoast": 14960, + "Ġconsistently": 14961, + "Ġnucle": 14962, + "OOOO": 14963, + "Ġobjet": 14964, + "Ġchor": 14965, + "Ġginger": 14966, + "Ġdabei": 14967, + "Ġcooperation": 14968, + "à¯į.": 14969, + "nten": 14970, + "ç¤": 14971, + "lÃł": 14972, + "ìĸij": 14973, + "rado": 14974, + "Ġpassive": 14975, + "Ġgloves": 14976, + "Ġunderground": 14977, + "Ġlogical": 14978, + "Ġket": 14979, + "Ġfunctionality": 14980, + "¸ë¦¬": 14981, + "Ġportal": 14982, + "eller": 14983, + "×Ļר": 14984, + "ĠTed": 14985, + "ĠGre": 14986, + "IJľ": 14987, + "Ġpersonnel": 14988, + "Ġemerging": 14989, + "ĠFür": 14990, + "Ġmeantime": 14991, + "usalem": 14992, + "ĠClear": 14993, + "Ġtrapped": 14994, + "Ġìļ°": 14995, + "Ġdispl": 14996, + "Ġmettre": 14997, + "Ġmunicip": 14998, + "Ġwithdraw": 14999, + "Ġspat": 15000, + "unes": 15001, + "Ġaccessibility": 15002, + "æĪij们": 15003, + "Ġapare": 15004, + "Ġprospect": 15005, + "Ġназ": 15006, + "Ġcopper": 15007, + "ĠPRO": 15008, + "ÏħÏĦ": 15009, + "Ġattacking": 15010, + "ĠVin": 15011, + "ĠStone": 15012, + "Ġinvestigate": 15013, + "style": 15014, + "Ġλ": 15015, + "ë¡Ŀ": 15016, + "ë§Ī": 15017, + "Ġinspect": 15018, + "Ġliver": 15019, + "алиÑģÑĮ": 15020, + "Ġsera": 15021, + "halten": 15022, + "eman": 15023, + "Ġministry": 15024, + "''": 15025, + "Ġdots": 15026, + "ãħĭãħĭãħĭãħĭ": 15027, + "ÑĥÑģÑĤ": 15028, + "ĠJak": 15029, + "AKE": 15030, + "Ġgaps": 15031, + "ucker": 15032, + "ĠинÑĤеÑĢеÑģ": 15033, + "ĠEmily": 15034, + "Ġinterval": 15035, + "Ġtender": 15036, + "ĠTechnology": 15037, + "game": 15038, + "Ġtrib": 15039, + "ÙĦا": 15040, + "ĠDevelopment": 15041, + "Ùħا": 15042, + "Ġwrist": 15043, + "Ġfires": 15044, + "Ġtargeted": 15045, + "ìłIJ": 15046, + "Ġsod": 15047, + "íļĮ": 15048, + "ĠolduÄŁ": 15049, + "Ġseasons": 15050, + "ventions": 15051, + "Ġнего": 15052, + "Ġsometime": 15053, + "лив": 15054, + "né": 15055, + "Ġtú": 15056, + "ĠDeus": 15057, + "Ġexecution": 15058, + "áp": 15059, + "ĠChange": 15060, + "ĠIndeed": 15061, + "Ġregulation": 15062, + "ĠHung": 15063, + "éis": 15064, + "Ġwishes": 15065, + "Ġjazz": 15066, + "Ġstructural": 15067, + "Ġblowing": 15068, + "ĠbyÄĩ": 15069, + "Ġthermal": 15070, + "phant": 15071, + "ÑĢÑĥз": 15072, + "анÑĤ": 15073, + "ĠPull": 15074, + "Ġconfusion": 15075, + "нÑĭми": 15076, + "Ġscenarios": 15077, + "ìłģìľ¼ë¡ľ": 15078, + "ĠдеÑĤ": 15079, + "Ġtattoo": 15080, + "Ġautre": 15081, + "Ġheating": 15082, + "Ġtreating": 15083, + "Ġпоним": 15084, + "Ġexclus": 15085, + "ĠLOL": 15086, + "wear": 15087, + "agle": 15088, + "Ġzurück": 15089, + "Ġrational": 15090, + "su": 15091, + "Ġdeter": 15092, + "ĠNative": 15093, + "à®ķள": 15094, + "ached": 15095, + "Ġãĥ": 15096, + "ĠEntonces": 15097, + "Ġhora": 15098, + "ìĿ´ìĹIJìļĶ": 15099, + "Ġlite": 15100, + "ë": 15101, + "Ġsixth": 15102, + "Ġболее": 15103, + "actor": 15104, + "Ġpsychology": 15105, + "缸": 15106, + "Ġdemands": 15107, + "Ġpeer": 15108, + "Ġnewly": 15109, + "ĠWWE": 15110, + "Donald": 15111, + "ĠBox": 15112, + "Ġpine": 15113, + "Ġloading": 15114, + "ĠNico": 15115, + "ĠsÅĤ": 15116, + "omme": 15117, + "ART": 15118, + "Ġrecruit": 15119, + "Ġbugs": 15120, + "arents": 15121, + "ĠпÑĢоб": 15122, + "ĠInside": 15123, + "ipper": 15124, + "dramatic": 15125, + "Ġplanets": 15126, + "orde": 15127, + "Ġyoga": 15128, + "child": 15129, + "ĠMarie": 15130, + "ĠãģĤ": 15131, + "ĠBL": 15132, + "Ġfilmed": 15133, + "Ġrefresh": 15134, + "Ġtomatoes": 15135, + "Ġfet": 15136, + "Qué": 15137, + "Ġ!!": 15138, + "ĠëĤ´ë": 15139, + "rine": 15140, + "Ġinteractive": 15141, + "sal": 15142, + "annah": 15143, + "pez": 15144, + "ç¶ĵ": 15145, + "Ġunderstands": 15146, + "ĠTokyo": 15147, + "Ġlibraries": 15148, + "Ġreader": 15149, + "ijIJ": 15150, + "oz": 15151, + "ĠEnde": 15152, + "ĠFlo": 15153, + "Ġmild": 15154, + "Ġpoetry": 15155, + "Ġжив": 15156, + "æĦĽ": 15157, + "Ġbehave": 15158, + "Ġdoen": 15159, + "ĠSusan": 15160, + "page": 15161, + "raham": 15162, + "Ġcommunications": 15163, + "Ġtuning": 15164, + "Ġpac": 15165, + "Ġanxious": 15166, + "IO": 15167, + "Mark": 15168, + "Ġhiç": 15169, + "books": 15170, + "Ġpiss": 15171, + "Ġenabled": 15172, + "achelor": 15173, + "ĠFOR": 15174, + "Ġéc": 15175, + "ĠTR": 15176, + "ilst": 15177, + "hat": 15178, + "ĠìĿĮ": 15179, + "Ġtych": 15180, + "Ġjar": 15181, + "Ġbuilds": 15182, + "ĠArgent": 15183, + "Ġintermedi": 15184, + "Ġlou": 15185, + "Ġara": 15186, + "Ġassignment": 15187, + "Ġcabinet": 15188, + "Ġretirement": 15189, + "ãģ»": 15190, + "Ġdisabled": 15191, + "rica": 15192, + "Ġawards": 15193, + "Ġboots": 15194, + "Ġacknowled": 15195, + "Ġthy": 15196, + "Ġ구": 15197, + "Ġsynd": 15198, + "ний": 15199, + "ilton": 15200, + "Ġprobl": 15201, + "ĠFal": 15202, + "Ġverdade": 15203, + "Ġ700": 15204, + "ĠLearning": 15205, + "ocus": 15206, + "Ġpalace": 15207, + "Not": 15208, + "tain": 15209, + "cm": 15210, + "Ġmagnet": 15211, + "incoln": 15212, + "Ġfiguring": 15213, + "ĠLyn": 15214, + "ĠBoss": 15215, + "ĠVO": 15216, + "Ġdiagnosis": 15217, + "Ġequipped": 15218, + "watch": 15219, + "inos": 15220, + "aders": 15221, + "Ġshelf": 15222, + "Ġorganis": 15223, + "Ġnod": 15224, + "Ġkız": 15225, + "ppers": 15226, + "Ġrestore": 15227, + "Ġartic": 15228, + "ĠVoice": 15229, + "ıyorum": 15230, + "격": 15231, + "Ġspreading": 15232, + "Ġhips": 15233, + "Ġward": 15234, + "ureau": 15235, + "Ġintersection": 15236, + "66": 15237, + "Ġ39": 15238, + "ç³": 15239, + "Ġwaited": 15240, + "ì´": 15241, + "hhhh": 15242, + "Ġdys": 15243, + "ĠEN": 15244, + "Ġbatch": 15245, + "Ġcaf": 15246, + "Ġmarker": 15247, + "大家好": 15248, + "orable": 15249, + "ória": 15250, + "Ġstepped": 15251, + "Ġcelebrating": 15252, + "ана": 15253, + "Ġworn": 15254, + "ĠFol": 15255, + "Ġpla": 15256, + "Ġattempts": 15257, + "Ġtweet": 15258, + "Ġrust": 15259, + "gence": 15260, + "íĨµ": 15261, + "Ġrevel": 15262, + "Ġrecept": 15263, + "eness": 15264, + "Ġ((": 15265, + "ãĥ¼ãĥ": 15266, + "!âĢĭ": 15267, + "ĠìĨIJ": 15268, + "Ġinfluenced": 15269, + "иж": 15270, + "ĠконеÑĩно": 15271, + "Ġcolleges": 15272, + "ioni": 15273, + "Ġsag": 15274, + "Ann": 15275, + "olar": 15276, + "Ġexpressions": 15277, + "Ġsuits": 15278, + "Ġownership": 15279, + "eland": 15280, + "piece": 15281, + "æĢİä¹Ī": 15282, + "Ġdespués": 15283, + "Ġtel": 15284, + "Ġinsult": 15285, + "Ġêµīìŀ¥": 15286, + "ĠSmall": 15287, + "ĠFR": 15288, + "oka": 15289, + "berries": 15290, + "ĠAnton": 15291, + "елÑı": 15292, + "ÑıÑģ": 15293, + "Ġvalve": 15294, + "acts": 15295, + "Ġwoods": 15296, + "ண": 15297, + "Ġcultiv": 15298, + "Ġfá": 15299, + "ãģ¨ãģĦãģĨ": 15300, + "Ġcheers": 15301, + "Ġassumption": 15302, + "Ġfitness": 15303, + "ÃŃcul": 15304, + "Ġpodr": 15305, + "Ġweit": 15306, + "ĠHind": 15307, + "Ġdign": 15308, + "Ġзн": 15309, + "Ġsquad": 15310, + "Ġdestro": 15311, + "cere": 15312, + "shirt": 15313, + "immt": 15314, + "engers": 15315, + "Ġsä": 15316, + "kÅĤad": 15317, + "ĠÈĻ": 15318, + "Ġoccas": 15319, + "Ġì¤Ħ": 15320, + "Ġprocessor": 15321, + "ĠDM": 15322, + "ĠDaddy": 15323, + "Ġsooner": 15324, + "Ġstraightforward": 15325, + "Ġdepartments": 15326, + "ĠChrome": 15327, + "Ġworkplace": 15328, + "ĠPython": 15329, + "Ġmeng": 15330, + "ĠDAN": 15331, + "ĠIce": 15332, + "ĠëĪĪ": 15333, + "ĠGi": 15334, + "Ġhiring": 15335, + "Ġlanded": 15336, + "Ġdemocratic": 15337, + "iedz": 15338, + "ãģĺãĤĥ": 15339, + "Ġsev": 15340, + "icia": 15341, + "Ġespecial": 15342, + "ĠNous": 15343, + "Ġhät": 15344, + "Ġbou": 15345, + "pert": 15346, + "iesz": 15347, + "åijĢ": 15348, + "Ġvil": 15349, + "ÅĽli": 15350, + "Ġîn": 15351, + "Ġlosses": 15352, + "éķ·": 15353, + "Ġtoast": 15354, + "Ġrealm": 15355, + "ĠAustin": 15356, + "ĠInformation": 15357, + "Ġresume": 15358, + "Ġchase": 15359, + "Ġsalary": 15360, + "Ġë¶Ħ": 15361, + "лиÑĩ": 15362, + "ĠÑģлед": 15363, + "ĠFurther": 15364, + "Ġcaring": 15365, + "Ġvig": 15366, + "Ġvalor": 15367, + "è¿Ļ个": 15368, + "ĠÑĩа": 15369, + "Ġanalytics": 15370, + "Ġglobe": 15371, + "ĠMAN": 15372, + "Ġnel": 15373, + "ìĿ´ìķ¼": 15374, + "Ł¼": 15375, + "Ġoy": 15376, + "íķĺìĦ¸ìļĶ": 15377, + "jen": 15378, + "Ġtroubles": 15379, + "ahaha": 15380, + "Ġchurches": 15381, + "uet": 15382, + "Ġmeasurements": 15383, + "bil": 15384, + "ì½": 15385, + "ifully": 15386, + "инÑĥ": 15387, + "ĠWilson": 15388, + "¦´": 15389, + "ĠíĮĮ": 15390, + "Ġì°¨": 15391, + "Ġpúblic": 15392, + "ĠJerusalem": 15393, + "Ġnails": 15394, + "Ġspine": 15395, + "Ġhemos": 15396, + "Ġzn": 15397, + "quis": 15398, + "ĠLeben": 15399, + "Ġreferences": 15400, + "ITH": 15401, + "iper": 15402, + "ĠÑģебÑı": 15403, + "ìģ": 15404, + "ĠWa": 15405, + "state": 15406, + "§Ŀ": 15407, + "åħ±": 15408, + "ĠGener": 15409, + "Ġactress": 15410, + "ĠEnjoy": 15411, + "à¹ĥ": 15412, + "Ġ×Ĵ": 15413, + "Ġinfected": 15414, + "Ġshaking": 15415, + "Ġnick": 15416, + "ุ": 15417, + "Ġfot": 15418, + "Ġaccomplished": 15419, + "uke": 15420, + "Ġsheets": 15421, + "Ġfence": 15422, + "Ġnursing": 15423, + "Ġintroducing": 15424, + "Ġfeat": 15425, + "One": 15426, + "TO": 15427, + "Ġclubs": 15428, + "ĠBruce": 15429, + "onge": 15430, + "change": 15431, + "ĠBatman": 15432, + "åı°": 15433, + "ĠOfficer": 15434, + "Ġhydro": 15435, + "Ġsupplement": 15436, + "Ġcela": 15437, + "Ġlongest": 15438, + "Ġcompeting": 15439, + "Ġconhe": 15440, + "giving": 15441, + "Ġbrains": 15442, + "Ġloans": 15443, + "Ġwage": 15444, + "ĠClinton": 15445, + "ĠsÄĥ": 15446, + "aneous": 15447, + "Ġlord": 15448, + "ÑĢÑĥж": 15449, + "Ġquiz": 15450, + "Ġstiff": 15451, + "ĠLGB": 15452, + "sz": 15453, + "ME": 15454, + "mare": 15455, + "there": 15456, + "Ġnär": 15457, + "ĠMand": 15458, + "last": 15459, + "Ġdag": 15460, + "Ġhalfway": 15461, + "ĠBand": 15462, + "Ġëĭ¤ìĭľ": 15463, + "ĠAren": 15464, + "Ġile": 15465, + "PN": 15466, + "ento": 15467, + "Ġalgum": 15468, + "Ġsoccer": 15469, + "Ġblocked": 15470, + "ĠJonathan": 15471, + "Ġsew": 15472, + "ĠTestament": 15473, + "Ġvale": 15474, + "Ġbehavi": 15475, + "å§ĭ": 15476, + "Ġconna": 15477, + "ICH": 15478, + "Ġaudiences": 15479, + "ml": 15480, + "ammad": 15481, + "ĠìĤ´ì": 15482, + "IGH": 15483, + "Ġraces": 15484, + "emed": 15485, + "Ġmá»Ļt": 15486, + "ï": 15487, + "Ġovers": 15488, + "Ġdeclared": 15489, + "Ġsana": 15490, + "ĠUna": 15491, + "ĠÑĢе": 15492, + "ucks": 15493, + "Ġpairs": 15494, + "Ġange": 15495, + "Ne": 15496, + "Ġups": 15497, + "avy": 15498, + "ør": 15499, + "reek": 15500, + "Ġbehaviors": 15501, + "Ġreflected": 15502, + "Ġpriorities": 15503, + "Ġcondu": 15504, + "Ġretreat": 15505, + "Ġexpenses": 15506, + "Ġë´IJ": 15507, + "Ġtriple": 15508, + "Ġêµīìŀ¥íŀĪ": 15509, + "ält": 15510, + "Ġindigenous": 15511, + "Ġmining": 15512, + "Ġacceptable": 15513, + "Ġruin": 15514, + "CA": 15515, + "uine": 15516, + "Ġpipeline": 15517, + "ctic": 15518, + "êt": 15519, + "ĠвÑģего": 15520, + "Ġboun": 15521, + "ĠDigital": 15522, + "ĠBoom": 15523, + "ÑĨе": 15524, + "ĠлÑĥÑĩ": 15525, + "Ġasc": 15526, + "ĮĢë¡ľ": 15527, + "ĠGoodbye": 15528, + "Ġrender": 15529, + "enez": 15530, + "arre": 15531, + "ĠTHAT": 15532, + "bour": 15533, + "ición": 15534, + "ãĤŃ": 15535, + "Every": 15536, + "Ġwires": 15537, + "ĠParliament": 15538, + "nung": 15539, + "ateur": 15540, + "ĠSave": 15541, + "ĠPhys": 15542, + "Ġamor": 15543, + "ĠEve": 15544, + "Ġfright": 15545, + "Ġgamma": 15546, + "Ġmicros": 15547, + "mitt": 15548, + "ĠCode": 15549, + "ĠBey": 15550, + "pled": 15551, + "ĠиÑģполÑĮз": 15552, + "çĹ": 15553, + "ìĥī": 15554, + "她": 15555, + "Ġmonet": 15556, + "ĠJahre": 15557, + "Ġluxury": 15558, + "Ġdeaf": 15559, + "Ġbetray": 15560, + "Ġê²°": 15561, + "ики": 15562, + "Ġdefeated": 15563, + "Ġundert": 15564, + "Ġweg": 15565, + "Ġcooler": 15566, + "ãģķãĤĵ": 15567, + "iami": 15568, + "éĤĦæľī": 15569, + "ĠJessica": 15570, + "ĠJoy": 15571, + "Ġsophistic": 15572, + "ении": 15573, + "ðĿĺ": 15574, + "Ġchili": 15575, + "ĠType": 15576, + "Ġproteins": 15577, + "Ġpresenting": 15578, + "alia": 15579, + "ìļ¸": 15580, + "ĠMajor": 15581, + "Ġmolecule": 15582, + "umer": 15583, + "Ġcollapse": 15584, + "ĠAnyways": 15585, + "ĠMountain": 15586, + "anted": 15587, + "ãĢIJ": 15588, + "Ġвидео": 15589, + "æ°´": 15590, + "Aud": 15591, + "Ġconqu": 15592, + "Ġvoll": 15593, + "Ġknit": 15594, + "Ġmembr": 15595, + "ĠMarket": 15596, + "Ġdari": 15597, + "Ġcalculated": 15598, + "ги": 15599, + "Ġshrimp": 15600, + "ĠMu": 15601, + "ĠпÑĢоÑĤ": 15602, + "Ġìĺģìĥģ": 15603, + "Ġproductivity": 15604, + "Ġcognitive": 15605, + "ĠHeb": 15606, + "ictions": 15607, + "ê²½": 15608, + "Ġcré": 15609, + "för": 15610, + "Ġpraying": 15611, + "ashi": 15612, + "ĠTik": 15613, + "ór": 15614, + "wen": 15615, + "ÑĮÑİ": 15616, + "ixo": 15617, + "Ġ(\"": 15618, + "ĠÑĤел": 15619, + "Ġìĸ´ëĸ¤": 15620, + "ĠпеÑĢед": 15621, + "ĠDrive": 15622, + "ãĢij": 15623, + "ĠEqu": 15624, + "Ġequilibrium": 15625, + "Ġdescribes": 15626, + "нее": 15627, + "42": 15628, + "ĠCurrent": 15629, + "yy": 15630, + "Ġabsorb": 15631, + "Ġsoldier": 15632, + "ders": 15633, + "Ġtestimony": 15634, + "Ġdecline": 15635, + "ľë¡ľ": 15636, + "gage": 15637, + "Ġinspire": 15638, + "lapping": 15639, + "Ġspinning": 15640, + "Ġslavery": 15641, + "Ġfacial": 15642, + "Ġtraditions": 15643, + "ários": 15644, + "ĠHospital": 15645, + "Ġnest": 15646, + "ĠëĪĦ": 15647, + "Ġtoi": 15648, + "Ġfears": 15649, + "ìħ¨": 15650, + "ĠMuh": 15651, + "Ġgraduation": 15652, + "Ġimpacted": 15653, + "Ġaunt": 15654, + "ĠLets": 15655, + "Ġaluminum": 15656, + "Ġdominant": 15657, + "ĠDavis": 15658, + "ĠNavy": 15659, + "Ġcompt": 15660, + "oples": 15661, + "Ġestava": 15662, + "è¥": 15663, + "Ġscal": 15664, + "Ġpreserve": 15665, + "ĠOpp": 15666, + "Ġpractically": 15667, + "Ġmagnitude": 15668, + "Ġfitting": 15669, + "Ġcoordinate": 15670, + "Ġfurniture": 15671, + "ĠFamil": 15672, + "Ġexplosion": 15673, + "Ġdocumentary": 15674, + "ĠScript": 15675, + "Ġportray": 15676, + "mat": 15677, + "Ġscheduled": 15678, + "Ġdynamics": 15679, + "phy": 15680, + "aky": 15681, + "ĠUI": 15682, + "Che": 15683, + "Ġcontinuously": 15684, + "ĠProv": 15685, + "å°ij": 15686, + "Ñĥз": 15687, + "rah": 15688, + "Ġgerne": 15689, + "proof": 15690, + "Ġsecretary": 15691, + "ĠPatreon": 15692, + "scream": 15693, + "ĠKids": 15694, + "á»ĵi": 15695, + "Ġkg": 15696, + "Ġuncertainty": 15697, + "Ġкажд": 15698, + "Ġmitig": 15699, + "Ġreads": 15700, + "å·²": 15701, + "ĠRu": 15702, + "Ġpriest": 15703, + "Ġнед": 15704, + "Ġlimitations": 15705, + "Ġfloat": 15706, + "600": 15707, + "ĠToy": 15708, + "ĠJimmy": 15709, + "Ġoffensive": 15710, + "eni": 15711, + "ĠXi": 15712, + "Ġeyebr": 15713, + "ĠTurk": 15714, + "Ġaccidentally": 15715, + "Ġohne": 15716, + "ĠSaud": 15717, + "95": 15718, + "ĠDutch": 15719, + "анÑģ": 15720, + "ĠSeattle": 15721, + "Ġëĵ±": 15722, + "check": 15723, + "kÄĻ": 15724, + "Ġcontributions": 15725, + "Ġbeside": 15726, + "Ġquindi": 15727, + "Ġflew": 15728, + "æŶ": 15729, + "ذا": 15730, + "ĠLO": 15731, + "Ġwaist": 15732, + "ĠEV": 15733, + "Ġholidays": 15734, + "jon": 15735, + "Ġmisunder": 15736, + "Ñıн": 15737, + "Ġbout": 15738, + "Ġdimin": 15739, + "ẽ": 15740, + "ól": 15741, + "ĠGrace": 15742, + "Ġinputs": 15743, + "Ġdeny": 15744, + "Ġforming": 15745, + "ĠBild": 15746, + "Ġadequ": 15747, + "Ġfolk": 15748, + "Ġrejected": 15749, + "semb": 15750, + "Ġfrustrated": 15751, + "open": 15752, + "ĠBetter": 15753, + "ilon": 15754, + "Ġtowel": 15755, + "Ġdifferential": 15756, + "Ġsacred": 15757, + "Ġsail": 15758, + "éĩĮ": 15759, + "entimes": 15760, + "Ġgentleman": 15761, + "Ġiconic": 15762, + "Ġcomparing": 15763, + "Ġsagt": 15764, + "Ġtexts": 15765, + "Ġgrandma": 15766, + "Ġrolls": 15767, + "Ġcontents": 15768, + "ä¸į好": 15769, + "оÑģÑģ": 15770, + "Ġsuspension": 15771, + "roit": 15772, + "¦¼": 15773, + "Ġassez": 15774, + "Ġdort": 15775, + "ĠMath": 15776, + "ĠVictor": 15777, + "ĠJavaScript": 15778, + "ä¸įå°į": 15779, + "Ġenhan": 15780, + "ÅĻ": 15781, + "ĠBush": 15782, + "Ġpromotion": 15783, + "Ġkin": 15784, + "Ġmonsters": 15785, + "ĠColorado": 15786, + "Ġβ": 15787, + "íķ´ìļĶ": 15788, + "æŃ£": 15789, + "ifferent": 15790, + "Ġnaked": 15791, + "Ġprod": 15792, + "etics": 15793, + "ĠWoman": 15794, + "Ġtreatments": 15795, + "Ġestoy": 15796, + "vé": 15797, + "Ġlifting": 15798, + "Ġyapt": 15799, + "ĠRober": 15800, + "Ġì¹ľ": 15801, + "Ġsubstitute": 15802, + "aku": 15803, + "ridge": 15804, + "Ġê±°ë": 15805, + "Ġresponded": 15806, + "Ġbé": 15807, + "ĠEngineer": 15808, + "Ġtransferred": 15809, + "ë²": 15810, + "Ġhaber": 15811, + "oop": 15812, + "ĠWE": 15813, + "Ġvest": 15814, + "Ġforty": 15815, + "ĠDS": 15816, + "Ġ2004": 15817, + "Ġcoaching": 15818, + "nom": 15819, + "ĠBab": 15820, + "Ġnossa": 15821, + "ĠJake": 15822, + "Ġgy": 15823, + "Ġdeleg": 15824, + "Ġìŀł": 15825, + "ĠкÑĢаÑģ": 15826, + "Ġstandpoint": 15827, + "Ġdisad": 15828, + "Ġartwork": 15829, + "Ad": 15830, + "illo": 15831, + "ĠÄijược": 15832, + "ĠProm": 15833, + "ĠLib": 15834, + "Ġcriticism": 15835, + "Ġcontacts": 15836, + "ÑĢам": 15837, + "Ġachievement": 15838, + "ÐĶа": 15839, + "Ġdissol": 15840, + "ĠVegas": 15841, + "Ġstreams": 15842, + "ĠKent": 15843, + "ĠعÙĦÙī": 15844, + "Ġradius": 15845, + "Ġsucks": 15846, + "ĠAch": 15847, + "Ġfi": 15848, + "oust": 15849, + "ĠлÑİди": 15850, + "Ġpalette": 15851, + "ĠHaz": 15852, + "ĠAnthony": 15853, + "Ġtema": 15854, + "ĠCos": 15855, + "Ġsafer": 15856, + "αÏĤ": 15857, + "Ġcontrad": 15858, + "Ġmaior": 15859, + "Ġinflation": 15860, + "ĠSilver": 15861, + "Ġattending": 15862, + "íķľíħĮ": 15863, + "arto": 15864, + "Ġapplauding": 15865, + "Ġcomputing": 15866, + "ĠHat": 15867, + "æ»": 15868, + "know": 15869, + "makers": 15870, + "Ġconoc": 15871, + "Ġeducated": 15872, + "Ġmodified": 15873, + "Ġinclusion": 15874, + "mental": 15875, + "ŀIJ": 15876, + "isia": 15877, + "ĠÏĢοÏħ": 15878, + "Ġaun": 15879, + "ĠIreland": 15880, + "Ġkö": 15881, + "Ġcompliance": 15882, + "Ġinspiring": 15883, + "иÑĤелÑĮно": 15884, + "Ġdispos": 15885, + "ì°¨": 15886, + "Ġwip": 15887, + "rical": 15888, + "rawd": 15889, + "Ġtres": 15890, + "Ġmobil": 15891, + "olutions": 15892, + "BO": 15893, + "Ġbounce": 15894, + "Ġassumed": 15895, + "ĠMedical": 15896, + "Ġfiscal": 15897, + "ĠngÆ°á»Ŀi": 15898, + "itionally": 15899, + "Ġstolen": 15900, + "ĠBM": 15901, + "Ġmechanisms": 15902, + "εί": 15903, + "Ġqualified": 15904, + "ĠìŀIJë": 15905, + "ughters": 15906, + "ĠHIV": 15907, + "ĠLots": 15908, + "Ġservers": 15909, + "Ġcarr": 15910, + "ĠTogether": 15911, + "Ġattracted": 15912, + "Ġkr": 15913, + "æĪijæĺ¯": 15914, + "thur": 15915, + "inin": 15916, + "ĠHalf": 15917, + "ÈĽ": 15918, + "ĠPap": 15919, + "Ġreminded": 15920, + "ALL": 15921, + "Ġhelmet": 15922, + "Ġbottles": 15923, + "Ġprofessors": 15924, + "Ġseine": 15925, + "ÅĤÄħ": 15926, + "ãĥı": 15927, + "Ġê±°ìķ¼": 15928, + "Ġ×¢×ľ": 15929, + "fun": 15930, + "ĠBird": 15931, + "Ġfighter": 15932, + "ĠëĶ°ë": 15933, + "ĠTool": 15934, + "Ġtin": 15935, + "inois": 15936, + "ë¶Ħ": 15937, + "×Ļף": 15938, + "ĠCAR": 15939, + "åIJį": 15940, + "irsty": 15941, + "Ġoutdoor": 15942, + "ĠNS": 15943, + "ãħİ": 15944, + "ffen": 15945, + "Ġlud": 15946, + "Hello": 15947, + "Ġroller": 15948, + "iele": 15949, + "ĠPoland": 15950, + "Ġapa": 15951, + "exp": 15952, + "Ġcertificate": 15953, + "ĠTown": 15954, + "аÑİÑĤÑģÑı": 15955, + "ilde": 15956, + "Ġdetermin": 15957, + "PR": 15958, + "Ġfreeze": 15959, + "Ġmainstream": 15960, + "Ġobjectives": 15961, + "blo": 15962, + "Ġtakie": 15963, + "åĵĪåĵĪ": 15964, + "Ġë°Ķë¡ľ": 15965, + "elet": 15966, + "ĠIV": 15967, + "ĠFast": 15968, + "Ġdere": 15969, + "emp": 15970, + "ĠDra": 15971, + "ĠìŀĪìĹĪ": 15972, + "Ġdiscrimination": 15973, + "Ġείναι": 15974, + "necess": 15975, + "æ®": 15976, + "ıģı": 15977, + "Ġposting": 15978, + "wiÅĽcie": 15979, + "Ġlub": 15980, + "Ġolive": 15981, + "Ġrim": 15982, + "Ġmodeling": 15983, + "Ġaño": 15984, + "ĠPakistan": 15985, + "Ġoverl": 15986, + "Ġinflam": 15987, + "NE": 15988, + "ìĹIJê²Į": 15989, + "Ġattended": 15990, + "Ġdealt": 15991, + "ĠAlt": 15992, + "ĠLincoln": 15993, + "Ġawake": 15994, + "Ġfilters": 15995, + "ĠWithin": 15996, + "czywiÅĽcie": 15997, + "Ġsû": 15998, + "ĠJohnny": 15999, + "Ġintegrity": 16000, + "Ġisolation": 16001, + "ĠEasy": 16002, + "ĠпÑĢин": 16003, + "ĠAlice": 16004, + "Ġsmiling": 16005, + "enix": 16006, + ",...": 16007, + "ζ": 16008, + "Ġbegun": 16009, + "Ġjewel": 16010, + "Ġconventional": 16011, + "Ġstatist": 16012, + "Ġhanded": 16013, + "Ġirre": 16014, + "Ġprohib": 16015, + "Ġsatellite": 16016, + "é¦Ļ": 16017, + "ĠIndust": 16018, + "Ġtraged": 16019, + "Ġtrava": 16020, + "Ġihm": 16021, + "Ġcruel": 16022, + "ĠAgora": 16023, + "ĠDoc": 16024, + "Ġzones": 16025, + "Ġmall": 16026, + "Ġtray": 16027, + "×ķ׳": 16028, + "Ġirrit": 16029, + "Ġkans": 16030, + "ĠBeat": 16031, + "udge": 16032, + "ielle": 16033, + "Ġtrusted": 16034, + "Ġbikes": 16035, + "ĠÑĥп": 16036, + "ĠMember": 16037, + "wick": 16038, + "Ġcreators": 16039, + "Ġheritage": 16040, + "indistinct": 16041, + "Ġresur": 16042, + "ennen": 16043, + "Come": 16044, + "Ġfiring": 16045, + "ĠBueno": 16046, + "ĠТо": 16047, + "ikan": 16048, + "ettes": 16049, + "Ġkes": 16050, + "Ġtrips": 16051, + "Ġdivorce": 16052, + "ĠKl": 16053, + "Ġconsol": 16054, + "keep": 16055, + "기ê°Ģ": 16056, + "ĠReport": 16057, + "Ġhosting": 16058, + "Ġdiamond": 16059, + "Ġcomplic": 16060, + "Ġhelicop": 16061, + "Ġdepuis": 16062, + "ds": 16063, + "ĠChan": 16064, + "Ñıл": 16065, + "Ġscissors": 16066, + "ilation": 16067, + "Ġproportion": 16068, + "ERE": 16069, + "ĠÙĪاÙĦ": 16070, + "inta": 16071, + "Ġmuchas": 16072, + "uation": 16073, + "itis": 16074, + "æĬĬ": 16075, + "ÑıÑī": 16076, + "Ġniin": 16077, + "Ġemphasize": 16078, + "uela": 16079, + "Ġproducers": 16080, + "Ġrze": 16081, + "änder": 16082, + "ETH": 16083, + "æº": 16084, + "Ġconstitu": 16085, + "åĽ½": 16086, + "Ġperformances": 16087, + "istle": 16088, + "gov": 16089, + "ĠLiter": 16090, + "Ġincorporate": 16091, + "Ġeducate": 16092, + "ĠNin": 16093, + "쪽": 16094, + "ÙĩÙħ": 16095, + "eleration": 16096, + "×ķ×ij": 16097, + "ĠyaÅŁ": 16098, + "orous": 16099, + "ĠCas": 16100, + "Ġgrants": 16101, + "ëĬ¥": 16102, + "amel": 16103, + "Ġê·¸ëłĩê²Į": 16104, + "ĠEste": 16105, + "ÑħодиÑĤ": 16106, + "ĠпоÑģле": 16107, + "Ġgent": 16108, + "Ġfocuses": 16109, + "alities": 16110, + "ĠRh": 16111, + "ë³´": 16112, + "æ°ij": 16113, + "ĠDance": 16114, + "rr": 16115, + "Ġamer": 16116, + "Ġutilize": 16117, + "ĠlÃŃ": 16118, + "ĠAmong": 16119, + "Ġpregnancy": 16120, + "Ġloops": 16121, + "алоÑģÑĮ": 16122, + "ĠMoh": 16123, + "Ġcatching": 16124, + "Ġglob": 16125, + "Ġajud": 16126, + "Ġ[?": 16127, + "ĠAnal": 16128, + "looking": 16129, + "Ġsurfaces": 16130, + "Ġprogressive": 16131, + "Ġviral": 16132, + "08": 16133, + "ξ": 16134, + "KA": 16135, + "Ġży": 16136, + "Ġpicks": 16137, + "annon": 16138, + "Ġbulk": 16139, + "ĠRoss": 16140, + "Ġdescribing": 16141, + "ĠGel": 16142, + "Ġlocally": 16143, + "Ġendless": 16144, + "Ġmassage": 16145, + "Ġcleaned": 16146, + "Ġtraveled": 16147, + "енÑĭ": 16148, + "Ġsentiment": 16149, + "igma": 16150, + "ĠNas": 16151, + "Ġchemicals": 16152, + "Ġrighteous": 16153, + "ĠMagic": 16154, + "Ġrelates": 16155, + "Ġtrucks": 16156, + "Ġ1960": 16157, + "åĪ¥": 16158, + "Ġappet": 16159, + "Ġsnacks": 16160, + "ĠSummer": 16161, + "Ġyüz": 16162, + "Ġpris": 16163, + "ĠMexican": 16164, + "Ġtransparen": 16165, + "Ġminority": 16166, + "Ġverte": 16167, + "Ġlassen": 16168, + "46": 16169, + "лек": 16170, + "ép": 16171, + "ĠÑĦилÑĮ": 16172, + "Ġiyi": 16173, + "Ġspan": 16174, + "íķĺì§Ģ": 16175, + "Ġindicated": 16176, + "quar": 16177, + "Ġscholarship": 16178, + "ĠLGBT": 16179, + "Ġhistorically": 16180, + "óÅĤ": 16181, + "Ġminist": 16182, + "Ġpenet": 16183, + "ĠRap": 16184, + "Ġconservation": 16185, + "缴": 16186, + "ĠHoney": 16187, + "ĠBei": 16188, + "idel": 16189, + "Ġresponsibilities": 16190, + "Ġmessy": 16191, + "ĠExcept": 16192, + "ORE": 16193, + "Ġinitiatives": 16194, + "Ġjunior": 16195, + "Ġdesigners": 16196, + "Ġexploration": 16197, + "Ġsponsor": 16198, + "Ġmobility": 16199, + "Ġinteg": 16200, + "lando": 16201, + "Ġbark": 16202, + "Ġindicates": 16203, + "à¶": 16204, + "Ġemployer": 16205, + "å®ī": 16206, + "Ġcousin": 16207, + "Ġboiling": 16208, + "Ġchrom": 16209, + "Ġçal": 16210, + "Ġperpet": 16211, + "Ġcontained": 16212, + "Ġparks": 16213, + "Ы": 16214, + "ĠEngineering": 16215, + "Please": 16216, + "ĠStarting": 16217, + "hero": 16218, + "Ġlawyers": 16219, + "西": 16220, + "Ġzd": 16221, + "Ġfranchise": 16222, + "rage": 16223, + "Ġintuit": 16224, + "ĠGL": 16225, + "reach": 16226, + "ĠElle": 16227, + "ĠnhÆ°": 16228, + "ĠNord": 16229, + "Ġbean": 16230, + "07": 16231, + "Ġpleasant": 16232, + "å½ĵ": 16233, + "viron": 16234, + "Ġgradient": 16235, + "zus": 16236, + "ĠEM": 16237, + "Ġessay": 16238, + "ìĹIJìļĶ": 16239, + "ến": 16240, + "nu": 16241, + "ừ": 16242, + "ĠÃīs": 16243, + "Ġdenomin": 16244, + "ĠGirls": 16245, + "Ġpersonnes": 16246, + "ĠاÙĦØ£": 16247, + "bild": 16248, + "ĠStat": 16249, + "Ġcompliment": 16250, + "ĠKate": 16251, + "Ġoptimal": 16252, + "Ġhid": 16253, + "دÙĬ": 16254, + "Ġquicker": 16255, + "wall": 16256, + "En": 16257, + "INE": 16258, + "???": 16259, + "ì²´": 16260, + "ĠAction": 16261, + "åŁ": 16262, + "Ġpenalty": 16263, + "ĠKaz": 16264, + "'?": 16265, + "Ġcried": 16266, + "Ġcanvas": 16267, + "fte": 16268, + "Ġexclud": 16269, + "¸ë¡ľ": 16270, + "Ġemphasis": 16271, + "Ġenzy": 16272, + "ĠHou": 16273, + "Ġoverseas": 16274, + "ÃŃamos": 16275, + "師": 16276, + "öglich": 16277, + "Ġheadphones": 16278, + "cn": 16279, + "ĠAge": 16280, + "Ġakan": 16281, + "Ġcharacteristic": 16282, + "íķĺë©´": 16283, + "gets": 16284, + "Ġë¶Ī": 16285, + "Ġrival": 16286, + "Ġborders": 16287, + "emente": 16288, + "emás": 16289, + "Ġyol": 16290, + "Ġcompe": 16291, + "enders": 16292, + "ından": 16293, + "Ġmöglich": 16294, + "Ġbubbles": 16295, + "natural": 16296, + "Ġarmed": 16297, + "Ġelabor": 16298, + "ĠìĿ´ë²Ī": 16299, + "Ġwashed": 16300, + "οÏħμε": 16301, + "è«ĭ": 16302, + "Ġflavors": 16303, + "Ġexiste": 16304, + "Ġprest": 16305, + "ĠThema": 16306, + "опÑĢоÑģ": 16307, + "eron": 16308, + "UE": 16309, + "eri": 16310, + "Ġconcer": 16311, + "Ġaixò": 16312, + "åħ©": 16313, + "Ġprotective": 16314, + "ĠзнаÑİ": 16315, + "ĠëĤł": 16316, + "ĠIII": 16317, + "Ġmeer": 16318, + "ĠShop": 16319, + "lli": 16320, + "ĠOrder": 16321, + "ĠMY": 16322, + "ĠGhost": 16323, + "ãĤĤãģĨ": 16324, + "adel": 16325, + "Ġstole": 16326, + "Ġreleasing": 16327, + "ĠComment": 16328, + "Ġtrains": 16329, + "ëªħ": 16330, + "Ġwissen": 16331, + "ensed": 16332, + "Ġdescend": 16333, + "Ġfier": 16334, + "Ġradi": 16335, + "Ġpersu": 16336, + "ç¢": 16337, + "Ġмн": 16338, + "ĠDest": 16339, + "Ġworries": 16340, + "itet": 16341, + "bas": 16342, + "Ġstab": 16343, + "name": 16344, + "oric": 16345, + "ĠClose": 16346, + "Ġalumni": 16347, + "ĠSelf": 16348, + "ffe": 16349, + "itating": 16350, + "atherine": 16351, + "ĠRights": 16352, + "Ġellos": 16353, + "Ġwarrant": 16354, + "Ġnerve": 16355, + "Ġvegetable": 16356, + "ĠTeil": 16357, + "Ġê°ĻìĿ´": 16358, + "RY": 16359, + "Ġsustainability": 16360, + "Ġsteht": 16361, + "Ġbrid": 16362, + "adaÅŁ": 16363, + "Ġtv": 16364, + "Ġduration": 16365, + "Ġpessoa": 16366, + "Ġmetrics": 16367, + "Ġadam": 16368, + "cas": 16369, + "аÑĢи": 16370, + "Ġevident": 16371, + "Ġdisplayed": 16372, + "ائ": 16373, + "Ġreck": 16374, + "ĠBuddha": 16375, + "Ġdele": 16376, + "ĠDiego": 16377, + "osph": 16378, + "Ġbla": 16379, + "ĠMik": 16380, + "ulator": 16381, + "Ġ2001": 16382, + "Ġpromoting": 16383, + "ych": 16384, + "ĠEX": 16385, + "Ġlastly": 16386, + "Ġoutline": 16387, + "Ġspirits": 16388, + "Ġveux": 16389, + "Ġsubtract": 16390, + "ĠÅŁimdi": 16391, + "Ġpins": 16392, + "Ġburger": 16393, + "Ġmolto": 16394, + "ĠhabÃŃa": 16395, + "Ġë°ĺ": 16396, + "igu": 16397, + "erst": 16398, + "Ġnen": 16399, + "Ġbacon": 16400, + "itious": 16401, + "Ġcarries": 16402, + "Ġpromises": 16403, + "nde": 16404, + "ĠLeft": 16405, + "ĠLim": 16406, + "æ£": 16407, + "Ġ44": 16408, + "Ġcareers": 16409, + "Ġ주ë": 16410, + "Ġspeeds": 16411, + "qué": 16412, + "mad": 16413, + "market": 16414, + "isme": 16415, + "Ġ2003": 16416, + "Ġrecess": 16417, + "ĠJUD": 16418, + "Ġracist": 16419, + "ĠSchl": 16420, + "Ġparler": 16421, + "Ġotros": 16422, + "ishes": 16423, + "Ġconverted": 16424, + "aaaa": 16425, + "ании": 16426, + "ĠArk": 16427, + "ĠChance": 16428, + "Ġelementary": 16429, + "εν": 16430, + "inks": 16431, + "Interviewer": 16432, + "Ġfreely": 16433, + "alah": 16434, + "Ġëĭ¤ë¥¸": 16435, + "Ġrequested": 16436, + "Ġtorque": 16437, + "noÅĽci": 16438, + "oured": 16439, + "ĠStaff": 16440, + "Ġstain": 16441, + "ĠAlan": 16442, + "Ġvere": 16443, + "ĠWinter": 16444, + "Ġdefect": 16445, + "iedy": 16446, + "Ġbeats": 16447, + "Ġhá": 16448, + "umn": 16449, + "oons": 16450, + "itudes": 16451, + "Ġseit": 16452, + "oly": 16453, + "Ġreserv": 16454, + "Ġextr": 16455, + "Ġphysician": 16456, + "visor": 16457, + "Ġhandful": 16458, + "ĠNations": 16459, + "Ġì¢ĭìĿĢ": 16460, + "uccess": 16461, + "Ġupstairs": 16462, + "ĠSquare": 16463, + "Ġhein": 16464, + "ĠSeason": 16465, + "olis": 16466, + "Ġprince": 16467, + "Ġdefensive": 16468, + "ç½": 16469, + "ĠмеÑģÑĤ": 16470, + "Ñĸй": 16471, + "ĠاÙĨ": 16472, + "umble": 16473, + "ê¹ĮìļĶ": 16474, + "Ġassass": 16475, + "Ġcircular": 16476, + "Ġqualities": 16477, + "Ġhmm": 16478, + "Ġblown": 16479, + "ĠLiz": 16480, + "ĠKur": 16481, + "ĠSA": 16482, + "Ġfindings": 16483, + "Ġcolours": 16484, + "Ġdelle": 16485, + "ĠIR": 16486, + "ĠAth": 16487, + "ĠDub": 16488, + "ĠOx": 16489, + "ĠØ®": 16490, + "Ġpockets": 16491, + "Ġgrill": 16492, + "Ġswitching": 16493, + "Ġpreferred": 16494, + "ĠWales": 16495, + "Ġexemplo": 16496, + "Ġchopped": 16497, + "Ġvaccination": 16498, + "Ġneuro": 16499, + "Ġspecify": 16500, + "ivos": 16501, + "Ġserá": 16502, + "Ġzie": 16503, + "Ġà®®": 16504, + "Ġresulting": 16505, + "ĠUgh": 16506, + "Ġmessed": 16507, + "CD": 16508, + "Ġpaar": 16509, + "Ġcomer": 16510, + "Ġcouch": 16511, + "ĠFestival": 16512, + "Ġ49": 16513, + "vous": 16514, + "zens": 16515, + "種": 16516, + "ĠKennedy": 16517, + "ĠTs": 16518, + "Ġë³´ìĹ": 16519, + "Ġdemonstration": 16520, + "Ġunto": 16521, + "Ġfrustrating": 16522, + "Ġlaboratory": 16523, + "Ġegy": 16524, + "Ġbeautifully": 16525, + "Ġìŀ¬ë": 16526, + "Ġalgu": 16527, + "Ġöyle": 16528, + "ä½łçľĭ": 16529, + "ĠPH": 16530, + "Ġfortune": 16531, + "Ġcleaner": 16532, + "ĠRobin": 16533, + "Ġsaus": 16534, + "ĠGeld": 16535, + "Ġkat": 16536, + "obs": 16537, + "Ġolur": 16538, + "Ġmatt": 16539, + "Ġquesta": 16540, + "Ġsuggestion": 16541, + "encer": 16542, + "оÑģÑĤ": 16543, + "Ġradar": 16544, + "Ġìŀ¡": 16545, + "isha": 16546, + "ந": 16547, + "ãĤĵãģª": 16548, + "jes": 16549, + "Ġveel": 16550, + "ìĤ°": 16551, + "Ġauthors": 16552, + "ãĢİ": 16553, + "plan": 16554, + "Ġcollaborative": 16555, + "Ġinstinct": 16556, + "Ġfarming": 16557, + "auge": 16558, + "Edu": 16559, + "Ġmembership": 16560, + "Ġsimultaneously": 16561, + "Ġbake": 16562, + "Ġkä": 16563, + "Ġlectures": 16564, + "ÑĩеÑģ": 16565, + "Ġprendre": 16566, + "Ġcollaps": 16567, + "ĠSaya": 16568, + "ĠFut": 16569, + "Ġyog": 16570, + "ĠRather": 16571, + "رÙĬ": 16572, + "Ġcamps": 16573, + "олод": 16574, + "Ġsimulation": 16575, + "ĠMak": 16576, + "Laughs": 16577, + "Ġgrey": 16578, + "Ġsentences": 16579, + "yen": 16580, + "ĠUnless": 16581, + "Je": 16582, + "ĠSatan": 16583, + "ĠÑĤакже": 16584, + "ĠNA": 16585, + "Ġbron": 16586, + "Ġ?]": 16587, + "Ġsouls": 16588, + "Ġlightning": 16589, + "Ġimagined": 16590, + "Ġczyli": 16591, + "psilon": 16592, + "etta": 16593, + "Ġbelieving": 16594, + "Ġstrongest": 16595, + "ĠCON": 16596, + "Ġquelques": 16597, + "Ġimmigrants": 16598, + "Ġwallet": 16599, + "éĢĻæĺ¯": 16600, + "ĠJersey": 16601, + "Ġimplications": 16602, + "Ġforb": 16603, + "ãĢı": 16604, + "Ġunbelievable": 16605, + "اء": 16606, + "Ġoperational": 16607, + "üs": 16608, + "ĠGM": 16609, + "Ġê·¸ëŁ°ëį°": 16610, + "Ġgracias": 16611, + "Ġentend": 16612, + "ĠRegard": 16613, + "rob": 16614, + "ĠÑĤеÑħ": 16615, + "èı": 16616, + "ĠRevolution": 16617, + "Ġwaar": 16618, + "ĠBiz": 16619, + "theless": 16620, + "Ġsponsored": 16621, + "quier": 16622, + "ĠìĿ¼ë": 16623, + "Ġtek": 16624, + "ĠëIJł": 16625, + "igkeit": 16626, + "ĠLuck": 16627, + "ĠCertainly": 16628, + "Ġtoll": 16629, + "ĠниÑĩего": 16630, + "ĠMoney": 16631, + "ĠÑģÑĤоÑĢ": 16632, + "ĠDouble": 16633, + "ĠWolf": 16634, + "Ġchunk": 16635, + "άν": 16636, + "ités": 16637, + "oning": 16638, + "Mar": 16639, + "Ġgrandes": 16640, + "Ġcollections": 16641, + "ĠEuropa": 16642, + "ĠаÑĢ": 16643, + "ĠâĢĭâĢĭâĢĭ": 16644, + "Ġê·¸ëŁ¬ë©´": 16645, + "ĠобÑĬ": 16646, + "Ġãģª": 16647, + "Ġìĭľê°Ħ": 16648, + "ĠCustom": 16649, + "Ġì²ĺ": 16650, + "ÑĸлÑĮ": 16651, + "Ġindividually": 16652, + "íĹ": 16653, + "Ġdozen": 16654, + "Ġowe": 16655, + "ĠVictoria": 16656, + "åı¯èĥ½": 16657, + "Ġbeet": 16658, + "urb": 16659, + "Ġanalog": 16660, + "ição": 16661, + "Ĥľ": 16662, + "soever": 16663, + "Ġmodo": 16664, + "Ġsubscribed": 16665, + "ìŀ¬": 16666, + "Ġentities": 16667, + "çīĩ": 16668, + "Ġcloset": 16669, + "Ġresponding": 16670, + "Ġprinter": 16671, + "ĠStephan": 16672, + "ĠbyÅĤ": 16673, + "ĠDom": 16674, + "ĠFern": 16675, + "ĠPier": 16676, + "ĠwiÄĻc": 16677, + "Ġhence": 16678, + "Ġmodules": 16679, + "ãĥ¬": 16680, + "ĠëĶ±": 16681, + "ĠDanny": 16682, + "ĠÑģебе": 16683, + "Ġvad": 16684, + "ĠìĹĦ": 16685, + "Ġsous": 16686, + "Ġsphere": 16687, + "BY": 16688, + "ĠPed": 16689, + "igned": 16690, + "Ġwheat": 16691, + "Ġunders": 16692, + "Ġevolve": 16693, + "Ġdeclar": 16694, + "Ġlightly": 16695, + "Ġidentifying": 16696, + "æĦıæĢĿ": 16697, + "Ġlegendary": 16698, + "Ġgenuine": 16699, + "Ġgrind": 16700, + "ĠUne": 16701, + "geben": 16702, + "Ġbicy": 16703, + "Ġjumps": 16704, + "Ġprovince": 16705, + "ziÄĻ": 16706, + "Ġ×IJ׳×Ļ": 16707, + "Ġhoc": 16708, + "Ġбл": 16709, + "ĠGrad": 16710, + "Ġrevenge": 16711, + "ĠاÙĦت": 16712, + "ooh": 16713, + "æĭľ": 16714, + "аÑĨии": 16715, + "å¹³": 16716, + "Ġelectro": 16717, + "ĠëIJIJ": 16718, + "ãģ§ãģ¯": 16719, + "Ġfals": 16720, + "riel": 16721, + "oker": 16722, + "ĠExcellent": 16723, + "ĠMorgan": 16724, + "Ġbrick": 16725, + "Ġsubstantial": 16726, + "Ġpollution": 16727, + "ĠTür": 16728, + "ĠEvet": 16729, + "Ġlung": 16730, + "ãģĸ": 16731, + "×Ļש": 16732, + "ommes": 16733, + "Ġrealizing": 16734, + "Ġhumble": 16735, + "ĠLock": 16736, + "Ġbod": 16737, + "Ġìĸ¸": 16738, + "Ġpeers": 16739, + "uzz": 16740, + "Ġembedded": 16741, + "Ġclaro": 16742, + "Ġaggreg": 16743, + "Ġemployers": 16744, + "ĠRaj": 16745, + "Ġãģ¨": 16746, + "ĠYi": 16747, + "Ġjeu": 16748, + "aters": 16749, + "Ġstrikes": 16750, + "nos": 16751, + "autres": 16752, + "dr": 16753, + "opher": 16754, + "ĠApparently": 16755, + "íĺĦ": 16756, + "Ġinfant": 16757, + "اب": 16758, + "ÑĤÑĭ": 16759, + "íĽ": 16760, + "Ú¯": 16761, + "Ġredes": 16762, + "acaģım": 16763, + "ĠDAVID": 16764, + "ĠChicken": 16765, + "Ġperspectives": 16766, + "Ġviewer": 16767, + "Ġshar": 16768, + "ĠпÑĢоиз": 16769, + "ligt": 16770, + "eros": 16771, + "itable": 16772, + "илоÑģÑĮ": 16773, + "ĠdifÃŃ": 16774, + "´ëį°": 16775, + "Ġretired": 16776, + "Ġthats": 16777, + "zenie": 16778, + "beiten": 16779, + "Ġmycket": 16780, + "ĠRab": 16781, + "Ġinflamm": 16782, + "ì°®": 16783, + "Ġdum": 16784, + "Ġdaddy": 16785, + "æľŁ": 16786, + "Ġimmers": 16787, + "Ġplaylist": 16788, + "à¯Ĩ": 16789, + "Ġtraum": 16790, + "Ġrefuse": 16791, + "step": 16792, + "à®ļ": 16793, + "cup": 16794, + "Ġpops": 16795, + "rimin": 16796, + "ayım": 16797, + "Ġald": 16798, + "Ġunnecess": 16799, + "Ġdah": 16800, + "ĠIrish": 16801, + "Ġcompr": 16802, + "laÅŁ": 16803, + "TP": 16804, + "Ġtranslated": 16805, + "Sc": 16806, + "ceÄŁim": 16807, + "´IJ": 16808, + "Ġdrei": 16809, + "ĠлÑİдей": 16810, + "Ġquiero": 16811, + "Ġhele": 16812, + "zlich": 16813, + "Ġapples": 16814, + "Ġdistricts": 16815, + "Ġcredits": 16816, + "Ġasp": 16817, + "Ġëĭ¨": 16818, + "oral": 16819, + "å½±": 16820, + "Ġstepping": 16821, + "ĠVa": 16822, + "Ġgains": 16823, + "65": 16824, + "Ġnuestra": 16825, + "eday": 16826, + "assador": 16827, + "ĠLind": 16828, + "Ġcrops": 16829, + "ciendo": 16830, + "igue": 16831, + "Ġbana": 16832, + "Am": 16833, + "Ġpent": 16834, + "Ġaddiction": 16835, + "Ġpackaging": 16836, + "äd": 16837, + "ª¨": 16838, + "Ġperquè": 16839, + "Ġcampaigns": 16840, + "Ġsteep": 16841, + "Ġneue": 16842, + "Ġembarrassed": 16843, + "Ġdistinction": 16844, + "itzer": 16845, + "åijĬ": 16846, + "Ġregistration": 16847, + "Ġllam": 16848, + "ĠAlmighty": 16849, + "liest": 16850, + "Ġuz": 16851, + "nak": 16852, + "çº": 16853, + "Ġteraz": 16854, + "iamente": 16855, + "Ġtransactions": 16856, + "Ġcôt": 16857, + "Ġswitched": 16858, + "Ġcombo": 16859, + "Ġprayers": 16860, + "Ġinternship": 16861, + "Ġaddresses": 16862, + "Ġcharity": 16863, + "ĠWOO": 16864, + "Ġbait": 16865, + "è¿ĩ": 16866, + "Ġ�": 16867, + "Ġfica": 16868, + "ĠTyler": 16869, + "aru": 16870, + "Ġatoms": 16871, + "ĠLevel": 16872, + "ĠпоÑĤом": 16873, + "Ġfame": 16874, + "ulk": 16875, + "Ġteaches": 16876, + "Ġrebuild": 16877, + "едÑĮ": 16878, + "ĠIndonesia": 16879, + "ushi": 16880, + "ĠShort": 16881, + "Ġensuring": 16882, + "fs": 16883, + "ele": 16884, + "Ġmarginal": 16885, + "Ġconclude": 16886, + "amt": 16887, + "Ġverify": 16888, + "ĠMcDonald": 16889, + "Ġskal": 16890, + "Ġreconst": 16891, + "ĠMann": 16892, + "Ġbasement": 16893, + "Ġtransformed": 16894, + "Ġoccasionally": 16895, + "zone": 16896, + "ĠDans": 16897, + "Ġкакой": 16898, + "Ġdiagnosed": 16899, + "ĠÏĦα": 16900, + "Ġcommands": 16901, + "Ġpresidential": 16902, + "Ġabb": 16903, + "Ġbracket": 16904, + "ĠLem": 16905, + "Ã¥ng": 16906, + "Ġfavorites": 16907, + "Ġrevol": 16908, + "ĠíĬ¹": 16909, + "Ġharass": 16910, + "éħ": 16911, + "Ġcleans": 16912, + "ständ": 16913, + "Ġknocked": 16914, + "Ġpeoples": 16915, + "Ġmusicians": 16916, + "Ġmutual": 16917, + "ĠCold": 16918, + "88": 16919, + "zej": 16920, + "atie": 16921, + "ĠHonor": 16922, + "Ġobsessed": 16923, + "ĠMUSIC": 16924, + "ĠBreak": 16925, + "úng": 16926, + "Ġmodify": 16927, + "Ġsöyle": 16928, + "Ġ×ŀ×Ķ": 16929, + "ĠOnline": 16930, + "fo": 16931, + "ĠMiller": 16932, + "Ġliking": 16933, + "Ġinhab": 16934, + "Ġgratitude": 16935, + "ĠJournal": 16936, + "arness": 16937, + "John": 16938, + "ĠGit": 16939, + "åīĽ": 16940, + "Ġsincere": 16941, + "ĠSci": 16942, + "ĠEli": 16943, + "Ġsymbols": 16944, + "Ġmanually": 16945, + "εÏĤ": 16946, + "ĠвÑĸд": 16947, + "ĠFat": 16948, + "Ġlabels": 16949, + "Ġsophisticated": 16950, + "umps": 16951, + "Ġreleases": 16952, + "Ġ47": 16953, + "ĠOM": 16954, + "ê°Ģë": 16955, + "ĠBien": 16956, + "ĠRef": 16957, + "è¨ĺ": 16958, + "ĠSta": 16959, + "ĠEgg": 16960, + "Ġindicator": 16961, + "pson": 16962, + "Ġnasıl": 16963, + "Right": 16964, + "Ġconvey": 16965, + "Ġknot": 16966, + "Ġconnects": 16967, + "ulas": 16968, + "Ġpreced": 16969, + "Ġinequality": 16970, + "amiento": 16971, + "Ġreply": 16972, + "OY": 16973, + "Ġdismiss": 16974, + "ĠëIJľ": 16975, + "çĦ¡": 16976, + "ĠÑħоÑĢоÑĪо": 16977, + "Ġméd": 16978, + "Ġrandomly": 16979, + "ĠOnt": 16980, + "uard": 16981, + "Ġpulls": 16982, + "ĠÑĤепеÑĢÑĮ": 16983, + "ĠNeed": 16984, + "ĠSoft": 16985, + "Ġstrengths": 16986, + "Ġgoed": 16987, + "umen": 16988, + "æŃ»": 16989, + "Ġíݸ": 16990, + "Ġдоб": 16991, + "Ġclarity": 16992, + "ĠAi": 16993, + "Ġballoon": 16994, + "ĠPand": 16995, + "ĠìķĦëĭ": 16996, + "Ġshiny": 16997, + "Ġsmallest": 16998, + "onia": 16999, + "hill": 17000, + "oting": 17001, + "Ġeing": 17002, + "Ġmerely": 17003, + "Ġseus": 17004, + "Ġнеп": 17005, + "ĠíĨµ": 17006, + "Ġguides": 17007, + "Ġspecialist": 17008, + "Ġsteak": 17009, + "ãĤĪãģĨ": 17010, + "Ġmigration": 17011, + "quele": 17012, + "Ġruined": 17013, + "Ġpupp": 17014, + "女": 17015, + "Ġkend": 17016, + "angan": 17017, + "Ġpalm": 17018, + "Ġunfair": 17019, + "Ġzm": 17020, + "ĠDV": 17021, + "chester": 17022, + "иÑİ": 17023, + "Ġooh": 17024, + "erg": 17025, + "ATH": 17026, + "°©": 17027, + "åĵª": 17028, + "rison": 17029, + "Ġinvolving": 17030, + "Ġpartly": 17031, + "ançais": 17032, + "Ġvow": 17033, + "Ġprominent": 17034, + "Ġcryst": 17035, + "iba": 17036, + "Ġdeserves": 17037, + "Ġovert": 17038, + "Ġsensit": 17039, + "ĠWhe": 17040, + "Ġtighten": 17041, + "Ġintimid": 17042, + "Ġaliment": 17043, + "will": 17044, + "Ġstrengthen": 17045, + "ĠTan": 17046, + "åıĪ": 17047, + "ãģĹãģ¾ãģĻ": 17048, + "oni": 17049, + "ĠMun": 17050, + "Ġproph": 17051, + "Ġrehears": 17052, + "ĠKle": 17053, + "Ġveces": 17054, + "Ġwondered": 17055, + "oki": 17056, + "Ġsenses": 17057, + "´ìĭ": 17058, + "Æ°á»Ľ": 17059, + "ĠÈĻi": 17060, + "Ġmuchos": 17061, + "Ġwatches": 17062, + "ortunate": 17063, + "ĠJuan": 17064, + "ìŀĸìķĦ": 17065, + "ÑĢе": 17066, + "ei": 17067, + "ionen": 17068, + "Ġexperimental": 17069, + "Ġdaughters": 17070, + "à¸Ľ": 17071, + "Ġmentally": 17072, + "becca": 17073, + "aware": 17074, + "ìĦĿ": 17075, + "Ġwhatsoever": 17076, + "Ġenables": 17077, + "ĠLow": 17078, + "oid": 17079, + "à¸Ĭ": 17080, + "ód": 17081, + "غ": 17082, + "Ġconstructed": 17083, + "ĠLadies": 17084, + "Ġaccused": 17085, + "Ġан": 17086, + "Dan": 17087, + "Ġspawn": 17088, + "Ġcontainers": 17089, + "Ġartistic": 17090, + "ıp": 17091, + "Ġdiscl": 17092, + "Ġautres": 17093, + "inas": 17094, + "ĠNation": 17095, + "Ġnag": 17096, + "bean": 17097, + "whe": 17098, + "ľëıĦ": 17099, + "ĠSeoul": 17100, + "Ġíı¬": 17101, + "ĠNich": 17102, + "Ġcomplement": 17103, + "Ġinterven": 17104, + "ĠModel": 17105, + "ĠOrange": 17106, + "namon": 17107, + "Ġcalculation": 17108, + "see": 17109, + "Ġustedes": 17110, + "Ġleb": 17111, + "Ġdoct": 17112, + "Ñĸн": 17113, + "Ġfoster": 17114, + "Ġelastic": 17115, + "ĠAhh": 17116, + "Ġace": 17117, + "ĠPink": 17118, + "ĠJeg": 17119, + "Ġdeer": 17120, + "ãģĹãģĦ": 17121, + "sis": 17122, + "Ġjako": 17123, + "ĠEmma": 17124, + "ÑģÑĤвенно": 17125, + "Ġportrait": 17126, + "Ġmaker": 17127, + "Ġaument": 17128, + "ÑĢоб": 17129, + "Ġairplane": 17130, + "Ġtransparency": 17131, + "Ġadjustment": 17132, + "ĠCDC": 17133, + "çon": 17134, + "Ġuploaded": 17135, + "ĠдейÑģÑĤв": 17136, + "ĠгоÑĤов": 17137, + "Ġiter": 17138, + "Ġcurse": 17139, + "ôn": 17140, + "merce": 17141, + "aran": 17142, + "Ġleak": 17143, + "çµIJ": 17144, + "Ġabsence": 17145, + "Ñģкий": 17146, + "Ġreaders": 17147, + "aler": 17148, + "Ġbeneath": 17149, + "ango": 17150, + "hetic": 17151, + "Ġfinns": 17152, + "Ġpoop": 17153, + "Ġduplic": 17154, + "Hi": 17155, + "igs": 17156, + "ologically": 17157, + "opp": 17158, + "Ġdizer": 17159, + "ĠAllen": 17160, + "Ġgli": 17161, + "Ġacceleration": 17162, + "Ġvitamin": 17163, + "ãĥŃ": 17164, + "vä": 17165, + "ĠAccess": 17166, + "à®Ļ": 17167, + "rás": 17168, + "Ġappreciated": 17169, + "Ġnah": 17170, + "Ġposter": 17171, + "Ġtale": 17172, + "Ġhighlighted": 17173, + "æĸĩ": 17174, + "żeli": 17175, + "Ġblockchain": 17176, + "Ġmicrow": 17177, + "Ġcinema": 17178, + "ĠChang": 17179, + "ĠSearch": 17180, + "usters": 17181, + "ĠZero": 17182, + "ĠDivision": 17183, + "ÑĢаÑģ": 17184, + "Ġscare": 17185, + "Ġjelly": 17186, + "ĠAdministration": 17187, + "SO": 17188, + "Ġlined": 17189, + "Ġê°Ħ": 17190, + "Ġgeben": 17191, + "Ġsoda": 17192, + "Ġwinners": 17193, + "³¼": 17194, + "ÙĴ": 17195, + "ĠAmb": 17196, + "åķıé¡Į": 17197, + "åĶ": 17198, + "Ġpeg": 17199, + "å·±": 17200, + "43": 17201, + "Ġraus": 17202, + "Ġrewards": 17203, + "Ġinclus": 17204, + "Ġhighway": 17205, + "Ġhah": 17206, + "Ġmultiplied": 17207, + "Ġsẽ": 17208, + "Ġdisciples": 17209, + "Ġning": 17210, + "Ġdressing": 17211, + "Ġattributes": 17212, + "ĠMosc": 17213, + "ĠGreece": 17214, + "Ġsek": 17215, + "ĠLearn": 17216, + "Ġjus": 17217, + "rendre": 17218, + "Ġpersonne": 17219, + "plete": 17220, + "Ġplacing": 17221, + "Ġluego": 17222, + "illance": 17223, + "ĠобÑī": 17224, + "Ġprovision": 17225, + "Ġlion": 17226, + "tra": 17227, + "boards": 17228, + "Ġbehaviour": 17229, + "hey": 17230, + "Ġsubscription": 17231, + "Ġprotagon": 17232, + "ãĥ£": 17233, + "Ġvara": 17234, + "ĠÅŁu": 17235, + "Ġhaha": 17236, + "Ġteaspoon": 17237, + "æŁ": 17238, + "avoir": 17239, + "Ġcrypto": 17240, + "ĠÑģÑĤаÑĢ": 17241, + "ĠStore": 17242, + "abs": 17243, + "ĠStudents": 17244, + "Ġlaund": 17245, + "into": 17246, + "Ġapproached": 17247, + "°ľ": 17248, + "ÑĥÑİÑī": 17249, + "ĠLabor": 17250, + "otes": 17251, + "iatric": 17252, + "ĠgroÃŁ": 17253, + "utive": 17254, + "Ġид": 17255, + "ĠGib": 17256, + "Ġplacement": 17257, + "ĠdifÃŃcil": 17258, + "Ġfrog": 17259, + "ĠвÑģеÑħ": 17260, + "ĠJr": 17261, + "azed": 17262, + "ÑĥÑī": 17263, + "Ġê¼": 17264, + "frame": 17265, + "аеÑĪÑĮ": 17266, + "Ġlockdown": 17267, + "åij³": 17268, + "Ġmedi": 17269, + "Ġ×Ķ×ŀ×": 17270, + "ений": 17271, + "emale": 17272, + "ì¢ħ": 17273, + "ateral": 17274, + "Ġdistant": 17275, + "Ġbears": 17276, + "Ġjournalist": 17277, + "解": 17278, + "ĠMarshall": 17279, + "ĠIhnen": 17280, + "uetooth": 17281, + "bag": 17282, + "ĠÄijã": 17283, + "ĠHighness": 17284, + "Ġì°į": 17285, + "ика": 17286, + "ĠWu": 17287, + "ĠFran": 17288, + "Ġpeng": 17289, + "Ġfon": 17290, + "Ġhypothesis": 17291, + "ĠÑĢÑĥ": 17292, + "Ġly": 17293, + "×ļ": 17294, + "ìĽĶ": 17295, + "ĠRadio": 17296, + "à¸ŀ": 17297, + "Dav": 17298, + "Ġembarrassing": 17299, + "ĠìŀĪìĸ´": 17300, + "Ġcasting": 17301, + "Ġcage": 17302, + "ĠPsych": 17303, + "ĠìĿ¼ëĭ¨": 17304, + "Ġž": 17305, + "imb": 17306, + "Ġdirectors": 17307, + "SH": 17308, + "ĠÏĦην": 17309, + "á»ģu": 17310, + "ĠkonuÅŁ": 17311, + "Ġoptional": 17312, + "quarters": 17313, + "iker": 17314, + "ĠSant": 17315, + "Ġverses": 17316, + "ë¶Ģ": 17317, + "Ġolar": 17318, + "ĠÏĩ": 17319, + "ãĥķ": 17320, + "Ġγια": 17321, + "ĠImm": 17322, + "Ġcontroversial": 17323, + "Ġersten": 17324, + "Ġrecip": 17325, + "ĠChristianity": 17326, + "Ġê´ľ": 17327, + "ordon": 17328, + "×ķש": 17329, + "Ġslash": 17330, + "ĠPf": 17331, + "ÑĥдÑĮ": 17332, + "×ķ×Ŀ": 17333, + "ĠPerry": 17334, + "Ġmamy": 17335, + "Ġbackgrounds": 17336, + "Ġà®İன": 17337, + "Ġpendant": 17338, + "ĠColumbia": 17339, + "Ġinverse": 17340, + "ĠÑĩеÑĢез": 17341, + "Ġsv": 17342, + "Ġdigging": 17343, + "41": 17344, + "chem": 17345, + "Ġnavigation": 17346, + "ĠShin": 17347, + "ĠFront": 17348, + "PD": 17349, + "Ġbearing": 17350, + "ĠWasser": 17351, + "Ġwax": 17352, + "ĠCHRIS": 17353, + "ching": 17354, + "Ġpressed": 17355, + "El": 17356, + "ĠDal": 17357, + "onsin": 17358, + "Ġbinding": 17359, + "Ñģкой": 17360, + "poons": 17361, + "Ġmock": 17362, + "arest": 17363, + "кÑĢа": 17364, + "MM": 17365, + "Ġcorrupt": 17366, + "storm": 17367, + "Ġrefres": 17368, + "ĠCoach": 17369, + "llä": 17370, + "ĠTHIS": 17371, + "Ġparag": 17372, + "Ġìĵ°": 17373, + "pool": 17374, + "Ġbillions": 17375, + "Ġê¹Ģ": 17376, + "group": 17377, + "Ġwelcoming": 17378, + "cellence": 17379, + "ĠDuke": 17380, + "긴": 17381, + "Ġprimera": 17382, + "ìł¸": 17383, + "Ġpond": 17384, + "Ġstatue": 17385, + "Ġ구ë": 17386, + "Ġhatch": 17387, + "Ġinstrumental": 17388, + "Ġresidential": 17389, + "커": 17390, + "Ġaccepting": 17391, + "oshi": 17392, + "date": 17393, + "ĠìĶ¨": 17394, + "Ġplanted": 17395, + "Ġjoking": 17396, + "ĠìĦľ": 17397, + "Ġhated": 17398, + "ĠÑĢаÑģÑģк": 17399, + "Ġslept": 17400, + "Ġpackages": 17401, + "Ġislands": 17402, + "esen": 17403, + "ģı": 17404, + "Ġdiagon": 17405, + "ĠOsc": 17406, + "Ġmesh": 17407, + "Ġscales": 17408, + "arity": 17409, + "ĠDefense": 17410, + "ãģ¡ãĤĩ": 17411, + "ĠLewis": 17412, + "ĠÑģегоднÑı": 17413, + "Ġflies": 17414, + "uinely": 17415, + "ĠConsider": 17416, + "Ġstark": 17417, + "hew": 17418, + "ĠAsÃŃ": 17419, + "³´ë": 17420, + "Ġpropose": 17421, + "Ġíķĺë©´": 17422, + "odo": 17423, + "ĠNormally": 17424, + "Ġheeft": 17425, + "ĠHarris": 17426, + "gro": 17427, + "ĠBlood": 17428, + "base": 17429, + "ĠiOS": 17430, + "Ġtouches": 17431, + "Ġinspir": 17432, + "Ġ×ĵ": 17433, + "Ġbinary": 17434, + "Ġì¶Ķ": 17435, + "Ġserial": 17436, + "Ġion": 17437, + "Ġunemployment": 17438, + "Ġodds": 17439, + "ĠFab": 17440, + "ĠFBI": 17441, + "BRUN": 17442, + "Ġweights": 17443, + "νο": 17444, + "atile": 17445, + "Ġnurses": 17446, + "Ġinvolvement": 17447, + "ĠíĶ¼": 17448, + "Ġgovernance": 17449, + "ĠâĤ¬": 17450, + "ÑĢÑĥп": 17451, + "ierra": 17452, + "íĺķ": 17453, + "ĠJerry": 17454, + "Ġbeard": 17455, + "Ġsalvation": 17456, + "ĠAlong": 17457, + "gentle": 17458, + "ĠKi": 17459, + "bol": 17460, + "ĠPlat": 17461, + "Ġhasht": 17462, + "è¿ij": 17463, + "Ġware": 17464, + "Ġpartie": 17465, + "ycz": 17466, + "Ġintr": 17467, + "Fih": 17468, + "nent": 17469, + "Ġcheat": 17470, + "ilen": 17471, + "Ġë¯": 17472, + "orie": 17473, + "Ġfácil": 17474, + "etric": 17475, + "Ġaffecting": 17476, + "unciation": 17477, + "Ġaffairs": 17478, + "Ġbee": 17479, + "Ġviewing": 17480, + "Ġorang": 17481, + "ĠLan": 17482, + "ĠСÑĤ": 17483, + "ä¸ĸ": 17484, + "ĠMes": 17485, + "ĥģ": 17486, + "erie": 17487, + "Ġespa": 17488, + "Ġinterpre": 17489, + "Ġpossess": 17490, + "Ġpurely": 17491, + "rito": 17492, + "found": 17493, + "asma": 17494, + "ìłģìĿ¸": 17495, + "Ġexamine": 17496, + "ĠÑĥм": 17497, + "Ġbesch": 17498, + "ĠTomorrow": 17499, + "ĠBlock": 17500, + "Ġvariant": 17501, + "Ġpreference": 17502, + "Ġcoaches": 17503, + "Ġmedications": 17504, + "ĠíĺĦ": 17505, + "Ġempire": 17506, + "ëĦ¤": 17507, + "ĠIllinois": 17508, + "Ġcrispy": 17509, + "Ġthì": 17510, + "Ġbees": 17511, + "77": 17512, + "Ġglow": 17513, + "èº": 17514, + "ĠStudies": 17515, + "åIJĦ": 17516, + "ĠChallenge": 17517, + "Ġunlikely": 17518, + "Ч": 17519, + "ıyorsun": 17520, + "DIE": 17521, + "Ġminimize": 17522, + "izard": 17523, + "Ġún": 17524, + "Ġencontrar": 17525, + "ĠKill": 17526, + "å»": 17527, + "Ġvanilla": 17528, + "ĠGrant": 17529, + "ĠGT": 17530, + "sea": 17531, + "Ġsought": 17532, + "вод": 17533, + "Ġnäm": 17534, + "ĠAunt": 17535, + "OWN": 17536, + "Ġpumpkin": 17537, + "stellen": 17538, + "Ġrag": 17539, + "егда": 17540, + "Ġstoryt": 17541, + "Ġforum": 17542, + "æ©Ł": 17543, + "Ġestaba": 17544, + "uche": 17545, + "Ġcongress": 17546, + "ĠRey": 17547, + "Ġdramatically": 17548, + "ĠSport": 17549, + "ĠYellow": 17550, + "Ġê³ĦìĨį": 17551, + "Ġdisgusting": 17552, + "ĠRecent": 17553, + "Ġacquired": 17554, + "Ġcables": 17555, + "çĶļ": 17556, + "din": 17557, + "Ġvisto": 17558, + "Ġcommunicating": 17559, + "ÑģÑĤавлÑı": 17560, + "еÑģÑĤо": 17561, + "ãĥ»ãĥ»ãĥ»": 17562, + "Ġrég": 17563, + "Ġsocks": 17564, + "Ġproces": 17565, + "because": 17566, + "Ġutter": 17567, + "Ġcolocar": 17568, + "Ġnewest": 17569, + "Ġgramm": 17570, + "表": 17571, + "ä¸įçŁ¥éģĵ": 17572, + "Ġshifting": 17573, + "Ġcarrier": 17574, + "ĠÑģкоÑĢ": 17575, + "ĠSchw": 17576, + "Ġexecuted": 17577, + "Ġmaintained": 17578, + "ĠÏĨ": 17579, + "ĠMoses": 17580, + "Ġdisse": 17581, + "Ġhorr": 17582, + "ãĢľ": 17583, + "Ġrally": 17584, + "Ġallem": 17585, + "ĠEventually": 17586, + "Ġdiyor": 17587, + "lvania": 17588, + "Ġschnell": 17589, + "Ġê³¼": 17590, + "Ġ매": 17591, + "Ġstruggles": 17592, + "late": 17593, + "Ġclarify": 17594, + "ément": 17595, + "Ġmultiplic": 17596, + "ибо": 17597, + "Ġjourn": 17598, + "Ġfragr": 17599, + "Ġsurprisingly": 17600, + "Ġdesperate": 17601, + "52": 17602, + "Ġsul": 17603, + "ĠRead": 17604, + "ĠFried": 17605, + "Ġmond": 17606, + "woo": 17607, + "Ġorganizing": 17608, + "ãģĹãĤĩãģĨ": 17609, + "ĠSoon": 17610, + "ĠвопÑĢоÑģ": 17611, + "ĠNur": 17612, + "ĠÐĹд": 17613, + "Ġspider": 17614, + "еÑģÑı": 17615, + "Ġtutorials": 17616, + "Ġnutrients": 17617, + "orer": 17618, + "Ġcoefficient": 17619, + "Ġarrangement": 17620, + "Ġpricing": 17621, + "nan": 17622, + "yu": 17623, + "BL": 17624, + "Ġtribe": 17625, + "ĠHoward": 17626, + "unks": 17627, + "Ġnewer": 17628, + "Ġprovin": 17629, + "Ġprediction": 17630, + "hos": 17631, + "Ġolsun": 17632, + "ĠAround": 17633, + "Ġvier": 17634, + "ĠÑģÑĤоÑĢон": 17635, + "Ġvalley": 17636, + "ĠEla": 17637, + "ifi": 17638, + "Ġgalaxy": 17639, + "Ġtranqu": 17640, + "Ġadvers": 17641, + "ĠTemple": 17642, + "iffs": 17643, + "igence": 17644, + "èĩªå·±": 17645, + "Ġkönnte": 17646, + "ĠÄijó": 17647, + "Did": 17648, + "Ġphotographs": 17649, + "ĠAWS": 17650, + "ÑĨиÑı": 17651, + "Ġguards": 17652, + "Ġappointed": 17653, + "ĠGil": 17654, + "Ġмом": 17655, + "Ġcod": 17656, + "ĠUnlike": 17657, + "Ġevenly": 17658, + "isconsin": 17659, + "Ġestou": 17660, + "Ġmnie": 17661, + "ĠExec": 17662, + "ĠMV": 17663, + "ĠEine": 17664, + "ä¿¡": 17665, + "ĠRoger": 17666, + "ĠFac": 17667, + "ĠList": 17668, + "Ġfuer": 17669, + "аеÑĤе": 17670, + "omed": 17671, + "Ġattraction": 17672, + "èī²": 17673, + "Ġterrain": 17674, + "ĠDrop": 17675, + "Ġcorporations": 17676, + "Ġsciences": 17677, + "Ġthrone": 17678, + "ãģĦãģŁ": 17679, + "Ġaj": 17680, + "ĠRot": 17681, + "çī¹": 17682, + "Ġsupporters": 17683, + "ĠBere": 17684, + "Here": 17685, + "Ġdiferentes": 17686, + "Ġsignificance": 17687, + "Ïĥη": 17688, + "æĪij覺å¾Ĺ": 17689, + "Ġclamp": 17690, + "ĠëĮĢë": 17691, + "Ġfabulous": 17692, + "rez": 17693, + "æĮģ": 17694, + "Ġassumptions": 17695, + "uther": 17696, + "wid": 17697, + "pot": 17698, + "è¿İ": 17699, + "Ġyan": 17700, + "ulin": 17701, + "ÑĢÑĭв": 17702, + "ĠSlow": 17703, + "ĠPennsy": 17704, + "Ġíķ´ìĦľ": 17705, + "Ġmeio": 17706, + "Ġwealthy": 17707, + "ĠEight": 17708, + "Ġpulse": 17709, + "Ġfriction": 17710, + "idity": 17711, + "ĠHoll": 17712, + "iyorum": 17713, + "Ġsounded": 17714, + "ĠCarr": 17715, + "Ġfork": 17716, + "âĺ": 17717, + "ĠPA": 17718, + "Ġconspir": 17719, + "Ġcoding": 17720, + "rt": 17721, + "ĠTyp": 17722, + "Ġìĸij": 17723, + "Ġпог": 17724, + "Ġmiser": 17725, + "ĠÑģмоÑĤÑĢ": 17726, + "ĠSweden": 17727, + "Ġolarak": 17728, + "ĠZhang": 17729, + "ĠChi": 17730, + "ĠTitan": 17731, + "Ġscreening": 17732, + "ĠSpider": 17733, + "ĠÅŀimdi": 17734, + "Ġobstacles": 17735, + "lara": 17736, + "Ġchallenged": 17737, + "pse": 17738, + "TON": 17739, + "ụ": 17740, + "ĠPi": 17741, + "Ġlagi": 17742, + "ieurs": 17743, + "Ġhurting": 17744, + "Ġneglect": 17745, + "Ġgenerating": 17746, + "Ġyoungest": 17747, + "Ġaudit": 17748, + "ĠÑĢез": 17749, + "Ïģά": 17750, + "Ġdonate": 17751, + "ĠPDF": 17752, + "Ġvisits": 17753, + "Ġcruise": 17754, + "PP": 17755, + "aser": 17756, + "Ġwsp": 17757, + "backs": 17758, + "ivals": 17759, + "ãģĨãĤĵ": 17760, + "Ġdeve": 17761, + "Ġproport": 17762, + "Ġcath": 17763, + "ĠEffect": 17764, + "Ġwinds": 17765, + "ĠìĻĶ": 17766, + "Ġcharts": 17767, + "Ġsama": 17768, + "Ġautomation": 17769, + "Ġпока": 17770, + "Ġolan": 17771, + "Ġboats": 17772, + "Ġcafe": 17773, + "Ġdenied": 17774, + "ĠMama": 17775, + "Ġblocking": 17776, + "ĠThor": 17777, + "Ġphenomenal": 17778, + "Ġstakeholders": 17779, + "Ġunos": 17780, + "ÑĥеÑĤ": 17781, + "ĠAbraham": 17782, + "ãģ§ãĤĤ": 17783, + "Ġdetection": 17784, + "Ġjuris": 17785, + "Ġpowered": 17786, + "zial": 17787, + "Ġwelfare": 17788, + "Ġupgrad": 17789, + "Ġmożna": 17790, + "ĠCase": 17791, + "cular": 17792, + "ĶìĿ´": 17793, + "ãĥģ": 17794, + "ĠGuess": 17795, + "Ġcycles": 17796, + "ä¾ĭ": 17797, + "給": 17798, + "rock": 17799, + "umi": 17800, + "Ġelite": 17801, + "Ġquè": 17802, + "åł±": 17803, + "ÑĤом": 17804, + "Ġshore": 17805, + "gunta": 17806, + "Ġku": 17807, + "Ġfaithful": 17808, + "ĠJeremy": 17809, + "aid": 17810, + "à·": 17811, + "ugal": 17812, + "å°įåķĬ": 17813, + "ĠVel": 17814, + "Ġvrai": 17815, + "stell": 17816, + "¨¸": 17817, + "Ġkol": 17818, + "è½": 17819, + "Ġquanto": 17820, + "ĠзаÑĢ": 17821, + "Ġ2002": 17822, + "esy": 17823, + "Ġreserve": 17824, + "ĠмоменÑĤ": 17825, + "Ġdeployed": 17826, + "Ġdefining": 17827, + "Ġsau": 17828, + "Ġgaat": 17829, + "\")": 17830, + "Ġtransmit": 17831, + "Ġpublishing": 17832, + "Ġranking": 17833, + "Ġoffense": 17834, + "Ġ46": 17835, + "pin": 17836, + "ĠTaking": 17837, + "Ġentitled": 17838, + "Ġgenuinely": 17839, + "Ġvariations": 17840, + "Ġfinde": 17841, + "Ġtau": 17842, + "Ġunfortunate": 17843, + "ĠRah": 17844, + "ports": 17845, + "ĠcÅ": 17846, + "Ġmonkey": 17847, + "Ġbrac": 17848, + "wei": 17849, + "lung": 17850, + "Ġartif": 17851, + "Ġsyrup": 17852, + "ĠÐĶав": 17853, + "Ġlifted": 17854, + "Ġchez": 17855, + "ĠAdvent": 17856, + "ĠStock": 17857, + "Ġdol": 17858, + "мен": 17859, + "иÑĪÑĮ": 17860, + "Ġyn": 17861, + "gio": 17862, + "det": 17863, + "Ġdesse": 17864, + "Ġgri": 17865, + "ĠChairman": 17866, + "çħ": 17867, + "Ġcuenta": 17868, + "anim": 17869, + "Ġcrab": 17870, + "Ġescal": 17871, + "Ġpremière": 17872, + "ĠGef": 17873, + "Ġdining": 17874, + "Ġseventh": 17875, + "Ġchasing": 17876, + "ĠTower": 17877, + "Ġbrutal": 17878, + "Ġfundamentally": 17879, + "ãģ¨ãģĨ": 17880, + "лениÑı": 17881, + "stage": 17882, + "Ġacquis": 17883, + "Ġcylinder": 17884, + "Ġcommander": 17885, + "mem": 17886, + "ĠUV": 17887, + "happy": 17888, + "Ġepsilon": 17889, + "Ġinvitation": 17890, + "Ġfarmer": 17891, + "chair": 17892, + "Ġdestiny": 17893, + "Ġsovere": 17894, + "ĠHebrew": 17895, + "Ġservant": 17896, + "Ġbew": 17897, + "Ġgast": 17898, + "uties": 17899, + "Ġadministrative": 17900, + "ĠCommand": 17901, + "éta": 17902, + "Ġnitrogen": 17903, + "ê·¼": 17904, + "Ġabi": 17905, + "Ġvillain": 17906, + "Ġblanket": 17907, + "ĠSend": 17908, + "Ġbeaten": 17909, + "²Ħ": 17910, + "Ġvolunt": 17911, + "Ġscholar": 17912, + "ĠEmperor": 17913, + "Ġ43": 17914, + "vable": 17915, + "ĠDus": 17916, + "ĠGU": 17917, + "Ġtargeting": 17918, + "www": 17919, + "Ġamendment": 17920, + "ìĨĮë": 17921, + "Ġting": 17922, + "Ġnasty": 17923, + "Ġgauge": 17924, + "ĠÑĢод": 17925, + "ĠHans": 17926, + "Your": 17927, + "αν": 17928, + "Ġprojet": 17929, + "ĠHawaii": 17930, + "Ġsuspicious": 17931, + "Ġschw": 17932, + "Ġremoval": 17933, + "Ġintrig": 17934, + "ĠMU": 17935, + "Ġponto": 17936, + "ा": 17937, + "ĠобÑĢаз": 17938, + "Ġguessing": 17939, + "pace": 17940, + "Ġmothers": 17941, + "Ġmillimeter": 17942, + "ление": 17943, + "没æľī": 17944, + "Ġavailability": 17945, + "icz": 17946, + "æѤ": 17947, + "Ġfract": 17948, + "Ġbases": 17949, + "km": 17950, + "ĠBTS": 17951, + "ĠField": 17952, + "Ġdzie": 17953, + "Ġsegundo": 17954, + "ĠëĤĺëĬĶ": 17955, + "Ġlegitimate": 17956, + "imas": 17957, + "Ġвн": 17958, + "Ġcorruption": 17959, + "Ġsmash": 17960, + "ĠValent": 17961, + "Ġaligned": 17962, + "ĠPennsylvania": 17963, + "Ġgab": 17964, + "ĠEun": 17965, + "enth": 17966, + "ĠMorning": 17967, + "Ġcandle": 17968, + "Ġbackpack": 17969, + "ĠIslamic": 17970, + "ações": 17971, + "Ġencry": 17972, + "Ġmushrooms": 17973, + "íĮĮ": 17974, + "dit": 17975, + "Ġtransit": 17976, + "ĠWisconsin": 17977, + "Ġparticipated": 17978, + "ĠIls": 17979, + "Ġunfold": 17980, + "¶Ģë": 17981, + "Ġprofits": 17982, + "Ġwarming": 17983, + "ĠGang": 17984, + "Ġnetworking": 17985, + "Ġmega": 17986, + "Ġthoroughly": 17987, + "lements": 17988, + "ĠHm": 17989, + "Ġdeciding": 17990, + "Ġemotionally": 17991, + "Ġexhausted": 17992, + "ĠÐŁÐ¾ÑĤ": 17993, + "cido": 17994, + "ĠHTML": 17995, + "Ġcopyright": 17996, + "Ġmelody": 17997, + "yim": 17998, + "Ġanders": 17999, + "oshop": 18000, + "Ġë³¼": 18001, + "Ġathlete": 18002, + "ĠGE": 18003, + "Ġfrequent": 18004, + "Ġdesires": 18005, + "Ġneeding": 18006, + "ĠYun": 18007, + "Ġrifle": 18008, + "Ġlover": 18009, + "'T": 18010, + "Ġdense": 18011, + "Ġtão": 18012, + "Ġnotified": 18013, + "Ġidi": 18014, + "ìĹŃ": 18015, + "íĨ": 18016, + "Ġinteracting": 18017, + "Ġrapport": 18018, + "еÑĢи": 18019, + "ski": 18020, + "Ġbesser": 18021, + "Ġmanufacturer": 18022, + "ĠKyle": 18023, + "Ġaccountable": 18024, + "ĠSak": 18025, + "ĠPil": 18026, + "ĠDomin": 18027, + "Ġpresum": 18028, + "ĠÐĴÑģе": 18029, + "Ġvinegar": 18030, + "Ġguaranteed": 18031, + "çľĭåĪ°": 18032, + "Ġhandled": 18033, + "éŁ³": 18034, + "cat": 18035, + "Ġcivilization": 18036, + "Ġaccomp": 18037, + "ĠVM": 18038, + "émon": 18039, + "Ġdeze": 18040, + "Ġgrades": 18041, + "Ġsollte": 18042, + "Ġstaring": 18043, + "×IJת": 18044, + "arnt": 18045, + "Ġhorizon": 18046, + "Ġtravail": 18047, + "hour": 18048, + "第ä¸Ģ": 18049, + "ĠED": 18050, + "ĠDak": 18051, + "Ġny": 18052, + "Ġconve": 18053, + "ĠCham": 18054, + "Ġfirms": 18055, + "ĠLiu": 18056, + "ĠÑģÑĤÑĢан": 18057, + "Ġlibert": 18058, + "Ġlenses": 18059, + "Ġintake": 18060, + "ĠвÑĭб": 18061, + "Ġmensen": 18062, + "hel": 18063, + "Ġpractition": 18064, + "Ġ350": 18065, + "ãĤ³": 18066, + "FO": 18067, + "Ġbeds": 18068, + "Ġancestors": 18069, + "ĠìĹĦì²Ń": 18070, + "Ġdisturb": 18071, + "ĠLastly": 18072, + "ĠSupport": 18073, + "ีà¹ī": 18074, + "ĠCorona": 18075, + "Ġenthusi": 18076, + "Ġвозм": 18077, + "ĠìĤ¬ëŀĮë": 18078, + "Ġ52": 18079, + "bird": 18080, + "Ġreduces": 18081, + "ĠìŀĪìĿĦ": 18082, + "ĠGene": 18083, + "êµIJ": 18084, + "ÄĻp": 18085, + "ĠÃľber": 18086, + "Ġconcerning": 18087, + "user": 18088, + "Ġconcentrate": 18089, + "ĠWHAT": 18090, + "ishop": 18091, + "onymous": 18092, + "nold": 18093, + "Ġsuggesting": 18094, + "©°": 18095, + "ĠFish": 18096, + "........": 18097, + "Ġvessel": 18098, + "Ġtrabajo": 18099, + "ãģµ": 18100, + "ĠOcean": 18101, + "å§IJ": 18102, + "yg": 18103, + "Ġtowns": 18104, + "del": 18105, + "Ġterrifying": 18106, + "ĠçalÄ±ÅŁ": 18107, + "Ġsino": 18108, + "Ġeats": 18109, + "Ġgez": 18110, + "Ġgeme": 18111, + "ĠìĻĦ": 18112, + "Ġcompart": 18113, + "Ġimplementing": 18114, + "ĠPotter": 18115, + "ĠGermans": 18116, + "ĠgÅĤ": 18117, + "Ġtennis": 18118, + "Ġcarpet": 18119, + "auer": 18120, + "ĠSaudi": 18121, + "yeong": 18122, + "Ġcurry": 18123, + "ĠForest": 18124, + "Ñĭл": 18125, + "Ġfifteen": 18126, + "Ġbolts": 18127, + "Ġ{\\": 18128, + "¬´": 18129, + "Ġsettlement": 18130, + "Ġlange": 18131, + "Ġbam": 18132, + "Get": 18133, + "íķĻ": 18134, + "Ġswap": 18135, + "ĠKhan": 18136, + "Ġcommence": 18137, + "Ġquarantine": 18138, + "Ġscored": 18139, + "çĸ": 18140, + "Ġ1950": 18141, + "Ġthicker": 18142, + "Ġsûr": 18143, + "åı£": 18144, + "ĠLarry": 18145, + "Ġallez": 18146, + "ìĭľëĬĶ": 18147, + "Ġgü": 18148, + "Ġspectacular": 18149, + "//": 18150, + "both": 18151, + "Ġstats": 18152, + "妳": 18153, + "ĠNancy": 18154, + "Ġbunu": 18155, + "Ġcrust": 18156, + "Ġactivated": 18157, + "Ġê·¸ëŀ": 18158, + "outhe": 18159, + "Ġports": 18160, + "Ġneural": 18161, + "Ġjaw": 18162, + "Ġobservations": 18163, + "Ġvoit": 18164, + "aban": 18165, + "ải": 18166, + "¦¬ë¥¼": 18167, + "omes": 18168, + "à¯ĭ": 18169, + "qui": 18170, + "Ġkindness": 18171, + "Ðij": 18172, + "Ġ41": 18173, + "Ġmoderate": 18174, + "Ġangels": 18175, + "ĠTamb": 18176, + "èt": 18177, + "Ġchlor": 18178, + "ĠBilly": 18179, + "ì²ĺë": 18180, + "acon": 18181, + "Ġselecting": 18182, + "ĠDelta": 18183, + "Ġnull": 18184, + "denly": 18185, + "Ġciud": 18186, + "Ġtendency": 18187, + "Ġbreakdown": 18188, + "Ġmint": 18189, + "ÑĦоÑĢм": 18190, + "orph": 18191, + "Ġdawn": 18192, + "spr": 18193, + "ĠWILL": 18194, + "ächlich": 18195, + "Ġpuppy": 18196, + "700": 18197, + "Ġத": 18198, + "Ġfails": 18199, + "ĠConc": 18200, + "Ġrelatives": 18201, + "Ġinviting": 18202, + "Ġautonom": 18203, + "Ġcomposed": 18204, + "Ġunity": 18205, + "Ġdecis": 18206, + "Ġaccessories": 18207, + "ĠCass": 18208, + "Ġbist": 18209, + "ĠTip": 18210, + "째": 18211, + "Ġpunt": 18212, + "Ġráp": 18213, + "éĢ²": 18214, + "ANK": 18215, + "ãģļ": 18216, + "exist": 18217, + "Ġcompatible": 18218, + "Ġner": 18219, + "ĠемÑĥ": 18220, + "Ġaplic": 18221, + "Ġbapt": 18222, + "Ġfailing": 18223, + "ĠTamam": 18224, + "Ġoscill": 18225, + "Ġletzten": 18226, + "Ġrepeatedly": 18227, + "Ġjungle": 18228, + "ĠPush": 18229, + "hai": 18230, + "Ġη": 18231, + "Ġdeadly": 18232, + "Ñıж": 18233, + "wiÄħ": 18234, + "ĠCommon": 18235, + "ĠÎķ": 18236, + "Ġskate": 18237, + "TC": 18238, + "ĠMini": 18239, + "Ġhobby": 18240, + "ần": 18241, + "Ġroutes": 18242, + "Ġamigos": 18243, + "Ġconjun": 18244, + "Ġpartnerships": 18245, + "Ġnovo": 18246, + "Ġaver": 18247, + "Ġpouvez": 18248, + "bridge": 18249, + "Ġpreoc": 18250, + "him": 18251, + "Ġturb": 18252, + "Ġsob": 18253, + "ĠSnap": 18254, + "Ġì°¸": 18255, + "minute": 18256, + "Ġtraject": 18257, + "ujÄĻ": 18258, + "Ġeager": 18259, + "Ġregulatory": 18260, + "Ġbanking": 18261, + "bling": 18262, + "ÑĪÑĮ": 18263, + "aż": 18264, + "Ġbizarre": 18265, + "itated": 18266, + "dire": 18267, + "Ġthreatened": 18268, + "Ġshining": 18269, + "Ġnesse": 18270, + "Ġcorps": 18271, + "ĠÑģÑĥ": 18272, + "Ġteles": 18273, + "Ġtemp": 18274, + "tem": 18275, + "Ġкан": 18276, + "Ġfever": 18277, + "New": 18278, + "Ġheavier": 18279, + "ĠSah": 18280, + "bud": 18281, + "Ġoutros": 18282, + "Ġì°¾": 18283, + "Ġëªħ": 18284, + "arring": 18285, + "Ġê´ľì°®": 18286, + "ĠNap": 18287, + "Ġsemin": 18288, + "ĠThan": 18289, + "ifs": 18290, + "Ġdesen": 18291, + "ĠÑĤакое": 18292, + "Ġloses": 18293, + "ĠBalt": 18294, + "kon": 18295, + "ĠнапÑĢ": 18296, + "Ġvois": 18297, + "ĠMoscow": 18298, + "Ġchairs": 18299, + "his": 18300, + "Ġrefugees": 18301, + "kg": 18302, + "Ġkole": 18303, + "į¨": 18304, + "аÑģибо": 18305, + "¦½": 18306, + "ĠUniverse": 18307, + "ĠDirect": 18308, + "Ġcheating": 18309, + "ĠCin": 18310, + "Ġpatri": 18311, + "Ġadvise": 18312, + "ĠNether": 18313, + "Ġprimeiro": 18314, + "Ġmentioning": 18315, + "nut": 18316, + "56": 18317, + "arı": 18318, + "Ġpetite": 18319, + "bled": 18320, + "Ġpensar": 18321, + "icio": 18322, + "IND": 18323, + "Ġveteran": 18324, + "Ġladder": 18325, + "Ġconsequence": 18326, + "ожал": 18327, + "ĠBurn": 18328, + "Ġrug": 18329, + "ĠMade": 18330, + "Ġgit": 18331, + "\"...": 18332, + "Ġcompetitors": 18333, + "Ġprzed": 18334, + "Ġapparent": 18335, + "ĠArgentina": 18336, + "ĠWorking": 18337, + "Ġcollaborate": 18338, + "woman": 18339, + "Ġretain": 18340, + "Ġleurs": 18341, + "Ġdashboard": 18342, + "×Ļ×ĵ": 18343, + "ĠEarly": 18344, + "BM": 18345, + "ĠеÑij": 18346, + "олог": 18347, + "Ġsatisfying": 18348, + "Ġoftentimes": 18349, + "Ġmapping": 18350, + "ünkü": 18351, + "arth": 18352, + "fold": 18353, + "Ġlaunching": 18354, + "Ġaura": 18355, + "Ġprecision": 18356, + "works": 18357, + "God": 18358, + "Ġstrap": 18359, + "ĠImper": 18360, + "Ġrivers": 18361, + "Ġ|": 18362, + "Ġcuer": 18363, + "regon": 18364, + "Ġarrival": 18365, + "каÑħ": 18366, + "ĠMiami": 18367, + "анÑĭ": 18368, + "Ġsurvivors": 18369, + "ĠSenior": 18370, + "David": 18371, + "Ġestado": 18372, + "Ġsectors": 18373, + "Ġpopping": 18374, + "Ġchim": 18375, + "ayı": 18376, + "Ġkunnen": 18377, + "Ġgallery": 18378, + "Ġsunlight": 18379, + "esehen": 18380, + "Ġyelling": 18381, + "ĠMein": 18382, + "ĠPhoenix": 18383, + "Ġmano": 18384, + "Ġhistoria": 18385, + "Ġoccurring": 18386, + "欸": 18387, + "ì¸": 18388, + "ади": 18389, + "å¾ħ": 18390, + "Ġinstitutional": 18391, + "ĠTut": 18392, + "ç²": 18393, + "Ġslaves": 18394, + "ãģ©ãģĨ": 18395, + "Ġforgiveness": 18396, + "Ġtwin": 18397, + "ĠHyun": 18398, + "нÑĮ": 18399, + "ĠKomm": 18400, + "andra": 18401, + "shot": 18402, + "ssä": 18403, + "ĠÑĨе": 18404, + "atta": 18405, + "Ġexpense": 18406, + "ĠGPU": 18407, + "ĠPast": 18408, + "ribly": 18409, + "ĠëŃIJìķ¼": 18410, + "Ġгода": 18411, + "Ġrespir": 18412, + "æĿ±": 18413, + "ĠQueens": 18414, + "hops": 18415, + "Ġsérie": 18416, + "Ġpref": 18417, + "Ġcomed": 18418, + "Ġplut": 18419, + "ĠOverall": 18420, + "ĠãģĿ": 18421, + "Ġcush": 18422, + "Ġringing": 18423, + "Ġincorrect": 18424, + "ĠÑģÑĤÑĢ": 18425, + "Ġgeometry": 18426, + "Ġadvertis": 18427, + "ĠШ": 18428, + "Ġreviewed": 18429, + "ãģĤãģĤ": 18430, + "Ġdozens": 18431, + "Ġdetermination": 18432, + "ĠPhill": 18433, + "Ġcontributed": 18434, + "ĠCit": 18435, + "Ġpassengers": 18436, + "Ġcôté": 18437, + "Ġrever": 18438, + "Ġtechnological": 18439, + "Ġallen": 18440, + "Ġraining": 18441, + "avi": 18442, + "Ġsalty": 18443, + "Ġtyping": 18444, + "ĠÑĤе": 18445, + "Ġtilt": 18446, + "Ġì¹ĺ": 18447, + "ĠоÑĢ": 18448, + "ĠпÑĢÑıм": 18449, + "Ġrou": 18450, + "Ġarena": 18451, + "arat": 18452, + "åĪ«": 18453, + "HHHH": 18454, + "Ġmanufacturers": 18455, + "ĠEdward": 18456, + "Ġtuck": 18457, + "Ġblows": 18458, + "ingo": 18459, + "ĠMarc": 18460, + "ìķĦìĦľ": 18461, + "Mich": 18462, + "ĠClean": 18463, + "è´": 18464, + "esto": 18465, + "ĠPack": 18466, + "Ġshaft": 18467, + "BRUNO": 18468, + "Ġaven": 18469, + "uur": 18470, + "ÑģколÑĮко": 18471, + "ê´Ģ": 18472, + "Ġautomated": 18473, + "Ġventure": 18474, + "Ġsurveillance": 18475, + "ĠGrow": 18476, + "ĠEmer": 18477, + "ĠдоÑĢ": 18478, + "Ġinvestor": 18479, + "ĠYok": 18480, + "Ġlatter": 18481, + "ĠNI": 18482, + "Ġfunctioning": 18483, + "ĠHamilton": 18484, + "Ġ51": 18485, + "Ġmurdered": 18486, + "Ġanchor": 18487, + "Ġcuc": 18488, + "ĠSCP": 18489, + "ĠMadam": 18490, + "Ġconstraints": 18491, + "Ġbarn": 18492, + "anken": 18493, + "Ġë§İìĿĢ": 18494, + "ĠMotor": 18495, + "ĠDoing": 18496, + "Ġamen": 18497, + "etts": 18498, + "Ġinstructor": 18499, + "egt": 18500, + "ako": 18501, + "Ġposture": 18502, + "ivia": 18503, + "ĠPolish": 18504, + "Ġдва": 18505, + "Ġcolorful": 18506, + "Ġelbow": 18507, + "Ġparle": 18508, + "Ġpasser": 18509, + "Ġcondem": 18510, + "ortal": 18511, + "Ġfertil": 18512, + "اد": 18513, + "ĠColomb": 18514, + "Ġalignment": 18515, + "Ġastronaut": 18516, + "ĠMut": 18517, + "Ġsalmon": 18518, + "Ġstructured": 18519, + "ŀר": 18520, + "Ġclicks": 18521, + "Ġmiej": 18522, + "æĶ¿": 18523, + "ãģĦãĤĦ": 18524, + "ĠRound": 18525, + "Ġrainbow": 18526, + "ĠVA": 18527, + "ãģĶãģĸ": 18528, + "ì§Ī": 18529, + "otz": 18530, + ",": 21732, + "Ġchords": 21733, + "ĠSanders": 21734, + "Ġë¶Ħë": 21735, + "Ben": 21736, + "Ġdarüber": 21737, + "ilians": 21738, + "Ġordering": 21739, + "ĠManh": 21740, + "Ġkilogram": 21741, + "ĠkarÅŁ": 21742, + "Ġgrasp": 21743, + "Ġghosts": 21744, + "alen": 21745, + "ĠJedi": 21746, + "Ġбли": 21747, + "Ġdownloaded": 21748, + "Ġconducting": 21749, + "ĠHak": 21750, + "Ġresearcher": 21751, + "ilan": 21752, + "good": 21753, + "ĠHannah": 21754, + "ĠdÃ¼ÅŁÃ¼n": 21755, + "ĠMessiah": 21756, + "uity": 21757, + "iona": 21758, + "Ġprobable": 21759, + "ĠYE": 21760, + "Ġindependently": 21761, + "Ġbuffer": 21762, + "burn": 21763, + "ourd": 21764, + "ĠMcK": 21765, + "Ġlingu": 21766, + "ujemy": 21767, + "еÑĢÑĤ": 21768, + "Ġintuitive": 21769, + "Ġcracks": 21770, + "appropri": 21771, + "nty": 21772, + "Ġgeen": 21773, + "Ġlend": 21774, + "Ġcertification": 21775, + "IDS": 21776, + "unter": 21777, + "pees": 21778, + "Ġtrump": 21779, + "Ġbankrupt": 21780, + "Ġfeas": 21781, + "èĹ": 21782, + "Ġduż": 21783, + "æ¸ħ": 21784, + "Ġviruses": 21785, + "Ġ58": 21786, + "god": 21787, + "Ġжел": 21788, + "Ġstalk": 21789, + "Ind": 21790, + "achi": 21791, + "ĠCF": 21792, + "ĠCond": 21793, + "Ġsanct": 21794, + "Ġconten": 21795, + "Ġfreed": 21796, + "ĠRT": 21797, + "Ġmentors": 21798, + "족": 21799, + "Ġportable": 21800, + "ĠPaulo": 21801, + "rane": 21802, + "HAHA": 21803, + "ĠSection": 21804, + "çĨ": 21805, + "hyun": 21806, + "ĠÎŃÏĩ": 21807, + "ĠPub": 21808, + "ĠIndepend": 21809, + "Ġcompounds": 21810, + "ĠÑģÑĭ": 21811, + "Ġmessaging": 21812, + "Ġdedication": 21813, + "Ġnoticing": 21814, + "Ġdevoted": 21815, + "ÑİÑĤÑģÑı": 21816, + "Ġsnakes": 21817, + "Ġbattlefield": 21818, + "pers": 21819, + "Ġdela": 21820, + "92": 21821, + "Ġhai": 21822, + "illä": 21823, + "érer": 21824, + "every": 21825, + "Ġresponsive": 21826, + "×Ļ×ķ": 21827, + "opf": 21828, + "éī": 21829, + "Ĭ¸": 21830, + "Because": 21831, + "Ġtourism": 21832, + "Ġê·¸ê²Į": 21833, + "×ķצ": 21834, + "Ġcans": 21835, + "stüt": 21836, + "Ġdonne": 21837, + "ĠDios": 21838, + "ĠUber": 21839, + "actory": 21840, + "Ġoriented": 21841, + "ĠHerm": 21842, + "Ġpatron": 21843, + "urf": 21844, + "bei": 21845, + "Ġprograma": 21846, + "ĠOhh": 21847, + "gener": 21848, + "Ġfist": 21849, + "ĠWendy": 21850, + "Ġanda": 21851, + "Ġguessed": 21852, + "Ġfreak": 21853, + "ä¸Ńåľĭ": 21854, + "ĠKings": 21855, + "chool": 21856, + "Ġoffline": 21857, + "ĠIndiana": 21858, + "ĠAlliance": 21859, + "Ġ53": 21860, + "Ġparticul": 21861, + "ĠFocus": 21862, + "Ġinhabit": 21863, + "Ġê°ĻìĿĢëį°": 21864, + "ĠMcG": 21865, + "owski": 21866, + "ĠìĿ´ê±´": 21867, + "ĠpaÅĦst": 21868, + "они": 21869, + "itta": 21870, + "Ġconfirmation": 21871, + "ĠBrooklyn": 21872, + "Ġnoodle": 21873, + "fund": 21874, + "itud": 21875, + "Ġgrandparents": 21876, + "Ġbarbecue": 21877, + "ειÏĤ": 21878, + "Ġá": 21879, + "Ġballot": 21880, + "ĠVeter": 21881, + "Ġpipes": 21882, + "igious": 21883, + "ĠGraph": 21884, + "ested": 21885, + "Ġë¸Įë": 21886, + "ĠKE": 21887, + "ãģ¡ãĤĩãģ£ãģ¨": 21888, + "Ġeins": 21889, + "Ġhatred": 21890, + "ãģijãģ©": 21891, + "Ġdang": 21892, + "eeee": 21893, + "Ġarchae": 21894, + "ĠJesse": 21895, + "Ġdetected": 21896, + "Ġseni": 21897, + "burgh": 21898, + "Ġdisplacement": 21899, + "Ġdop": 21900, + "Ġconditioning": 21901, + "ĠнеÑģколÑĮко": 21902, + "Ġdisturbing": 21903, + "PH": 21904, + "Ġthinner": 21905, + "Ġwounded": 21906, + "ĠCuando": 21907, + "Ġcushion": 21908, + "Ġwhites": 21909, + "Ġpreferences": 21910, + "Ġì¤Ģë¹Ħ": 21911, + "Ġkaż": 21912, + "ĠGate": 21913, + "ĠPath": 21914, + "dles": 21915, + "à¸Ħร": 21916, + "imore": 21917, + "Ġë³´ìŬ": 21918, + "Ġdisciplines": 21919, + "á»ı": 21920, + "Ġmesma": 21921, + "ĠìĥĪë": 21922, + "Ġìĭ¬": 21923, + "Ġging": 21924, + "Ġumbrella": 21925, + "IGHT": 21926, + "Ġpension": 21927, + "Ġcombining": 21928, + "SS": 21929, + "Ġrectangle": 21930, + "á»ĩt": 21931, + "Ġproxim": 21932, + "ĠCow": 21933, + "¸Į": 21934, + "Ġintentional": 21935, + "æķĻ": 21936, + "Ġdecid": 21937, + "ĠÑģкаж": 21938, + "ĠUma": 21939, + "iasm": 21940, + "buz": 21941, + "Ġdebris": 21942, + "Ġcass": 21943, + "ĠProp": 21944, + "iska": 21945, + "ëł¥": 21946, + "esterol": 21947, + "ussian": 21948, + "ìĿ´ëŀij": 21949, + "Ġunlimited": 21950, + "Ġadmire": 21951, + "Ġtightly": 21952, + "Ġgenome": 21953, + "ĠJunior": 21954, + "venir": 21955, + "gus": 21956, + "ĠcÄĥ": 21957, + "ĠVlad": 21958, + "ĠíĤ": 21959, + "Ġrelativ": 21960, + "inci": 21961, + "Ġaunque": 21962, + "ĠBoys": 21963, + "ÑĨион": 21964, + "ĠSwiss": 21965, + "Ġphysicians": 21966, + "Ġíıī": 21967, + "ĠPET": 21968, + "Ġwounds": 21969, + "about": 21970, + "Ãłi": 21971, + "onz": 21972, + "urities": 21973, + "ĠÑĥвид": 21974, + "å·¦": 21975, + "Ġmentality": 21976, + "Ġvariance": 21977, + "Ġsegunda": 21978, + "Ġvolcano": 21979, + "alie": 21980, + "à¥ĩ": 21981, + "Ġtiles": 21982, + "ĠTerry": 21983, + "ĠاÙĦÙĦÙĩ": 21984, + "Ġcanon": 21985, + "Ġscattered": 21986, + "pton": 21987, + "Ġdefinitions": 21988, + "Ġalgebra": 21989, + "oten": 21990, + "ablo": 21991, + "ijuana": 21992, + "Ġwrapping": 21993, + "Ġsesame": 21994, + "ĠнаÑĩина": 21995, + "ĠAlf": 21996, + "ĠÐłÐ¾ÑģÑģ": 21997, + "orno": 21998, + "Ġankle": 21999, + "Ġspecialty": 22000, + "Ġattempting": 22001, + "iliation": 22002, + "Ġ1920": 22003, + "Ġphenomena": 22004, + "ĠProduct": 22005, + "ĠBuck": 22006, + "ĠAww": 22007, + "seen": 22008, + "Ġvoid": 22009, + "ĠFranklin": 22010, + "Ġadvocacy": 22011, + "ĠSep": 22012, + "Ġcoolest": 22013, + "ĠÑģÑĢазÑĥ": 22014, + "ĠQuand": 22015, + "Ġ900": 22016, + "ĠTrad": 22017, + "dies": 22018, + "Ġhash": 22019, + "æĪijå°±": 22020, + "ä¹Łæĺ¯": 22021, + "Ġpots": 22022, + "Ġsadly": 22023, + "Ġviable": 22024, + "ĠTiger": 22025, + "ĠONE": 22026, + "Ġneurons": 22027, + "owanie": 22028, + "ÄĹ": 22029, + "ĠShar": 22030, + "ĠLandes": 22031, + "Ġconferences": 22032, + "該": 22033, + "Ġcredential": 22034, + "Ġlime": 22035, + "inee": 22036, + "xit": 22037, + "pay": 22038, + "Ġincons": 22039, + "Ġ>>:": 22040, + "èªį": 22041, + "Ġíŀĺë": 22042, + "Ġlesser": 22043, + "Ġspill": 22044, + "Ġpremise": 22045, + "Ġ365": 22046, + "ĠHost": 22047, + "Ġtomar": 22048, + "×IJ׾": 22049, + "ë²Ī": 22050, + "ĠWhats": 22051, + "Ġlightweight": 22052, + "ĠMap": 22053, + "fia": 22054, + "ellschaft": 22055, + "Ġvendors": 22056, + "uesto": 22057, + "ĠMister": 22058, + "ĠÐŁÑĢи": 22059, + "åı³": 22060, + "hma": 22061, + "Ġintentionally": 22062, + "ĠTang": 22063, + "éĹ®": 22064, + "Ġidentification": 22065, + "Ġetcetera": 22066, + "ĠNee": 22067, + "ĠÑĤÑĢи": 22068, + "ê·¸": 22069, + "Ġcryptocur": 22070, + "Ġinhale": 22071, + "Ġaddict": 22072, + "åIJĦä½į": 22073, + "Ġmau": 22074, + "ĠÑĤакаÑı": 22075, + "Ġë²Ħ": 22076, + "Ġcomprar": 22077, + "iedzieÄĩ": 22078, + "ĠоÑĤно": 22079, + "Ġbeginner": 22080, + "ĠмÑĥж": 22081, + "Ġobsc": 22082, + "Ġlimiting": 22083, + "ascular": 22084, + "Ġinspection": 22085, + "aci": 22086, + "Ġrejo": 22087, + "Mus": 22088, + "Ġzaten": 22089, + "Ġszcz": 22090, + "ĠMadrid": 22091, + "Ġvarieties": 22092, + "ĠestÃł": 22093, + "ĠShakes": 22094, + "Ġkits": 22095, + "Ġadminister": 22096, + "Ġlava": 22097, + "ĠgÃ¥": 22098, + "試": 22099, + "ת×Ļ": 22100, + "ĠWayne": 22101, + "Ġinstagram": 22102, + "Ġrated": 22103, + "paper": 22104, + "Ġbild": 22105, + "Ġpretending": 22106, + "Ġobserving": 22107, + "ĠÑģамом": 22108, + "Ġtror": 22109, + "Ġorganisms": 22110, + "Ġfalta": 22111, + "Ġhometown": 22112, + "ç±": 22113, + "Ġíĭ": 22114, + "Ġcheg": 22115, + "Ġì¡": 22116, + "Ġcomma": 22117, + "isé": 22118, + "Ġlikelihood": 22119, + "avored": 22120, + "Ġgeldi": 22121, + "ников": 22122, + "Ġmedio": 22123, + "Ġjakie": 22124, + "ĠJup": 22125, + "Ġgreenhouse": 22126, + "Ġspit": 22127, + "кое": 22128, + "Ġкаж": 22129, + "ĠGram": 22130, + "ĠConference": 22131, + "Ġdeficit": 22132, + "sın": 22133, + "inse": 22134, + "uÄŁ": 22135, + "Ġricht": 22136, + "Ġcoincidence": 22137, + "åıį": 22138, + "Ġeurop": 22139, + "Ġbutterfly": 22140, + "pread": 22141, + "Ġìĸ¼": 22142, + "èĢ¶": 22143, + "Ġwavel": 22144, + "ĠInfin": 22145, + "ĠPlanet": 22146, + "Ġselfie": 22147, + "ientras": 22148, + "Ġarrog": 22149, + "oser": 22150, + "idal": 22151, + "ł×Ĺ׳×ķ": 22152, + "ütün": 22153, + "Ġfreshman": 22154, + "ĠMachine": 22155, + "ÏĥÏĦ": 22156, + "ĠDia": 22157, + "ìĿ´ëĭ¤": 22158, + "ãģĵãģĨ": 22159, + "nea": 22160, + "Ġlisting": 22161, + "Ġconfigure": 22162, + "utor": 22163, + "Up": 22164, + "tschaft": 22165, + "rière": 22166, + "Ġupwards": 22167, + "ĠÑħоÑĩÑĥ": 22168, + "Ġsweep": 22169, + "Br": 22170, + "Ġexpressing": 22171, + "Ġunhappy": 22172, + "Ġmandatory": 22173, + "gender": 22174, + "ĠAÃŃ": 22175, + "Ġindicators": 22176, + "Ġoils": 22177, + "note": 22178, + "Ġsegur": 22179, + "ожеÑĤ": 22180, + "ynasty": 22181, + "Ġdistances": 22182, + "Ġmerge": 22183, + "BERT": 22184, + "Ġsurrender": 22185, + "Ġbuat": 22186, + "ĠAwards": 22187, + "Ġseñor": 22188, + "odox": 22189, + "Ġflavour": 22190, + "Ġabdom": 22191, + "Ġconfigur": 22192, + "86": 22193, + "ĠDIY": 22194, + "Ġrigid": 22195, + "°ĺ": 22196, + "Ġcorporation": 22197, + "Ġgroom": 22198, + "jaw": 22199, + "ĠNear": 22200, + "ило": 22201, + "Ġopera": 22202, + "ĠInnov": 22203, + "иÑĢа": 22204, + "ĵ±": 22205, + "Ġspecified": 22206, + "Ġcosm": 22207, + "ĠFreedom": 22208, + "Ġclown": 22209, + "ĠNem": 22210, + "Ġвол": 22211, + "Ñijн": 22212, + "Ġcharger": 22213, + "à¹ģล": 22214, + "Ġinfluential": 22215, + "äsident": 22216, + "é¤": 22217, + "ĠìĦłë": 22218, + "Ġvolumes": 22219, + "æIJ": 22220, + "Ġoutras": 22221, + "ĠTwitch": 22222, + "Ġfounding": 22223, + "Ġawhile": 22224, + "Ġcoil": 22225, + "ê°Ļ": 22226, + "Ġcả": 22227, + "ĠThrow": 22228, + "ĠHence": 22229, + "ommt": 22230, + "ĠBenjamin": 22231, + "глÑıд": 22232, + "Time": 22233, + "obic": 22234, + "Ġmour": 22235, + "Ġdread": 22236, + "ĠLÃł": 22237, + "ĠChile": 22238, + "Ġpreval": 22239, + "Ġvain": 22240, + "Ġartık": 22241, + "Ġpreserved": 22242, + "ĠоÑĤд": 22243, + "Ġwarehouse": 22244, + "Ġbeste": 22245, + "ĠSeveral": 22246, + "ĠSituation": 22247, + "Ġcardboard": 22248, + "Tod": 22249, + "erna": 22250, + "Ġgarant": 22251, + "Ġgesture": 22252, + "Ġhen": 22253, + "Ġspelling": 22254, + "osexual": 22255, + "Ġanne": 22256, + "Ġmice": 22257, + "ĠMeine": 22258, + "card": 22259, + "Ġrebell": 22260, + "Ġcerto": 22261, + "Ġìľłë": 22262, + "Ġverschied": 22263, + "ĠBos": 22264, + "Ġinvention": 22265, + "Ġtrze": 22266, + "Ġmanière": 22267, + "ĠChad": 22268, + "Ġspre": 22269, + "Ġorganisations": 22270, + "Ġpoorly": 22271, + "Ġanterior": 22272, + "Ġstair": 22273, + "кÑĢ": 22274, + "Ġatomic": 22275, + "Ġsympath": 22276, + "Ġcontinually": 22277, + "Ġkleine": 22278, + "ète": 22279, + "иÑī": 22280, + "οÏĤ": 22281, + "peut": 22282, + "Ġreposit": 22283, + "Ġentra": 22284, + "Em": 22285, + "Ġfinancing": 22286, + "Ġмног": 22287, + "Ġthesis": 22288, + "ĠComputer": 22289, + "eau": 22290, + "ĠTree": 22291, + "Ġbride": 22292, + "onsieur": 22293, + "shire": 22294, + "wic": 22295, + "DE": 22296, + "ĠìĪĺë": 22297, + "Ġacom": 22298, + "ĠPO": 22299, + "ersch": 22300, + "ĠпомоÑī": 22301, + "ĠArmen": 22302, + "Ġ죽": 22303, + "Ġzor": 22304, + "Ġprints": 22305, + "ĠDass": 22306, + "港": 22307, + "Ġdurable": 22308, + "ĠTransport": 22309, + "ìŀIJê°Ģ": 22310, + "Ġлег": 22311, + "Ġdét": 22312, + "ôle": 22313, + "amous": 22314, + "YN": 22315, + "Ġcliff": 22316, + "Ġgrammar": 22317, + "ĠÐŁÐ¾ÑįÑĤомÑĥ": 22318, + "ĠlÃłm": 22319, + "esch": 22320, + "Ġmiserable": 22321, + "Ġvolts": 22322, + "ĠCad": 22323, + "ukan": 22324, + "ÑĤив": 22325, + "rust": 22326, + "Ġìĺ¬ëĿ¼": 22327, + "Ġverk": 22328, + "Ġchickens": 22329, + "ĠYoo": 22330, + "Ġoutfits": 22331, + "code": 22332, + "Ġhierarchy": 22333, + "netes": 22334, + "Ġcounterpart": 22335, + "Ġtôi": 22336, + "Ġted": 22337, + "ĠBart": 22338, + "ĠëĿ¼": 22339, + "ĠGenau": 22340, + "Ġincoming": 22341, + "ĠABC": 22342, + "rique": 22343, + "ĠоÑĤп": 22344, + "qual": 22345, + "Ġincentive": 22346, + "Ġihren": 22347, + "׳×Ļ": 22348, + "loe": 22349, + "Ġ1930": 22350, + "Ġbarg": 22351, + "Ġdiction": 22352, + "Ġönce": 22353, + "INS": 22354, + "Ġreh": 22355, + "isiaj": 22356, + "mouth": 22357, + "Ġscoring": 22358, + "lık": 22359, + "ĠìķĦ주": 22360, + "ORIA": 22361, + "ĠEstados": 22362, + "Ġcompanion": 22363, + "Ġassemble": 22364, + "Ġpunished": 22365, + "Ġital": 22366, + "Ġprevents": 22367, + "istes": 22368, + "ĠKentucky": 22369, + "Ġlocate": 22370, + "Ġfasting": 22371, + "ãģ¨æĢĿ": 22372, + "ĥĢ": 22373, + "ĠSeb": 22374, + "ĠCrown": 22375, + "opia": 22376, + "Ġwhip": 22377, + "usz": 22378, + "ками": 22379, + "Ġdatabases": 22380, + "åŃĹ": 22381, + "Ġprosec": 22382, + "Ġ1997": 22383, + "ĠìĤ´ì§Ŀ": 22384, + "ĠSolar": 22385, + "ĠPues": 22386, + "ĠZen": 22387, + "ollo": 22388, + "ĠGuru": 22389, + "Ġsqueez": 22390, + "ĠÐĹа": 22391, + "ĠÄį": 22392, + "ceptions": 22393, + "cca": 22394, + "izable": 22395, + "mand": 22396, + "Ġbreakthrough": 22397, + "Ġtablespoon": 22398, + "ĠSEC": 22399, + "ikh": 22400, + "ĠSão": 22401, + "Ġпло": 22402, + "amen": 22403, + "Ġprac": 22404, + "Ġdarling": 22405, + "Ġtaller": 22406, + "Ġrendering": 22407, + "Ġìļ°ë¦¬ê°Ģ": 22408, + "ĠÏĦηÏĤ": 22409, + "Ġmã": 22410, + "Ġesos": 22411, + "uerdo": 22412, + "ĠÑģÑĩиÑĤ": 22413, + "aller": 22414, + "ìĹĪìĸ´ìļĶ": 22415, + "Ġmillones": 22416, + "lerin": 22417, + "Ġpegar": 22418, + "onne": 22419, + "Ġenrollment": 22420, + "Ġliegt": 22421, + "Ġboa": 22422, + "wiÄĻ": 22423, + "bsp": 22424, + "Ġcycling": 22425, + "ĠBernie": 22426, + "Ġ1989": 22427, + "ĠдалÑĮ": 22428, + "ĠDakota": 22429, + "ĠÑģвÑıз": 22430, + "ĠCP": 22431, + "Ġstare": 22432, + "íĤ¤": 22433, + "Ġprosperity": 22434, + "Ġarrangements": 22435, + "Ġarriving": 22436, + "mä": 22437, + "Ġkayak": 22438, + "ipt": 22439, + "Ġpardon": 22440, + "Ġrelat": 22441, + "Ġverste": 22442, + "ĠFig": 22443, + "Ġfoil": 22444, + "ĠTalking": 22445, + "peare": 22446, + "Ġnoi": 22447, + "ĠпÑĢиÑĪ": 22448, + "Ġhockey": 22449, + "Ġado": 22450, + "ĠOUT": 22451, + "67": 22452, + "Ġhormones": 22453, + "ĠAvenue": 22454, + "ĠSuperman": 22455, + "Ġprescription": 22456, + "ubernetes": 22457, + "CL": 22458, + "otive": 22459, + "NIS": 22460, + "ienen": 22461, + "Ġsadness": 22462, + "ĠVit": 22463, + "Ty": 22464, + "Ġstarter": 22465, + "Ġbede": 22466, + "Ġfoundations": 22467, + "Ġsore": 22468, + "åºĹ": 22469, + "ÑīеÑģÑĤв": 22470, + "ìļ°ë": 22471, + "ĠÑĩÑĥв": 22472, + "link": 22473, + "Ġmaneu": 22474, + "working": 22475, + "Ãłn": 22476, + "ĠAttack": 22477, + "ĠCart": 22478, + "veis": 22479, + "ĠResp": 22480, + "ensing": 22481, + "Ġì¢ĭìķĦìļĶ": 22482, + "Ġescuch": 22483, + "ĠRNA": 22484, + "Ĥ´": 22485, + "Ġadop": 22486, + "Ġbending": 22487, + "عد": 22488, + "Ġmanages": 22489, + "usp": 22490, + "Ġtart": 22491, + "Ġrouter": 22492, + "Bo": 22493, + "Ġestablishing": 22494, + "Ġbalancing": 22495, + "Ġathletic": 22496, + "ĠSlo": 22497, + "Ġfills": 22498, + "Ġнаб": 22499, + "Ġдал": 22500, + "Ġposso": 22501, + "ĠVielen": 22502, + "Ġcritics": 22503, + "Ġlawsuit": 22504, + "ĠIsaac": 22505, + "ĠÑĦилÑĮм": 22506, + "Ġtras": 22507, + "Ġpraw": 22508, + "ĠCrazy": 22509, + "Ġneu": 22510, + "Ġkull": 22511, + "Ġtumor": 22512, + "ĠAPP": 22513, + "gate": 22514, + "ĠARE": 22515, + "98": 22516, + "ĠSteam": 22517, + "Ġfucked": 22518, + "lage": 22519, + "ĠâĻ¬": 22520, + "ĠMD": 22521, + "fy": 22522, + "Ġshells": 22523, + "ĠSeems": 22524, + "izers": 22525, + "Ġranges": 22526, + "ĠAntonio": 22527, + "ATION": 22528, + "ĠBaba": 22529, + "Ġìĥī": 22530, + "kun": 22531, + "Ġprayed": 22532, + "ÑĢÑı": 22533, + "ĠпÑĢоÑĤив": 22534, + "Ġseas": 22535, + "bury": 22536, + "Ġ×Ķש": 22537, + "Ġtrait": 22538, + "ĠDepending": 22539, + "Ġdre": 22540, + "Ġkönnt": 22541, + "ÑĨÑĥ": 22542, + "Ġlipstick": 22543, + "eez": 22544, + "ĠпÑĢимеÑĢ": 22545, + "Ġassignments": 22546, + "Bob": 22547, + "Ġmetals": 22548, + "Ġspecially": 22549, + "å°įä¸įå°į": 22550, + "ĠìĺĪë": 22551, + "ĠÅ¡": 22552, + "Ġvista": 22553, + "Ġά": 22554, + "Ġtwins": 22555, + "Ġnotable": 22556, + "ĠSau": 22557, + "Ġdévelop": 22558, + "Ġçek": 22559, + "Ġpolynom": 22560, + "avam": 22561, + "Ġtambé": 22562, + "оном": 22563, + "Ġplasma": 22564, + "Ġefect": 22565, + "Ġläng": 22566, + "Ġcasi": 22567, + "Ñģа": 22568, + "ımı": 22569, + "ãģĻãĤĭ": 22570, + "ĵ¤ìĿĢ": 22571, + "Ġlabour": 22572, + "ossen": 22573, + "ĠPun": 22574, + "rif": 22575, + "Ġdoses": 22576, + "Ġoperates": 22577, + "илли": 22578, + "Ġjaar": 22579, + "staw": 22580, + "ĠìĤ¬ëŀij": 22581, + "Ġatm": 22582, + "Ġprotects": 22583, + "Ġimped": 22584, + "HO": 22585, + "Ġcima": 22586, + "Ġtoch": 22587, + "abis": 22588, + "Ġsendo": 22589, + "laus": 22590, + "Ġcurl": 22591, + "ĠNum": 22592, + "Ġsponsors": 22593, + "Ġdébut": 22594, + "ĠAlexa": 22595, + "ĠBür": 22596, + "ĠAmer": 22597, + "Ġcope": 22598, + "Ġизв": 22599, + "jal": 22600, + "Ġ1995": 22601, + "apat": 22602, + "resse": 22603, + "ĠPrize": 22604, + "ĠClaire": 22605, + "ĠBrandon": 22606, + "Ġwszystko": 22607, + "Ġvalued": 22608, + "à¸Ļะ": 22609, + "Ġsect": 22610, + "Ġsecretly": 22611, + "Ġdiamonds": 22612, + "ĠEvan": 22613, + "ĠRPG": 22614, + "ãģ«ãģª": 22615, + "ĪëıĦ": 22616, + "ĠUniversal": 22617, + "Ġdoubts": 22618, + "ĠPin": 22619, + "wiÄħz": 22620, + "ļ©": 22621, + "Ġalbo": 22622, + "Ġbraucht": 22623, + "AUL": 22624, + "ĠMobile": 22625, + "grades": 22626, + "Ġschem": 22627, + "why": 22628, + "ĠNicht": 22629, + "pi": 22630, + "gle": 22631, + "Ġchorus": 22632, + "Ġgly": 22633, + "Ġreinforce": 22634, + "Ġmuff": 22635, + "ĠShen": 22636, + "ĠHola": 22637, + "Ñĥг": 22638, + "videmment": 22639, + "vial": 22640, + "acious": 22641, + "laimed": 22642, + "ĠRico": 22643, + "Ġvegg": 22644, + "Ġillustration": 22645, + "ĠButter": 22646, + "owad": 22647, + "Ġeux": 22648, + "Ġenfants": 22649, + "ĠLeader": 22650, + "ĠVillage": 22651, + "etically": 22652, + "ÙĨÙĬ": 22653, + "Ġstew": 22654, + "Ġsurprises": 22655, + "Ġcue": 22656, + "ĠGrandma": 22657, + "ĠCelsius": 22658, + "ĠRicht": 22659, + "enc": 22660, + "Ġpetition": 22661, + "Ġherb": 22662, + "Ġwicked": 22663, + "Ġschle": 22664, + "ocaly": 22665, + "Ġtransf": 22666, + "Ġtokens": 22667, + "ĠGray": 22668, + "ĠBBC": 22669, + "IK": 22670, + "Ġ1500": 22671, + "zn": 22672, + "ĠNev": 22673, + "Ġkoy": 22674, + "Ġzar": 22675, + "Ġbullshit": 22676, + "ĠColombia": 22677, + "ulative": 22678, + "Ġwidespread": 22679, + "yect": 22680, + "kit": 22681, + "Ġempresa": 22682, + "Ġnour": 22683, + "Ġburns": 22684, + "atin": 22685, + "aired": 22686, + "Ġrevolutionary": 22687, + "ĠгодÑĥ": 22688, + "ĠLogan": 22689, + "Ġ1996": 22690, + "ĠGraham": 22691, + "reb": 22692, + "ĠNHS": 22693, + "æľĽ": 22694, + "Ġcostumes": 22695, + "Ġnawet": 22696, + "Ġlovers": 22697, + "ĠLucy": 22698, + "ĠIndigenous": 22699, + "íķĺ기": 22700, + "Ġimmunity": 22701, + "¥´ë": 22702, + "uito": 22703, + "Ġexcessive": 22704, + "Ġdonations": 22705, + "Ġ×Ķר": 22706, + "Ġ첫": 22707, + "éīĦ": 22708, + "Ġdrying": 22709, + "melon": 22710, + "Ġsurveys": 22711, + "Ġ무ìĬ¨": 22712, + "風": 22713, + "aaa": 22714, + "Ġprobe": 22715, + "ancial": 22716, + "Ġlouder": 22717, + "Ġhotels": 22718, + "Ã¼ÄŁ": 22719, + "agner": 22720, + "Ġorigins": 22721, + "Ġë§Īì§Ģë§ī": 22722, + "Ġ**": 22723, + "Ġstrangers": 22724, + "ĠHaus": 22725, + "comed": 22726, + "Ġanthrop": 22727, + "Ġuso": 22728, + "ĠìķĦì§ģ": 22729, + "ĠYuan": 22730, + "ĠíķĦìļĶ": 22731, + "pler": 22732, + "ressive": 22733, + "Ġspraw": 22734, + "ĠStew": 22735, + "Ġ1994": 22736, + "Ġelders": 22737, + "Ġmeinen": 22738, + "Ġjunt": 22739, + "Ġacoust": 22740, + "ĠWohn": 22741, + "Ġbananas": 22742, + "Ġprojection": 22743, + "ĠStick": 22744, + "legt": 22745, + "speed": 22746, + "ĠcÅ©ng": 22747, + "ĠWort": 22748, + "ĠBaltimore": 22749, + "ĠÑĨел": 22750, + "Ġdunno": 22751, + "å¼·": 22752, + "?,": 22753, + "ãĥīãĥ³": 22754, + "ĠLocal": 22755, + "osto": 22756, + "ÐŃ": 22757, + "ода": 22758, + "ĠPortuguese": 22759, + "Ġtheirs": 22760, + "Ġdém": 22761, + "åı¦": 22762, + "Ġdrauf": 22763, + "ĠBuddhist": 22764, + "erta": 22765, + "Ge": 22766, + "Ġcarrot": 22767, + "ĠWonderful": 22768, + "Ġsoak": 22769, + "Ġchairman": 22770, + "ggi": 22771, + "ICA": 22772, + "fried": 22773, + "Ġflick": 22774, + "ĠThroughout": 22775, + "Ġìļ°ë": 22776, + "Ġcough": 22777, + "Ġfluffy": 22778, + "school": 22779, + "Ġripped": 22780, + "--------": 22781, + "ĠZukunft": 22782, + "Ġнеб": 22783, + "Ġsto": 22784, + "ĠBO": 22785, + "pent": 22786, + "ĠLawrence": 22787, + "ÏīÏĤ": 22788, + "sticks": 22789, + "ĠEins": 22790, + "ĠÑĢÑĭ": 22791, + "ĠStrong": 22792, + "Ġcaramel": 22793, + "Ġspite": 22794, + "azar": 22795, + "éĥ½æĺ¯": 22796, + "Ġcritically": 22797, + "Ġobra": 22798, + "owitz": 22799, + "ĠZone": 22800, + "ĠÑĢек": 22801, + "Ġsug": 22802, + "arded": 22803, + "Ġgì": 22804, + "ffentlich": 22805, + "anche": 22806, + "ØŁ": 22807, + "astically": 22808, + "ìĿ¼ë": 22809, + "лав": 22810, + "Ġsimplest": 22811, + "ĠFriend": 22812, + "Ġquello": 22813, + "Ġambition": 22814, + "Ġabbiamo": 22815, + "åºķ": 22816, + "ĠÑĦоÑĢм": 22817, + "ĠEssa": 22818, + "Ġeducators": 22819, + "Ġstatistical": 22820, + "éĢĻéĤĬ": 22821, + "Ġchanger": 22822, + "Ġatau": 22823, + "étais": 22824, + "ĠShakespeare": 22825, + "ëIJĺ": 22826, + "Ġtriggers": 22827, + "Ġrealiz": 22828, + "Ġcelui": 22829, + "wheel": 22830, + "Ġloyalty": 22831, + "Ġscreams": 22832, + "kehr": 22833, + "ĠMega": 22834, + "east": 22835, + "Ġtops": 22836, + "ĠTotally": 22837, + "ountain": 22838, + "lord": 22839, + "Ġviolation": 22840, + "ĠGA": 22841, + "Ġnicer": 22842, + "ĠFresh": 22843, + "ĠMelissa": 22844, + "function": 22845, + "Ġrape": 22846, + "Ġexceptions": 22847, + "Ġsilicon": 22848, + "Ġliberty": 22849, + "Ġhouseholds": 22850, + "ãģįãģ¾ãģĻ": 22851, + "ĠCA": 22852, + "ĠÐŀб": 22853, + "Ġlib": 22854, + "ŀĮ": 22855, + "cific": 22856, + "Ġtropical": 22857, + "Ġinvestigating": 22858, + "HD": 22859, + "Ġadapter": 22860, + "ĠPitt": 22861, + "ancia": 22862, + "ĠShell": 22863, + "friendly": 22864, + "Ġconclusions": 22865, + "Ġturtle": 22866, + "Ġdecomp": 22867, + "Ġanimations": 22868, + "ĠÑģек": 22869, + "insi": 22870, + "Ġretention": 22871, + "kie": 22872, + "Ġinjection": 22873, + "ĠMadison": 22874, + "ì°°": 22875, + "Ġvient": 22876, + "Ġvaried": 22877, + "Ġviolin": 22878, + "ĠBil": 22879, + "Ġluckily": 22880, + "Ġhtt": 22881, + "lä": 22882, + "Ġranch": 22883, + "çľĭçľĭ": 22884, + "Ġsólo": 22885, + "ìķħ": 22886, + "ĠDerek": 22887, + "ĠScripture": 22888, + "оÑĢа": 22889, + "Ġclassrooms": 22890, + "avil": 22891, + "formed": 22892, + "Ġbeforehand": 22893, + "ĠGem": 22894, + "prech": 22895, + "Ġlin": 22896, + "Ġgreens": 22897, + "ÑĨев": 22898, + "ĠMercedes": 22899, + "Ġdrought": 22900, + "gasps": 22901, + "Ġabortion": 22902, + "Ġterribly": 22903, + "Ġsposób": 22904, + "Ġsecured": 22905, + "Ġatrás": 22906, + "Ġwavelength": 22907, + "Ġgrains": 22908, + "ective": 22909, + "Ġspacecraft": 22910, + "Ġtours": 22911, + "Ġprofes": 22912, + "Ġsurgeon": 22913, + "ĠPie": 22914, + "Ġideally": 22915, + "arner": 22916, + "UP": 22917, + "opard": 22918, + "sce": 22919, + "Ġimmense": 22920, + "ĠOrt": 22921, + "roller": 22922, + "ĠDallas": 22923, + "ĠNicholas": 22924, + "Ġsulf": 22925, + "ĠToyota": 22926, + "Ġquantities": 22927, + "ceans": 22928, + "Ġcui": 22929, + "ança": 22930, + "ĠCAN": 22931, + "itzerland": 22932, + "åĦ¿": 22933, + "Ġzou": 22934, + "ĠCyber": 22935, + "legen": 22936, + "ĠInit": 22937, + "edu": 22938, + "Ġapert": 22939, + "Ġadjac": 22940, + "ouv": 22941, + "èĢĮä¸Ķ": 22942, + "rs": 22943, + "Ġcabbage": 22944, + "Ġwheelchair": 22945, + "inyl": 22946, + "ĠDynam": 22947, + "ĠìķĦëĭĪëĿ¼": 22948, + "Ġling": 22949, + "hl": 22950, + "ĠмогÑĥ": 22951, + "Ġcrisp": 22952, + "Ġmij": 22953, + "Ġdug": 22954, + "nin": 22955, + "Ġbloss": 22956, + "Ġbelonging": 22957, + "Ġloudly": 22958, + "Ġminerals": 22959, + "Ġconcluded": 22960, + "Ġsearched": 22961, + "96": 22962, + "ĠMeet": 22963, + "ĠSEO": 22964, + "ĠСк": 22965, + "ĠHob": 22966, + "otta": 22967, + "Ġpropaganda": 22968, + "Ġcinnamon": 22969, + "Ġhunter": 22970, + "Ġgemeins": 22971, + "Ġsculpture": 22972, + "ulsion": 22973, + "Ġväl": 22974, + "Ġmagazines": 22975, + "Ġcontroversy": 22976, + "ä¸Ģ樣": 22977, + "Ġsequences": 22978, + "ãģĦãĤĭ": 22979, + "ĠíļĮ": 22980, + "Ġdeleted": 22981, + "使": 22982, + "IJëıĦ": 22983, + "Ġvarying": 22984, + "ãĥĨ": 22985, + "Ġmounting": 22986, + "Ġaffair": 22987, + "Ġpathways": 22988, + "æ¦": 22989, + "Ġdigo": 22990, + "亮": 22991, + "Ġдок": 22992, + "Alex": 22993, + "Ġtobacco": 22994, + "ĠCV": 22995, + "Ġbothered": 22996, + "Ġambient": 22997, + "inky": 22998, + "ĠSL": 22999, + "Ġhates": 23000, + "Ġjeżeli": 23001, + "Ġcongreg": 23002, + "Ġelas": 23003, + "Ġdeuts": 23004, + "ĠStudios": 23005, + "chÄĻ": 23006, + "Ġdocumented": 23007, + "ĠCruz": 23008, + "ĠLen": 23009, + "ĠDouglas": 23010, + "ĠPortugal": 23011, + "enti": 23012, + "Ġspouse": 23013, + "Ġanalys": 23014, + "avia": 23015, + "Ġedited": 23016, + "Ġlại": 23017, + "built": 23018, + "Ġville": 23019, + "adora": 23020, + "Ġbracelet": 23021, + "Ġsushi": 23022, + "Ġpm": 23023, + "Ġtrails": 23024, + "Ġlug": 23025, + "Ġöver": 23026, + "Ġsorrow": 23027, + "Ġcolony": 23028, + "adox": 23029, + "Ġserie": 23030, + "anyak": 23031, + "ĠØ·": 23032, + "ĠGulf": 23033, + "æĺ¯ä¸įæĺ¯": 23034, + "ĠPV": 23035, + "ĠSamuel": 23036, + "ĠKit": 23037, + "ĠRal": 23038, + "ontin": 23039, + "expl": 23040, + "Ġentries": 23041, + "Ġactivists": 23042, + "Ps": 23043, + "Ġsant": 23044, + "ĠÑĤоÑĩ": 23045, + "ĠBruno": 23046, + "keley": 23047, + "Ġtutto": 23048, + "éĶ": 23049, + "Ġvintage": 23050, + "Ġterrified": 23051, + "ĠпоÑħ": 23052, + "usive": 23053, + "owers": 23054, + "айÑĤ": 23055, + "ëıĻ": 23056, + "Ġtwisted": 23057, + "ĠThought": 23058, + "Ġtah": 23059, + "Ġshrink": 23060, + "Ġsheer": 23061, + "lit": 23062, + "Ġdalam": 23063, + "Ġdib": 23064, + "Ġvard": 23065, + "owane": 23066, + "Ġdobr": 23067, + "ĠRena": 23068, + "ĠÑģвоÑİ": 23069, + "ĠpaÃŃses": 23070, + "ĠEra": 23071, + "ãģ®ãģ§": 23072, + "ĠBUT": 23073, + "sighs": 23074, + "Ġ그거": 23075, + "ĠgroÃŁen": 23076, + "Ġ빨리": 23077, + "Ġnerves": 23078, + "Ġconstit": 23079, + "Ġpreocup": 23080, + "ĠGay": 23081, + "ĠXu": 23082, + "keeper": 23083, + "heure": 23084, + "..)": 23085, + "ĠCalm": 23086, + "ĠUnidos": 23087, + "ĠìĿ´ê²ĥ": 23088, + "ĠAqui": 23089, + "ĠìłľìĿ¼": 23090, + "dır": 23091, + "ì¦ĺ": 23092, + "your": 23093, + "ĠÑįÑĤим": 23094, + "2020": 23095, + "Ġrund": 23096, + "ĠHO": 23097, + "ĠCatherine": 23098, + "ieli": 23099, + "Ġfusion": 23100, + "Ġideology": 23101, + "Ġforam": 23102, + "shaped": 23103, + "ĠíĽĦë": 23104, + "Ġwt": 23105, + "Ġretr": 23106, + "Ġpréc": 23107, + "Ġê°ij": 23108, + "Ġopenly": 23109, + "vity": 23110, + "구ìļĶ": 23111, + "Ġobstacle": 23112, + "Ġboo": 23113, + "Ġseiner": 23114, + "icorn": 23115, + "Ġeigenlijk": 23116, + "Ġheader": 23117, + "aremos": 23118, + "Ġsofter": 23119, + "ĠÐŁÐ¾Ð´": 23120, + "Ġprejud": 23121, + "Ġdefines": 23122, + "ierte": 23123, + "Ġblending": 23124, + "Ġbelievers": 23125, + "ĠWochen": 23126, + "Ġникак": 23127, + "ĠÐļогда": 23128, + "ĠTypically": 23129, + "Ġíģ¬": 23130, + "管": 23131, + "cios": 23132, + "Ġmissiles": 23133, + "Ġsponge": 23134, + "ĠKitchen": 23135, + "Ġtren": 23136, + "ningen": 23137, + "Ġscrap": 23138, + "Ġserait": 23139, + "´ìł": 23140, + "ç¹": 23141, + "Ġë°ĺë": 23142, + "Ġrestored": 23143, + "ĠprzykÅĤad": 23144, + "ĠKubernetes": 23145, + "Ġsait": 23146, + "Ġuw": 23147, + "Ġenabling": 23148, + "Ġtravers": 23149, + "amps": 23150, + "åıĹ": 23151, + "ĠOMG": 23152, + "ensor": 23153, + "Ġzosta": 23154, + "Ġpronounced": 23155, + "Ang": 23156, + "normal": 23157, + "Ġeconomies": 23158, + "tin": 23159, + "ĠChampion": 23160, + "izen": 23161, + "Ġarbeiten": 23162, + "ĠGospel": 23163, + "ĠZu": 23164, + "nga": 23165, + "Ġliteracy": 23166, + "ĠMans": 23167, + "Ġcirculation": 23168, + "Ġadap": 23169, + "ĠTotal": 23170, + "Ġmereka": 23171, + "Ġolacak": 23172, + "ÑģÑĤаÑĤи": 23173, + "Jack": 23174, + "Ġmund": 23175, + "Ġthief": 23176, + "bies": 23177, + "Ġê²ģ": 23178, + "aque": 23179, + "ĠÚ©ÛĮ": 23180, + "ĠScar": 23181, + "å²": 23182, + "Ġabol": 23183, + "Ġdevote": 23184, + "Ġ01": 23185, + "Ġsitten": 23186, + "ĠVisual": 23187, + "week": 23188, + "some": 23189, + "ingt": 23190, + "Ġjournalism": 23191, + "ĠHir": 23192, + "ĠBachelor": 23193, + "inery": 23194, + "ÃľND": 23195, + "ãĥŁ": 23196, + "ç»Ļ": 23197, + "Ġcoloring": 23198, + "ĠCrist": 23199, + "Ġcelebrities": 23200, + "ĠÑĩиÑģ": 23201, + "ĠCrit": 23202, + "Ġdifferentiate": 23203, + "ĠÐľÐ½Ðµ": 23204, + "elim": 23205, + "Ġseafood": 23206, + "Ġalgumas": 23207, + "otherapy": 23208, + "æĪ°": 23209, + "Ġglaub": 23210, + "Ġarbitrary": 23211, + "gens": 23212, + "ĠбÑĥдем": 23213, + "Ġtav": 23214, + "Ġcreamy": 23215, + "ĠCountry": 23216, + "añ": 23217, + "меÑĤ": 23218, + "Ġhinter": 23219, + "Ġmism": 23220, + "Ġillustrate": 23221, + "ÃľNDNIS": 23222, + "Ġdecreasing": 23223, + "Ġweniger": 23224, + "AKI": 23225, + "ixon": 23226, + "Ġней": 23227, + "Ġfatto": 23228, + "Ġnerd": 23229, + "çł": 23230, + "Ġbitte": 23231, + "Per": 23232, + "Ġtane": 23233, + "Ġgöz": 23234, + "Ġforte": 23235, + "ĠEy": 23236, + "ĠнавеÑĢ": 23237, + "被": 23238, + "ĠWordPress": 23239, + "ĠMis": 23240, + "ů": 23241, + "zäh": 23242, + "Ġintéress": 23243, + "osaurs": 23244, + "ĠFalls": 23245, + "Ġnessa": 23246, + "97": 23247, + "Ġmuseums": 23248, + "Ġcorresponds": 23249, + "Ġsings": 23250, + "four": 23251, + "Ġeder": 23252, + "ĠCommunist": 23253, + "oa": 23254, + "nek": 23255, + "ĠWHO": 23256, + "Ġcorpo": 23257, + "Ġmessing": 23258, + "ÏĦαι": 23259, + "Ġbrushes": 23260, + "Ġbisc": 23261, + "ĠArbeits": 23262, + "ĠTax": 23263, + "Ġsele": 23264, + "Ġflags": 23265, + "oupe": 23266, + "Ġanticipated": 23267, + "ãĥij": 23268, + "ĠNad": 23269, + "Ġpoured": 23270, + "Ġml": 23271, + "Ġllama": 23272, + "Ġvisualize": 23273, + "Ġlisteners": 23274, + "ÙĦÙĥ": 23275, + "alten": 23276, + "Michael": 23277, + "Ġcosì": 23278, + "Õ¡Õ": 23279, + "opus": 23280, + "Ġíķ´ì£¼": 23281, + "Ġhike": 23282, + "ĠAttorney": 23283, + "ĠHillary": 23284, + "uded": 23285, + "Ġíķĺì§Ģë§Į": 23286, + "Ġdove": 23287, + "Ġstorms": 23288, + "акÑģ": 23289, + "Ġdoctrine": 23290, + "Ġhex": 23291, + "iks": 23292, + "noÅĽÄĩ": 23293, + "Ġscripts": 23294, + "Ġδεν": 23295, + "ĠÑįÑĤиÑħ": 23296, + "ĠÐĨ": 23297, + "aber": 23298, + "ĠVas": 23299, + "Ġcentimeters": 23300, + "×ŀ×Ķ": 23301, + "ниб": 23302, + "Ġriders": 23303, + "ĠTrib": 23304, + "åĮħ": 23305, + "Ġtakże": 23306, + "Ġnoun": 23307, + "Ġicons": 23308, + "Ġsolely": 23309, + "minded": 23310, + "Ġdispon": 23311, + "ĠSwitzerland": 23312, + "Ġclusters": 23313, + "Ġqueda": 23314, + "ailing": 23315, + "Ġmanga": 23316, + "Ġ68": 23317, + "ĦĪ": 23318, + "Ġtet": 23319, + "gins": 23320, + "haus": 23321, + "空": 23322, + "å·¥": 23323, + "ĠOP": 23324, + "oted": 23325, + "Ġnouveau": 23326, + "ALLY": 23327, + "ÙĪد": 23328, + "òn": 23329, + "Ġmortality": 23330, + "ĠGitHub": 23331, + "drop": 23332, + "Ġdisgu": 23333, + "Ġrecom": 23334, + "Ġlocals": 23335, + "Ġhomemade": 23336, + "amba": 23337, + "Ġpronunciation": 23338, + "Ġalphabet": 23339, + "анÑĮ": 23340, + "owany": 23341, + "iras": 23342, + "idency": 23343, + "OME": 23344, + "ĠÑĢаÑģÑģ": 23345, + "arak": 23346, + "viamente": 23347, + "Ġnonprofit": 23348, + "ĠYouTuber": 23349, + "Ġparenth": 23350, + "ĠBoo": 23351, + "vat": 23352, + "ĠStir": 23353, + "Ġprecip": 23354, + "Ġants": 23355, + "Ġally": 23356, + "ĠMaori": 23357, + "ĠëĮĢíķľ": 23358, + "åı¯æĺ¯": 23359, + "ogene": 23360, + "ĠLabour": 23361, + "arette": 23362, + "Ġrecycling": 23363, + "ensa": 23364, + "Ġpursuit": 23365, + "Ġsak": 23366, + "ĠÐĹдеÑģÑĮ": 23367, + "Ġtolerance": 23368, + "Ġsaat": 23369, + "Ġclicked": 23370, + "âĻ¥": 23371, + "Ġfacebook": 23372, + "ĠInto": 23373, + "Ġincentives": 23374, + "기ëĬĶ": 23375, + "ĠDennis": 23376, + "ĠWik": 23377, + "gesch": 23378, + "à¹Ģà¸Ľ": 23379, + "ĠÏĢα": 23380, + "ĠWhoo": 23381, + "Ġrounded": 23382, + "Ġdope": 23383, + "Ġcapturing": 23384, + "ĠWarri": 23385, + "Ġcivilian": 23386, + "Ġcharming": 23387, + "Ġesas": 23388, + "Ġsustained": 23389, + "Ġleaning": 23390, + "Ġabundance": 23391, + "ÃŃlia": 23392, + "алÑĮнÑĭй": 23393, + "Ġphải": 23394, + "acja": 23395, + "Ġê°ĻìķĦ": 23396, + "activ": 23397, + "าย": 23398, + "Ġ97": 23399, + "Ġмой": 23400, + "cro": 23401, + "ĠJackie": 23402, + "ittees": 23403, + "bracht": 23404, + "ulent": 23405, + "Ġìłľë": 23406, + "Ġplugin": 23407, + "vantage": 23408, + "party": 23409, + "Ġsuas": 23410, + "Ġante": 23411, + "Ñĥл": 23412, + "ÐĿÐIJ": 23413, + "æĤ¨": 23414, + "ĠÏĥÏħ": 23415, + "Ġmeth": 23416, + "Ġenthusiasm": 23417, + "ÑıÑĤÑģÑı": 23418, + "íĻĶë": 23419, + "Ġsynthetic": 23420, + "Ġseasoning": 23421, + "ĠLost": 23422, + "onomy": 23423, + "ĠSpark": 23424, + "Ġbure": 23425, + "Ġassured": 23426, + "Ġimagin": 23427, + "Ġcarro": 23428, + "Sha": 23429, + "Äħt": 23430, + "нÑĥÑĤÑĮ": 23431, + "ática": 23432, + "TY": 23433, + "Ġkern": 23434, + "ĠBrazilian": 23435, + "ð": 23436, + "Ġsuspended": 23437, + "ĠCarib": 23438, + "Ġbizim": 23439, + "ĠOliver": 23440, + "ãģ¶": 23441, + "Tom": 23442, + "Ġплан": 23443, + "Ġnope": 23444, + "omething": 23445, + "Ġbeiden": 23446, + "ÑĨен": 23447, + "Ġfluct": 23448, + "ĠμοÏħ": 23449, + "Ġfathers": 23450, + "ĠBlake": 23451, + "Ġupward": 23452, + "ĠDash": 23453, + "ĠLil": 23454, + "ĠìĪĺëıĦ": 23455, + "Ġrevelation": 23456, + "Ġelevated": 23457, + "ĠJiang": 23458, + "LED": 23459, + "ĠThompson": 23460, + "ĠмогÑĥÑĤ": 23461, + "ÑģÑĤÑĢÑĥ": 23462, + "ifiers": 23463, + "Ġcomeback": 23464, + "Ġbuyers": 23465, + "ê²°": 23466, + "ĠSales": 23467, + "иÑĩе": 23468, + "ciones": 23469, + "Ġwhistle": 23470, + "Ġdull": 23471, + "LEX": 23472, + "Ġíķĺê²łìĬµëĭĪëĭ¤": 23473, + "Ġcriminals": 23474, + "Ġdescent": 23475, + "ipple": 23476, + "ması": 23477, + "Ġfoolish": 23478, + "ĠдÑĥмаÑİ": 23479, + "tar": 23480, + "Ġmango": 23481, + "Ġchoreography": 23482, + "Matt": 23483, + "Ġterritor": 23484, + "Ġacaba": 23485, + "ĠEinstein": 23486, + "ĠIBM": 23487, + "ĠMetal": 23488, + "ĠCrystal": 23489, + "Ġrah": 23490, + "Ġfoul": 23491, + "ĠIslands": 23492, + "Ġintact": 23493, + "ĠRail": 23494, + ".:": 23495, + "Ġacá": 23496, + "ĠпÑĢоп": 23497, + "еÑĢе": 23498, + "ĠWrite": 23499, + "hehe": 23500, + "ĠFO": 23501, + "ĠÏĥÏĦη": 23502, + "Ġdoin": 23503, + "held": 23504, + "Ġappropriately": 23505, + "Ġdeliberately": 23506, + "Ġarchive": 23507, + "Ġgiveaway": 23508, + "ãģĵãģĵ": 23509, + "Ġfinale": 23510, + "лаÑģ": 23511, + "ено": 23512, + "Æ¡n": 23513, + "æ£Ĵ": 23514, + "ogo": 23515, + "çī©": 23516, + "ĠAudience": 23517, + "ãħł": 23518, + "Ġsubur": 23519, + "Ġheadache": 23520, + "аннÑı": 23521, + "ĠWitch": 23522, + "ĠSwedish": 23523, + "ĠBI": 23524, + "Ġerase": 23525, + "Ġkhi": 23526, + "Ġcommentary": 23527, + "ĠSultan": 23528, + "íĥĿ": 23529, + "ĠLeban": 23530, + "Ġë³´ìĭ": 23531, + "ĠPam": 23532, + "pekt": 23533, + "month": 23534, + "Ġgrounded": 23535, + "ê¾": 23536, + "ĠÅŁekilde": 23537, + "250": 23538, + "ĠSCH": 23539, + "ioso": 23540, + "Ġinaug": 23541, + "heimer": 23542, + "Ġreflecting": 23543, + "ĠRuth": 23544, + "ĠOil": 23545, + "Ġtrouver": 23546, + "uep": 23547, + "..]": 23548, + "ĠìŀĪë": 23549, + "Ġolha": 23550, + "Ġreasonably": 23551, + "Ġglitch": 23552, + "UB": 23553, + "ĠGran": 23554, + "Ġadalah": 23555, + "Ġlent": 23556, + "را": 23557, + "Ġtraction": 23558, + "Ġadjusting": 23559, + "´¤": 23560, + "нибÑĥдÑĮ": 23561, + "Ġдоп": 23562, + "Ġstretched": 23563, + "Ġort": 23564, + "Ġcosine": 23565, + "viol": 23566, + "Ġìħ": 23567, + "cir": 23568, + "Ġbastard": 23569, + "ä¸ĩ": 23570, + "ĠÑħод": 23571, + "Ġquier": 23572, + "Ġpressures": 23573, + "ĠAnh": 23574, + "å¹¾": 23575, + "Ġelles": 23576, + "ĠдÑĢÑĥз": 23577, + "ĠможеÑĤе": 23578, + "Ġchá»": 23579, + "ĠMé": 23580, + "ök": 23581, + "ầu": 23582, + "ìłĪ": 23583, + "zin": 23584, + "Ġcaution": 23585, + "iban": 23586, + "Ġjudging": 23587, + "ÑĥÑİÑĤ": 23588, + "Ġbaj": 23589, + "ĠСейÑĩаÑģ": 23590, + "ĠPoor": 23591, + "ĠNazi": 23592, + "Ġupbeat": 23593, + "yang": 23594, + "Ġweekends": 23595, + "ĠEssentially": 23596, + "Ġoluyor": 23597, + "Ġspatial": 23598, + "acker": 23599, + "Ġseller": 23600, + "Ġ×IJ×ķת": 23601, + "ij׾": 23602, + "Ġvivid": 23603, + "ĠBond": 23604, + "ê¶Į": 23605, + "iskt": 23606, + "ãĤµ": 23607, + "Ġgoat": 23608, + "driver": 23609, + "Ġmug": 23610, + "ictional": 23611, + "Ġallt": 23612, + "ĠIniti": 23613, + "ĠRand": 23614, + "Ġfinishes": 23615, + "Ġê°Ī": 23616, + "Ġvitam": 23617, + "Ġteenagers": 23618, + "ĠMorris": 23619, + "ì¤Ħ": 23620, + "ĠOri": 23621, + "iya": 23622, + "Ġmyös": 23623, + "Step": 23624, + "ĠKre": 23625, + "辦": 23626, + "Ġdinosaur": 23627, + "Ġëªĩ": 23628, + "affe": 23629, + "ĠëIJ©ëĭĪëĭ¤": 23630, + "Ġzeg": 23631, + "åĪĩ": 23632, + "ĠManhattan": 23633, + "Ġsujet": 23634, + "uelle": 23635, + "stoff": 23636, + "Ġdür": 23637, + "Ġsubmar": 23638, + "eses": 23639, + "Ġaquele": 23640, + "Ġnou": 23641, + "ĠFaith": 23642, + "tz": 23643, + "ĠÑĤомÑĥ": 23644, + "aceut": 23645, + "liers": 23646, + "Ġbandwidth": 23647, + "Æ°á»Ŀ": 23648, + "Ġrespective": 23649, + "ĠAve": 23650, + "Ġspreadshe": 23651, + "ĠSent": 23652, + "icamente": 23653, + "Ġinfra": 23654, + "Ġlearners": 23655, + "Ġà®ī": 23656, + "aiah": 23657, + "renal": 23658, + "Ġmustard": 23659, + "Ġhabt": 23660, + "çĥ": 23661, + "ĠQué": 23662, + "Ġanalyzing": 23663, + "æ¯ı": 23664, + "Ġsolic": 23665, + "Ġ×Ķ×ķ×IJ": 23666, + "Ġcausa": 23667, + "Ġwelcomed": 23668, + "ĠSuccess": 23669, + "Ġfacile": 23670, + "ĠÐŁÐ¾ÑĤомÑĥ": 23671, + "schein": 23672, + "Ġfetch": 23673, + "Ġstrat": 23674, + "ĠÑģÑĤоиÑĤ": 23675, + "ìĹIJìĦľëĬĶ": 23676, + "ĠÑģпоÑģоб": 23677, + "mam": 23678, + "ĠserÃŃa": 23679, + "naments": 23680, + "writer": 23681, + "Ġconsulting": 23682, + "íĺĢ": 23683, + "ĠBerkeley": 23684, + "eu": 23685, + "asive": 23686, + "UU": 23687, + "ĠAnalyt": 23688, + "Ġsubmission": 23689, + "Ġmagnificent": 23690, + "enza": 23691, + "Ġecon": 23692, + "Ġprofiles": 23693, + "Ġincar": 23694, + "Ab": 23695, + "ĠNun": 23696, + "Ġhic": 23697, + "screaming": 23698, + "Ġresilient": 23699, + "åĪ©": 23700, + "grund": 23701, + "Ġconcur": 23702, + "Ġbereits": 23703, + "LD": 23704, + "Ġnurt": 23705, + "ìī": 23706, + "Ġfeast": 23707, + "Ġencuent": 23708, + "ĠMichel": 23709, + "Ġsuprem": 23710, + "\"]": 23711, + "Ġfeeds": 23712, + "ĠKollegen": 23713, + "isser": 23714, + "ĠFeng": 23715, + "ĠWen": 23716, + "mun": 23717, + "ĠtenÃŃa": 23718, + "ĠWrest": 23719, + "Ġìĺ¤ëĬĺìĿĢ": 23720, + "Ġstead": 23721, + "Ġrestoration": 23722, + "Ġdonated": 23723, + "Ġdels": 23724, + "Ġcensus": 23725, + "Ġdesperately": 23726, + "worthy": 23727, + "HE": 23728, + "ĠSpa": 23729, + "ĠBryan": 23730, + "Ġhj": 23731, + "ĠRaw": 23732, + "ìķĦë": 23733, + "ĠCamera": 23734, + "Ġzien": 23735, + "Ġstyl": 23736, + "ĠTW": 23737, + "ĠCheese": 23738, + "borne": 23739, + "Ġobl": 23740, + "ĠAlready": 23741, + "Ġunstable": 23742, + "Ġflames": 23743, + "post": 23744, + "Ha": 23745, + "romagn": 23746, + "ĠìĹĦë§Ī": 23747, + "dest": 23748, + "Ġkolej": 23749, + "Ġtemporarily": 23750, + "Ġdetermining": 23751, + "ĠGlass": 23752, + "ÑĢон": 23753, + "olan": 23754, + "Ġdominated": 23755, + "åĮĸ": 23756, + "____": 23757, + "ĠÙĩذا": 23758, + "ĠDana": 23759, + "Ġdinheiro": 23760, + "aqu": 23761, + "민": 23762, + "ĠÃłs": 23763, + "ĠJoey": 23764, + "ĠGriff": 23765, + "Ġattain": 23766, + "Ġtransitions": 23767, + "ĠLiterally": 23768, + "енд": 23769, + "ĠHaven": 23770, + "Ġgrabbing": 23771, + "Ġcrystals": 23772, + "ĠFourth": 23773, + "Ġcandles": 23774, + "ĠÑģлÑĥÑĩа": 23775, + "rico": 23776, + "Ġ5000": 23777, + "etto": 23778, + "Ġundo": 23779, + "Ġkto": 23780, + "Ġdivert": 23781, + "Ġchir": 23782, + "Ġpersec": 23783, + "Ġhiking": 23784, + "Ġannouncements": 23785, + "çĶ±": 23786, + "зÑĭ": 23787, + "Ġauc": 23788, + "Ġsystemic": 23789, + "ĠRM": 23790, + "Ïĥα": 23791, + "ĠÐĶж": 23792, + "Ġyar": 23793, + "ĠWard": 23794, + "Ġpissed": 23795, + "Ġcarn": 23796, + "Ġautonomous": 23797, + "ãħİãħİ": 23798, + "sover": 23799, + "æ²ĴéĮ¯": 23800, + "å¾Ī好": 23801, + "Ġreflex": 23802, + "Ġgardens": 23803, + "Ġdated": 23804, + "ì±": 23805, + "amiÄĻ": 23806, + "Ġcontinuity": 23807, + "Ġcitizenship": 23808, + "Ġschwer": 23809, + "Ġzak": 23810, + "table": 23811, + "ĠÑģÑĩ": 23812, + "è§ģ": 23813, + "ĠÏĥε": 23814, + "Ġgenerates": 23815, + "구ëĤĺ": 23816, + "öh": 23817, + "óm": 23818, + "alam": 23819, + "ĠJUDY": 23820, + "ĠBug": 23821, + "Ġãģ¦": 23822, + "Ġdrones": 23823, + "Ġágua": 23824, + "acaks": 23825, + "æļ": 23826, + "ĠÐļон": 23827, + "×ĸ×Ķ": 23828, + "Ġstrive": 23829, + "ĠAltern": 23830, + "Ġnearest": 23831, + "Ġproyect": 23832, + "tera": 23833, + "ĠASHLEY": 23834, + "Ġworm": 23835, + "Ġreplay": 23836, + "Ġtara": 23837, + "ĠIndians": 23838, + "ãĤ°": 23839, + "icaid": 23840, + "ĠìĪľ": 23841, + "Ġappealing": 23842, + "ĠWes": 23843, + "Ġmentions": 23844, + "Ġделе": 23845, + "Ġkw": 23846, + "Ġfragile": 23847, + "isz": 23848, + "ków": 23849, + "hang": 23850, + "color": 23851, + "Ġpresidente": 23852, + "87": 23853, + "еÑĦ": 23854, + "çĪ¸": 23855, + "Ġдобав": 23856, + "ĠNelson": 23857, + "áfic": 23858, + "ĠMICHAEL": 23859, + "Ġmechanic": 23860, + "Ġmetres": 23861, + "ĠoczywiÅĽcie": 23862, + "ĠCind": 23863, + "ĠogsÃ¥": 23864, + "Ġlandsca": 23865, + "ACE": 23866, + "Ġheadlines": 23867, + "Ġcatalyst": 23868, + "ĠCatch": 23869, + "inkles": 23870, + "Ġpills": 23871, + "ordo": 23872, + "Ġimmigrant": 23873, + "Ġexamination": 23874, + "Ġaccidents": 23875, + "zÄħd": 23876, + "Ġquiere": 23877, + "Ġnella": 23878, + "Ġ67": 23879, + "Ġpassa": 23880, + "Ġsuperfic": 23881, + "istor": 23882, + "Ġnov": 23883, + "ëĭµ": 23884, + "Ġmandate": 23885, + "isons": 23886, + "ĠVirtual": 23887, + "Ġselber": 23888, + "Ġcounseling": 23889, + "ĠNBA": 23890, + "Ġsept": 23891, + "Ġbeliever": 23892, + "Ġmarvel": 23893, + "ĠIntegr": 23894, + "ĠмÑĸ": 23895, + "Ġorph": 23896, + "Ġbackward": 23897, + "ĠGeneration": 23898, + "ĠPict": 23899, + "ĠÑĤоÑĤ": 23900, + "Ġtapi": 23901, + "prochen": 23902, + "Ġhallway": 23903, + "hte": 23904, + "ĠÛģÛĴ": 23905, + "ĠZum": 23906, + "èĢģ師": 23907, + "achment": 23908, + "iquer": 23909, + "folg": 23910, + "ĠEddie": 23911, + "ĠKil": 23912, + "Ġwellness": 23913, + "stock": 23914, + "è¼ĥ": 23915, + "Ġkaç": 23916, + "Ġterrorism": 23917, + "Ġpointer": 23918, + "Of": 23919, + "heric": 23920, + "ĠUltimately": 23921, + "Ġmeses": 23922, + "ĠTrade": 23923, + "Ġpint": 23924, + "Ġtuition": 23925, + "Ġdisagre": 23926, + "Ġê²ĮìŀĦ": 23927, + "Ġmanuscript": 23928, + "Ġroomm": 23929, + "Ġoutputs": 23930, + "еÑĨи": 23931, + "Ġries": 23932, + "Ġsalud": 23933, + "otzdem": 23934, + "Ġmasses": 23935, + "ĠbyÅĤa": 23936, + "Ġclearing": 23937, + "Ġdiscourse": 23938, + "atson": 23939, + "Ġfolded": 23940, + "ĠJar": 23941, + "ÙĦÙī": 23942, + "900": 23943, + "ĠÑĥÑģп": 23944, + "Ġprophecy": 23945, + "Ġinterfere": 23946, + "иÑħод": 23947, + "à¹Į": 23948, + "Ġthri": 23949, + "Ġ×ŀש": 23950, + "Ġlazım": 23951, + "Ġ1992": 23952, + "Ġfuturo": 23953, + "Ġlocking": 23954, + "Ġembargo": 23955, + "ĠNeither": 23956, + "ivamente": 23957, + "ĠmÃ¥ste": 23958, + "Ġmik": 23959, + "Ġcollector": 23960, + "екоÑĤоÑĢ": 23961, + "ĠGand": 23962, + "Ġsentir": 23963, + "ĠMight": 23964, + "å¡Ķ": 23965, + "Ġganzen": 23966, + "UC": 23967, + "Ġrelating": 23968, + "SD": 23969, + "Ġmosquito": 23970, + "GR": 23971, + "Ġhollow": 23972, + "âĺħ": 23973, + "ĠWalker": 23974, + "Ġaffiliate": 23975, + "Ġduplicate": 23976, + "нем": 23977, + "Ġgrape": 23978, + "ĠOrganization": 23979, + "Ġsynt": 23980, + "Joe": 23981, + "Ġgeg": 23982, + "Ġrevealing": 23983, + "ĠEthan": 23984, + "outer": 23985, + "Ġyay": 23986, + "é«Ķ": 23987, + "лаÑĢ": 23988, + "Ġreportedly": 23989, + "Ġihrer": 23990, + "Ġrecognise": 23991, + "Ġbumper": 23992, + "ĠRandy": 23993, + "ĠVenus": 23994, + "tles": 23995, + "Ġappetite": 23996, + "Ġglucose": 23997, + "Ġchodzi": 23998, + "ĠFurthermore": 23999, + "tir": 24000, + "Ġconta": 24001, + "Ġintuition": 24002, + "Ġaltitude": 24003, + "Ġchunks": 24004, + "ĠJoshua": 24005, + "ıģım": 24006, + "rylic": 24007, + "leans": 24008, + "ĠíĶ¼ë": 24009, + "LL": 24010, + "Que": 24011, + "Ġgor": 24012, + "ĠзнаÑĩиÑĤ": 24013, + "Ġpoems": 24014, + "Ġexcel": 24015, + "Ġexplored": 24016, + "Ġpopul": 24017, + "Ġincluso": 24018, + "stä": 24019, + "ĠGavin": 24020, + "alling": 24021, + "ĠÏĦον": 24022, + "é©": 24023, + "arbeit": 24024, + "ĠGas": 24025, + "Ġglorious": 24026, + "rieben": 24027, + "Ġspam": 24028, + "Ġindoor": 24029, + "Ġthrust": 24030, + "ĠAld": 24031, + "ĠPrior": 24032, + "Ġonboard": 24033, + "ãģłãģķãģĦ": 24034, + "oca": 24035, + "ASH": 24036, + "£ł": 24037, + "ĠChristine": 24038, + "Ġdrawer": 24039, + "Ġnoon": 24040, + "Ġìŀĺë": 24041, + "Ġpermanently": 24042, + "æ·±": 24043, + "ĠнапÑĢимеÑĢ": 24044, + "Ġpodcasts": 24045, + "erapeut": 24046, + "prit": 24047, + "Ġstainless": 24048, + "ĠÚ©ÛĴ": 24049, + "Ġfamilia": 24050, + "ĠÑĢазÑĢ": 24051, + "unto": 24052, + "ĠÑģÑĤол": 24053, + "Ġhä": 24054, + "ĠHai": 24055, + "ĠPB": 24056, + "izon": 24057, + "Ġkonnte": 24058, + "Ġbüyük": 24059, + "Ġutilizar": 24060, + "ÚĨ": 24061, + "Ġaquesta": 24062, + "Ġmixer": 24063, + "udent": 24064, + "лекÑģ": 24065, + "ÅĤu": 24066, + "ĠÑģиÑģÑĤем": 24067, + "ĠноÑĢм": 24068, + "Ġfatal": 24069, + "Ġconsiderations": 24070, + "Ġvalidation": 24071, + "Ġoli": 24072, + "ĠkardeÅŁ": 24073, + "ĠGLORIA": 24074, + "Ġpall": 24075, + "еÑģÑĤе": 24076, + "Ġrectang": 24077, + "Ġmedieval": 24078, + "allahi": 24079, + "asti": 24080, + "ĠSyrian": 24081, + "Ġshear": 24082, + "Ġdebug": 24083, + "ĠMai": 24084, + "Ġknocking": 24085, + "ĠLex": 24086, + "ardan": 24087, + "rov": 24088, + "Ġmemorial": 24089, + "æ°£": 24090, + "ooky": 24091, + "Ġstuffed": 24092, + "Ġpassé": 24093, + "Ġwig": 24094, + "Ĥł": 24095, + "Ġpróxima": 24096, + "Ġ1991": 24097, + "ĠмеждÑĥ": 24098, + "Ġnuestros": 24099, + "ĠBeast": 24100, + "Ġsmo": 24101, + "atched": 24102, + "ologia": 24103, + "Ġмод": 24104, + "Ġgee": 24105, + "Ġconceptual": 24106, + "Ġô": 24107, + "Ġdecreases": 24108, + "Ġqueries": 24109, + "олÑĮÑĪ": 24110, + "ĠApart": 24111, + "Ġexempl": 24112, + "å±±": 24113, + "Ġfled": 24114, + "ĠOFF": 24115, + "ggak": 24116, + "Ġbead": 24117, + "hir": 24118, + "lies": 24119, + "ĠClearly": 24120, + "ılar": 24121, + "Ġchess": 24122, + "Ġwhichever": 24123, + "Ġ96": 24124, + "ằ": 24125, + "Ġrespects": 24126, + "ĠмоÑĢ": 24127, + "Ġorganism": 24128, + "Ġgrandpa": 24129, + "ĠVie": 24130, + "è·Łä½ł": 24131, + "Ġflooding": 24132, + "Ġupgraded": 24133, + "ÑijÑĢ": 24134, + "Ġcheeks": 24135, + "Ġconquer": 24136, + "Ġstubborn": 24137, + "Ġpuzzles": 24138, + "Ġauction": 24139, + "Ġrelying": 24140, + "ĠPROF": 24141, + "ĠEsper": 24142, + "ĠÐľÐ£": 24143, + "Ġhype": 24144, + "Ġpossibil": 24145, + "Ġimprison": 24146, + "ĠErn": 24147, + "ìĹĪìĬµëĭĪëĭ¤": 24148, + "Ġenvie": 24149, + "Ġresurrection": 24150, + "ä¸įè¡Į": 24151, + "Ġsper": 24152, + "ĠVenezuela": 24153, + "som": 24154, + "Ġìŀłê¹": 24155, + "Ġnouvelle": 24156, + "Ġcloses": 24157, + "Ġ1940": 24158, + "Ġqua": 24159, + "ĠJared": 24160, + "ĠPir": 24161, + "Ġinde": 24162, + "Ġscrub": 24163, + "uku": 24164, + "Ġrequiring": 24165, + "Ġвами": 24166, + "Ġconsiderable": 24167, + "åIJĽ": 24168, + "ilia": 24169, + "Ġinne": 24170, + "Ġmeinem": 24171, + "Ġhardship": 24172, + "Ġtraps": 24173, + "roc": 24174, + "ĠìĦ¤ë": 24175, + "Ġresearching": 24176, + "ĠMargaret": 24177, + "Ġpenny": 24178, + "Ġbırak": 24179, + "Ñijл": 24180, + "Ġwool": 24181, + "Ġrhet": 24182, + "Ġflatten": 24183, + "çĩ": 24184, + "à¹Ģร": 24185, + "Ġpied": 24186, + "ĠChap": 24187, + "Ġunderm": 24188, + "Ġfret": 24189, + "Ġcrashed": 24190, + "ĠFrauen": 24191, + "Ø°Ùĩ": 24192, + "ivan": 24193, + "Ġliterary": 24194, + "latego": 24195, + "Ġspäter": 24196, + "Ġsimilarities": 24197, + "âĨ": 24198, + "ĠCoron": 24199, + "ĠCreek": 24200, + "Ġbosses": 24201, + "Ġaccompanied": 24202, + "Ġdebates": 24203, + "Ġassembled": 24204, + "ĠÃģ": 24205, + "ĠVai": 24206, + "Ġtract": 24207, + "Ġsimplement": 24208, + "ĠArin": 24209, + "Ġvulnerability": 24210, + "Ġhormone": 24211, + "IEL": 24212, + "OOK": 24213, + "Ġrelay": 24214, + "ĠAndrea": 24215, + "ril": 24216, + "Ġnecessity": 24217, + "aceutical": 24218, + "ÑİÑī": 24219, + "ousing": 24220, + "nahmen": 24221, + "Ġfootprint": 24222, + "map": 24223, + "ĠTier": 24224, + "annya": 24225, + "intend": 24226, + "åĸ®": 24227, + "å¢": 24228, + "Ġdecorate": 24229, + "Ġzombies": 24230, + "ĠHyd": 24231, + "ĠSuz": 24232, + "Ġcampuses": 24233, + "ĠEmb": 24234, + "Ġthrottle": 24235, + "Ġadmin": 24236, + "Ġoportun": 24237, + "Ġmirrors": 24238, + "Ġidentities": 24239, + "ĠClin": 24240, + "Ġë¹Ħë": 24241, + "á¹£": 24242, + "ĠOtt": 24243, + "Ġblues": 24244, + "Ġimpressions": 24245, + "-,": 24246, + "Ġvague": 24247, + "afe": 24248, + "Ġinferior": 24249, + "erald": 24250, + "Ġmedicines": 24251, + "Ġpregunta": 24252, + "osely": 24253, + "Ġtélé": 24254, + "ĠMonth": 24255, + "ĠLeaders": 24256, + "ĠEgyptian": 24257, + "Ġration": 24258, + "kers": 24259, + "heits": 24260, + "Ġrecht": 24261, + "Play": 24262, + "Ġeg": 24263, + "Ġpolls": 24264, + "ĠWOODR": 24265, + "Ġslots": 24266, + "jam": 24267, + "Both": 24268, + "ĠRat": 24269, + "ÑĢаж": 24270, + "ĠBright": 24271, + "ä¸Ģå®ļ": 24272, + "á»iji": 24273, + "urious": 24274, + "Ġsingers": 24275, + "Ġlogin": 24276, + "Ġtêm": 24277, + "lation": 24278, + "ĠMum": 24279, + "Æ°á»Ŀng": 24280, + "ĠEditor": 24281, + "åIJij": 24282, + "Ġinnovations": 24283, + "have": 24284, + "ĠSek": 24285, + "Ġweaker": 24286, + "ĠGob": 24287, + "After": 24288, + "´ì§Ģ": 24289, + "Ġë¬¸ìłľ": 24290, + "ãĥ¼ãĥ¼": 24291, + "Ġdisadvantage": 24292, + "確": 24293, + "Ġgaze": 24294, + "ĠMack": 24295, + "Ïģί": 24296, + "ĠKiss": 24297, + "ĠHolo": 24298, + "ĠBirth": 24299, + "izi": 24300, + "bab": 24301, + "ä¿Ŀ": 24302, + "ìĭľê³ł": 24303, + "деÑĢж": 24304, + "Ġsquat": 24305, + "кÑĥÑģ": 24306, + "uni": 24307, + "ĠComme": 24308, + "ĠWOODRUFF": 24309, + "ĠChampionship": 24310, + "Ġwelche": 24311, + "ĠYouth": 24312, + "zem": 24313, + "Ġodpow": 24314, + "Ġpersistent": 24315, + "rut": 24316, + "ìĶ©": 24317, + "íĸ¥": 24318, + "lair": 24319, + "iku": 24320, + "Ġvendor": 24321, + "Ġchúng": 24322, + "Ġfinanci": 24323, + "Ġoverly": 24324, + "âu": 24325, + "Ġgluten": 24326, + "Ġ1800": 24327, + "Ġdivisions": 24328, + "Ġciudad": 24329, + "Ġobed": 24330, + "Ġwarum": 24331, + "Ġeher": 24332, + "Ġelim": 24333, + "ĠÐĴо": 24334, + "Ġpeuvent": 24335, + "ĠWanna": 24336, + "Ġattendance": 24337, + "Ġassessments": 24338, + "ĠBog": 24339, + "Ġimagery": 24340, + "Ġcollectively": 24341, + "Ġinformal": 24342, + "ĠSchwe": 24343, + "Ġdeutlich": 24344, + "ĠChel": 24345, + "ĠPE": 24346, + "owed": 24347, + "Ġbanner": 24348, + "Ġshelves": 24349, + "ĠReturn": 24350, + "æĭ¿": 24351, + "LAUGHS": 24352, + "Ġcongratulate": 24353, + "ĠNorway": 24354, + "Ġdwell": 24355, + "ĠCaribbean": 24356, + "Ġnorms": 24357, + "ĠAnimal": 24358, + "ĠValentine": 24359, + "Ġextending": 24360, + "ĠVou": 24361, + "orr": 24362, + "ĠCheng": 24363, + "¡": 24364, + "ĠдоÑĢог": 24365, + "Ġveg": 24366, + "ĠhÃ¥": 24367, + "ĠXin": 24368, + "Ġì¹´ë": 24369, + "emet": 24370, + "Ġhypoth": 24371, + "Ġinteressante": 24372, + "rices": 24373, + "IZ": 24374, + "ĠUSD": 24375, + "Ġrunner": 24376, + "ĠBag": 24377, + "Ġê½": 24378, + "Ġcomeçar": 24379, + "Ġpigs": 24380, + "Ġweaknesses": 24381, + "Ph": 24382, + "ĠViol": 24383, + "ä¸įçĶ¨": 24384, + "Ġdragging": 24385, + "ĠAquÃŃ": 24386, + "ĠCSS": 24387, + "Ġmillimeters": 24388, + "Ġestás": 24389, + "Ġacute": 24390, + "Ġdejar": 24391, + "iÄŁ": 24392, + "obra": 24393, + "Love": 24394, + "Ġsilk": 24395, + "****": 24396, + "Ġjoins": 24397, + "Ġprol": 24398, + "Ġê°IJìĤ¬íķ©ëĭĪëĭ¤": 24399, + "æĶ¯": 24400, + "ØŃد": 24401, + "aghetti": 24402, + "änner": 24403, + "Ġstrang": 24404, + "Ġdoubled": 24405, + "Ġdescriptions": 24406, + "Ġstellen": 24407, + "Ġparti": 24408, + "ç«ĭ": 24409, + "²Ħë": 24410, + "ĠÃ¶ÄŁ": 24411, + "ighing": 24412, + "Ġangular": 24413, + "Ġnatuur": 24414, + "ĠShel": 24415, + "Æ°Æ¡": 24416, + "Ġrays": 24417, + "Ġseper": 24418, + "start": 24419, + "vised": 24420, + "Ġrushed": 24421, + "Ġinternationally": 24422, + "Ġnivel": 24423, + "Ġboxing": 24424, + "fallen": 24425, + "á»ijc": 24426, + "Ġseinen": 24427, + "plicity": 24428, + "Ġcarboh": 24429, + "ĠTravis": 24430, + "uso": 24431, + "ĠPhase": 24432, + "Ġactivation": 24433, + "Ġopio": 24434, + "·¨": 24435, + "Ġdecreased": 24436, + "Car": 24437, + "Ġbundle": 24438, + "Ġexpend": 24439, + "ormal": 24440, + "Ġadjacent": 24441, + "Ġmee": 24442, + "ĠоÑĢг": 24443, + "Ġtranscript": 24444, + "ĠLanguage": 24445, + "GS": 24446, + "è§ī": 24447, + "Ġseul": 24448, + "Ãłnh": 24449, + "Ġnya": 24450, + "nings": 24451, + "Ġìĭľë": 24452, + "ĠëĶ°ëĿ¼": 24453, + "ĠAgr": 24454, + "ÃŃd": 24455, + "çķĻ": 24456, + "Ġaby": 24457, + "ĠNeo": 24458, + "ıyoruz": 24459, + "ĠThinking": 24460, + "aime": 24461, + "Ġvite": 24462, + "Ġtravés": 24463, + "Ġ×ij×¢": 24464, + "Ġмед": 24465, + "Our": 24466, + "hoot": 24467, + "Ġliner": 24468, + "ĠPizza": 24469, + "Ġhyg": 24470, + "flies": 24471, + "ĠContinue": 24472, + "Ġdental": 24473, + "ĠTib": 24474, + "Ġregulate": 24475, + "lieÃŁ": 24476, + "ALK": 24477, + "ĠTae": 24478, + "길": 24479, + "ĠBrexit": 24480, + "ĠGut": 24481, + "Ġoccupation": 24482, + "Ġzrobi": 24483, + "âm": 24484, + "Ġwhisk": 24485, + "ä¸ĸçķĮ": 24486, + "Ġkanske": 24487, + "omon": 24488, + "robe": 24489, + "Ġwarfare": 24490, + "Ġthá»ĥ": 24491, + "Ġjaki": 24492, + "Ġstrokes": 24493, + "Ġpeas": 24494, + "ĠDamit": 24495, + "HAN": 24496, + "Ġinterference": 24497, + "ĠминÑĥÑĤ": 24498, + "NER": 24499, + "outing": 24500, + "Ġtextures": 24501, + "Łī": 24502, + "owi": 24503, + "ĠíķĻ": 24504, + "Ġdens": 24505, + "Ġprotagonist": 24506, + "änn": 24507, + "Ġgoddess": 24508, + "Ġwollte": 24509, + "ijo": 24510, + "ĠWoche": 24511, + "ĠVPN": 24512, + "story": 24513, + "Ġkinderg": 24514, + "Ġfunnel": 24515, + "Ġdistress": 24516, + "ноÑģÑĤÑĮÑİ": 24517, + "Ġnoisy": 24518, + "ĠпÑĢодолж": 24519, + "Ġdaran": 24520, + "Ġenzyme": 24521, + "лож": 24522, + "Ġmute": 24523, + "Ġdwar": 24524, + "Ġاس": 24525, + "Ġkompl": 24526, + "Ġmerit": 24527, + "Ġfosse": 24528, + "ĠDrink": 24529, + "Ġfora": 24530, + "Ġwohl": 24531, + "Ġbreeze": 24532, + "Ġsanit": 24533, + "Ġdrin": 24534, + "ĠìĿ´ê±°ëĬĶ": 24535, + "Ġ62": 24536, + "Ġì°¨ë": 24537, + "abytes": 24538, + "Ġdeeds": 24539, + "Ġй": 24540, + "ième": 24541, + "iggling": 24542, + "Ġ\"'": 24543, + "ĠÑĩаÑģÑĤÑĮ": 24544, + "ĠAnswer": 24545, + "Ġevangel": 24546, + "Ġ1080": 24547, + "ĠVisit": 24548, + "icient": 24549, + "Ġreliability": 24550, + "ÑİÑģÑĮ": 24551, + "ĠEarlier": 24552, + "Ġfid": 24553, + "çŃīä¸Ģä¸ĭ": 24554, + "Ġsleeves": 24555, + "iyorsun": 24556, + "Ġbib": 24557, + "ĠAccount": 24558, + "Ñıли": 24559, + "ciplinary": 24560, + "zas": 24561, + "ĠбеÑĢ": 24562, + "Ġnecklace": 24563, + "Ġblender": 24564, + "ĠPhillips": 24565, + "eti": 24566, + "ĠJupiter": 24567, + "Ġprovoc": 24568, + "ĠYears": 24569, + "entre": 24570, + "acio": 24571, + "Ġkü": 24572, + "Ġantenna": 24573, + "Ġnovels": 24574, + "Ġfart": 24575, + "ĠSugar": 24576, + "ĠJudy": 24577, + "Ġcollapsed": 24578, + "ç°": 24579, + "ritis": 24580, + "ĠìĥģíĻ©": 24581, + "ÐĹЫ": 24582, + "ĠVerf": 24583, + "ranean": 24584, + "ereum": 24585, + "ĠTarget": 24586, + "Ġ88": 24587, + "ĠÐĺз": 24588, + "ideo": 24589, + "Ġregression": 24590, + "ì¶ľ": 24591, + "Ġmówi": 24592, + "Ġstudios": 24593, + "iens": 24594, + "iph": 24595, + "Ġfrying": 24596, + "Ġfascinated": 24597, + "ĠWah": 24598, + "bucks": 24599, + "maya": 24600, + "ĠSaturn": 24601, + "ĠMommy": 24602, + "Ġratings": 24603, + "Ġautumn": 24604, + "Æ°Æ¡ng": 24605, + "Ġloser": 24606, + "Ġcentro": 24607, + "érieur": 24608, + "ĠFold": 24609, + "Ġsupervisor": 24610, + "ĠNobel": 24611, + "Ġunderest": 24612, + "obia": 24613, + "ĠвÑģÑı": 24614, + "Ġverw": 24615, + "Ġfuels": 24616, + "Ġartifacts": 24617, + "Ġë¶Ļ": 24618, + "ĠAutom": 24619, + "çļĦæĺ¯": 24620, + "ÛĶ": 24621, + "×ķס": 24622, + "Ġihnen": 24623, + "Ġ59": 24624, + "ounding": 24625, + "еÑĢÑĭ": 24626, + "inars": 24627, + "chant": 24628, + "Ġaddicted": 24629, + "Ġexplosive": 24630, + "Ġdispers": 24631, + "âĸĪ": 24632, + "axis": 24633, + "ARY": 24634, + "Ġlum": 24635, + "ĠÑĥÑģл": 24636, + "ĠØĮ": 24637, + "Ġrupees": 24638, + "ĠPearl": 24639, + "camp": 24640, + "tv": 24641, + "oya": 24642, + "Ġconcludes": 24643, + "Ġcollision": 24644, + "Ġbuyer": 24645, + "Ġplayground": 24646, + "Ġsprings": 24647, + "Ġfeminine": 24648, + "ĠRas": 24649, + "Ġincarcer": 24650, + "íĹĺ": 24651, + "Ġdialect": 24652, + "Ġclosure": 24653, + "Ġchatting": 24654, + "Ġbabe": 24655, + "Ġspotlight": 24656, + "Ġnotation": 24657, + "è·¯": 24658, + "Star": 24659, + "ião": 24660, + "Ġtête": 24661, + "Ġtide": 24662, + "Ġjunto": 24663, + "Ġsenator": 24664, + "Ð¥": 24665, + "Ġexcuses": 24666, + "Ġblink": 24667, + "Ġadmission": 24668, + "ĠLily": 24669, + "Ñĭми": 24670, + "Ġamigo": 24671, + "Ġlust": 24672, + "ëĭ¬": 24673, + "Ġamino": 24674, + "äºĭæĥħ": 24675, + "Ġconsultant": 24676, + "ĠElectric": 24677, + "Ġëħ¸ëŀĺ": 24678, + "ujah": 24679, + "Ġshooter": 24680, + "ichten": 24681, + "ĠUkrainian": 24682, + "Ġaims": 24683, + "ĠEntertain": 24684, + "Ġmiracles": 24685, + "èŃ°": 24686, + "Ġzeigen": 24687, + "Ġlam": 24688, + "Ġress": 24689, + "ĠJill": 24690, + "ylan": 24691, + "Ġrook": 24692, + "Ġhaya": 24693, + "Ġpassport": 24694, + "adata": 24695, + "Ġjuicy": 24696, + "conf": 24697, + "лей": 24698, + "ĠSz": 24699, + "Ġintercept": 24700, + "ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ": 24701, + "ĠTeams": 24702, + "Ġmaken": 24703, + "irrel": 24704, + "ĠLIKE": 24705, + "áºŃy": 24706, + "êµ°": 24707, + "Ġshortage": 24708, + "Ġparadigm": 24709, + "Ġpapel": 24710, + "Ġastero": 24711, + "ãģ¾ãģŁ": 24712, + "Ġsollen": 24713, + "ĠMickey": 24714, + "ĠOrleans": 24715, + "Ġcholesterol": 24716, + "Ġgoose": 24717, + "ÑĨиÑİ": 24718, + "ãģĤãĤĭ": 24719, + "ĠFL": 24720, + "Ġголов": 24721, + "Ġtribute": 24722, + "ĠGam": 24723, + "Ġévidemment": 24724, + "ÑıÑħ": 24725, + "å®ŀ": 24726, + "çĶ°": 24727, + "Ġinappropri": 24728, + "uhan": 24729, + "Ġorganizational": 24730, + "ailed": 24731, + "Ġendure": 24732, + "Ġ76": 24733, + "Ġshotgun": 24734, + "Ġlivre": 24735, + "Ġsuited": 24736, + "Ġwarmth": 24737, + "ĠSIM": 24738, + "Ġenvision": 24739, + "Ġdegrad": 24740, + "îne": 24741, + "Laughing": 24742, + "ĠWhoever": 24743, + "ĠBuddhism": 24744, + "Ġsprinkle": 24745, + "ceÄŁiz": 24746, + "Ġruins": 24747, + "Ġstarch": 24748, + "ĠHerz": 24749, + "Ġinjustice": 24750, + "Ġhumidity": 24751, + "ожалÑĥй": 24752, + "ĠObject": 24753, + "ĠIgn": 24754, + "ĠExam": 24755, + "igers": 24756, + "Ġthou": 24757, + "ĠSoy": 24758, + "ivas": 24759, + "Ġpoles": 24760, + "math": 24761, + "Ġвним": 24762, + "INGING": 24763, + "edral": 24764, + "Ġexplor": 24765, + "Ġroasted": 24766, + "Ġcrawl": 24767, + "Ġcoff": 24768, + "Ġanom": 24769, + "Ġwij": 24770, + "Ġimproves": 24771, + "Ġtreaty": 24772, + "Ġdiscovering": 24773, + "Ġstatute": 24774, + "Ġmercado": 24775, + "ĠÑģил": 24776, + "Ġintel": 24777, + "ĠChancellor": 24778, + "ĠMedicaid": 24779, + "ugi": 24780, + "Ġverbal": 24781, + "Ġdön": 24782, + "Ġscripture": 24783, + "Ġiteration": 24784, + "eks": 24785, + "ĠOxford": 24786, + "Ġwäh": 24787, + "ĠVad": 24788, + "ĠAK": 24789, + "ĠìķĦìĿ´ë": 24790, + "Ġiets": 24791, + "Ġneedles": 24792, + "ÙĥÙħ": 24793, + "Ġpasado": 24794, + "Ġalbums": 24795, + "Ġyea": 24796, + "etzen": 24797, + "ĦëıĦ": 24798, + "Ġdetermines": 24799, + "Ġthee": 24800, + "ĠPlaying": 24801, + "ärt": 24802, + "Ġצ": 24803, + "cled": 24804, + "Ġdownward": 24805, + "alone": 24806, + "Ġsolu": 24807, + "Ġpartition": 24808, + "Ġwz": 24809, + "dd": 24810, + "Ġpessoal": 24811, + "媽": 24812, + "Ġfactories": 24813, + "Ġbleibt": 24814, + "มา": 24815, + "alsa": 24816, + "ĠNFL": 24817, + "Ġfuera": 24818, + "Ġreserved": 24819, + "ĠEarn": 24820, + "Ġhelt": 24821, + "Ġshortcut": 24822, + "Ġconvincing": 24823, + "space": 24824, + "Ġenforce": 24825, + "Ġcores": 24826, + "Ġefter": 24827, + "Ġrecession": 24828, + "xico": 24829, + "Ġproposition": 24830, + "arians": 24831, + "ropol": 24832, + "Ġ몰ë": 24833, + "ĠÎľ": 24834, + "ĠìļĶì¦ĺ": 24835, + "Ġactivist": 24836, + "Ġconviction": 24837, + "Ġzab": 24838, + "Ġcanceled": 24839, + "ÑĤоÑĩно": 24840, + "Ġή": 24841, + "éĢĻ樣åŃIJ": 24842, + "nite": 24843, + "Ġfundra": 24844, + "buzzer": 24845, + "ело": 24846, + "ications": 24847, + "Ġzona": 24848, + "Ġteens": 24849, + "Ġmethodology": 24850, + "Ġì¤ijìļĶ": 24851, + "than": 24852, + "ĠUl": 24853, + "ĠGrey": 24854, + "Ġhog": 24855, + "INK": 24856, + "ĠSung": 24857, + "ĠClaud": 24858, + "ĠCNN": 24859, + "Ġdelivers": 24860, + "alin": 24861, + "ĠAdobe": 24862, + "othe": 24863, + "ĠDeswegen": 24864, + "ำ": 24865, + "Ġwerde": 24866, + "Ġgrease": 24867, + "Ġupgrades": 24868, + "ĠFinland": 24869, + "accept": 24870, + "Ġinterrog": 24871, + "bee": 24872, + "Ġãģ«": 24873, + "Ġprede": 24874, + "ĠNep": 24875, + "ĠCambridge": 24876, + "Ġgraphs": 24877, + "Ġhaunted": 24878, + "Ñģем": 24879, + "æ§": 24880, + "åħĭ": 24881, + "Some": 24882, + "ĠMall": 24883, + "Ġrehearsal": 24884, + "ĠUrban": 24885, + "ĠLag": 24886, + "Ġnim": 24887, + "ê°ķ": 24888, + "Ġpositioned": 24889, + "Ġavoided": 24890, + "EMA": 24891, + "Ġllegar": 24892, + "Ġrápido": 24893, + "Ġgouvern": 24894, + "Ġhing": 24895, + "Ġdealer": 24896, + "Ġreforms": 24897, + "Ġfatty": 24898, + "кол": 24899, + "ĠAce": 24900, + "Ġnep": 24901, + "Ġì²Ń": 24902, + "Ġcomputation": 24903, + "ĠStream": 24904, + "bourne": 24905, + "tur": 24906, + "Por": 24907, + "Ġsleepy": 24908, + "Ġbanget": 24909, + "ãģĤãģ®": 24910, + "Ġweighs": 24911, + "Ġbleiben": 24912, + "ĠGren": 24913, + "Ġunions": 24914, + "ĠêµIJ": 24915, + "Ġaprender": 24916, + "uitar": 24917, + "ĠJest": 24918, + "uming": 24919, + "ĠPlayer": 24920, + "ĠExtrem": 24921, + "Ġinteger": 24922, + "аÑĩе": 24923, + "Ġconcerts": 24924, + "×ķ׼": 24925, + "ĠtrochÄĻ": 24926, + "ĠRepe": 24927, + "éĩįè¦ģ": 24928, + "à¹Ĥ": 24929, + "żen": 24930, + "Ġsounding": 24931, + "Ġanonymous": 24932, + "Ġexca": 24933, + "ĠIranian": 24934, + "Ġenergetic": 24935, + "Ġwives": 24936, + "ĠÑĨвеÑĤ": 24937, + "Ġais": 24938, + "ãģĭãģª": 24939, + "Ġsudah": 24940, + "Ġunderwear": 24941, + "Ġcrunchy": 24942, + "ĠPain": 24943, + "Ġgerçek": 24944, + "redict": 24945, + "Ġmisma": 24946, + "ÑĸÑĤ": 24947, + "Ġsurviving": 24948, + "ÎŃÏĤ": 24949, + "Ġparticipant": 24950, + "ĠHessen": 24951, + "árias": 24952, + "Ġsubway": 24953, + "istä": 24954, + "Ġcoral": 24955, + "Ġmarijuana": 24956, + "ĠMemorial": 24957, + "ÑĪий": 24958, + "riz": 24959, + "Ġsatellites": 24960, + "Ġlease": 24961, + "ĠCameron": 24962, + "umph": 24963, + "Ġclassmates": 24964, + "ähän": 24965, + "ÑģÑĤве": 24966, + "Ġhue": 24967, + "ĵ¤ìĿĦ": 24968, + "Ġproportional": 24969, + "Ġnoss": 24970, + "Ġlaps": 24971, + "rÃ¥": 24972, + "Ġbitcoin": 24973, + "ÐĹЫÐļÐIJ": 24974, + "Ġ충": 24975, + "ĠÙĦÙĦ": 24976, + "ĠMort": 24977, + "ĠEsp": 24978, + "arnos": 24979, + "ĠÑģказал": 24980, + "Ġänd": 24981, + "åħĦ": 24982, + "×Ļ×Ļ×Ŀ": 24983, + "ĠGeb": 24984, + "gehen": 24985, + "Inaudible": 24986, + "borough": 24987, + "ÑĦÑĦ": 24988, + "Ġfellowship": 24989, + "ĠPaper": 24990, + "Ġcurved": 24991, + "ĠGEOR": 24992, + "Ġcalculator": 24993, + "ĠCatal": 24994, + "ĠvÃło": 24995, + "Ġbypass": 24996, + "леÑĤ": 24997, + "à³": 24998, + "trans": 24999, + "rencies": 25000, + "ì¡Į": 25001, + "igent": 25002, + "Ġtasted": 25003, + "Ġoceans": 25004, + "uft": 25005, + "ervice": 25006, + "ĠÐľÐ£ÐĹЫÐļÐIJ": 25007, + "ĠClassic": 25008, + "Ġrespectively": 25009, + "~)": 25010, + "ître": 25011, + "ĠNash": 25012, + "Ġzit": 25013, + "ĠìĽĥ": 25014, + "ĠëĨĴ": 25015, + "quote": 25016, + "ĠUns": 25017, + "Ġtac": 25018, + "Ġproves": 25019, + "ĠPortland": 25020, + "bly": 25021, + "Ġere": 25022, + "ì¶Ķ": 25023, + "Ġépoca": 25024, + "ĠÑĤÑĭÑģÑıÑĩ": 25025, + "76": 25026, + "Ġhade": 25027, + "ĠFro": 25028, + "ĠpolÃŃtica": 25029, + "tag": 25030, + "ĠíķŃ": 25031, + "Ġschö": 25032, + "arett": 25033, + "Ġprovisions": 25034, + "Ġmotors": 25035, + "Ġimaging": 25036, + "Ġdok": 25037, + "ulously": 25038, + "Ġmeille": 25039, + "çİ°åľ¨": 25040, + "ëIJ": 25041, + "ĠISO": 25042, + "ĠSTEM": 25043, + "ĠBowl": 25044, + "Ġtowers": 25045, + "ĠEe": 25046, + "ĠPerformance": 25047, + "Ġloin": 25048, + "cussion": 25049, + "Ġcoastal": 25050, + "iale": 25051, + "compass": 25052, + "Ġspells": 25053, + "Ġdisappointing": 25054, + "Ġë²Ī째": 25055, + "EER": 25056, + "Ġversatile": 25057, + "asury": 25058, + "Ġenfin": 25059, + "Ġdownside": 25060, + "Ġguiding": 25061, + "ĠاÙĦÙĤ": 25062, + "Ġninety": 25063, + "charged": 25064, + "ĠFans": 25065, + "Ġphilosophical": 25066, + "Ġgarn": 25067, + "ĠmÃ¥nga": 25068, + "Ġwillingness": 25069, + "Ġportions": 25070, + "aben": 25071, + "Ġï": 25072, + "¿": 25073, + "raul": 25074, + "Ġsprint": 25075, + "ifen": 25076, + "ıyla": 25077, + "ĠкÑĥп": 25078, + "ãģıãģłãģķãģĦ": 25079, + "Ġensuite": 25080, + "ĠCapitol": 25081, + "Ġ63": 25082, + "ĠговоÑĢиÑĤ": 25083, + "Ġappointments": 25084, + "æī¾": 25085, + "omiast": 25086, + "Ġcareg": 25087, + "Ġpublisher": 25088, + "Ġheraus": 25089, + "Ġεί": 25090, + "ĠVS": 25091, + "ãģĿãģĹãģ¦": 25092, + "ä¸Ńåħ±": 25093, + "Ġsacrifices": 25094, + "third": 25095, + "Ġhumanitarian": 25096, + "ĠëĤ´ì": 25097, + "imon": 25098, + "Ġinequ": 25099, + "Ġzob": 25100, + "Ġcomfortably": 25101, + "ĠDinge": 25102, + "Ġcancelled": 25103, + "ĠPSAKI": 25104, + "ĠRobinson": 25105, + "Ġfins": 25106, + ")?": 25107, + "ĠHistor": 25108, + "ĠÑĩеловека": 25109, + "Ġtbsp": 25110, + "text": 25111, + "kim": 25112, + "Ġupdating": 25113, + "Ġgeld": 25114, + "feld": 25115, + "ı¼": 25116, + "Ġmä": 25117, + "Ġcafé": 25118, + "ÖĢ": 25119, + "ĠSri": 25120, + "ĠRegion": 25121, + "ĠHahaha": 25122, + "Ġfinances": 25123, + "ĠاÙĦØ´": 25124, + "Ġbunk": 25125, + "ruk": 25126, + "haft": 25127, + "Ġlateral": 25128, + "Ġextensions": 25129, + "ĠìķĦìĿ´": 25130, + "Ġdefinite": 25131, + "ĠZhao": 25132, + "ĠLuis": 25133, + "sty": 25134, + "Ġcasos": 25135, + "ĠKlim": 25136, + "Ġ1993": 25137, + "Ġrealization": 25138, + "Ġhistorian": 25139, + "Ġcracked": 25140, + "ëĤ´": 25141, + "Ġsystème": 25142, + "ĠCIA": 25143, + "ĠÑĤво": 25144, + "ospheric": 25145, + "Ġflee": 25146, + "Ġrất": 25147, + "ĠRegardless": 25148, + "Ġreluct": 25149, + "Ġtimely": 25150, + "ĠJulian": 25151, + "GM": 25152, + "éĴ": 25153, + "adura": 25154, + "é£Ł": 25155, + "Ġdresses": 25156, + "çģ£": 25157, + "ĠëĶĶ": 25158, + "Ġnominated": 25159, + "Ġadvocates": 25160, + "ymph": 25161, + "Ġrecordings": 25162, + "Ġdeviation": 25163, + "Ġprioritize": 25164, + "Ġspiral": 25165, + "ĠYOUR": 25166, + "Ġtranspose": 25167, + "ampoo": 25168, + "ĠìĽIJëŀĺ": 25169, + "ĠVision": 25170, + "Ġpolite": 25171, + "Ġhamb": 25172, + "ĠPatient": 25173, + "æ¯Ķè¼ĥ": 25174, + "íģ¬ë": 25175, + "Ġsia": 25176, + "Ġê³³": 25177, + "Ġže": 25178, + "è§Ģ": 25179, + "Ġsupermarket": 25180, + "ë¹": 25181, + "ĠSierra": 25182, + "Ġgrilled": 25183, + "ĠUpon": 25184, + "Ġabsent": 25185, + "Ġmec": 25186, + "ĠApollo": 25187, + "Ġpunk": 25188, + "ĠPaÅĦst": 25189, + "ĠÑģвой": 25190, + "Ġ거기": 25191, + "Girl": 25192, + "Ġskinny": 25193, + "ĠPremier": 25194, + "Ġterritories": 25195, + "Ġliability": 25196, + "Ġjerk": 25197, + "ratic": 25198, + "Ġdancers": 25199, + "ĠÑĥÑĢов": 25200, + "Ġê´Ģë": 25201, + "only": 25202, + "ĠStu": 25203, + "Ġskeleton": 25204, + "ĠëŃIJë": 25205, + "Ġзакон": 25206, + "ıkt": 25207, + "ĠMIKE": 25208, + "Ġlö": 25209, + "mie": 25210, + "Ġreiter": 25211, + "ãģĵãĤĮãģ¯": 25212, + "ĠKolleg": 25213, + "ĠAdams": 25214, + "licher": 25215, + "Ġçocuk": 25216, + "Ñıг": 25217, + "Ġblush": 25218, + "Ġsunshine": 25219, + "Ġez": 25220, + "ĠDevil": 25221, + "Ġ길": 25222, + "ĠãģĬ": 25223, + "add": 25224, + "Ġlicensed": 25225, + "Ġvinyl": 25226, + "ĠCzech": 25227, + "imag": 25228, + "Ġcracking": 25229, + "Ġìº": 25230, + "Ġudah": 25231, + "Ġsommes": 25232, + "Ġìĸ¼êµ": 25233, + "waÄĩ": 25234, + "Ġfres": 25235, + "åij½": 25236, + "ĠWalmart": 25237, + "ĠТепеÑĢÑĮ": 25238, + "atisf": 25239, + "CI": 25240, + "lang": 25241, + "Ġdiffusion": 25242, + "çĶ·": 25243, + "Ġsomos": 25244, + "ĠMakes": 25245, + "æĪijæĥ³": 25246, + "ĠRicky": 25247, + "Ġmucha": 25248, + "íķ¨": 25249, + "Ġhorsepower": 25250, + "asia": 25251, + "Ġfibers": 25252, + "Ġerm": 25253, + "Ñģкие": 25254, + "Ġjeste": 25255, + "Ġfirefight": 25256, + "Ġcuisine": 25257, + "Ġbesonders": 25258, + "dig": 25259, + "Ġì¢ħ": 25260, + "ĠÑĥж": 25261, + "Ġtracing": 25262, + "Ġcertains": 25263, + "ĠApply": 25264, + "ÑĭваÑĤÑĮ": 25265, + "çĮ": 25266, + "Ġbru": 25267, + "ĠYES": 25268, + "ĠBai": 25269, + "ĠDit": 25270, + "ĠBis": 25271, + "Ġunle": 25272, + "ÑģÑĤаÑĤоÑĩно": 25273, + "ĠAwak": 25274, + "..\"": 25275, + "Ġ125": 25276, + "Ġrooted": 25277, + "Ġcautious": 25278, + "const": 25279, + "Ġorchestra": 25280, + "çľ¼": 25281, + "ĠвнÑĥÑĤ": 25282, + "Ġquelqu": 25283, + "ĠоÑĤвеÑĤ": 25284, + "ĠMethod": 25285, + "ì¹ľ": 25286, + "ĠμαÏĤ": 25287, + "lü": 25288, + "ĠìķĦê¹Į": 25289, + "Ġnaming": 25290, + "Char": 25291, + "ĠSicher": 25292, + "Ġprivileged": 25293, + "ĠFly": 25294, + "Ġãģĭ": 25295, + "áºŃt": 25296, + "Ġadvances": 25297, + "ĠZelda": 25298, + "Ġandra": 25299, + "Ġgrinding": 25300, + "ĠEdition": 25301, + "pf": 25302, + "Ġwarriors": 25303, + "Ġhedge": 25304, + "Ġunseren": 25305, + "ĠÑģÑİда": 25306, + "eliness": 25307, + "Ġpersonalities": 25308, + "Ġfö": 25309, + "'M": 25310, + "ĠÑĤоÑĩно": 25311, + "Ġshipped": 25312, + "Ġmeteor": 25313, + "Ġsurroundings": 25314, + "ĠFill": 25315, + "uesta": 25316, + "ĠPersonal": 25317, + "ĠAlle": 25318, + "ORT": 25319, + "ä¹ħ": 25320, + "ĠSche": 25321, + "VI": 25322, + "Ġcomparable": 25323, + "damn": 25324, + "Ġditch": 25325, + "YAN": 25326, + "ismus": 25327, + "Ġpickup": 25328, + "Ġdak": 25329, + "ĠEP": 25330, + "best": 25331, + "ĠSue": 25332, + "ällt": 25333, + "Ġpopcorn": 25334, + "Ġfolding": 25335, + "home": 25336, + "иваеÑĤ": 25337, + "å·²ç¶ĵ": 25338, + "Ġannot": 25339, + "chuck": 25340, + "Ġfierce": 25341, + "Ġdamaging": 25342, + "Ġflop": 25343, + "Ġpasar": 25344, + "Ġreef": 25345, + "ĠÑģвоей": 25346, + "Ġzoo": 25347, + "overs": 25348, + "jets": 25349, + "Ġprès": 25350, + "ĠSilicon": 25351, + "teok": 25352, + "ĠSeth": 25353, + "atamente": 25354, + "Ġtransmitted": 25355, + "Ġreplicate": 25356, + "Ġslim": 25357, + "ĠCream": 25358, + "æĦŁãģĺ": 25359, + "Ġsidewalk": 25360, + "ìĪĺë": 25361, + "ĠжизнÑĮ": 25362, + "ĠMonica": 25363, + "ä¾ĨäºĨ": 25364, + "Ġcopied": 25365, + "ĠTerra": 25366, + "istent": 25367, + "ç³»": 25368, + "Ġоно": 25369, + "Ġwhale": 25370, + "ĠWITH": 25371, + "лÑĥÑĪ": 25372, + "å½±çīĩ": 25373, + "ĠEen": 25374, + "ĠÑģвои": 25375, + "Ġordin": 25376, + "Ġplural": 25377, + "Ġspokes": 25378, + "Ġdispute": 25379, + "Ġsensible": 25380, + "Ġpreaching": 25381, + "Ġktórzy": 25382, + "pted": 25383, + "avier": 25384, + "Ġpistol": 25385, + "ĠTapi": 25386, + "ĠÅĤ": 25387, + "ffff": 25388, + "Ġacrylic": 25389, + "Ġignorance": 25390, + "ĠZiel": 25391, + "rans": 25392, + "Ġwelding": 25393, + "mid": 25394, + "æĪijä¸į": 25395, + "Ġзаним": 25396, + "Ġlanes": 25397, + "Ġmines": 25398, + "Ġmoms": 25399, + "×ķ×Ĺ": 25400, + "ĠChamber": 25401, + "tier": 25402, + "Ġmodest": 25403, + "ĠìĹ¬ê¸°ìĦľ": 25404, + "Ġunas": 25405, + "Ġwrench": 25406, + "handed": 25407, + "Ġsaturated": 25408, + "ĠFang": 25409, + "ĠCommissioner": 25410, + "र": 25411, + "Ġ×ĸ": 25412, + "ĠLouisiana": 25413, + "ĠMask": 25414, + "Ġcubes": 25415, + "ìĶ¨": 25416, + "Ġvidéos": 25417, + "ĠnÃ¥gon": 25418, + "Ġrider": 25419, + "Ġì¶ľ": 25420, + "Ġsón": 25421, + "ĠLatino": 25422, + "bank": 25423, + "íķ´ì£¼": 25424, + "ĠBrend": 25425, + "Ġsexuality": 25426, + "...,": 25427, + "Ġforgetting": 25428, + "ĠÛĮ": 25429, + "ĠAvengers": 25430, + "ĠBonjour": 25431, + "cessor": 25432, + "кÑĢаÑĹ": 25433, + "cence": 25434, + "Ġgeograph": 25435, + "culo": 25436, + "оÑģÑĤÑĮ": 25437, + "Ġsweating": 25438, + "íĥĢ": 25439, + "Ġsymmetry": 25440, + "tsÃ¥": 25441, + "Ġjan": 25442, + "ĠFerr": 25443, + "é¦ĸ": 25444, + "Ġambassador": 25445, + "ziÄĻk": 25446, + "Ġmusun": 25447, + "ĠÑĥÑĤ": 25448, + "ĠLG": 25449, + "issent": 25450, + "commun": 25451, + "Ġcours": 25452, + "Ġdevelops": 25453, + "Ġbronze": 25454, + "Ġsubstances": 25455, + "driven": 25456, + "주ìĦ¸ìļĶ": 25457, + "Ġaos": 25458, + "åĦĦ": 25459, + "ĠPROFESS": 25460, + "half": 25461, + "Ġsorted": 25462, + "ĠBomb": 25463, + "лаг": 25464, + "ĠMalaysia": 25465, + "ĠChristina": 25466, + "Ġteammate": 25467, + "èģŀ": 25468, + "FT": 25469, + "Ġkı": 25470, + "hearted": 25471, + "++": 25472, + "ogenic": 25473, + "Ġbells": 25474, + "ĠOuais": 25475, + "Ġspecialists": 25476, + "бÑĭ": 25477, + "depth": 25478, + "lasses": 25479, + "gies": 25480, + "ĠCoffee": 25481, + "Ġmarking": 25482, + "Ġfoll": 25483, + "uli": 25484, + "Ġadhesive": 25485, + "ĠBot": 25486, + "ĠPunkt": 25487, + "eye": 25488, + "ĠBub": 25489, + "elong": 25490, + "åĪ¶": 25491, + "ĠпÑĢик": 25492, + "Ġdonor": 25493, + "84": 25494, + "Ġenfor": 25495, + "Ġcatches": 25496, + "Ġbricks": 25497, + "Ġknitting": 25498, + "ĠKnowing": 25499, + "oks": 25500, + "HY": 25501, + "ride": 25502, + "ĠFantasy": 25503, + "iman": 25504, + "Ġpse": 25505, + "Ġìĺ¨": 25506, + "Ġвд": 25507, + "Ġrestra": 25508, + "Ġevaluated": 25509, + "ÑĢев": 25510, + "Ġfortunately": 25511, + "Ġchegar": 25512, + "رب": 25513, + "Ġdomains": 25514, + "ibi": 25515, + "arry": 25516, + "Ġshutter": 25517, + "Ġficou": 25518, + "Mike": 25519, + "Ġinclu": 25520, + "Ġdonors": 25521, + "Ġapl": 25522, + "ĠLower": 25523, + "Ġimported": 25524, + "Ġacademy": 25525, + "Ġfinals": 25526, + "Ġdisappears": 25527, + "ÙĬا": 25528, + "Ġadministrator": 25529, + "js": 25530, + "Ġcutter": 25531, + "Ġranging": 25532, + "örper": 25533, + "Ġconstraint": 25534, + "ĠTable": 25535, + "ĠShan": 25536, + "vic": 25537, + "ĠFix": 25538, + "ĠSwift": 25539, + "ounces": 25540, + "ĠWarum": 25541, + "Ġlettuce": 25542, + "appelle": 25543, + "Ġshave": 25544, + "Ġbás": 25545, + "Ġ77": 25546, + "ĠOoo": 25547, + "ao": 25548, + "ĠMcM": 25549, + "ĠDrew": 25550, + "Ġlump": 25551, + "Ġlashes": 25552, + "scheinlich": 25553, + "Rep": 25554, + "inis": 25555, + "ĠCette": 25556, + "Ġcomposite": 25557, + "emetery": 25558, + "Ġsorte": 25559, + "ĠFinancial": 25560, + "оне": 25561, + "rones": 25562, + "ĠVoy": 25563, + "Ġtéc": 25564, + "ł¹": 25565, + "ĠNinja": 25566, + "ĠCorin": 25567, + "еннÑı": 25568, + "ìĿ´ìĹĪ": 25569, + "Ġnich": 25570, + "Ġdetective": 25571, + "âĢ¦\"": 25572, + "Ïĥε": 25573, + "Ŀ¼ëıĦ": 25574, + "Ġë³Ģ": 25575, + "Ġë¸Ķë": 25576, + "Ġprope": 25577, + "ĠWright": 25578, + "Ġ×Ķת": 25579, + "ĠShi": 25580, + "ĠãģŁ": 25581, + "Ġinvestigations": 25582, + "éĤĦæĺ¯": 25583, + "ĠPowerPoint": 25584, + "ĠChu": 25585, + "Ġìĺ¤í": 25586, + "ĠìĻĦìłĦ": 25587, + "ĠFragen": 25588, + "unning": 25589, + "Ġpourrait": 25590, + "Ġtextbook": 25591, + "мÑĭ": 25592, + "Ġfahren": 25593, + "ĠÑĤоÑĢ": 25594, + "Ġlakes": 25595, + "ünde": 25596, + "Int": 25597, + "ĠMetro": 25598, + "Ġmansion": 25599, + "Ġаб": 25600, + "ĠZhou": 25601, + "Ġcorridor": 25602, + "Ġescol": 25603, + "Ġindicating": 25604, + "iaÅĤa": 25605, + "Ġmommy": 25606, + "Ġarchives": 25607, + "Ġfounders": 25608, + "engine": 25609, + "ĠDieu": 25610, + "Ġsickness": 25611, + "Ġë³´ëĭĪê¹Į": 25612, + "Ġarb": 25613, + "Ġned": 25614, + "ĠChop": 25615, + "Ġcovid": 25616, + "Ġslam": 25617, + "Ġpublications": 25618, + "DC": 25619, + "Ġspends": 25620, + "æ¾": 25621, + "Ġrefugee": 25622, + "Ġdile": 25623, + "Ġ×IJ×ĸ": 25624, + "ificar": 25625, + "ĠSach": 25626, + "Gu": 25627, + "Ġreload": 25628, + "????": 25629, + "ĠjeÅĽli": 25630, + "ĠÑģоÑģÑĤо": 25631, + "Ġsimplicity": 25632, + "Ġbullying": 25633, + "Ġмол": 25634, + "Ġrealidad": 25635, + "Ġunclear": 25636, + "appa": 25637, + "levant": 25638, + "ĠISIS": 25639, + "ĠWatson": 25640, + "Ġdein": 25641, + "ĠMicro": 25642, + "íķľë": 25643, + "üg": 25644, + "Ġdevam": 25645, + "Ġtweeted": 25646, + "å°İ": 25647, + "Ġunderstandable": 25648, + "atan": 25649, + "Ġversa": 25650, + "Ġpreca": 25651, + "Ġvá»ģ": 25652, + "ĠCopy": 25653, + "ĠOracle": 25654, + "Ġmindfulness": 25655, + "Ġdiscret": 25656, + "ernen": 25657, + "ĠPle": 25658, + "Have": 25659, + "Ġisolate": 25660, + "Ġdeu": 25661, + "Ġseventy": 25662, + "ĠHills": 25663, + "Ġarcade": 25664, + "ĠÑģпеÑĨи": 25665, + "Ġsiguiente": 25666, + "ĠBÃľNDNIS": 25667, + "liga": 25668, + "ĠвÑģÑĤÑĢеÑĩ": 25669, + "ôm": 25670, + "Ġtweets": 25671, + "Ġschauen": 25672, + "Ġcritique": 25673, + "ĠðŁİµ": 25674, + "Ġstatt": 25675, + "ĠÑģамое": 25676, + "ância": 25677, + "Ġsupernatural": 25678, + "Ġplugged": 25679, + "Fl": 25680, + "ynı": 25681, + "ĠTambién": 25682, + "Ġencouragement": 25683, + "ĠServer": 25684, + "ëĤľ": 25685, + "upa": 25686, + "Ġaston": 25687, + "Ġhears": 25688, + "ÑĢаÑħ": 25689, + "Ġsche": 25690, + "Ġrats": 25691, + "Ġrecuper": 25692, + "Ġunten": 25693, + "ĠFighting": 25694, + "Ġacademics": 25695, + "示": 25696, + "ĠSü": 25697, + "ÑģкиÑħ": 25698, + "Ġpaired": 25699, + "ĢìĿĦ": 25700, + "Ġárea": 25701, + "Ġsweetness": 25702, + "åıĬ": 25703, + "Ġdefer": 25704, + "Ġmuitas": 25705, + "ĠAudio": 25706, + "Ġlocker": 25707, + "ÙĬد": 25708, + "ĠÑģÑĤав": 25709, + "Ġbuena": 25710, + "ANS": 25711, + "Ġdetector": 25712, + "avo": 25713, + "bek": 25714, + "Ġαν": 25715, + "íݸ": 25716, + "Ġdragged": 25717, + "Ġдолжен": 25718, + "Ãĸ": 25719, + "رة": 25720, + "ìĿ´ì§Ģ": 25721, + "Ġcelle": 25722, + "cking": 25723, + "ĠاÙĦج": 25724, + "ĠCanvas": 25725, + "Ġespañ": 25726, + "Ġglimp": 25727, + "Ġspreads": 25728, + "ongo": 25729, + "ĠMason": 25730, + "ĠIng": 25731, + "Ġê°ĢëĬ¥": 25732, + "ÏĦικ": 25733, + "Ġsecular": 25734, + "Ġbater": 25735, + "Ġinquiry": 25736, + "Ġenergies": 25737, + "Ġmanufactured": 25738, + "Ġvegetarian": 25739, + "Ġpineapple": 25740, + "ÑıÑĤа": 25741, + "Ġpractitioners": 25742, + "2000": 25743, + "Ġíķ´ìļĶ": 25744, + "ĠìŬ룬ë¶Ħëĵ¤": 25745, + "Ġë¶Īë": 25746, + "ĠJefferson": 25747, + "ĠJoan": 25748, + "Ġtram": 25749, + "容": 25750, + "chmal": 25751, + "ĠHait": 25752, + "á¹ĩ": 25753, + "Ġunreal": 25754, + "Ġsymbolic": 25755, + "Ġstealth": 25756, + "Ġsplash": 25757, + "ĠEntertainment": 25758, + "Ġmetallic": 25759, + "?\".": 25760, + "è¶Ĭ": 25761, + "around": 25762, + "Ġdespair": 25763, + "ĠNevada": 25764, + "ĠFinance": 25765, + "Ġkrie": 25766, + "ĠLux": 25767, + "ĠSmash": 25768, + "keeping": 25769, + "Ġзаг": 25770, + "Ġnarciss": 25771, + "Ġdzisiaj": 25772, + "Ġtolerate": 25773, + "oard": 25774, + "Ġlinking": 25775, + "ĠEconomic": 25776, + "Ġì¼": 25777, + "Ġmorph": 25778, + "ĠNak": 25779, + "ĠBaker": 25780, + "aton": 25781, + "rings": 25782, + "ĠPeng": 25783, + "ĠAirport": 25784, + "ãģĭãģ£ãģŁ": 25785, + "íķĺëĭ¤": 25786, + "§ģ": 25787, + "prints": 25788, + "Ġhadi": 25789, + "Ġempir": 25790, + "ĠLives": 25791, + "anners": 25792, + "Ġним": 25793, + "ĠPROFESSOR": 25794, + "Ġpositively": 25795, + "antom": 25796, + "Ġbadge": 25797, + "kelt": 25798, + "Ġinterfer": 25799, + "Ġfulfilling": 25800, + "Ġvisualization": 25801, + "éĹľä¿Ĥ": 25802, + "ĠPrice": 25803, + "��": 25804, + "Ġscenery": 25805, + "Ġprone": 25806, + "Ġwizard": 25807, + "Ġbanyak": 25808, + "verb": 25809, + "sky": 25810, + "Ġwished": 25811, + "Ġrailway": 25812, + "Ġüzer": 25813, + "Ġalguien": 25814, + "ĠAW": 25815, + "ĠколиÑĩе": 25816, + "Ġreacting": 25817, + "ĠBuch": 25818, + "ึ": 25819, + "Ġanth": 25820, + "Ġsih": 25821, + "Ġhust": 25822, + "ĠScreen": 25823, + "ilant": 25824, + "aho": 25825, + "Ġfragrance": 25826, + "Ġelevation": 25827, + "ĠMediter": 25828, + "Ġë¿": 25829, + "Ġéqu": 25830, + "Ġwraps": 25831, + "Ġinert": 25832, + "Ġrecreate": 25833, + "лаÑĤ": 25834, + "Ġboleh": 25835, + "Ġharassment": 25836, + "unky": 25837, + "Ġglimpse": 25838, + "regierung": 25839, + "Ġfutur": 25840, + "Ġrepository": 25841, + "Ġengra": 25842, + "Ġtrafficking": 25843, + "assis": 25844, + "ĠTrek": 25845, + "Ġë²Į": 25846, + "Ġë§Īë": 25847, + "ĠKab": 25848, + "aniu": 25849, + "give": 25850, + "Ġdinosaurs": 25851, + "Ġfeather": 25852, + "Ġattitudes": 25853, + "Ġplum": 25854, + "ĠRS": 25855, + "ĠAnfang": 25856, + "illery": 25857, + "ĠìĬ¤": 25858, + "MY": 25859, + "Ġtrzeba": 25860, + "Ġskies": 25861, + "ĠAj": 25862, + "urable": 25863, + "CU": 25864, + "ĠShane": 25865, + "Ġdeparture": 25866, + "ĠTON": 25867, + "ieten": 25868, + "rats": 25869, + "æ°Ĺ": 25870, + "isu": 25871, + "Ġbord": 25872, + "Ġinterestingly": 25873, + "çĻ»": 25874, + "oughing": 25875, + "Ġrushing": 25876, + "Ġvolatility": 25877, + "Ġpyt": 25878, + "Ġformats": 25879, + "ĠзаÑĤ": 25880, + "Ġê¼Ń": 25881, + "Ġwhatnot": 25882, + "Ġcomport": 25883, + "sw": 25884, + "orean": 25885, + "ĠRelax": 25886, + "Ġclan": 25887, + "ĠAH": 25888, + "Ġpew": 25889, + "Ġdictionary": 25890, + "Take": 25891, + "shirts": 25892, + "ĠHugh": 25893, + "ĠعÙĦÙĬ": 25894, + "ĠPic": 25895, + "Ġenrolled": 25896, + "Ġjednak": 25897, + "Ġofferings": 25898, + "Ġcoraz": 25899, + "Life": 25900, + "Ġ!!!": 25901, + "Ġcler": 25902, + "ĠVideos": 25903, + "ĠRodrig": 25904, + "ĠIdent": 25905, + "ĠPos": 25906, + "ĠStage": 25907, + "ĠRace": 25908, + "Ġenact": 25909, + "ãģĦãģ¾ãģĹãģŁ": 25910, + "ĠGy": 25911, + "ĠHispan": 25912, + "Ġdefence": 25913, + "ĠCampbell": 25914, + "matic": 25915, + "Ġrelev": 25916, + "Ġpeach": 25917, + "Ħ¸ìļĶ": 25918, + "Ġparadise": 25919, + "Ġceremon": 25920, + "Ġannoyed": 25921, + "æĮĩ": 25922, + "lax": 25923, + "Ġexploit": 25924, + "Ġclause": 25925, + "eker": 25926, + "ĠBloom": 25927, + "nant": 25928, + "ateurs": 25929, + "Ġheights": 25930, + "Even": 25931, + "Ñģон": 25932, + "Ġoutrage": 25933, + "ĠVietnamese": 25934, + "ãģ¯ãģ¯": 25935, + "TR": 25936, + "Ġeer": 25937, + "Ġcannon": 25938, + "ĠComb": 25939, + "IJë§Į": 25940, + "è»Ĭ": 25941, + "Ġê²ĥëıĦ": 25942, + "Ġaccomplishments": 25943, + "ĠAnalytics": 25944, + "Ġshaping": 25945, + "reiben": 25946, + "Ġbachelor": 25947, + "Ġfingert": 25948, + "acked": 25949, + "Ġpyramid": 25950, + "ĠStewart": 25951, + "ást": 25952, + "Ġsurvivor": 25953, + "Ġduct": 25954, + "Ġdealers": 25955, + "æ´»": 25956, + "عÙħ": 25957, + "лин": 25958, + "Ġede": 25959, + "×ķ×¢": 25960, + "ĠÙĥاÙĨ": 25961, + "ĠÏĦι": 25962, + "Ġchooses": 25963, + "ĠOwn": 25964, + "гоÑĤов": 25965, + "hire": 25966, + "алÑĮнÑĭе": 25967, + "ĠÐĽÑİ": 25968, + "ĠоÑģÑĤав": 25969, + "tech": 25970, + "Ġdroit": 25971, + "Ġsubjective": 25972, + "enes": 25973, + "Ġdivis": 25974, + "avez": 25975, + "Ġmaneuver": 25976, + "à¹Ħà¸Ķ": 25977, + "adece": 25978, + "ĠEns": 25979, + "acial": 25980, + "ĠProtection": 25981, + "ĸ´": 25982, + "Ġformally": 25983, + "Ġwyd": 25984, + "inguém": 25985, + "Ġziem": 25986, + "Ġrecruiting": 25987, + "×Ļ×ļ": 25988, + "nem": 25989, + "Ġforbidden": 25990, + "ĠBapt": 25991, + "×IJ׳×Ļ": 25992, + "Ġsubset": 25993, + "ĠMagaz": 25994, + "nement": 25995, + "Ġaquela": 25996, + "ragon": 25997, + "Ġcommittees": 25998, + "Ġétaient": 25999, + "udi": 26000, + "ĠDawn": 26001, + "Ġbore": 26002, + "Ġcomposer": 26003, + "ĠwiÄĻcej": 26004, + "anga": 26005, + "Ġdislike": 26006, + "ĠDays": 26007, + "åŁº": 26008, + "Ġparal": 26009, + "Ġmientras": 26010, + "Ġheavens": 26011, + "ãģĴ": 26012, + "heid": 26013, + "Ġtraders": 26014, + "once": 26015, + "Ġmascara": 26016, + "ĠÏĢÏģο": 26017, + "Ġwhisper": 26018, + "ĠMusk": 26019, + "éĽĨ": 26020, + "ĠFamilie": 26021, + "Allah": 26022, + "ĠOlivia": 26023, + "ĠPros": 26024, + "Ġolika": 26025, + "ilim": 26026, + "Ġrépond": 26027, + "ĠPeters": 26028, + "Ġå¾Ī": 26029, + "Ġbites": 26030, + "Ġvic": 26031, + "ĠNY": 26032, + "emption": 26033, + "Ġ450": 26034, + "Ġvisuals": 26035, + "Ġlieu": 26036, + "ücken": 26037, + "ĠSteel": 26038, + "ĠGP": 26039, + "wait": 26040, + "Ġnoticeable": 26041, + "ucha": 26042, + "Ġrehabil": 26043, + "Ġrejection": 26044, + "ĠÑģледÑĥÑİÑī": 26045, + "Ġslider": 26046, + "Ġregarded": 26047, + "Ġgravit": 26048, + "ĠReserve": 26049, + "count": 26050, + "Ġbreeding": 26051, + "Ġlonge": 26052, + "aleb": 26053, + "Ġknight": 26054, + "Ġвой": 26055, + "Ġprésent": 26056, + "ĤĺìļĶ": 26057, + "ĠSpecifically": 26058, + "Ġposes": 26059, + "Ġveure": 26060, + "okay": 26061, + "emas": 26062, + "Ġãģ§ãģĻ": 26063, + "ĠmajÄħ": 26064, + "Ġwebinars": 26065, + "Ġcannabis": 26066, + "Ġdamals": 26067, + "ĠNorthwest": 26068, + "Ġpada": 26069, + "Ġcrowds": 26070, + "Ġfutures": 26071, + "Ġän": 26072, + "Ġcivilians": 26073, + "ĠSachen": 26074, + "æį": 26075, + "Ġtraces": 26076, + "Ġë¨¹ê³ł": 26077, + "QU": 26078, + "é¡ĺãģĦ": 26079, + "ĠIF": 26080, + "anın": 26081, + "ìĤ´": 26082, + "Ġbiblical": 26083, + "ĠVed": 26084, + "Ġstoring": 26085, + "ÑĢавлÑı": 26086, + "æĩī該": 26087, + "Ġnast": 26088, + "Ġdö": 26089, + "ÑĢоп": 26090, + "elia": 26091, + "Ġsideways": 26092, + "ĠUnderstand": 26093, + "ĠQur": 26094, + "Ġperpend": 26095, + "ĠMillionen": 26096, + "Ġwatermelon": 26097, + "ĠDivine": 26098, + "ultur": 26099, + "abord": 26100, + "Ġsuccesses": 26101, + "Ġhombre": 26102, + "Ġcarp": 26103, + "Ġsuscept": 26104, + "ungkin": 26105, + "Ġkij": 26106, + "ulus": 26107, + "اج": 26108, + "Ġnotch": 26109, + "Ġpolynomial": 26110, + "å¹²": 26111, + "å©": 26112, + "Ġúnico": 26113, + "Ġtelescope": 26114, + "Ġpolitique": 26115, + "kiem": 26116, + "ĠÎŃνα": 26117, + "Ġaggregate": 26118, + "ĠGeoff": 26119, + "Ġtril": 26120, + "ĠGRA": 26121, + "Ġsubscriber": 26122, + "imet": 26123, + "ĠдоллаÑĢ": 26124, + "oping": 26125, + "Ġtherapeut": 26126, + "ĠCancer": 26127, + "Ġparade": 26128, + "Ġirrig": 26129, + "âĻªâĻª": 26130, + "Ġclearer": 26131, + "Ġbog": 26132, + "ĠMaur": 26133, + "าà¸ĩ": 26134, + "ĠShanghai": 26135, + "achte": 26136, + "ĠKol": 26137, + "elujah": 26138, + "Ġhav": 26139, + "ĠCrime": 26140, + "sek": 26141, + "Ġë¡ľ": 26142, + "ienna": 26143, + "ĠGor": 26144, + "èĽ": 26145, + "ĠпоÑĤÑĢ": 26146, + "ĠкажеÑĤÑģÑı": 26147, + "ĠLift": 26148, + "ĠSort": 26149, + "ĠPsal": 26150, + "Ġping": 26151, + "ĵĿ": 26152, + "phis": 26153, + "ĠFUCK": 26154, + "ĠSyn": 26155, + "Ġbamboo": 26156, + "¬ìĺģ": 26157, + "cuts": 26158, + "Ġmmm": 26159, + "Ġfunktioniert": 26160, + "Ġ_": 26161, + "ÃŃcio": 26162, + "Stop": 26163, + "Ġimaginary": 26164, + "Ġnotamment": 26165, + "ĠInitiative": 26166, + "ãĥ¥": 26167, + "ĠKurt": 26168, + "Ġloosen": 26169, + "Ġbuscar": 26170, + "çģ«": 26171, + "Ġzelf": 26172, + "Ġprops": 26173, + "åĽī": 26174, + "Ġmoeten": 26175, + "Ġmilli": 26176, + "Ġhalls": 26177, + "ĠMatch": 26178, + "Ġbrackets": 26179, + "ĠCou": 26180, + "æ¦Ĥ": 26181, + "ĠÐľÐ°ÑĢ": 26182, + "ISA": 26183, + "Ġcigarette": 26184, + "Ġcompetitions": 26185, + "ĠMIN": 26186, + "Ġbehö": 26187, + "voor": 26188, + "Ġust": 26189, + "ĠZi": 26190, + "ĠOcc": 26191, + "ulates": 26192, + "Ġballoons": 26193, + "Ġpronto": 26194, + "ĠMiy": 26195, + "ĠFile": 26196, + "ĠклаÑģÑģ": 26197, + "нÑĥл": 26198, + "Ġcereal": 26199, + "Ġincrement": 26200, + "Ġrefined": 26201, + "åı¦å¤ĸ": 26202, + "prising": 26203, + "ĠRF": 26204, + "Ġrespectful": 26205, + "Ġloot": 26206, + "asket": 26207, + "Ġdeixa": 26208, + "ingle": 26209, + "Ġfunciona": 26210, + "ĠRevel": 26211, + "Ġsober": 26212, + "Ġperforms": 26213, + "ĠGentle": 26214, + "ãĤ¨": 26215, + "Ġrecipient": 26216, + "ĠHause": 26217, + "Ġëĥ": 26218, + "From": 26219, + "Ġministers": 26220, + "Ġparadox": 26221, + "å°±æĺ¯èªª": 26222, + "Ġtasting": 26223, + "Ġ×Ķ×Ĺ": 26224, + "Ġreuse": 26225, + "ĠLane": 26226, + "ĠÑģовеÑĢÑĪ": 26227, + "Ġremembers": 26228, + "Ġfeminist": 26229, + "Ġcommitments": 26230, + "Ġprojected": 26231, + "Ġgaz": 26232, + "iyoruz": 26233, + "Ġobligations": 26234, + "Ro": 26235, + "zar": 26236, + "Ġchw": 26237, + "ĠJAM": 26238, + "ĠbÄĻdÄħ": 26239, + "aspberry": 26240, + "ĠмеÑģÑĤо": 26241, + "ë²ķ": 26242, + "Ġregulated": 26243, + "Ġwicht": 26244, + "ĠTrevor": 26245, + "Ġsecondly": 26246, + "ĠIhre": 26247, + "elsh": 26248, + "Ġreporters": 26249, + "ÑĤоÑĢа": 26250, + "oyo": 26251, + "GI": 26252, + "Ġinterconnect": 26253, + "éIJĺ": 26254, + "OSH": 26255, + "æŃ²": 26256, + "Ġbrass": 26257, + "Ġignoring": 26258, + "ä»ĬæĹ¥": 26259, + "infect": 26260, + "Ġprojekt": 26261, + "oret": 26262, + "ÏĦαν": 26263, + "ĠÑĤип": 26264, + "Ġmutta": 26265, + "Ġunboxing": 26266, + "Ħ°": 26267, + "å¡Ĭ": 26268, + "Ġadvised": 26269, + "ĠDenver": 26270, + "Ġseverely": 26271, + "ĠMhm": 26272, + "Ġflipped": 26273, + "Ġpien": 26274, + "Ġkommun": 26275, + "ĠFRE": 26276, + "Ġà®ĩà®°": 26277, + "ainted": 26278, + "Ġknives": 26279, + "Ġhabl": 26280, + "Ġgeworden": 26281, + "arettes": 26282, + "CS": 26283, + "ĠмаленÑĮ": 26284, + "Ġgalax": 26285, + "Ġninete": 26286, + "ê±°ëĤĺ": 26287, + "Ġsis": 26288, + "Ġadvisory": 26289, + "Ġdrilling": 26290, + "ĠWouldn": 26291, + "ünf": 26292, + "gestellt": 26293, + "ĠHelen": 26294, + "Ġ×ŀ×IJ": 26295, + "apolis": 26296, + "Ġrzeczy": 26297, + "Ġterra": 26298, + "Ġhep": 26299, + "Ġalgún": 26300, + "ikk": 26301, + "Ġastronom": 26302, + "ĠStarbucks": 26303, + "kÄħ": 26304, + "Ġpatrol": 26305, + "Ġì½Ķ": 26306, + "Ġgon": 26307, + "ĠãĢIJ": 26308, + "Ġsonst": 26309, + "Ġencounters": 26310, + "Ġretrou": 26311, + "Ġsharks": 26312, + "Ġdor": 26313, + "ĠRever": 26314, + "Ġevapor": 26315, + "Ġreservoir": 26316, + "Ġalleged": 26317, + "uler": 26318, + "Ġverm": 26319, + "Ġcommerce": 26320, + "Ġfitted": 26321, + "gem": 26322, + "Ġtactical": 26323, + "Ġlith": 26324, + "éīĦå¡Ķ": 26325, + "had": 26326, + "è®Ĭ": 26327, + "Ġcarbohyd": 26328, + "Ġlengths": 26329, + "ιο": 26330, + "Ġdemographic": 26331, + "Rob": 26332, + "ĠSkin": 26333, + "ccoli": 26334, + "Ġsimplified": 26335, + "Ġreadily": 26336, + "ĠCum": 26337, + "adesh": 26338, + "ĠDÃ¥": 26339, + "usst": 26340, + "igne": 26341, + "eton": 26342, + "Ġmenor": 26343, + "qi": 26344, + "OOM": 26345, + "à¸Ńà¸Ļ": 26346, + "Ġpsychiat": 26347, + "Ġeighty": 26348, + "Ġмилли": 26349, + "ĠTob": 26350, + "edo": 26351, + "網": 26352, + "ĠÄijến": 26353, + "Ġcircuits": 26354, + "ĠLAUGH": 26355, + "icism": 26356, + "emor": 26357, + "Ġregener": 26358, + "egree": 26359, + "Ġbureauc": 26360, + "ĠAlber": 26361, + "ä¹ĭå¾Į": 26362, + "ĠWor": 26363, + "夫": 26364, + "Ġresin": 26365, + "ĠbyÅĤy": 26366, + "ĠIG": 26367, + "à¯į,": 26368, + "Ġ78": 26369, + "Ġweeds": 26370, + "ĠMyth": 26371, + "93": 26372, + "æ¿": 26373, + "ĠëĤĺìĻĶ": 26374, + "év": 26375, + "á½": 26376, + "ören": 26377, + "çar": 26378, + "ĠPAUL": 26379, + "Ġdisadvant": 26380, + "Ġpositioning": 26381, + "Ġcocktail": 26382, + "Ġagrees": 26383, + "nn": 26384, + "ĠSally": 26385, + "Ms": 26386, + "Ġinherent": 26387, + "Ġmonetary": 26388, + "Ġnatur": 26389, + "ĠNh": 26390, + "ĠImport": 26391, + "Ġleben": 26392, + "Ġwi": 26393, + "ussy": 26394, + "Ġobes": 26395, + "Ġwandering": 26396, + "Ġìĭłë": 26397, + "Äħda": 26398, + "etchup": 26399, + "Ġdisposal": 26400, + "ĠJA": 26401, + "ĠCer": 26402, + "zilla": 26403, + "Ġvirgin": 26404, + "ĠSlide": 26405, + "andel": 26406, + "Ġrighteousness": 26407, + "ĠΣ": 26408, + "Ġideia": 26409, + "ä½łå¥½": 26410, + "иÑĢоваÑĤÑĮ": 26411, + "ר×IJ": 26412, + "Comment": 26413, + "Ġprelim": 26414, + "ĠVale": 26415, + "Ġì§ĢëĤľ": 26416, + "ĠVanc": 26417, + "OMAN": 26418, + "ĠпÑĸд": 26419, + "Ġyum": 26420, + "stre": 26421, + "cem": 26422, + "Ġpocz": 26423, + "Ġfragment": 26424, + "ĠÑģлÑĥÑĩае": 26425, + "Ġundergo": 26426, + "ĠHank": 26427, + "ceks": 26428, + "ĠFPS": 26429, + "Ġocur": 26430, + "Ġdeterior": 26431, + "注": 26432, + "Ġempresas": 26433, + "Paul": 26434, + "Ġ)))": 26435, + "ĠвÑĢемени": 26436, + "Ġscold": 26437, + "×Ļ×¢": 26438, + "Ġsuspected": 26439, + "Ġaccessing": 26440, + "Ġsubstit": 26441, + "Ġhistorians": 26442, + "ä»»": 26443, + "Ġдело": 26444, + "Ġsocied": 26445, + "rone": 26446, + "Ġreden": 26447, + "Ġextends": 26448, + "epherd": 26449, + "Ġbalcon": 26450, + "ä¸įèµ·": 26451, + "ĠSolo": 26452, + "Ġpolitician": 26453, + "олÑĮно": 26454, + "Ġirgendw": 26455, + "Ġtraumatic": 26456, + "Ġrapper": 26457, + "ĠROBERT": 26458, + "Really": 26459, + "æģ¯": 26460, + "Ġlineup": 26461, + "ASE": 26462, + "Ġcontractor": 26463, + "ĠCorporation": 26464, + "gor": 26465, + "ĠTodo": 26466, + "ÑģÑĤÑĢой": 26467, + "FBE": 26468, + "Ġnewsletter": 26469, + "ĠkoÅĦ": 26470, + "alties": 26471, + "ĠпÑĢиÑĩ": 26472, + "ĠHeavy": 26473, + "Ġswords": 26474, + "Ġmanipulation": 26475, + "Ġfunk": 26476, + "ĠvÃ¥r": 26477, + "ĠTaliban": 26478, + "Ġë°¥": 26479, + "Ġacne": 26480, + "ürü": 26481, + "Ġdeswegen": 26482, + "ĠDust": 26483, + "Ġsilic": 26484, + "Ġhooks": 26485, + "Ġblij": 26486, + "Ġpetits": 26487, + "Ġfilme": 26488, + "ĠBereich": 26489, + "ĠSaid": 26490, + "Ġimposed": 26491, + "Ġdiary": 26492, + "ĠгоÑĢ": 26493, + "ĠGates": 26494, + "Ġalta": 26495, + "å¸Į": 26496, + "Ġchcia": 26497, + "pleasant": 26498, + "Ġë°Ŀ": 26499, + "Ġmożemy": 26500, + "ĠAustria": 26501, + "Ġbroker": 26502, + "Ġsucked": 26503, + "èĢĥ": 26504, + "Ġcompartment": 26505, + "Ġclone": 26506, + "Ġ×Ķ×¢": 26507, + "ĠDanke": 26508, + "Ġnochmal": 26509, + "езд": 26510, + "Ġadrenal": 26511, + "Ġkleinen": 26512, + "ãģ¾ãģĹãĤĩãģĨ": 26513, + "Ġsubsequently": 26514, + "Ġdecentral": 26515, + "Ġgenetics": 26516, + "Ġê´ij": 26517, + "Ġmonitors": 26518, + "ĠApplic": 26519, + "ĠReporter": 26520, + "wert": 26521, + "Ġwiem": 26522, + "ĠMovement": 26523, + "Ġinterviewing": 26524, + "Ġhairs": 26525, + "Ġpuò": 26526, + "ĠChelsea": 26527, + "Ġcoher": 26528, + "Ġcot": 26529, + "Ġzas": 26530, + "Ġpatches": 26531, + "Ġlah": 26532, + "Ñĥнк": 26533, + "ĠReagan": 26534, + "ĠMarco": 26535, + "city": 26536, + "Ġdefender": 26537, + "Ġdecoration": 26538, + "iji": 26539, + "Ġlitter": 26540, + "Ш": 26541, + "Ġjego": 26542, + "REW": 26543, + "ĠPik": 26544, + "ĠHee": 26545, + "ĠIv": 26546, + "Ġиде": 26547, + "ĠTheater": 26548, + "ĠÑĩаÑģÑĤо": 26549, + "Ġsweater": 26550, + "Ġhighlighting": 26551, + "Ġainsi": 26552, + "Ġdiplomatic": 26553, + "ĠNevertheless": 26554, + "å³": 26555, + "ASON": 26556, + "Ġpúblico": 26557, + "Ġferm": 26558, + "reated": 26559, + "cod": 26560, + "Ġ물ë": 26561, + "Ġmister": 26562, + "ĠVancouver": 26563, + "Ġrecognizes": 26564, + "ecd": 26565, + "Ġcomplications": 26566, + "encial": 26567, + "ãģĹãģı": 26568, + "Ġê°Ģì§Ģ": 26569, + "ĠUltimate": 26570, + "Ġvaig": 26571, + "ĠMerry": 26572, + "×ķ×Ĵ": 26573, + "ĠMarcus": 26574, + "總": 26575, + "owego": 26576, + "Ġmente": 26577, + "Sm": 26578, + "Ġaja": 26579, + "ĠTao": 26580, + "Ġjudicial": 26581, + "Ġentrepreneurship": 26582, + "Ġнемного": 26583, + "Ġpis": 26584, + "Ġerg": 26585, + "Ġchrist": 26586, + "ĠCurt": 26587, + "ĠÑĢаÑģп": 26588, + "λε": 26589, + "ensch": 26590, + "ÃŃre": 26591, + "Ġfocal": 26592, + "ĠDiamond": 26593, + "avÃŃa": 26594, + "Ġhanno": 26595, + "ĠSquad": 26596, + "Ġassociations": 26597, + "ĠCreative": 26598, + "Ġmessenger": 26599, + "Ġbegging": 26600, + "Ġdecimal": 26601, + "ĠdÄ±ÅŁ": 26602, + "Ġmetadata": 26603, + "sels": 26604, + "ĠÄ°ÅŁ": 26605, + "ữa": 26606, + "Ġdifficile": 26607, + "dı": 26608, + "Ġslaughter": 26609, + "ĠVerg": 26610, + "Ġ×Ĵ×Ŀ": 26611, + "ç°¡": 26612, + "æĮī": 26613, + "ĠTea": 26614, + "asses": 26615, + "Ok": 26616, + "Ġsynthes": 26617, + "otiation": 26618, + "Ġpainter": 26619, + "Ġelbows": 26620, + "Ġarchitectural": 26621, + "ĠÑĢад": 26622, + "Ġglor": 26623, + "image": 26624, + "ampa": 26625, + "culiar": 26626, + "ł¨": 26627, + "Ġteve": 26628, + "ĠStelle": 26629, + "ĠBam": 26630, + "Ġì´Ī": 26631, + "asis": 26632, + "ipedia": 26633, + "ĠGI": 26634, + "ĠActive": 26635, + "çĦ¶åIJİ": 26636, + "azi": 26637, + "ãĤĮãģ¦": 26638, + "ĠLucky": 26639, + "íķ©": 26640, + "ĠпÑĢиÑħод": 26641, + "Ġrunway": 26642, + "Ġauthentication": 26643, + "Ġposible": 26644, + "Ġsupplements": 26645, + "Ġsurgical": 26646, + "Gen": 26647, + "Ġfeasible": 26648, + "DO": 26649, + "Ġoutlook": 26650, + "Ġintervals": 26651, + "Ġanecd": 26652, + "Ãłng": 26653, + "Ġstraps": 26654, + "ĠShu": 26655, + "udd": 26656, + "issenschaft": 26657, + "Ġporte": 26658, + "Ġcommitting": 26659, + "Ġalley": 26660, + "Ġcovenant": 26661, + "ĠPedro": 26662, + "lessness": 26663, + "ĠSolid": 26664, + "ĠMolly": 26665, + "ĠнекоÑĤоÑĢ": 26666, + "Ġcooperate": 26667, + "åĮĹ": 26668, + "ollen": 26669, + "Ġtuna": 26670, + "Ġkindergarten": 26671, + "ĠSiz": 26672, + "Ġdużo": 26673, + "ĠMBA": 26674, + "ĠGEORGE": 26675, + "ĠFisher": 26676, + "å¿ĺ": 26677, + "ĠCaesar": 26678, + "ĠкÑĢаÑģив": 26679, + "ĠDelhi": 26680, + "zym": 26681, + "Ġexplicar": 26682, + "ê°Ģì§Ģ": 26683, + "uns": 26684, + "grow": 26685, + "ĠпÑĢиÑģ": 26686, + "Ġ86": 26687, + "Ġstating": 26688, + "Ġmassa": 26689, + "chter": 26690, + "Ġì»¬ëŁ¬": 26691, + "Ġdeputy": 26692, + "SM": 26693, + "noc": 26694, + "Ġgeography": 26695, + "ĠEnterprise": 26696, + "ĠCant": 26697, + "öz": 26698, + "Ġunpack": 26699, + "ĠíĻĶë": 26700, + "Ġsearches": 26701, + "Ġpresidency": 26702, + "Ġtrivial": 26703, + "Ġpige": 26704, + "oubt": 26705, + "ãĤļ": 26706, + "ì¼ĢìĿ´": 26707, + "Ġbudgets": 26708, + "Ġub": 26709, + "Ġpne": 26710, + "ĠYale": 26711, + "ĠÅŁÃ¶yle": 26712, + "regular": 26713, + "Ġimperfect": 26714, + "ARA": 26715, + "ĠfamÃŃlia": 26716, + "urm": 26717, + "ĠAdventure": 26718, + "ãĥĬ": 26719, + "cis": 26720, + "emark": 26721, + "Ġnego": 26722, + "Ġinappropriate": 26723, + "ĠпÑĢиз": 26724, + "ĠÑĢол": 26725, + "Ġdreamed": 26726, + "Bry": 26727, + "Ġshuttle": 26728, + "Ġpillars": 26729, + "Ġbik": 26730, + "inum": 26731, + "ĠÑĥÑģ": 26732, + "ĠNebr": 26733, + "Ġperpendicular": 26734, + "Ġbooked": 26735, + "bery": 26736, + "Ġvikt": 26737, + "bear": 26738, + "esus": 26739, + "Ġвозможно": 26740, + "¨¹": 26741, + "Ġpresumably": 26742, + "ĠMemphis": 26743, + "Ġambulance": 26744, + "×ķ×ŀר": 26745, + "Ġthumbnail": 26746, + "Ġmodification": 26747, + "éĩı": 26748, + "Ġinterpreted": 26749, + "Ġpromo": 26750, + "Ġκά": 26751, + "ĠεÏĢ": 26752, + "Ġacoustic": 26753, + "ĠDB": 26754, + "åĵİ": 26755, + "Ġnonetheless": 26756, + "oule": 26757, + "Ġpequ": 26758, + "Ġknob": 26759, + "ãĤ£": 26760, + "ĠëıĮìķĦ": 26761, + "Ġpurchases": 26762, + "ĠÃĩünkü": 26763, + "Ġdividing": 26764, + "perform": 26765, + "raction": 26766, + "healthy": 26767, + "ĠTitle": 26768, + "Ġuk": 26769, + "Ġcerca": 26770, + "Ġarguably": 26771, + "Ġfale": 26772, + "ë³µ": 26773, + "Ġgamers": 26774, + "Ġutilizing": 26775, + "Ġoffended": 26776, + "Ġtava": 26777, + "alı": 26778, + "Ġmedian": 26779, + "Ġinfectious": 26780, + "ĠAnnie": 26781, + "Ġsmartphones": 26782, + "Ġparole": 26783, + "åĸĿ": 26784, + "ĠEpic": 26785, + "zza": 26786, + "Ġunified": 26787, + "Ġê·¸ëķĮ": 26788, + "Ġcurtain": 26789, + "ĠÄĥ": 26790, + "Ġsexually": 26791, + "Ġunserem": 26792, + "ĠConvention": 26793, + "Ġallegedly": 26794, + "Ya": 26795, + "ĠHoo": 26796, + "enment": 26797, + "æĢª": 26798, + "íĽĦ": 26799, + "Ġgigantic": 26800, + "Ġnoting": 26801, + "Ġrebo": 26802, + "ĠJama": 26803, + "ĠAlz": 26804, + "Ġborrowed": 26805, + "침": 26806, + "Ġperipher": 26807, + "оÑĤа": 26808, + "ĠGB": 26809, + "ĠGear": 26810, + "Ġeconomically": 26811, + "Ġtelefon": 26812, + "Ġqueremos": 26813, + "ĠдалÑĮÑĪе": 26814, + "Ġras": 26815, + "ĠTeach": 26816, + "icios": 26817, + "atos": 26818, + "Ġpledge": 26819, + "bau": 26820, + "ĠHimself": 26821, + "Link": 26822, + "Ġespero": 26823, + "Ġchromos": 26824, + "ĠPER": 26825, + "Ġerle": 26826, + "Ġpodium": 26827, + "ços": 26828, + "Ġnieu": 26829, + "Ġfen": 26830, + "ĠGOD": 26831, + "ĠChocolate": 26832, + "werk": 26833, + "Ġtừ": 26834, + "Ġsuppress": 26835, + "λη": 26836, + "Ġ240": 26837, + "Ġsitä": 26838, + "Ġhonesty": 26839, + "ĠBio": 26840, + "ĠBard": 26841, + "ĠобÑīем": 26842, + "ĠмÑĥз": 26843, + "Ġmarble": 26844, + "ĠÑĨенÑĤ": 26845, + "Ġprocure": 26846, + "Ġrotor": 26847, + "bern": 26848, + "Ġtuh": 26849, + "Ġheadset": 26850, + "atem": 26851, + "Ġwarranty": 26852, + "à®´": 26853, + "Ġfiling": 26854, + "ιά": 26855, + "Ġcomprendre": 26856, + "Ġimpulse": 26857, + "Ġsalv": 26858, + "written": 26859, + "Ġinstitute": 26860, + "Kim": 26861, + "ĠLGBTQ": 26862, + "ficiente": 26863, + "His": 26864, + "ĠαÏħÏĦÏĮ": 26865, + "Ġteenage": 26866, + "orus": 26867, + "ĠÑĢазб": 26868, + "See": 26869, + "ĠConserv": 26870, + "á»ģn": 26871, + "fulness": 26872, + "Ġstrawberries": 26873, + "ĠAbu": 26874, + "ион": 26875, + "Ġolla": 26876, + "NOISE": 26877, + "ĠEmploy": 26878, + "Ġwiped": 26879, + "urger": 26880, + "Ġmodifications": 26881, + "Ġíķĺì§Ģ": 26882, + "Ġfootsteps": 26883, + "Ġhonors": 26884, + "Ġadul": 26885, + "Ġflipping": 26886, + "ĠHU": 26887, + "ZY": 26888, + "Ġintegrating": 26889, + "بر": 26890, + "ulla": 26891, + "Ġnatuurlijk": 26892, + "ĠíĹĪ": 26893, + "ĠEthereum": 26894, + "ÙĬÙĦ": 26895, + "wed": 26896, + "Ġpeaks": 26897, + "ĠKes": 26898, + "Ġbloom": 26899, + "Ġcrashing": 26900, + "Ġ911": 26901, + "ĠоÑĤлиÑĩ": 26902, + "Ġcontrollers": 26903, + "ĠDod": 26904, + "ĠвмеÑģÑĤе": 26905, + "Ġsortir": 26906, + "å¥ĩ": 26907, + "ĠStraight": 26908, + "ĠGracias": 26909, + "Ġgroove": 26910, + "Ġtogg": 26911, + "Ġìĭ¶ìĿĢ": 26912, + "éro": 26913, + "Ġoutward": 26914, + "ĠWA": 26915, + "ĠRocky": 26916, + "Ġscam": 26917, + "Ġhayat": 26918, + "ignty": 26919, + "âĦ": 26920, + "plings": 26921, + "Ġantibiotics": 26922, + "Ġä¸Ģ": 26923, + "Ġnevertheless": 26924, + "jang": 26925, + "commerce": 26926, + "Ġspoiler": 26927, + "Ġglove": 26928, + "Ġchatter": 26929, + "ĠBY": 26930, + "~?": 26931, + "Ġíĺ¸": 26932, + "Ġdemol": 26933, + "wechsel": 26934, + "imir": 26935, + "Ġraid": 26936, + "еÑĢÑħ": 26937, + "ìŀIJ기": 26938, + "enf": 26939, + "Ġcommented": 26940, + "Ġoptimized": 26941, + "Ġconvicted": 26942, + "Ġbats": 26943, + "ĠSB": 26944, + "ĠAur": 26945, + "ĠTong": 26946, + "Ġimplicit": 26947, + "ĠJanet": 26948, + "Ġreag": 26949, + "ãģ²": 26950, + "ĠAdvanced": 26951, + "Ġimpose": 26952, + "ש×Ķ": 26953, + "Ġschemes": 26954, + "ougher": 26955, + "abolic": 26956, + "Ġê±°ì£ł": 26957, + "Ġslowing": 26958, + "Ġwtedy": 26959, + "Ġdestructive": 26960, + "ĠопÑĢед": 26961, + "Ġlandmark": 26962, + "ĠëıĪ": 26963, + "ĠWalking": 26964, + "ẹ": 26965, + "Ġtijd": 26966, + "ĠKN": 26967, + "ĠQuant": 26968, + "ìĺ¤ë": 26969, + "ĠкÑĢÑĥ": 26970, + "Ġperder": 26971, + "Ġnove": 26972, + "ände": 26973, + "ĠãģĹ": 26974, + "bia": 26975, + "Ġcustody": 26976, + "Ġbiod": 26977, + "æĿ±è¥¿": 26978, + "Ġdirecting": 26979, + "...âĢĭ": 26980, + "Ġreloc": 26981, + "Ġdemande": 26982, + "ãĤĵãģł": 26983, + "ĠoÄŁlum": 26984, + "Ġодна": 26985, + "ĠMilk": 26986, + "åı·": 26987, + "ĠKra": 26988, + "ĠHonda": 26989, + "Ġpue": 26990, + "Ġelekt": 26991, + "Ġbeginners": 26992, + "Ġspear": 26993, + "ÃŃnh": 26994, + "ĠLuft": 26995, + "Ġnig": 26996, + "ĠSchools": 26997, + "Ġforums": 26998, + "ĠQin": 26999, + "ppo": 27000, + "Ġzag": 27001, + "ĠЮ": 27002, + "Ġtoothp": 27003, + "ĠStyle": 27004, + "ì´Ī": 27005, + "Ġpunct": 27006, + "Ġreps": 27007, + "ĠAly": 27008, + "Ġamendments": 27009, + "Ġöz": 27010, + "Ġdigits": 27011, + "urai": 27012, + "Ġchaotic": 27013, + "ĠMasters": 27014, + "eon": 27015, + "ĠCash": 27016, + "ĠCuz": 27017, + "Ġbedeutet": 27018, + "Ġscanning": 27019, + "Ġжд": 27020, + "неÑĤ": 27021, + "Ġcertainty": 27022, + "jek": 27023, + "Ġdijo": 27024, + "ĠClimate": 27025, + "Ġrinse": 27026, + "Ġkrij": 27027, + "veland": 27028, + "Ġsoundtrack": 27029, + "ĠSafe": 27030, + "ĠNova": 27031, + "94": 27032, + "Ġathe": 27033, + "ĠVerb": 27034, + "oler": 27035, + "ìĿ´ì£ł": 27036, + "Ġvin": 27037, + "Ġrespiratory": 27038, + "ĠStudy": 27039, + "ĠCAM": 27040, + "Ġavocado": 27041, + "ĠZhen": 27042, + "Ġlatency": 27043, + "Ġfeathers": 27044, + "Ġcontar": 27045, + "ĠвеÑī": 27046, + "Ġfark": 27047, + "Ġblended": 27048, + "Ġexploded": 27049, + "ĠXX": 27050, + "ĠBenim": 27051, + "Ġalguém": 27052, + "istoire": 27053, + "Ġconfidential": 27054, + "Ġmast": 27055, + "Ġì¿": 27056, + "geh": 27057, + "Ġdisrespect": 27058, + "ĠSystems": 27059, + "Æ°a": 27060, + "Ed": 27061, + "Ġwys": 27062, + "Ġexotic": 27063, + "Ġglowing": 27064, + "ùng": 27065, + "ounge": 27066, + "èĦ": 27067, + "аниз": 27068, + "Ġpalav": 27069, + "ĠSword": 27070, + "Ġgim": 27071, + "ĠCrow": 27072, + "Ġpotent": 27073, + "bish": 27074, + "Ġabused": 27075, + "ĠJed": 27076, + "Ġgambling": 27077, + "ĠSpect": 27078, + "Ġinvestigators": 27079, + "æĻļ": 27080, + "Ġratt": 27081, + "Ġdob": 27082, + "ĠDES": 27083, + "hog": 27084, + "ĠоÑĤкÑĢÑĭ": 27085, + "íĮħ": 27086, + "ĠденÑĮги": 27087, + "Ġíĺ¹": 27088, + "Ġ머리": 27089, + "Ġsaturation": 27090, + "Ġinherited": 27091, + "ĠInnovation": 27092, + "ìĹĪëįĺ": 27093, + "Ġtangible": 27094, + "Ġdepri": 27095, + "hed": 27096, + "Ġпомог": 27097, + "Ġsliced": 27098, + "à¥į": 27099, + "Ġthế": 27100, + "Å¥": 27101, + "68": 27102, + "Ġcorona": 27103, + "Ġgifted": 27104, + "Ġsoir": 27105, + "Ġhumility": 27106, + "ĠìĿ´ê±¸": 27107, + "Ġflaws": 27108, + "ĠпÑĢакÑĤи": 27109, + "Ġkald": 27110, + "waż": 27111, + "yw": 27112, + "ãĤĵãģ§ãģĻ": 27113, + "irteen": 27114, + "Ġcrochets": 27115, + "¦¬ê°Ģ": 27116, + "ĠìłĦìĹIJ": 27117, + "Ġdese": 27118, + "æ¥Ń": 27119, + "Ġмаг": 27120, + "ĠdziaÅĤ": 27121, + "Ġlég": 27122, + "changing": 27123, + "Ġllev": 27124, + "ÅĦsk": 27125, + "çĶ»": 27126, + "Ġ1984": 27127, + "orns": 27128, + "ĠWelsh": 27129, + "Ġpharmaceutical": 27130, + "Ġpumping": 27131, + "ĠShaw": 27132, + "punk": 27133, + "Ġvault": 27134, + "Ġkinetic": 27135, + "Ġhurricane": 27136, + "ĠIncluding": 27137, + "ức": 27138, + "ĠGrandpa": 27139, + "anship": 27140, + "é¦Ļ港": 27141, + "ĠвÑĭÑħод": 27142, + "нож": 27143, + "ľł": 27144, + "utta": 27145, + "Ġê²ģëĭĪëĭ¤": 27146, + "Ġbaz": 27147, + "ĠпоÑĪ": 27148, + "Ġpeculiar": 27149, + "zyÄĩ": 27150, + "ĠEllie": 27151, + "Ġlearns": 27152, + "ĠKrishna": 27153, + "Ġconsecut": 27154, + "Ġempath": 27155, + "ĠDin": 27156, + "Ġtraded": 27157, + "ĠBoris": 27158, + "uggage": 27159, + "olla": 27160, + "Ġназв": 27161, + "Ġeternity": 27162, + "Ġвп": 27163, + "èmes": 27164, + "Ġgrapp": 27165, + "bé": 27166, + "ĠпÑĢедÑģÑĤав": 27167, + "ĠFC": 27168, + "įëĭĪëĭ¤": 27169, + "even": 27170, + "ĠNebraska": 27171, + "ortune": 27172, + "Ġkarena": 27173, + "ĠAgent": 27174, + "Ġsting": 27175, + "ĠPI": 27176, + "Ġmunicipal": 27177, + "powered": 27178, + "Ġconsegue": 27179, + "ĠManchester": 27180, + "Ġrainy": 27181, + "Ġbli": 27182, + "Ġkost": 27183, + "Ġhalten": 27184, + "ĠAhhh": 27185, + "insula": 27186, + "erting": 27187, + "ĠاÙĦÙģ": 27188, + "Ġrelacion": 27189, + "Ġkomen": 27190, + "Ġdome": 27191, + "Ġpriests": 27192, + "ĠIntrodu": 27193, + "rophe": 27194, + "shore": 27195, + "velt": 27196, + "clipse": 27197, + "ĠÑĢÑĥÑģ": 27198, + "×Ļס": 27199, + "Ġsabemos": 27200, + "ĠHolland": 27201, + "ogi": 27202, + "anki": 27203, + "ĠMats": 27204, + "Ġsmoked": 27205, + "ullie": 27206, + "Ġeurope": 27207, + "ĠдейÑģÑĤвиÑĤелÑĮно": 27208, + "Ġbardziej": 27209, + "Ġtransforming": 27210, + "ĠEz": 27211, + "opath": 27212, + "Ġìĸ¸ëĭĪ": 27213, + "ĠÑģÑĤан": 27214, + "ằng": 27215, + "ัà¹ī": 27216, + "ĠOuch": 27217, + "Ġclearance": 27218, + "ustain": 27219, + "Ġsolidarity": 27220, + "Ġproving": 27221, + "ĠÐĺн": 27222, + "ĠÑģÑĬ": 27223, + "Ġprolong": 27224, + "адно": 27225, + "Ġsos": 27226, + "ĠDeal": 27227, + "Ġ170": 27228, + "mons": 27229, + "Ġзем": 27230, + "Ġlogged": 27231, + "Ġlifelong": 27232, + "Ġsensory": 27233, + "Ġbehold": 27234, + "ĠFAR": 27235, + "ètement": 27236, + "ĠFederation": 27237, + "Ġdodge": 27238, + "ĠShir": 27239, + "Ġdragons": 27240, + "ĠArctic": 27241, + "Äħż": 27242, + "Åį": 27243, + "º": 27244, + "Ġdenke": 27245, + "ĠpodrÃŃa": 27246, + "cole": 27247, + "ÑĥлÑĮÑĤаÑĤ": 27248, + "Ġsystematic": 27249, + "ама": 27250, + "chos": 27251, + "Ġclinics": 27252, + "ĠBS": 27253, + "Ġtales": 27254, + "usions": 27255, + "ĠíĪ¬": 27256, + "Ġpreservation": 27257, + "Ġlore": 27258, + "ĠProtest": 27259, + "Ỽ": 27260, + "å¸Ĥ": 27261, + "Ġacknowledged": 27262, + "ĠIsaiah": 27263, + "ĠëķĮëĬĶ": 27264, + "Ġ×ĺ": 27265, + "Ġcompetitor": 27266, + "Ġadvancing": 27267, + "zip": 27268, + "Ġtenth": 27269, + "ĠLaure": 27270, + "Ġhints": 27271, + "Ġexercising": 27272, + "ŀľë": 27273, + "ĠIntelligence": 27274, + "uated": 27275, + "OUT": 27276, + "oped": 27277, + "Ġautonomy": 27278, + "Ġbranding": 27279, + "ĠMediterranean": 27280, + "Ñĸк": 27281, + "Ġscrewdriver": 27282, + "Ġsupre": 27283, + "Ġstap": 27284, + "Ġjurisdiction": 27285, + "ĠSettings": 27286, + "Ġforefront": 27287, + "ĠFemale": 27288, + "comfort": 27289, + "Ġmultiplication": 27290, + "ĠMurray": 27291, + "Ġbob": 27292, + "ĠTas": 27293, + "Ġtahu": 27294, + "Ġonun": 27295, + "etter": 27296, + "Ġprophets": 27297, + "lag": 27298, + "Ġrevenues": 27299, + "Ġprá": 27300, + "Ġuploading": 27301, + "Ġmachinery": 27302, + "ascal": 27303, + "ĠEstá": 27304, + "ĠGoth": 27305, + "ĠBald": 27306, + "ĠSaw": 27307, + "Ġstripes": 27308, + "ìłij": 27309, + "Ġpowin": 27310, + "æĹ¥æľ¬": 27311, + "Ġhostile": 27312, + "Ġdarum": 27313, + "Ġprevented": 27314, + "ожалÑĥйÑģÑĤа": 27315, + "Ġalgunas": 27316, + "Ġhopeless": 27317, + "Ġznaj": 27318, + "Ġreadings": 27319, + "Ġcraving": 27320, + "tat": 27321, + "ĠPig": 27322, + "Ġliar": 27323, + "çĪ±": 27324, + "Ġmultiplayer": 27325, + "Ġdale": 27326, + "ĠCourse": 27327, + "íģ¼": 27328, + "ĠKita": 27329, + "Ġcustoms": 27330, + "Ġresponds": 27331, + "endra": 27332, + "è¦ĸ": 27333, + "Ġmetro": 27334, + "Ñģол": 27335, + "Ġmitigate": 27336, + "Ġoppression": 27337, + "ĠæĪijåĢij": 27338, + "quinho": 27339, + "Ġammo": 27340, + "Ġenfer": 27341, + "Ġpony": 27342, + "Ġounces": 27343, + "°Ķ": 27344, + "ĠìĪĺê°Ģ": 27345, + "Ġdicho": 27346, + "ĠDeb": 27347, + "Ġwonders": 27348, + "ĠRoose": 27349, + "Ġprizes": 27350, + "ĠALEX": 27351, + "Ġthankfully": 27352, + "Ġtissues": 27353, + "ĠÑĢавно": 27354, + "ĠLuna": 27355, + "intelligible": 27356, + "ĠìĻ¸": 27357, + "ê°ij": 27358, + "ĠHeat": 27359, + "ĠÑģид": 27360, + "ĠQui": 27361, + "Ġions": 27362, + "Ġaccommodation": 27363, + "便": 27364, + "ĠKart": 27365, + "ienst": 27366, + "Ġtarde": 27367, + "Ġsoaked": 27368, + "ĠCasey": 27369, + "Ġì´Ŀ": 27370, + "ĠÑĢÑĥб": 27371, + "Ġdifferenti": 27372, + "Ġleftover": 27373, + "Ġexchanges": 27374, + "second": 27375, + "Ġfirstly": 27376, + "Ġbuilder": 27377, + "rien": 27378, + "Ġdw": 27379, + "Ġbouncing": 27380, + "?<": 29986, + "ologÃŃa": 29987, + "wealth": 29988, + "Ġmeditate": 29989, + "ĵ¤ìĿĺ": 29990, + "ĠCraft": 29991, + "è§īå¾Ĺ": 29992, + "æĻ®": 29993, + "riv": 29994, + "ĠAgainst": 29995, + "Ġceramic": 29996, + "espère": 29997, + "Ġcompetent": 29998, + "ĠHopkins": 29999, + "Ġkilos": 30000, + "Ġgravel": 30001, + "Ġpiston": 30002, + "Ġfriendships": 30003, + "Ġescre": 30004, + "Ġvoz": 30005, + "ĠGesellschaft": 30006, + "Ġunterstüt": 30007, + "Ġmuj": 30008, + "Ġwarnings": 30009, + "pos": 30010, + "ĠProfessional": 30011, + "wszy": 30012, + "odle": 30013, + "bands": 30014, + "Ġteamwork": 30015, + "stellung": 30016, + "Ġdx": 30017, + "åįĬ": 30018, + "Ġattorneys": 30019, + "Ġweitere": 30020, + "ãħĭãħĭãħĭ": 30021, + "ĠOriginal": 30022, + "×Ļ×Ĺ": 30023, + "Ġbroadcasting": 30024, + "ĠпеÑĢвÑĭй": 30025, + "uchi": 30026, + "Ġheure": 30027, + "Ġgrabs": 30028, + "ĠWOR": 30029, + "ĠPlaid": 30030, + "Min": 30031, + "Ġpaz": 30032, + "ĠPuis": 30033, + "umu": 30034, + "itates": 30035, + "Ġcoats": 30036, + "Ġbuen": 30037, + "Ġheir": 30038, + "Ġpneum": 30039, + "שר": 30040, + "enser": 30041, + "ĠJUDGE": 30042, + "Ġblonde": 30043, + "á¹Ľ": 30044, + "Ġgak": 30045, + "Ġsık": 30046, + "Ġquoted": 30047, + "Ġequipo": 30048, + "Ġwishing": 30049, + "ÃŃcia": 30050, + "Ġverbs": 30051, + "çµĦ": 30052, + "ĠCanadians": 30053, + "Ġgoverning": 30054, + "ĠEvans": 30055, + "Euro": 30056, + "Ġgenres": 30057, + "Ġunterschied": 30058, + "ĠBecky": 30059, + "³¼ê²ĮìļĶ": 30060, + "Ġeinge": 30061, + "ĠRaise": 30062, + "oland": 30063, + "ĠStrateg": 30064, + "Ġeres": 30065, + "ĠVeterans": 30066, + "Ġbreakout": 30067, + "Ġsanté": 30068, + "Ġadel": 30069, + "Ġinvestigated": 30070, + "Ġpeur": 30071, + "Ġagile": 30072, + "Ġrailroad": 30073, + "anska": 30074, + "Ġей": 30075, + "Ġexpos": 30076, + "atories": 30077, + "ĠContent": 30078, + "Ġtruths": 30079, + "ĠTrail": 30080, + "Ġgua": 30081, + "Ġpores": 30082, + "Ġwritings": 30083, + "ĠUhr": 30084, + "ĠThats": 30085, + "Ġicing": 30086, + "OC": 30087, + "ĠProduction": 30088, + "Ġcarne": 30089, + "ISS": 30090, + "Ġninguém": 30091, + "non": 30092, + "Ġvicious": 30093, + "×ķ×Ķ": 30094, + "Ġreconnect": 30095, + "Ġcentres": 30096, + "ĠKem": 30097, + "Ġcrease": 30098, + "ĠìĿ´ë¯¸": 30099, + "айÑĤеÑģÑĮ": 30100, + "ĠбоÑĢ": 30101, + "ĠHayır": 30102, + "ĠÑģÑĥд": 30103, + "Ġúnica": 30104, + "owaÅĤ": 30105, + "Ġadher": 30106, + "hua": 30107, + "ZZ": 30108, + "Ġpreciso": 30109, + "Ġcurrents": 30110, + "Ġseasoned": 30111, + "ĠIoT": 30112, + "ĠBishop": 30113, + "è¨Ī": 30114, + "sted": 30115, + "ĠBernard": 30116, + "ì¤ĺ": 30117, + "æ²»": 30118, + "ĠGlenn": 30119, + "Ġktórym": 30120, + "ืà¹Ī": 30121, + "Ġastrolog": 30122, + "ĠKot": 30123, + "å¤ľ": 30124, + "Ġparfois": 30125, + "Ġforwards": 30126, + "ĠWiÄĻ": 30127, + "ĠÎĺ": 30128, + "Ġnano": 30129, + "è»į": 30130, + "sub": 30131, + "ĠBrill": 30132, + "Ġgrit": 30133, + "Ġcited": 30134, + "gado": 30135, + "Ġmelts": 30136, + "Ġforcé": 30137, + "âĸĪâĸĪ": 30138, + "Ġbajo": 30139, + "Ġdiscretion": 30140, + "°°": 30141, + "ativity": 30142, + "Ġsituated": 30143, + "ãĥ«ãĤ¯": 30144, + "Ñīее": 30145, + "åľ°æĸ¹": 30146, + "ĠпÑĢинÑĨип": 30147, + "amaz": 30148, + "Ġaquarium": 30149, + "Ġdissolve": 30150, + "ĠGods": 30151, + "Super": 30152, + "Ġamid": 30153, + "zk": 30154, + "ĠãģĦ": 30155, + "éłIJ": 30156, + "ampf": 30157, + "Ġhela": 30158, + "'!": 30159, + "Ġdevelopmental": 30160, + "ĠDise": 30161, + "ĠÑĢабоÑĤаеÑĤ": 30162, + "Ġsnapshot": 30163, + "好好": 30164, + "Õ¸": 30165, + "ĠYue": 30166, + "ĠHulk": 30167, + "ĠDoom": 30168, + "ĠFelix": 30169, + "Ġréf": 30170, + "Male": 30171, + "ç·Ĭ": 30172, + "phants": 30173, + "ENS": 30174, + "ĠMechan": 30175, + "ĠGolf": 30176, + "åĨįè¦ĭ": 30177, + "Ġgenerosity": 30178, + "ätze": 30179, + "Ġunlocked": 30180, + "ĠãĤĴ": 30181, + "íĥģ": 30182, + "ocalypse": 30183, + "Alright": 30184, + "Ġê°ľë": 30185, + "Ġ×IJ×ij׾": 30186, + "ĠKeeping": 30187, + "Ġcollaborating": 30188, + "chief": 30189, + "ĠFernando": 30190, + "Ġchefs": 30191, + "ĠíĶ¼ë¶Ģ": 30192, + "Ġskipped": 30193, + "Ġpersonn": 30194, + "Ġaxe": 30195, + "chez": 30196, + "Ġextraction": 30197, + "ĠAV": 30198, + "ĠGibbs": 30199, + "Ġíľ": 30200, + "Ġsı": 30201, + "IAM": 30202, + "View": 30203, + "ĠGRANT": 30204, + "Ġ몸": 30205, + "Ġverification": 30206, + "Ġdepicted": 30207, + "ĠMoz": 30208, + "oux": 30209, + "Ġtul": 30210, + "Ġscanner": 30211, + "Ġcomedian": 30212, + "ĠVolks": 30213, + "ĠJEFF": 30214, + "è¨Ĥéĸ±": 30215, + "§Ħ": 30216, + "Ġdistraction": 30217, + "rá": 30218, + "ĠINTER": 30219, + "Ġsincer": 30220, + "Ġ×ŀת": 30221, + "Ġש׳": 30222, + "Ġconstructive": 30223, + "arf": 30224, + "ĠëĪĦë": 30225, + "Ġeco": 30226, + "ramos": 30227, + "Ġrenewed": 30228, + "inement": 30229, + "ĠUb": 30230, + "ĠPepper": 30231, + "ì§Ģê°Ģ": 30232, + "ĠDarwin": 30233, + "Ġmerchand": 30234, + "Ġvárias": 30235, + "èce": 30236, + "NG": 30237, + "ĠìľĦíķ´ìĦľ": 30238, + "ĠакÑĤив": 30239, + "ĠUnters": 30240, + "عÙĦ": 30241, + "Ġintric": 30242, + "omma": 30243, + "ieving": 30244, + "ĠCaroline": 30245, + "åĵģ": 30246, + "ĠPRES": 30247, + "Ġperformer": 30248, + "Ġautour": 30249, + "ãģ¾ãģĽãĤĵ": 30250, + "Ġutterly": 30251, + "Ġsynthesis": 30252, + "Ġlesbian": 30253, + "Ġretrieve": 30254, + "Ġmaneira": 30255, + "Ġimpair": 30256, + "Ġmentoring": 30257, + "ĠSouls": 30258, + "ĠGoPro": 30259, + "ÑĢаÑĤÑĮ": 30260, + "Ġcose": 30261, + "ĠSSD": 30262, + "IRE": 30263, + "Ġupfront": 30264, + "ĠAun": 30265, + "Ġgamer": 30266, + "Ġlitt": 30267, + "Ġaggression": 30268, + "ĠLikewise": 30269, + "ĠBetty": 30270, + "ĠDart": 30271, + "ĠDLC": 30272, + "ishment": 30273, + "ìŀ¥ìĿĦ": 30274, + "Ġ对": 30275, + "ç»ı": 30276, + "cream": 30277, + "ĠBabylon": 30278, + "Ġnug": 30279, + "brar": 30280, + "Ġaynı": 30281, + "amily": 30282, + "bike": 30283, + "ahahaha": 30284, + "loyd": 30285, + "Ġmira": 30286, + "Ġperme": 30287, + "ĠGaming": 30288, + "Ġfirmware": 30289, + "Ma": 30290, + "Ġassisted": 30291, + "atics": 30292, + "Ġìķŀìľ¼ë¡ľ": 30293, + "ĠMental": 30294, + "niejs": 30295, + "ĠIz": 30296, + "owÄħ": 30297, + "Ġtougher": 30298, + "Ġdeed": 30299, + "èĭ¦": 30300, + "Ġstylish": 30301, + "ĠTools": 30302, + "ĠHamp": 30303, + "Ġsunscreen": 30304, + "Ġarticulate": 30305, + "iye": 30306, + "иÑĦ": 30307, + "ĠSpread": 30308, + "ĠHAVE": 30309, + "Ġswirl": 30310, + "Ġsponsoring": 30311, + "ä»ĭ": 30312, + "iovascular": 30313, + "mesi": 30314, + "Ġrelaxation": 30315, + "ĠÑģвоиÑħ": 30316, + "Ġmargins": 30317, + "ĠsaÄŁ": 30318, + "ĠPride": 30319, + "ĠÏĦοÏħÏĤ": 30320, + "иÑĨи": 30321, + "enci": 30322, + "Does": 30323, + "Ġcorpse": 30324, + "Ġendurance": 30325, + "Ġíŀĺ": 30326, + "ì¹´": 30327, + "Ġhaircut": 30328, + "Ġinterrupted": 30329, + "Ġwindy": 30330, + "ĠCaleb": 30331, + "ÏģÏĩ": 30332, + "ĠPourquoi": 30333, + "Ġholistic": 30334, + "uclear": 30335, + "ĠWhole": 30336, + "士": 30337, + "Act": 30338, + "Ġgallon": 30339, + "cade": 30340, + "ĠRegional": 30341, + "roads": 30342, + "ĠSchne": 30343, + "áng": 30344, + "Ġизмен": 30345, + "ãĤĪãģŃ": 30346, + "Ġmenus": 30347, + "Ġsplitting": 30348, + "Ġpriced": 30349, + "ĠÎĵ": 30350, + "Ġusername": 30351, + "ĠÐŀÑĩ": 30352, + "Ġcompressed": 30353, + "yin": 30354, + "Ġguardian": 30355, + "Ġgoof": 30356, + "Ġchecklist": 30357, + "Ġinterchange": 30358, + "Ġexpedition": 30359, + "Ġextern": 30360, + "Ġinfrared": 30361, + "engo": 30362, + "Ġdenying": 30363, + "Ġpackets": 30364, + "onent": 30365, + "BB": 30366, + "ĠIncre": 30367, + "Ġsini": 30368, + "ÃŁer": 30369, + "èg": 30370, + "maal": 30371, + "generation": 30372, + "Ġminorities": 30373, + "Ġllevar": 30374, + "Ġnomination": 30375, + "Ġconsid": 30376, + "Ġ×ľ×¢": 30377, + "muÅŁ": 30378, + "ĠEsc": 30379, + "Ġnumerator": 30380, + "Ġkaik": 30381, + "Ġktórych": 30382, + "iesen": 30383, + "Ġvê": 30384, + "ĠUSS": 30385, + "ĠPrivate": 30386, + "Ġодно": 30387, + "Ġalém": 30388, + "ÃŃtulo": 30389, + "Ġlimb": 30390, + "Ġforgiven": 30391, + "Ġdisclosure": 30392, + "ÏĦί": 30393, + "Ġningún": 30394, + "Ġtherapeutic": 30395, + "Ġnegotiating": 30396, + "ĠNike": 30397, + "enseful": 30398, + "Ġincap": 30399, + "Ġflagship": 30400, + "town": 30401, + "âĪ": 30402, + "ĠÏĢολ": 30403, + "Ġwolves": 30404, + "Ġviolations": 30405, + "ĠArnold": 30406, + "Ġintervene": 30407, + "Ġheater": 30408, + "Ġrecursos": 30409, + "Ġmaid": 30410, + "ê²¼": 30411, + "ĠдавайÑĤе": 30412, + "ĠCelebr": 30413, + "Ġcape": 30414, + "ĠSty": 30415, + "ainen": 30416, + "site": 30417, + "bij": 30418, + "ĠполÑĮз": 30419, + "Ġframed": 30420, + "Ġpublishers": 30421, + "ĠÑĩÑĥÑĤÑĮ": 30422, + "Ġtemptation": 30423, + "Ġcerteza": 30424, + "Ġexempt": 30425, + "ìĬ¹": 30426, + "selling": 30427, + "ĠTask": 30428, + "hoon": 30429, + "ĠCoc": 30430, + "ĠParks": 30431, + "Ġrepetition": 30432, + "ĠÑĤÑĥда": 30433, + "Ġensl": 30434, + "ĠdeÄŁiÅŁ": 30435, + "ĠOrlando": 30436, + "ĠMainten": 30437, + "æŃ¢": 30438, + "ocument": 30439, + "ĠHC": 30440, + "Ġscooter": 30441, + "ĠнапиÑģ": 30442, + "Ġtighter": 30443, + "Ġtease": 30444, + "Ġremoves": 30445, + "Ġkijken": 30446, + "ĠÑģÑĥÑīеÑģÑĤв": 30447, + "Ġthé": 30448, + "ĠвÑĭглÑıд": 30449, + "Ġrelieve": 30450, + "Ġmitä": 30451, + "Ġstationary": 30452, + "öff": 30453, + "pable": 30454, + "Ġarter": 30455, + "Ġdéf": 30456, + "rative": 30457, + "Ġconect": 30458, + "Ġsaddle": 30459, + "ĠDiane": 30460, + "Ġcommemor": 30461, + "fendim": 30462, + "SÃŃ": 30463, + "Ġíģ´ë": 30464, + "Ġmange": 30465, + "atte": 30466, + "Ġarrogant": 30467, + "Ġrobotic": 30468, + "ĠgiÃł": 30469, + "æĺ¯çļĦ": 30470, + "Ġneighbourhood": 30471, + "isson": 30472, + "Ġдвиж": 30473, + "ĠRI": 30474, + "ĠNorman": 30475, + "brand": 30476, + "amation": 30477, + "Ġrazor": 30478, + "Ġmurders": 30479, + "ĠÑĤÑĥ": 30480, + "Ġwszystkim": 30481, + "Ġutilities": 30482, + "Ġmicroscop": 30483, + "ê¿": 30484, + "Ġdaqui": 30485, + "ollar": 30486, + "ĠÐĶавайÑĤе": 30487, + "Ġannée": 30488, + "Ġkilometres": 30489, + "Ġhomosexual": 30490, + "Ġarchitects": 30491, + "ãģ¡ãģ¯": 30492, + "Ġniye": 30493, + "LER": 30494, + "Ġmicrophones": 30495, + "ĠStunden": 30496, + "Ġconsecutive": 30497, + "ienda": 30498, + "vänd": 30499, + "DER": 30500, + "Ġlifts": 30501, + "ĠMeat": 30502, + "Ġsavez": 30503, + "íĸĪëįĺ": 30504, + "Men": 30505, + "Ġdismant": 30506, + "거를": 30507, + "Ġinsulation": 30508, + "Ġscall": 30509, + "Ġspooky": 30510, + "Ġparc": 30511, + "Ġballet": 30512, + "ĠWhatsApp": 30513, + "Ġfranc": 30514, + "Ġdeliberate": 30515, + "ĠíħĮ": 30516, + "Ġmars": 30517, + "ĠZur": 30518, + "Pr": 30519, + "disciplinary": 30520, + "Ġobsession": 30521, + "ме": 30522, + "Ġmarching": 30523, + "ĠEmergency": 30524, + "iguous": 30525, + "Ġszy": 30526, + "ĠLands": 30527, + "Ġboarding": 30528, + "ĠпоÑĩÑĤи": 30529, + "Ġenvy": 30530, + "Ġcompassionate": 30531, + "Ġmerci": 30532, + "Ġdesirable": 30533, + "dale": 30534, + "Ġcanım": 30535, + "ĠAntar": 30536, + "temps": 30537, + "Ġconfigured": 30538, + "ĠCompared": 30539, + "neh": 30540, + "icating": 30541, + "Ġnickel": 30542, + "ÙĪÙĤ": 30543, + "ÙĥÙĪÙĨ": 30544, + "opes": 30545, + "Ġformulas": 30546, + "ĠÐķÑģÑĤÑĮ": 30547, + "Ġpobl": 30548, + "ĠPJ": 30549, + "ĠLud": 30550, + "ä»ĬåĽŀ": 30551, + "ĠBrid": 30552, + "ĠHog": 30553, + "ĠBris": 30554, + "Jen": 30555, + "Ġshading": 30556, + "ĠYas": 30557, + "Ġdisturbed": 30558, + "Ġrecommending": 30559, + "Ġcé": 30560, + "ĠHOW": 30561, + "ìĹĪìĸ´": 30562, + "Ġreversed": 30563, + "ĠInterestingly": 30564, + "ioxid": 30565, + "åħŃ": 30566, + "Ġìĺ¤ì¼ĢìĿ´": 30567, + "ếu": 30568, + "xx": 30569, + "Ġouais": 30570, + "ĠYouTubers": 30571, + "ĠRosa": 30572, + "ĠHaupt": 30573, + "jadi": 30574, + "Ġvlogs": 30575, + "Ġcultura": 30576, + "ĠLeadership": 30577, + "ĠHep": 30578, + "Ġillum": 30579, + "´ëıĻ": 30580, + "Ġcustomized": 30581, + "Ġmarca": 30582, + "Ġquatro": 30583, + "Ġнаг": 30584, + "ĠSpaceX": 30585, + "ĠEigen": 30586, + "asting": 30587, + "ĠolduÄŁu": 30588, + "Ġforts": 30589, + "ãģī": 30590, + "riment": 30591, + "iencia": 30592, + "Ġtenir": 30593, + "roffen": 30594, + "Ġ1979": 30595, + "Ġcie": 30596, + "ĠëIJĺê³ł": 30597, + "Ġescri": 30598, + "ÏĮÏĤ": 30599, + "íı¬": 30600, + "uzzy": 30601, + "Cong": 30602, + "ìĿ¸ìĿ´": 30603, + "Great": 30604, + "sil": 30605, + "éch": 30606, + "ãģ¨ãģĭ": 30607, + "Ġmultic": 30608, + "ĠDisk": 30609, + "²ķ": 30610, + "Ġfazla": 30611, + "Ġlevant": 30612, + "Ġabajo": 30613, + "urry": 30614, + "stru": 30615, + "Ġ먹ëĬĶ": 30616, + "Ġaccessory": 30617, + "Ġдвиг": 30618, + "ĠRid": 30619, + "2019": 30620, + "Ġdownstream": 30621, + "æķ¸": 30622, + "Ġkaz": 30623, + "utan": 30624, + "Ġcharcoal": 30625, + "Ġafect": 30626, + "wu": 30627, + "Ġcontexts": 30628, + "Ġfeared": 30629, + "ĠìĦ¤": 30630, + "Ġhistories": 30631, + "Ġfas": 30632, + "ensible": 30633, + "Ġcocoa": 30634, + "illar": 30635, + "geons": 30636, + "Ġspirituality": 30637, + "ĠPew": 30638, + "Ġpharmacy": 30639, + "Ġpassions": 30640, + "Ġbos": 30641, + "Ġallá": 30642, + "Ġthriving": 30643, + "ĠReact": 30644, + "Ġoccupy": 30645, + "Ġwithdrawal": 30646, + "Ġallowance": 30647, + "ĠFraktion": 30648, + "Ġbuddies": 30649, + "Ġidle": 30650, + "Ġdissolved": 30651, + "Ġprevalent": 30652, + "Ġmilitar": 30653, + "Ġsensing": 30654, + "Ġpojaw": 30655, + "Ġancora": 30656, + "Ġabundant": 30657, + "Ġhairst": 30658, + "ãģĤãĤĮ": 30659, + "Ġtwee": 30660, + "Ġnächste": 30661, + "ĠMöglichkeit": 30662, + "Ġhoo": 30663, + "ufficient": 30664, + "Ġfantast": 30665, + "Ġedible": 30666, + "Ġëĸ¨ìĸ´ì": 30667, + "ìĽĥ": 30668, + "Ġvein": 30669, + "ucci": 30670, + "Ġdevotion": 30671, + "Ġconcealer": 30672, + "income": 30673, + "Ġrecycled": 30674, + "ĠìĬ¤íĥĢ": 30675, + "Ġpontos": 30676, + "Ġdessus": 30677, + "Ġvérit": 30678, + "Ġreflections": 30679, + "ĠAA": 30680, + "Ġtakeaway": 30681, + "bare": 30682, + "ĠContact": 30683, + "eil": 30684, + "ĠHear": 30685, + "Ġmirac": 30686, + "ĠGerilim": 30687, + "ĠÑģамÑĭй": 30688, + "Ġvivo": 30689, + "Ġkilograms": 30690, + "ĠCrim": 30691, + "ût": 30692, + "78": 30693, + "Ġsincerely": 30694, + "raz": 30695, + "Ġë³µ": 30696, + "Ġarriv": 30697, + "Ġconception": 30698, + "ĠPersian": 30699, + "Ġsjäl": 30700, + "Ġstarring": 30701, + "ĠìķĦ무": 30702, + "ĠForever": 30703, + "еÑģÑĤÑĮ": 30704, + "Ġveil": 30705, + "Ġsubtit": 30706, + "odka": 30707, + "ĠоÑĤноÑĪ": 30708, + "Ġcooks": 30709, + "енÑı": 30710, + "Kay": 30711, + "Ġniños": 30712, + "ĠPhone": 30713, + "Ġstitching": 30714, + "Ġfingerprint": 30715, + "é¢ĺ": 30716, + "λά": 30717, + "Ġdedicate": 30718, + "ĠLob": 30719, + "Ġblacks": 30720, + "ĠBle": 30721, + "bout": 30722, + "ĠÄijang": 30723, + "Ġeks": 30724, + "Ġsquash": 30725, + "ĠKü": 30726, + "odi": 30727, + "ĠnÆ°á»Ľc": 30728, + "Ġvoyage": 30729, + "Ġplayful": 30730, + "ĠØ¥ÙĦÙī": 30731, + "anic": 30732, + "Ġcondemn": 30733, + "ĠBöyle": 30734, + "ĠPolize": 30735, + "ãĤ¿ãĥ¼": 30736, + "Ġayuda": 30737, + "Ġpam": 30738, + "à¹Ħà¸Ľ": 30739, + "ĠKathy": 30740, + "един": 30741, + "нова": 30742, + "Ġbrig": 30743, + "eger": 30744, + "Ġeagle": 30745, + "Ġvisions": 30746, + "ĠíķŃìĥģ": 30747, + "Ġshitty": 30748, + "Ġhott": 30749, + "ĠBritt": 30750, + "utors": 30751, + "ENTE": 30752, + "æĽ²": 30753, + "Ġphon": 30754, + "ĠBing": 30755, + "ĠподдеÑĢж": 30756, + "spring": 30757, + "æĸ¯": 30758, + "etten": 30759, + "Ġpilgr": 30760, + "Ġediyor": 30761, + "енÑĤÑĭ": 30762, + "aggio": 30763, + "Ġjul": 30764, + "Ġcomprend": 30765, + "teil": 30766, + "Ġز": 30767, + "Ġperformers": 30768, + "Ġinfamous": 30769, + "ĠMK": 30770, + "çª": 30771, + "æ³ģ": 30772, + "otle": 30773, + "eff": 30774, + "ĠHash": 30775, + "Ġcoward": 30776, + "ĠBRA": 30777, + "ĠDD": 30778, + "Ġcomida": 30779, + "Ġplata": 30780, + "Ġflap": 30781, + "ĠMehr": 30782, + "ribution": 30783, + "ĠYemen": 30784, + "Ġmysteries": 30785, + "ĠÄ°yi": 30786, + "Ġstell": 30787, + "Ġeyeliner": 30788, + "Ġdeles": 30789, + "Ġnailed": 30790, + "Ġillnesses": 30791, + "Ġstacks": 30792, + "Ġtrabajar": 30793, + "flower": 30794, + "ciu": 30795, + "Ġcrude": 30796, + "Ġsubstantially": 30797, + "Ġhomem": 30798, + "Ġnephew": 30799, + "Ġstamps": 30800, + "Ġcarbs": 30801, + "ÑĮÑĤе": 30802, + "mooth": 30803, + "Ġtunnels": 30804, + "acie": 30805, + "æ³¢": 30806, + "ĠSeñ": 30807, + "ĠHera": 30808, + "ĠìķĦëĭĪìĹIJìļĶ": 30809, + "ĠWyoming": 30810, + "ĠHDMI": 30811, + "ĠLis": 30812, + "ución": 30813, + "Ġsteer": 30814, + "оÑİ": 30815, + "иÑĤа": 30816, + "NT": 30817, + "Ġìĸ¼êµ´": 30818, + "Ġpalms": 30819, + "Ġneon": 30820, + "ованиÑı": 30821, + "Ġfiltering": 30822, + "Ġjouer": 30823, + "ĠHö": 30824, + "ĠнеÑģ": 30825, + "ê²łìĸ´ìļĶ": 30826, + "Ġ81": 30827, + "Ġstoryline": 30828, + "Ġprzep": 30829, + "Ġthanking": 30830, + "ĠBoeing": 30831, + "Ġsoftly": 30832, + "jem": 30833, + "алÑĮнÑĭÑħ": 30834, + "Ġflashlight": 30835, + "ĠпÑĥ": 30836, + "ĠWOMAN": 30837, + "ắc": 30838, + "ÃŃch": 30839, + "Ġluxurious": 30840, + "Ġwün": 30841, + "Ġimpactful": 30842, + "Ġconson": 30843, + "reu": 30844, + "irring": 30845, + "ifter": 30846, + "Ġconstituents": 30847, + "èIJ½": 30848, + "Ġ94": 30849, + "ĠTou": 30850, + "gom": 30851, + "ĠìĥĿê°ģìĿĦ": 30852, + "Ġstereotypes": 30853, + "Ġmożli": 30854, + "åĪĨ享": 30855, + "Ĥ¨": 30856, + "Ġpencils": 30857, + "ĠÑģлож": 30858, + "Ġihrem": 30859, + "ĠBesch": 30860, + "ĠKoh": 30861, + "ĠEntscheid": 30862, + "Ġlek": 30863, + "Ġförs": 30864, + "Ġtotalmente": 30865, + "Ġlively": 30866, + "Ġentropy": 30867, + "Ġdiscern": 30868, + "ĠÐĹна": 30869, + "Ġdov": 30870, + "Ġmythology": 30871, + "è¨ĺå¾Ĺ": 30872, + "apanese": 30873, + "Ġapproximate": 30874, + "аÑĤив": 30875, + "ifiable": 30876, + "ĠSeo": 30877, + "åĢĴ": 30878, + "´ìĭ¬íŀĪ": 30879, + "Ġìĺ·": 30880, + "Ġtemporal": 30881, + "ĠiT": 30882, + "Ġestat": 30883, + "ким": 30884, + "Ġsprink": 30885, + "Ġgrund": 30886, + "Ġinfantry": 30887, + "Ġschaffen": 30888, + "ç´Ħ": 30889, + "Ġank": 30890, + "riages": 30891, + "ĠYeon": 30892, + "ĠMoroc": 30893, + "Ġinvasive": 30894, + "ģĶ": 30895, + "Ġparenting": 30896, + "ĠRis": 30897, + "ibile": 30898, + "Ġmods": 30899, + "å½¢": 30900, + "ĠпÑĢовеÑĢ": 30901, + "ĠThing": 30902, + "ĠWherever": 30903, + "Ġacknowledging": 30904, + "Ġpawn": 30905, + "ummer": 30906, + "orb": 30907, + "69": 30908, + "Ġretrouve": 30909, + "Ġrelies": 30910, + "ĠHighway": 30911, + "Ġawe": 30912, + "ãģ§ãģĻãģĭ": 30913, + "itaire": 30914, + "Ġapplicant": 30915, + "Ġaisle": 30916, + "worm": 30917, + "Ġpayload": 30918, + "Ġcarre": 30919, + "ĠBach": 30920, + "æł¼": 30921, + "Ġì¹ľêµ¬ë": 30922, + "ние": 30923, + "ĠitÃŃs": 30924, + "onnaise": 30925, + "sol": 30926, + "èı¯": 30927, + "algia": 30928, + "Ġrocking": 30929, + "Ġbesten": 30930, + "rites": 30931, + "^^": 30932, + "иной": 30933, + "Ġbaixo": 30934, + "Ġ기ìĸµ": 30935, + "оÑĤÑĢи": 30936, + "sim": 30937, + "Ġincarn": 30938, + "ëĭ¤ìĿĮ": 30939, + "Ġlick": 30940, + "sided": 30941, + "Ġ71": 30942, + "forder": 30943, + "Ġresonance": 30944, + "Ġtegen": 30945, + "Ġmetaph": 30946, + "owser": 30947, + "Ġ×IJ׳×Ĺ׳×ķ": 30948, + "?ãĢį": 30949, + "Ġspielen": 30950, + "Ġvolley": 30951, + "ĶìĿ´íģ¬ìĹħ": 30952, + "looked": 30953, + "Ġsentenced": 30954, + "Ġmultiplying": 30955, + "Ġideals": 30956, + "Ġwahrscheinlich": 30957, + "Ġdeposits": 30958, + "bilir": 30959, + "Ġeffet": 30960, + "illon": 30961, + "Īë§Į": 30962, + "Ġtestimon": 30963, + "Ġzawsze": 30964, + "ĠпÑĢоÑĨеÑģÑģ": 30965, + "ĠLav": 30966, + "ä¸įéĮ¯": 30967, + "Ġtravailler": 30968, + "Ġlaisse": 30969, + "ĠMountains": 30970, + "ĠÑĢоб": 30971, + "Ġexamined": 30972, + "itus": 30973, + "Was": 30974, + "лÑĭ": 30975, + "Ġattributed": 30976, + "ĠìĬ¹": 30977, + "ĠBaron": 30978, + "Ġgep": 30979, + "Ġattent": 30980, + "ĠCollection": 30981, + "Ġtheat": 30982, + "ĠCai": 30983, + "Ġwells": 30984, + "Ġhumano": 30985, + "çĹħ": 30986, + "ĠHast": 30987, + "ĠÑħоÑĤÑı": 30988, + "czas": 30989, + "Ġpermits": 30990, + "Ġlegg": 30991, + "Ġepo": 30992, + "ĠFen": 30993, + "Ġthi": 30994, + "ĠFoi": 30995, + "Ġélect": 30996, + "Ġ83": 30997, + "Ġoverth": 30998, + "Ġè¬Ŀè¬Ŀ": 30999, + "Ġtenant": 31000, + "è²·": 31001, + "Next": 31002, + "Ġpraised": 31003, + "security": 31004, + "ĠImpact": 31005, + "为ä»Ģä¹Ī": 31006, + "Ġvouch": 31007, + "Ġnegó": 31008, + "Ġunve": 31009, + "Ġcriticize": 31010, + "ĠKenya": 31011, + "Ġtactic": 31012, + "Ġlogr": 31013, + "Ġpois": 31014, + "Ġpapa": 31015, + "speaks": 31016, + "ðŁij": 31017, + "ispers": 31018, + "Ġsurplus": 31019, + "Ġcolder": 31020, + "åįĹ": 31021, + "åIJ¬": 31022, + "plets": 31023, + "ĠVienna": 31024, + "ĠLead": 31025, + "Ġaerial": 31026, + "ĠTah": 31027, + "енÑĤов": 31028, + "ĠGreeks": 31029, + "Cam": 31030, + "Ġmáxim": 31031, + "Ġkuin": 31032, + "chio": 31033, + "Ġdemonstrates": 31034, + "anos": 31035, + "ĠCert": 31036, + "ĠÑįн": 31037, + "Ġblogs": 31038, + "ĠìĦľìļ¸": 31039, + "Ġbeams": 31040, + "иков": 31041, + "Ġprompted": 31042, + "Ġfrightening": 31043, + "ĠPorsche": 31044, + "ãģĪãģ¦": 31045, + "larını": 31046, + "Ġchilling": 31047, + "isphere": 31048, + "Ġflashing": 31049, + "ĠKard": 31050, + "bread": 31051, + "Ġexh": 31052, + "Ġtycker": 31053, + "Ġecological": 31054, + "ĠMae": 31055, + "Ġ×ŀ×IJ×ķ×ĵ": 31056, + "ĠëĤĺëıĦ": 31057, + "лон": 31058, + "yss": 31059, + "Ġpergunt": 31060, + "Ġprix": 31061, + "izzard": 31062, + "Ġcancers": 31063, + "Ġ91": 31064, + "susp": 31065, + "ĠItem": 31066, + "ÅŁa": 31067, + "Ġpest": 31068, + "ĠtakÄħ": 31069, + "Ġlymph": 31070, + "ĠPatri": 31071, + "fill": 31072, + "Ġreconna": 31073, + "Ġoptimism": 31074, + "Ġmimic": 31075, + "Ġì²ľ": 31076, + "ĠMadame": 31077, + "ocy": 31078, + "lining": 31079, + "åijĬ訴": 31080, + "erme": 31081, + "Ġfolders": 31082, + "ĠczÅĤ": 31083, + "uchar": 31084, + "Ġcurso": 31085, + "Ġbreach": 31086, + "ниÑĤÑĮ": 31087, + "ĠpamiÄĻ": 31088, + "Ġelig": 31089, + "Ġautop": 31090, + "Flow": 31091, + "Ġprogrammed": 31092, + "ĠProcess": 31093, + "Ġfigur": 31094, + "ĠSF": 31095, + "ĠEles": 31096, + "Ġprogrammes": 31097, + "Ġdizzy": 31098, + "ìĭľê°Ħ": 31099, + "Ġлибо": 31100, + "Ġsniff": 31101, + "ĠSebastian": 31102, + "ĠHye": 31103, + "Ġ4000": 31104, + "Ġpermite": 31105, + "æ¢Ŀ": 31106, + "ĠзаÑī": 31107, + "Ġguit": 31108, + "ĠDais": 31109, + "Ġaccordance": 31110, + "Ġmodular": 31111, + "ogeneous": 31112, + "æĭį": 31113, + "Ġpouquinho": 31114, + "Ġartillery": 31115, + "Ġlubric": 31116, + "Ġvolcan": 31117, + "ĠNH": 31118, + "ðŁ¤": 31119, + "Ġdean": 31120, + "Rh": 31121, + "Ġministre": 31122, + "åĿIJ": 31123, + "ĠInv": 31124, + "ĠBulgar": 31125, + "ĠDaten": 31126, + "èİ": 31127, + "Im": 31128, + "Ġoriginated": 31129, + "ĠNixon": 31130, + "integr": 31131, + "Ġlacks": 31132, + "ĠNacht": 31133, + "ìĸ´ëĤĺ": 31134, + "camera": 31135, + "Ġradish": 31136, + "kiye": 31137, + "Ġanges": 31138, + "Ġpréf": 31139, + "juk": 31140, + "ĠBee": 31141, + "ĠBU": 31142, + "ĠвоÑģп": 31143, + "ĠBT": 31144, + "êmes": 31145, + "ĠStück": 31146, + "ĠInk": 31147, + "æĪĸèĢħ": 31148, + "ĠSergeant": 31149, + "ĠMultip": 31150, + "Ġhiçbir": 31151, + "ĠСам": 31152, + "ĠDé": 31153, + "olph": 31154, + "ìĸ¸": 31155, + "Ġimpat": 31156, + "ĠìķĬê³ł": 31157, + "ĠÑĤакого": 31158, + "ĠнавеÑĢное": 31159, + "Ġunpredictable": 31160, + "Ġmend": 31161, + "ĠìĹĨìĸ´ìļĶ": 31162, + "ĠjakieÅĽ": 31163, + "Ġanni": 31164, + "Ġdonné": 31165, + "ĠKirsty": 31166, + "Ġrectangular": 31167, + "Ġempezar": 31168, + "ĠExchange": 31169, + "ê°Ķ": 31170, + "Ġéconom": 31171, + "ãģĵãĤĵ": 31172, + "elin": 31173, + "reibt": 31174, + "Ġ×Ķפ": 31175, + "Ġcemetery": 31176, + "Ġespañol": 31177, + "olin": 31178, + "лÑİд": 31179, + "Ġgrâce": 31180, + "allen": 31181, + "ĠPhilos": 31182, + "ĠErst": 31183, + "ĠìĥĪ": 31184, + "ĠVid": 31185, + "Give": 31186, + "OH": 31187, + "μο": 31188, + "ĠPare": 31189, + "Ġmetabolism": 31190, + "Ġmaple": 31191, + "Ġaxle": 31192, + "ĠDy": 31193, + "Ġkomme": 31194, + "Ïİν": 31195, + "Ġgreatness": 31196, + "Ġverified": 31197, + "Ġspé": 31198, + "ĠFahrenheit": 31199, + "ĠBren": 31200, + "ĠConfeder": 31201, + "Ġhistoire": 31202, + "Ġeliminating": 31203, + "ĠAdding": 31204, + "ĠAbi": 31205, + "æĿİ": 31206, + "Ġhospitality": 31207, + "tim": 31208, + "Ġbonito": 31209, + "Ġpartes": 31210, + "ĠдÑĢÑĥгиÑħ": 31211, + "ĠShay": 31212, + "ĠSed": 31213, + "Ġregrets": 31214, + "Ñıми": 31215, + "Ġtenants": 31216, + "éĢŁ": 31217, + "ĠPTS": 31218, + "Ġdevi": 31219, + "ĠLate": 31220, + "uez": 31221, + "Ġsöyl": 31222, + "ãĤ»": 31223, + "Ġìŀ¬ë°Į": 31224, + "Ġtoggle": 31225, + "Ġmasking": 31226, + "алÑĮного": 31227, + "Ġpersön": 31228, + "Ġamerican": 31229, + "fik": 31230, + "ĠRGB": 31231, + "enson": 31232, + "ĠKA": 31233, + "wwww": 31234, + "ĠÑĢег": 31235, + "metics": 31236, + "Ġeducator": 31237, + "ãĤ·ãĥ«ãĤ¯": 31238, + "park": 31239, + "елÑĮзÑı": 31240, + "arus": 31241, + "ÑĢеÑĤ": 31242, + "Ġfeito": 31243, + "Ġchoir": 31244, + "Ġlargo": 31245, + "Ġeens": 31246, + "Ġwatts": 31247, + "ĠSingle": 31248, + "Ġsusceptible": 31249, + "icer": 31250, + "ĠвклÑİÑĩ": 31251, + "Ġpus": 31252, + "íĻĺ": 31253, + "Eng": 31254, + "Ġfantas": 31255, + "Ġspecification": 31256, + "Ġconfronted": 31257, + "ĠColumbus": 31258, + "ивеÑĤ": 31259, + "arım": 31260, + "Ġcaffeine": 31261, + "munition": 31262, + "Ġmigrants": 31263, + "lide": 31264, + "itations": 31265, + "ĠGeme": 31266, + "ẫ": 31267, + "Ġplanner": 31268, + "Ġstimulate": 31269, + "Ġaproxim": 31270, + "ceu": 31271, + "ĠNom": 31272, + "Ġvog": 31273, + "ĠÑĢаÑģÑĤ": 31274, + "Ġenseñ": 31275, + "Ġsellers": 31276, + "Ġguten": 31277, + "zd": 31278, + "Cal": 31279, + "Ġdescript": 31280, + "Ġreconciliation": 31281, + "zinho": 31282, + "á¹ĩa": 31283, + "ãģĺãĤĥãģĤ": 31284, + "acyj": 31285, + "ĠCOL": 31286, + "saw": 31287, + "ĠíĻķìĿ¸": 31288, + "Ġvarit": 31289, + "Ġpartnering": 31290, + "Ġdetention": 31291, + "Ġbombing": 31292, + "clapping": 31293, + "iencies": 31294, + "ondu": 31295, + "AME": 31296, + "Ġê°ĻìĬµëĭĪëĭ¤": 31297, + "cÃŃa": 31298, + "ĠпоÑģÑĤо": 31299, + "ĠASMR": 31300, + "Ġhomepage": 31301, + "Ġsiè": 31302, + "antha": 31303, + "ĠPoll": 31304, + "Ġigen": 31305, + "cych": 31306, + "Ġê°ijìŀIJ기": 31307, + "Ġconsiderably": 31308, + "ä»ĸçļĦ": 31309, + "ĠArist": 31310, + "Ġwithstand": 31311, + "Ġqualitative": 31312, + "ĠKraft": 31313, + "ĠÑįлекÑĤ": 31314, + "ĠBead": 31315, + "екÑĤив": 31316, + "Ġcrushing": 31317, + "ì³IJ": 31318, + "Ġnavy": 31319, + "ÙĪÚº": 31320, + "sho": 31321, + "Ġoak": 31322, + "ippers": 31323, + "Ġsoils": 31324, + "Ġpigment": 31325, + "Ġevitar": 31326, + "ãĥĩ": 31327, + "Ġfuse": 31328, + "ĠDale": 31329, + ":\"": 31330, + "Ġcomplètement": 31331, + "Ġkel": 31332, + "à¹Ĩ": 31333, + "Ġquatre": 31334, + "ĠUM": 31335, + "Ġë§IJë": 31336, + "æł¹": 31337, + "ÃŃr": 31338, + "Ġleisure": 31339, + "ĠHousing": 31340, + "Ġfolds": 31341, + "estion": 31342, + "ARS": 31343, + "Ġmash": 31344, + "urpose": 31345, + "Ġaccumulated": 31346, + "ĠStuff": 31347, + "èªŀ": 31348, + "Ġtapes": 31349, + "ĠÑģилÑĮно": 31350, + "ĠLOVE": 31351, + "Ġ1982": 31352, + "Ġscars": 31353, + "Ġcapitalist": 31354, + "ĠNed": 31355, + "Ġsoften": 31356, + "Ġnotably": 31357, + "Ġforcément": 31358, + "ĠRaum": 31359, + "ĠнеобÑħод": 31360, + "Ġtrademark": 31361, + "Ġfertig": 31362, + "Ġ?!": 31363, + "æĹł": 31364, + "Ġreinforced": 31365, + "Ġrecharge": 31366, + "ĠPutting": 31367, + "Ġvillains": 31368, + "Ġhandic": 31369, + "Ġadvertisement": 31370, + "تÙĬ": 31371, + "ĠÑģÑĥм": 31372, + "ĠRiley": 31373, + "×ķ×ij×": 31374, + "京": 31375, + "Os": 31376, + "از": 31377, + "Boy": 31378, + "Ġsquish": 31379, + "ocket": 31380, + "Ġtestify": 31381, + "æ¼Ķ": 31382, + "Ġ׾×ŀ×": 31383, + "ĠмаÑģÑģ": 31384, + "manuel": 31385, + "ĠArkansas": 31386, + "iffe": 31387, + "Ġanalysts": 31388, + "ĠDeaf": 31389, + "Ġjó": 31390, + "Ġgroceries": 31391, + "ĠWheel": 31392, + "ĠÑĢиÑģ": 31393, + "Ġcòn": 31394, + "ĠCob": 31395, + "Ġprisons": 31396, + "ève": 31397, + "ĠCabinet": 31398, + "Ġposed": 31399, + "Ġguerre": 31400, + "ĠLloyd": 31401, + "Ġclerk": 31402, + "Ġcrises": 31403, + "ĠSho": 31404, + "ĠOre": 31405, + "ĠFootball": 31406, + "ĠAdvis": 31407, + "ĠZheng": 31408, + "èį": 31409, + "ĠAMY": 31410, + "Ġunfor": 31411, + "Ġmonaster": 31412, + "Ġcompile": 31413, + "Ġimmortal": 31414, + "atable": 31415, + "Ġparano": 31416, + "Ġtiver": 31417, + "ĠSteph": 31418, + "ĠFuÃŁ": 31419, + "Ġdiscontin": 31420, + "Ġripe": 31421, + "Ġhacking": 31422, + "Ġsiendo": 31423, + "Ġseguro": 31424, + "altres": 31425, + "Ġanderes": 31426, + "Ġ리ë": 31427, + "Ġexports": 31428, + "æŃ¥": 31429, + "Ġtabii": 31430, + "Ġ기ëĭ¤ë": 31431, + "Ġbothering": 31432, + "Ġpickle": 31433, + "ĠBRIAN": 31434, + "Ġaltar": 31435, + "ĠпÑĢиб": 31436, + "Ġtransferring": 31437, + "ĠVors": 31438, + "ĠÙĩÙĪ": 31439, + "ĠZa": 31440, + "ĠFrances": 31441, + "Ġbrowse": 31442, + "emit": 31443, + "Ġchewing": 31444, + "ĠFreddy": 31445, + "Ġeditors": 31446, + "älle": 31447, + "ĠíĮĢ": 31448, + "ĠSque": 31449, + "ĠCultural": 31450, + "awk": 31451, + "ĠSache": 31452, + "ĠCarbon": 31453, + "ắt": 31454, + "FL": 31455, + "ĠNGO": 31456, + "peÅĤ": 31457, + "ĠSou": 31458, + "Ġhvor": 31459, + "unintelligible": 31460, + "Ġë²ķ": 31461, + "Ġ°": 31462, + "iin": 31463, + "Ġ×¢×Ŀ": 31464, + "Ġderrière": 31465, + "Ġczym": 31466, + "ĠApost": 31467, + "Ġregarder": 31468, + "Ġagrade": 31469, + "ĠCandy": 31470, + "Ġmare": 31471, + "Ġintroduces": 31472, + "birds": 31473, + "Ġuniquely": 31474, + "Ġmuk": 31475, + "Ġcooker": 31476, + "Ġcrews": 31477, + "Ġjeito": 31478, + "ERT": 31479, + "¶Ħë": 31480, + "nisse": 31481, + "Ġef": 31482, + "Ġcarte": 31483, + "ĠYak": 31484, + "ĠPAT": 31485, + "ино": 31486, + "bokki": 31487, + "Ġmates": 31488, + "Ġdistint": 31489, + "Ġì½Ķë¡ľëĤĺ": 31490, + "Ġyıl": 31491, + "Ġκάν": 31492, + "Ġconfigurations": 31493, + "enga": 31494, + "recht": 31495, + "Happy": 31496, + "ãĤĦãģ£ãģ¦": 31497, + "invest": 31498, + "Ġreconstruct": 31499, + "ĠÑįÑĤомÑĥ": 31500, + "Ġmosque": 31501, + "raum": 31502, + "Ġvoyez": 31503, + "ĠNBC": 31504, + "ĠìŀIJìĭł": 31505, + "Ġsturdy": 31506, + "Ġкап": 31507, + "Ġansch": 31508, + "alid": 31509, + "Ġmasih": 31510, + "ĠREP": 31511, + "Ġì½Ķë": 31512, + "Ġdeduct": 31513, + "Ġsalir": 31514, + "wurf": 31515, + "ilot": 31516, + "ĠMutter": 31517, + "olds": 31518, + "ĠFEMA": 31519, + "ĠBib": 31520, + "Ġneighboring": 31521, + "Ġbliss": 31522, + "Ġíĺ¼": 31523, + "лиÑģÑĮ": 31524, + "ĠÑĤÑĢеб": 31525, + "Ġå°±æĺ¯": 31526, + "Ġgrenade": 31527, + "Ġegal": 31528, + "Ġfinely": 31529, + "Ġpetals": 31530, + "Ġkeer": 31531, + "Ġchyba": 31532, + "Ġskipping": 31533, + "Ġthirteen": 31534, + "Ġgravy": 31535, + "ĠSAT": 31536, + "61": 31537, + "Ġног": 31538, + "Ġmins": 31539, + "ITE": 31540, + "Ġsozial": 31541, + "íķĺë©´ìĦľ": 31542, + "ruktur": 31543, + "Ġвозмож": 31544, + "ĠопÑıÑĤÑĮ": 31545, + "Ġarth": 31546, + "ĠCuban": 31547, + "Ġtreasures": 31548, + "Ġfertilizer": 31549, + "Ġawakening": 31550, + "Ġë°±ìĭł": 31551, + "Ġrall": 31552, + "Ġdepict": 31553, + "ĠPablo": 31554, + "Ġnineteen": 31555, + "Ġwatt": 31556, + "Ġentirety": 31557, + "KS": 31558, + "ĠWoods": 31559, + "Sch": 31560, + "ĠÚ©ÙĪ": 31561, + "ĠDry": 31562, + "ãģŀ": 31563, + "uve": 31564, + "Ġreconstruction": 31565, + "Ġanatomy": 31566, + "Ī를": 31567, + "Ġbaba": 31568, + "Ġlistener": 31569, + "Ġsharpen": 31570, + "ĠPeru": 31571, + "ĠвÑĭз": 31572, + "Ġrecreation": 31573, + "Ġinitiate": 31574, + "Ġcalor": 31575, + "ĠNaj": 31576, + "gee": 31577, + "ĠFeels": 31578, + "ĠSnapchat": 31579, + "ĠTet": 31580, + "ĠNest": 31581, + "ĠDaf": 31582, + "ĠFinish": 31583, + "ĠÑĤаким": 31584, + "úc": 31585, + "izens": 31586, + "Ġspins": 31587, + "Ġembry": 31588, + "Ġpassages": 31589, + "Ġcient": 31590, + "Ġjustification": 31591, + "ä»ĸ說": 31592, + "Ġolmaz": 31593, + "Ġflooded": 31594, + "Ġemoji": 31595, + "Ġembracing": 31596, + "Ġdiscard": 31597, + "ĠBasic": 31598, + "agog": 31599, + "ĠìľĦíķ´": 31600, + "Ġasylum": 31601, + "erin": 31602, + "Ġfim": 31603, + "Ġninja": 31604, + "Ġautomate": 31605, + "Ġallergic": 31606, + "ÿÿÿÿ": 31607, + "amam": 31608, + "ĠмаÑĢ": 31609, + "ĠOi": 31610, + "äus": 31611, + "Ġinduct": 31612, + "ĠBEN": 31613, + "ĠzÅĤ": 31614, + "Ġkażdy": 31615, + "ĠAMP": 31616, + "nÄĽ": 31617, + "Sure": 31618, + "Ġquil": 31619, + "Ġespec": 31620, + "rok": 31621, + "BSCRI": 31622, + "Ġliebe": 31623, + "pus": 31624, + "achsen": 31625, + "Ġcricket": 31626, + "ëĬIJ": 31627, + "ĠFrame": 31628, + "ekkür": 31629, + "arb": 31630, + "ĠpÅĻ": 31631, + "иÑģÑģ": 31632, + "Ġzeggen": 31633, + "Ġdoubles": 31634, + "ĠDre": 31635, + "test": 31636, + "insp": 31637, + "boys": 31638, + "Ġmão": 31639, + "ĠVerse": 31640, + "Ġmuscular": 31641, + "ĠMALE": 31642, + "Ġdulu": 31643, + "Ġoccasional": 31644, + "Lo": 31645, + "conomic": 31646, + "Ġvak": 31647, + "Ġremedy": 31648, + "å¤ł": 31649, + "ĠâĻªâĻªâĻª": 31650, + "vem": 31651, + "Ġönem": 31652, + "ĠkarÅŁÄ±": 31653, + "ĠSharp": 31654, + "hur": 31655, + "Ġë°©ë²ķ": 31656, + "Ġgrandson": 31657, + "Ġaktiv": 31658, + "ĠThrones": 31659, + "ĠìķĪìĹIJ": 31660, + "Ġtots": 31661, + "Ġsubd": 31662, + "ĠPaula": 31663, + "Ġgraves": 31664, + "ĠBrent": 31665, + "ĠникÑĤо": 31666, + "Ġsöz": 31667, + "Ġcrec": 31668, + "ĠVladimir": 31669, + "çĸ«": 31670, + "Ġпой": 31671, + "Ġ\"-": 31672, + "Ġpsy": 31673, + "atri": 31674, + "idan": 31675, + "Ġaún": 31676, + "Ġstandardized": 31677, + "ì¹ĺë": 31678, + "ĠкÑĢов": 31679, + "ĠZhu": 31680, + "something": 31681, + "Ġ750": 31682, + "Ġmujeres": 31683, + "Ġait": 31684, + "éĹ´": 31685, + "agu": 31686, + "Ġcorrected": 31687, + "ikka": 31688, + "eled": 31689, + "ĠCareer": 31690, + "owym": 31691, + "Ġroommate": 31692, + "Ġdescendants": 31693, + "ĠNapoleon": 31694, + "ĠÐĶо": 31695, + "íĸĪìĸ´ìļĶ": 31696, + "Ġbunun": 31697, + "ĠMicha": 31698, + "ç·ļ": 31699, + "Ġdescob": 31700, + "PI": 31701, + "Ġpalabra": 31702, + "Ġtracked": 31703, + "Ġdependence": 31704, + "ĠBarack": 31705, + "åģĩ": 31706, + "Ġfertility": 31707, + "ĠSouthwest": 31708, + "Ġincomplete": 31709, + "Ġcomunic": 31710, + "Ġcompris": 31711, + "ĠRestaur": 31712, + "Ġacron": 31713, + "κα": 31714, + "Ġapprentices": 31715, + "Ġmusst": 31716, + "ĠAbr": 31717, + "Ġpentru": 31718, + "ĠConsort": 31719, + "ĠAvec": 31720, + "Ġdumplings": 31721, + "LR": 31722, + "Ġwszystkie": 31723, + "Ġswamp": 31724, + "нев": 31725, + "uggle": 31726, + "Ġwatercolor": 31727, + "Ġproton": 31728, + "ĠEspaña": 31729, + "ocking": 31730, + "овал": 31731, + "Ġtakim": 31732, + "Very": 31733, + "Ġdementia": 31734, + "ĠÅŁeyi": 31735, + "Jac": 31736, + "ĠMacBook": 31737, + "ĠLiv": 31738, + "fficients": 31739, + "ĠHunt": 31740, + "Ġoverlay": 31741, + "æĦŁè¦º": 31742, + "ĠSkype": 31743, + "punkt": 31744, + "Ġconfined": 31745, + "ĠAdrian": 31746, + "رÙĥ": 31747, + "ĠJeep": 31748, + "Ġenquanto": 31749, + "Ġanest": 31750, + "оÑĤвеÑĤ": 31751, + "ĠменÑĮ": 31752, + "Ġirrigation": 31753, + "á»ijn": 31754, + "Ġeighteen": 31755, + "ĠPon": 31756, + "Ġrescued": 31757, + "Ġ1983": 31758, + "rü": 31759, + "jae": 31760, + "ĠJeong": 31761, + "Ġamazingly": 31762, + "ĠFDP": 31763, + "Ġbackstage": 31764, + "cue": 31765, + "ĠÏĥÏĦην": 31766, + "ĠاÙĦص": 31767, + "Ġlivestock": 31768, + "ĠWarner": 31769, + "Ġmajors": 31770, + "ãĥģãĥ£": 31771, + "Ġcooperative": 31772, + "ĠBrady": 31773, + "rained": 31774, + "rieb": 31775, + "Ġ×ij×ŀ×": 31776, + "ĠдоволÑĮно": 31777, + "ĠFE": 31778, + "Ġleaked": 31779, + "ĠMercury": 31780, + "Ġpersuade": 31781, + "Ġtransformer": 31782, + "ĠNorweg": 31783, + "ĠìŬ룬": 31784, + "ĠzrobiÄĩ": 31785, + "Ġcardiovascular": 31786, + "ĠCrash": 31787, + "Ġgossip": 31788, + "аÑģÑĤÑĮ": 31789, + "Ġ쪽": 31790, + "Ġswept": 31791, + "ĠHorn": 31792, + "ĠAté": 31793, + "Ġbukan": 31794, + "ĠKaw": 31795, + "KY": 31796, + "ĠStories": 31797, + "Gary": 31798, + "Ġgardening": 31799, + "ĠQuickly": 31800, + "ĠFalcon": 31801, + "Ġovat": 31802, + "cı": 31803, + "ĠComplet": 31804, + "ĠDate": 31805, + "ĠпÑĢим": 31806, + "Ġläuft": 31807, + "ĠAudrey": 31808, + "ĠWent": 31809, + "ĠpelÃŃcul": 31810, + "Ġcarriage": 31811, + "Ġunacceptable": 31812, + "nymi": 31813, + "ĠÑģлÑĭÑĪ": 31814, + "Ġterre": 31815, + "uellement": 31816, + "EEEE": 31817, + "Ġpharmac": 31818, + "hões": 31819, + "Ġzich": 31820, + "Ġmigrate": 31821, + "ĠFry": 31822, + "ñana": 31823, + "ĠMuito": 31824, + "EOVER": 31825, + "Ġfortress": 31826, + "ĠCompan": 31827, + "ĠJSON": 31828, + "ordnung": 31829, + "Ġwarto": 31830, + "Ġungef": 31831, + "ìħĶìĦľ": 31832, + "ĠÑĢок": 31833, + "Ġpaddle": 31834, + "Jared": 31835, + "Ġsubmitting": 31836, + "Ġlatch": 31837, + "Ġfug": 31838, + "ĠкоÑģ": 31839, + "ĠEf": 31840, + "Ġlaunches": 31841, + "Ġft": 31842, + "otechn": 31843, + "Ġtravelled": 31844, + "اÙģ": 31845, + "éģķ": 31846, + "Ġproch": 31847, + "Ġdedim": 31848, + "83": 31849, + "Ġrebound": 31850, + "ĠLU": 31851, + "path": 31852, + "ĠÑģпÑĢав": 31853, + "Ġöl": 31854, + "ĠíĤ¤": 31855, + "Ġprivat": 31856, + "Ġtractor": 31857, + "ĠAttention": 31858, + "Ser": 31859, + "Ġcoses": 31860, + "ária": 31861, + "pal": 31862, + "ĠìĿĢ": 31863, + "Ġsuccessor": 31864, + "Ġconnectors": 31865, + "ĠÑĥÑģÑĤанов": 31866, + "Ġgenocide": 31867, + "Ġsufficiently": 31868, + "ĠAixò": 31869, + "Ġstabilize": 31870, + "Ġcongest": 31871, + "Ġcarving": 31872, + "Ġzost": 31873, + "ĠбÑĭÑģÑĤÑĢо": 31874, + "Ġshortest": 31875, + "Ġlivel": 31876, + "Ġ89": 31877, + "éģĬ": 31878, + "Ġerk": 31879, + "Ġportraits": 31880, + "à¥Ģ": 31881, + "èĺ": 31882, + "boat": 31883, + "llah": 31884, + "ANC": 31885, + "Ġempirical": 31886, + "ĠEcho": 31887, + "ĠNederland": 31888, + "è¿Ļä¹Ī": 31889, + "Net": 31890, + "Ġcuidado": 31891, + "ĠRoma": 31892, + "Ġcalf": 31893, + "Ġgiants": 31894, + "ĠExplorer": 31895, + "ĠCollect": 31896, + "alition": 31897, + "ĠDestiny": 31898, + "Ġausge": 31899, + "ĠEdu": 31900, + "ĠClo": 31901, + "Ġearrings": 31902, + "ĠTrack": 31903, + "ĠROS": 31904, + "ĠBelle": 31905, + "çĻ¾": 31906, + "Ġpueda": 31907, + "Ġdaytime": 31908, + "Ġsupplier": 31909, + "ĠSV": 31910, + "ĠExhale": 31911, + "Ġgalera": 31912, + "course": 31913, + "Ġcentimeter": 31914, + "ĠBast": 31915, + "mud": 31916, + "Ġsangat": 31917, + "ĠPhysical": 31918, + "Ġprivately": 31919, + "Ġtrata": 31920, + "lynn": 31921, + "illi": 31922, + "Ġë©ĶìĿ´íģ¬ìĹħ": 31923, + "Ġcrystall": 31924, + "Ġpods": 31925, + "ản": 31926, + "inator": 31927, + "ĠRecords": 31928, + "å®ĺ": 31929, + "ÄŁimiz": 31930, + "issement": 31931, + "hare": 31932, + "hadow": 31933, + "ĠDK": 31934, + "ĠìķĮê³ł": 31935, + "Ġwyn": 31936, + "Ġrequesting": 31937, + "ĠDonna": 31938, + "ĠìĹ´ìĭ¬íŀĪ": 31939, + "inea": 31940, + "Ġexert": 31941, + "ĠDuncan": 31942, + "ĠвеÑĩ": 31943, + "ĠHah": 31944, + "à¤Ĥ": 31945, + "ĠLif": 31946, + "ĠFinding": 31947, + "ĠNov": 31948, + "Ġзнак": 31949, + "ĠоÑĦ": 31950, + "ĠQuè": 31951, + "Ġquarterback": 31952, + "ĠÑĦак": 31953, + "Ġbipartisan": 31954, + "ÄŁin": 31955, + "Ġnécess": 31956, + "Ġreferendum": 31957, + "Ġcompiler": 31958, + "Ġprobabil": 31959, + "еди": 31960, + "Ġtrader": 31961, + "æĺĵ": 31962, + "ĠRum": 31963, + "geme": 31964, + "Ġdio": 31965, + "ĠbÄĻdziemy": 31966, + "ĠÏĢά": 31967, + "꾸": 31968, + "×ķ×ĺ": 31969, + "Ġà¤ķ": 31970, + "Ġблаг": 31971, + "Ġscalp": 31972, + "ĠPause": 31973, + "Ġcaption": 31974, + "Ġendanger": 31975, + "Ġenlar": 31976, + "Ġrotten": 31977, + "ãĥĥãĥĪ": 31978, + "Ġwah": 31979, + "èĤī": 31980, + "Ġdzi": 31981, + "ĠInstall": 31982, + "Ay": 31983, + "Ġcrear": 31984, + "енÑĤа": 31985, + "Ġweighing": 31986, + "Ġbutterflies": 31987, + "ĠGast": 31988, + "äºķ": 31989, + "horn": 31990, + "warz": 31991, + "ICEOVER": 31992, + "ĠнайÑĤи": 31993, + "Ġcoefficients": 31994, + "ç°¡åĸ®": 31995, + "ĠSpencer": 31996, + "ĠHigher": 31997, + "Ġcowork": 31998, + "å¨ĺ": 31999, + "ĠкоÑĤоÑĢое": 32000, + "Ġmonit": 32001, + "Ġdysfunction": 32002, + "ĠÑģÑĤанов": 32003, + "Ġtournaments": 32004, + "Ġoyster": 32005, + "BN": 32006, + "Ġtrud": 32007, + "slow": 32008, + "ĠPenny": 32009, + "ĠOdys": 32010, + "ær": 32011, + "Ġfou": 32012, + "Ġenjoyment": 32013, + "аÑĤÑĭ": 32014, + "ĠwyglÄħda": 32015, + "алÑĮнаÑı": 32016, + "ĠProtect": 32017, + "Ġmoy": 32018, + "Ġclaw": 32019, + "Ġsuspicion": 32020, + "Ġsacrificed": 32021, + "Ġgosto": 32022, + "Big": 32023, + "Ġaggressively": 32024, + "Ġvorne": 32025, + "ãĥł": 32026, + "Ġblamed": 32027, + "ĠSehr": 32028, + "פר": 32029, + "cito": 32030, + "Ġseals": 32031, + "Ġmujer": 32032, + "ĠWeird": 32033, + "Ġforens": 32034, + "Ġcontributes": 32035, + "estra": 32036, + "Ġpog": 32037, + "LOL": 32038, + "Ġhacerlo": 32039, + "оÑĤÑĮ": 32040, + "fiction": 32041, + "79": 32042, + "λο": 32043, + "大æ¦Ĥ": 32044, + "声": 32045, + "ĠÑĤоб": 32046, + "ĠGS": 32047, + "ĠClara": 32048, + "itez": 32049, + "Ġadvocating": 32050, + "ĠíĶĦë": 32051, + "sung": 32052, + "Ġvertices": 32053, + "Ġnavigating": 32054, + "Ġeuropé": 32055, + "çļĨ": 32056, + "Ġslowed": 32057, + "Ġforeground": 32058, + "ĠIndustrial": 32059, + "Ġadore": 32060, + "ìĭŃ": 32061, + "Ġcréer": 32062, + "æŀĹ": 32063, + "chnitt": 32064, + "Ġunaware": 32065, + "Ġcurly": 32066, + "entar": 32067, + "Ġler": 32068, + "Ġprohibited": 32069, + "ĠHeroes": 32070, + "ĠReed": 32071, + "uca": 32072, + "Ġsmok": 32073, + "Ġkunna": 32074, + "zeitig": 32075, + "immen": 32076, + "ĠLun": 32077, + "ĠабÑģолÑİÑĤ": 32078, + "Ġdegli": 32079, + "Ġvillagers": 32080, + "Ġpreset": 32081, + "zept": 32082, + "uds": 32083, + "Ġemit": 32084, + "ä½łè¦ģ": 32085, + "Ġëī": 32086, + "ëĬĶì§Ģ": 32087, + "нако": 32088, + "Ġosób": 32089, + "Ġ1969": 32090, + "ĠÐIJÑĢ": 32091, + "Ġmanchmal": 32092, + "ĠBrock": 32093, + "Ġmantra": 32094, + "ĠWIL": 32095, + "bach": 32096, + "inä": 32097, + "elas": 32098, + "keln": 32099, + "Ġdisciple": 32100, + "Ġqualc": 32101, + "Ġdehyd": 32102, + "ìĿ´ëĿ¼ëĬĶ": 32103, + "Af": 32104, + "ìĦ±ìĿ´": 32105, + "Ryan": 32106, + "Ġpuppet": 32107, + "ĠдÑĢÑĥгие": 32108, + "Ġrud": 32109, + "Ġpending": 32110, + "Plus": 32111, + "ĠìķĬìĿĦ": 32112, + "Ġbá»ĭ": 32113, + "ĠSega": 32114, + "çe": 32115, + "Ġprogrammer": 32116, + "bli": 32117, + "Ġunl": 32118, + "Ġenslaved": 32119, + "Ġsociété": 32120, + "Äģh": 32121, + "Ġinheritance": 32122, + "ĠBangl": 32123, + "ermaid": 32124, + "Ġpractitioner": 32125, + "ĠStalin": 32126, + "ĠUser": 32127, + "cible": 32128, + "Ġcardiac": 32129, + "ĠKoreans": 32130, + "Ġdumped": 32131, + "Ġ×Ķ×Ļ×Ķ": 32132, + "áis": 32133, + "Ġhydraulic": 32134, + "oubtedly": 32135, + "ĠPit": 32136, + "Ġpicnic": 32137, + "Ġbehöver": 32138, + "ĠÑģмог": 32139, + "Ġbraking": 32140, + "é»ij": 32141, + "utar": 32142, + "ĠìĦ¸ë": 32143, + "ubl": 32144, + "Ġüz": 32145, + "Ġmajesty": 32146, + "Ġbers": 32147, + "utable": 32148, + "Ġhotter": 32149, + "çħ§": 32150, + "ÛĮÙĨ": 32151, + "Ġbiases": 32152, + "Ġsubjected": 32153, + "Ġnaughty": 32154, + "Ġcircus": 32155, + "ãģĹãģĭ": 32156, + "ĠImmedi": 32157, + "ĠStefan": 32158, + "ĠTriple": 32159, + "enk": 32160, + "Ġwit": 32161, + "Ġrecycle": 32162, + "emie": 32163, + "dated": 32164, + "Ġunload": 32165, + "Ġpopula": 32166, + "chin": 32167, + "Ġyields": 32168, + "Ġenglish": 32169, + "ĠBonnie": 32170, + "Ġspiders": 32171, + "Ãģ": 32172, + "Ġerosion": 32173, + "éĥ¨åĪĨ": 32174, + "ĠNICK": 32175, + "иÑıÑħ": 32176, + "Ġimpart": 32177, + "Ġкни": 32178, + "Ġresolutions": 32179, + "Ġlithium": 32180, + "Ġconvergence": 32181, + "ĠTara": 32182, + "Ġдве": 32183, + "ths": 32184, + "ĠCindy": 32185, + "æĪijè¦ģ": 32186, + "幫": 32187, + "ĠDIE": 32188, + "Ġassurance": 32189, + "ĠопиÑģ": 32190, + "Ġbuckets": 32191, + "Ġcues": 32192, + "ĠQuiet": 32193, + "Ġsimilarity": 32194, + "Ġfoundational": 32195, + "ĠMinist": 32196, + "滿": 32197, + "Ġpian": 32198, + "Ġcentr": 32199, + "Ġnumb": 32200, + "Ġmonks": 32201, + "ujourd": 32202, + "enzie": 32203, + "Ġskateboard": 32204, + "Ġdlatego": 32205, + "ĠÑģоÑĤ": 32206, + "ĠAE": 32207, + "Ġmasterpiece": 32208, + "ĠSolomon": 32209, + "ĠReddit": 32210, + "Ġriot": 32211, + "abl": 32212, + "ĠJazz": 32213, + "Ġelectromagnetic": 32214, + "Ġinsecure": 32215, + "ĠCompet": 32216, + "geries": 32217, + "обод": 32218, + "ł×ķ": 32219, + "ðŁĴ": 32220, + "Ġsenators": 32221, + "ĠBrisbane": 32222, + "ĠAlb": 32223, + "uttering": 32224, + "ĠAllow": 32225, + "zero": 32226, + "Ġpai": 32227, + "ĠÐIJлекÑģ": 32228, + "ĠDisplay": 32229, + "ĠBlade": 32230, + "ĠApps": 32231, + "Ġpä": 32232, + "ĠдеÑģÑı": 32233, + "Ġquella": 32234, + "ĠGao": 32235, + "еннÑĭÑħ": 32236, + "Ġspoilers": 32237, + "Ġgallons": 32238, + "ĠÙĦÙĬ": 32239, + "ĠZion": 32240, + "æľīä¸Ģ": 32241, + "onie": 32242, + "ragt": 32243, + "ĠChand": 32244, + "Ġë³ij": 32245, + "Ġblunt": 32246, + "Ġusu": 32247, + "ĠKad": 32248, + "rakt": 32249, + "Ġcinematic": 32250, + "Ġammunition": 32251, + "rene": 32252, + "Ġfourteen": 32253, + "ĠCarn": 32254, + "crit": 32255, + "Ġtenure": 32256, + "vu": 32257, + "Ġprincipalmente": 32258, + "Ġalleen": 32259, + "éĢĻä¸Ģ": 32260, + "Ġkomplett": 32261, + "Ġdüny": 32262, + "James": 32263, + "Ġreceptor": 32264, + "Ġoneself": 32265, + "guru": 32266, + "Ġmerchant": 32267, + "liness": 32268, + "Ġoverlooked": 32269, + "Ġharmonic": 32270, + "éķ¿": 32271, + "ieso": 32272, + "×ķ×ŀ": 32273, + "colm": 32274, + "ĠпÑĢоекÑĤ": 32275, + "ĠAda": 32276, + "اس": 32277, + "Tim": 32278, + "Ġrecurring": 32279, + "Ġproceeds": 32280, + "ĠParticularly": 32281, + "ĠDownload": 32282, + "etrical": 32283, + "Ġmatrices": 32284, + "Ġproyecto": 32285, + "ancies": 32286, + "ĠUhm": 32287, + "Ġcaves": 32288, + "Ġìĸ´ëł¤": 32289, + "ĠLeaf": 32290, + "ĠобÑĭÑĩ": 32291, + "ĠìĿ´ìľł": 32292, + "Europe": 32293, + "ĠtÄħ": 32294, + "Ġpuls": 32295, + "Ġtakiego": 32296, + "ÐĿе": 32297, + "GU": 32298, + "Ġfors": 32299, + "Ïģγ": 32300, + "Ġfotos": 32301, + "Ġ))": 32302, + "Ġ멤ë": 32303, + "Ġaquilo": 32304, + "ĠKurd": 32305, + "ï¸ı": 32306, + "ptic": 32307, + "ĠDort": 32308, + "Ġmisery": 32309, + "auso": 32310, + "åĬŁ": 32311, + "chuckling": 32312, + "ĠRidge": 32313, + "ĠíĸĪìĬµëĭĪëĭ¤": 32314, + "Ġ***": 32315, + "客": 32316, + "ĠHmmm": 32317, + "Ġgeographic": 32318, + "Ġanys": 32319, + "Ġtalvez": 32320, + "Ġskelet": 32321, + "Ġsignatures": 32322, + "Ġliters": 32323, + "IJë©´": 32324, + "ĠÑģвоего": 32325, + "Ġskiing": 32326, + "ĠÐľÐ¾Ñģ": 32327, + "Ġadopting": 32328, + "Ġhaft": 32329, + "Ġsymmetric": 32330, + "ĠLiqu": 32331, + "Ġthyroid": 32332, + "Ġmisin": 32333, + "lude": 32334, + "Ġhull": 32335, + "ĠXD": 32336, + "ĠGust": 32337, + "zeich": 32338, + "Ġvibrations": 32339, + "Ġesemp": 32340, + "ĠвÑģÑİ": 32341, + "ĠQuem": 32342, + "Ġübrig": 32343, + "ĠSke": 32344, + "ĠLynch": 32345, + "rooms": 32346, + "artet": 32347, + "fest": 32348, + "Ġfrüher": 32349, + "Ġlure": 32350, + "ä¸į好æĦıæĢĿ": 32351, + "ĠìķĮìķĦ": 32352, + "ĠWIN": 32353, + "ĠRYAN": 32354, + "ĠкоÑĤоÑĢÑĥÑİ": 32355, + "ĠKash": 32356, + "Ġ×Ķ×ŀ": 32357, + "Ġsafeg": 32358, + "ĠHallelujah": 32359, + "ĠдвÑĥÑħ": 32360, + "Ġstaple": 32361, + "Ġsediment": 32362, + "ĠActs": 32363, + "Ġblaming": 32364, + "Ġmainland": 32365, + "Ġsporting": 32366, + "Ġdecorations": 32367, + "Ġexecuting": 32368, + "Ġparan": 32369, + "ĠDollar": 32370, + "Ġprojections": 32371, + "Ġcommissioned": 32372, + "Ġbour": 32373, + "öm": 32374, + "Ġsteamed": 32375, + "ĠëŃĺ": 32376, + "Ġpetrol": 32377, + "Ġcelular": 32378, + "帶": 32379, + "ĠHungary": 32380, + "Ġrented": 32381, + "ĠваÑĢи": 32382, + "bbie": 32383, + "Ġsécur": 32384, + "üll": 32385, + "Ġswings": 32386, + "between": 32387, + "ĠиÑĤ": 32388, + "estro": 32389, + "Ġniemand": 32390, + "ĠìĤ¼": 32391, + "ĠPardon": 32392, + "esses": 32393, + "ĠMID": 32394, + "Ġcentralized": 32395, + "ĠAlien": 32396, + "culos": 32397, + "Ġcrise": 32398, + "裡éĿ¢": 32399, + "Ġclasse": 32400, + "beitet": 32401, + "iÄŁi": 32402, + "Ġwhales": 32403, + "Ġperimeter": 32404, + "Ġtying": 32405, + "Ġstrony": 32406, + "Ġlikewise": 32407, + "ĠPunch": 32408, + "Da": 32409, + "ĠBaptist": 32410, + "Ġsorting": 32411, + "Ġiv": 32412, + "Ġíķ©": 32413, + "Ġrehab": 32414, + "Ġeta": 32415, + "river": 32416, + "Ġsai": 32417, + "ãģĦãģŁãģł": 32418, + "odus": 32419, + "ãģĬé¡ĺãģĦãģĹãģ¾ãģĻ": 32420, + "Ġessayer": 32421, + "Ġturtles": 32422, + "ĠHazrat": 32423, + "Ġfabrics": 32424, + "Ġcavity": 32425, + "Ġponieważ": 32426, + "Ġschlecht": 32427, + "Ġsalsa": 32428, + "ÅŁekkür": 32429, + "Ġseating": 32430, + "Ġeconomists": 32431, + "Ġmang": 32432, + "Ġseguinte": 32433, + "Ġrang": 32434, + "Ġratios": 32435, + "Ġconstell": 32436, + "Ġlongtemps": 32437, + "uating": 32438, + "Ġspoiled": 32439, + "Ġrecipients": 32440, + "Ġsniper": 32441, + "ä¹ĭåīį": 32442, + "ìĬµëĭĪê¹Į": 32443, + "Ġwp": 32444, + "ĠLINKE": 32445, + "Ġflare": 32446, + "ĠAdri": 32447, + "ñas": 32448, + "Ġbackl": 32449, + "mÃ¤ÃŁ": 32450, + "ĠBend": 32451, + "Ġworkloads": 32452, + "ĠÑģÑĥп": 32453, + "Ġ1975": 32454, + "имÑģÑı": 32455, + "ане": 32456, + "Ġмон": 32457, + "Ġaspirations": 32458, + "ĠAer": 32459, + "ĠговоÑĢиÑĤÑĮ": 32460, + "ĠQian": 32461, + "å¦Ī": 32462, + "Ġcompromised": 32463, + "Ġyolk": 32464, + "лаÑģÑĤ": 32465, + "Ġhemen": 32466, + "rove": 32467, + "dens": 32468, + "ĠкомменÑĤ": 32469, + "Ġ---": 32470, + "Ġfluores": 32471, + "ноÑģ": 32472, + "ĠLiverpool": 32473, + "ĠÑģобой": 32474, + "ĠZwe": 32475, + "Ġlumin": 32476, + "ĠOG": 32477, + "á¸": 32478, + "holm": 32479, + "profits": 32480, + "SN": 32481, + "Ġproportions": 32482, + "Ġmica": 32483, + "ĠBoh": 32484, + "ĠAtlas": 32485, + "Ġunsure": 32486, + "Ġtouring": 32487, + "Ġnied": 32488, + "ĠtÄĻ": 32489, + "Ġimperative": 32490, + "Ġdemek": 32491, + "ĠSheriff": 32492, + "rance": 32493, + "Ġhomeland": 32494, + "ĠHail": 32495, + "ĠGanz": 32496, + "ymm": 32497, + "Mon": 32498, + "åĨ·": 32499, + "vida": 32500, + "Ġdesarroll": 32501, + "æĬĢ": 32502, + "Ġintriguing": 32503, + "ĠHugo": 32504, + "ĠãĤĤ": 32505, + "é¬": 32506, + "аÑĨ": 32507, + "ĠWiÄĻc": 32508, + "atted": 32509, + "ĠìķĦëĭĪê³ł": 32510, + "ĠVari": 32511, + "ád": 32512, + "Ġsurreal": 32513, + "Ġdisparities": 32514, + "Ġmó": 32515, + "ullen": 32516, + "ĠìŀĪëĭ¤ê³ł": 32517, + "ĠпожалÑĥйÑģÑĤа": 32518, + "Ġmains": 32519, + "Ġeject": 32520, + "Ġmethane": 32521, + "Ġmarginalized": 32522, + "Ġchilli": 32523, + "rès": 32524, + "Ġyem": 32525, + "ä½łæĺ¯": 32526, + "ĠChun": 32527, + "Ġdebts": 32528, + "Ġdownloading": 32529, + "ĠAthens": 32530, + "isierung": 32531, + "ryn": 32532, + "Ġtekn": 32533, + "ĠQuindi": 32534, + "éľĢ": 32535, + "Ġtaraf": 32536, + "Ġhé": 32537, + "Ġconsciously": 32538, + "Ġfixes": 32539, + "uckle": 32540, + "mayın": 32541, + "Ġfrei": 32542, + "Ġspa": 32543, + "Ġì§Ħíĸī": 32544, + "ĠاÙĦØ°": 32545, + "ĠÑĥк": 32546, + "lett": 32547, + "ĠolmuÅŁ": 32548, + "Ġcheesy": 32549, + "าà¸ģ": 32550, + "naire": 32551, + "Ġwiden": 32552, + "Ġlien": 32553, + "Ġescaping": 32554, + "iggs": 32555, + "ĠBlick": 32556, + "cÄħ": 32557, + "ĠìĦľë": 32558, + "Ġ×Ķס": 32559, + "ĠвпеÑĢ": 32560, + "ophone": 32561, + "iell": 32562, + "ĠSUBSCRI": 32563, + "Ġlions": 32564, + "Ġê·¸ê²ĥ": 32565, + "Ġinspires": 32566, + "Ġguarantees": 32567, + "Ġcomeça": 32568, + "ĠGrowing": 32569, + "Ġneglig": 32570, + "ĠFrankf": 32571, + "Ġgegeben": 32572, + "ĠÄijầu": 32573, + "Ġendlich": 32574, + "Ġìį¨": 32575, + "ĠTT": 32576, + "ĠLith": 32577, + "ÏĢα": 32578, + "astern": 32579, + "ĠAzer": 32580, + "Ġlunar": 32581, + "hic": 32582, + "ĠнаÑĢод": 32583, + "Ġnenhum": 32584, + "è·ij": 32585, + "ĠSalvador": 32586, + "ĠProgress": 32587, + "Ġprivileges": 32588, + "ĠëıĻìķĪ": 32589, + "Ġantagon": 32590, + "ĠImpf": 32591, + "Ġdescub": 32592, + "ĠLei": 32593, + "ĠìĥĪë¡ľ": 32594, + "Ñĩе": 32595, + "Ġdólares": 32596, + "ĠMeghan": 32597, + "ĠWire": 32598, + "too": 32599, + "aying": 32600, + "usc": 32601, + "Ġtud": 32602, + "Ġappeals": 32603, + "educ": 32604, + "Ġpane": 32605, + "Ġji": 32606, + "Ġdecks": 32607, + "ĠAlter": 32608, + "Ġå°±": 32609, + "ìĦ¤": 32610, + "åĪĨéIJĺ": 32611, + "Ġproductions": 32612, + "ĠWILLIAM": 32613, + "Ġimplied": 32614, + "Ġfulfillment": 32615, + "ĠAah": 32616, + "Ġsaja": 32617, + "xus": 32618, + "ĠÎļαι": 32619, + "Ãłs": 32620, + "ucch": 32621, + "око": 32622, + "ĠDiscord": 32623, + "ĠSY": 32624, + "jsk": 32625, + "ĠWallace": 32626, + "unction": 32627, + "Daniel": 32628, + "Ġköt": 32629, + "ijah": 32630, + "Ġmarche": 32631, + "Ġdisgr": 32632, + "Ġmungkin": 32633, + "Ġalma": 32634, + "³µ": 32635, + "Ġextensively": 32636, + "ĠFloren": 32637, + "ĠAllison": 32638, + "ãĤ±": 32639, + "ÙĬÙħ": 32640, + "Ġjuven": 32641, + "ĠRenaissance": 32642, + "Ġfundraising": 32643, + "ĠChaos": 32644, + "Ġparaly": 32645, + "Ġnarrator": 32646, + "Ġecosystems": 32647, + "Ash": 32648, + "Ġmitigation": 32649, + "ĠAujourd": 32650, + "ĠIdee": 32651, + "!,": 32652, + "Ġ½": 32653, + "Ġlandlord": 32654, + "Ġdefects": 32655, + "Ġacre": 32656, + "ulsive": 32657, + "Ġalgae": 32658, + "pek": 32659, + "Ġemba": 32660, + "ĠRoc": 32661, + "éĽ¢": 32662, + "ksom": 32663, + "äche": 32664, + "Ġleuk": 32665, + "Ġleveraging": 32666, + "Ġê·¸ëłĩì§Ģ": 32667, + "ĠPalm": 32668, + "Ġäven": 32669, + "Ġlis": 32670, + "ĠInsp": 32671, + "ĠRita": 32672, + "ĠAbb": 32673, + "ithm": 32674, + "Ġsupervision": 32675, + "Ġrevisit": 32676, + "ĠpiÄĻ": 32677, + "Ġeuh": 32678, + "Ġfades": 32679, + "Ġmotto": 32680, + "åį¡": 32681, + "езж": 32682, + "ĠShim": 32683, + "Ġrelevance": 32684, + "Ġoo": 32685, + "Ġostat": 32686, + "nica": 32687, + "Ġchoix": 32688, + "ĠFaculty": 32689, + "Ġì¤ijìĹIJ": 32690, + "ĠAbove": 32691, + "ĠнеболÑĮÑĪ": 32692, + "Ġsequencing": 32693, + "Ġnutrient": 32694, + "Ġconquered": 32695, + "Ġdigestive": 32696, + "Ġbackdrop": 32697, + "ĠLori": 32698, + "ailable": 32699, + "Game": 32700, + "Ġneglected": 32701, + "omorph": 32702, + "illah": 32703, + "Ġkne": 32704, + "Ġsiitä": 32705, + "Ġworkspace": 32706, + "ĠVenice": 32707, + "ĠKne": 32708, + "Ñīо": 32709, + "ħĢ": 32710, + "ĠHass": 32711, + "Ġvita": 32712, + "Ŀ¼ë©´": 32713, + "Ġlays": 32714, + "ências": 32715, + "érica": 32716, + "ĠLl": 32717, + "æ±Ĥ": 32718, + "ĠCoca": 32719, + "ĠWHY": 32720, + "èĪŀ": 32721, + "Ġrouting": 32722, + "Ġpermissions": 32723, + "Ġdings": 32724, + "prend": 32725, + "program": 32726, + "Ġcrocod": 32727, + "bral": 32728, + "AAAAAAAA": 32729, + "agit": 32730, + "ĠNä": 32731, + "Ġgekommen": 32732, + "atten": 32733, + "Ġreferenced": 32734, + "Ġpairing": 32735, + "ĠPartner": 32736, + "ĠCoronavirus": 32737, + "ÑĸÑģ": 32738, + "è½ī": 32739, + "Ġ×Ķ×ĵ": 32740, + "ĠespecÃŃfic": 32741, + "arsi": 32742, + "quelle": 32743, + "Ġspontaneous": 32744, + "çĨ±": 32745, + "Ġê²ĥìĿĦ": 32746, + "ĠÐŁÐ¾Ñģле": 32747, + "ĠاÙĦد": 32748, + "ĠShout": 32749, + "Ġнал": 32750, + "Ġdisguise": 32751, + "ĠJord": 32752, + "Ġwee": 32753, + "Ġmiejsc": 32754, + "Ġserum": 32755, + "Ġplaisir": 32756, + "Ġcredible": 32757, + "ĠbÃ¥": 32758, + "ĠAJ": 32759, + "mares": 32760, + "Ġrods": 32761, + "Ġeran": 32762, + "ãģ¾ãģĤ": 32763, + "Ġpää": 32764, + "ĠUA": 32765, + "ĠUnknown": 32766, + "ĠÙĦÙħ": 32767, + "ĠRabbi": 32768, + "Ġlaat": 32769, + "Ġhairstyle": 32770, + "Ġغ": 32771, + "éģĭ": 32772, + "Ġcach": 32773, + "ĠWriting": 32774, + "оÑĩки": 32775, + "abad": 32776, + "Ġstraighten": 32777, + "--\"": 32778, + "wife": 32779, + "Ġhottest": 32780, + "Ġpunya": 32781, + "ĠFashion": 32782, + "griff": 32783, + "ĠQR": 32784, + "otch": 32785, + "ĠÐľÐ¾Ð¶ÐµÑĤ": 32786, + "Cloud": 32787, + "ĠStrike": 32788, + "ĠHein": 32789, + "Ġ羣çļĦ": 32790, + "Ġlei": 32791, + "ĠFlow": 32792, + "wegs": 32793, + "Ġhabr": 32794, + "åīĽåīĽ": 32795, + "nahme": 32796, + "Ìģ": 32797, + "Ġpleasing": 32798, + "opping": 32799, + "Ġ구ëıħ": 32800, + "Ġdran": 32801, + "Ġbangs": 32802, + "Ġ79": 32803, + "Ġsket": 32804, + "Ġcaval": 32805, + "ĠMacron": 32806, + "Ġweighted": 32807, + "Ġmuted": 32808, + "Ġnuestras": 32809, + "EEP": 32810, + "Ġmathematic": 32811, + "ĠMRI": 32812, + "agus": 32813, + "Ġtherapies": 32814, + "θε": 32815, + "Ġunpl": 32816, + "Ġcommencer": 32817, + "full": 32818, + "Ġtowels": 32819, + "Ġprue": 32820, + "Ġlicenses": 32821, + "׼×ķ׾": 32822, + "ĠÐŁÐ¾ÑĩемÑĥ": 32823, + "Ġpointless": 32824, + "Bye": 32825, + "Ġeligibility": 32826, + "Ġscrape": 32827, + "Ġabusive": 32828, + "ĠMant": 32829, + "Ġjeunes": 32830, + "tal": 32831, + "ĠPrincip": 32832, + "ĠOrthodox": 32833, + "Ġmelod": 32834, + "ĠмаÑĤеÑĢи": 32835, + "Ġprosecutor": 32836, + "Ġopioid": 32837, + "ĠÑĥвеÑĢ": 32838, + "ĠBeen": 32839, + "Ġìłijì¢ħ": 32840, + "Ġdynasty": 32841, + "Ġajuda": 32842, + "Ġentreg": 32843, + "Ġweighed": 32844, + "Ġeure": 32845, + "ĠBem": 32846, + "Ġabnormal": 32847, + "82": 32848, + "ĠJR": 32849, + "ĠAkt": 32850, + "ĠBri": 32851, + "út": 32852, + "Ġstagn": 32853, + "!*": 32854, + "Ġwegen": 32855, + "Ġleaking": 32856, + "ĠWords": 32857, + "ĠMau": 32858, + "Ġvue": 32859, + "ĠLiam": 32860, + "анием": 32861, + "Ġclinicians": 32862, + "ĠPump": 32863, + "Ġförst": 32864, + "?...": 32865, + "Ġautomotive": 32866, + "ĠOwen": 32867, + "zusagen": 32868, + "ĠHundred": 32869, + "Ġdecentralized": 32870, + "Ġbulbs": 32871, + "Ġ׾׼": 32872, + "Ġprovinces": 32873, + "ĠMilan": 32874, + "81": 32875, + "kas": 32876, + "Ġëĵ£": 32877, + "Ġforça": 32878, + "Ġrightly": 32879, + "島": 32880, + "rÄħ": 32881, + "Ġvenues": 32882, + "Ġwai": 32883, + "Ġpredicting": 32884, + "ĠWiFi": 32885, + "Ġê¶ģê¸Ī": 32886, + "رÙĪ": 32887, + "Ġ×Ķ×ĸ": 32888, + "century": 32889, + "Ġgradual": 32890, + "ĠProbleme": 32891, + "ĠìĹħ": 32892, + "Ġcoping": 32893, + "ĠBrus": 32894, + "Ġpeanuts": 32895, + "irtschaft": 32896, + "Ġзал": 32897, + "ĠTroy": 32898, + "Ġsperm": 32899, + "ĠMitar": 32900, + "ĠTürkiye": 32901, + "grand": 32902, + "¦Ń": 32903, + "Ġ×ŀס": 32904, + "Ġpans": 32905, + "ĠKnowledge": 32906, + "berly": 32907, + "ĠÐķго": 32908, + "Ġdanced": 32909, + "ĠFrost": 32910, + "ĠBurg": 32911, + "Ġbiting": 32912, + "ìłķìĿĦ": 32913, + "meal": 32914, + "Ġheroic": 32915, + "Ġmotherboard": 32916, + "ĠLicht": 32917, + "ãģ£ãģ": 32918, + "llan": 32919, + "айн": 32920, + "ĠÑĢÑıд": 32921, + "Ġà¹Ģà¸": 32922, + "onen": 32923, + "irie": 32924, + "Art": 32925, + "rang": 32926, + "νη": 32927, + "Ġnewborn": 32928, + "Ġamis": 32929, + "ĠاÙĪر": 32930, + "Ġsophom": 32931, + "ĠCareful": 32932, + "Ġprospects": 32933, + "ensen": 32934, + "Ġthrill": 32935, + "ĠViá»ĩt": 32936, + "Adam": 32937, + "rition": 32938, + "entric": 32939, + "uden": 32940, + "Ġcertificates": 32941, + "Ġashes": 32942, + "調": 32943, + "playing": 32944, + "Ġsadece": 32945, + "Ġost": 32946, + "Ġairplanes": 32947, + "ÑĢок": 32948, + "oner": 32949, + "Ġmagnesium": 32950, + "Ġgoddamn": 32951, + "Ġ1972": 32952, + "ĠSchule": 32953, + "Ġtemat": 32954, + "Ġpartout": 32955, + "à¯Ĥ": 32956, + "Ġinve": 32957, + "ĠScientists": 32958, + "ĠHudson": 32959, + "winning": 32960, + "ceksin": 32961, + "Ġcongressional": 32962, + "oru": 32963, + "Ġropes": 32964, + "вед": 32965, + "Ġmadre": 32966, + "Ġferry": 32967, + "ĠCohen": 32968, + "ĠPred": 32969, + "Ġvagy": 32970, + "ĠбеÑģп": 32971, + "Ġmultim": 32972, + "Ġdrainage": 32973, + "Ġsimulator": 32974, + "giggles": 32975, + "ĠStadium": 32976, + "обÑī": 32977, + "Ġnotices": 32978, + "Ġcrawling": 32979, + "Ġgroupe": 32980, + "åı¸": 32981, + "ĠktoÅĽ": 32982, + "ĠYoga": 32983, + "Ġmedida": 32984, + "ĠÑħваÑĤ": 32985, + "ĠLite": 32986, + "Ġrav": 32987, + "orama": 32988, + "Ġdiscord": 32989, + "ĠDIRE": 32990, + "Ġteh": 32991, + "ĠNurs": 32992, + "ç²ī": 32993, + "Ġpitched": 32994, + "Ġbarking": 32995, + "ĠCoke": 32996, + "wiad": 32997, + "Ġpopulated": 32998, + "éĻ¤": 32999, + "pelled": 33000, + "Ġбог": 33001, + "Ġpewno": 33002, + "ĠCube": 33003, + "Ġrecruited": 33004, + "éĢĻ種": 33005, + "ĠCara": 33006, + "ıģını": 33007, + "imated": 33008, + "ĠÑĪкол": 33009, + "icional": 33010, + "ĠпÑĢоÑĦ": 33011, + "Ġcontamination": 33012, + "Ġúltimos": 33013, + "Ġfearful": 33014, + "Ġelephants": 33015, + "usi": 33016, + "ĠiTunes": 33017, + "ĠSwami": 33018, + "ê¼": 33019, + "ĠìĦ¤ëªħ": 33020, + "ĠRichards": 33021, + "Ġmagnets": 33022, + "ĠRichtung": 33023, + "ĠLegion": 33024, + "èıľ": 33025, + "Ġkitty": 33026, + "Ġkissed": 33027, + "Ġwatering": 33028, + "Ġcono": 33029, + "ĠPalestine": 33030, + "idir": 33031, + "Ġmaze": 33032, + "Ġfluids": 33033, + "ĠProducer": 33034, + "ĠKrsna": 33035, + "好åķ¦": 33036, + "laf": 33037, + "Ġ×IJ×ķ": 33038, + "Ġmiesz": 33039, + "ĠXing": 33040, + "ointed": 33041, + "sein": 33042, + "ĠFuk": 33043, + "ĠDepression": 33044, + "ĠDuty": 33045, + "ĠPanther": 33046, + "Ġsund": 33047, + "Ġrefere": 33048, + "Ġexclusion": 33049, + "Ġnaval": 33050, + "ĠWinston": 33051, + "Ġslogan": 33052, + "Ġhypothetical": 33053, + "Ġelevate": 33054, + "ëł¹": 33055, + "Ġcabeça": 33056, + "ĠGesund": 33057, + "meter": 33058, + "ĠìķĦëĭĪë©´": 33059, + "Ġcloudy": 33060, + "âĢ¦?": 33061, + "ĠSchritt": 33062, + "ĠJS": 33063, + "ìį": 33064, + "ĠSprings": 33065, + "ĠBatter": 33066, + "·°": 33067, + "Ġtailor": 33068, + "ĠPTSD": 33069, + "ĠGent": 33070, + "ĠbaÄŁ": 33071, + "Ġspatula": 33072, + "Ġcray": 33073, + "ĠLegisl": 33074, + "Ġsú": 33075, + "Ġleve": 33076, + "าม": 33077, + "Ġerad": 33078, + "Ġdong": 33079, + "Ġderm": 33080, + "ĠBanks": 33081, + "icho": 33082, + "åħĪçĶŁ": 33083, + "ĠFranz": 33084, + "ravel": 33085, + "éģĶ": 33086, + "оло": 33087, + "Ġflute": 33088, + "ĠEk": 33089, + "Ġjoyful": 33090, + "Ġchased": 33091, + "ĠLarge": 33092, + "Over": 33093, + "Ġentrepreneurial": 33094, + "Ġconsiders": 33095, + "Ñĥем": 33096, + "opa": 33097, + "Ġdormir": 33098, + "ĠElementary": 33099, + "Ġprzypad": 33100, + "ÑĥÑģка": 33101, + "ĠоÑĩеÑĢ": 33102, + "ugene": 33103, + "Ġtenido": 33104, + "Ġlugares": 33105, + "ë¥": 33106, + "ĠÑĩаÑģÑĤ": 33107, + "Ġsao": 33108, + "Ġbraid": 33109, + "ĠVere": 33110, + "ĠReich": 33111, + "ĠPoss": 33112, + "Ġinan": 33113, + "wand": 33114, + "ref": 33115, + "Ġmontrer": 33116, + "Ġ1981": 33117, + "çķª": 33118, + "asında": 33119, + "Ġchrome": 33120, + "ĠTrinity": 33121, + "Ġexploitation": 33122, + "ĠSense": 33123, + "ĠCMS": 33124, + "ĠNoble": 33125, + "ĠìĦłíĥĿ": 33126, + "Ġswelling": 33127, + "electronic": 33128, + "]?": 33129, + "Ġbrushing": 33130, + "Ġliquidity": 33131, + "ĠHook": 33132, + "ĠConnor": 33133, + "ĠAlum": 33134, + "Ġgucken": 33135, + "suite": 33136, + "Ġwiele": 33137, + "Ġbarrels": 33138, + "ĠRegel": 33139, + "ĠMent": 33140, + "ĠTrip": 33141, + "ĠBrush": 33142, + "ĠErik": 33143, + "urate": 33144, + "ÉĻr": 33145, + "ĠCyr": 33146, + "ouble": 33147, + "ĠBecca": 33148, + "Ġpasswords": 33149, + "ű": 33150, + "borg": 33151, + "Ġvendo": 33152, + "ĠClaus": 33153, + "ĠFaz": 33154, + "indest": 33155, + "Ġdeceased": 33156, + "Ġcomparisons": 33157, + "ĠLCD": 33158, + "ĠPork": 33159, + "Ġeventual": 33160, + "Ġpatreon": 33161, + "Ġinability": 33162, + "Ġextinction": 33163, + "Ġì¢ĭìķĦíķĺëĬĶ": 33164, + "ĠÑģоÑģ": 33165, + "aju": 33166, + "Ġ×ij×IJ×": 33167, + "Ġsofort": 33168, + "Ġdestined": 33169, + "ĠRin": 33170, + "Ġmouths": 33171, + "ĠNatürlich": 33172, + "Ġpreserving": 33173, + "Ġlimp": 33174, + "黨": 33175, + "ocused": 33176, + "инг": 33177, + "Ġexposing": 33178, + "Ġξ": 33179, + "ëį": 33180, + "laugh": 33181, + "Ġhiss": 33182, + "ãģłãģĭãĤī": 33183, + "Ġindie": 33184, + "Ġdetal": 33185, + "ÑĢавÑģÑĤв": 33186, + "Ġtrên": 33187, + "æķ°": 33188, + "Ġogni": 33189, + "Ġsimplemente": 33190, + "Ġ1978": 33191, + "Ġgoo": 33192, + "Ġ1967": 33193, + "Ġgenug": 33194, + "hö": 33195, + "Ġhistó": 33196, + "å®Ł": 33197, + "Ġlobster": 33198, + "cendo": 33199, + "Ġteil": 33200, + "Ġallevi": 33201, + "0000": 33202, + "OLD": 33203, + "Ġpesos": 33204, + "Ġbonuses": 33205, + "Ġami": 33206, + "Ġrevival": 33207, + "ĠHorse": 33208, + "Ġsack": 33209, + "Talk": 33210, + "Ġmulher": 33211, + "ĠпоÑģÑĤоÑıн": 33212, + "ĠHood": 33213, + "Huh": 33214, + "Ġë¶ģ": 33215, + "Ġhyung": 33216, + "ĠMeeting": 33217, + "Ġimporta": 33218, + "Ġì°¾ìķĦ": 33219, + "ĠVern": 33220, + "Ġstripped": 33221, + "Ġrefuses": 33222, + "Ġqualifications": 33223, + "opl": 33224, + "ĢëıĦ": 33225, + "ixÃŃ": 33226, + "Ġdiab": 33227, + "itime": 33228, + "flows": 33229, + "Ġinac": 33230, + "ĠGong": 33231, + "Ġmeaningless": 33232, + "Ġcourageous": 33233, + "Ġmicrobi": 33234, + "azy": 33235, + "hist": 33236, + "Ġvolunteering": 33237, + "VIE": 33238, + "Ġviolated": 33239, + "Ġsympathy": 33240, + "ĠEdit": 33241, + "好åĥı": 33242, + "electric": 33243, + "product": 33244, + "Ġpandemia": 33245, + "Ġgeometric": 33246, + "ĠConvers": 33247, + "gre": 33248, + "Ġglut": 33249, + "isted": 33250, + "ĠاÙĦÙĥ": 33251, + "ĠChain": 33252, + "ĠPresent": 33253, + "ĠYin": 33254, + "ĠÑģог": 33255, + "ĠVlog": 33256, + "Ġìĸ´ë¨¸": 33257, + "Ġdonn": 33258, + "Ġhitch": 33259, + "ucking": 33260, + "ãģĬãģĦ": 33261, + "wald": 33262, + "risk": 33263, + "Ġhari": 33264, + "ĠKens": 33265, + "ĠIdol": 33266, + "Ġвнимание": 33267, + "Ġtodd": 33268, + "Ġsmashed": 33269, + "Ġinvari": 33270, + "ĠконÑĤÑĢ": 33271, + "Ġautistic": 33272, + "ìŀ¥ëĭĺ": 33273, + "Res": 33274, + "дÑĭ": 33275, + "chau": 33276, + "Ġselv": 33277, + "Ġhätten": 33278, + "ि": 33279, + "Ġexpects": 33280, + "Ïģη": 33281, + "Ġaçık": 33282, + "ĠHTTP": 33283, + "leÅŁ": 33284, + "Ġsweeping": 33285, + "ĠBeta": 33286, + "Ġcounterparts": 33287, + "abile": 33288, + "ĠSims": 33289, + "Cs": 33290, + "Ġrepar": 33291, + "squ": 33292, + "Ġprovincial": 33293, + "Ġshareholders": 33294, + "Ġrunter": 33295, + "Ġgedacht": 33296, + "ĠTeen": 33297, + "Ġgrands": 33298, + "çĶ¢": 33299, + "agles": 33300, + "Ġrocky": 33301, + "vens": 33302, + "Ġrivals": 33303, + "unal": 33304, + "Ġreacts": 33305, + "ë©": 33306, + "Ġmercury": 33307, + "ĠLuigi": 33308, + "Ġог": 33309, + "ĠJUST": 33310, + "Ġlod": 33311, + "Ġcortex": 33312, + "wig": 33313, + "Ġlakh": 33314, + "ì¤ijìĹIJ": 33315, + "ĠVic": 33316, + "ĠMund": 33317, + "Ġmapped": 33318, + "ĠDell": 33319, + "ĠDruck": 33320, + "Ġlifes": 33321, + "алÑĮное": 33322, + "ividual": 33323, + "adım": 33324, + "Ġatrav": 33325, + "ĠFlug": 33326, + "ĠKlein": 33327, + "ê±°ìķ¼": 33328, + "หà¸Ļ": 33329, + "Ġappli": 33330, + "ா?": 33331, + "üyorum": 33332, + "ĠинÑĤеÑĢеÑģно": 33333, + "Ġdisinfect": 33334, + ">-": 33335, + "Ġchampagne": 33336, + "Ġkla": 33337, + "opers": 33338, + "Trans": 33339, + "ĠDesert": 33340, + "Ġcultivate": 33341, + "ĠFucking": 33342, + "idelity": 33343, + "ĠÑĤан": 33344, + "Ġincub": 33345, + "Ġtemu": 33346, + "Ġlearner": 33347, + "founder": 33348, + "ĠSyl": 33349, + "ãĤĢ": 33350, + "Ġfato": 33351, + "zier": 33352, + "ĠìĹĨìĿ´": 33353, + "ĠìĪ¨": 33354, + "Ġpsycho": 33355, + "ĠÑĤелеÑĦ": 33356, + "Ġregarde": 33357, + "Ġrepresentations": 33358, + "Ġlitigation": 33359, + "Ġspann": 33360, + "ults": 33361, + "bior": 33362, + "è¦ĭãģ¦": 33363, + "ä¸įå¤ļ": 33364, + "ĠSurvey": 33365, + "ĠLEDs": 33366, + "Ġträ": 33367, + "Ġlên": 33368, + "Ġantioxid": 33369, + "еÑĢом": 33370, + "Ġinduction": 33371, + "Ġfooled": 33372, + "ätzlich": 33373, + "ĠговоÑĢÑıÑĤ": 33374, + "ĠFact": 33375, + "umbai": 33376, + "Ġwiggle": 33377, + "NOUN": 33378, + "Ġdévelopp": 33379, + "ĠClaro": 33380, + "Ġì¸": 33381, + "ë¬": 33382, + "ãģªãĤĵãģł": 33383, + "Ġaccumulate": 33384, + "Ġmaintains": 33385, + "ëĦ": 33386, + "ĠFighter": 33387, + "íĨł": 33388, + "Ġmatin": 33389, + "Ġcoupon": 33390, + "Ġstunt": 33391, + "Ġdebuted": 33392, + "å¾ħãģ£ãģ¦": 33393, + "Ġprag": 33394, + "иваем": 33395, + "73": 33396, + "Ġexpres": 33397, + "Ġìĺ¤ë¹ł": 33398, + "ĠпеÑĢÑģон": 33399, + "Ġcalculus": 33400, + "Ġabrupt": 33401, + "ĠInspector": 33402, + "ourt": 33403, + "æĸĻ": 33404, + "źniej": 33405, + "intense": 33406, + "Ba": 33407, + "Ġlounge": 33408, + "Ġasthma": 33409, + "ĠHiç": 33410, + "ª»": 33411, + "Ġeditorial": 33412, + "Ġseize": 33413, + "Ġkır": 33414, + "Ġmouve": 33415, + "Ġtierra": 33416, + "Ġtestosterone": 33417, + "Ġrh": 33418, + "ĠKingston": 33419, + "ELLE": 33420, + "ĠRepresentative": 33421, + "Ġ1974": 33422, + "Ġiba": 33423, + "Ts": 33424, + "Ġsorta": 33425, + "Ġ(?)": 33426, + "ĠتÙĪ": 33427, + "ĠëĤ´ëł¤": 33428, + "Ġbekommt": 33429, + "Ġspiritually": 33430, + "Ġdistorted": 33431, + "Mad": 33432, + "Ġreim": 33433, + "ánh": 33434, + "ĠOttoman": 33435, + "ĠRelig": 33436, + "ĠEls": 33437, + "Ġretained": 33438, + "ĠLaughs": 33439, + "æĢ»": 33440, + "ĠSAS": 33441, + "ĠколиÑĩеÑģÑĤво": 33442, + "×ķתר": 33443, + "Ġinnovate": 33444, + "Ġkork": 33445, + "ĠÑĢаÑģÑģказÑĭв": 33446, + "ondere": 33447, + "ivi": 33448, + "aye": 33449, + "ounty": 33450, + "ĠполÑĥÑĩаеÑĤÑģÑı": 33451, + "Ġbuns": 33452, + "åħ«": 33453, + "Ġyüzden": 33454, + "Ġsurgeries": 33455, + "Ø£ÙĨ": 33456, + "Ġbankruptcy": 33457, + "welt": 33458, + "Ġsiamo": 33459, + "Ġdarkest": 33460, + "ĠHann": 33461, + "gga": 33462, + "Ġformas": 33463, + "ĠDj": 33464, + "named": 33465, + "Ġshields": 33466, + "ueller": 33467, + "ĠFew": 33468, + "Ġlace": 33469, + "Ġfurious": 33470, + "ĠYU": 33471, + "Ġsocietal": 33472, + "Ġjudgement": 33473, + "ĠDos": 33474, + "Ġjab": 33475, + "laws": 33476, + "Ġreinvent": 33477, + "ĠKatherine": 33478, + "ĠChoi": 33479, + "adows": 33480, + "Ġrans": 33481, + "oden": 33482, + "ĠMidwest": 33483, + "nın": 33484, + "Ġdeport": 33485, + "ĠDip": 33486, + "ç´ħ": 33487, + "Ġatención": 33488, + "ĠCourtney": 33489, + "ividad": 33490, + "ĠÚ©Ûģ": 33491, + "Ġefficacy": 33492, + "ĠBrooks": 33493, + "Ġreferral": 33494, + "ĠконÑĨ": 33495, + "Ġmalicious": 33496, + "Ġkir": 33497, + "ĠGoddess": 33498, + "Ġfunky": 33499, + "Ġinterim": 33500, + "ĠKörper": 33501, + "Ġìĸ¼ë§": 33502, + "kur": 33503, + "Ġкли": 33504, + "Ġtrucs": 33505, + "gesetz": 33506, + "Ġzug": 33507, + "ĠGlück": 33508, + "ĠMinute": 33509, + "Ġprestigious": 33510, + "Ġniez": 33511, + "Ġconcentrations": 33512, + "лаÑģÑĤи": 33513, + "ĠSis": 33514, + "ĠVitamin": 33515, + "kov": 33516, + "ĠPBS": 33517, + "Ġнее": 33518, + "Ġretailers": 33519, + "Ġconventions": 33520, + "ĠSamantha": 33521, + "Ġproudly": 33522, + "Jordan": 33523, + "ĠJASON": 33524, + "atk": 33525, + "Ġtriste": 33526, + "Ġstär": 33527, + "Ġreiterate": 33528, + "Ġposterior": 33529, + "Ġ1973": 33530, + "ĠPine": 33531, + "ĠJuliet": 33532, + "Ġpedir": 33533, + "kil": 33534, + "Ġoverlapping": 33535, + "Ġexclude": 33536, + "Ġeconóm": 33537, + "Ġaccepts": 33538, + "ĠSter": 33539, + "決": 33540, + "Ġìļ´ëıĻ": 33541, + "estab": 33542, + "Ġtug": 33543, + "arg": 33544, + "Ġlivro": 33545, + "اص": 33546, + "Ġseams": 33547, + "Ġburaya": 33548, + "Ġello": 33549, + "ĠTM": 33550, + "ĠPaw": 33551, + "ĠIndex": 33552, + "Exc": 33553, + "Ġinspirational": 33554, + "Ġdunk": 33555, + "è°ģ": 33556, + "akter": 33557, + "Ġconditioner": 33558, + "ĠSalut": 33559, + "ÅĤec": 33560, + "Ġìī½": 33561, + "ĠÑĥзна": 33562, + "ĠRomeo": 33563, + "fruit": 33564, + "ĠYO": 33565, + "Ġchá»ī": 33566, + "бÑĥ": 33567, + "bons": 33568, + "Ġreproductive": 33569, + "Ġorada": 33570, + "Ġíļ¨": 33571, + "Ġtentar": 33572, + "Ġmañana": 33573, + "ãĤ¬": 33574, + "Ġsolvent": 33575, + "Jessica": 33576, + "ĠLegal": 33577, + "Ġtua": 33578, + "Ġsic": 33579, + "ĠEQ": 33580, + "aukee": 33581, + "ìĭľëĭ¤": 33582, + "ĠÅŀu": 33583, + "Ġadhere": 33584, + "ĠTul": 33585, + "Ġà®Ĩ": 33586, + "Ġtextbooks": 33587, + "ĠFifth": 33588, + "Ġexperi": 33589, + "Ġchic": 33590, + "Ġheap": 33591, + "inely": 33592, + "atra": 33593, + "Two": 33594, + "Ġhelemaal": 33595, + "Ġfren": 33596, + "æݨ": 33597, + "Ġbisher": 33598, + "اش": 33599, + "ĠìĦłìĥĿ": 33600, + "ĠTages": 33601, + "Ġsá»±": 33602, + "Ġbullied": 33603, + "ؤ": 33604, + "Ġbenefited": 33605, + "ĠPreviously": 33606, + "ĠÑįÑĦÑĦ": 33607, + "Ùį": 33608, + "Ġsenate": 33609, + "ĠMorm": 33610, + "ijke": 33611, + "ĠFlu": 33612, + "Ġincorporating": 33613, + "jack": 33614, + "ĠпиÑĤ": 33615, + "Ġimply": 33616, + "Ġhacks": 33617, + "ĠRICH": 33618, + "ĠкваÑĢ": 33619, + "ĠпÑĢекÑĢаÑģ": 33620, + "Ġdependency": 33621, + "Ġìļ©": 33622, + "Ġì±ħ": 33623, + "Ġwährend": 33624, + "Ġsulla": 33625, + "ĠPittsburgh": 33626, + "Ġesempio": 33627, + "¼ë¡ľ": 33628, + "prot": 33629, + "ĠRosen": 33630, + "ĠIndependence": 33631, + "Ġparsley": 33632, + "iegen": 33633, + "Ġhaw": 33634, + "Ġaquell": 33635, + "ĠCAP": 33636, + "ĠÑĢабоÑĤаÑĤÑĮ": 33637, + "ĠCliff": 33638, + "ionar": 33639, + "Ġsecuring": 33640, + "æĪijåĢijçļĦ": 33641, + "νε": 33642, + "Ġutilis": 33643, + "Ġcoule": 33644, + "ĠPing": 33645, + "Ġtrek": 33646, + "Ġfak": 33647, + "Ġenorme": 33648, + "Ġìĭ«": 33649, + "让": 33650, + "Ġdoubling": 33651, + "ĠнÑĢавиÑĤÑģÑı": 33652, + "Ġhed": 33653, + "hoven": 33654, + "ĠStanding": 33655, + "ĠmÃŃn": 33656, + "ĠJimin": 33657, + "Ġmonarch": 33658, + "Ġcoke": 33659, + "Ġmr": 33660, + "Ġclic": 33661, + "Ãį": 33662, + "Ġimpeachment": 33663, + "Ġdurability": 33664, + "Ġvarios": 33665, + "Ġcommercials": 33666, + "Ġgreetings": 33667, + "ĠRi": 33668, + "ĠAppreci": 33669, + "ìŀĪëĬĶ": 33670, + "Ġrésult": 33671, + "ért": 33672, + "Ġsalute": 33673, + "Ġpoderia": 33674, + "Ġsunrise": 33675, + "veck": 33676, + "Ġreluctant": 33677, + "Ġcommissioner": 33678, + "念": 33679, + "âte": 33680, + "ĠKenny": 33681, + "ĠSiri": 33682, + "ãĥĥãĥĹ": 33683, + "ĠëĬĺ": 33684, + "ĠEE": 33685, + "Ġunch": 33686, + "кон": 33687, + "ĠاÙĦØ¥": 33688, + "Ġbelts": 33689, + "Ġhass": 33690, + "ĠмоÑı": 33691, + "Ġdisplaced": 33692, + "Ġabra": 33693, + "ÎŃλ": 33694, + "Ġscratches": 33695, + "Ġcomet": 33696, + "Ġauthorization": 33697, + "ĠLLC": 33698, + "Ġproduk": 33699, + "Ġrehabilitation": 33700, + "åŀ": 33701, + "ÑĸÑĩ": 33702, + "uding": 33703, + "olit": 33704, + "Ġ105": 33705, + "Ġexpands": 33706, + "Ġaltri": 33707, + "ĠKomment": 33708, + "Ġanf": 33709, + "Pl": 33710, + "ĠMana": 33711, + "fed": 33712, + "Ġbri": 33713, + "Ġora": 33714, + "Gs": 33715, + "ĠGur": 33716, + "uckland": 33717, + "Ġjunction": 33718, + "Ġironic": 33719, + "ĠFeed": 33720, + "Ġprakt": 33721, + "ĠHammer": 33722, + "ĮëıĦ": 33723, + "ĠTracy": 33724, + "çµ±": 33725, + "ĠAside": 33726, + "него": 33727, + "ĠиÑģполÑĮзоваÑĤÑĮ": 33728, + "Ġzaj": 33729, + "Ġequitable": 33730, + "Ġcurb": 33731, + "ĠãģĵãĤĮ": 33732, + "Ġderivatives": 33733, + "Ġpuppies": 33734, + "ĠKenneth": 33735, + "ĠCompl": 33736, + "igram": 33737, + "ĠGarcia": 33738, + ")\"": 33739, + "ĠHarbor": 33740, + "estial": 33741, + "Ġä¾Ĩ": 33742, + "Ġers": 33743, + "æ¹": 33744, + "Ġunwanted": 33745, + "Ġbelang": 33746, + "аго": 33747, + "emb": 33748, + "dos": 33749, + "ĠìĻľë": 33750, + "ĠBudget": 33751, + "Ġbattling": 33752, + "ØŃت": 33753, + "kok": 33754, + "наÑĩала": 33755, + "Ġplag": 33756, + "Ġcantidad": 33757, + "Ġgrupos": 33758, + "Ġplugins": 33759, + "lerini": 33760, + "ĠимееÑĤ": 33761, + "Ġsozusagen": 33762, + "olics": 33763, + "Ġpueblo": 33764, + "Ġreminis": 33765, + "rän": 33766, + "ĠMorrison": 33767, + "Ġlinha": 33768, + "Ġbreaths": 33769, + "ĠTaste": 33770, + "Ġenfrent": 33771, + "ĠDocker": 33772, + "Ġден": 33773, + "Ġethnicity": 33774, + "Ġwob": 33775, + "Ġsuffers": 33776, + "Ġtransitioning": 33777, + "ĠRange": 33778, + "ÄĻdzy": 33779, + "ĠкаÑĤ": 33780, + "Ġsyner": 33781, + "Ġdonut": 33782, + "Ġprobabilities": 33783, + "ĠOmar": 33784, + "Which": 33785, + "uish": 33786, + "isin": 33787, + "Ġdemos": 33788, + "ĠìłĢ기": 33789, + "Ġëĺijê°Ļ": 33790, + "Ġедин": 33791, + "Ġcerve": 33792, + "Ġjoka": 33793, + "IAN": 33794, + "Ġkilometer": 33795, + "Ġhorizontally": 33796, + "ĠBhag": 33797, + "Ġ->": 33798, + "ĠMonitor": 33799, + "Ġknowledgeable": 33800, + "Ġfav": 33801, + "Ġpinned": 33802, + "ĠeBay": 33803, + "icker": 33804, + "Ġìŀłê¹IJë§Į": 33805, + "ĠXiaomi": 33806, + "Ġcapit": 33807, + "Ġnp": 33808, + "Ġ1965": 33809, + "hoe": 33810, + "Ġnok": 33811, + "ĠSage": 33812, + "ĠнелÑĮзÑı": 33813, + "ĠTow": 33814, + "gam": 33815, + "Ġdicen": 33816, + "ĠSUBSCRIBE": 33817, + "Ġreboot": 33818, + "Ġpaj": 33819, + "Ġë³´ìŬë": 33820, + "Ġthicken": 33821, + "ĠReality": 33822, + "idän": 33823, + "Na": 33824, + "Ġê²ĥìĿĢ": 33825, + "!!)": 33826, + "Ġroutines": 33827, + "Ġодного": 33828, + "Ġexting": 33829, + "Ġì¦Ŀ": 33830, + "Ġsulfur": 33831, + "Ġcarve": 33832, + "Ġasteroid": 33833, + "ĠWarrior": 33834, + "Ġphotographers": 33835, + "Ġpell": 33836, + "Ġcrossover": 33837, + "æĪijçŁ¥éģĵ": 33838, + "Ġhacemos": 33839, + "ĠNej": 33840, + "Ġsettling": 33841, + "Ġirm": 33842, + "ĠBooks": 33843, + "ientôt": 33844, + "Ġespacio": 33845, + "ĠScholars": 33846, + "Ġdoomed": 33847, + "ĠIRS": 33848, + "wohl": 33849, + "Ġsegue": 33850, + "ĠëĪĦê°Ģ": 33851, + "Ġpratic": 33852, + "BT": 33853, + "ĠConsidering": 33854, + "ĠBuffalo": 33855, + "Ġtrainings": 33856, + "Ġgebru": 33857, + "ĠGleich": 33858, + "Ġpirates": 33859, + "Ġenvelop": 33860, + "Ġreopen": 33861, + "imat": 33862, + "Ġtee": 33863, + "Ġsued": 33864, + "feh": 33865, + "Ġ×Ķק": 33866, + "Ġdiets": 33867, + "Ġjuntos": 33868, + "asto": 33869, + "Ġmisunderstood": 33870, + "Ġruim": 33871, + "Ġclassify": 33872, + "ĠпÑĢодÑĥк": 33873, + "Ġinse": 33874, + "Ġillustrated": 33875, + "Ġcorrosion": 33876, + "Ġaccred": 33877, + "ĠAuntie": 33878, + "ĠпÑĢивеÑĤ": 33879, + "ĠLIVE": 33880, + "Ġrek": 33881, + "Ġreceipt": 33882, + "åĪ°åºķ": 33883, + "ĠBarbie": 33884, + "ĠSnake": 33885, + "turn": 33886, + "Jeff": 33887, + "ãģĬãģĬ": 33888, + "ķĦ": 33889, + "VOICEOVER": 33890, + "coll": 33891, + "Ġrunners": 33892, + "ìłľë": 33893, + "osos": 33894, + "moon": 33895, + "Ġkeynote": 33896, + "ĠInstit": 33897, + "SPEAK": 33898, + "Ġplugs": 33899, + "Ġcurv": 33900, + "ĠYuri": 33901, + "ĠTheres": 33902, + "ĠPs": 33903, + "ĠμÏĢο": 33904, + "Ġconverter": 33905, + "Ġrefine": 33906, + "Ġbadass": 33907, + "Ġοι": 33908, + "Ġregen": 33909, + "azzi": 33910, + "ÙĬÙģ": 33911, + "Ġseized": 33912, + "Ġiçer": 33913, + "ilee": 33914, + "Ġupstream": 33915, + "Ġbuds": 33916, + "Ġpim": 33917, + "Ġíķĺ루": 33918, + "Ġalluded": 33919, + "Ġthemed": 33920, + "Ġconsisting": 33921, + "Ġbons": 33922, + "unuz": 33923, + "ĠпÑĢовод": 33924, + "ĠLovely": 33925, + "à¥ĭ": 33926, + "Ġparach": 33927, + "ĠStaats": 33928, + "éļĬ": 33929, + "Ġselective": 33930, + "Ġfase": 33931, + "ĠGeorget": 33932, + "Ġcocaine": 33933, + "Ġreproduction": 33934, + "ĠLara": 33935, + "ĠLD": 33936, + "Ġgh": 33937, + "Jon": 33938, + "ĠlÃ¥": 33939, + "ĠëijIJë": 33940, + "Ġtyped": 33941, + "ĠBana": 33942, + "ëĵľë": 33943, + "Ġsavory": 33944, + "ĠZomb": 33945, + "standen": 33946, + "Ġpedestrian": 33947, + "Ġdifférents": 33948, + "Ġìĭ¸": 33949, + "èī¯": 33950, + "Ġcomplained": 33951, + "ç¦ı": 33952, + "ĠÐļÑĤо": 33953, + "Ġ׾פ": 33954, + "aliÅĽmy": 33955, + "Ġmortar": 33956, + "Ġverdict": 33957, + "Ġsuficiente": 33958, + "ĠMillion": 33959, + "mittel": 33960, + "inals": 33961, + "ĠاÙĦØ®": 33962, + "аÑİÑģÑĮ": 33963, + "ĠmiÄĻdzy": 33964, + "ĠOle": 33965, + "Ġinvert": 33966, + "czyÄĩ": 33967, + "озможно": 33968, + "starter": 33969, + "Ġauditor": 33970, + "ĠScout": 33971, + "chien": 33972, + "ĠSverige": 33973, + "uffled": 33974, + "Ġzehn": 33975, + "ĠAuckland": 33976, + "Ġargent": 33977, + "Ġ1976": 33978, + "ĠHoe": 33979, + "Ġbothers": 33980, + "Ġsocialist": 33981, + "Ġpliers": 33982, + "Ġemergen": 33983, + "ĠXP": 33984, + "еÑĢов": 33985, + "More": 33986, + "ĠLevi": 33987, + "ĠAnders": 33988, + "ibilidad": 33989, + "ĠParents": 33990, + "Ġinduced": 33991, + "ìĸ´ì¤": 33992, + "Ġbalances": 33993, + "ĠвÑĭÑĪ": 33994, + "Ġsubmarine": 33995, + "Start": 33996, + "Ġdries": 33997, + "Ġvolver": 33998, + "Ġticking": 33999, + "cott": 34000, + "Ġfaj": 34001, + "prés": 34002, + "ĠSabb": 34003, + "ĠзаÑĩ": 34004, + "ĠпокÑĥп": 34005, + "Ġbaptized": 34006, + "ĠBrilliant": 34007, + "ĠÐijог": 34008, + "Ġmots": 34009, + "bits": 34010, + "Ġlattice": 34011, + "æĪijè·Łä½ł": 34012, + "Ġcoriander": 34013, + "Ġresidency": 34014, + "ync": 34015, + "Ġpierwszy": 34016, + "ĠKnock": 34017, + "ĠZap": 34018, + "ĠÐķв": 34019, + "견": 34020, + "å°ıå¿ĥ": 34021, + "Ġuneven": 34022, + "ĠJas": 34023, + "odor": 34024, + "ç¿Ĵ": 34025, + "74": 34026, + "ĠSite": 34027, + "Ġaconteceu": 34028, + "ympt": 34029, + "Ġtrilogy": 34030, + "Ġlantern": 34031, + "ĠZucker": 34032, + "vari": 34033, + "welling": 34034, + "ĠPotato": 34035, + "gomery": 34036, + "Ġreacted": 34037, + "ĠChron": 34038, + "Ġjede": 34039, + "beeld": 34040, + "Ġtwent": 34041, + "Ġlact": 34042, + "æ¨Ĥ": 34043, + "Ġrése": 34044, + "Ġrelent": 34045, + "Ġfurnace": 34046, + "Ġwidget": 34047, + "Ġearthquakes": 34048, + "ĠAdjust": 34049, + "ilit": 34050, + "ĠØ£ÙĪ": 34051, + "Ġhearings": 34052, + "Ġdefendant": 34053, + "irsiniz": 34054, + "Ġbask": 34055, + "cja": 34056, + "ľ¨": 34057, + "Ġrifles": 34058, + "Ġinstal": 34059, + "ĠForgive": 34060, + "pical": 34061, + "ĠÐŀÑĩенÑĮ": 34062, + "Ġpetites": 34063, + "Ġhp": 34064, + "Ġrenowned": 34065, + "ĠInn": 34066, + "Ġ주ìĦ¸ìļĶ": 34067, + "Ġemphasized": 34068, + "éĹ®é¢ĺ": 34069, + "ĠìŀĪì£ł": 34070, + "Ġê²ĥìľ¼ë¡ľ": 34071, + "ãĤĨ": 34072, + "Åĵ": 34073, + "gili": 34074, + "Dave": 34075, + "Ġexhausting": 34076, + "ÅĤug": 34077, + "Ġschema": 34078, + "μά": 34079, + "cycl": 34080, + "Ġautant": 34081, + "Ġparcel": 34082, + "Ġmateria": 34083, + "ĠBerry": 34084, + "ĠÑģами": 34085, + "Ġextracted": 34086, + "ĠSaying": 34087, + "ismatic": 34088, + "ĠпопÑĢоб": 34089, + "Ġneuron": 34090, + "graph": 34091, + "ľë©´": 34092, + "Ġenclosure": 34093, + "ĠJohann": 34094, + "Ġaftermath": 34095, + "ÑĤоб": 34096, + "Ġuży": 34097, + "Ġsamp": 34098, + "360": 34099, + "ĠMei": 34100, + "Ġtaco": 34101, + "Ġreceptors": 34102, + "Ġpunches": 34103, + "ĠHoje": 34104, + "ĠÙĩÙĨا": 34105, + "=\"#": 34106, + "ĠAngular": 34107, + "Ġmusique": 34108, + "Ġrol": 34109, + "Ġñ": 34110, + "sterreich": 34111, + "Ġclam": 34112, + "ĠTreasury": 34113, + "chemical": 34114, + "Ġapar": 34115, + "Ġappend": 34116, + "Ġforbid": 34117, + "ĠHamburg": 34118, + "аков": 34119, + "Ġê¸Ī": 34120, + "ilda": 34121, + "Ġpreparations": 34122, + "ĠmogÄħ": 34123, + "Ġcamino": 34124, + "Eric": 34125, + "ĠBlind": 34126, + "èĪĩ": 34127, + "å¹´çļĦ": 34128, + "ĠDiscovery": 34129, + "ì¸ł": 34130, + "çĪ¶": 34131, + "Ġinterpreter": 34132, + "Ġbred": 34133, + "ĠPsalm": 34134, + "Ġdefended": 34135, + "ìī¬": 34136, + "ĠErfahr": 34137, + "ĠPeach": 34138, + "Ġmoons": 34139, + "ĠOst": 34140, + "Ġspécial": 34141, + "Ġarriver": 34142, + "ĠWis": 34143, + "uci": 34144, + "Ġrobotics": 34145, + "IVE": 34146, + "Ġsiege": 34147, + "arla": 34148, + "Ġseparates": 34149, + "ĠTC": 34150, + "íı°": 34151, + "quisite": 34152, + "Ġparentheses": 34153, + "ике": 34154, + "ç«Ļ": 34155, + "Ġtrous": 34156, + "建": 34157, + "ĠÑģилÑĮ": 34158, + "Ġbeers": 34159, + "ĠплаÑĤ": 34160, + "ãģĻãģĶãģĦ": 34161, + "Ġsola": 34162, + "Ġdès": 34163, + "mingham": 34164, + "ikte": 34165, + "Ġoops": 34166, + "Ġtwitch": 34167, + "å°ĩ": 34168, + "ÏĪ": 34169, + "ĠShouldn": 34170, + "uvre": 34171, + "Ġleer": 34172, + "criptions": 34173, + "Ġeyeshadow": 34174, + "ĠGuo": 34175, + "ĠPowell": 34176, + "Ġsupuesto": 34177, + "Ġana": 34178, + "rals": 34179, + "ĠMontreal": 34180, + "Ġsurfing": 34181, + "ĠÐŁÐµÑĢв": 34182, + "×ŀ×ķ": 34183, + "Ġmilliseconds": 34184, + "Ġsuburbs": 34185, + "Ġplaneta": 34186, + "ÑĥÑĪка": 34187, + "hrlich": 34188, + "ĠHY": 34189, + "ĠسÛĴ": 34190, + "ĠMM": 34191, + "ĠEff": 34192, + "åı¯æĦĽ": 34193, + "ĠHS": 34194, + "anson": 34195, + "Ġì§ģìłij": 34196, + "Ġsuo": 34197, + "Ġdeploying": 34198, + "Ġkunt": 34199, + "tering": 34200, + "Ġerect": 34201, + "ìŀ¥ìĿ´": 34202, + "ĠìĿĮìĭĿ": 34203, + "Ġspecimen": 34204, + "!...": 34205, + "æĪij說": 34206, + "Ġligne": 34207, + "Ġkonst": 34208, + "adequ": 34209, + "Ġìĥģíĥľ": 34210, + "Ġaccessed": 34211, + "ĠPole": 34212, + "kill": 34213, + "Ġë²Ħë": 34214, + "Ġauthenticity": 34215, + "Ġappelle": 34216, + "ulle": 34217, + "Ġrevision": 34218, + "Ġgoats": 34219, + "гли": 34220, + "Ġpau": 34221, + "ĠRanger": 34222, + "ĠImag": 34223, + "author": 34224, + "Ġeve": 34225, + "ĠMessenger": 34226, + "Ġnay": 34227, + "Ġwholes": 34228, + "ätte": 34229, + "Ġonwards": 34230, + "ĠDepois": 34231, + "ĠíijľíĺĦ": 34232, + "ĠSARS": 34233, + "Ġwszystkich": 34234, + "Ġdestru": 34235, + "umbing": 34236, + "Ġcompatibility": 34237, + "Ġmisinformation": 34238, + "odore": 34239, + "ĠFavor": 34240, + "eko": 34241, + "ıĮ": 34242, + "waukee": 34243, + "ĠTeaching": 34244, + "ĠKO": 34245, + "Ġbetting": 34246, + "Ġquests": 34247, + "Ġvivre": 34248, + "ĠмÑĥзÑĭ": 34249, + "Ġsaga": 34250, + "Ġswell": 34251, + "Ġgehe": 34252, + "æĢİ麼樣": 34253, + "ĠоÑĢганиз": 34254, + "Ġgide": 34255, + "ĠGross": 34256, + "Ġdalej": 34257, + "Ġclaws": 34258, + "á»Ļc": 34259, + "Ġprejudice": 34260, + "Ġinsign": 34261, + "ihood": 34262, + "Ġpled": 34263, + "Ġdónde": 34264, + "ĠPolitical": 34265, + "Ġpremises": 34266, + "undert": 34267, + "عت": 34268, + "onnen": 34269, + "Ġespaço": 34270, + "Ġfé": 34271, + "ĠHarrison": 34272, + "ĠCensus": 34273, + "Ġcardio": 34274, + "Ġdiy": 34275, + "Ġmilieu": 34276, + "Ġjournée": 34277, + "ĠRelease": 34278, + "NIE": 34279, + "ĠMuk": 34280, + "idée": 34281, + "á»įi": 34282, + "Ġiçinde": 34283, + "ŀĻ": 34284, + "Ġresonate": 34285, + "Ġmoles": 34286, + "ĠFlying": 34287, + "ĠGloria": 34288, + "ĠPastor": 34289, + "ĠArena": 34290, + "好ä¸į好": 34291, + "NON": 34292, + "олов": 34293, + "ĠallÃŃ": 34294, + "omat": 34295, + "ìĸ´ëıĦ": 34296, + "ĠcaracterÃŃst": 34297, + "Ġdeclining": 34298, + "ÑĸÑı": 34299, + "anco": 34300, + "ĠInform": 34301, + "Ġbargain": 34302, + "Ġbushes": 34303, + "ĠNaturally": 34304, + "Ġrechts": 34305, + "ĠTensor": 34306, + "ĠPatricia": 34307, + "Ġprincipio": 34308, + "ĠMumbai": 34309, + "Ġwomb": 34310, + "Ġnostra": 34311, + "Ġdilemma": 34312, + "Ġirgendwann": 34313, + "Ġ1964": 34314, + "ĠenergÃŃa": 34315, + "ĠнаÑĢ": 34316, + "Ġsegregation": 34317, + "ĠAthlet": 34318, + "Ġ»,": 34319, + "Ġyeni": 34320, + "ĠSeit": 34321, + "Ġvenom": 34322, + "Ġdakika": 34323, + "ĠëıĮë": 34324, + "ĠÃīl": 34325, + "Ġfus": 34326, + "ĠMog": 34327, + "¦½ëĭĪëĭ¤": 34328, + "Ġremar": 34329, + "ĠTeddy": 34330, + "Ġbreasts": 34331, + "icans": 34332, + "æĶ¶çľĭ": 34333, + "kap": 34334, + "ĠhÆ¡n": 34335, + "ĠJP": 34336, + "ãĥ³ãĤ¿": 34337, + "Ġresurrect": 34338, + "ĠìĿ¸ë": 34339, + "herical": 34340, + "Ġfotograf": 34341, + "ĠJosé": 34342, + "Ġlivelihood": 34343, + "Ġbibli": 34344, + "teri": 34345, + "Ġvorstellen": 34346, + "ĠAAA": 34347, + "Ġassessing": 34348, + "YA": 34349, + "Ġsplend": 34350, + "Ġexcav": 34351, + "Ġbaptism": 34352, + "yll": 34353, + "wow": 34354, + "Mac": 34355, + "Ġplastics": 34356, + "teokbokki": 34357, + "Ġintéressant": 34358, + "Ġcommanded": 34359, + "Ġfamously": 34360, + "ĠÐĺли": 34361, + "ĠManuel": 34362, + "Ġsouthwest": 34363, + "Ġdeformation": 34364, + "ÃŃculo": 34365, + "ĠнаÑħодиÑĤÑģÑı": 34366, + "ĠPatter": 34367, + "degree": 34368, + "ĠczÄĻsto": 34369, + "\"-": 34370, + "Ġìħĭ": 34371, + "Ġmanger": 34372, + "ĠTrustee": 34373, + "Ģ리": 34374, + "Ġpuntos": 34375, + "ivable": 34376, + "Ġvolatile": 34377, + "ĠëĬIJ": 34378, + "Ġinstability": 34379, + "Ġciel": 34380, + "ciÄħ": 34381, + "Ġpurity": 34382, + "ноÑģÑĤ": 34383, + "Sil": 34384, + "edar": 34385, + "åĻ¨": 34386, + "NOUNCER": 34387, + "Ġspelled": 34388, + "GER": 34389, + "Ġsanctuary": 34390, + "Ġaccelerating": 34391, + "Ġscout": 34392, + "ĠпÑĢев": 34393, + "fahren": 34394, + "ãģĵãģ¡ãĤī": 34395, + "ĠëĤĺìĺ¨": 34396, + "ĠpoczÄħt": 34397, + "ĠMeu": 34398, + "kaar": 34399, + "³´ê³ł": 34400, + "akra": 34401, + "Down": 34402, + "ĠÃĦr": 34403, + "ĠElite": 34404, + "Ġallons": 34405, + "Ġmayonnaise": 34406, + "ĠSustain": 34407, + "prisingly": 34408, + "Ġsupervis": 34409, + "Ġê·¸ëłĩì£ł": 34410, + "Ġunemployed": 34411, + "Ġfreshly": 34412, + "Ġ×ŀ×¢": 34413, + "ĠDh": 34414, + "Ġtackling": 34415, + "Ġogr": 34416, + "Ġì´Īë": 34417, + "ãĤĪãĤį": 34418, + "Ġloft": 34419, + "arah": 34420, + "ĠAirl": 34421, + "ĠDir": 34422, + "ĠÐľÐ¾Ð¶Ð½Ð¾": 34423, + "Ġbooking": 34424, + "ĠCRA": 34425, + "Ġhttps": 34426, + "Ġchoke": 34427, + "Ġgown": 34428, + "Ġnoite": 34429, + "Ġzac": 34430, + "istol": 34431, + "Ġsecre": 34432, + "Ġresembles": 34433, + "Ġcuad": 34434, + "ìĤ¬ê°Ģ": 34435, + "show": 34436, + "Ġblanc": 34437, + "Ġagu": 34438, + "ĠPrint": 34439, + "asted": 34440, + "ĠWeather": 34441, + "ipl": 34442, + "Ġobscure": 34443, + "Ġconte": 34444, + "oughs": 34445, + ");": 34446, + "ĠDame": 34447, + "ä¸Ģ缴": 34448, + "Ġclarification": 34449, + "Ġintimacy": 34450, + "Ġuphold": 34451, + "ĠMirror": 34452, + "Ġwagon": 34453, + "xide": 34454, + "Ġclog": 34455, + "apper": 34456, + "ĠImmediately": 34457, + "úde": 34458, + "Ġtouchdown": 34459, + "Ġrooft": 34460, + "аÑĪа": 34461, + "Ġçıkt": 34462, + "Ġlaisser": 34463, + "ĠUnreal": 34464, + "ensitive": 34465, + "Ġ123": 34466, + "Ġplaster": 34467, + "Ġducks": 34468, + "Ġetme": 34469, + "Ġbishop": 34470, + "brevi": 34471, + "Ġbic": 34472, + "ä¸ĭåİ»": 34473, + "Ġruntime": 34474, + "Ġambitions": 34475, + "маÑĤ": 34476, + "ĠWein": 34477, + "ĠMari": 34478, + "ĠíĬ¸ë": 34479, + "Ġresolver": 34480, + "ĠngÃły": 34481, + "ĠRise": 34482, + "ãĤĪãģĨãģ«": 34483, + "ĠCrus": 34484, + "Ġmerchandise": 34485, + "Ġeli": 34486, + "Ġstatewide": 34487, + "Ġowl": 34488, + "éģł": 34489, + "æĶ¹": 34490, + "Ġtwisting": 34491, + "Ġcontaminated": 34492, + "ĠCommerce": 34493, + "hythm": 34494, + "ĠÃĪ": 34495, + "Ġìĭ¤ë": 34496, + "Ġmusste": 34497, + "uir": 34498, + "Ġsums": 34499, + "ĠSomewhere": 34500, + "ãĥİ": 34501, + "Ġkami": 34502, + "Ġaired": 34503, + "ĠANDREW": 34504, + "Ġêº": 34505, + "Ġviendo": 34506, + "Ġantibody": 34507, + "Ġabsolument": 34508, + "Ġprotesters": 34509, + "ĠQuébec": 34510, + "stadt": 34511, + "Shaun": 34512, + "Ġchambers": 34513, + "ĠWear": 34514, + "ĠEffects": 34515, + "Ġhazards": 34516, + "Ġnei": 34517, + "Ġcorazón": 34518, + "Ġá¼": 34519, + "ĠSG": 34520, + "Ķ©": 34521, + "ĠìĹŃìĭľ": 34522, + "Ġcomfy": 34523, + "ĠCody": 34524, + "Ġpensando": 34525, + "Ġganska": 34526, + "ĠAcross": 34527, + "öllig": 34528, + "abyte": 34529, + "Ġwedge": 34530, + "Ġkalian": 34531, + "Ġsigue": 34532, + "endes": 34533, + "ĠGroÃŁ": 34534, + "Ġutiliser": 34535, + "Ġflown": 34536, + "аниÑİ": 34537, + "Ġlevar": 34538, + "restrial": 34539, + "Ġillustrations": 34540, + "Ġaslında": 34541, + "BLEEP": 34542, + "ĠдоÑģÑĤ": 34543, + "Ġturret": 34544, + "Ġsuitcase": 34545, + "ziÄĻki": 34546, + "Ġsketches": 34547, + "Ġacred": 34548, + "ĠRei": 34549, + "Ġtsun": 34550, + "ĠSag": 34551, + "Ġthirds": 34552, + "ĠKIRBY": 34553, + "rai": 34554, + "Ġhumanos": 34555, + "Ġrecommends": 34556, + "Ġextraordinarily": 34557, + "Ġcommencement": 34558, + "KN": 34559, + "opez": 34560, + "Ġ×ijש": 34561, + "Ġlethal": 34562, + "ĠEstamos": 34563, + "Ġinspector": 34564, + "ĠSeok": 34565, + "eun": 34566, + "Ġoffshore": 34567, + "Ġgettin": 34568, + "years": 34569, + "ĠSilence": 34570, + "ĠNatur": 34571, + "upun": 34572, + "Ġtrzy": 34573, + "Ġnoget": 34574, + "Ġhamburger": 34575, + "ĠPraise": 34576, + "énd": 34577, + "Ġ1971": 34578, + "ylie": 34579, + "krit": 34580, + "ĠìĥĿê°ģìĿ´": 34581, + "çļ®": 34582, + "Ġmomentos": 34583, + "Ġesté": 34584, + "Ġdissemin": 34585, + "Ġgigs": 34586, + "Ġdesaf": 34587, + "Ġavis": 34588, + "ĠZoo": 34589, + "ĠìķĬìĿĢ": 34590, + "häng": 34591, + "åı¥": 34592, + "hake": 34593, + "ĠBism": 34594, + "Ġrethink": 34595, + "ĠMalcolm": 34596, + "Ġidentifies": 34597, + "lower": 34598, + "ixel": 34599, + "ĠtvÃ¥": 34600, + "ked": 34601, + "ierz": 34602, + "Ġöffentlich": 34603, + "Ġproclaim": 34604, + "soon": 34605, + "lol": 34606, + "Ġloi": 34607, + "Ġbitten": 34608, + "rollo": 34609, + "Ġsermon": 34610, + "Ġesqu": 34611, + "Ġjackets": 34612, + "Ġgráfic": 34613, + "ĠпоказÑĭв": 34614, + "Ġcabeza": 34615, + "chodzi": 34616, + "Ġpelvis": 34617, + "Ġnostalgia": 34618, + "Ġbrew": 34619, + "Ġshortcuts": 34620, + "ĠAdemás": 34621, + "Ġsuperficial": 34622, + "åħ©åĢĭ": 34623, + "Ġboca": 34624, + "ĠæĪijæĺ¯": 34625, + "imentos": 34626, + "åĽłä¸º": 34627, + "Ġsprouts": 34628, + "é£Ľ": 34629, + "ĠJonas": 34630, + "ĠFlorence": 34631, + "static": 34632, + "daughter": 34633, + "*)": 34634, + "ÅĤby": 34635, + "fashion": 34636, + "ĠGinger": 34637, + "Ġ매ë": 34638, + "Ġhustle": 34639, + "utos": 34640, + "ĠÑĤÑıж": 34641, + "ĠLös": 34642, + "ש×Ļ×Ŀ": 34643, + "anych": 34644, + "tuber": 34645, + "Ġtidy": 34646, + "Ġfrontal": 34647, + "Ġwhiskey": 34648, + "Ġhumid": 34649, + "ĠÎŁ": 34650, + "Ġridge": 34651, + "Ġmarin": 34652, + "Ġbientôt": 34653, + "ĠCarrie": 34654, + "chw": 34655, + "Ġtahun": 34656, + "ĠErgeb": 34657, + "FR": 34658, + "Ġìłķë¶Ģ": 34659, + "ĠSoldier": 34660, + "Ġenlightenment": 34661, + "Ġexamining": 34662, + "ĠNotre": 34663, + "Ġeram": 34664, + "ĠSunny": 34665, + "Ġlayered": 34666, + "ĠDazu": 34667, + "rades": 34668, + "好åIJĥ": 34669, + "ĠнаÑĪей": 34670, + "Ġtimber": 34671, + "Ġmanners": 34672, + "ĠBirmingham": 34673, + "Ġminiature": 34674, + "ometers": 34675, + "Ġfiller": 34676, + "ĠRip": 34677, + "ĠKomb": 34678, + "owner": 34679, + "ì¿": 34680, + "idian": 34681, + "Ġdemás": 34682, + "ĠÙĪت": 34683, + "Ġprecautions": 34684, + "Ġgoverno": 34685, + "zelf": 34686, + "ĠComplete": 34687, + "å¸ĥ": 34688, + "ĠPhantom": 34689, + "ãģ¾ãģļ": 34690, + "Ġнез": 34691, + "ĠкаÑĢÑĤ": 34692, + "ĠAntwort": 34693, + "ĠPfizer": 34694, + "ĠFranco": 34695, + "ĠwÅĤ": 34696, + "Ġfrig": 34697, + "esper": 34698, + "Ġkale": 34699, + "Ġfilmmaker": 34700, + "Ġkurt": 34701, + "Ġinvalid": 34702, + "å±Ģ": 34703, + "arella": 34704, + "Äĥng": 34705, + "ramento": 34706, + "Ġnutritional": 34707, + "Ġdictators": 34708, + "Ġafin": 34709, + "Ġfuzzy": 34710, + "ĠGina": 34711, + "ót": 34712, + "ĠExtremadura": 34713, + "Ġdemonstrations": 34714, + "ĠMontgomery": 34715, + "íķ´ìĦ¤": 34716, + "ĠGandhi": 34717, + "ãĥĿ": 34718, + "ç½®": 34719, + "Ġreunion": 34720, + "ĠjakiÅĽ": 34721, + "ĠZug": 34722, + "OUGH": 34723, + "lifting": 34724, + "Ġà²": 34725, + "á¹Ľá¹£": 34726, + "eb": 34727, + "ĠWOW": 34728, + "ĠShiva": 34729, + "ometry": 34730, + "Ġwildly": 34731, + "Ġtended": 34732, + "Ġmegap": 34733, + "ì²ĺ": 34734, + "Ġnause": 34735, + "Ġgerek": 34736, + "ãĥĭ": 34737, + "ĠMarcel": 34738, + "Ġneste": 34739, + "خر": 34740, + "Ġfeh": 34741, + "åĨħ": 34742, + "suspenseful": 34743, + "ĠWrestle": 34744, + "ĠPalestinians": 34745, + "ĠGORD": 34746, + "iyet": 34747, + "ĠÑĢади": 34748, + "Ġversuchen": 34749, + "Ġtransistor": 34750, + "ĠÐŁÑĢоÑģÑĤо": 34751, + "ĠпонÑĢав": 34752, + "Ġrhyme": 34753, + "ĠVermont": 34754, + "platz": 34755, + "è®°": 34756, + "ĠÄ°ÅŁte": 34757, + "ĠHag": 34758, + "ĠÐĺм": 34759, + "ĠÑĢаÑģÑģказ": 34760, + "Ġmetros": 34761, + "ĠInfinity": 34762, + "wolf": 34763, + "ibal": 34764, + "ftig": 34765, + "ĠÚĨ": 34766, + "Ġíĺ¹ìĭľ": 34767, + "Ġoggi": 34768, + "Ġdisposit": 34769, + "ĠпÑĢил": 34770, + "ĠвÑĭпол": 34771, + "Ġthôi": 34772, + "ĠKENN": 34773, + "Ġhanding": 34774, + "actus": 34775, + "Ġtacos": 34776, + "Ġformerly": 34777, + "ĠCorinthians": 34778, + "ãģ«ãģ¯": 34779, + "ÑĨÑĸÑĹ": 34780, + "Ġpadre": 34781, + "Ġcongregation": 34782, + "æij": 34783, + "fert": 34784, + "Ġsubir": 34785, + "aiser": 34786, + "qua": 34787, + "araoh": 34788, + "ĠCurry": 34789, + "ĠìķĬëĬĶ": 34790, + "елÑİ": 34791, + "Ġfuss": 34792, + "Ġbooty": 34793, + "Ġlows": 34794, + "Ġhommes": 34795, + "ĠMH": 34796, + "ĠDisneyland": 34797, + "went": 34798, + "Ġresidue": 34799, + "Ġbeeping": 34800, + "è¼ķ": 34801, + "ätta": 34802, + "Ġmould": 34803, + "ĠProjekt": 34804, + "stalk": 34805, + "Ġartifact": 34806, + "ĠAntrag": 34807, + "ĠAMD": 34808, + "ĠCrypt": 34809, + "Ġë©Ķ": 34810, + "ĠFelipe": 34811, + "ĠCOB": 34812, + "elu": 34813, + "Ġselfies": 34814, + "ĠSanti": 34815, + "chutz": 34816, + "ĠУкÑĢаÑĹ": 34817, + "gesamt": 34818, + "Ġflock": 34819, + "jaz": 34820, + "plain": 34821, + "Ġwrinkles": 34822, + "Ġreais": 34823, + "Ġpaljon": 34824, + "Ġempowerment": 34825, + "Ġattendees": 34826, + "ppa": 34827, + "Ġneden": 34828, + "онÑĭ": 34829, + "Ġtimeframe": 34830, + "ĠCherry": 34831, + "Ġidée": 34832, + "Ġgag": 34833, + "Ġdonkey": 34834, + "Ġông": 34835, + "ĠHare": 34836, + "éļĽ": 34837, + "ĠKara": 34838, + "Ġacompan": 34839, + "places": 34840, + "imientos": 34841, + "ĠHamm": 34842, + "би": 34843, + "uben": 34844, + "iliyor": 34845, + "Ġthirst": 34846, + "Ġkry": 34847, + "ĠGeorgetown": 34848, + "׳×Ķ": 34849, + "Ġorch": 34850, + "Ġheartbeat": 34851, + "Ġtransformations": 34852, + "estones": 34853, + "ĠKH": 34854, + "Ġcartoons": 34855, + "Ġanci": 34856, + "Ġworthless": 34857, + "Ġtailored": 34858, + "pu": 34859, + "Americans": 34860, + "Ġpiles": 34861, + "ĠMonkey": 34862, + "Ġbasin": 34863, + "ĠTemper": 34864, + "ĠPaint": 34865, + "Ġpunching": 34866, + "Ġbaik": 34867, + "ĠOakland": 34868, + "vre": 34869, + "ÅŁallah": 34870, + "ydd": 34871, + "Ġcasually": 34872, + "odu": 34873, + "Ġcoded": 34874, + "ĠNorwegian": 34875, + "ĠVince": 34876, + "Ġpremature": 34877, + "ĠPromise": 34878, + "екÑģÑĤ": 34879, + "Ġdevastated": 34880, + "ĠPremium": 34881, + "ĠParam": 34882, + "ĠÃĸyle": 34883, + "umuz": 34884, + "PO": 34885, + "rators": 34886, + "Ġlamps": 34887, + "Ġterritorial": 34888, + "Ġbackbone": 34889, + "listed": 34890, + "DY": 34891, + "ĠاÙĦر": 34892, + "Ġpursued": 34893, + "ĠCommons": 34894, + "Ġ곡": 34895, + "locks": 34896, + "edor": 34897, + "Ġconceived": 34898, + "gere": 34899, + "Ġdisappearing": 34900, + "ĠSull": 34901, + "ĠìĹ°ë": 34902, + "Ġhoffe": 34903, + "Ġdetox": 34904, + "íĶĮ": 34905, + "Ġretir": 34906, + "ĠëģĿëĤ": 34907, + "Ġpergunta": 34908, + "ĠBOY": 34909, + "ç²¾": 34910, + "Ġpenn": 34911, + "æĿ¥äºĨ": 34912, + "hés": 34913, + "hon": 34914, + "Ġcatastrophic": 34915, + "Ġaust": 34916, + "Ġtorso": 34917, + "Ġìĸ´ëĬIJ": 34918, + "ĠìĤ¬ëŀĮëĵ¤ìĿ´": 34919, + "Ġmarvelous": 34920, + "ĠHarley": 34921, + "achine": 34922, + "Ġtiế": 34923, + "itto": 34924, + "ĠIÃŃm": 34925, + "ylon": 34926, + "Ġshutdown": 34927, + ".''": 34928, + "Ġapologies": 34929, + "ĠCommunication": 34930, + "ĠговоÑĢÑİ": 34931, + "ãģĤãĥ¼": 34932, + "âĦ¢": 34933, + "ÃŃveis": 34934, + "acun": 34935, + "Ġretaining": 34936, + "Ġcontradiction": 34937, + "ĠADAM": 34938, + "COM": 34939, + "Bryan": 34940, + "ĠMonsieur": 34941, + "Ġadapting": 34942, + "ШÐIJ": 34943, + "ĠScr": 34944, + "ändert": 34945, + "Ġplaus": 34946, + "ä»Ĭ天çļĦ": 34947, + "Ġonset": 34948, + "Ġassistants": 34949, + "Ġvalves": 34950, + "Ġscatter": 34951, + "ĠRust": 34952, + "awia": 34953, + "Ġreadiness": 34954, + "Ġpais": 34955, + "Ġbible": 34956, + "Ġambiente": 34957, + "ĠамеÑĢик": 34958, + "Ġuncond": 34959, + "Ġkalk": 34960, + "åĬ¨": 34961, + "Ġmoc": 34962, + "unn": 34963, + "Ġactu": 34964, + "Ġhumming": 34965, + "issimo": 34966, + "ĠPatrol": 34967, + "gow": 34968, + "ãĥ¤": 34969, + "ĠTHEY": 34970, + "ĠBoden": 34971, + "ĠBie": 34972, + "Ġreel": 34973, + "ĠÑĥÑģлов": 34974, + "Ġendeavor": 34975, + "ĠPeriod": 34976, + "ustomed": 34977, + "mals": 34978, + "alon": 34979, + "Box": 34980, + "ĠÏĥαÏĤ": 34981, + "Ġomdat": 34982, + "Ġaltre": 34983, + "ĠHeh": 34984, + "kad": 34985, + "Ġprotector": 34986, + "Ġdominance": 34987, + "odynamic": 34988, + "Ġcommunicated": 34989, + "kö": 34990, + "Ġpredecessor": 34991, + "ĠLuk": 34992, + "ĠFlower": 34993, + "Ġãģ©": 34994, + "poque": 34995, + "ÑĤиÑĢов": 34996, + "Ġretrospect": 34997, + "Ġdecisive": 34998, + "Ġexempel": 34999, + "{\\": 35000, + "ĠRück": 35001, + "rite": 35002, + "ĠZeus": 35003, + "Ġcalorie": 35004, + "Ġattractions": 35005, + "ĠHinter": 35006, + "Ġuhm": 35007, + "ĠíĮIJ": 35008, + "Ġrulers": 35009, + "Ġdiscouraged": 35010, + "Ġacontecer": 35011, + "Ġaccents": 35012, + "ĠOptim": 35013, + "ĠAlg": 35014, + "kids": 35015, + "2021": 35016, + "ĠLindsay": 35017, + "Ġfilmmakers": 35018, + "prowad": 35019, + "Ġterug": 35020, + "ëĭ´": 35021, + "ĠSommer": 35022, + "2018": 35023, + "Ġborrowing": 35024, + "ĠTransfer": 35025, + "ноп": 35026, + "arias": 35027, + "Ġheadphone": 35028, + "ì¼ľ": 35029, + "Ġtranslating": 35030, + "Ġaufge": 35031, + "à®ªà®Ł": 35032, + "weis": 35033, + "avant": 35034, + "paid": 35035, + "baby": 35036, + "Ġtoughest": 35037, + "Ġrepeats": 35038, + "ĠTeresa": 35039, + "Lord": 35040, + "Ġacabar": 35041, + "ĠRide": 35042, + "dir": 35043, + "Ġleng": 35044, + "Ġdwa": 35045, + "Ġheadaches": 35046, + "Ġnữa": 35047, + "ĠнаÑģÑĤоÑıÑī": 35048, + "Ġboils": 35049, + "Ġlonging": 35050, + "rias": 35051, + "ório": 35052, + "ĠParadise": 35053, + "ĠSeñor": 35054, + "erdem": 35055, + "Ġreinst": 35056, + "Ġsalaries": 35057, + "Ġinsecurity": 35058, + "ÅĤoÅĽci": 35059, + "ĠабÑģолÑİÑĤно": 35060, + "inken": 35061, + "ĠEddy": 35062, + "udos": 35063, + "Ġdummy": 35064, + "Ðļак": 35065, + "six": 35066, + "Ġinbox": 35067, + "ẩ": 35068, + "People": 35069, + "á»ĵng": 35070, + "Ġorganizers": 35071, + "find": 35072, + "Ġül": 35073, + "ĠCOM": 35074, + "ża": 35075, + "weile": 35076, + "Commentary": 35077, + "íĬ¸ë¥¼": 35078, + "ĠMittel": 35079, + "kus": 35080, + "èĽĭ": 35081, + "न": 35082, + "iral": 35083, + "Ġgarment": 35084, + "ικά": 35085, + "Ġstool": 35086, + "payers": 35087, + "Ġshimmer": 35088, + "ĠOllie": 35089, + "ĠJeżeli": 35090, + "è¿ĺæľī": 35091, + "Ġ1977": 35092, + "Ġjeux": 35093, + "Ġextinct": 35094, + "ĠTransportation": 35095, + "ĠMaker": 35096, + "Ġjohn": 35097, + "Ġrichest": 35098, + "Ġtraumat": 35099, + "Ġliegen": 35100, + "´ë¥¼": 35101, + "è¿ĻéĩĮ": 35102, + "Ġunrest": 35103, + "ĠStraw": 35104, + "æĭľæĭľ": 35105, + "Ġcoma": 35106, + "ĠKristen": 35107, + "ĠÐļонеÑĩно": 35108, + "ĠBryce": 35109, + "ĠÑıкÑĸ": 35110, + "Ġpearls": 35111, + "ĠпонимаÑİ": 35112, + "Ġadditions": 35113, + "Ġasympt": 35114, + "ĠменÑĮÑĪе": 35115, + "Ġscans": 35116, + "Child": 35117, + "ĠHide": 35118, + "кÑĥÑİ": 35119, + "etas": 35120, + "Ġdank": 35121, + "Ġpleas": 35122, + "Ġessays": 35123, + "Ġjets": 35124, + "åħĴ": 35125, + "Ġвед": 35126, + "Ġpositives": 35127, + "hof": 35128, + "-)": 35129, + "zzo": 35130, + "Ġstarters": 35131, + "Ġsmiled": 35132, + "Ġ1944": 35133, + "quiera": 35134, + "Ġrok": 35135, + "Ġpuesto": 35136, + "Nico": 35137, + "Ġsimulations": 35138, + "Ġà¶": 35139, + "Ġintrigued": 35140, + "ĠOverwatch": 35141, + "åĸĤ": 35142, + "sigh": 35143, + "bai": 35144, + "Ġë§IJê³ł": 35145, + "idé": 35146, + "Ġcrabs": 35147, + "áºŃp": 35148, + "ĠIraqi": 35149, + "ìĿ´ë¥¼": 35150, + "ÑĤÑı": 35151, + "ĠSophia": 35152, + "ĠDNS": 35153, + "Ġönemli": 35154, + "ĠLuo": 35155, + "Ŀ¤": 35156, + "ĠCounsel": 35157, + "ligen": 35158, + "анÑĮÑĪе": 35159, + "Ġtrumpet": 35160, + "Ġdapat": 35161, + "ĠJM": 35162, + "ĠEVERY": 35163, + "Ġå°įä¸įå°į": 35164, + "夢": 35165, + "ĠLayer": 35166, + "Ġcô": 35167, + "нал": 35168, + "ĠJoo": 35169, + "ĠHack": 35170, + "Ġsunt": 35171, + "ĠLeonard": 35172, + "ĠFirebase": 35173, + "änger": 35174, + "Ġexploding": 35175, + "voy": 35176, + "Ġì¦IJ": 35177, + "ĠÑģеÑĢÑĮ": 35178, + "Ġseverity": 35179, + "Ġbestimm": 35180, + "çµIJæŀľ": 35181, + "Ġtiring": 35182, + "Ġprocurement": 35183, + "Ġdiplomacy": 35184, + "Ġdecorative": 35185, + "ĠÙĬا": 35186, + "Ġpenetration": 35187, + "Õ«": 35188, + "Ġoutright": 35189, + "ENE": 35190, + "ĠUni": 35191, + "odles": 35192, + "Ġzeros": 35193, + "Ġdelightful": 35194, + "jm": 35195, + "Ġdopo": 35196, + "没äºĭ": 35197, + "Ġpositivity": 35198, + "ĠVISTA": 35199, + "ĠResource": 35200, + "íĥĢë": 35201, + "ÑĪие": 35202, + "Carl": 35203, + "Ġpiping": 35204, + "Ġchopping": 35205, + "ĠGanze": 35206, + "üss": 35207, + "ĠAo": 35208, + "Ġshattered": 35209, + "ĠDetective": 35210, + "Ġundoubtedly": 35211, + "Ġhalluc": 35212, + "Ġench": 35213, + "ÑĭÑĩно": 35214, + "ÑĥлÑıÑĢ": 35215, + "isesti": 35216, + "Ġpedals": 35217, + "Ġdurum": 35218, + "¤íĶ": 35219, + "laimer": 35220, + "Ġpropre": 35221, + "Cu": 35222, + "Ġtranslator": 35223, + "ĠcaÅĤ": 35224, + "Ġ그걸": 35225, + "ĠcaÅĤy": 35226, + "UA": 35227, + "Ġrevised": 35228, + "Ġподоб": 35229, + "ĠArticle": 35230, + "ĠHaiti": 35231, + "ĠÃĵ": 35232, + "ĠCtrl": 35233, + "Ġrozm": 35234, + "lait": 35235, + "Ġletzte": 35236, + "ispering": 35237, + "display": 35238, + "Ġaluminium": 35239, + "Ġpalabras": 35240, + "Ġconocer": 35241, + "Ġzitten": 35242, + "Ġdirig": 35243, + "åıªæľī": 35244, + "Ġbrainstorm": 35245, + "Ġwifi": 35246, + "ĠParticip": 35247, + "Ġviewpoint": 35248, + "ĠQuan": 35249, + "Ġhierarch": 35250, + "Welcome": 35251, + "対": 35252, + "Ġoffen": 35253, + "ĠRecovery": 35254, + "gano": 35255, + "Would": 35256, + "Ġrepro": 35257, + "Ġperceptions": 35258, + "Ġdemasi": 35259, + "ĠBangladesh": 35260, + "ĠIncredible": 35261, + "Ġletzt": 35262, + "Ġbehaving": 35263, + "Ġastonishing": 35264, + "ĠâĨ": 35265, + "ĠëĤ¨ìŀIJ": 35266, + "èµ°äºĨ": 35267, + "ãĥĶ": 35268, + "ĠGORDON": 35269, + "CAR": 35270, + "?!\"": 35271, + "ĠPrest": 35272, + "Ġë§ŀìķĦìļĶ": 35273, + "Ġtand": 35274, + "Ġlash": 35275, + "çĬ": 35276, + "ificant": 35277, + "Ġintoler": 35278, + "ĠгеÑĢо": 35279, + "Ġteu": 35280, + "aso": 35281, + "ĠÑģовеÑĤ": 35282, + "Ġtravelers": 35283, + "ĠSynd": 35284, + "ĠвеÑĢÑģ": 35285, + "Fonda": 35286, + "adı": 35287, + "Ġtranscription": 35288, + "Ġtitanium": 35289, + "Ġtwists": 35290, + "Ġgearbox": 35291, + "ensation": 35292, + "fat": 35293, + "Coll": 35294, + "ĠCommonwealth": 35295, + "zon": 35296, + "ĠPolizei": 35297, + "ĠAPPLAUSE": 35298, + "fry": 35299, + "ĠJuda": 35300, + "esteem": 35301, + "Ġsock": 35302, + "ĠJugend": 35303, + "ĠкÑģÑĤаÑĤи": 35304, + "ĠDro": 35305, + "Ġprochaine": 35306, + "ãĥ¼ãĥ«": 35307, + "Ġliksom": 35308, + "ĠEnergie": 35309, + "ĠMarina": 35310, + "Ġ230": 35311, + "Ġê°ĢìĦľ": 35312, + "umping": 35313, + "Ġlone": 35314, + "ç´ļ": 35315, + "Ġfonts": 35316, + "Ġbusinessman": 35317, + "Ġply": 35318, + "Ġdoe": 35319, + "grid": 35320, + "ĠMilwaukee": 35321, + "ĠEden": 35322, + "!\".": 35323, + "ĠÛĮÛģ": 35324, + "ogens": 35325, + "Ġteaser": 35326, + "Ġquién": 35327, + "Ġincentiv": 35328, + "govern": 35329, + "Ġchildcare": 35330, + "Ġsneakers": 35331, + "Ġimprisoned": 35332, + "®": 35333, + "иÑĤеÑģÑĮ": 35334, + "anbul": 35335, + "Ġregain": 35336, + "Ġtranquil": 35337, + "Redner": 35338, + "鼨": 35339, + "IFA": 35340, + "Ġideological": 35341, + "ĠmayorÃŃa": 35342, + "Ġbureau": 35343, + "eterm": 35344, + "ĠDID": 35345, + "ìĬ·": 35346, + "Ġwaving": 35347, + "Ġbeb": 35348, + "Ġár": 35349, + "Ġкв": 35350, + "Ġenvoy": 35351, + "anut": 35352, + "икÑĥ": 35353, + "ĠEnvironment": 35354, + "ĠAssass": 35355, + "ãĤĵãģ§": 35356, + "ĠBread": 35357, + "ĠТÑĥÑĤ": 35358, + "Ġstaircase": 35359, + "ĠDisease": 35360, + "Ġaucun": 35361, + "ĠëĭĪ": 35362, + "Ġconfrontation": 35363, + "Ġ1941": 35364, + "Ġirony": 35365, + "Ġworsh": 35366, + "ãĤĮãĤĭ": 35367, + "Ġfick": 35368, + "ĠNaomi": 35369, + "Ġbackside": 35370, + "ieux": 35371, + "Kap": 35372, + "Ġvedere": 35373, + "Ġlengthy": 35374, + "Ġbreaker": 35375, + "ĠRolle": 35376, + "Ġpredator": 35377, + "Ġnossos": 35378, + "Ġadvertise": 35379, + "è³ĩ": 35380, + "ÑĢоде": 35381, + "Rednerwechsel": 35382, + "reten": 35383, + "Ġcollectors": 35384, + "ıģımız": 35385, + "Ġtrig": 35386, + "Ġaxes": 35387, + "inters": 35388, + "Ġpenalties": 35389, + "ĠOsman": 35390, + "ĠJenna": 35391, + "Ġflakes": 35392, + "Ġtrainers": 35393, + "Ġstunned": 35394, + "ĠScroll": 35395, + "ĠPip": 35396, + "ĠнаÑģÑĤ": 35397, + "ĠnhÃł": 35398, + "ĠSmack": 35399, + "ẫn": 35400, + "ratos": 35401, + "ĠÑĢабоÑĤÑĭ": 35402, + "Ġucz": 35403, + "ĠLemon": 35404, + "ĠSind": 35405, + "Ġpsychic": 35406, + "ĠAbg": 35407, + "Ġmammals": 35408, + "Ġimmersive": 35409, + "Ġbots": 35410, + "Ġverschiedene": 35411, + "Ġgeral": 35412, + "Ġfollower": 35413, + "Ġä»ĸ": 35414, + "Ġseguridad": 35415, + "Ġimmersed": 35416, + "feito": 35417, + "cross": 35418, + "Ġöld": 35419, + "íĥĦ": 35420, + "Ġãģĵãģ®": 35421, + "Ġ×Ķ×Ļ×IJ": 35422, + "ĠJian": 35423, + "Ġbiliyor": 35424, + "area": 35425, + "Ġkaf": 35426, + "Ġgodt": 35427, + "çĽ¸ä¿¡": 35428, + "Ġë°©ìĨ¡": 35429, + "Ġdetriment": 35430, + "æ¥ļ": 35431, + "Ñĸл": 35432, + "ĠÄijâu": 35433, + "Ġchloride": 35434, + "øre": 35435, + "lei": 35436, + "Ġmonte": 35437, + "Ġdifférentes": 35438, + "à¯ģ.": 35439, + "Ġcaregivers": 35440, + "Ġinadequ": 35441, + "Ġfarewell": 35442, + "ĠÑĤипа": 35443, + "ontec": 35444, + "ĠEph": 35445, + "HHH": 35446, + "ĠTodos": 35447, + "ĠСШÐIJ": 35448, + "Ġtrov": 35449, + "Ġlige": 35450, + "Ġcông": 35451, + "ĠCiv": 35452, + "Ġcapaz": 35453, + "ĠVallahi": 35454, + "Ġqueste": 35455, + "Ġreplica": 35456, + "سب": 35457, + "zna": 35458, + "ĠÑģлÑĥж": 35459, + "ĠPT": 35460, + "wave": 35461, + "ieni": 35462, + "Ġrelied": 35463, + "develop": 35464, + "Ġdeme": 35465, + "ĠAman": 35466, + "Ġ[...]": 35467, + "Ġcompliments": 35468, + "uais": 35469, + "ĠíĮ¨": 35470, + "Ġsmelling": 35471, + "Ġdadurch": 35472, + "ÙĪت": 35473, + "Ġoranges": 35474, + "Ġлай": 35475, + "Ġstabilization": 35476, + "åĢį": 35477, + "ãĤĮãģŁ": 35478, + "楽": 35479, + "Ġappliances": 35480, + "Ġhm": 35481, + "ĥIJë©´": 35482, + "odynamics": 35483, + "ĠciÄĻ": 35484, + "ĠCott": 35485, + "MON": 35486, + "ĠMang": 35487, + "æĶ¯æĮģ": 35488, + "Ġallerdings": 35489, + "ική": 35490, + "shots": 35491, + "Ġts": 35492, + "ĠGör": 35493, + "ĠCHAR": 35494, + "Ġ:(": 35495, + "Ġwrath": 35496, + "Ġfique": 35497, + "Ġführen": 35498, + "Ġtestament": 35499, + "Ġ^^": 35500, + "á¹Ľá¹£á¹ĩa": 35501, + "ALD": 35502, + "Ġtexto": 35503, + "ĠDogs": 35504, + "Ġsib": 35505, + "Ġpathetic": 35506, + "ocks": 35507, + "Ġradically": 35508, + "ĠMORE": 35509, + "ĠJAMES": 35510, + "Ġingl": 35511, + "ĠTechnical": 35512, + "Ġporch": 35513, + "ĠUT": 35514, + "ĠобÑıзаÑĤелÑĮно": 35515, + "Ġrenewal": 35516, + "Ġaesthetics": 35517, + "ikum": 35518, + "Ġbeverage": 35519, + "dern": 35520, + "Ġpredictive": 35521, + "Ġchuy": 35522, + "ĠRegarding": 35523, + "ĠForward": 35524, + "ĠÙĪÙĦ": 35525, + "Ġcontextual": 35526, + "Ġdwarf": 35527, + "Ġprehe": 35528, + "Ġgoverned": 35529, + "ħĦ": 35530, + "Ġtrabalhar": 35531, + "Ġnegócio": 35532, + "ĠболÑĮÑĪой": 35533, + "еÑĩаÑĤ": 35534, + "ĠдÑĥÑħ": 35535, + "Ġfloods": 35536, + "Ġbowling": 35537, + "ĠOB": 35538, + "ĠHär": 35539, + "Ġgrading": 35540, + "주ëĬĶ": 35541, + "Ġgars": 35542, + "dling": 35543, + "Ġrak": 35544, + "ëĪ": 35545, + "creat": 35546, + "ĠÑīе": 35547, + "Ġneighbours": 35548, + "food": 35549, + "Query": 35550, + "Ġheroin": 35551, + "iceps": 35552, + "ĠKinda": 35553, + "NET": 35554, + "Ġmari": 35555, + "Ġimitate": 35556, + "Ġachter": 35557, + "Ġsettlements": 35558, + "rare": 35559, + "cciones": 35560, + "Ġëĵľ": 35561, + "Ġfik": 35562, + "itung": 35563, + "ĠмакÑģим": 35564, + "Ġelf": 35565, + "Ġdalla": 35566, + "ĠPolsce": 35567, + "ĠPul": 35568, + "ЧÑĤо": 35569, + "ĠMorgen": 35570, + "ØŃÙħ": 35571, + "Ġsupremacy": 35572, + "Ġkys": 35573, + "ĠHurricane": 35574, + "ĠGTA": 35575, + "ĠFeh": 35576, + "Ġfinalmente": 35577, + "mund": 35578, + "ĠKrie": 35579, + "époque": 35580, + "ĠTucker": 35581, + "ITT": 35582, + "Ġlur": 35583, + "Ġdipping": 35584, + "äv": 35585, + "Ġeerste": 35586, + "ĠFlint": 35587, + "bildung": 35588, + "ูà¹ī": 35589, + "Ġtoim": 35590, + "Ġpracy": 35591, + "Ġtransforms": 35592, + "Ġspeeding": 35593, + "Ġpresenter": 35594, + "Ġfellows": 35595, + "filled": 35596, + "ieza": 35597, + "Ġadvising": 35598, + "ĠInterview": 35599, + "игÑĢ": 35600, + "wehr": 35601, + "ĠDante": 35602, + "pture": 35603, + "Ī문": 35604, + "¯¸ë": 35605, + "IJIJ": 35606, + "ĠCounter": 35607, + "Ġcrist": 35608, + "Ġì§ľ": 35609, + "Ġjeune": 35610, + "ĠÑģÑĤÑĢаÑĪ": 35611, + "ĠmieÄĩ": 35612, + "Ġtutor": 35613, + "Ġmasala": 35614, + "Ġpowdered": 35615, + "Ġnau": 35616, + "ĠFrederick": 35617, + "Ġbilling": 35618, + "ĠEisen": 35619, + "ĠдобÑĢ": 35620, + "Ġmest": 35621, + "æ½": 35622, + "Ġsnipp": 35623, + "Ġmono": 35624, + "ĠAlo": 35625, + "ĠMercy": 35626, + "érience": 35627, + "Ġcasualties": 35628, + "ĠANNOUNCER": 35629, + "ä»İ": 35630, + "Ġtocar": 35631, + "Ġbacterial": 35632, + "Ho": 35633, + "Ġstreak": 35634, + "ĠJENN": 35635, + "Ġplast": 35636, + "Ñģлед": 35637, + "Ġreapp": 35638, + "Ġpaycheck": 35639, + "Ġminers": 35640, + "habt": 35641, + "ĠJap": 35642, + "нÑĥÑĤ": 35643, + "Ġredemption": 35644, + "Ġquir": 35645, + "hnlich": 35646, + "Ġaccumulation": 35647, + "Ġshove": 35648, + "Ġadrenaline": 35649, + "Make": 35650, + "ĠHern": 35651, + "ossing": 35652, + "ĠVil": 35653, + "ubby": 35654, + "hertz": 35655, + "breaks": 35656, + "Ġspur": 35657, + "ĠDaha": 35658, + "USTIN": 35659, + "Ġcontinuer": 35660, + "ĠSaul": 35661, + "ãģ®ãģ¯": 35662, + "ĠíıŃ": 35663, + "ĠëIJĺë©´": 35664, + "Ġë§IJìĶĢ": 35665, + "Ġож": 35666, + "Ġsuspects": 35667, + "Ġlaquelle": 35668, + "ĠMuchas": 35669, + "Ġvöllig": 35670, + "ulen": 35671, + "Ġimpres": 35672, + "Ġlobb": 35673, + "enee": 35674, + "Ġнаж": 35675, + "Ta": 35676, + "Ġréalité": 35677, + "ĠRex": 35678, + "Ġharvesting": 35679, + "Ġestr": 35680, + "æ¶": 35681, + "ospace": 35682, + "OSS": 35683, + "Ġdisturbance": 35684, + "assic": 35685, + "ĠIsab": 35686, + "Ġdécouv": 35687, + "ĠHampshire": 35688, + "Ġornament": 35689, + "Ġluôn": 35690, + "ĠUW": 35691, + "ĠjÄħ": 35692, + "éĤ£ä¹Ī": 35693, + "Ġrespecto": 35694, + "Ġcomunidad": 35695, + "Ġcomigo": 35696, + "agna": 35697, + "Ġintrinsic": 35698, + "ĠAlumni": 35699, + "Ġsesleri": 35700, + "Ġestimation": 35701, + "âĢĶâĢĶ": 35702, + "Ġproduit": 35703, + "ãĢĤãĢį": 35704, + "ĠвÑĢ": 35705, + "Ġwhirl": 35706, + "Ġacces": 35707, + "çu": 35708, + "Ġvariability": 35709, + "Ġvodka": 35710, + "itsu": 35711, + "Ġinternships": 35712, + "Ġallocate": 35713, + "RR": 35714, + "íĽĪ": 35715, + "Ġinstructional": 35716, + "tant": 35717, + "Ġà®ħத": 35718, + "Ġinvites": 35719, + "Ġhak": 35720, + "Ġscares": 35721, + "Ġeclipse": 35722, + "пов": 35723, + "колÑĮ": 35724, + "ativas": 35725, + "Ġstabbed": 35726, + "ĠDOM": 35727, + "ä¸įåĪ°": 35728, + "roots": 35729, + "ĠPicture": 35730, + "íĺ¼": 35731, + "ĠCHA": 35732, + "iec": 35733, + "ıı": 35734, + "hanol": 35735, + "Ġmisunderstand": 35736, + "Ray": 35737, + "Ġroadmap": 35738, + "ocumented": 35739, + "izione": 35740, + "ĠOlive": 35741, + "rift": 35742, + "Ġ×Ķ׳": 35743, + "æ¯į": 35744, + "lest": 35745, + ";;": 35746, + "ĠEA": 35747, + "éľĢè¦ģ": 35748, + "одÑĥ": 35749, + "Ġhobbies": 35750, + "Ġburial": 35751, + "ãģ«ãģ¡ãģ¯": 35752, + "Ф": 35753, + "lege": 35754, + "ĠHJ": 35755, + "Ġobjection": 35756, + "ĠãģŃ": 35757, + "ctory": 35758, + "Ġincremental": 35759, + "Ġgymn": 35760, + "Ġepidemi": 35761, + "ÑģÑĭл": 35762, + "Ãij": 35763, + "Ġadvancement": 35764, + "Ġparch": 35765, + "News": 35766, + "Ġayr": 35767, + "лам": 35768, + "Ġ׾ש": 35769, + "Ġdiploma": 35770, + "ãģ¡ãĤĥãĤĵ": 35771, + "Ġrobbed": 35772, + "Only": 35773, + "Ġincur": 35774, + "Ġchanting": 35775, + "Ġíķ´ëıĦ": 35776, + "Ġriches": 35777, + "ĠCarmen": 35778, + "Ġnostro": 35779, + "λÎŃ": 35780, + "ĠPowder": 35781, + "à¹Ģห": 35782, + "ĠìŀĪìľ¼ë©´": 35783, + "Ġgerçekten": 35784, + "ĠPikachu": 35785, + "емон": 35786, + "OLL": 35787, + "Ġplanetary": 35788, + "Ġslows": 35789, + "Ġclockwise": 35790, + "alion": 35791, + "ĠìĮ": 35792, + "Ġvern": 35793, + "Ġhomme": 35794, + "Ġendpoint": 35795, + "Ġinnocence": 35796, + "Ġelementos": 35797, + "Ġsophomore": 35798, + "Ġnotions": 35799, + "ĠCouldn": 35800, + "pur": 35801, + "Ġzat": 35802, + "Ġobsess": 35803, + "Ġmotivo": 35804, + "ĠKub": 35805, + "ĠDrug": 35806, + "Ant": 35807, + "ĠPlayers": 35808, + "ĠHumans": 35809, + "Ġmelee": 35810, + "ĠWildlife": 35811, + "ĠVP": 35812, + "Ġvolcanic": 35813, + "Ġcomin": 35814, + "ĠGuang": 35815, + "ĠÏĦιÏĤ": 35816, + "ĠоÑģобенно": 35817, + "ĠSize": 35818, + "Listen": 35819, + "ĠAaa": 35820, + "appro": 35821, + "Ġbarbar": 35822, + "ĠParkinson": 35823, + "нÑıÑĤÑĮ": 35824, + "åį°": 35825, + "Ġunderestimate": 35826, + "Ġsubstitution": 35827, + "Ġcosmetic": 35828, + "ä¸ĭ次": 35829, + "Ġwillen": 35830, + "Ġbeide": 35831, + "anni": 35832, + "Ġconditioned": 35833, + "ĠDebbie": 35834, + "Ġisto": 35835, + "ĠEdwards": 35836, + "ìĽĮìļĶ": 35837, + "ĠÑĤов": 35838, + "Ġabbrevi": 35839, + "ĠMün": 35840, + "ĠPrinc": 35841, + "ĠLiang": 35842, + "Ġstink": 35843, + "Ġradioactive": 35844, + "ãģĨãĤı": 35845, + "Ġacontec": 35846, + "Ġuncon": 35847, + "ĠTurbo": 35848, + "ãģIJ": 35849, + "Ġkisses": 35850, + "æĺ¯ä»Ģ麼": 35851, + "еÑĤÑĢов": 35852, + "Ġfrontier": 35853, + "ĠSpy": 35854, + "ĠBelarus": 35855, + "ĠCBS": 35856, + "á»Ĺ": 35857, + "amoto": 35858, + "íķľëį°": 35859, + "ĠÑģÑĤÑĢо": 35860, + "ĠEnfin": 35861, + "Ġbreadth": 35862, + "éĺ²": 35863, + "ĠCafe": 35864, + "ĠDafür": 35865, + "ĠBour": 35866, + "aras": 35867, + "Ġblueprint": 35868, + "anı": 35869, + "Ġconstants": 35870, + "Ġattacker": 35871, + "ĠFormula": 35872, + "zaÄĩ": 35873, + "Ġsowie": 35874, + "Ġeyebrow": 35875, + "obook": 35876, + "Ġsetzen": 35877, + "第ä¸ī": 35878, + "onsider": 35879, + "awning": 35880, + "Ġsöyleye": 35881, + "Ġinvaded": 35882, + "Ġpronouns": 35883, + "Ġdobry": 35884, + "Si": 35885, + "ĠХоÑĤ": 35886, + "Ġvolleyball": 35887, + "Ġlament": 35888, + "isches": 35889, + "arme": 35890, + "api": 35891, + "ĠWiki": 35892, + "лиÑĪ": 35893, + "Ġkasih": 35894, + "Ġpess": 35895, + "ĠÑĦоÑĤ": 35896, + "ĠSul": 35897, + "å¾·": 35898, + "Ġpseudo": 35899, + "Ġmemo": 35900, + "ĠìĹ°ìĬµ": 35901, + "ĠдоллаÑĢов": 35902, + "ĠпеÑĢем": 35903, + "ĠReach": 35904, + "miral": 35905, + "alted": 35906, + "Ġstatut": 35907, + "reading": 35908, + "Ġsöyled": 35909, + "ĠLindsey": 35910, + "ĠAhmad": 35911, + "ë¶Ģë": 35912, + "ĠСегоднÑı": 35913, + "Ġprzygot": 35914, + "Ġhyster": 35915, + "URE": 35916, + "ĠNeigh": 35917, + "Reporter": 35918, + "ĠBunu": 35919, + "ĠTreaty": 35920, + "ĠRank": 35921, + "ĠFame": 35922, + "inished": 35923, + "Ġgeared": 35924, + "Ġcompose": 35925, + "odia": 35926, + "ĠLon": 35927, + "ĠjesteÅĽmy": 35928, + "ĠDIRECTOR": 35929, + "Ġelkaar": 35930, + "ĠViel": 35931, + "×IJש": 35932, + "ynthia": 35933, + "並": 35934, + "Ġmère": 35935, + "ĠTomato": 35936, + "Ġexatamente": 35937, + "niÄĻ": 35938, + "ĠFrei": 35939, + "ĠDif": 35940, + "Ġopenings": 35941, + "Ġgraphical": 35942, + "ĠÑĥдоб": 35943, + "ĠвÑģп": 35944, + "ĠWeekly": 35945, + "ева": 35946, + "Ġhangs": 35947, + "Ġunsafe": 35948, + "Ġemblem": 35949, + "ĠKolleginnen": 35950, + "alay": 35951, + "Ġksi": 35952, + "Ġhides": 35953, + "Ġolmay": 35954, + "Ġentste": 35955, + "Ġarthritis": 35956, + "ÃŁerdem": 35957, + "Ġbinnen": 35958, + "Ġlistens": 35959, + "ĠHess": 35960, + "åĨįä¾Ĩ": 35961, + "ĠLouise": 35962, + "lden": 35963, + "енÑģ": 35964, + "ĠVersion": 35965, + "ĠAgriculture": 35966, + "ìĬ¤ë¥¼": 35967, + "ман": 35968, + "ëĦ¤ìļĶ": 35969, + "Ġwines": 35970, + "ĠINF": 35971, + "rul": 35972, + "ĠJK": 35973, + "ıyorlar": 35974, + "shield": 35975, + "reath": 35976, + "Ġterus": 35977, + "ĠLum": 35978, + "Ġanticipation": 35979, + "Ġaccustomed": 35980, + "ĠMina": 35981, + "Ġwield": 35982, + "ioè": 35983, + "mera": 35984, + "Ġcountdown": 35985, + "Ġcling": 35986, + "Ġcommend": 35987, + "Ġfaktiskt": 35988, + "Ġdefenses": 35989, + "Ġcockpit": 35990, + "Ġкоманд": 35991, + "Ġdishwas": 35992, + "ĠThanos": 35993, + "Ġkidneys": 35994, + "Ġsehe": 35995, + "Ġmicrobes": 35996, + "Ġcuff": 35997, + "ĠвÑĭÑģок": 35998, + "ĠSpicy": 35999, + "çŃīçŃī": 36000, + "வர": 36001, + "culus": 36002, + "orc": 36003, + "ç¾ħ": 36004, + "ixes": 36005, + "ĠCredit": 36006, + "Ġraj": 36007, + "Ġbringt": 36008, + "ĠNiss": 36009, + "Ġgrim": 36010, + "ĠSOL": 36011, + "Ġtenim": 36012, + "ĠSudan": 36013, + "ĠSpart": 36014, + "Ġpromotes": 36015, + "ĠNossa": 36016, + "ĠÑģоÑģÑĤоÑıни": 36017, + "Ġì°©": 36018, + "Ġuncont": 36019, + "ĠLiberal": 36020, + "ĠТолÑĮко": 36021, + "ĠViele": 36022, + "Ġktórej": 36023, + "Ġ****": 36024, + "Max": 36025, + "ĠЧÑĤобÑĭ": 36026, + "350": 36027, + "Ġíĺ¼ìŀIJ": 36028, + "Ġë¶Ħëĵ¤ìĿ´": 36029, + "Ġwarp": 36030, + "Ġtenga": 36031, + "Ġsympathetic": 36032, + "Ġbizi": 36033, + "ĠZack": 36034, + "iedo": 36035, + "Ġëī´ì": 36036, + "piel": 36037, + "ĠÑĤол": 36038, + "Ġscaled": 36039, + "ĠPETER": 36040, + "ĠCOMM": 36041, + "ĠCame": 36042, + "Ġcatastrophe": 36043, + "Ġsweaty": 36044, + "igration": 36045, + "Ġstuffing": 36046, + "ĠÏĢολÏį": 36047, + "ĠDriver": 36048, + "zyst": 36049, + "Tech": 36050, + "Ġassessed": 36051, + "ĠSurface": 36052, + "ırım": 36053, + "sur": 36054, + "lerweile": 36055, + "Ġдог": 36056, + "Ġshutting": 36057, + "Ġfractions": 36058, + "ĠÑģол": 36059, + "everyone": 36060, + "Ġern": 36061, + "ĠÐĿов": 36062, + "Ġdefenders": 36063, + "Ġversucht": 36064, + "ãĥ³ãĥĢ": 36065, + "Ġpolity": 36066, + "ĠÐŁÐ¾Ð½": 36067, + "verständ": 36068, + "Ġbrowsers": 36069, + "Ġtransformative": 36070, + "Ġdictate": 36071, + "ĠLEGO": 36072, + "Ġninguna": 36073, + "ê´ij": 36074, + "Ġpizz": 36075, + "ĠHarold": 36076, + "ĠLopez": 36077, + "Ú¾ÛĮ": 36078, + "anız": 36079, + "atchet": 36080, + "ÙĬت": 36081, + "Ġlernen": 36082, + "Ġê·ĢìŬ": 36083, + "Ġhoused": 36084, + "Ġcleanse": 36085, + "ĠWAT": 36086, + "laration": 36087, + "Ġbytes": 36088, + "Ġtucked": 36089, + "Ġfaults": 36090, + "до": 36091, + "FX": 36092, + "Ġìĸ¼ë§ĪëĤĺ": 36093, + "Ġdeform": 36094, + "Ġcontracting": 36095, + "ĠTIME": 36096, + "irse": 36097, + "Ġneben": 36098, + "Ġcerc": 36099, + "ĠArmstrong": 36100, + "Ġtester": 36101, + "Ġparfait": 36102, + "Ġjealousy": 36103, + "Ġtoxins": 36104, + "Ġdisbel": 36105, + "ÑĥÑĢÑĭ": 36106, + "impression": 36107, + "Ġprostate": 36108, + "Ġfirewall": 36109, + "Ġclassics": 36110, + "еÑĩÑĮ": 36111, + "Ġsocialism": 36112, + "Ġgracious": 36113, + "ĠÑģнова": 36114, + "ĠднÑı": 36115, + "Ġburner": 36116, + "ĠMinor": 36117, + "Ġìļ°ë¦¬ë": 36118, + "Ġjedes": 36119, + "Ġcontinuum": 36120, + "Ġhots": 36121, + "Ġoccurrence": 36122, + "Ġadministered": 36123, + "ĠзамеÑĤ": 36124, + "Ġhesitation": 36125, + "Ġdrills": 36126, + "erca": 36127, + "ĠвÑĤоÑĢой": 36128, + "Ġsteadily": 36129, + "Ġinsanlar": 36130, + "Ġihan": 36131, + "íij": 36132, + "Ġhelper": 36133, + "ĠSenin": 36134, + "åģľ": 36135, + "ование": 36136, + "ĠERIC": 36137, + "bla": 36138, + "ĠAcademic": 36139, + "Ġhumanities": 36140, + "black": 36141, + "umpy": 36142, + "ortex": 36143, + "ĠìłĪë": 36144, + "ĠØ¥ÙĨ": 36145, + "Ġdisclose": 36146, + "ĠElijah": 36147, + "ĠλÎŃ": 36148, + "ĠQuer": 36149, + "بÙĦ": 36150, + "ãĤ¡": 36151, + "Tell": 36152, + "arle": 36153, + "ÑĸÑĢ": 36154, + "Ġaugmented": 36155, + "Ġë¹ĦìĬ·": 36156, + "Ġandroid": 36157, + "त": 36158, + "arma": 36159, + "Ġszer": 36160, + "geord": 36161, + "Ġgeek": 36162, + "Ġyeux": 36163, + "Ġpong": 36164, + "ĠãģĿãģĨ": 36165, + "Ġtortured": 36166, + "ĠBath": 36167, + "zig": 36168, + "asonable": 36169, + "Ġnets": 36170, + "Ġbaru": 36171, + "ĠFlat": 36172, + "ĠVater": 36173, + "ĠTerror": 36174, + "ĠAvo": 36175, + "Ġceremonies": 36176, + "roe": 36177, + "Ùģس": 36178, + "Ops": 36179, + "Ġhyvin": 36180, + "Ġapresent": 36181, + "olor": 36182, + "ĠигÑĢÑĭ": 36183, + "orton": 36184, + "Ġê·¸ëŀ¬": 36185, + "Ġlookin": 36186, + "ĠTY": 36187, + "ĠMint": 36188, + "Add": 36189, + "Ġmite": 36190, + "ĠSmoke": 36191, + "Ġnota": 36192, + "Ġmoss": 36193, + "ĠAbend": 36194, + "Ġ컨": 36195, + "Ġexaggerated": 36196, + "fires": 36197, + "Ġredist": 36198, + "ffiti": 36199, + "Ġopenness": 36200, + "ê°IJìĿ´": 36201, + "endeu": 36202, + "енной": 36203, + "Watch": 36204, + "Ġavatar": 36205, + "ĠPey": 36206, + "urun": 36207, + "Ġsenza": 36208, + "Ġì§ĢìĹŃ": 36209, + "ĠNatomiast": 36210, + "Ġemergence": 36211, + "rays": 36212, + "Ġcrafted": 36213, + "gary": 36214, + "ãģłãģij": 36215, + "üng": 36216, + "-\"": 36217, + "Ġhacked": 36218, + "Ġstray": 36219, + "encie": 36220, + "emo": 36221, + "Ġcomen": 36222, + "ĠKız": 36223, + "ĠJasmine": 36224, + "ĠHindi": 36225, + "manas": 36226, + "Ġinfinitely": 36227, + "emon": 36228, + "ìĿ¸ëį°ìļĶ": 36229, + "jak": 36230, + "Ġroaring": 36231, + "érique": 36232, + "sweise": 36233, + "ĠRolex": 36234, + "åł±å°İ": 36235, + "ĠStuart": 36236, + "bnb": 36237, + "Ġdiagnose": 36238, + "Ġcoherent": 36239, + "ĠMJ": 36240, + "æºĸåĤĻ": 36241, + "Ġpike": 36242, + "lav": 36243, + "Ġorchestral": 36244, + "аÑģÑĤи": 36245, + "Ġterminar": 36246, + "Ġgatherings": 36247, + "Ġcompliant": 36248, + "Ġupgrading": 36249, + "Ġregulator": 36250, + "Ġlanç": 36251, + "éĢ£": 36252, + "Ġmerchants": 36253, + "tawa": 36254, + "Ġmonitored": 36255, + "Ġrendre": 36256, + "两": 36257, + "Ġunterwegs": 36258, + "anguard": 36259, + "gard": 36260, + "ĠBelow": 36261, + "duino": 36262, + "ĠЦе": 36263, + "Ġimpedance": 36264, + "ìľ¡": 36265, + "份": 36266, + "Ġaktuell": 36267, + "ĠVatic": 36268, + "åŃ©": 36269, + "Ġstewards": 36270, + "Ġbrightest": 36271, + "Ġkenn": 36272, + "Ġkau": 36273, + "ĠMatrix": 36274, + "ĠBark": 36275, + "ĠðŁij": 36276, + "Ġtaper": 36277, + "Ġcasino": 36278, + "ר×Ķ": 36279, + "ysical": 36280, + "Ġbuilders": 36281, + "ĠczÅĤowie": 36282, + "ĠNepal": 36283, + "Ġ!\"": 36284, + "Ġterme": 36285, + "Ġinnych": 36286, + "Ġmaths": 36287, + "Ġdrafted": 36288, + "ĠBalk": 36289, + "Ġhesitant": 36290, + "Ġvoltar": 36291, + "Ġrevive": 36292, + "ĠÑĦилÑĮма": 36293, + "Ġassassin": 36294, + "ĠSolutions": 36295, + "Ġduel": 36296, + "Ġbearings": 36297, + "à¸Ħะ": 36298, + "Ġrookie": 36299, + "ikat": 36300, + "Ġbiscuits": 36301, + "Ġcords": 36302, + "ÑĥваÑĤи": 36303, + "ARIN": 36304, + "Ġprogressing": 36305, + "ĠGir": 36306, + "Ġpenetrate": 36307, + "ĠStorage": 36308, + "eight": 36309, + "ĠÑĤÑĢÑĥ": 36310, + "ĠdonÃŃt": 36311, + "Ġsizin": 36312, + "Ġoutdated": 36313, + "ĠнаÑĪи": 36314, + "Ġaffir": 36315, + "Ġspoons": 36316, + "Ġoni": 36317, + "Ġflank": 36318, + "ĠGol": 36319, + "hã": 36320, + "Ġpéri": 36321, + "Ġhonorable": 36322, + "ĠBreathe": 36323, + "scenes": 36324, + "Ġobviamente": 36325, + "икÑģ": 36326, + "Ġש×ŀ×": 36327, + "Ġsmoothie": 36328, + "ŀĪë": 36329, + "Ġdime": 36330, + "ĠíĸĪìĸ´ìļĶ": 36331, + "Ġappel": 36332, + "ĠCatholics": 36333, + "Ġsingles": 36334, + "Ġlaten": 36335, + "Ġçünkü": 36336, + "ĠVader": 36337, + "æıĽ": 36338, + "Ġvardı": 36339, + "ĠIstanbul": 36340, + "gré": 36341, + "ĠElsa": 36342, + "ël": 36343, + "Ġinvece": 36344, + "Ġcrane": 36345, + "Ġobe": 36346, + "ĠShark": 36347, + "Ġsmack": 36348, + "Ġrestoring": 36349, + ".\\": 36350, + "Ġë¹łë": 36351, + "Ġfaded": 36352, + "umbers": 36353, + "Singing": 36354, + "Ġdepressing": 36355, + "thest": 36356, + "ĠWahr": 36357, + "Ġmultitude": 36358, + "ÑĢавÑģÑĤвÑĥйÑĤе": 36359, + "rijk": 36360, + "eka": 36361, + "Ġcompletes": 36362, + "ĠWells": 36363, + "Ġroy": 36364, + "ĠPray": 36365, + "ĠKalau": 36366, + "izin": 36367, + "iaÅĤem": 36368, + "Ġlocom": 36369, + "ĠNashville": 36370, + "ĠPentagon": 36371, + "미": 36372, + "ĠNEW": 36373, + "ÄħÄĩ": 36374, + "ÃŃss": 36375, + "Ġmarrying": 36376, + "Ġfeud": 36377, + "íĻķ": 36378, + "æĢ¥": 36379, + ")!": 36380, + "ĠOperations": 36381, + "ÑĥÑĶ": 36382, + "Ġmoje": 36383, + "Ġinstructed": 36384, + "ĠëĪĦ구": 36385, + "Ġ×Ķ×Ĵ": 36386, + "ĠпомоÑīÑĮÑİ": 36387, + "Ġsabia": 36388, + "ìķĺìĸ´ìļĶ": 36389, + "plane": 36390, + "pri": 36391, + "ĠполноÑģÑĤÑĮÑİ": 36392, + "ĠKitty": 36393, + "Ġpróprio": 36394, + "edere": 36395, + "Ġinteresante": 36396, + "Ġде": 36397, + "Ġcondensed": 36398, + "Ġavent": 36399, + "TOR": 36400, + "Ġgreasy": 36401, + "ARK": 36402, + "orta": 36403, + "AJ": 36404, + "Ġdisreg": 36405, + "Ġcorrections": 36406, + "Ġstero": 36407, + "Ġinfluenza": 36408, + "Ġdesses": 36409, + "Ġballots": 36410, + "Ġmeget": 36411, + "Ġmafia": 36412, + "Ġböl": 36413, + "nost": 36414, + "ĠÑģÑĤаÑĤÑĮ": 36415, + "Ġresponder": 36416, + "Ġhinten": 36417, + "grav": 36418, + "à¸Ńะ": 36419, + "ynchron": 36420, + "Ġviens": 36421, + "Ġsamo": 36422, + "Ġdt": 36423, + "pannt": 36424, + "ĠÅĽwiat": 36425, + "ĠзапиÑģ": 36426, + "Ġmerged": 36427, + "Ġkep": 36428, + "Ġmisleading": 36429, + "Ġdigamos": 36430, + "Ġammon": 36431, + "è¾Ľ": 36432, + "chet": 36433, + "Ġê°Ģìł¸": 36434, + "Ġuni": 36435, + "ĠëIJĺëĬĶëį°": 36436, + "ĠнапÑĢав": 36437, + "ĠкоÑĤоÑĢого": 36438, + "Ġanimate": 36439, + "×ķ×IJ×": 36440, + "еÑĢв": 36441, + "Ġminced": 36442, + "Ġkaum": 36443, + "ãģĤãģģ": 36444, + "ÏĢε": 36445, + "лег": 36446, + "existing": 36447, + "Ġplataform": 36448, + "ĠKRIS": 36449, + "ìĽł": 36450, + "ĠFamilien": 36451, + "ĠLibya": 36452, + "Ġbiodiversity": 36453, + "Ġidiots": 36454, + "irdi": 36455, + "Ġszyb": 36456, + "ĠRolling": 36457, + "ücht": 36458, + "ĠÑĥдив": 36459, + "ÑģÑĥд": 36460, + "Ġrealizar": 36461, + "Ġcanned": 36462, + "ĠÑĢан": 36463, + "Ġmetabolic": 36464, + "ĠBeef": 36465, + "Ġkilka": 36466, + "лÑİÑģ": 36467, + "Ġregistry": 36468, + "моÑĤÑĢиÑĤе": 36469, + "Ġvielä": 36470, + "Ġodc": 36471, + "Ġcondemned": 36472, + "æ©ĭ": 36473, + "fal": 36474, + "ĠDil": 36475, + "woÅĽci": 36476, + "Aw": 36477, + "Ġstatistically": 36478, + "Ġsogen": 36479, + "ĠBETH": 36480, + "Ġshaving": 36481, + "幸": 36482, + "ocal": 36483, + "ĠFunny": 36484, + "Ġpeacefully": 36485, + "Ġaddictive": 36486, + "ĠInsert": 36487, + "lauf": 36488, + "Ġexperiencia": 36489, + "é¦ĸåħĪ": 36490, + "иÑĤелÑı": 36491, + "ÃŃgen": 36492, + "ágina": 36493, + "Ġabdomen": 36494, + "íķľëĭ¤": 36495, + "icus": 36496, + "imana": 36497, + "ìį¨": 36498, + "arching": 36499, + "Ġkonkret": 36500, + "ìķĺë": 36501, + "ека": 36502, + "oufl": 36503, + "ivel": 36504, + "Ġnude": 36505, + "ètres": 36506, + "Ġmonsieur": 36507, + "Ġclash": 36508, + "Ġtherapists": 36509, + "Ġcubed": 36510, + "Ġretrouver": 36511, + "Ġwaveform": 36512, + "Ġpotem": 36513, + "ĠFormer": 36514, + "isión": 36515, + "åºľ": 36516, + "Ġ×IJ×Ŀ": 36517, + "undos": 36518, + "ĠMeinung": 36519, + "صÙĦ": 36520, + "ĠJude": 36521, + "ĠnÃ¥r": 36522, + "ĠLeonardo": 36523, + "ĠCristo": 36524, + "ĠGOT": 36525, + "ÑģÑĤÑĢÑĥк": 36526, + "LAN": 36527, + "ĠgÃ¥ng": 36528, + "Ġdéb": 36529, + "ĠFrankfurt": 36530, + "Ġcrappy": 36531, + "Ġlil": 36532, + "année": 36533, + "ĠмеÑģÑĤе": 36534, + "RET": 36535, + "ĠNer": 36536, + "ĠCOSTA": 36537, + "Ġjedem": 36538, + "Ġcurtains": 36539, + "Ġiterations": 36540, + "Ġunav": 36541, + "Ġplaque": 36542, + "orum": 36543, + "Ġζ": 36544, + "Ġnúmeros": 36545, + "Ġdesap": 36546, + "²½": 36547, + "Ġcompiled": 36548, + "Ġrefle": 36549, + "Ġrankings": 36550, + "Ġrepaired": 36551, + "ĠÐĿапÑĢ": 36552, + "Ġdownloads": 36553, + "Ġarmour": 36554, + "Ġ×Ļ×ķתר": 36555, + "Ġlongevity": 36556, + "ĠTONER": 36557, + "ĠкомменÑĤаÑĢ": 36558, + "Ġczego": 36559, + "Ġnotify": 36560, + "Ġairports": 36561, + "Ġenduring": 36562, + "lette": 36563, + "Ġapparat": 36564, + "Ġhabil": 36565, + "á»ĩc": 36566, + "nad": 36567, + "ICO": 36568, + "ĠBrah": 36569, + "Ġsegún": 36570, + "Ġgovernors": 36571, + "kaha": 36572, + "ĠSchluss": 36573, + "Ġodpowied": 36574, + "irting": 36575, + "Ġrempl": 36576, + "ĠAboriginal": 36577, + "identally": 36578, + "Ġenhancing": 36579, + "licting": 36580, + "ĠHawaiian": 36581, + "Ġstriving": 36582, + "ĠNiet": 36583, + "Ġznaczy": 36584, + "Ġobedience": 36585, + "ĠnÃ¥got": 36586, + "Ġexpired": 36587, + "Ġ1918": 36588, + "presented": 36589, + "Ġprowad": 36590, + "ĠTerr": 36591, + "ĠPrinceton": 36592, + "Ġmorgen": 36593, + "Ġattracting": 36594, + "ĠSigma": 36595, + "igner": 36596, + "ĠRechts": 36597, + "ĠPeki": 36598, + "Ġmethy": 36599, + "Ġhamm": 36600, + "Ġdireito": 36601, + "Ġdelegation": 36602, + "иваÑİÑĤ": 36603, + "Ġgin": 36604, + "Young": 36605, + "Ġdependencies": 36606, + "ĠBradley": 36607, + "buds": 36608, + "Ġfis": 36609, + "Ġpytanie": 36610, + "Ġinterconnected": 36611, + "Ġembaixo": 36612, + "ĠSas": 36613, + "Ġruh": 36614, + "ĠSicht": 36615, + "Sur": 36616, + "Ġsuperb": 36617, + "ĠSabbath": 36618, + "ĠDanger": 36619, + "kol": 36620, + "Ġhou": 36621, + "supp": 36622, + "ĠNacional": 36623, + "Ġsuccession": 36624, + "Ġvá": 36625, + "ĠMaÃŁnahmen": 36626, + "ĠJessie": 36627, + "ĠIdaho": 36628, + "forest": 36629, + "ħĺ": 36630, + "Ġ×ŀ×ĵ": 36631, + "ĠØ£ÙĬ": 36632, + "Ġsweetheart": 36633, + "Ġneatly": 36634, + "ĠEvangel": 36635, + "곡": 36636, + "ĠSuite": 36637, + "ública": 36638, + "ĠÑĥли": 36639, + "ĠAnnouncer": 36640, + "ligh": 36641, + "Ġsensations": 36642, + "Ġshelters": 36643, + "Ġhart": 36644, + "Ġsqueezing": 36645, + "ĠRivers": 36646, + "ĠCooking": 36647, + "ì±ħ": 36648, + "personal": 36649, + "Ġmanos": 36650, + "ÑijÑĤÑģÑı": 36651, + "wij": 36652, + "Ġgogg": 36653, + "ĠMilli": 36654, + "ĠFP": 36655, + "ünst": 36656, + "ĠLS": 36657, + "Ġspraying": 36658, + "Ġfaux": 36659, + "Ġautograph": 36660, + "ologic": 36661, + "Ġtorment": 36662, + "Ġencrypted": 36663, + "á»ħ": 36664, + "Ġestre": 36665, + "ç¹¼": 36666, + "à±": 36667, + "Ġstumbled": 36668, + "Ġaider": 36669, + "Ġsaben": 36670, + "xter": 36671, + "ĠCities": 36672, + "ĠTürk": 36673, + "ëĭ¥": 36674, + "chine": 36675, + "Ġtopping": 36676, + "Ġpoisoned": 36677, + "ĠRomania": 36678, + "×ĵ×Ļ": 36679, + "Ģë¡ľ": 36680, + "ĠпоÑĢÑıд": 36681, + "Ġchirping": 36682, + "ĠìĻĦë": 36683, + "×ij×¢": 36684, + "Ġcuanto": 36685, + "Ġdonating": 36686, + "ĠRegent": 36687, + "ĠBeruf": 36688, + "Ġdistracting": 36689, + "Ġstamina": 36690, + "ĠDarren": 36691, + "Ġì¶ķ": 36692, + "lists": 36693, + "dal": 36694, + "chuss": 36695, + "Ġeconomist": 36696, + "ãģĪãĥ¼": 36697, + "orgt": 36698, + "Ġistiyorum": 36699, + "è¿Ľ": 36700, + "ĠSurprise": 36701, + "ĠHao": 36702, + "Ġìµľê³ł": 36703, + "ĠGW": 36704, + "ĠInner": 36705, + "Ġquieren": 36706, + "Ġminded": 36707, + "Ġsupercomputer": 36708, + "Ġdiagrams": 36709, + "íĬľë": 36710, + "ê²łìĸ´": 36711, + "ĠобÑĬÑıÑģ": 36712, + "Ġestaban": 36713, + "Ġdestroys": 36714, + "ĠBreaking": 36715, + "ĠkarÄ±ÅŁ": 36716, + "Ġrebuilding": 36717, + "ľëĮĢ": 36718, + "ливо": 36719, + "ĠSauce": 36720, + "ĠFusion": 36721, + "×ķ×ŀ×": 36722, + "ĠQuinn": 36723, + "Ġgauche": 36724, + "ĠÙĪØ£": 36725, + "ĠÈ": 36726, + "çĵľ": 36727, + "Ġtechno": 36728, + "Ġdispatch": 36729, + "ĠaÅŁk": 36730, + "Ġeinzel": 36731, + "ĠGmail": 36732, + "çŀ": 36733, + "Ġê°ľìĿ¸": 36734, + "ĠÑģемÑĮ": 36735, + "Ġjourneys": 36736, + "Ġiht": 36737, + "Ġfibre": 36738, + "Ġdramas": 36739, + "ouched": 36740, + "Ġrename": 36741, + "ĠопеÑĢ": 36742, + "Ġpoo": 36743, + "ĠDru": 36744, + "ĠиÑĤог": 36745, + "Ġzast": 36746, + "Ġcoz": 36747, + "Ġzucch": 36748, + "Ġobtaining": 36749, + "Ġcommute": 36750, + "Ġsubmer": 36751, + "ĠVish": 36752, + "ĠRabb": 36753, + "ogg": 36754, + "Ġhut": 36755, + "íĸĪìĸ´": 36756, + "æ¯Ķå¦Ĥ": 36757, + "eremi": 36758, + "Ġμα": 36759, + "Ġdiskut": 36760, + "ĠбÑĥк": 36761, + "Ġimpaired": 36762, + "depend": 36763, + "ĠÙĪا": 36764, + "ĠÑĢÑĥк": 36765, + "ĠбаÑĢ": 36766, + "Ġoxidation": 36767, + "Ġsituação": 36768, + "ÉĻn": 36769, + "ução": 36770, + "Ġsagte": 36771, + "ĠSER": 36772, + "ĠCake": 36773, + "Ġturmeric": 36774, + "ĠKak": 36775, + "bung": 36776, + "ĠKá¹Ľá¹£á¹ĩa": 36777, + "Ġpoisoning": 36778, + "Ġslipping": 36779, + "ĠSays": 36780, + "å°±åı¯ä»¥": 36781, + "òng": 36782, + "çŁ³": 36783, + "«": 36784, + "ĠClaudia": 36785, + "ĠCharacter": 36786, + "ниÑĨ": 36787, + "coat": 36788, + "Ġprogressed": 36789, + "ĠFergus": 36790, + "Ġìĺ¤ëĬ": 36791, + "Ġoat": 36792, + "ordable": 36793, + "ĠLey": 36794, + "ĠHeraus": 36795, + "Ġresultados": 36796, + "ĠKayla": 36797, + "Ġriff": 36798, + "Ġchegou": 36799, + "Ġxi": 36800, + "Ġspacious": 36801, + "Ġrecognised": 36802, + "Ġech": 36803, + "ĠTie": 36804, + "Ġlauncher": 36805, + "Jim": 36806, + "Ġsuppression": 36807, + "ĠImpossible": 36808, + "Ġguitars": 36809, + "ĠFourier": 36810, + "иÑĩеÑģкий": 36811, + "ĠTherap": 36812, + "ĠKaf": 36813, + "centered": 36814, + "ĠÑģооÑĤвеÑĤ": 36815, + "Ġklim": 36816, + "Ġcarbohydrates": 36817, + "ignant": 36818, + "ĠAstron": 36819, + "Ġemple": 36820, + "Ġdrastic": 36821, + "ĠмиÑĢе": 36822, + "вин": 36823, + "uw": 36824, + "Ġprettier": 36825, + "Ġdonuts": 36826, + "ĠAthena": 36827, + "Ġdissert": 36828, + "Ġplante": 36829, + "Ġuranium": 36830, + "ìĿĮë": 36831, + "aré": 36832, + "Ġrzecz": 36833, + "Ġdisplaying": 36834, + "æĪ²": 36835, + "Ġsarc": 36836, + "rão": 36837, + "Ġtampoco": 36838, + "Ġphilosophers": 36839, + "ĠRecht": 36840, + "æĵļ": 36841, + "Ġcomentarios": 36842, + "yse": 36843, + "Ġìľ¤": 36844, + "Ġmise": 36845, + "ĠGin": 36846, + "Ġном": 36847, + "ĠFROM": 36848, + "liner": 36849, + "atif": 36850, + "ĠspoÅĤec": 36851, + "xa": 36852, + "ĠÑĤÑĢÑĥд": 36853, + "Ġwag": 36854, + "기ìĹIJ": 36855, + "ĠMG": 36856, + "Ġoffspring": 36857, + "ĠUnderstanding": 36858, + "åıªæĺ¯": 36859, + "ORA": 36860, + "Ġwhirring": 36861, + "Ġsurrend": 36862, + "Ġpoker": 36863, + "Ġmonuments": 36864, + "ĠâĻ©": 36865, + "Ġorganised": 36866, + "ĠSozial": 36867, + "ĠFactory": 36868, + "Ñħа": 36869, + "Ġresemble": 36870, + "зд": 36871, + "Ġexplosions": 36872, + "Ġpayroll": 36873, + "Ġomn": 36874, + "ĠJorge": 36875, + "ιÏĥ": 36876, + "Ġfracture": 36877, + "Ġpersecution": 36878, + "Ġdemais": 36879, + "ECH": 36880, + ",)": 36881, + "Ġcriar": 36882, + "ĠJOSH": 36883, + "Ġdemographics": 36884, + "Ġ1600": 36885, + "Ġcurrencies": 36886, + "ĠTips": 36887, + "ĠéĢĻåĢĭ": 36888, + "ĠRefer": 36889, + "ĠDancing": 36890, + "Ġinconsistent": 36891, + "Ġdeh": 36892, + "Ġimmens": 36893, + "Ġmeist": 36894, + "Ġimpatient": 36895, + "Ġbehaves": 36896, + "æĿ¾": 36897, + "ĠëĤ´ìļ©": 36898, + "Ġbackstory": 36899, + "Ġagreeing": 36900, + "ĠÅģ": 36901, + "ihin": 36902, + "Ġtemperatura": 36903, + "ĠBackground": 36904, + "Ġnutzen": 36905, + "Ġëħ¹": 36906, + "ĠMänner": 36907, + "Ġcollaborations": 36908, + "ĠKos": 36909, + "éģİåİ»": 36910, + "Ġnightmares": 36911, + "ëĵ±": 36912, + "ĠQueensland": 36913, + "Ġassociates": 36914, + "ĠKok": 36915, + "Ġfactorial": 36916, + "ĠHyung": 36917, + "Ġê·¸ëĭ¤ìĿĮ": 36918, + "Ġfilho": 36919, + "Ġelét": 36920, + "Ġíĸīë³µ": 36921, + "°±": 36922, + "Ġgefunden": 36923, + "Ġsemicondu": 36924, + "Ġcounselors": 36925, + "ĠUpper": 36926, + "ĠAub": 36927, + "ickers": 36928, + "Ver": 36929, + "Ġnorthwest": 36930, + "ĠMaintenant": 36931, + "ĠLakes": 36932, + "аÑıв": 36933, + "inté": 36934, + "ì°½": 36935, + "Ġгаз": 36936, + "Ġgiorn": 36937, + "Ġdigitally": 36938, + "ĠCircuit": 36939, + "ì¼Ģ": 36940, + "ãĤĬãģ¾ãģĹãģŁ": 36941, + "Ġcheerful": 36942, + "ĠPeterson": 36943, + "ĠDanish": 36944, + "ativos": 36945, + "Ġliken": 36946, + "Ġharbor": 36947, + "алиÑģÑĤ": 36948, + "xe": 36949, + "Ġcurls": 36950, + "ĠRhod": 36951, + "End": 36952, + "ĠET": 36953, + "Ġacquaint": 36954, + "ĠKelvin": 36955, + "Ġtrif": 36956, + "ĠAway": 36957, + "ìŀIJëĬĶ": 36958, + "vs": 36959, + "Ġpágina": 36960, + "Ġinlet": 36961, + "ĠSantos": 36962, + "Ġìļ°ìĻĢ": 36963, + "Ġyapıyorsun": 36964, + "theme": 36965, + "Ġsouff": 36966, + "Ġinjected": 36967, + "Ġpóźniej": 36968, + "iverso": 36969, + "amped": 36970, + "Ġdaher": 36971, + "Ġdagger": 36972, + "ĠлÑİбим": 36973, + "Ġtummy": 36974, + "Ġenlightened": 36975, + "cents": 36976, + "ĠDah": 36977, + "Ġcuest": 36978, + "ä¾Ĩ說": 36979, + "ILY": 36980, + "Ġ×ijר": 36981, + "Ġbanging": 36982, + "ĠEmil": 36983, + "ĠCler": 36984, + "ĠBorder": 36985, + "ижÑĥ": 36986, + "Ġpresenters": 36987, + "ĠSTUD": 36988, + "coins": 36989, + "ĠíĻį": 36990, + "Ġperks": 36991, + "Ġparap": 36992, + "Ġcertaines": 36993, + "ĠLore": 36994, + "öst": 36995, + "ĠMARTIN": 36996, + "Ġbios": 36997, + "Ġwhereby": 36998, + "verts": 36999, + "ĠMiranda": 37000, + "Ġstip": 37001, + "澤": 37002, + "andez": 37003, + "׼׾": 37004, + "ujin": 37005, + "Ġê¾": 37006, + "Ġallergies": 37007, + "plate": 37008, + "Ġyapıl": 37009, + "Ġundertake": 37010, + "ĠëĤĺê°Ģ": 37011, + "Part": 37012, + "Ġkızım": 37013, + "hguru": 37014, + "ãģĤãģ¨": 37015, + "ĠJohns": 37016, + "Ġeyelashes": 37017, + "Ġdrained": 37018, + "ĠstÃ¥r": 37019, + "ãģĤãĤĬãģ¾ãģĻ": 37020, + "ĠJade": 37021, + "Ġcalend": 37022, + "film": 37023, + "Ġmesa": 37024, + "Ġludzie": 37025, + "Ġattracts": 37026, + "Ġjuices": 37027, + "Ġкил": 37028, + "Ġnieuwe": 37029, + "Ġmencion": 37030, + "Ġignition": 37031, + "Ġbladder": 37032, + "andaag": 37033, + "ĠExtension": 37034, + "íĤ¨": 37035, + "feed": 37036, + "ĠÙĪÙĩ": 37037, + "Ġspun": 37038, + "Ġtät": 37039, + "оÑĢоÑĤ": 37040, + "tyard": 37041, + "ronics": 37042, + "ĠHuge": 37043, + "Ñĥжд": 37044, + "string": 37045, + "Ġunjust": 37046, + "Ġprawn": 37047, + "Ġfrosting": 37048, + "Ġdisappearance": 37049, + "iosa": 37050, + "Ġcardi": 37051, + "ĠPriest": 37052, + "ĠcientÃŃfic": 37053, + "åĵªè£¡": 37054, + "ĠÐĴаÑģ": 37055, + "Ġë¶Ģíĥģ": 37056, + "Ġthieves": 37057, + "Ġphysique": 37058, + "ĠEugene": 37059, + "Ġблиз": 37060, + "Ġmonopoly": 37061, + "Ġbiography": 37062, + "ĠhoÅŁ": 37063, + "Ġtö": 37064, + "mac": 37065, + "Ġshocks": 37066, + "ìĦ¸ë": 37067, + "hit": 37068, + "Ġsnug": 37069, + "Ġincl": 37070, + "Ġdedic": 37071, + "Ġultras": 37072, + "ĠизвеÑģÑĤ": 37073, + "Ġutilization": 37074, + "ĠÑģовеÑĢÑĪенно": 37075, + "Ġservi": 37076, + "stag": 37077, + "180": 37078, + "Ġsewer": 37079, + "ĠChoice": 37080, + "Ġdischarged": 37081, + "ĠJD": 37082, + "олеÑĤ": 37083, + "ĠкваÑĢÑĤи": 37084, + "Ġtelescop": 37085, + "ĠJeÅĽli": 37086, + "ĠNana": 37087, + "cale": 37088, + "ĠÑĤон": 37089, + "mmm": 37090, + "äºĨåIJ§": 37091, + "Ġgehabt": 37092, + "ëĤł": 37093, + "æĬķ": 37094, + "à¸Ļà¸Ļ": 37095, + "Ġether": 37096, + "Ġzen": 37097, + "Ġresearched": 37098, + "ĠCzyli": 37099, + "å®Įåħ¨": 37100, + "workers": 37101, + "Ġ경찰": 37102, + "Ġsheriff": 37103, + "allo": 37104, + "Ġtipos": 37105, + "Ġprosecution": 37106, + "Ġfrogs": 37107, + "Ġfalt": 37108, + "jd": 37109, + "ĠíĮĶ": 37110, + "Ġfiltered": 37111, + "ĠOft": 37112, + "Ġìį": 37113, + "Ġdisfr": 37114, + "ĠMustang": 37115, + "Ġwoah": 37116, + "ĠREALLY": 37117, + "Ġмогли": 37118, + "Ġentrada": 37119, + "ĠигÑĢа": 37120, + "Ġmixes": 37121, + "ĠавÑĤомоб": 37122, + "ÐĻ": 37123, + "Ġshin": 37124, + "Ġparanormal": 37125, + "Ġsomeplace": 37126, + "Ġdishon": 37127, + "etaan": 37128, + "Ġfuerte": 37129, + "Ù¹": 37130, + "Ġdoom": 37131, + "ìĪľ": 37132, + "Ġexistential": 37133, + "Ġbuld": 37134, + "ĠSDK": 37135, + "ĠпÑĢавда": 37136, + "Ġturnover": 37137, + "ĠìĹ¬ê¸°ìĹIJ": 37138, + "Ġह": 37139, + "Ġmodeled": 37140, + "Ġbugün": 37141, + "Ġexperimentation": 37142, + "Ġmornings": 37143, + "Ġmedo": 37144, + "Stevie": 37145, + "Ġplayable": 37146, + "Ġairlines": 37147, + "gments": 37148, + "Ġ기ë¶Ħ": 37149, + "ĠTomb": 37150, + "ĠMVP": 37151, + "AUDIENCE": 37152, + "Ġcheckout": 37153, + "Ġpasst": 37154, + "Ġbeispiel": 37155, + "ĠLinks": 37156, + "heavy": 37157, + "Ġquestionable": 37158, + "Ġìĵ°ë": 37159, + "Ġsill": 37160, + "Ġmanipulated": 37161, + "ĠLoren": 37162, + "Ġìľ¼": 37163, + "Ġverge": 37164, + "ák": 37165, + "IES": 37166, + "Ġsabot": 37167, + "ĠCustomer": 37168, + "ależy": 37169, + "Ġnominee": 37170, + "ĠGad": 37171, + "Ġnouvelles": 37172, + "ĠSPE": 37173, + "istling": 37174, + "Ġoval": 37175, + "обÑĢаж": 37176, + "ifty": 37177, + "éĩİ": 37178, + "Ġbezel": 37179, + "yet": 37180, + "Ġfreight": 37181, + "ĠHanım": 37182, + "rÃŃa": 37183, + "Ġzoning": 37184, + "Ġindem": 37185, + "ĠBü": 37186, + "Ġfeminism": 37187, + "Ġvoix": 37188, + "Ġoficial": 37189, + "Ġdiyorum": 37190, + "»IJ": 37191, + "Ġarose": 37192, + "Ġparar": 37193, + "ìĿ¸ì§Ģ": 37194, + "ĠMartine": 37195, + "ĠLect": 37196, + "Ġrester": 37197, + "Ġdrowning": 37198, + "uya": 37199, + "cida": 37200, + "ĠAriel": 37201, + "Ġ02": 37202, + "Ġ×Ķ×Ķ": 37203, + "ç´ł": 37204, + "ĠWert": 37205, + "ТÑĭ": 37206, + "Ġwidow": 37207, + "Ġparchment": 37208, + "Ġcottage": 37209, + "ĠXL": 37210, + "ĠSlack": 37211, + "ĠNES": 37212, + "Ġrobe": 37213, + "Ġgimm": 37214, + "Ġcaminho": 37215, + "ĠHarper": 37216, + "Ġcitrus": 37217, + "Ġfirefighters": 37218, + "Ġdopamine": 37219, + "elets": 37220, + "Ġdemocrat": 37221, + "ìłľë¡ľ": 37222, + "Ġplayback": 37223, + "oj": 37224, + "ĠпÑĢок": 37225, + "ĠSullivan": 37226, + "semble": 37227, + "ĠWorth": 37228, + "ĠMustafa": 37229, + "าร": 37230, + "Ġmets": 37231, + "éĸĢ": 37232, + "лоÑģÑĮ": 37233, + "Ġinertia": 37234, + "Ġuniforms": 37235, + "足": 37236, + "ério": 37237, + "×ķר×Ķ": 37238, + "ént": 37239, + "Ġà®Ĵ": 37240, + "ĠÑģамÑĭÑħ": 37241, + "Ġvoulais": 37242, + "ĠZimmer": 37243, + "ê²łë": 37244, + "ĠноÑģ": 37245, + "encias": 37246, + "Ġrelación": 37247, + "Ġ걸ë": 37248, + "Ġfaction": 37249, + "Ġgosp": 37250, + "полож": 37251, + "nap": 37252, + "hak": 37253, + "Ġproceedings": 37254, + "ĠìĨĶ": 37255, + "ìķĦëĭĪ": 37256, + "ĠìŀIJ기": 37257, + "Ġwerd": 37258, + "Ġsof": 37259, + "Ġschlim": 37260, + "Ġflavored": 37261, + "Ġquadratic": 37262, + "ĠBoot": 37263, + "Ġpublicity": 37264, + "ĠCaro": 37265, + "Ġ?\"": 37266, + "ниÑĨа": 37267, + "mania": 37268, + "ĠSUR": 37269, + "ĠBUR": 37270, + "lance": 37271, + "ética": 37272, + "Ġzobaczy": 37273, + "Ġtrio": 37274, + "sama": 37275, + "ĠtaÅŁ": 37276, + "Ġasymm": 37277, + "resser": 37278, + "Ġتع": 37279, + "ĠпеÑģ": 37280, + "Ġbeginnings": 37281, + "ladım": 37282, + "ĠбÑĭÑģÑĤÑĢ": 37283, + "Ġmoo": 37284, + "ĠGeneva": 37285, + "Ġåľ¨": 37286, + "erus": 37287, + "borah": 37288, + "Ġrefusing": 37289, + "bull": 37290, + "ĠWaiting": 37291, + "ĠIndividual": 37292, + "Ġanonym": 37293, + "imens": 37294, + "Ġmedidas": 37295, + "Ġfragrant": 37296, + "Ġdirectement": 37297, + "ĠìķĦë§Ī": 37298, + "uria": 37299, + "Ġspherical": 37300, + "Ġabge": 37301, + "ĠVictorian": 37302, + "Ġspectacle": 37303, + "ĠRodriguez": 37304, + "Ġocup": 37305, + "ĠNär": 37306, + "marks": 37307, + "ngulo": 37308, + "ĠLuci": 37309, + "Ġshouted": 37310, + "Ġregulators": 37311, + "ÄŁini": 37312, + "Ġdisent": 37313, + "ĠÑĢÑĭн": 37314, + "ëĤ¨": 37315, + "ĠìĤ´ë": 37316, + "Ġproblèmes": 37317, + "ĠFinger": 37318, + "assemble": 37319, + "Ġpear": 37320, + "Ġdroite": 37321, + "ĠEverywhere": 37322, + "tam": 37323, + "оÑĤив": 37324, + "вой": 37325, + "ordinate": 37326, + "ĠLak": 37327, + "ĠmỼi": 37328, + "ĠTelevision": 37329, + "Ġexponentially": 37330, + "avas": 37331, + "Ġblev": 37332, + "ĠMT": 37333, + "俺": 37334, + "Connell": 37335, + "ĠêµŃ민": 37336, + "ĠÑģвоим": 37337, + "Ġacha": 37338, + "ĠDynasty": 37339, + "Jin": 37340, + "Ġtore": 37341, + "Ġflor": 37342, + "Ġмногие": 37343, + "æ²Ĵäºĭ": 37344, + "owan": 37345, + "bah": 37346, + "Ġì£Ħ": 37347, + "ĠCela": 37348, + "Ġìµľê·¼": 37349, + "Ġpermettre": 37350, + "Ġabras": 37351, + "Ġverstehen": 37352, + "Ġescort": 37353, + "ĠThem": 37354, + "ärke": 37355, + "porter": 37356, + "Ġkahkaha": 37357, + "Ġhect": 37358, + "Ġdau": 37359, + "wah": 37360, + "olve": 37361, + "ĠAges": 37362, + "schaft": 37363, + "ĠStell": 37364, + "nelle": 37365, + "ĠEnsuite": 37366, + "ĠÐĴÑģем": 37367, + "Ġcréd": 37368, + "ĠPP": 37369, + "lords": 37370, + "grunting": 37371, + "Ġcontraction": 37372, + "Got": 37373, + "Ġacquiring": 37374, + "Ġsopr": 37375, + "Ġpoisonous": 37376, + "RNA": 37377, + "Ġanar": 37378, + "ĠHof": 37379, + "')": 37380, + "Ġremarkably": 37381, + "Ġinternacional": 37382, + "ücke": 37383, + "inqu": 37384, + "Ġduy": 37385, + "Ġbeasts": 37386, + "ĠLAN": 37387, + "Ġprecedent": 37388, + "ĠRPM": 37389, + "åij¨": 37390, + "Ġselon": 37391, + "Ġmorte": 37392, + "Ġcomeçou": 37393, + "Ñıла": 37394, + "Ġinterpreting": 37395, + "ĠBurke": 37396, + "ÑĤÑĢа": 37397, + "ĠìĿ´ëŁ¬": 37398, + "Ġpessim": 37399, + "ĠNok": 37400, + "íĮĿ": 37401, + "Female": 37402, + "Ġìĭ¤í": 37403, + "ĻĢ": 37404, + "Ġstimulation": 37405, + "Ġslick": 37406, + "Ġê°ĢëĬĶ": 37407, + "Ġказ": 37408, + "ĠHBO": 37409, + "Ġpapier": 37410, + "Ġkönnten": 37411, + "Ñĥбли": 37412, + "ĠConstant": 37413, + "SPEAKING": 37414, + "ĠktórÄħ": 37415, + "Ġcosmetics": 37416, + "ĠTrend": 37417, + "Ġrobbery": 37418, + "Ġtitt": 37419, + "Ġgjort": 37420, + "Ġdietary": 37421, + "łĮ": 37422, + "ĠKirby": 37423, + "ĠпÑĢимеÑĢно": 37424, + "Ġqualification": 37425, + "Ġìķī": 37426, + "Ġcabinets": 37427, + "Ġhttp": 37428, + "ĠErica": 37429, + "義": 37430, + "Ġdisadvantages": 37431, + "Ġchattering": 37432, + "yz": 37433, + "feit": 37434, + "Ġguild": 37435, + "ĠETF": 37436, + "ĠDragons": 37437, + "ĠHERE": 37438, + "venth": 37439, + "ÙĦاÙħ": 37440, + "Ġmarché": 37441, + "Dam": 37442, + "Ġphoton": 37443, + "Ġestable": 37444, + "Mag": 37445, + "Ġolhar": 37446, + "Ġcoupling": 37447, + "ĠHilfe": 37448, + "ĠWizard": 37449, + "Ġмало": 37450, + "help": 37451, + "ĠlÃŃnea": 37452, + "Ġì«": 37453, + "Ġstandalone": 37454, + "Ġmorale": 37455, + "Ġzweite": 37456, + "ãĤĪãĤįãģĹãģı": 37457, + "ährt": 37458, + "Ġdotted": 37459, + "Ġdripping": 37460, + "ĠFlag": 37461, + "éĿĴ": 37462, + "rocket": 37463, + "rategy": 37464, + "irim": 37465, + "Ġíķĺë©´ìĦľ": 37466, + "Ġsogenan": 37467, + "ĠUno": 37468, + "ĠSchutz": 37469, + "Ġestilo": 37470, + "ĠSubs": 37471, + "ĠDaisy": 37472, + "ÐĿеÑĤ": 37473, + "'...": 37474, + "Ġplatinum": 37475, + "Ġbirl": 37476, + "ĠSovi": 37477, + "Ġviolate": 37478, + "ÑĥеÑĤÑģÑı": 37479, + "rill": 37480, + "Ġtraz": 37481, + "Ġsnip": 37482, + "Ġcumpl": 37483, + "à¸Ńà¸ģ": 37484, + "Ġcuk": 37485, + "éħĴ": 37486, + "ĠParlament": 37487, + "Ġhypert": 37488, + "Ġpulp": 37489, + "Ġtongues": 37490, + "atto": 37491, + "Ġbusca": 37492, + "ihn": 37493, + "ERO": 37494, + "ĠÙĬع": 37495, + "Ġvarias": 37496, + "ĠMarian": 37497, + "Ġbounded": 37498, + "Ġpitching": 37499, + "Ġdeficiency": 37500, + "ĠBlessed": 37501, + "ĠExerc": 37502, + "uchs": 37503, + "ĠnhÆ°ng": 37504, + "æľ¬å½ĵ": 37505, + "Ġraped": 37506, + "hales": 37507, + "Ġmala": 37508, + "pic": 37509, + "Ġ401": 37510, + "ÅĽniej": 37511, + "arina": 37512, + "ëĵ¤ìĿĦ": 37513, + "otti": 37514, + "Ġдолго": 37515, + "Ġtracker": 37516, + "ĠShelby": 37517, + "Ġvanished": 37518, + "Ġbakery": 37519, + "Kapı": 37520, + "Jesus": 37521, + "ĠKR": 37522, + "JO": 37523, + "ħ¸": 37524, + "Ġdiscs": 37525, + "ìĦ¯": 37526, + "ì§Ģë": 37527, + "×Ļצ": 37528, + "emary": 37529, + "Kendra": 37530, + "Ġyük": 37531, + "ückt": 37532, + "Ġvaz": 37533, + "Ġkup": 37534, + "aktu": 37535, + "ĠÑģпаÑģибо": 37536, + "Ġaik": 37537, + "Ġnursery": 37538, + "Ġendangered": 37539, + "êmement": 37540, + "ematics": 37541, + "Ġresponders": 37542, + "ĠRepresentatives": 37543, + "Ġsculptures": 37544, + "igkeiten": 37545, + "Ġdepl": 37546, + "Ġinterpretations": 37547, + "Ġdeadlines": 37548, + "Ġ1942": 37549, + "ÃĹ": 37550, + "Ġsugars": 37551, + "emu": 37552, + "lively": 37553, + "Ġrecreational": 37554, + "Ġdistort": 37555, + "Ġunderscore": 37556, + "Ġunquote": 37557, + "Ġsafest": 37558, + "Ġswollen": 37559, + "Ġanalyses": 37560, + "Ġcommencé": 37561, + "妹": 37562, + "andin": 37563, + "ĠХоÑĢоÑĪо": 37564, + "Ġdiarr": 37565, + "ãģ¾ãģģ": 37566, + "ziest": 37567, + "Ġtoothbrush": 37568, + "éł»éģĵ": 37569, + "uations": 37570, + "Ġcade": 37571, + "Ġbacklash": 37572, + "hind": 37573, + "Ġrisque": 37574, + "zess": 37575, + "ĠìĿ´ìķ¼ê¸°": 37576, + "Ġesperar": 37577, + "Ġtranslations": 37578, + "ioned": 37579, + "groans": 37580, + "ĠпÑĥÑĤ": 37581, + "Ġgenetically": 37582, + "éĢł": 37583, + "Ġhappiest": 37584, + "Ġwerk": 37585, + "atoon": 37586, + "Ġmusi": 37587, + "Ġfunção": 37588, + "ĠìŀħëĭĪëĭ¤": 37589, + "ĠÑĢай": 37590, + "Ġbevor": 37591, + "BLANK": 37592, + "Ġrepentance": 37593, + "Put": 37594, + "Ġpotrzeb": 37595, + "Ġsala": 37596, + "Ġcampa": 37597, + "WER": 37598, + "ĠdecÃŃa": 37599, + "Ġsécurité": 37600, + "ĠAppreciate": 37601, + "Ñĩи": 37602, + "ĠRandom": 37603, + "ë³Ħ": 37604, + "kah": 37605, + "Ġmöj": 37606, + "Ġsäger": 37607, + "Ġ×Ļ׼×ķ׾": 37608, + "Ġ190": 37609, + "xtures": 37610, + "Eu": 37611, + "Ġgä": 37612, + "Ġ×ijת": 37613, + "ĠCroat": 37614, + "apo": 37615, + "PLE": 37616, + "Ġpersistence": 37617, + "åĬ©": 37618, + "Ġblends": 37619, + "Ġtreffen": 37620, + "ĠSantiago": 37621, + "ydia": 37622, + "aldo": 37623, + "ĠTensorFlow": 37624, + "ĠDual": 37625, + "ãĥľ": 37626, + "Ġchiff": 37627, + "ìĹ´": 37628, + "Ġcontracted": 37629, + "Ġsegreg": 37630, + "ĠFairy": 37631, + "Ġwisely": 37632, + "Ġvulnerabilities": 37633, + "Ġhandheld": 37634, + "Ġgadgets": 37635, + "ĠboÅŁ": 37636, + "ĠPopular": 37637, + "Ġcurvature": 37638, + "문": 37639, + "ĠMARY": 37640, + "ìĿ´ìĬ": 37641, + "Ġformulation": 37642, + "Ġcelery": 37643, + "Ġblurry": 37644, + "ĠTS": 37645, + "alez": 37646, + "Ġws": 37647, + "Ġprogramm": 37648, + "ĠStack": 37649, + "ĠJIM": 37650, + "овали": 37651, + "ıll": 37652, + "Ġpère": 37653, + "ĠKanye": 37654, + "ĠDelaware": 37655, + "Ġãģł": 37656, + "Ġdaunting": 37657, + "ĠбеÑģ": 37658, + "ĠStupid": 37659, + "big": 37660, + "fficial": 37661, + "Ġprecipitation": 37662, + "Ġplung": 37663, + "ục": 37664, + "burse": 37665, + "Ġdarle": 37666, + "Ġcripp": 37667, + "Ġpioneer": 37668, + "Ġdisput": 37669, + "Ġsean": 37670, + "ãģĵãĤĵãģª": 37671, + "Ġresistor": 37672, + "Ġallein": 37673, + "ipples": 37674, + "arel": 37675, + "Ġendors": 37676, + "zust": 37677, + "ĠÑĢебÑıÑĤа": 37678, + "eded": 37679, + "Ġì¹´ë©Ķë": 37680, + "Ġlleva": 37681, + "Ġkennt": 37682, + "Ġбал": 37683, + "ĠDocument": 37684, + "ĠKnights": 37685, + "Ġbuckle": 37686, + "Ġìī¬": 37687, + "Ġalk": 37688, + "ĠEveryday": 37689, + "atters": 37690, + "Ġtoilets": 37691, + "Ġjugar": 37692, + "ĠìŀĪì§Ģ": 37693, + "Ġgenauso": 37694, + "ĠLandesregierung": 37695, + "ãģ£ãģ±": 37696, + "ije": 37697, + "Ġtrailers": 37698, + "ĠTigers": 37699, + "Ġgitti": 37700, + "Ġforgiving": 37701, + "Ġconcurrent": 37702, + "ĠVu": 37703, + "ĠíĬ¹íŀĪ": 37704, + "ĠBROWN": 37705, + "ounded": 37706, + "\";": 37707, + "Ġtremb": 37708, + "Ġtiet": 37709, + "ĠÑĢежим": 37710, + "Ġnutshell": 37711, + "елиÑĩ": 37712, + "Ġlosers": 37713, + "ricting": 37714, + "Ġredeem": 37715, + "defined": 37716, + "Nice": 37717, + "Ġbroadband": 37718, + "KO": 37719, + "Ġteasing": 37720, + "Ġpartisan": 37721, + "ıma": 37722, + "Ġìŀ¬ë¯¸": 37723, + "ĠJourney": 37724, + "Ġslopes": 37725, + "uning": 37726, + "grunts": 37727, + "Ġtäll": 37728, + "Ġuncovered": 37729, + "ĠmyÅĽlÄĻ": 37730, + "ĠEsther": 37731, + "äºİ": 37732, + "ĠHealthy": 37733, + "Ġë°ij": 37734, + "rée": 37735, + "Ġpolarization": 37736, + "Ġflav": 37737, + "Ġcambiar": 37738, + "Ġyr": 37739, + "ĠRanch": 37740, + "Ġsplits": 37741, + "Ġtrouvé": 37742, + "åľĭ家": 37743, + "Ġrecorder": 37744, + "Ġdépart": 37745, + "ÙĪب": 37746, + "ĠKry": 37747, + "Ġinteressant": 37748, + "Ġederim": 37749, + "ÅĽwiad": 37750, + "ilateral": 37751, + "wright": 37752, + "Ġpourra": 37753, + "êter": 37754, + "Ġcamel": 37755, + "áŀ": 37756, + "Ġrapidement": 37757, + "Ġmej": 37758, + "Ġstiffness": 37759, + "ADAS": 37760, + "Ġdiffers": 37761, + "Ġalot": 37762, + "ĠSig": 37763, + "ÑıÑĤелÑĮ": 37764, + "Ġabstraction": 37765, + "åľĺ": 37766, + "Ġkeiner": 37767, + "grupp": 37768, + "ĠSherlock": 37769, + "íĺĶ": 37770, + "Ġcite": 37771, + "Ġoverflow": 37772, + "Ġtại": 37773, + "úcar": 37774, + "bula": 37775, + "Ġconjunto": 37776, + "ĠCI": 37777, + "Ġmoderator": 37778, + "Ġindirectly": 37779, + "Ġalleine": 37780, + "âĤ": 37781, + "ÑĪиб": 37782, + "Ġбаб": 37783, + "Ġdanach": 37784, + "Ġ1939": 37785, + "Ġpromet": 37786, + "Ġdestinations": 37787, + "ĠIllust": 37788, + "ικÏĮ": 37789, + "Ġsabes": 37790, + "Ġheh": 37791, + "ĠGesetzent": 37792, + "ĠMiz": 37793, + "енко": 37794, + "ĠMys": 37795, + "Ь": 37796, + "ĠJudaism": 37797, + "Ġmustache": 37798, + "Ġstimmt": 37799, + "ĠGaza": 37800, + "Ġvolte": 37801, + "Ġnuo": 37802, + "Ġmón": 37803, + "ĠComput": 37804, + "ูà¹Ī": 37805, + "ĠRadi": 37806, + "Ġexceptionally": 37807, + "Ġassumes": 37808, + "éĸĭå¿ĥ": 37809, + "ãģĪãģ°": 37810, + "inform": 37811, + "Ġshrine": 37812, + "æĵĬ": 37813, + "Ġimplication": 37814, + "ĠFitz": 37815, + "æ²ĴéĹľä¿Ĥ": 37816, + "!.": 37817, + "Ġlt": 37818, + "Ġalloy": 37819, + "Ġethic": 37820, + "Ġmonastery": 37821, + "ìĭľì£ł": 37822, + "icação": 37823, + "Ġcoordinating": 37824, + "ĠMoto": 37825, + "Ġoverlook": 37826, + "Ġchois": 37827, + "Ġantibiotic": 37828, + "ĠMinne": 37829, + "ĠBJ": 37830, + "ĠApa": 37831, + "orian": 37832, + "Ġspilled": 37833, + "Jam": 37834, + "Ġhusbands": 37835, + "Ġcreations": 37836, + "Ġañ": 37837, + "üssel": 37838, + "ĠìĿ´ìļ©": 37839, + "Ġanalyse": 37840, + "rose": 37841, + "Ġpunched": 37842, + "Ġpresque": 37843, + "Ġastronomy": 37844, + "Ġschwierig": 37845, + "ĠEbola": 37846, + "Ġcis": 37847, + "Ġacet": 37848, + "ĠFX": 37849, + "endre": 37850, + "ĠìĿĮìķħ": 37851, + "Ġwebpage": 37852, + "Ġfreaked": 37853, + "Ġlatte": 37854, + "Ġì¿ł": 37855, + "Ġ머ë": 37856, + "Never": 37857, + "Gra": 37858, + "íĻĶ를": 37859, + "eyed": 37860, + "Ġë°ľëĿ¼": 37861, + "Ġespera": 37862, + "Ġaparece": 37863, + "ração": 37864, + "Ġdisruptive": 37865, + "ĠJoint": 37866, + "urous": 37867, + "reas": 37868, + "ĠquerÃŃa": 37869, + "Ġdistributions": 37870, + "Ġexponent": 37871, + "ì¹ĺ를": 37872, + "Ġdl": 37873, + "zhou": 37874, + "ĠHearing": 37875, + "å·®ä¸įå¤ļ": 37876, + "ĠCraw": 37877, + "Ġfloats": 37878, + "ounced": 37879, + "Lab": 37880, + "World": 37881, + "Ġburdens": 37882, + "Ġauthoritarian": 37883, + "ĠBolt": 37884, + "ĠоднÑĥ": 37885, + "Ġpigeon": 37886, + "Ġdistractions": 37887, + "ĠHerausforder": 37888, + "Ġzest": 37889, + "esc": 37890, + "Ġshakes": 37891, + "atas": 37892, + "ĠÙħØ´": 37893, + "holes": 37894, + "Ġthinkers": 37895, + "alta": 37896, + "Ġarche": 37897, + "ĠSuk": 37898, + "anha": 37899, + "Ġtempting": 37900, + "Ġyoutuber": 37901, + "Ġvì": 37902, + "ĠdziaÅĤa": 37903, + "ĠVatican": 37904, + "Park": 37905, + "Ġsupers": 37906, + "ĠNikki": 37907, + "ëĬIJë": 37908, + "orang": 37909, + "ramient": 37910, + "鬼": 37911, + "Ġê°ĸê³ł": 37912, + "Ġdesserts": 37913, + "Ġavere": 37914, + "ĠGregory": 37915, + "Ġëĵ¤ìĸ´ìĺ": 37916, + "Ġcosting": 37917, + "ĠClinic": 37918, + "Ġrebels": 37919, + "ĠMob": 37920, + "Ġbunlar": 37921, + "ĠYours": 37922, + "ertime": 37923, + "Ġretali": 37924, + "mara": 37925, + "atus": 37926, + "alles": 37927, + "ĠдÑĢ": 37928, + "ĠдиÑģ": 37929, + "Ġdiscounts": 37930, + "ĠGUY": 37931, + "Ġкакое": 37932, + "ĠExperiment": 37933, + "rement": 37934, + "ĠXiang": 37935, + "Ġbate": 37936, + "WE": 37937, + "Ġspecialize": 37938, + "Ġdeity": 37939, + "ĠLoki": 37940, + "mag": 37941, + "ĠNit": 37942, + "West": 37943, + "Ġmaternal": 37944, + "Ġquis": 37945, + "åŁºæľ¬": 37946, + "broken": 37947, + "Ġlasers": 37948, + "Ġhakk": 37949, + "ĠAngels": 37950, + "Ġmastery": 37951, + "antis": 37952, + "Tiffany": 37953, + "eee": 37954, + "çij": 37955, + "orem": 37956, + "Ġinacc": 37957, + "Ġjurisdictions": 37958, + "ĠKardash": 37959, + "æľº": 37960, + "Il": 37961, + "ĠSinn": 37962, + "åĭķçĶ»": 37963, + "Ġathletics": 37964, + "cÄĻ": 37965, + "Ġloosely": 37966, + "Ġdieta": 37967, + "Ag": 37968, + "Ġ??": 37969, + "ĠëĮĢíijľ": 37970, + "Ġsuperv": 37971, + "Ġnutrit": 37972, + "Ġdrifting": 37973, + "ĠìĦłìĥĿëĭĺ": 37974, + "ĠпонÑıл": 37975, + "ĠVictory": 37976, + "ÙĦØ©": 37977, + "×ķ׳×Ķ": 37978, + "ĠпиÑĪ": 37979, + "Ġshaved": 37980, + "Ġmesure": 37981, + "onden": 37982, + "Ùĥر": 37983, + "Ġexile": 37984, + "ĠDesde": 37985, + "ĠPinterest": 37986, + "Ġattachments": 37987, + "Ġhombres": 37988, + "Ġfines": 37989, + "ĠìĦ¸ìĥģ": 37990, + "Ġsleeps": 37991, + "ĠTaco": 37992, + "ĠIRA": 37993, + "rios": 37994, + "Ġoll": 37995, + "etes": 37996, + "Ġunut": 37997, + "fashioned": 37998, + "Ġtreball": 37999, + "ĠNearly": 38000, + "ĠÑĢеалÑĮно": 38001, + "Ġchil": 38002, + "éĢ±": 38003, + "ÄŁa": 38004, + "ĠMEL": 38005, + "roscop": 38006, + "ĠCG": 38007, + "Ġvenge": 38008, + "Ġdishwasher": 38009, + "algic": 38010, + "Ġmodifier": 38011, + "Ġembassy": 38012, + "timer": 38013, + "emics": 38014, + "Ġintricate": 38015, + "Ġevet": 38016, + "ĠëĮĢë°ķ": 38017, + "Ġisot": 38018, + "ĠнаÑĥÑĩ": 38019, + "ĠQuiz": 38020, + "reso": 38021, + "δÏİ": 38022, + "Ġyelled": 38023, + "Ġfeder": 38024, + "ELLER": 38025, + "Ġexceeded": 38026, + "onas": 38027, + "icano": 38028, + "ĠживоÑĤ": 38029, + "ĠMao": 38030, + "ĠKazuto": 38031, + "Ġãħĭãħĭãħĭãħĭ": 38032, + "Ġfrontline": 38033, + "ĠHungarian": 38034, + "Ġüberall": 38035, + "awat": 38036, + "Ġgrips": 38037, + "ições": 38038, + "arnya": 38039, + "ĠÍ¡": 38040, + "Ġseid": 38041, + "Ġanak": 38042, + "Ġacabou": 38043, + "íķij": 38044, + "Ġnotorious": 38045, + "ĠGodzilla": 38046, + "Ġovercoming": 38047, + "ĠPend": 38048, + "Ġolabilir": 38049, + "ülme": 38050, + "Ġerhalten": 38051, + "ãĤīãģĦ": 38052, + "ê·¹": 38053, + "ĠMeter": 38054, + "Ġstaan": 38055, + "Ol": 38056, + "Ġchats": 38057, + "ĠBuenos": 38058, + "ÃŃve": 38059, + "aluable": 38060, + "Ġstrategically": 38061, + "Ġcomprised": 38062, + "ĠпеÑĢÑģонаж": 38063, + "Ġwann": 38064, + "ĠCen": 38065, + "ниÑĤе": 38066, + "Łģ": 38067, + "ĠÑĤобой": 38068, + "iad": 38069, + "ĠkardeÅŁim": 38070, + "ĠCongressman": 38071, + "reaming": 38072, + "homme": 38073, + "Ġcommunaut": 38074, + "Ġalcoholic": 38075, + "Ġpickled": 38076, + "Ġacord": 38077, + "position": 38078, + "egól": 38079, + "Ġtroubling": 38080, + "ĠMarcheg": 38081, + "Ġzumindest": 38082, + "Ġseamlessly": 38083, + "Ġolun": 38084, + "ĠTVs": 38085, + "ĠпÑĢакÑĤиÑĩеÑģки": 38086, + "Ġbackend": 38087, + "ãģĵãĤĵãģ«ãģ¡ãģ¯": 38088, + "idable": 38089, + "Ġgadget": 38090, + "Ġfaço": 38091, + "ĠMarchegiani": 38092, + "Ġë°¤": 38093, + "Ġaccidental": 38094, + "ĠLP": 38095, + "Ġeldest": 38096, + "ĠAdmiral": 38097, + "ĠnÄĥm": 38098, + "lever": 38099, + "Ġpastel": 38100, + "Ġfondo": 38101, + "Connie": 38102, + "Ġtercer": 38103, + "Ġpact": 38104, + "ĠMonte": 38105, + "Ġmeats": 38106, + "ĠSMS": 38107, + "ĠAustralians": 38108, + "ç¼": 38109, + "Rhett": 38110, + "Ġexactement": 38111, + "Ġë¹¼": 38112, + "ĠMOD": 38113, + "ç¡": 38114, + "ĠRapt": 38115, + "ĠNoch": 38116, + "Ġabort": 38117, + "ĠNaval": 38118, + "ĠFuji": 38119, + "INTER": 38120, + "ĠновÑĭй": 38121, + "Ġmiejsce": 38122, + "ĠICU": 38123, + "ĠGraduate": 38124, + "ĠGlen": 38125, + "ardi": 38126, + "ĠÈĺ": 38127, + "Ġsolder": 38128, + "Ġprofessions": 38129, + "Ġorthog": 38130, + "omn": 38131, + "introdu": 38132, + "ĠDenise": 38133, + "ìŀIJ를": 38134, + "Ġcorrespondence": 38135, + "AMA": 38136, + "Ġinflict": 38137, + "Ġfand": 38138, + "ĠGü": 38139, + "ĠÑĩеÑĤ": 38140, + "Ġtraced": 38141, + "Ġpatents": 38142, + "Ġambush": 38143, + "Ġlotta": 38144, + "ffer": 38145, + "ĠWagner": 38146, + "Ġimperson": 38147, + "Ġextrêmement": 38148, + "ÙĤت": 38149, + "conduct": 38150, + "Att": 38151, + "ĠMueller": 38152, + "ĠAlicia": 38153, + "Ġcyc": 38154, + "Ġhacker": 38155, + "Ġtys": 38156, + "Ġhail": 38157, + "ĠзаÑıв": 38158, + "Ġpasso": 38159, + "Ġì¶Ķê°Ģ": 38160, + "ĠÎĪ": 38161, + "Ġpackaged": 38162, + "ĠCynthia": 38163, + "heet": 38164, + "ä¸ŃåĽ½": 38165, + "ĠNissan": 38166, + "ĠQuesto": 38167, + "é¨": 38168, + "did": 38169, + "Ġμια": 38170, + "ĠEllis": 38171, + "ĠAnalysis": 38172, + "cemos": 38173, + "Ġaseg": 38174, + "ĠMyster": 38175, + "ĠCao": 38176, + "Ġtuv": 38177, + "ĠIndustry": 38178, + "ì£¼ê³ł": 38179, + "otal": 38180, + "Ġpequeño": 38181, + "bras": 38182, + "Ġcomprehend": 38183, + "ĠSimpson": 38184, + "ÑģÑĤвие": 38185, + "ocracy": 38186, + "иÑĩеÑģки": 38187, + "ĠMush": 38188, + "ĠLaurie": 38189, + "Ġtriangular": 38190, + "ĠPresents": 38191, + "ĠKunden": 38192, + "ç´¹": 38193, + "æѦ": 38194, + "ĠIss": 38195, + "ĠDeck": 38196, + "á»ĥn": 38197, + "ĠDarkness": 38198, + "Ġinflammatory": 38199, + "eremiah": 38200, + "Ġwarmed": 38201, + "veyard": 38202, + "ĠMemory": 38203, + "etty": 38204, + "Ġtaxpayers": 38205, + "à¸ĵ": 38206, + "Ø¡": 38207, + "Ġpractise": 38208, + "ëĭ¬ë": 38209, + "Ġdrilled": 38210, + "mÃ¼ÅŁ": 38211, + "logo": 38212, + "ĠFach": 38213, + "¤ë¡ľ": 38214, + "Ġübrigens": 38215, + "Ġkonnten": 38216, + "Ġnormalmente": 38217, + "Ġargues": 38218, + "ilingual": 38219, + "°ë¥¼": 38220, + "egal": 38221, + "Ġtravaill": 38222, + "ovy": 38223, + "аÑĤо": 38224, + "Ġruth": 38225, + "ĠLights": 38226, + "Ġconsisted": 38227, + "×ijר×Ļ×Ŀ": 38228, + "Ġstereotype": 38229, + "Ġpayer": 38230, + "ĠRee": 38231, + "ĠAirbnb": 38232, + "Ġdrowned": 38233, + "ĠZoe": 38234, + "Ġcanopy": 38235, + "Ġbarr": 38236, + "ĠноÑĩ": 38237, + "Ġpagan": 38238, + "Ġjars": 38239, + "Ġrê": 38240, + "erver": 38241, + "æĪ¿": 38242, + "ieben": 38243, + "Ġespect": 38244, + "ĠFi": 38245, + "Ġunwilling": 38246, + "Ġtechnician": 38247, + "ặt": 38248, + "member": 38249, + "ĠCanal": 38250, + "سÙħ": 38251, + "Ġlieber": 38252, + "Ġinference": 38253, + "Ġhonoring": 38254, + "åijµ": 38255, + "ĠCampaign": 38256, + "Ġlineage": 38257, + "ĠStress": 38258, + "Ġvictories": 38259, + "Ġdeja": 38260, + "×£": 38261, + "êtes": 38262, + "blick": 38263, + "Ġменее": 38264, + "oths": 38265, + "ĠCouple": 38266, + "Jason": 38267, + "ĠNicolas": 38268, + "екÑģ": 38269, + "lib": 38270, + "Ġherramient": 38271, + "Ġ×IJ×ķ×ŀר": 38272, + "Ġвидим": 38273, + "millimeter": 38274, + "Ġsilhouette": 38275, + "Ġdriveway": 38276, + "Ġcherish": 38277, + "ãħłãħł": 38278, + "Ġransom": 38279, + "Ġinterdisciplinary": 38280, + "ĠPortal": 38281, + "Ġtrag": 38282, + "thood": 38283, + "Ġtedious": 38284, + "Ġglossy": 38285, + "Ġprépar": 38286, + "ĠCay": 38287, + "ĠTook": 38288, + "ĠBottom": 38289, + "Ġzig": 38290, + "å«": 38291, + "åį±": 38292, + "represented": 38293, + "à¹Ģลย": 38294, + "Ġdesarrollo": 38295, + "ìĦľë": 38296, + "Ġviscos": 38297, + "Ġmilligram": 38298, + "ĠGund": 38299, + "Ġferment": 38300, + "drum": 38301, + "Ġdrawers": 38302, + "Laugh": 38303, + "Ġpelos": 38304, + "Ġpavement": 38305, + "Ġmemoir": 38306, + "avait": 38307, + "Ġ2050": 38308, + "¤ë¥¼": 38309, + "Ġrazón": 38310, + "Ġflourish": 38311, + "Ġstern": 38312, + "ä¸Ī": 38313, + "ĠChung": 38314, + "Ġserpent": 38315, + "ĠGentlemen": 38316, + "羣çļĦå¾Ī": 38317, + "kook": 38318, + "Ġlut": 38319, + "importe": 38320, + "parent": 38321, + "Ġwsz": 38322, + "Ġscree": 38323, + "ĠMitarbeiter": 38324, + "å·´": 38325, + "mut": 38326, + "Ġìĸĺ기를": 38327, + "Ġsemble": 38328, + "ĠOW": 38329, + "Ġinvestigator": 38330, + "ĠCheryl": 38331, + "ĠGerald": 38332, + "Ġprere": 38333, + "Ġcompares": 38334, + "nyt": 38335, + "Ġdiferença": 38336, + "?-": 38337, + "Ġquá": 38338, + "ר×Ļ": 38339, + "Sen": 38340, + "Ġheps": 38341, + "Ġgratuit": 38342, + "Ġconsort": 38343, + "ĠSTOP": 38344, + "ĠProtestant": 38345, + "Ġelectrode": 38346, + "âĹ": 38347, + "Ġsecurely": 38348, + "иÑĩеÑģкой": 38349, + "Ġtää": 38350, + "Ġregisters": 38351, + "ĠHeavenly": 38352, + "ogly": 38353, + "issä": 38354, + "ĠPhysics": 38355, + "ĠMerkel": 38356, + "Ġrév": 38357, + "éĻ¢": 38358, + "Ġerased": 38359, + "ĠSacramento": 38360, + "Ġcoffin": 38361, + "Ġexacer": 38362, + "Ġlanz": 38363, + "Ġpoets": 38364, + "ulif": 38365, + "Ġì¹ĺë": 38366, + "ĠNerd": 38367, + "ĠNCT": 38368, + "ĠHour": 38369, + "nehmer": 38370, + "ŀĺëıĦ": 38371, + "ĠPrinci": 38372, + "Sw": 38373, + "mies": 38374, + "armed": 38375, + "ĠBeatles": 38376, + "Ġpropagation": 38377, + "Ġexchanged": 38378, + "Ġcumulative": 38379, + "Ġì§ijìĹIJ": 38380, + "Ġdefeating": 38381, + "æĬ±": 38382, + "bels": 38383, + "Ġwes": 38384, + "ĠOdyssey": 38385, + "ä½łæĥ³": 38386, + "avior": 38387, + "ĠìľĦìĹIJ": 38388, + "Ġbrit": 38389, + "Ġhijo": 38390, + "DAY": 38391, + "ĠاÙĦتÙĬ": 38392, + "ĠСеÑĢг": 38393, + "Ñĥка": 38394, + "edsiÄĻ": 38395, + "Ġimpos": 38396, + "Ġellas": 38397, + "Ġfirearms": 38398, + "ĠNR": 38399, + "Ġ×ij×IJ": 38400, + "ĠÐŁÐ¾ÐºÐ°": 38401, + "awi": 38402, + "ĠìĦ±ê³µ": 38403, + "Ġpupils": 38404, + "ĠTack": 38405, + "Ġfrase": 38406, + "ĠShip": 38407, + "Ġstad": 38408, + "举": 38409, + "ĠGreater": 38410, + "unun": 38411, + "immung": 38412, + "grown": 38413, + "ĠNXT": 38414, + "ĠAmericas": 38415, + "fox": 38416, + "Ġmanten": 38417, + "éłIJåĤĻ": 38418, + "ĠÑģок": 38419, + "Ġrikt": 38420, + "lectric": 38421, + "deep": 38422, + "ĠзнаеÑĪÑĮ": 38423, + "Ġbenut": 38424, + "ĠInfrast": 38425, + "ĠEmir": 38426, + "ĠоÑĤпÑĢав": 38427, + "ĠKimchi": 38428, + "ĠFinnish": 38429, + "´ìłģ": 38430, + "inaire": 38431, + "Ġoike": 38432, + "æ¸ħæ¥ļ": 38433, + "Ġhostage": 38434, + "ĠButton": 38435, + "ÙĤÙĬ": 38436, + "eking": 38437, + "ĠKazakh": 38438, + "Ġcomforting": 38439, + "Ġsog": 38440, + "Ġgreeted": 38441, + "guitar": 38442, + "payer": 38443, + "Ġrelational": 38444, + "Ġconstruir": 38445, + "çī¹åĪ¥": 38446, + "opian": 38447, + "ĠVolume": 38448, + "ieth": 38449, + "ÑģÑĤвом": 38450, + "urrection": 38451, + "liÅĽmy": 38452, + "Ġhemisphere": 38453, + "ĠBean": 38454, + "IGN": 38455, + "Ġkötü": 38456, + "ĠFallout": 38457, + "Ġbrace": 38458, + "ç¹¼çºĮ": 38459, + "ÏĢά": 38460, + "ĠHAS": 38461, + "Ġgé": 38462, + "Ġcharacterize": 38463, + "ặc": 38464, + "ĠMilky": 38465, + "Ġtumors": 38466, + "Ġnuit": 38467, + "ĠGaz": 38468, + "ĠìŀĪëĭ¤ëĬĶ": 38469, + "ĠгаÑĢ": 38470, + "essment": 38471, + "ĠAbe": 38472, + "Ġë½ij": 38473, + "ĠEinsatz": 38474, + "JIN": 38475, + "jä": 38476, + "Cry": 38477, + "ĠPromised": 38478, + "ĠÑģеÑĢд": 38479, + "okus": 38480, + "Ġscalable": 38481, + "ĠпоÑģмоÑĤÑĢеÑĤÑĮ": 38482, + "ücklich": 38483, + "Ġrealism": 38484, + "Ġmayo": 38485, + "Ġjuvenile": 38486, + "Ġheadlights": 38487, + "ĠgörÃ¼ÅŁ": 38488, + "ĠReform": 38489, + "Ġhalves": 38490, + "czne": 38491, + "Ġbreakup": 38492, + "żej": 38493, + "Ġrätt": 38494, + "Day": 38495, + "ĠìĿ¼ë³¸": 38496, + "Ġmuerte": 38497, + "Ġtunes": 38498, + "ĠSmile": 38499, + "record": 38500, + "Ġrecherche": 38501, + "atisfied": 38502, + "Ġpozi": 38503, + "Ġcelebrations": 38504, + "isexual": 38505, + "ĠROB": 38506, + "thirds": 38507, + "ĠFortune": 38508, + "ĠÑĤой": 38509, + "Ġbranded": 38510, + "loo": 38511, + "Ġdud": 38512, + "Ġrandomized": 38513, + "Ġcombin": 38514, + "ä¸ĢäºĽ": 38515, + "ieran": 38516, + "czenia": 38517, + "įãĥ«": 38518, + "Ġcurator": 38519, + "Ġartery": 38520, + "ĠÑĥÑĪ": 38521, + "ĠÑĩиÑĤ": 38522, + "Ġsubsidies": 38523, + "Ġblossom": 38524, + "ĠTwilight": 38525, + "Ġhyvä": 38526, + "ĠPompe": 38527, + "ĠCisco": 38528, + "ĠÐŁÑĢо": 38529, + "Ġbiri": 38530, + "Ġgern": 38531, + "Ġrebuilt": 38532, + "Ġwcze": 38533, + "Ġbenefici": 38534, + "Ġdrummer": 38535, + "Ġsolids": 38536, + "Ġdiyorsun": 38537, + "ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸãģĦãģ¾ãģĹãģŁ": 38538, + "lated": 38539, + "Ġmuddy": 38540, + "Ġholog": 38541, + "Ġclaps": 38542, + "ĠRings": 38543, + "ĠOkey": 38544, + "ĠBrave": 38545, + "Ġvaluation": 38546, + "Ġmigrant": 38547, + "Ġintermitt": 38548, + "Ġeigene": 38549, + "iliary": 38550, + "ãĥ¼ãĥĪ": 38551, + "markt": 38552, + "kr": 38553, + "ĠRib": 38554, + "á»Ļi": 38555, + "Ġaccusations": 38556, + "Ġarab": 38557, + "wash": 38558, + "ĠBardzo": 38559, + "Ġugh": 38560, + "esters": 38561, + "ophren": 38562, + "Ġalimentos": 38563, + "ĠUz": 38564, + "ÖĤ": 38565, + "Ġ650": 38566, + "ĠпÑĢиеÑħ": 38567, + "FI": 38568, + "Ġsampai": 38569, + "Ġparlé": 38570, + "hesion": 38571, + "Ġsır": 38572, + "Ġapparatus": 38573, + "Ġcorrelated": 38574, + "ĠPrincipal": 38575, + "Ġcorr": 38576, + "ĠOfficial": 38577, + "иÑĩеÑģкие": 38578, + "Ġterminals": 38579, + "Should": 38580, + "Ġvacun": 38581, + "Ġstellt": 38582, + "Ġmooi": 38583, + "etzung": 38584, + "ĠкÑĢа": 38585, + "Ġdai": 38586, + "Ġпож": 38587, + "Team": 38588, + "ĠPPE": 38589, + "ĠÐŀÑģ": 38590, + "ĠLeah": 38591, + "ĠIvy": 38592, + "yst": 38593, + "Ġuhhh": 38594, + "Ġnighttime": 38595, + "Ġtrendy": 38596, + "Ġsecurities": 38597, + "Ġcontinents": 38598, + "Ġfirsthand": 38599, + "ĠVeron": 38600, + "ĠëĤ®": 38601, + "Ġbrowsing": 38602, + "ĠCada": 38603, + "tro": 38604, + "Ġtramp": 38605, + "reib": 38606, + "Ġerstmal": 38607, + "irler": 38608, + "Ġpsic": 38609, + "Ġgetir": 38610, + "ĠNP": 38611, + "Ġdzieci": 38612, + "обÑĢаз": 38613, + "Ġmagician": 38614, + "Ġscrutiny": 38615, + "Ġslab": 38616, + "ĠOT": 38617, + "isty": 38618, + "iries": 38619, + "orest": 38620, + "Ġtasked": 38621, + "Ġmorally": 38622, + "ìķ¼ì§Ģ": 38623, + "ustered": 38624, + "Ġfools": 38625, + "Ġirrespons": 38626, + "Ġeinf": 38627, + "Ġviá»ĩc": 38628, + "Ġscor": 38629, + "Ġpillows": 38630, + "ĠGegen": 38631, + "Ġtutte": 38632, + "Ġquarterly": 38633, + "Ġdidnt": 38634, + "ĠGym": 38635, + "ĠEther": 38636, + "ĠØ«": 38637, + "лиÑĪком": 38638, + "Ġsignaling": 38639, + "ĠNode": 38640, + "ĠDoncs": 38641, + "Ġyah": 38642, + "ĠKanal": 38643, + "Ġfading": 38644, + "etin": 38645, + "Ġinfluencers": 38646, + "Ġmedals": 38647, + "Ġengineered": 38648, + "Ġfermented": 38649, + "ê²łì§Ģë§Į": 38650, + "ĠBeethoven": 38651, + "×ŀש": 38652, + "inental": 38653, + "ĠìķĮ볤": 38654, + "ütfen": 38655, + "alnya": 38656, + "Ġovere": 38657, + "Ġdenkt": 38658, + "акÑĤеÑĢ": 38659, + "Ġâĺ": 38660, + "Ġnecesit": 38661, + "Ġgenerators": 38662, + "grass": 38663, + "ĠподÑĥм": 38664, + "lieÃŁen": 38665, + "Bar": 38666, + "ľëıĻ": 38667, + "ĠдеÑĤей": 38668, + "Ġsucking": 38669, + "Ġstencil": 38670, + "Ġprimo": 38671, + "ĠBreath": 38672, + "strom": 38673, + "Ġimmensely": 38674, + "Ġappreh": 38675, + "ìłķìĿ´": 38676, + "Pop": 38677, + "Ġjong": 38678, + "ĠGiul": 38679, + "ĠADHD": 38680, + "Ġhören": 38681, + "Ġelo": 38682, + "ivent": 38683, + "Ġrus": 38684, + "Ġoutrageous": 38685, + "Ġmastered": 38686, + "Ġ커": 38687, + "ÙĪÙģ": 38688, + "ipes": 38689, + "ĠRudy": 38690, + "Jacob": 38691, + "Ġbullish": 38692, + "Ġtapped": 38693, + "Ġfaud": 38694, + "izophren": 38695, + "ĠÑģоÑħ": 38696, + "ĠDarling": 38697, + "Ġ1963": 38698, + "ĠPrevention": 38699, + "²Ķ": 38700, + "Ġabdominal": 38701, + "stones": 38702, + "Ġavaient": 38703, + "á»ķi": 38704, + "make": 38705, + "Ġsare": 38706, + "ĠInstant": 38707, + "кам": 38708, + "Ġkeeper": 38709, + "Ġblankets": 38710, + "ãģ§ãģĹãĤĩãģĨ": 38711, + "Ġsweats": 38712, + "ĠMinneapolis": 38713, + "åħ¨éĥ¨": 38714, + "Ġgenommen": 38715, + "Ġfasten": 38716, + "ĠBrussels": 38717, + "åij¼": 38718, + "Ġcafeter": 38719, + "Ġabsorbing": 38720, + "Ġhago": 38721, + "ĠElmo": 38722, + "Ġgusto": 38723, + "ĠYap": 38724, + "Música": 38725, + "Ġtert": 38726, + "Ġbanda": 38727, + "Ġmily": 38728, + "Ġthereafter": 38729, + "ĠStockholm": 38730, + "ĠCarson": 38731, + "Ġcalibration": 38732, + "avaÅŁ": 38733, + "ansa": 38734, + "ikke": 38735, + "Ġforesee": 38736, + "Ġqualche": 38737, + "Ġdeste": 38738, + "æ¤": 38739, + "ünüz": 38740, + "Ġforge": 38741, + "Dis": 38742, + "esten": 38743, + "Ġδια": 38744, + "Ġencaps": 38745, + "ĠGespr": 38746, + "Ġchercher": 38747, + "ickets": 38748, + "ÑĤоÑĢÑĭ": 38749, + "Cr": 38750, + "ĠТакже": 38751, + "Ġrabbits": 38752, + "ĠDot": 38753, + "heiten": 38754, + "Ġcausal": 38755, + "ĠFoster": 38756, + "ajÄħc": 38757, + "Ġbereit": 38758, + "Ġayudar": 38759, + "é«Ļ": 38760, + "ãģ³": 38761, + "song": 38762, + "comb": 38763, + "Ġfringe": 38764, + "Ġcybersecurity": 38765, + "Ġ뾨": 38766, + "Ġkier": 38767, + "Ġbeschäft": 38768, + "ĠконÑĨе": 38769, + "Ġfacilit": 38770, + "ĠNamen": 38771, + "Ġbilateral": 38772, + "tx": 38773, + "ĠWissenschaft": 38774, + "Ġnuances": 38775, + "Ġripping": 38776, + "Ġfy": 38777, + "ĠSicherheit": 38778, + "ĠGhana": 38779, + "olon": 38780, + "Ġtopped": 38781, + "ĠMorocco": 38782, + "Ġradial": 38783, + "ĠLEE": 38784, + "ĠAndreas": 38785, + "edd": 38786, + "ĠìĹ´ë": 38787, + "ĠAirlines": 38788, + "ãģĵãĤį": 38789, + "Ġvalores": 38790, + "ê·ľ": 38791, + "Hy": 38792, + "ĠзадаÑĩ": 38793, + "ĠKendall": 38794, + "ĠÑħаÑĢ": 38795, + "ĠVamp": 38796, + "Ġpython": 38797, + "Ġmanageable": 38798, + "ĠGente": 38799, + "oise": 38800, + "iciary": 38801, + "Ġimposs": 38802, + "ĠBunny": 38803, + "iesta": 38804, + "Andrew": 38805, + "Ġsert": 38806, + "ĠCec": 38807, + "zzarella": 38808, + "Ġautomobile": 38809, + "ĠTiere": 38810, + "allows": 38811, + "åĨĨ": 38812, + "Ġë°Ģ": 38813, + "ĠScorp": 38814, + "ĠJelly": 38815, + "agara": 38816, + "ĠStretch": 38817, + "Ġredef": 38818, + "Ġexacerb": 38819, + "ĠSHA": 38820, + "éf": 38821, + "orsa": 38822, + "Ġflawed": 38823, + "ĠNoel": 38824, + "?!?": 38825, + "Ġprocent": 38826, + "Ġmenstru": 38827, + "ĠпÑĢоÑĩ": 38828, + "Ġinfants": 38829, + "ðŁİµ": 38830, + "pause": 38831, + "ĠRacing": 38832, + "Ġ1948": 38833, + "Ġsuperintendent": 38834, + "idores": 38835, + "idy": 38836, + "brahim": 38837, + "Ġunlucky": 38838, + "Ġperk": 38839, + "anci": 38840, + "Ġë§ĮëĤĺ": 38841, + "ĠÐľÐ¾Ñģкв": 38842, + "Ġfinans": 38843, + "Ġdiferencia": 38844, + "łĪìĿ´": 38845, + "éħį": 38846, + "ORY": 38847, + "ĠTac": 38848, + "ÛĮا": 38849, + "Ġdesem": 38850, + "Ġважно": 38851, + "ĠJU": 38852, + "ĠìŀĪìŀĸìķĦìļĶ": 38853, + "ĠÎĿ": 38854, + "Ġinformations": 38855, + "ĠHEL": 38856, + "hst": 38857, + "ĠпоговоÑĢ": 38858, + "Ġvoiture": 38859, + "Ġreus": 38860, + "ändig": 38861, + "ĠпоÑħож": 38862, + "jing": 38863, + "Ġdru": 38864, + "altra": 38865, + "Ġproduits": 38866, + "Ġkite": 38867, + "Ġeyeball": 38868, + "ĠBelt": 38869, + "ĠRestaurant": 38870, + "Ġgamb": 38871, + "Ġporridge": 38872, + "itters": 38873, + "Ġconverts": 38874, + "Ġyardım": 38875, + "Ġmáximo": 38876, + "wirtschaft": 38877, + "ĠíķĺëĤĺë": 38878, + "Ġì¤Ģ": 38879, + "Ġiceberg": 38880, + "Ġvorbei": 38881, + "Ġ256": 38882, + "ocratic": 38883, + "Ġreckless": 38884, + "onner": 38885, + "Ġmús": 38886, + "Ġlogically": 38887, + "ĠPrison": 38888, + "ĠNetz": 38889, + "Ġvacant": 38890, + "Ġnimmt": 38891, + "ĠHARR": 38892, + "Ġзов": 38893, + "ĠDee": 38894, + "ringe": 38895, + "niest": 38896, + "ĠRules": 38897, + "ìĬ¤ëŁ½": 38898, + "cussions": 38899, + "Ġfloral": 38900, + "Ġconstrained": 38901, + "Ġdifferentiation": 38902, + "ĠQuebec": 38903, + "ĠÛģÛĮÚº": 38904, + "Ġpública": 38905, + "itel": 38906, + "Ġaccommodations": 38907, + "ĠGrü": 38908, + "íľ": 38909, + "Ġpickles": 38910, + "иÑĩеÑģкиÑħ": 38911, + "Ġcommissions": 38912, + "ĠBaek": 38913, + "ĠçocuÄŁ": 38914, + "ĠMedium": 38915, + "Ġperiodically": 38916, + "Ġwonderfully": 38917, + "Ġstaffing": 38918, + "ìĽIJë": 38919, + "rire": 38920, + "fle": 38921, + "ĠMcL": 38922, + "ĠÑĤеп": 38923, + "ĠпеÑĢек": 38924, + "нолог": 38925, + "Ġíģ¬ê²Į": 38926, + "çĻ¼çı¾": 38927, + "Ġprosperous": 38928, + "ĠSpiritual": 38929, + "ĠChick": 38930, + "DIA": 38931, + "ĠÐŁÑĢивеÑĤ": 38932, + "ĠperÃŃ": 38933, + "ÑĮÑİÑĤ": 38934, + "Ġconsultants": 38935, + "ĠEarl": 38936, + "ä»Ĭå¹´": 38937, + "Ġruining": 38938, + "оÑĢе": 38939, + "Ġpenser": 38940, + "Ġtakiej": 38941, + "Ġstrengthened": 38942, + "ĠLiquid": 38943, + "онеÑĨ": 38944, + "аваÑĤÑĮ": 38945, + "Ġcamer": 38946, + "Ġdisagreement": 38947, + "Ġbathing": 38948, + "ĠYosh": 38949, + "aal": 38950, + "prechen": 38951, + "RISADAS": 38952, + "Ġsuperstar": 38953, + "æģŃ": 38954, + "лÑıÑĤÑĮ": 38955, + "Ġnib": 38956, + "ĠTherm": 38957, + "ĠDANIEL": 38958, + "Ġpaw": 38959, + "Ġliquids": 38960, + "Ġcapacit": 38961, + "arken": 38962, + "Ġvagina": 38963, + "Ġmashed": 38964, + "Ġemerges": 38965, + "yscy": 38966, + "Ġunrelated": 38967, + "ĠGuild": 38968, + "Ġinverted": 38969, + "itives": 38970, + "Tra": 38971, + "Ġbegr": 38972, + "Ġalte": 38973, + "ì§ķ": 38974, + "ãĤģãģ¦": 38975, + "ĠÑĢазÑĢабоÑĤ": 38976, + "finder": 38977, + "Ġдалее": 38978, + "ĠблагодаÑĢ": 38979, + "walker": 38980, + "Ġcrater": 38981, + "assadors": 38982, + "rences": 38983, + "inski": 38984, + "ĠKIM": 38985, + "ĠElliot": 38986, + "2017": 38987, + "ĠSr": 38988, + "inka": 38989, + "anov": 38990, + "Ġìŀĺ못": 38991, + "Ġproprietary": 38992, + "displaystyle": 38993, + "ĠÑģим": 38994, + "Ġизб": 38995, + "ĠPanel": 38996, + "Ġinstincts": 38997, + "ĠCommunications": 38998, + "麻": 38999, + "midt": 39000, + "Ġë§Įëĵ¤ìĸ´": 39001, + "ĠÑģлова": 39002, + "ĠGilbert": 39003, + "缮åīį": 39004, + "Так": 39005, + "voorbeeld": 39006, + "еÑİÑģÑĮ": 39007, + "aryn": 39008, + "quez": 39009, + "Ġdart": 39010, + "ÑĸÑĪ": 39011, + "ĠHut": 39012, + "Sal": 39013, + "Ġsoutheast": 39014, + "Ġpesticides": 39015, + "Ġhelicopters": 39016, + "Ġendured": 39017, + "iada": 39018, + "Ġbrewing": 39019, + "ìŬë": 39020, + "ĠÑģвобод": 39021, + "ĠSaints": 39022, + "ĠFrançais": 39023, + "ĠEconomics": 39024, + "Ġdisloc": 39025, + "ophobia": 39026, + "Camer": 39027, + "Ġnegotiated": 39028, + "ĠÑģÑĤали": 39029, + "ìĬ¤íģ": 39030, + "ogie": 39031, + "Ġtsunami": 39032, + "Ġpeeled": 39033, + "Ġmotivations": 39034, + "è¨Ń": 39035, + "ostat": 39036, + "flan": 39037, + "ĠDAC": 39038, + "Ġkav": 39039, + "'RE": 39040, + "ĠPearson": 39041, + "bbe": 39042, + "czenie": 39043, + "Ġatenção": 39044, + "íĨµëł¹": 39045, + "ãģ£ãģ¡": 39046, + "ĠÑĥдаÑĢ": 39047, + "Ġintroductory": 39048, + "ĠIci": 39049, + "ëĮĢë": 39050, + "akat": 39051, + "Ġtrench": 39052, + "Ġproceeded": 39053, + "ĠCoin": 39054, + "Ġderecho": 39055, + "ĠRede": 39056, + "æ¯Ľ": 39057, + "аннÑĭй": 39058, + "Ġincarcerated": 39059, + "ĠRichmond": 39060, + "Rock": 39061, + "ĠPav": 39062, + "ĠKarma": 39063, + "uges": 39064, + "Ġconteú": 39065, + "ë¹Ħ": 39066, + "Ġê·¸ë§Į": 39067, + "ĠGone": 39068, + "ĠwspóÅĤ": 39069, + "ĠRahmen": 39070, + "unken": 39071, + "Ġì¤ijìļĶíķľ": 39072, + "Ġib": 39073, + "Ġattaching": 39074, + "Hay": 39075, + "Ġsuka": 39076, + "ìį¹": 39077, + "Ġpivotal": 39078, + "ĠRespect": 39079, + "ÃŃda": 39080, + "IB": 39081, + "ĠVerantwort": 39082, + "wiet": 39083, + "Ġforensic": 39084, + "ÑĢиÑģÑĤ": 39085, + "ĠпÑĢинÑĨипе": 39086, + "Ġmarkings": 39087, + "Ġkettle": 39088, + "ĠOpera": 39089, + "ĠDoctors": 39090, + "Ġshredded": 39091, + "Ġrecuer": 39092, + "Ġvigil": 39093, + "ĠFail": 39094, + "Ġentrev": 39095, + "ĠдÑĥÑĪ": 39096, + "Ġoutbreaks": 39097, + "èµ°åIJ§": 39098, + "ĠÏĢο": 39099, + "Ġrogue": 39100, + "angled": 39101, + "Ġyearly": 39102, + "ĠCreed": 39103, + "Ġwam": 39104, + "Ġlotus": 39105, + "ê³¼ë": 39106, + "ãĢģãĢģ": 39107, + "ĠSpit": 39108, + "ĠItu": 39109, + "Ġstrains": 39110, + "Ġstamped": 39111, + "Ġplaint": 39112, + "Ġpotion": 39113, + "Ġconsolidation": 39114, + "è©ķ": 39115, + "оÑĩкÑĥ": 39116, + "Ġvlogging": 39117, + "Ġslate": 39118, + "ĠAuft": 39119, + "ĠIncor": 39120, + "ừng": 39121, + "§IJ": 39122, + "enh": 39123, + "ĠheiÃŁ": 39124, + "Ġdomest": 39125, + "ĠStrom": 39126, + "åį³": 39127, + "akis": 39128, + "Ġfragen": 39129, + "Ġfiner": 39130, + "ĠSug": 39131, + "Ġuphill": 39132, + "Ġéén": 39133, + "âĢ¦)": 39134, + "ĠÑģоп": 39135, + "ĠCorey": 39136, + "Ġsiebie": 39137, + "Ġmuse": 39138, + "Ġcloves": 39139, + "Ġpous": 39140, + "ĠFinanz": 39141, + "ĠRoute": 39142, + "amat": 39143, + "Ġmutually": 39144, + "ĠвнÑĥÑĤÑĢи": 39145, + "ĠSelena": 39146, + "ëĶ": 39147, + "ĠGaussian": 39148, + "ë¶ĢíĦ°": 39149, + "Ġ×ij׼": 39150, + "Ġejerc": 39151, + "å¾®": 39152, + "kea": 39153, + "ĠGerry": 39154, + "ĠSic": 39155, + "大çļĦ": 39156, + "Ġ1966": 39157, + "iese": 39158, + "Ġfossils": 39159, + "Ġestad": 39160, + "ĠKane": 39161, + "ciÄĩ": 39162, + "ĠìľłíĬľë": 39163, + "Ġпам": 39164, + "ĠCruise": 39165, + "intérieur": 39166, + "Ġbekannt": 39167, + "ĠPode": 39168, + "Ġdemander": 39169, + "Rem": 39170, + "Ġinvade": 39171, + "Ġdecorating": 39172, + "ropic": 39173, + "Ġcowboy": 39174, + "ĠPhoto": 39175, + "opolit": 39176, + "Ġì»¬ëŁ¬ë": 39177, + "Ġreap": 39178, + "Ġhandwriting": 39179, + "à¹Ħร": 39180, + "Ġëļ": 39181, + "Ġبعد": 39182, + "ĠMt": 39183, + "ÙĢ": 39184, + "Ġspaceship": 39185, + "Ġnationalism": 39186, + "Ġcouncils": 39187, + "ĠGriffin": 39188, + "ĠAhmed": 39189, + "Ġclich": 39190, + "ĠOL": 39191, + "wl": 39192, + "ĠPilot": 39193, + "å®®": 39194, + "Ġacronym": 39195, + "Ġgels": 39196, + "Ġelectroly": 39197, + "èĵ": 39198, + "Ġмной": 39199, + "Ġepisod": 39200, + "ĠDieses": 39201, + "ĠATP": 39202, + "Ġediyorum": 39203, + "Ġexpresses": 39204, + "Ġexhibits": 39205, + "Comm": 39206, + "ĠкÑĢÑĥп": 39207, + "Ġmatar": 39208, + "Ġ2025": 39209, + "ĠArtem": 39210, + "vasive": 39211, + "rÃł": 39212, + "ĠbeÅŁ": 39213, + "é»ĥ": 39214, + "Ġlizard": 39215, + "Ġfille": 39216, + "Ġì§Ī문": 39217, + "ĠмоÑī": 39218, + "Ġtür": 39219, + "Ġculprit": 39220, + "Ġwoven": 39221, + "ĠANY": 39222, + "nim": 39223, + "Ġtay": 39224, + "Ġpromin": 39225, + "Ġacompa": 39226, + "Ġidé": 39227, + "Ġboiler": 39228, + "ĠThemen": 39229, + "Ġavenue": 39230, + "ĠMud": 39231, + "ĠновÑĭе": 39232, + "Ġwitnessing": 39233, + "Ġlance": 39234, + "ĠCHAN": 39235, + "ĠBever": 39236, + "تÙħ": 39237, + "Ġchemotherapy": 39238, + "King": 39239, + "ĠbÄĻdÄĻ": 39240, + "Ġatual": 39241, + "Ġtive": 39242, + "Ġtalkin": 39243, + "Ġquedar": 39244, + "ieÃŁ": 39245, + "edel": 39246, + "Ġìĸ´ìłľ": 39247, + "Ġjogar": 39248, + "Ġör": 39249, + "Ġundertaking": 39250, + "ĠStrength": 39251, + "Ġmilhões": 39252, + "ĠWine": 39253, + "ĠMolt": 39254, + "讲": 39255, + "ãģijãĤĮ": 39256, + "Ġundermine": 39257, + "ĠArchives": 39258, + "vana": 39259, + "mercial": 39260, + "MC": 39261, + "Ġcaste": 39262, + "пÑĢ": 39263, + "Ġlegislators": 39264, + "ulators": 39265, + "ênio": 39266, + "Ġëį°ë": 39267, + "ĠÑħоÑĤиÑĤе": 39268, + "Ġнек": 39269, + "Ġsurn": 39270, + "Ġconsci": 39271, + "ĠPOW": 39272, + "Ġculinary": 39273, + "ĠKAT": 39274, + "ĠFolks": 39275, + "Ñĭваем": 39276, + "Ġвок": 39277, + "ãģijãĤĭ": 39278, + "service": 39279, + "pts": 39280, + "Ġпобед": 39281, + "æĺ¯åķĬ": 39282, + "Ġtents": 39283, + "Ġnord": 39284, + "STE": 39285, + "Ġrepublican": 39286, + "Ġwyk": 39287, + "Ġminions": 39288, + "èĻķ": 39289, + "Ġmemang": 39290, + "jest": 39291, + "Ġcomparative": 39292, + "Ġtyle": 39293, + "carbon": 39294, + "bedingt": 39295, + "ksen": 39296, + "Ġnegativity": 39297, + "Ġsjälv": 39298, + "Ġdú": 39299, + "æīĢæľī": 39300, + "Ġrecalled": 39301, + "cra": 39302, + "ĠTada": 39303, + "ĠÑĢÑĥки": 39304, + "ĠопÑĢедел": 39305, + "Ġprocrast": 39306, + "Ġjogos": 39307, + "ĠOo": 39308, + "ĠHearts": 39309, + "Ġéch": 39310, + "ĠksiÄħż": 39311, + "Ġcoarse": 39312, + "ĠTube": 39313, + "ĠGreens": 39314, + "Ġén": 39315, + "Ġdumbbell": 39316, + "ĠÑĤи": 39317, + "Ġquerer": 39318, + "اØŃ": 39319, + "Ïĥει": 39320, + "ĠпÑĢавилÑĮно": 39321, + "Ġпап": 39322, + "Ġcompra": 39323, + "Ġtér": 39324, + "ĠAntes": 39325, + "Ġoptimum": 39326, + "Ġbiscuit": 39327, + "κι": 39328, + "aczego": 39329, + "Ġìĭľê°ĦìĿ´": 39330, + "ĠMarines": 39331, + "vero": 39332, + "Ġvaccinations": 39333, + "Ġpetty": 39334, + "riters": 39335, + "Ġал": 39336, + "country": 39337, + "Ġcounters": 39338, + "Ġattendant": 39339, + "ĠHui": 39340, + "ãģ¨ãģĦãģĨãģĵãģ¨ãģ§": 39341, + "cka": 39342, + "ÑģÑĤвеннÑĭй": 39343, + "guy": 39344, + "Ġtricked": 39345, + "ĠRED": 39346, + "Ġthrilling": 39347, + "ÏĢοι": 39348, + "Ġpiggy": 39349, + "Ġanunci": 39350, + "ORTER": 39351, + "ĠValue": 39352, + "Ġrond": 39353, + "ĠADA": 39354, + "Ġposer": 39355, + "hores": 39356, + "ĠRoland": 39357, + "ĵ¯": 39358, + "Ġnoir": 39359, + "Ġש×IJ×": 39360, + "ë°ľ": 39361, + "iemand": 39362, + "ĠпоÑĤеÑĢ": 39363, + "ê³³": 39364, + "Ġê±±": 39365, + "Ġformatting": 39366, + "ĠLed": 39367, + "è§Ģçľ¾": 39368, + "Ġkillers": 39369, + "ĠÄijấy": 39370, + "Ġhaar": 39371, + "again": 39372, + "!>[": 45687, + "minster": 45688, + "Ġвли": 45689, + "Ġidentifier": 45690, + "ĠLambda": 45691, + "Ġtros": 45692, + "Ġflawless": 45693, + "Ġdetrimental": 45694, + "Ġbunları": 45695, + "War": 45696, + "Ġregião": 45697, + "羣çļĦæĺ¯": 45698, + "ĠBike": 45699, + "cessors": 45700, + "Ġcùng": 45701, + "ĠRN": 45702, + "Ġê½ĥ": 45703, + "Ġküçük": 45704, + "ĠBeginning": 45705, + "íĺ¸ë": 45706, + "Ġgewe": 45707, + "Ġdenote": 45708, + "ĠAlberto": 45709, + "Ġprobiot": 45710, + "Ġode": 45711, + "Ġmolar": 45712, + "Ġbursting": 45713, + "assumed": 45714, + "Ġfootprints": 45715, + "veda": 45716, + "Ġsteroids": 45717, + "Ġflaming": 45718, + "ĠEller": 45719, + "Ġerkennen": 45720, + "ätzen": 45721, + "Ġlifecycle": 45722, + "ĠDOU": 45723, + "ĠKarena": 45724, + "ĠGuerra": 45725, + "è¿ĺæĺ¯": 45726, + "Ġsinister": 45727, + "Ġpodéis": 45728, + "Ġparab": 45729, + "Ġoko": 45730, + "Ġmatéri": 45731, + "Ġcaric": 45732, + "sonaro": 45733, + "Ġpraticamente": 45734, + "ÑĥÑģа": 45735, + "Ġcomunque": 45736, + "Ġvigilant": 45737, + "Ġregimes": 45738, + "ĠShooting": 45739, + "Ġraids": 45740, + "ĠNora": 45741, + "ĠWieder": 45742, + "mens": 45743, + "ĠÑģод": 45744, + "Ġê²½ìļ°ìĹIJëĬĶ": 45745, + "ĠвÑħод": 45746, + "Ġautobi": 45747, + "ĠSchn": 45748, + "ĠRobbie": 45749, + "ĠFitness": 45750, + "ĠконÑĦ": 45751, + "Ġpenguin": 45752, + "моÑĤÑĢÑı": 45753, + "Ġминим": 45754, + "plays": 45755, + "Ġdelegates": 45756, + "Mer": 45757, + "Ġsistem": 45758, + "ĠMichaels": 45759, + "male": 45760, + "اع": 45761, + "Ġcách": 45762, + "ĠHä": 45763, + "Ġ×Ļ×ķ×ĵ×¢": 45764, + "Ġsuperpower": 45765, + "Ġstron": 45766, + "Ġrover": 45767, + "Ġdépend": 45768, + "éĻ³": 45769, + "Ġretiring": 45770, + "Ġvampires": 45771, + "Ġmerde": 45772, + "ĠChanging": 45773, + "Ġtame": 45774, + "Ġspokesperson": 45775, + "Ġcay": 45776, + "Ġflirting": 45777, + "ĠGrö": 45778, + "Ġwär": 45779, + "Ġwyb": 45780, + "Ġcoeur": 45781, + "ạnh": 45782, + "ĠìĻĢìĦľ": 45783, + "Ġconnais": 45784, + "ĠHundreds": 45785, + "ĠBea": 45786, + "ĠαÏĢ": 45787, + "pruch": 45788, + "Ġsociedade": 45789, + "ĠWhilst": 45790, + "ĠKait": 45791, + "espace": 45792, + "Ġchia": 45793, + "ĠErm": 45794, + "Ġë°Ķê¿": 45795, + "Ġfences": 45796, + "ĠMortal": 45797, + "ê²ģ": 45798, + "ĠгÑĢаÑĦ": 45799, + "ĠHomeland": 45800, + "ĠJUN": 45801, + "isst": 45802, + "Ġparlar": 45803, + "Ġsporty": 45804, + "éo": 45805, + "Ġdeepen": 45806, + "ĠBehavior": 45807, + "éĢı": 45808, + "åĵĪåĵĪåĵĪ": 45809, + "Ġerrand": 45810, + "Ġrotary": 45811, + "ĠWellington": 45812, + "Wind": 45813, + "Ġmesela": 45814, + "ảng": 45815, + "iende": 45816, + "Ġexcell": 45817, + "ĠGenius": 45818, + "ĠEduardo": 45819, + "æľī人": 45820, + "ĠÅŁunu": 45821, + "ĠÄ°stanbul": 45822, + "Ġproduto": 45823, + "Ġãħİãħİ": 45824, + "OFF": 45825, + "Ġwollt": 45826, + "çĪĨ": 45827, + "Ġëī´ìĬ¤": 45828, + "Ġlass": 45829, + "Ġhertz": 45830, + "Ġaromatic": 45831, + "Ġзвон": 45832, + "Ġautoc": 45833, + "ĠLust": 45834, + "Ġ112": 45835, + "ĠÎĹ": 45836, + "Ġreviewers": 45837, + "Ġreceptive": 45838, + "å°įäºĨ": 45839, + "ând": 45840, + "oglo": 45841, + "ĠìķĦëĭĻ": 45842, + "Ġngo": 45843, + "ÑĸÑĤи": 45844, + "Ã¥t": 45845, + "cono": 45846, + "Ġtekrar": 45847, + "Ġì£¼ê³ł": 45848, + "ĠgelmiÅŁ": 45849, + "Ġbedtime": 45850, + "ĠArgh": 45851, + "ADA": 45852, + "ĠгоÑĢода": 45853, + "ĠÄĩ": 45854, + "Ġalliances": 45855, + "giggling": 45856, + "Ġyerde": 45857, + "Ġspies": 45858, + "Ġgutes": 45859, + "çi": 45860, + "Ġalltid": 45861, + "ĠLah": 45862, + "ŀIJë": 45863, + "ĠdokÅĤad": 45864, + "ÙĪÙĬ": 45865, + "Ġtoxicity": 45866, + "Ġcancellation": 45867, + "Ġ1958": 45868, + "dro": 45869, + "ĠìŀijìĿĢ": 45870, + "ĠMotorola": 45871, + "Ġmultin": 45872, + "Ġenthusiasts": 45873, + "ĠMighty": 45874, + "ĠCoconut": 45875, + ":ãĢĮ": 45876, + "ĠPictures": 45877, + "Ġsangre": 45878, + "Ġblinking": 45879, + "olesome": 45880, + "ĠìĬ¤íĥĢìĿ¼": 45881, + "FP": 45882, + "Ġbooming": 45883, + "ĠдеÑģÑıÑĤ": 45884, + "Ġratchet": 45885, + "Ġtimelines": 45886, + "leness": 45887, + "Ġcages": 45888, + "ĠGoodnight": 45889, + "ometimes": 45890, + "Ġcunning": 45891, + "ĠRisk": 45892, + "uled": 45893, + "dade": 45894, + "Ġprata": 45895, + "ĠgustarÃŃa": 45896, + "amus": 45897, + "ĠJinping": 45898, + "Ġestrut": 45899, + "Ġdescobrir": 45900, + "ĠMÄģ": 45901, + "ĠAllan": 45902, + "ĠåĪĨ": 45903, + "Ġ׾ק": 45904, + "Ġpreserv": 45905, + "ĠStrawberry": 45906, + "Äı": 45907, + "Lu": 45908, + "Ġkro": 45909, + "ĠReports": 45910, + "ìħĶìķ¼": 45911, + "Ġvalt": 45912, + "Ġpouvait": 45913, + "Ġappar": 45914, + "ĠBone": 45915, + "Ġpreferably": 45916, + "ĠRepública": 45917, + "å°±åĪ°": 45918, + "Ġherzlich": 45919, + "Ġchimney": 45920, + "Ġçev": 45921, + "Ġvisas": 45922, + "Ġverr": 45923, + "Ġcultivation": 45924, + "ĠArmenia": 45925, + "ĠвдÑĢÑĥг": 45926, + "Ġcockro": 45927, + "retched": 45928, + "artz": 45929, + "ĠлÑİдÑıм": 45930, + "ĠpolÃŃticas": 45931, + "ĠPanz": 45932, + "ĠAKA": 45933, + "ĠëĪĮ룬": 45934, + "Ġerro": 45935, + "Ġcamper": 45936, + "Ġ102": 45937, + "स": 45938, + "done": 45939, + "Ġhoard": 45940, + "ĠÐŁÐ¾ÑĤом": 45941, + "jeong": 45942, + "Ġdesta": 45943, + "pak": 45944, + "Ġinim": 45945, + "Ġgrowers": 45946, + "ĠMessage": 45947, + "Ġelector": 45948, + "engage": 45949, + "ĠForbes": 45950, + "ĠCincinnati": 45951, + "Ġdifférence": 45952, + "df": 45953, + "Ġspar": 45954, + "Ġawaits": 45955, + "ĠUSSR": 45956, + "ĠRising": 45957, + "ĠHoÅŁ": 45958, + "Ġfooting": 45959, + "Ġcondiciones": 45960, + "ÑĤоÑĢов": 45961, + "Ġclinician": 45962, + "ĠDiskuss": 45963, + "å£ĵ": 45964, + "ר×Ĵ": 45965, + "×¥": 45966, + "iteit": 45967, + "gren": 45968, + "Ġcharisma": 45969, + "Ġleuke": 45970, + "Ġirritating": 45971, + "Ġcirca": 45972, + "ĠRhodes": 45973, + "Ġpior": 45974, + "Ġhandicap": 45975, + "royable": 45976, + "Ġvull": 45977, + "OG": 45978, + "ĠinÃŃcio": 45979, + "ieri": 45980, + "Ġsplashing": 45981, + "Ġdemise": 45982, + "Ġassistir": 45983, + "ÑĩÑĤо": 45984, + "Ġcovert": 45985, + "ĠGud": 45986, + "à¸ī": 45987, + "klär": 45988, + "ĠìŀIJ꾸": 45989, + "Ġverändert": 45990, + "ĠREM": 45991, + "ĠConven": 45992, + "atge": 45993, + "Ġpierwsze": 45994, + "Ġclergy": 45995, + "lington": 45996, + "liv": 45997, + "VPN": 45998, + "ĠÑģожал": 45999, + "ĠHate": 46000, + "ãģ¨ãģĵãĤį": 46001, + "ÏĨο": 46002, + "ĠRespons": 46003, + "озд": 46004, + "Ġetmek": 46005, + "Ġchemin": 46006, + "ÙħØ©": 46007, + "Ġê°Ģ족": 46008, + "Tre": 46009, + "Ġumas": 46010, + "ĠBurton": 46011, + "Ġpatriarch": 46012, + "ĠSmithsonian": 46013, + "¥ĺ": 46014, + "Moon": 46015, + "Air": 46016, + "Ġmedios": 46017, + "Ġeraser": 46018, + "Ġwollten": 46019, + "Ġpareil": 46020, + "ĠBillie": 46021, + "æĬ½": 46022, + "еÑĢÑĤв": 46023, + "Ġparlament": 46024, + "Ġagony": 46025, + "ĠQUE": 46026, + "sequently": 46027, + "Another": 46028, + "ĠWhew": 46029, + "ĠAnnual": 46030, + "Ġseben": 46031, + "ìĥģìĿĦ": 46032, + "values": 46033, + "ŀľë§Į": 46034, + "Ġsinon": 46035, + "ereal": 46036, + "ĠEnlight": 46037, + "ĠChemistry": 46038, + "ĠCatalunya": 46039, + "Ġdoctr": 46040, + "anton": 46041, + "Ġstuk": 46042, + "ĠPlate": 46043, + "ĠKardashian": 46044, + "Ġfilos": 46045, + "ĠWet": 46046, + "ĠпопÑĭÑĤ": 46047, + "Ġunknowns": 46048, + "ĠSchon": 46049, + "ĠBaldwin": 46050, + "Ġtelescopes": 46051, + "ĠGucci": 46052, + "oxide": 46053, + "ĠConservative": 46054, + "ìĦ±ìĿĦ": 46055, + "Ġhinaus": 46056, + "Power": 46057, + "Ġê±´ê°ķ": 46058, + "Ġprevail": 46059, + "orman": 46060, + "machine": 46061, + "Ġ1946": 46062, + "Ġunbel": 46063, + "Ġschaut": 46064, + "Ġpiel": 46065, + "eenth": 46066, + "Ġobjectively": 46067, + "Ġchakra": 46068, + "audio": 46069, + "Ġchicos": 46070, + "ĠVault": 46071, + "å°Ī": 46072, + "Ġmedicinal": 46073, + "ĠTail": 46074, + "While": 46075, + "Ġasphalt": 46076, + "Ġfroze": 46077, + "ĠEK": 46078, + "unching": 46079, + "nosis": 46080, + "2015": 46081, + "ĠGri": 46082, + "Ġoddly": 46083, + "ĠMär": 46084, + "ĠAeg": 46085, + "colo": 46086, + "Par": 46087, + "Ġëĵ¤ìĸ´ë": 46088, + "Ġvinden": 46089, + "ĠOVER": 46090, + "Ġiced": 46091, + "Ġscorp": 46092, + "Ġhac": 46093, + "qualified": 46094, + "ĠÑĥвидеÑĤÑĮ": 46095, + "ermo": 46096, + "HEN": 46097, + "Ġsoi": 46098, + "Ġmultiples": 46099, + "Ġlayouts": 46100, + "Ġblindness": 46101, + "ĠBowser": 46102, + "ĠподÑĤ": 46103, + "ĠÃİ": 46104, + "ventional": 46105, + "Ġmata": 46106, + "madı": 46107, + "Ġgeez": 46108, + "Ġcadence": 46109, + "Ġważne": 46110, + "ĠChristie": 46111, + "venge": 46112, + "Call": 46113, + "Ġturnaround": 46114, + "Ġblob": 46115, + "ĠЯк": 46116, + "ĠVoiceover": 46117, + "Ġperil": 46118, + "ĠJaime": 46119, + "ĠHOY": 46120, + "lane": 46121, + "Ġsebel": 46122, + "ĠDuo": 46123, + "ĠHistorical": 46124, + "Ġdni": 46125, + "Ġgema": 46126, + "yk": 46127, + "Ġsabem": 46128, + "ắng": 46129, + "Ġvars": 46130, + "ĠRonnie": 46131, + "ĠRonaldo": 46132, + "ĠPerquè": 46133, + "nsinn": 46134, + "hair": 46135, + "Ġrelentless": 46136, + "Ġlyn": 46137, + "Ġtraveler": 46138, + "æĢİ麼äºĨ": 46139, + "nine": 46140, + "Ġantim": 46141, + "Ġì¼Ģ": 46142, + "Ġsnowball": 46143, + "ĠÑħаÑĢакÑĤеÑĢ": 46144, + "Ġinterns": 46145, + "Ġconstituency": 46146, + "ĠÐĿам": 46147, + "׾׾": 46148, + "VEL": 46149, + "Ġviktigt": 46150, + "Ġapoyo": 46151, + "ÙĦب": 46152, + "Ġjard": 46153, + "Ġheightened": 46154, + "ÑĢоÑģÑĤ": 46155, + "ĠSMITH": 46156, + "Ġдела": 46157, + "Ġrepairing": 46158, + "Ġrigt": 46159, + "ĠSheikh": 46160, + "ĠBritney": 46161, + "Ġeverytime": 46162, + "Ġadventurous": 46163, + "ockey": 46164, + "ernt": 46165, + "Ġataque": 46166, + "ĠAlternatively": 46167, + "effect": 46168, + "Ġpalavras": 46169, + "ĠElliott": 46170, + "Ġréussi": 46171, + "Ġhypertension": 46172, + "ĠManual": 46173, + "Ġprophetic": 46174, + "Ġhandc": 46175, + "ÑĮе": 46176, + "Ġrefrain": 46177, + "ĠSquid": 46178, + "ìŀ¡": 46179, + "Ġкоман": 46180, + "ällen": 46181, + "Ġllegó": 46182, + "Ġbash": 46183, + "iony": 46184, + "ĠÑģклад": 46185, + "Ġкаб": 46186, + "Ġcareless": 46187, + "ĠPool": 46188, + "Ġtrás": 46189, + "Ġfils": 46190, + "ĠSchr": 46191, + "Ġsprawd": 46192, + "ĠMonaten": 46193, + "Ġunforgettable": 46194, + "ĠCotton": 46195, + "Ġinconvenient": 46196, + "ĠRX": 46197, + "oris": 46198, + "Ġhumbled": 46199, + "ת×Ĺ": 46200, + "Ġآپ": 46201, + "ĠincreÃŃ": 46202, + "ĠKommentare": 46203, + "èĪĴ": 46204, + "ración": 46205, + "Ġvantage": 46206, + "ĠSeal": 46207, + "ĠìĿ´ê±°ë¥¼": 46208, + "Ġjoue": 46209, + "ãģĿãģĨãģ§ãģĻãģŃ": 46210, + "Ġìĺ¤ëŀĺ": 46211, + "ĠиÑģпÑĭÑĤ": 46212, + "oben": 46213, + "Ġgrate": 46214, + "Ġcontrole": 46215, + "ĠPercy": 46216, + "ÅĤada": 46217, + "Ġsimultaneous": 46218, + "Ġprototy": 46219, + "ĠgroÃŁer": 46220, + "Ġbewusst": 46221, + "inizi": 46222, + "Ġpassieren": 46223, + "ĠHappiness": 46224, + "åīĩ": 46225, + "shi": 46226, + "geht": 46227, + "Ġstationed": 46228, + "ĠErgebnis": 46229, + "Ġdirectamente": 46230, + "Ġsurvives": 46231, + "Ġpersones": 46232, + "BERG": 46233, + "Ġvomiting": 46234, + "Ġconhecer": 46235, + "Ġadjour": 46236, + "ĠCivic": 46237, + "pei": 46238, + "burst": 46239, + "Ġëĭ¤ëĭĪ": 46240, + "éı": 46241, + "Ġsled": 46242, + "Ġplataforma": 46243, + "ĠSect": 46244, + "ĠDefin": 46245, + "çĻ»éĮ²": 46246, + "énom": 46247, + "chnet": 46248, + "Ġprofitability": 46249, + "Ġerreicht": 46250, + "á»ıi": 46251, + "cation": 46252, + "Ġì§Ģê¸": 46253, + "Ġperdre": 46254, + "Ġfelony": 46255, + "Ġ1957": 46256, + "æĪijå¾Ī": 46257, + "Ġunsuccessful": 46258, + "Ġnagyon": 46259, + "Ġelasticity": 46260, + "Ġfacade": 46261, + "Ġearthly": 46262, + "ĠамеÑĢикан": 46263, + "Ġconn": 46264, + "cla": 46265, + "Du": 46266, + "Ġpolitiques": 46267, + "Ġhalo": 46268, + "iantes": 46269, + "Ġмоей": 46270, + "ãĥ³ãĥī": 46271, + "tones": 46272, + "elier": 46273, + "è®ļ": 46274, + "htaking": 46275, + "Ġwichtige": 46276, + "Ġanno": 46277, + "ĠLok": 46278, + "illions": 46279, + "Ġviver": 46280, + "Ġsolchen": 46281, + "Ġsuf": 46282, + "ĠSalz": 46283, + "ĠNvidia": 46284, + "zuge": 46285, + "ĠSpike": 46286, + "Video": 46287, + "Ġtwor": 46288, + "ĠAla": 46289, + "èijī": 46290, + "Ġhanya": 46291, + "ĠAdm": 46292, + "ìĿµ": 46293, + "ĠPatienten": 46294, + "ĠOnion": 46295, + "ĠKobe": 46296, + "ĠScene": 46297, + "ĠRash": 46298, + "æ¨Ļ": 46299, + "ÑĢаÑģÑĤ": 46300, + "istani": 46301, + "General": 46302, + "leye": 46303, + "imbap": 46304, + "Ġconcealed": 46305, + "ĠFridays": 46306, + "ĠWool": 46307, + "ĠновÑĭÑħ": 46308, + "شر": 46309, + "Ġê²°ê³¼": 46310, + "Ġjedoch": 46311, + "´ìĭľ": 46312, + "ĵ¤ëıĦ": 46313, + "Ġìŀ¥ëĤľ": 46314, + "ukt": 46315, + "Lou": 46316, + "Ġ먹ìĸ´": 46317, + "ĠExpect": 46318, + "Ġдомой": 46319, + "Ġirresponsible": 46320, + "Ġacerca": 46321, + "ĠZust": 46322, + "ר×ĺ": 46323, + "UI": 46324, + "Ġyoutubers": 46325, + "ĠPositive": 46326, + "Ġsocioe": 46327, + "Ġsnatch": 46328, + "èĥĮ": 46329, + "Ġrefreshed": 46330, + "Ġnominations": 46331, + "ĠPatt": 46332, + "Ġobsolete": 46333, + "ĠdemiÅŁ": 46334, + "åı¤": 46335, + "ormuÅŁ": 46336, + "ĠìĨĶì§ģíŀĪ": 46337, + "Ġfla": 46338, + "Ġcraziest": 46339, + "ĠZie": 46340, + "ĠTú": 46341, + "zep": 46342, + "icem": 46343, + "Ġë©ĭìŀĪ": 46344, + "Ġcynical": 46345, + "ãģĿãĤĵãģª": 46346, + "Ġtresp": 46347, + "Ġcraz": 46348, + "Õ¥Õ": 46349, + "Ġnelle": 46350, + "Ġmph": 46351, + "ĠNered": 46352, + "ĠKob": 46353, + "ĠEck": 46354, + "¨¸ëĭĪ": 46355, + "Jan": 46356, + "ĠТогда": 46357, + "Ġdeci": 46358, + "ĠVog": 46359, + "Ġbubbling": 46360, + "éĢĢ": 46361, + "úa": 46362, + "Ġproductos": 46363, + "iberal": 46364, + "Ġreplicated": 46365, + "ĠImprove": 46366, + "illary": 46367, + "Cha": 46368, + "Ġrédu": 46369, + "ĥIJíķĺë©´": 46370, + "Ġconnot": 46371, + "ĠKrit": 46372, + "ĠдÑĥÑħов": 46373, + "Ġtreadmill": 46374, + "ĠPW": 46375, + "ĠзовÑĥÑĤ": 46376, + "Ġclams": 46377, + "Ġdrafting": 46378, + "Ġ1956": 46379, + "unta": 46380, + "Ġexpenditures": 46381, + "ĠHoover": 46382, + "WOO": 46383, + "ÑĪее": 46384, + "Ġdeduction": 46385, + "monary": 46386, + "Ġrecib": 46387, + "Ġpovo": 46388, + "ĠëįĶë": 46389, + "ĠPAL": 46390, + "ĠBlow": 46391, + "Ġwyp": 46392, + "Ġdestac": 46393, + "deal": 46394, + "Graeme": 46395, + "Ġnécessaire": 46396, + "Ġdamned": 46397, + "Ġ1938": 46398, + "Ġìĭ¤ìłľë¡ľ": 46399, + "Ġtroop": 46400, + "Ġinsightful": 46401, + "ĠTJ": 46402, + "ĠоÑģв": 46403, + "Ġfidelity": 46404, + "ĠSkip": 46405, + "ĠMayo": 46406, + "ë§Ŀ": 46407, + "appe": 46408, + "Ġblas": 46409, + "ĠWY": 46410, + "ĠGN": 46411, + "ctar": 46412, + "Su": 46413, + "Ġcuent": 46414, + "hews": 46415, + "Ġcorpses": 46416, + "Abs": 46417, + "Ġwastewater": 46418, + "Ġciek": 46419, + "ĠOnu": 46420, + "Ġexplosives": 46421, + "Ġarma": 46422, + "ĠSTEPHAN": 46423, + "politik": 46424, + "ĠOsaka": 46425, + "taÅĤ": 46426, + "Ġyapıyor": 46427, + "Ġizquier": 46428, + "Ġbeleza": 46429, + "ĠWyatt": 46430, + "åIJ¸": 46431, + "Ġsuk": 46432, + "Ġspecjal": 46433, + "Ġdanke": 46434, + "whistle": 46435, + "ĠfÃŃsica": 46436, + "ĠHarriet": 46437, + "ĠìķĦíĮĮ": 46438, + "Ġwillkommen": 46439, + "iping": 46440, + "ĠÑģмоÑĤÑĢиÑĤе": 46441, + "ĠможеÑĪÑĮ": 46442, + "Ġinaccurate": 46443, + "Ġarrogance": 46444, + "ĠRemo": 46445, + "γά": 46446, + "assed": 46447, + "Ġdeliveries": 46448, + "Ġstinky": 46449, + "ĠпеÑĢеж": 46450, + "jay": 46451, + "Ġtransitional": 46452, + "Ġrere": 46453, + "ĠNGOs": 46454, + "ĠATM": 46455, + "خت": 46456, + "iology": 46457, + "Ġвлад": 46458, + "Ġschme": 46459, + "ĠShine": 46460, + "ìķ¡": 46461, + "pants": 46462, + "Ġserge": 46463, + "Ġsenhor": 46464, + "Ġabduct": 46465, + "ĠBryant": 46466, + "VES": 46467, + "Ġawakened": 46468, + "ĠLaz": 46469, + "ropolis": 46470, + "ĠLao": 46471, + "è¾Ľèĭ¦": 46472, + "Ġvilla": 46473, + "Ġsummers": 46474, + "Ġenthal": 46475, + "Ġ1949": 46476, + "Via": 46477, + "Ġìĸ´ì¨": 46478, + "Ġtendon": 46479, + "Ġviolet": 46480, + "Ġintellectually": 46481, + "Ġbounced": 46482, + "araus": 46483, + "Ġ1919": 46484, + "Ġvraag": 46485, + "Ġspel": 46486, + "ĠSchwar": 46487, + "Scott": 46488, + "ĠIndo": 46489, + "Ġë§Ŀ": 46490, + "Ġcanonical": 46491, + "ĠIKE": 46492, + "ĠthatÃŃs": 46493, + "Ġmellan": 46494, + "æ¯Ĵ": 46495, + "igmat": 46496, + "Could": 46497, + "...?)": 46498, + "Ġfoarte": 46499, + "ĠKumar": 46500, + "rendo": 46501, + "Ġélé": 46502, + "à´": 46503, + "valuation": 46504, + "cases": 46505, + "Ġintuitively": 46506, + "hong": 46507, + "etted": 46508, + "Ġsouven": 46509, + "Ġmorb": 46510, + "Ġcors": 46511, + "ĠNV": 46512, + "ĠHasan": 46513, + "æĥħåĨµ": 46514, + "ieved": 46515, + "Ġì§Ģê¸ĪìĿĢ": 46516, + "Ġdumpling": 46517, + "Ġcontrôle": 46518, + "Ġambiguity": 46519, + "æ©Łæľĥ": 46520, + "Ġcog": 46521, + "ĠScriptures": 46522, + "Ġcai": 46523, + "Ġbever": 46524, + "大家éĥ½": 46525, + "Ġhuis": 46526, + "Ġaime": 46527, + "Ġerklären": 46528, + "ĠLM": 46529, + "ĠFey": 46530, + "éļ¾": 46531, + "றத": 46532, + "Ġsupervised": 46533, + "Ġjewe": 46534, + "spl": 46535, + "ĠÑĨенÑĤÑĢ": 46536, + "Ġcollisions": 46537, + "ÙĦÙģ": 46538, + "ĠHogwarts": 46539, + "ĠDurham": 46540, + "×ķ×£": 46541, + "Ġphosphate": 46542, + "Ġoversee": 46543, + "Ġinspections": 46544, + "Ġbrinc": 46545, + "ĠZak": 46546, + "Ġpayoff": 46547, + "Ġchaud": 46548, + "ĠHunger": 46549, + "ãos": 46550, + "vir": 46551, + "Ġfiance": 46552, + "Ġboug": 46553, + "lived": 46554, + "cry": 46555, + "åĽŀä¾Ĩ": 46556, + "Ġjointly": 46557, + "Ġgirlfriends": 46558, + "ĠNexus": 46559, + "¦¬ê²łìĬµëĭĪëĭ¤": 46560, + "ĠKwang": 46561, + "åĵĪåĽī": 46562, + "å§ij": 46563, + "ÅĤÄĻ": 46564, + "ĠNeden": 46565, + "iece": 46566, + "Ġinserting": 46567, + "æŁĵ": 46568, + "ĠMummy": 46569, + "ĠGlobe": 46570, + "Ġlee": 46571, + "Ġgerman": 46572, + "Ġcreams": 46573, + "acho": 46574, + "ĠchÆ°a": 46575, + "ĠGalile": 46576, + "Ġfürs": 46577, + "Ġestiver": 46578, + "cidos": 46579, + "Christian": 46580, + "Ġlorsqu": 46581, + "Ġcutest": 46582, + "vale": 46583, + "ĠкÑĢеп": 46584, + "Ġwary": 46585, + "Ġslicing": 46586, + "Ġesperando": 46587, + "ĠVander": 46588, + "ĠDeixa": 46589, + "Ġ1954": 46590, + "ĠmówiÄħ": 46591, + "ÑĸÑĶ": 46592, + "Ġtooling": 46593, + "Ġrestor": 46594, + "Ġposición": 46595, + "Ġintentar": 46596, + "ĠApache": 46597, + "OUL": 46598, + "ĠÙĪب": 46599, + "Ġmatière": 46600, + "ãĥ¼ãĤĵ": 46601, + "Ġlinen": 46602, + "Ġestratég": 46603, + "ĠMutta": 46604, + "顯": 46605, + "è¡ĮäºĨ": 46606, + "Ġparting": 46607, + "Ġminimizing": 46608, + "Ġapprendre": 46609, + "æľĿ": 46610, + "Ġанглий": 46611, + "ĠDoo": 46612, + "ĠFirefox": 46613, + "cómo": 46614, + "Ġgeopolit": 46615, + "Ġmakan": 46616, + "Ġmogelijk": 46617, + "ĠÏĢεÏģι": 46618, + "Ġcứ": 46619, + "Ġinstaller": 46620, + "Ġdibuj": 46621, + "ĠHeath": 46622, + "loop": 46623, + "ĠBroken": 46624, + "HYUN": 46625, + "shelf": 46626, + "Ġfizer": 46627, + "Ġenhances": 46628, + "ä¾ĭãģĪãģ°": 46629, + "ĠдоÑģÑĤи": 46630, + "ĠPUB": 46631, + "ĠKollegin": 46632, + "Ġattained": 46633, + "ľ": 46634, + "Ġmistress": 46635, + "ĠOftentimes": 46636, + "×ŀ×Ļ×Ŀ": 46637, + "Ġbewe": 46638, + "ĠSora": 46639, + "rauen": 46640, + "baum": 46641, + "Ġrollers": 46642, + "Ġmering": 46643, + "ĠPAC": 46644, + "ĠнÑĸ": 46645, + "ĠRépublique": 46646, + "ĠÑĤÑĢав": 46647, + "ĠVanguard": 46648, + "uciones": 46649, + "Ġ무ëĮĢ": 46650, + "Ġgour": 46651, + "¯¤": 46652, + "ĠÏī": 46653, + "Ġsauna": 46654, + "Ġpeine": 46655, + "ĠValerie": 46656, + "ĠSikh": 46657, + "fendimiz": 46658, + "bero": 46659, + "ĠÑĩи": 46660, + "ĠdoÅĽwiad": 46661, + "ĠEuros": 46662, + "Ġcommentaires": 46663, + "Ġtweaks": 46664, + "ĠFaster": 46665, + "ĠÑĢаÑģк": 46666, + "Ġprogressively": 46667, + "ĠEuch": 46668, + "boro": 46669, + "ĠIngred": 46670, + "Cap": 46671, + "Ġuncheck": 46672, + "Ġìĺ¤ë¥¸": 46673, + "Ġwre": 46674, + "ĠFT": 46675, + "örung": 46676, + "Ġmemorized": 46677, + "ĠDinner": 46678, + "ĠPhew": 46679, + "oubl": 46680, + "Ġputa": 46681, + "Ġadmits": 46682, + "езде": 46683, + "opod": 46684, + "Ġpanda": 46685, + "Ġhinges": 46686, + "cipe": 46687, + "Ġtransact": 46688, + "Ġpodia": 46689, + "Ġpics": 46690, + "Ġcriterion": 46691, + "ĠOrchestra": 46692, + "ĠBlog": 46693, + "Ġsolemn": 46694, + "ĠPixar": 46695, + "Three": 46696, + "Ġвниз": 46697, + "ĠVolunte": 46698, + "ĠSavage": 46699, + "ĠPVC": 46700, + "ĠCaf": 46701, + "Ġwykon": 46702, + "Ġgraders": 46703, + "Ġcrouch": 46704, + "Ġcliche": 46705, + "Ġsoybeans": 46706, + "ĠMUR": 46707, + "ĠGonzalez": 46708, + "ĠMimi": 46709, + "ĠBolsonaro": 46710, + "Ġdiaphrag": 46711, + "Ġbilang": 46712, + "ëIJĺëĬĶ": 46713, + "éĤ£æĪijåĢij": 46714, + "Ġregulating": 46715, + "Mc": 46716, + "Judge": 46717, + "Ġнож": 46718, + "ĠjakÄħ": 46719, + "itesse": 46720, + "ĠWij": 46721, + "Ġlata": 46722, + "groaning": 46723, + "POSING": 46724, + "Ġ×IJ×ķת×ķ": 46725, + "Ġhaga": 46726, + "Ġgrounding": 46727, + "Ġviolently": 46728, + "Ġtills": 46729, + "Ġengag": 46730, + "ĠHollow": 46731, + "ĠпопÑĥлÑıÑĢ": 46732, + "Ġwprowad": 46733, + "Ġreplaces": 46734, + "Ġfluorescent": 46735, + "urgical": 46736, + "iggly": 46737, + "ĠTraditional": 46738, + "tte": 46739, + "ĠÙĦÙĩ": 46740, + "Ġphosphorus": 46741, + "Ġapron": 46742, + "ĠWaters": 46743, + "ĠKultur": 46744, + "авай": 46745, + "Ġolives": 46746, + "Ġ×Ķ×IJ׾": 46747, + "Ġteilweise": 46748, + "Ġsencill": 46749, + "Ġprends": 46750, + "Ġnarrower": 46751, + "Ġjätte": 46752, + "ĠInformationen": 46753, + "ìĥģìĿ´": 46754, + "Ġstarve": 46755, + "Ġfrick": 46756, + "ĠBeweg": 46757, + "ल": 46758, + "Ġdolphin": 46759, + "ĠLAUGHTER": 46760, + "ĠINTERVIE": 46761, + "åĶī": 46762, + "ĠyanlÄ±ÅŁ": 46763, + "Ġtorpedo": 46764, + "Ġshortages": 46765, + "ìĿ´ëĵľ": 46766, + "ıldı": 46767, + "Ġpaws": 46768, + "Ġozone": 46769, + "Ġcultivated": 46770, + "ĠFot": 46771, + "Ġnotor": 46772, + "ноз": 46773, + "ĠкоÑĪ": 46774, + "Ġtouchscreen": 46775, + "ĠAlly": 46776, + "æľĢè¿ij": 46777, + "Ġ맼ìŀĪìĸ´ìļĶ": 46778, + "ĠСеÑĢ": 46779, + "Ġвполне": 46780, + "Ġpaprika": 46781, + "ĠDustin": 46782, + "Ġefecto": 46783, + "Ġopini": 46784, + "Ġmuut": 46785, + "Ġhá»įc": 46786, + "Ġinterject": 46787, + "ÄĻt": 46788, + "Ġbutts": 46789, + "urez": 46790, + "ĠPike": 46791, + "ĠHok": 46792, + "ĠGuinea": 46793, + "ĠCathedral": 46794, + "Ġ1400": 46795, + "Cra": 46796, + "+,": 46797, + "맼": 46798, + "³´ëıĦë¡Ŀ": 46799, + "abyrin": 46800, + "Ġvideog": 46801, + "ĠоÑĢÑĥж": 46802, + "Ġuž": 46803, + "Ġbuscando": 46804, + "ĠAssistance": 46805, + "éĻ½": 46806, + "Ġmelhores": 46807, + "ì¡´": 46808, + "Ġëģ¼": 46809, + "ĠRJ": 46810, + "ĠتÙħ": 46811, + "Ġomin": 46812, + "Ġmotorcycles": 46813, + "ĠSapp": 46814, + "Ġsupplying": 46815, + "ĠAlgun": 46816, + "Ġaerospace": 46817, + "×¢×ľ": 46818, + "occup": 46819, + "leist": 46820, + "Ġê±°ëĬĶ": 46821, + "Ġcompleta": 46822, + "bres": 46823, + "!(": 46824, + "ĠÐŁÑĢед": 46825, + "Ġdisadvantaged": 46826, + "ĠAttend": 46827, + "ĠJudah": 46828, + "á»ĭch": 46829, + "ylene": 46830, + "actly": 46831, + "Ġsetups": 46832, + "Ġammonia": 46833, + "ĠSchweiz": 46834, + "ĠShame": 46835, + "Ġbande": 46836, + "ĠFuel": 46837, + "Ġtroublesome": 46838, + "Ġnumero": 46839, + "ĠMOM": 46840, + "ĠпÑĢедлаг": 46841, + "mentioned": 46842, + "ĠболÑĮÑĪое": 46843, + "ĠViktor": 46844, + "ĠStyles": 46845, + "Ġcrucified": 46846, + "ructured": 46847, + "environ": 46848, + "Ġmorals": 46849, + "Ġmeditating": 46850, + "Ġaxial": 46851, + "isance": 46852, + "ĠAbst": 46853, + "Green": 46854, + "Ġê±´ì": 46855, + "Ġquadrant": 46856, + "Ġpergi": 46857, + "Ġcameraman": 46858, + "ĠSequ": 46859, + "Ġpaused": 46860, + "ĠLaughing": 46861, + "ê·Ģ": 46862, + "?..": 46863, + "ĠÅ»e": 46864, + "Ġpermitir": 46865, + "Ġdetectors": 46866, + "ĠHUD": 46867, + "aval": 46868, + "ĠìĹ¬ê¸°ê¹Įì§Ģ": 46869, + "Ġhubs": 46870, + "Ġbestimmt": 46871, + "ĠбÑĥдеÑĤе": 46872, + "INTERPOSING": 46873, + "Ġtengan": 46874, + "Ġcrave": 46875, + "ĠBundesregierung": 46876, + "ĠBloody": 46877, + "Ġusability": 46878, + "ĠEas": 46879, + "ĠÄijá»Ļng": 46880, + "Ġ1955": 46881, + "Ġkriegen": 46882, + "Ġhabitual": 46883, + "Ġessentials": 46884, + "riminal": 46885, + "Ġroommates": 46886, + "éĤ£å°±": 46887, + "ĠпеÑĢеÑħод": 46888, + "Ġnghi": 46889, + "Ġmening": 46890, + "ĠSymphony": 46891, + "ĠHug": 46892, + "aggi": 46893, + "Ġwied": 46894, + "Ġmitad": 46895, + "ãģ£ãģ¦ãģĦãģĨ": 46896, + "teenth": 46897, + "idaÄĩ": 46898, + "Save": 46899, + "ĠrobiÄĩ": 46900, + "Ġbounces": 46901, + "°ĸìĹIJ": 46902, + "stars": 46903, + "Ġpragmatic": 46904, + "Ġcognition": 46905, + "Ġwrapper": 46906, + "Ġwarten": 46907, + "adh": 46908, + "Ġpensa": 46909, + "ĠHertz": 46910, + "ĠnÄĽ": 46911, + "ĠReid": 46912, + "ĠPCs": 46913, + "ĠMole": 46914, + "Ġ.....": 46915, + "Ġprecio": 46916, + "ĠChampionships": 46917, + "ê°ĢëĿ½": 46918, + "Ġvér": 46919, + "Ġcorridors": 46920, + "ĠElectronic": 46921, + "Sl": 46922, + "Ġале": 46923, + "Ġoverthrow": 46924, + "Ġkabul": 46925, + "ĠRES": 46926, + "ĠCyberpunk": 46927, + "огод": 46928, + "ĠÐĿав": 46929, + "Ġwan": 46930, + "Ġmanifestations": 46931, + "Ġcuales": 46932, + "ĠWise": 46933, + "ĠLösung": 46934, + "Ġexfol": 46935, + "Ġearns": 46936, + "ÑĥÑģÑĤиÑĤÑĮ": 46937, + "Ġsapp": 46938, + "ĠBraun": 46939, + "ĠBRANDON": 46940, + "ì¹Ļ": 46941, + "Ġsano": 46942, + "ĠFEL": 46943, + "ÑĭвайÑĤеÑģÑĮ": 46944, + "ождениÑı": 46945, + "Ġsewn": 46946, + "Fun": 46947, + "Ġreciprocal": 46948, + "Ġexpansive": 46949, + "ĠTraffic": 46950, + "Ġktórego": 46951, + "ĠÙĪس": 46952, + "æĺ¥": 46953, + "Ġ빨": 46954, + "prove": 46955, + "igare": 46956, + "Ġloh": 46957, + "اض": 46958, + "Hope": 46959, + "Ġdevotees": 46960, + "ĠGom": 46961, + "Ġsteals": 46962, + "ĠUms": 46963, + "ĠTwice": 46964, + "ãĤ²": 46965, + "iyim": 46966, + "Ġrhythmic": 46967, + "ĠVorte": 46968, + "Ġprefix": 46969, + "omination": 46970, + "Ġdato": 46971, + "Ġcustard": 46972, + "ĠVOICE": 46973, + "å·ŀ": 46974, + "Ġmeny": 46975, + "istors": 46976, + "Ġíĺij": 46977, + "ĠìĤ´ìķĦ": 46978, + "ĠíĥĦ": 46979, + "Ġkort": 46980, + "Ġaba": 46981, + "ĠVera": 46982, + "epy": 46983, + "Ġì¹´ë©ĶëĿ¼": 46984, + "Ġsubmerged": 46985, + "ĠClock": 46986, + "Ġthumbnails": 46987, + "Ġboast": 46988, + "ĠFare": 46989, + "!!]": 46990, + "ĠÅĽm": 46991, + "Ġkaikki": 46992, + "ĠTechnologies": 46993, + "ìĻ¸": 46994, + "ãĥĴ": 46995, + "иÑĤай": 46996, + "å°ıæĻĤ": 46997, + "ĠаÑĤ": 46998, + "Ġknobs": 46999, + "Ġreicht": 47000, + "ượng": 47001, + "glio": 47002, + "Ġ맼ìĿ´": 47003, + "ê°IJìĿĦ": 47004, + "Ġjotka": 47005, + "ĠHandy": 47006, + "ĠHaben": 47007, + "nous": 47008, + "Ġinland": 47009, + "Ġamazon": 47010, + "hooting": 47011, + "SL": 47012, + "Ġleisten": 47013, + "~\"": 47014, + "Ġprovoke": 47015, + "ĠTwist": 47016, + "Ġ×ij×Ĺ": 47017, + "Ġdeparted": 47018, + "ê°ľë¥¼": 47019, + "Ġkonse": 47020, + "ĠCarwyn": 47021, + "íķĺìĭł": 47022, + "idental": 47023, + "ESCO": 47024, + "Ġtteokbokki": 47025, + "Ġdizendo": 47026, + "ç·´": 47027, + "ındaki": 47028, + "imasu": 47029, + "afar": 47030, + "Ġlandfill": 47031, + "Ġcorrecting": 47032, + "Ġclears": 47033, + "ĠNummer": 47034, + "HAM": 47035, + "Ġcartridges": 47036, + "ĠDiesel": 47037, + "paced": 47038, + "Ġobliv": 47039, + "Ġmoyens": 47040, + "ĠSinne": 47041, + "ĠPreis": 47042, + "iliz": 47043, + "ĠÑģмож": 47044, + "Ġbroaden": 47045, + "ä»ĸæĺ¯": 47046, + "xes": 47047, + "Ġcarbohydrate": 47048, + "íĺ¹": 47049, + "seok": 47050, + "Ġechoes": 47051, + "Ġcess": 47052, + "ë°Ķ": 47053, + "ĠбизнеÑģ": 47054, + "Ġllamado": 47055, + "Ġessent": 47056, + "ĠìĿ¼ë°ĺ": 47057, + "ĠAires": 47058, + "phen": 47059, + "Ġzebra": 47060, + "Ġsymbolism": 47061, + "Once": 47062, + "Ġracks": 47063, + "ĠKafka": 47064, + "ĠÑģеÑĢÑĮез": 47065, + "Ġsinn": 47066, + "picious": 47067, + "kaa": 47068, + "Ġmotherfucker": 47069, + "Ġapprenticeship": 47070, + "Ġrpm": 47071, + "Ġtaxation": 47072, + "Ġfurry": 47073, + "ĠSacred": 47074, + "ĠÑĢазм": 47075, + "pora": 47076, + "enges": 47077, + "ĠíĹĪë": 47078, + "ĠÑģин": 47079, + "Ġsanitizer": 47080, + "Ġcringe": 47081, + "ĠSca": 47082, + "оÑĩно": 47083, + "Ġofere": 47084, + "Ġmelodies": 47085, + "ĠVelvet": 47086, + "ĠIhrer": 47087, + "ĠHybrid": 47088, + "ĠGiov": 47089, + "Ġirgendwas": 47090, + "Ġdepende": 47091, + "ĠUsers": 47092, + "Ġhump": 47093, + "driving": 47094, + "Ġsf": 47095, + "Ġruthless": 47096, + "à¹Ģà¸Ħ": 47097, + "Ġlemons": 47098, + "Ġföret": 47099, + "ĠOj": 47100, + "Ġмама": 47101, + "Ġinterpersonal": 47102, + "Ġgev": 47103, + "Ġabnorm": 47104, + "иÑģл": 47105, + "Ġинд": 47106, + "Ġkontroll": 47107, + "Ġregres": 47108, + "Ġledge": 47109, + "Ġerzählt": 47110, + "ĠTact": 47111, + "Ġarrivé": 47112, + "Ġsubstantive": 47113, + "Ġspoonful": 47114, + "zwischen": 47115, + "ooooo": 47116, + "Ġcontenido": 47117, + "Ġbesl": 47118, + "á»ĥm": 47119, + "kten": 47120, + "Jamie": 47121, + "Ġsandy": 47122, + "ä¸įåIJĮ": 47123, + "âĭ": 47124, + "Ġpase": 47125, + "Ġdette": 47126, + "ĠBelgian": 47127, + "ê°ľë": 47128, + "ulares": 47129, + "rud": 47130, + "igor": 47131, + "ĠíĮ¬ë": 47132, + "Ġremedies": 47133, + "Ġblasting": 47134, + "ĠSich": 47135, + "Ġожид": 47136, + "Ġmonstr": 47137, + "Ġmanifold": 47138, + "Ġglauben": 47139, + "ĠEST": 47140, + "Ġstreamline": 47141, + "Ġlobbying": 47142, + "ĠGothic": 47143, + "toire": 47144, + "..'": 47145, + "Ġdémocr": 47146, + "ĠнаблÑİд": 47147, + "Ġwspól": 47148, + "ĠczÄĻÅĽÄĩ": 47149, + "ä¸ĭéĿ¢": 47150, + "isés": 47151, + "gangen": 47152, + "Ġbezpie": 47153, + "remlin": 47154, + "ê°Ŀ": 47155, + "Still": 47156, + "Ġresides": 47157, + "Ġgelecek": 47158, + "Ġtéléphone": 47159, + "Ġpewn": 47160, + "Ġleopard": 47161, + "Ġcomplimentary": 47162, + "Ġcrib": 47163, + "ĠAnimals": 47164, + "Ġgeil": 47165, + "essel": 47166, + "Ġgarder": 47167, + "Ġcatchy": 47168, + "樹": 47169, + "ĠEts": 47170, + "ĠCommercial": 47171, + "ĠDENNIS": 47172, + "ĠCoordinator": 47173, + "ĠAbigail": 47174, + "ffffff": 47175, + "ấp": 47176, + "Ġpequeña": 47177, + "Ġinjections": 47178, + "cekt": 47179, + "Ġphilanthropy": 47180, + "Ġpuck": 47181, + "Ġcelebrates": 47182, + "ĠDunk": 47183, + "ĠDlatego": 47184, + "ãģ¾ãģł": 47185, + "δή": 47186, + "graduate": 47187, + "ĠMobil": 47188, + "till": 47189, + "acam": 47190, + "Ġyolks": 47191, + "Ġtangled": 47192, + "Ġmaniac": 47193, + "Ġobliged": 47194, + "ĠLaink": 47195, + "Ġverder": 47196, + "ĠDamon": 47197, + "Ġmutant": 47198, + "Ġhopping": 47199, + "Ġreins": 47200, + "Ġinverter": 47201, + "Ġcontempt": 47202, + "×ł×¡": 47203, + "learning": 47204, + "Miss": 47205, + "ĠÐĵоÑģ": 47206, + "ĠMeyer": 47207, + "ê»ĺìĦľ": 47208, + "é£İ": 47209, + "×ķ׳×Ļ×Ŀ": 47210, + "asking": 47211, + "Ġtrimming": 47212, + "Ġtreasury": 47213, + "Ġsente": 47214, + "Aust": 47215, + "ĠUnterstützung": 47216, + "ĠComedy": 47217, + "ĠAnakin": 47218, + "é¹": 47219, + "ÑĢÑĥÑĤ": 47220, + "ĠHari": 47221, + "ographers": 47222, + "Ġoatmeal": 47223, + "ĠBots": 47224, + "ä¸įäºĨ": 47225, + "ĠпалÑĮ": 47226, + "Ġacknowledgement": 47227, + "xic": 47228, + "Ġê´Ģìĭ¬": 47229, + "gasping": 47230, + "Ġãģķ": 47231, + "Ġterrace": 47232, + "Ġornaments": 47233, + "ĠMER": 47234, + "committee": 47235, + "ĠìĹĨìĬµëĭĪëĭ¤": 47236, + "Ġrij": 47237, + "é³": 47238, + "צ×Ŀ": 47239, + "leme": 47240, + "Ġliberties": 47241, + "Ġfellas": 47242, + "ĠCopper": 47243, + "bench": 47244, + "ĠIdea": 47245, + "á»įn": 47246, + "ÑĪа": 47247, + "Ġversión": 47248, + "ÏĦοÏį": 47249, + "ĠÐľÐ¸": 47250, + "ĠпÑĢилож": 47251, + "Ġboxer": 47252, + "ĠTanner": 47253, + "ĠMoy": 47254, + "ì¹ĺëĬĶ": 47255, + "Thr": 47256, + "Ġtinham": 47257, + "Ġpolishing": 47258, + "Ġconsequently": 47259, + "Ġamenities": 47260, + "ĠKI": 47261, + "ĠGREEN": 47262, + "ĠFrankie": 47263, + "ниÑĤ": 47264, + "ittel": 47265, + "Ñģкое": 47266, + "ursed": 47267, + "Ġupbringing": 47268, + "Ġthứ": 47269, + "ĠìĭĿìľ¼ë¡ľ": 47270, + "Ġwhim": 47271, + "Ġchinese": 47272, + "confidence": 47273, + "ĠJeder": 47274, + "ãģªãģ®ãģ§": 47275, + "ajcie": 47276, + "ĠTous": 47277, + "ĠPowers": 47278, + "ừa": 47279, + "othermal": 47280, + "ĠвÑĭÑĪе": 47281, + "rale": 47282, + "اخ": 47283, + "Ġì§ĢìĽIJ": 47284, + "Ġépisode": 47285, + "Ġsulph": 47286, + "Ġencara": 47287, + "kraft": 47288, + "aları": 47289, + "ĠComes": 47290, + "Ġdivul": 47291, + "ĠRudolph": 47292, + "ĠMuse": 47293, + "Ġutens": 47294, + "ĠìŀIJ주": 47295, + "Ġpana": 47296, + "ĠVegeta": 47297, + "ĠPHP": 47298, + "ĠNSA": 47299, + "entin": 47300, + "ĠCarnegie": 47301, + "اÙĬ": 47302, + "iÄĻcy": 47303, + "Harry": 47304, + "Ġfır": 47305, + "Сп": 47306, + "Ġgladly": 47307, + "Ġaveraging": 47308, + "íķĺê²łìĬµëĭĪëĭ¤": 47309, + "лÑıÑİÑĤÑģÑı": 47310, + "ĠÐľÐµÐ½Ñı": 47311, + "Ġquotation": 47312, + "rires": 47313, + "itchens": 47314, + "ayed": 47315, + "Ġunatt": 47316, + "ĠPerez": 47317, + "ĠоÑĤмеÑĤ": 47318, + "Ġtactile": 47319, + "ĠEuh": 47320, + "isini": 47321, + "buh": 47322, + "Ġhatır": 47323, + "ĠìŀĪìľ¼": 47324, + "Ġpolicymakers": 47325, + "³´ìĦ¸ìļĶ": 47326, + "acı": 47327, + "Ġκι": 47328, + "Ġregistering": 47329, + "reto": 47330, + "ĠSprinkle": 47331, + "ĠGrammy": 47332, + "axter": 47333, + "Ġби": 47334, + "Ġsitter": 47335, + "Ġpredic": 47336, + "Ġthinly": 47337, + "Ġstrum": 47338, + "Ġaggrav": 47339, + "Ġaha": 47340, + "رج": 47341, + "mellow": 47342, + "Ġconstante": 47343, + "ĠLaut": 47344, + "iston": 47345, + "Ġtransitioned": 47346, + "ĠCambodia": 47347, + "ãģĦãģįãģ¾ãģĻ": 47348, + "è·Łå¤§å®¶": 47349, + "arted": 47350, + "Ġmisf": 47351, + "ĠPunkte": 47352, + "Įëĵł": 47353, + "Ġtrembling": 47354, + "Ġgespannt": 47355, + "ĠعÙĦÙĬÙĩ": 47356, + "ĠникакиÑħ": 47357, + "Ġë¶Ģëĵľë": 47358, + "ĠÑĢазвиÑĤ": 47359, + "Ġitchy": 47360, + "Ġciento": 47361, + "Ġplains": 47362, + "Ġkittens": 47363, + "Ġbacklog": 47364, + "ĠPresiding": 47365, + "pta": 47366, + "Ġhavoc": 47367, + "ĠDarrin": 47368, + "ĠÐĽÑİб": 47369, + "Ġsegregated": 47370, + "Ġghetto": 47371, + "Ġerlebt": 47372, + "Ġdrugiej": 47373, + "ĠSixt": 47374, + "åıĥ": 47375, + "ระ": 47376, + "uencia": 47377, + "Ġíķĺ기": 47378, + "ĠëĨį": 47379, + "Ġrobi": 47380, + "Ġpioneers": 47381, + "Ġmilliards": 47382, + "ĠWitcher": 47383, + "Ġ무ìĹĩ": 47384, + "orro": 47385, + "mass": 47386, + "Ġdivergence": 47387, + "ĠRivera": 47388, + "ĠNoodles": 47389, + "Ġendroit": 47390, + "ĠKosten": 47391, + "ĠдÑĢÑĥга": 47392, + "ĠmÃŃnimo": 47393, + "ĠKazakhstan": 47394, + "تÙĩ": 47395, + "ĠвоздÑĥ": 47396, + "Ġgeschrieben": 47397, + "ĠNil": 47398, + "Ñģки": 47399, + "ĠFrüh": 47400, + "Ġbeverages": 47401, + "æºIJ": 47402, + "ĠGon": 47403, + "æĺ¨": 47404, + "Arin": 47405, + "ĠIntro": 47406, + "ocalyptic": 47407, + "Ġexhaustion": 47408, + "ĠStatus": 47409, + "ĠBattery": 47410, + "ész": 47411, + "£¼ë": 47412, + "airy": 47413, + "Ġë³´ìŬëĵľë": 47414, + "Ġdisparity": 47415, + "ÙĮ": 47416, + "ĠTucson": 47417, + "Ġbrightly": 47418, + "problem": 47419, + "Ġbiomass": 47420, + "éĻį": 47421, + "§ī": 47422, + "Ġhurdle": 47423, + "Ġwavelengths": 47424, + "Ġ<<": 47425, + "Ġteamed": 47426, + "FFFF": 47427, + "ĠSlim": 47428, + "omial": 47429, + "Ġunveiled": 47430, + "ĠVerein": 47431, + "ÙĤØ·": 47432, + "estry": 47433, + "Ġclás": 47434, + "Ġcheddar": 47435, + "Ġaccusing": 47436, + "ĠScientific": 47437, + "ĠбÑĥде": 47438, + "ĠCyrus": 47439, + "εÏĦε": 47440, + "Ĩĵê³ł": 47441, + "Ġë³Ħ": 47442, + "Ġcurd": 47443, + "Ġreferrals": 47444, + "shift": 47445, + "åįķ": 47446, + "ników": 47447, + "Ġmier": 47448, + "Ġconfronting": 47449, + "ê²ĥëıĦ": 47450, + "awl": 47451, + "Ġtryin": 47452, + "Ġê·¸ëŀĺìļĶ": 47453, + "Ġchiar": 47454, + "Ġìĺ¤ëĬĺëıĦ": 47455, + "æĶ¿æ²»": 47456, + "esque": 47457, + "Ġmismos": 47458, + "ĠShak": 47459, + "Ġsociaux": 47460, + "ĠpiÅŁ": 47461, + "ĠkiÅŁi": 47462, + "Ġcyan": 47463, + "hay": 47464, + "bew": 47465, + "bod": 47466, + "Ġι": 47467, + "ĠMainly": 47468, + "ÑİÑĤÑĮ": 47469, + "habitude": 47470, + "ĠÑģпокой": 47471, + "è·ŁæĪij": 47472, + "Ġprecon": 47473, + "ĠMandy": 47474, + "ðŁ¤£": 47475, + "illos": 47476, + "Ġgrupp": 47477, + "Ġcrumble": 47478, + "Ġconstructor": 47479, + "ervices": 47480, + "Ġlighthouse": 47481, + "ĠConcept": 47482, + "анÑĤи": 47483, + "altro": 47484, + "hope": 47485, + "ĠAlleg": 47486, + "ìĸ´ë¥¼": 47487, + "pieces": 47488, + "ounter": 47489, + "ĠíķĺëĭĪê¹Į": 47490, + "ĠìĿ¸íĦ°ë": 47491, + "Ġvéritable": 47492, + "Ġthreaded": 47493, + "blind": 47494, + "ĤĺëĿ¼": 47495, + "Ġtrays": 47496, + "ĠEdison": 47497, + "ĠÃĸz": 47498, + "ĠStevie": 47499, + "Ġlender": 47500, + "Ġbrigade": 47501, + "Ġdeutsche": 47502, + "muffled": 47503, + "bart": 47504, + "Ġinsanity": 47505, + "Ġsavvy": 47506, + "Ġsensational": 47507, + "Ġderechos": 47508, + "ĠMX": 47509, + "ĠпÑĢеп": 47510, + "Ġthreatens": 47511, + "ĠrealtÃł": 47512, + "Ġindicative": 47513, + "Ġchops": 47514, + "Ġbenefiting": 47515, + "ĠVernon": 47516, + "ĠStrand": 47517, + "nun": 47518, + "quently": 47519, + "101": 47520, + "Ġeel": 47521, + "ìĪĻ": 47522, + "rints": 47523, + "ĠÙħس": 47524, + "Ġبد": 47525, + "ĠпоÑģÑĤÑĢо": 47526, + "ĠyapmÄ±ÅŁ": 47527, + "Ġolması": 47528, + "Ġiedereen": 47529, + "olé": 47530, + "kef": 47531, + "Ġë°ľìĥĿ": 47532, + "Ġrained": 47533, + "Ġalmighty": 47534, + "ĠвÑĭд": 47535, + "ĠCPR": 47536, + "Fre": 47537, + "Ġinhabited": 47538, + "Ġarbets": 47539, + "Ġakin": 47540, + "аÑģÑĤв": 47541, + "vania": 47542, + "Ġhäufig": 47543, + "ĠMatte": 47544, + "sorry": 47545, + "Jenny": 47546, + "ĠгÑĢад": 47547, + "Ġwhit": 47548, + "Ġbrokers": 47549, + "å¯Ł": 47550, + "Ġhine": 47551, + "asten": 47552, + "ĠгÑĢÑĥ": 47553, + "MB": 47554, + "ĠPRI": 47555, + "Sab": 47556, + "Ġwrestler": 47557, + "Ġfacilitating": 47558, + "Ġehkä": 47559, + "ĠCred": 47560, + "Ġ127": 47561, + "Ġnothin": 47562, + "Ġmandated": 47563, + "å¯Į": 47564, + "ÑĥÑĤÑģÑĤв": 47565, + "Frank": 47566, + "Ġwors": 47567, + "ĠdzieÅĦ": 47568, + "ĠUnderground": 47569, + "Ġznajdu": 47570, + "ĠBä": 47571, + "ĠPrinzip": 47572, + "аÑĤелей": 47573, + "Ġveterinar": 47574, + "Ġsplendid": 47575, + "Ġrozp": 47576, + "Ġpsychopath": 47577, + "igon": 47578, + "Ġhops": 47579, + "Ġcần": 47580, + "ĠXian": 47581, + "Ġtroisième": 47582, + "Ġproducto": 47583, + "ĠdeÄŁer": 47584, + "ĠContinuing": 47585, + "ивал": 47586, + "cık": 47587, + "Ġmoisturizer": 47588, + "White": 47589, + "Ġsiis": 47590, + "ĠEverest": 47591, + "ienced": 47592, + "Ġcảm": 47593, + "ĠJapon": 47594, + "´ìłĦ": 47595, + "ĠtenÃŃan": 47596, + "Ġencanta": 47597, + "Mm": 47598, + "Ġdropdown": 47599, + "ĠIya": 47600, + "³´ë©´": 47601, + "Ġwording": 47602, + "ĠSqueeze": 47603, + "ĠMaple": 47604, + "Ġclarified": 47605, + "ĠMunicip": 47606, + "ĠRouge": 47607, + "ĠNicki": 47608, + "ĠGoo": 47609, + "volt": 47610, + "tek": 47611, + "fecture": 47612, + "fred": 47613, + "arrive": 47614, + "ãĥ¼ãģĦ": 47615, + "tez": 47616, + "Ep": 47617, + "Ġobras": 47618, + "ĠVID": 47619, + "ĠRiv": 47620, + "ĠModi": 47621, + "ibe": 47622, + "Ġacontecendo": 47623, + "Ġimitation": 47624, + "Ġcamouflage": 47625, + "Ġspanning": 47626, + "ĠSECRET": 47627, + "ĠOreo": 47628, + "ìĨĮ리": 47629, + "Ġhunch": 47630, + "ĠcaÅĤe": 47631, + "Ġspontaneously": 47632, + "ĠPerd": 47633, + "Ġetap": 47634, + "ĠHole": 47635, + "ĠDisability": 47636, + "Ġafterlife": 47637, + "æģ©": 47638, + "Ġtestified": 47639, + "Ġpresup": 47640, + "Ġpetroleum": 47641, + "Ġcontrario": 47642, + "ĠAssessment": 47643, + "ÄŁlu": 47644, + "Ġpests": 47645, + "Ġdilig": 47646, + "ĠвÑģÑĤÑĢеÑĤ": 47647, + "Ġconséqu": 47648, + "Ġcannons": 47649, + "Ġcanoe": 47650, + "ĠMile": 47651, + "Ġcitoy": 47652, + "Ġbegged": 47653, + "ĠMinnie": 47654, + "ÅĤych": 47655, + "Ġprincipe": 47656, + "ÏĢÏĮν": 47657, + "mniej": 47658, + "Ġwert": 47659, + "Ġëĭ¤ëĵ¤": 47660, + "anse": 47661, + "Ġuncles": 47662, + "Ġprovocative": 47663, + "Ġintersections": 47664, + "Ġdemocrats": 47665, + "ĠJulius": 47666, + "инки": 47667, + "ygusal": 47668, + "Ġ׾×ķ": 47669, + "Ġgjorde": 47670, + "Ġgasket": 47671, + "ĠBock": 47672, + "ĠÄ°n": 47673, + "breat": 47674, + "ĠEquity": 47675, + "ardı": 47676, + "Ġканале": 47677, + "Ġдней": 47678, + "ĠtỼi": 47679, + "Ġfixture": 47680, + "Ġabuses": 47681, + "Ġvaya": 47682, + "Ġouvert": 47683, + "Ġmulticultural": 47684, + "Ġcontexto": 47685, + "ĠSesame": 47686, + "Ġdépl": 47687, + "Ġconsomm": 47688, + "ĠParte": 47689, + "Ġpem": 47690, + "ĠConan": 47691, + "ĠбÑĸлÑĮ": 47692, + "Ġpersuaded": 47693, + "Ġdrains": 47694, + "Moo": 47695, + "FORE": 47696, + "ĠбаÑĤ": 47697, + "Ġfod": 47698, + "ĠProducts": 47699, + "ì§Ħì§ľ": 47700, + "Ġ\"[": 47701, + "ĠWick": 47702, + "ĠNaruto": 47703, + "нали": 47704, + "ryw": 47705, + "Ġlodge": 47706, + "Ġinh": 47707, + "Ġvontade": 47708, + "Ġdij": 47709, + "ĠJesús": 47710, + "Looking": 47711, + "Ġforearm": 47712, + "ĠIntegration": 47713, + "ĠHARRIS": 47714, + "Ġtoolbar": 47715, + "leader": 47716, + "Ġseldom": 47717, + "ĠбÑĢоÑģ": 47718, + "ĠKook": 47719, + "онд": 47720, + "Ġmonopol": 47721, + "Ġmillet": 47722, + "Ġlira": 47723, + "ĠAsians": 47724, + "Ġ1890": 47725, + "ciÄŁim": 47726, + "Ġeden": 47727, + "ĠIKEA": 47728, + "ĠNeighbor": 47729, + "ĠKazuya": 47730, + "üd": 47731, + "Ġpsychedel": 47732, + "Ġenvisioned": 47733, + "åĿĹ": 47734, + "Ġï·»": 47735, + "Ġwunder": 47736, + "ĠBulgaria": 47737, + "Brid": 47738, + "Ġmarrow": 47739, + "Ġdepiction": 47740, + "ĠTin": 47741, + "ĠPharise": 47742, + "Ġeinzige": 47743, + "Ġblindly": 47744, + "ãģĽãģ¦": 47745, + "Ġdefens": 47746, + "Dire": 47747, + "Ġvibrating": 47748, + "Ġtrolls": 47749, + "Ġdisrespectful": 47750, + "Ġwod": 47751, + "Ġstimuli": 47752, + "Ġcreeping": 47753, + "Ġclairement": 47754, + "Ġscariest": 47755, + "Ġdécouvrir": 47756, + "Ġ104": 47757, + "ĠвеÑĢÑħ": 47758, + "ĠÅĤat": 47759, + "Ġróżne": 47760, + "Ġbarley": 47761, + "ĠRepl": 47762, + "ĠTwe": 47763, + "kke": 47764, + "ĠãģĿãĤĮ": 47765, + "ĠRedmi": 47766, + "ĠMetroid": 47767, + "ĠήÏĦαν": 47768, + "Check": 47769, + "ĠSEN": 47770, + "Ġido": 47771, + "ÑĤоÑĢии": 47772, + "óp": 47773, + "UNKNOWN": 47774, + "Ġändern": 47775, + "ĠJuice": 47776, + "ĠGesicht": 47777, + "å°±æľĥ": 47778, + "ĠнаÑģÑĤолÑĮко": 47779, + "íĥķ": 47780, + "ÂŃ": 47781, + "exhales": 47782, + "Ġì´ī": 47783, + "Ġjsem": 47784, + "ÏĢÏīÏĤ": 47785, + "Ġitt": 47786, + "ëªħìĿ´": 47787, + "Ġremix": 47788, + "Ġblossoms": 47789, + "ĠRenee": 47790, + "isations": 47791, + "ìĬ¤íĦ°": 47792, + "Ġë³´ìĿ´ëĬĶ": 47793, + "uestas": 47794, + "opedia": 47795, + "ĠAim": 47796, + "ìĿ´ì¦Ī": 47797, + "scene": 47798, + "Ġleakage": 47799, + "uckt": 47800, + "Sad": 47801, + "Ask": 47802, + "Ġsuspense": 47803, + "Ġimpost": 47804, + "ĠStrategic": 47805, + "ĠItÃŃs": 47806, + "âĢĮ": 47807, + "Ġkeyboards": 47808, + "Ġamusing": 47809, + "ogr": 47810, + "iderman": 47811, + "ŀĸ": 47812, + "ĠвижÑĥ": 47813, + "Ġdips": 47814, + "Ġapologized": 47815, + "ĠSTAR": 47816, + "Ġescuela": 47817, + "ĠChing": 47818, + "нениÑı": 47819, + "Ġë¶Ģë¶ĦìĿ´": 47820, + "ĠFleet": 47821, + "Ġsamb": 47822, + "Ġentsprechend": 47823, + "Ġelectrodes": 47824, + "ĠFreiheit": 47825, + "æĪijä¸įçŁ¥éģĵ": 47826, + "ĠShrim": 47827, + "iÃŁe": 47828, + "Ġselections": 47829, + "Ġfordi": 47830, + "Ġdoss": 47831, + "ÑıÑĩ": 47832, + "Ġdiscriminate": 47833, + "ĠAuÃŁerdem": 47834, + "Ġdesenvolv": 47835, + "ĠInternal": 47836, + "ĠBenedict": 47837, + "å¯Ĩ": 47838, + "ĠShiv": 47839, + "Missy": 47840, + "ĠобнаÑĢÑĥж": 47841, + "ĠнаÑģÑĤÑĢо": 47842, + "Ġcontrolar": 47843, + "ĠLia": 47844, + "Ġopioids": 47845, + "antu": 47846, + "Ġcupboard": 47847, + "æģIJ": 47848, + "ге": 47849, + "achts": 47850, + "Ġcurated": 47851, + "Ġxem": 47852, + "Ġweary": 47853, + "Ġbrethren": 47854, + "Ġbudgeting": 47855, + "Ġpourtant": 47856, + "éļ»": 47857, + "aisia": 47858, + "ĠоÑĤвеÑĩ": 47859, + "ĠGIS": 47860, + "μαι": 47861, + "Ġש×Ķ×ķ×IJ": 47862, + "Ġsaud": 47863, + "ĠlỼ": 47864, + "ÐķТ": 47865, + "ubine": 47866, + "ĠнÑĥжен": 47867, + "Ġkidnapping": 47868, + "Ġbrat": 47869, + "ĠTerre": 47870, + "ĠMonet": 47871, + "Ġë§ĪìĬ¤íģ": 47872, + "Ġflashy": 47873, + "ĠISBN": 47874, + "Ġfreelance": 47875, + "iage": 47876, + "Ġjunge": 47877, + "충": 47878, + "ceral": 47879, + "ĠÑĤоÑĩки": 47880, + "Ġformulate": 47881, + "ĠFER": 47882, + "ĠDartmouth": 47883, + "ìľ¼ë©´ìĦľ": 47884, + "å¢ĥ": 47885, + "owiÄħ": 47886, + "ĠëĶĶìŀIJ": 47887, + "Ġregiment": 47888, + "Ġmetabolismo": 47889, + "ĠParr": 47890, + "Ġ충ë¶Ħ": 47891, + "Ġsanity": 47892, + "ĠLal": 47893, + "ĠGö": 47894, + "ĠGla": 47895, + "Ġproto": 47896, + "Ġmicroscopic": 47897, + "Ġkang": 47898, + "ĠScalia": 47899, + "Ġpug": 47900, + "ĠScore": 47901, + "ĠSavannah": 47902, + "Ġgarde": 47903, + "ĠNOR": 47904, + "å°įåIJ§": 47905, + "Ġscheint": 47906, + "ĠpóÅĤ": 47907, + "Ġcorri": 47908, + "Ġbrute": 47909, + "ĠÅĤad": 47910, + "ä»ĸ们": 47911, + "Ġsucceeding": 47912, + "Ġbicycles": 47913, + "Non": 47914, + "Ġseekers": 47915, + "Ġunconditional": 47916, + "Ġrhymes": 47917, + "ĠGarage": 47918, + "Ġinvoice": 47919, + "Ġcanvi": 47920, + "neck": 47921, + "Ġcustomizable": 47922, + "iritual": 47923, + "Queen": 47924, + "íķĺìĭľëĬĶ": 47925, + "Ġpowerless": 47926, + "Ġcsak": 47927, + "ä¸įä¼ļ": 47928, + "isoft": 47929, + "ĠìłķíĻķ": 47930, + "Ġnhân": 47931, + "ĠMAND": 47932, + "ĠHaf": 47933, + "Ġrevolves": 47934, + "ä¹Łåı¯ä»¥": 47935, + "ovan": 47936, + "aroo": 47937, + "ĠGrind": 47938, + "éĽª": 47939, + "Ġindispensable": 47940, + "Ġconsulted": 47941, + "ĠClinical": 47942, + "Acc": 47943, + "Ġolhos": 47944, + "Ġmonter": 47945, + "ĠHana": 47946, + "etah": 47947, + "Ġvaan": 47948, + "Ġtigers": 47949, + "Ġcaucus": 47950, + "ðŁĺĤ": 47951, + "³´ìŀIJ": 47952, + "powers": 47953, + "iums": 47954, + "ĠíĨłë": 47955, + "Ġtradicional": 47956, + "Ġresonated": 47957, + "Ġìĭłê¸°": 47958, + "them": 47959, + "Robert": 47960, + "Ġelemento": 47961, + "Ġantid": 47962, + "ĠобÑģ": 47963, + "Ġnatives": 47964, + "Ġloca": 47965, + "owment": 47966, + "ĠTight": 47967, + "ĠæĢĿ": 47968, + "Ġmelan": 47969, + "ĠNue": 47970, + "amis": 47971, + "Ġsorgen": 47972, + "asına": 47973, + "Home": 47974, + "ĠPUBG": 47975, + "Ġawfully": 47976, + "ĠShore": 47977, + "ĠPerché": 47978, + "ĠLau": 47979, + "ĠCinderella": 47980, + "ĠChest": 47981, + "Ġsemantic": 47982, + "Ġdeserted": 47983, + "ĠMomo": 47984, + "ĠHernandez": 47985, + "genes": 47986, + "ĠAdult": 47987, + "иÑĩеÑģкого": 47988, + "oshima": 47989, + "ĠcaracterÃŃsticas": 47990, + "ĠKL": 47991, + "´ìŀ¥": 47992, + "ocar": 47993, + "Ġfehlt": 47994, + "Ġdruk": 47995, + "ĠPoppy": 47996, + "ENGLISH": 47997, + "ĠVergleich": 47998, + "Brien": 47999, + "Ġrecomp": 48000, + "ĠÑģд": 48001, + "Ġmerger": 48002, + "Ġmarketers": 48003, + "Ġhoneymoon": 48004, + "Ġpenso": 48005, + "Ġbelli": 48006, + "еÑĤÑĥ": 48007, + "Ġbanker": 48008, + "Camera": 48009, + "ĠStall": 48010, + "ĠStamp": 48011, + "ĠBite": 48012, + "ежде": 48013, + "Ġsür": 48014, + "Ġgüç": 48015, + "ĠPassover": 48016, + "ĠBugün": 48017, + "ĠÑģожалениÑİ": 48018, + "Ġниз": 48019, + "Ġmanure": 48020, + "Ġglacier": 48021, + "è«ĩ": 48022, + "RAY": 48023, + "terror": 48024, + "Ġsalads": 48025, + "Ġhurricanes": 48026, + "ĠDesigner": 48027, + "atorio": 48028, + "Ġfactual": 48029, + "ĠTammy": 48030, + "ĠзвÑĥÑĩ": 48031, + "Ġintroductions": 48032, + "Ġhousekeeping": 48033, + "Ġhanger": 48034, + "ëĭĺë": 48035, + "akte": 48036, + "ĠCola": 48037, + "']": 48038, + "ĠGender": 48039, + "оÑĢон": 48040, + "ipse": 48041, + "icias": 48042, + "Ġsuccessive": 48043, + "Ġpolitic": 48044, + "Ġhöher": 48045, + "ĠQiao": 48046, + "ĠGimme": 48047, + "Ġлож": 48048, + "Ġseb": 48049, + "ĠWeiter": 48050, + "ĠSakura": 48051, + "ĠBoulder": 48052, + "ĠAmérica": 48053, + "peÅĤnie": 48054, + "ĠtecnologÃŃa": 48055, + "ishops": 48056, + "fur": 48057, + "Ġmoonlight": 48058, + "Ġdispersed": 48059, + "Ġrez": 48060, + "енное": 48061, + "алÑĮнÑĥÑİ": 48062, + "ĠTwelve": 48063, + "ĠHOR": 48064, + "ìĭ¤íŀĪ": 48065, + "ilage": 48066, + "Ġshaded": 48067, + "Ġresumes": 48068, + "ĠPeanut": 48069, + "ĠMILL": 48070, + "apons": 48071, + "ĠUFC": 48072, + "ĠSole": 48073, + "Ġjoystick": 48074, + "ĠOlivier": 48075, + "warming": 48076, + "Ġsyllabus": 48077, + "ĠобÑīе": 48078, + "Ġhiá»ĩn": 48079, + "Ġfesta": 48080, + "Ġcradle": 48081, + "ĠZac": 48082, + "Ġremembrance": 48083, + "Ġê°ĻìķĦìĦľ": 48084, + "ĠpiÄĻk": 48085, + "Ġcoexist": 48086, + "ĠVII": 48087, + "Ġáreas": 48088, + "Ġuważ": 48089, + "Ġobservers": 48090, + "Ġmänniskor": 48091, + "coon": 48092, + "ĠDAM": 48093, + "Ġnaszym": 48094, + "Ġalligator": 48095, + "ĠFreeze": 48096, + "ĠEstate": 48097, + "ĠÑĤÑĢади": 48098, + "Ġundercover": 48099, + "Ġnies": 48100, + "ĠFehler": 48101, + "plin": 48102, + "ĠKabul": 48103, + "ilate": 48104, + "Ġê³łìĸij": 48105, + "Ġmop": 48106, + "ìĦ¼": 48107, + "Ġanderer": 48108, + "ĠKELL": 48109, + "оки": 48110, + "ĠжеÑģÑĤ": 48111, + "Ġgrazing": 48112, + "ĠdaÃŃ": 48113, + "Ġcapitalize": 48114, + "Ġapex": 48115, + "Ġnurturing": 48116, + "Ġcortar": 48117, + "Ġcontrac": 48118, + "ımızı": 48119, + "Ġtandem": 48120, + "éĥ½æľī": 48121, + "gement": 48122, + "ĠÑģиÑģÑĤема": 48123, + "Ġmanque": 48124, + "iajÄħ": 48125, + "WOR": 48126, + "Ġاب": 48127, + "Ġcarts": 48128, + "ANO": 48129, + "Ġë°Ľê³ł": 48130, + "ĠCena": 48131, + "ĠBiology": 48132, + "idar": 48133, + "Ġaż": 48134, + "erne": 48135, + "anu": 48136, + "Ġthanked": 48137, + "Ġsubmarines": 48138, + "Ġmanic": 48139, + "Ġмоз": 48140, + "ä¼Ĭ": 48141, + "instant": 48142, + "essential": 48143, + "Ġsamurai": 48144, + "Ġpasti": 48145, + "Ġalan": 48146, + "Ġbroch": 48147, + "Ġbaker": 48148, + "ĠGuill": 48149, + "¨¼": 48150, + "Ġwithdrawn": 48151, + "ëĭĿ": 48152, + "Perfect": 48153, + "quency": 48154, + "Ġstreamlined": 48155, + "Ġ1300": 48156, + "´ëıĦ": 48157, + "Ġëĸłë": 48158, + "Ġãģ¯ãģĦ": 48159, + "Ġhvad": 48160, + "ä¸Ģå®ļè¦ģ": 48161, + "Ġverbally": 48162, + "ĠKons": 48163, + "Ġì¡°ìĭ¬": 48164, + "Ġdiez": 48165, + "æİ°æİ°": 48166, + "Ġchuckling": 48167, + "ĠMih": 48168, + "Ġrallies": 48169, + "Ġmanter": 48170, + "Ġearnest": 48171, + "super": 48172, + "Ġgece": 48173, + "ĠRend": 48174, + "ĠGerade": 48175, + "jenigen": 48176, + "ĠVall": 48177, + "ĠìŀĪëĤĺ": 48178, + "ĠÑģказала": 48179, + "Ġtrabalh": 48180, + "ĠнаÑĪем": 48181, + "ĠмеÑħ": 48182, + "ikit": 48183, + "Ġnouns": 48184, + "Ġneurological": 48185, + "Ġmotivational": 48186, + "ĠMcMahon": 48187, + "ĠFinished": 48188, + "Ġë³´ìĿ´": 48189, + "ĠFields": 48190, + "Ġadolescents": 48191, + "ĠTisch": 48192, + "ĠNeben": 48193, + "ĠFlowers": 48194, + "ĠEnerg": 48195, + "Ġdiret": 48196, + "ĠThi": 48197, + "ĠPicas": 48198, + "æĥľ": 48199, + "æĢİä¹Īæł·": 48200, + "Ġavete": 48201, + "ĠFors": 48202, + "ĠChapel": 48203, + "Não": 48204, + "Et": 48205, + "ĠÑģодеÑĢж": 48206, + "reno": 48207, + "Ġsven": 48208, + "ĠdostÄĻp": 48209, + "nee": 48210, + "ĠSnapdragon": 48211, + "ĠIDs": 48212, + "ìķĺëĬĶëį°": 48213, + "ר×ļ": 48214, + "Ġsunflower": 48215, + "Ġperpetual": 48216, + "ç³ĸ": 48217, + "Ġknights": 48218, + "Ġgird": 48219, + "ĠTold": 48220, + "Ġvolcanoes": 48221, + "Ġadversary": 48222, + "ĠEconomy": 48223, + "Ġextrapol": 48224, + "Ġbluetooth": 48225, + "Ġzooming": 48226, + "Ġskys": 48227, + "Ġgenial": 48228, + "ÃŃculos": 48229, + "ambre": 48230, + "ĠмеÑĢ": 48231, + "Ġteeny": 48232, + "Ġstressing": 48233, + "ìķĮ": 48234, + "ONY": 48235, + "Ġtranslucent": 48236, + "Ġrounding": 48237, + "Ġgrues": 48238, + "×Ļ׳×Ķ": 48239, + "après": 48240, + "Ġprueba": 48241, + "Ġpolygon": 48242, + "Ġblueberry": 48243, + "ĠProgramm": 48244, + "Ġtrenches": 48245, + "Ġsebagai": 48246, + "Ġpalate": 48247, + "Ġlaude": 48248, + "Ġbehaved": 48249, + "Ġlongitudinal": 48250, + "ĠModule": 48251, + "Ġadmir": 48252, + "λι": 48253, + "Greg": 48254, + "Ġwyst": 48255, + "Ġpropagate": 48256, + "Ġmolds": 48257, + "ĠTub": 48258, + "ĠLoud": 48259, + "usto": 48260, + "Ġunstoppable": 48261, + "Ġreinforcing": 48262, + "éĿŀ常çļĦ": 48263, + "ĠпÑĢоблема": 48264, + "Ġpotencial": 48265, + "Ġhemp": 48266, + "ìŀĶ": 48267, + "य": 48268, + "Ġoptic": 48269, + "Ġerfolgreich": 48270, + "ÑģÑĭ": 48271, + "олÑĮÑĪе": 48272, + "urst": 48273, + "ĠPois": 48274, + "Ġrespondents": 48275, + "Ġnehme": 48276, + "ĠExternal": 48277, + "olate": 48278, + "Hyun": 48279, + "Ġquartz": 48280, + "Ġmathematician": 48281, + "Ġbásicamente": 48282, + "Ġail": 48283, + "ìłľë¥¼": 48284, + "attutto": 48285, + "Ġnooit": 48286, + "Ġafflict": 48287, + "ĠOlga": 48288, + "èŃ·": 48289, + "ĠнаÑĤ": 48290, + "Ġdites": 48291, + "Ġrealidade": 48292, + "Ġkän": 48293, + "Ġuniqueness": 48294, + "Ġpadres": 48295, + "Ġsubsidi": 48296, + "Ġpigeons": 48297, + "βα": 48298, + "stad": 48299, + "Ġderen": 48300, + "ĠСлед": 48301, + "doo": 48302, + "ĠопиÑģании": 48303, + "Ġamber": 48304, + "Ġgoosebumps": 48305, + "ĠfrÃ¥gor": 48306, + "ĠVital": 48307, + "ĠIsraelites": 48308, + "wasser": 48309, + "Isn": 48310, + "Ġcommits": 48311, + "ĠSTEVEN": 48312, + "ĠBevölker": 48313, + "uitive": 48314, + "Ġlegen": 48315, + "Ġbruk": 48316, + "иÑĢован": 48317, + "ynen": 48318, + "helm": 48319, + "Ġgenerational": 48320, + "ĠLändern": 48321, + "οιÏĢÏĮν": 48322, + "uzu": 48323, + "Ġcaller": 48324, + "онÑĮ": 48325, + "ümü": 48326, + "Ġbesar": 48327, + "Ġplats": 48328, + "Ġmigrated": 48329, + "Ġjap": 48330, + "ĠWAR": 48331, + "Ġdissect": 48332, + "ĠZusch": 48333, + "ĠZeiten": 48334, + "ĠLions": 48335, + "ĠDF": 48336, + "âĶ": 48337, + "кив": 48338, + "Ġpedestrians": 48339, + "ĠMarilyn": 48340, + "dock": 48341, + "Ġyht": 48342, + "Ġreincarn": 48343, + "ĠSono": 48344, + "ĠGrowth": 48345, + "ÑĥÑģов": 48346, + "Ġdungeons": 48347, + "Ġbagus": 48348, + "kich": 48349, + "ĠÑĥкÑĢаÑĹ": 48350, + "éĨ«": 48351, + "ĠKeller": 48352, + "chemistry": 48353, + "Japanese": 48354, + "Ġwillst": 48355, + "Ġdecomposition": 48356, + "ĠÑģÑĤен": 48357, + "Ġrevived": 48358, + "íķĻêµIJ": 48359, + "ĠÅĵ": 48360, + "ä½IJ": 48361, + "ìĭ¸": 48362, + "ippy": 48363, + "Ġhourly": 48364, + "jän": 48365, + "ĠWorkshop": 48366, + "Ŀ¼ìĦľ": 48367, + "Ġcuarto": 48368, + "Ġpatrim": 48369, + "ĠBurch": 48370, + "ĠìŀĪ기": 48371, + "Ġhepat": 48372, + "ĠhÃłng": 48373, + "ĠëĮĢíķ´": 48374, + "ĠваÑĪи": 48375, + "Ġrework": 48376, + "Ġparse": 48377, + "Ġçıktı": 48378, + "ĠSax": 48379, + "ĠMongo": 48380, + "ĠAaah": 48381, + "ramble": 48382, + "DJ": 48383, + "Ġstabilized": 48384, + "ĠSpeech": 48385, + "Books": 48386, + "Ġhurdles": 48387, + "ĠWO": 48388, + "ĠLamborg": 48389, + "Ġ1933": 48390, + "Ġvorbere": 48391, + "Ġclinically": 48392, + "Ġbreathtaking": 48393, + "ĠGateway": 48394, + "пеÑĢвÑĭÑħ": 48395, + "uters": 48396, + "Ġë¹µ": 48397, + "Ġyeter": 48398, + "Ġpulley": 48399, + "Ġmuffin": 48400, + "ĠPrefer": 48401, + "ĠPence": 48402, + "Ġinformação": 48403, + "ìĬ¤íĬ¸ë": 48404, + "ãĤ¸ãĥ£": 48405, + "ĠTurtle": 48406, + "ĠRegina": 48407, + "ĠLoad": 48408, + "does": 48409, + "panze": 48410, + "¸Ķ": 48411, + "Ġmina": 48412, + "ĠLatinos": 48413, + "ammers": 48414, + "ĠTort": 48415, + "ĠBeyonce": 48416, + "имоÑģÑĤи": 48417, + "ĠвопÑĢоÑģÑĭ": 48418, + "Ġbulun": 48419, + "èĢĮå·²": 48420, + "inek": 48421, + "bereich": 48422, + "Ġpasture": 48423, + "ĠOA": 48424, + "ĠMelt": 48425, + "ĠEtt": 48426, + "ĠDY": 48427, + "Ġobwohl": 48428, + "Ġleagues": 48429, + "ÑĤеÑģÑĮ": 48430, + "ĠкÑĥÑģ": 48431, + "Ġvors": 48432, + "Ġtopp": 48433, + "ographical": 48434, + "asst": 48435, + "Ġlindo": 48436, + "Ġë°ĿíĺĶ": 48437, + "Ġréfl": 48438, + "Ġclimbs": 48439, + "Ġvarsa": 48440, + "Ġmethyl": 48441, + "ĠKarere": 48442, + "Æ°á»Ł": 48443, + "Rad": 48444, + "Ġpreparedness": 48445, + "онÑĩ": 48446, + "ĠOD": 48447, + "ĠCGI": 48448, + "Ġम": 48449, + "Ġspeechless": 48450, + "Ġlasci": 48451, + "Ġbolag": 48452, + "ĠÑħоÑĩеÑĤÑģÑı": 48453, + "Ġgrieving": 48454, + "ĠJohannes": 48455, + "ĠCarroll": 48456, + "adaki": 48457, + "Ī¬ë": 48458, + "ĠsÅĤu": 48459, + "Ġinnerhalb": 48460, + "Ġgymnastics": 48461, + "пÑĢи": 48462, + "ifiques": 48463, + "Ġkarate": 48464, + "Ġdomu": 48465, + "ãģĿãĤĮãģ§": 48466, + "OTHER": 48467, + "Ġdemandé": 48468, + "Ġbooklet": 48469, + "ĠKyoto": 48470, + "Ġwoh": 48471, + "ĠMarÃŃa": 48472, + "violent": 48473, + "JE": 48474, + "Ġlóg": 48475, + "Ġbrutally": 48476, + "cot": 48477, + "ĠÙħÛĮ": 48478, + "ĠWarsz": 48479, + "å®Ī": 48480, + "wol": 48481, + "Ġmikä": 48482, + "ĠPronounce": 48483, + "ĠBrendan": 48484, + "Ġroup": 48485, + "Ġitaliano": 48486, + "å¦ĤæѤ": 48487, + "ĠкомпÑĮÑİÑĤ": 48488, + "Ġurging": 48489, + "edes": 48490, + "Ġcarbono": 48491, + "ĠRichardson": 48492, + "ĠÐĿаÑĩ": 48493, + "ĠTrainer": 48494, + "ĠCrimea": 48495, + "Ġdiapers": 48496, + "Ġcovet": 48497, + "ĠMahar": 48498, + "ĠHutch": 48499, + "ĠAusw": 48500, + "berty": 48501, + "Ġindifferent": 48502, + "кÑĢеÑĤ": 48503, + "uldade": 48504, + "Ġharms": 48505, + "¢ÙĨ": 48506, + "lesia": 48507, + "Ġgio": 48508, + "ĠMistress": 48509, + "ĠKnox": 48510, + "ĠFREE": 48511, + "Ġ루ë": 48512, + "ĠнаÑĪа": 48513, + "Ġinvincible": 48514, + "Ġmaiden": 48515, + "ĠJeez": 48516, + "Ġbreve": 48517, + "pole": 48518, + "Ġcriticisms": 48519, + "ĠRusia": 48520, + "म": 48521, + "phin": 48522, + "ĠCompare": 48523, + "ĠBON": 48524, + "Ġsneaking": 48525, + "ĠRails": 48526, + "ĠGeral": 48527, + "Ġ1953": 48528, + "Hola": 48529, + "ĠопÑĭÑĤ": 48530, + "Ġrainforest": 48531, + "Ġbelum": 48532, + "ĠObi": 48533, + "ĠISS": 48534, + "ãĤĮãģªãģĦ": 48535, + "ĠСв": 48536, + "Ġblond": 48537, + "Ġwzgl": 48538, + "ĠpowiedziaÅĤ": 48539, + "Ġchoking": 48540, + "ĠSongs": 48541, + "ĠBiraz": 48542, + "Ġyells": 48543, + "Ġstylist": 48544, + "ÏĮÏĦε": 48545, + "Ġschreiben": 48546, + "ĠJaw": 48547, + "ĠEleven": 48548, + "ĠRif": 48549, + "/.": 48550, + "Ġìĺ¤ëŀľë§Į": 48551, + "Ġtreaties": 48552, + "uffed": 48553, + "ĠâĪĴ": 48554, + "Ġroofs": 48555, + "à¹Ģส": 48556, + "Ġë»": 48557, + "Ġsparkle": 48558, + "ĠKiev": 48559, + "ĠArgu": 48560, + "erecht": 48561, + "ĠÐĿадо": 48562, + "ĠFIL": 48563, + "Ġmolta": 48564, + "ĠDevi": 48565, + "Ġcampe": 48566, + "Ġbenevol": 48567, + "ĠTough": 48568, + "Ġmoim": 48569, + "Ġevacuate": 48570, + "Ġerrado": 48571, + "å©Ĩ": 48572, + "ÑĢÑĥго": 48573, + "Ġíİĺ": 48574, + "ĠÎĵια": 48575, + "Ġweaken": 48576, + "Ġilluminated": 48577, + "Ġsiglo": 48578, + "ĠVacc": 48579, + "ией": 48580, + "alis": 48581, + "ĠÑĥÑģÑĤÑĢой": 48582, + "Ġdona": 48583, + "ÅĤos": 48584, + "üman": 48585, + "Ġproducción": 48586, + "Ġclot": 48587, + "ĠMango": 48588, + "Ġuneasy": 48589, + "Ġshuts": 48590, + "ĠExamples": 48591, + "vell": 48592, + "ebe": 48593, + "Ġpromptly": 48594, + "ĠTeles": 48595, + "ĠпÑĢоÑĪл": 48596, + "Ġpuerta": 48597, + "Ġüberzeug": 48598, + "Ġcoch": 48599, + "social": 48600, + "ĠBenson": 48601, + "ĠMeth": 48602, + "ĠExped": 48603, + "Ġsupplemental": 48604, + "Ġconceive": 48605, + "Ġ×ĺ×ķ×ij": 48606, + "Ġcaptivity": 48607, + "ıĻìķĪ": 48608, + "ĠÑħÑĥд": 48609, + "forming": 48610, + "Ġuploads": 48611, + "Ġturbulence": 48612, + "joint": 48613, + "Ġsatisfactory": 48614, + "ĠAnime": 48615, + "Ġwashes": 48616, + "Ġliberals": 48617, + "ĠSunshine": 48618, + "ĠREAL": 48619, + "ublik": 48620, + "binary": 48621, + "Tony": 48622, + "Ġpolarized": 48623, + "Ġenriched": 48624, + "taking": 48625, + "ĠëģĿëĤĺ": 48626, + "Ġpleasures": 48627, + "Ġextermin": 48628, + "inese": 48629, + "atl": 48630, + "vär": 48631, + "аÑĢÑĭ": 48632, + "ĠmyÅĽ": 48633, + "narrator": 48634, + "Ġодном": 48635, + "ĠnajwiÄĻ": 48636, + "Ġmobilize": 48637, + "Ġmillor": 48638, + "Ġata": 48639, + "æ··": 48640, + "ĠpolÃŃtico": 48641, + "Ġplead": 48642, + "Ġpainters": 48643, + "ĠSow": 48644, + "оÑĦ": 48645, + "ĠìĺĽëĤł": 48646, + "ĠÑĩÑĤоб": 48647, + "Ġsabor": 48648, + "ĠUndert": 48649, + "ĠJERRY": 48650, + "Å¡ÃŃ": 48651, + "Ġë°ĸìĹIJ": 48652, + "Ġprécéd": 48653, + "Ġannotation": 48654, + "ĠInaudible": 48655, + "Ġtextured": 48656, + "Ġfisherman": 48657, + "vordan": 48658, + "icherung": 48659, + "ĠìłģìĿ´": 48660, + "Ġgezeigt": 48661, + "Ġmandates": 48662, + "Ġbeak": 48663, + "ĠTWO": 48664, + "ĠAkbar": 48665, + "ilian": 48666, + "Ġtiếp": 48667, + "Ġsuperiority": 48668, + "inku": 48669, + "Ġlys": 48670, + "ĠFCC": 48671, + "ĠCPA": 48672, + "ustering": 48673, + "nicos": 48674, + "anja": 48675, + "Ġchills": 48676, + "ĠCage": 48677, + "Ġsealing": 48678, + "Ġsaç": 48679, + "Ġdedans": 48680, + "ĠAlger": 48681, + "Ġspezie": 48682, + "Ġcoloss": 48683, + "ıyı": 48684, + "clockwise": 48685, + "Ġexactamente": 48686, + "Ġiemand": 48687, + "amı": 48688, + "Ġmandar": 48689, + "raj": 48690, + "faced": 48691, + "agua": 48692, + "Ġê¹Ķë": 48693, + "Ġinsbesondere": 48694, + "Ġdrizzle": 48695, + "Ġdiminish": 48696, + "ĠYoda": 48697, + "AI": 48698, + "Ġbilmiyorum": 48699, + "ĠMMA": 48700, + "ategory": 48701, + "ĠпеÑĢеп": 48702, + "Ġparticipar": 48703, + "Ġnormalized": 48704, + "Ġcomplexities": 48705, + "æ´²": 48706, + "æݧ": 48707, + "аÑĢов": 48708, + "mist": 48709, + "icha": 48710, + "Group": 48711, + "Ġresiliency": 48712, + "Ġnogle": 48713, + "ĠCNC": 48714, + "prü": 48715, + "Ġphysicists": 48716, + "нок": 48717, + "LI": 48718, + "Ġstuffs": 48719, + "Ġsistemas": 48720, + "Ġinterfering": 48721, + "ĠMarvin": 48722, + "ército": 48723, + "ĠìĹĨê³ł": 48724, + "Ġsonic": 48725, + "Ġequiv": 48726, + "Ġabord": 48727, + "ĠRamen": 48728, + "Ġ09": 48729, + "medim": 48730, + "atiques": 48731, + "ĠделаÑİÑĤ": 48732, + "Ġunanimously": 48733, + "Ġskirts": 48734, + "ĠíĬ¹ë³Ħ": 48735, + "ĠPrix": 48736, + "kami": 48737, + "Ġfruition": 48738, + "Ġbirthdays": 48739, + "иком": 48740, + "Ġinaugural": 48741, + "Ġcorrelate": 48742, + "ĠTory": 48743, + "ĠëĤĺìģ": 48744, + "Ġdew": 48745, + "ĠPrecis": 48746, + "ihi": 48747, + "Ġë¬¸ìłľê°Ģ": 48748, + "Ġciting": 48749, + "ĠLana": 48750, + "ĠKag": 48751, + "Ġplaythrough": 48752, + "ĠProtocol": 48753, + "frist": 48754, + "hovah": 48755, + "Ġmerciful": 48756, + "Ġbilingual": 48757, + "ĠGuitar": 48758, + "rh": 48759, + "Ġglamorous": 48760, + "ĠVikings": 48761, + "ĠOoooh": 48762, + "íķĺëĬĶëį°": 48763, + "ĠUganda": 48764, + "Ġcollapses": 48765, + "entry": 48766, + "Ġantioxidants": 48767, + "ëĤĺë": 48768, + "ÑĪаÑı": 48769, + "Ġtrivia": 48770, + "Ġgäller": 48771, + "Ġfungi": 48772, + "Ġmilks": 48773, + "Ġdicht": 48774, + "μη": 48775, + "poke": 48776, + "ĠвÑĭпÑĥÑģк": 48777, + "Ġfeeder": 48778, + "ĠAlcohol": 48779, + "hower": 48780, + "Ġdeserving": 48781, + "ĠRebel": 48782, + "iosis": 48783, + "Ġ103": 48784, + "Ġhandout": 48785, + "Ġenm": 48786, + "Ġlandlords": 48787, + "Ġgeology": 48788, + "rils": 48789, + "Ġcobra": 48790, + "ĠVold": 48791, + "ĠPanch": 48792, + "ĠGREG": 48793, + "Ġpross": 48794, + "Ġbracelets": 48795, + "ĠVega": 48796, + "Ġrozum": 48797, + "款": 48798, + "азд": 48799, + "ĠLynd": 48800, + "ĠHonors": 48801, + "Ġsurrendered": 48802, + "Ġlibrarians": 48803, + "125": 48804, + "ĠÑģиг": 48805, + "Ġuniformly": 48806, + "ĠEagles": 48807, + "ìķĻ": 48808, + "иÑĤан": 48809, + "andid": 48810, + "ĠìłĪëĮĢ": 48811, + "Ġض": 48812, + "Ġarrests": 48813, + "ĠCSV": 48814, + "ĠAzerbaijan": 48815, + "ortic": 48816, + "ĠDX": 48817, + "ĠAdventures": 48818, + "Ġabus": 48819, + "ĠFau": 48820, + "Ġschlimm": 48821, + "Ġrattling": 48822, + "Ġconsumes": 48823, + "ĠTolkien": 48824, + "Ġresurrected": 48825, + "ĠXY": 48826, + "íĬ¸ê°Ģ": 48827, + "ĠвÑĭÑģÑĤÑĥп": 48828, + "ĠAngie": 48829, + "żenia": 48830, + "Mic": 48831, + "ĠSheila": 48832, + "achtet": 48833, + "Ġoverst": 48834, + "Ġlâ": 48835, + "Ġineffective": 48836, + "æĿ¡": 48837, + "æĢİä¹ĪäºĨ": 48838, + "å¿Ļ": 48839, + "Ġwichtiger": 48840, + "Ġvino": 48841, + "Ġpum": 48842, + "Ġangled": 48843, + "ĠPione": 48844, + "ĠMỹ": 48845, + "ãģĿãĤĮãģ¯": 48846, + "woÅĽÄĩ": 48847, + "draw": 48848, + "ัà¹Ī": 48849, + "markets": 48850, + "Ġcafes": 48851, + "ĠCem": 48852, + "âĿ¤": 48853, + "ĠSuit": 48854, + "MK": 48855, + "Ġemphasizes": 48856, + "Ġtortilla": 48857, + "Ġmejorar": 48858, + "ĠSurviv": 48859, + "casting": 48860, + "Ġeducación": 48861, + "ĠGum": 48862, + "uely": 48863, + "ĠìĹ¬ê¸°ëĬĶ": 48864, + "Ġstretchy": 48865, + "ença": 48866, + "Ġwithhold": 48867, + "Ġexiting": 48868, + "Ġenthalpy": 48869, + "ĠTransit": 48870, + "ılmÄ±ÅŁ": 48871, + "alies": 48872, + "Ġsalvar": 48873, + "Ġleaned": 48874, + "ĠgroÃŁes": 48875, + "Ġfitt": 48876, + "аки": 48877, + "Sarah": 48878, + "Ġhostel": 48879, + "Ġfingerna": 48880, + "ĠnadziejÄĻ": 48881, + "wives": 48882, + "Rec": 48883, + "Ġspool": 48884, + "аÑĤов": 48885, + "ĠEnemy": 48886, + "Ġfury": 48887, + "Ġdetta": 48888, + "ĠFay": 48889, + "éļ¨": 48890, + "ÑıÑİÑĤ": 48891, + "Ġaproximadamente": 48892, + "Ġsilos": 48893, + "Ġmagist": 48894, + "Ġcree": 48895, + "ĠKrank": 48896, + "ĠDOWN": 48897, + "Ġstartled": 48898, + "Ġreborn": 48899, + "ĠUmwelt": 48900, + "ĠSuzanne": 48901, + "ниÑĨÑĭ": 48902, + "outez": 48903, + "ĠJAC": 48904, + "yards": 48905, + "radas": 48906, + "rau": 48907, + "ipts": 48908, + "hail": 48909, + "Ġparagraphs": 48910, + "Ġmeglio": 48911, + "Ġisolating": 48912, + "Ġaceite": 48913, + "ĠHarsh": 48914, + "Ġcyst": 48915, + "ĠBlockchain": 48916, + "ĠÑħоÑĢоÑĪий": 48917, + "Ġvirtuous": 48918, + "Ġinvestigación": 48919, + "Ġdevoir": 48920, + "Ġmasturb": 48921, + "ĠSale": 48922, + "ÙĬرة": 48923, + "ĠΧ": 48924, + "ĠStraÃŁen": 48925, + "Ġdikk": 48926, + "Ġafore": 48927, + "ĠJungkook": 48928, + "Ġchociaż": 48929, + "ĠDebatte": 48930, + "Ġweirdly": 48931, + "Ġviaje": 48932, + "regist": 48933, + "Help": 48934, + "Ġkinderen": 48935, + "Ġformulated": 48936, + "Ġenfim": 48937, + "ĠTowards": 48938, + "коÑĹ": 48939, + "ivering": 48940, + "ĠдеÑĤи": 48941, + "charger": 48942, + "Ġpurl": 48943, + "Ġacademically": 48944, + "ĠNurse": 48945, + "Ġdeleting": 48946, + "ayo": 48947, + "Ġrefusal": 48948, + "Ġdepicts": 48949, + "ĠDracula": 48950, + "Ġtoasted": 48951, + "ĠZombie": 48952, + "ĠSuperior": 48953, + "ĠBold": 48954, + "Ġquizzes": 48955, + "Ġgle": 48956, + "450": 48957, + "Ġcomeço": 48958, + "ynn": 48959, + "Ġverst": 48960, + "ĠOlaf": 48961, + "Ġpomoc": 48962, + "ĠSask": 48963, + "ëĺ": 48964, + "ĠTCP": 48965, + "ĠProperty": 48966, + "íķĺì£ł": 48967, + "à¸ľà¸¡": 48968, + "boom": 48969, + "aros": 48970, + "ĠÑĢоÑģÑģий": 48971, + "ĠбÑĭваеÑĤ": 48972, + "åĩºåİ»": 48973, + "ĠìĿ´ìķ¼ê¸°ë¥¼": 48974, + "Ġcombien": 48975, + "vacc": 48976, + "Ġebenfalls": 48977, + "para": 48978, + "Ġзм": 48979, + "Ġdesperation": 48980, + "ordre": 48981, + "Ġש׾×Ļ": 48982, + "Ġgenerously": 48983, + "ĠÐŀк": 48984, + "Ġorbiting": 48985, + "> >", + "r u", + "w n", + "on t", + "i b", + "e ll", + "Ġs m", + "ot h", + "u al", + "Ġ >>", + "Ġp h", + "l es", + "o c", + "f ul", + "Ġse c", + "is e", + "Ġad d", + "ig h", + "er t", + "Ġs ame", + "â Ģ", + "Ġme an", + "Ġf ind", + "e k", + "Ġen d", + "- -", + "Ð ¼", + "Ġst ill", + "a z", + "Ġ '", + "Ġm in", + "Ġye ars", + "ur n", + "Ġar ound", + "sel f", + "Ġw r", + "b s", + "oug ht", + "ĠâĻ ª", + "Ġf l", + "an ge", + "Ġa fter", + "Ġpo int", + "m er", + "v ed", + "Ġl ong", + "o y", + "ä ¸", + "Ġc r", + "way s", + "Ġs y", + "Ġt ra", + "Ġ2 0", + "a ve", + "Ġch e", + "Ġ ent", + "Ġbe fore", + "p h", + "Ġat t", + "i an", + "i ly", + "Ġpers on", + "Ġb ig", + "Ġs ch", + "Ġre al", + "Ġne xt", + "Ġlo ve", + "Ġvide o", + "ĠL et", + "Ġf in", + "Ġma k", + "i ble", + "Ġto day", + "er m", + "ĠA l", + "ow er", + "an n", + "i x", + "Ġp ar", + "Ġst ud", + "à ¶", + "Ġimp ort", + "t e", + "Ġg ive", + "v es", + "Ġd ie", + "Ġde c", + "Ġte ll", + "ĠÐ º", + "Ñģ ÑĤ", + "Ġwh y", + "ic ally", + "ic t", + "re d", + "Ġb as", + "Ġsu re", + "Ġbe l", + "at ing", + "Ġt ak", + "Ġs et", + "Ġl ife", + "Ġdid n", + "Ø §", + "o b", + "u nd", + "at h", + "Ġo p", + "ĠÐ ¾", + "a it", + "Ġwor ld", + "Ġsu pp", + "i o", + "Ġc our", + "ĠÐ ¸", + "w ard", + "е н", + "Ġal ways", + "u p", + "Ġha nd", + "ĠH ow", + "ci al", + "Ġcon s", + "Ġ Ñ", + "Ġin d", + "Ġ 4", + "ĠA s", + "Ġf un", + "j ect", + "Ġimport ant", + "Ġs ur", + "e w", + "at es", + "Ġ 5", + "Ġd i", + "Ġm ade", + "Ġin s", + "Ġas k", + "Ġ et", + "Ġn um", + "Ġc ar", + "ĠO kay", + "Ġs im", + "i k", + "Ġl ast", + "ĠG o", + "Ġm us", + "Ġre l", + "ul ar", + "´ ì", + "ĠWe ll", + "pe ct", + "ĠTh ank", + "Ġth ree", + "à £", + "ã ĥ", + "Ġin v", + "Ġg en", + "l ic", + "Ġhapp en", + "ë Ĭ", + "i en", + "e ver", + "оР²", + "Ġst r", + "ĠA ll", + "Ġin st", + "Ġâ Ģ", + "Ġde f", + "Ġs l", + "Ġm ight", + "un g", + "Ġye ar", + "Ġo wn", + "Ġke ep", + "b ody", + "d er", + "Ġ ÑĤ", + "ĠÐ ´", + "Ġan other", + "Ġm od", + "Ġe v", + "Ġgu ys", + "Ġab le", + "ã o", + "qu e", + "id ent", + "ĠY es", + "Ġit s", + "Ġpl ace", + "Ġpro du", + "ar n", + "ĠÐ ¼", + "Ġre p", + "Ġex per", + "Ġf am", + "it ies", + "if ic", + "Ġh igh", + "i ed", + "o ol", + "ie w", + "е ÑĤ", + "re n", + "Ġdon e", + "Ġ ...", + "ëĬ Ķ", + "st em", + "ĠS e", + "Ġbet ter", + "c ome", + "Ġd el", + "Ġt y", + "Ġu m", + "Ġh o", + "ĠA n", + "Ġm on", + "ing s", + "Ġs k", + "Ġo b", + "c om", + "ble m", + "op e", + "st and", + "' d", + "ment s", + "Ġe le", + "ĠI s", + "Ġd a", + "Ġre g", + "le ase", + "i ke", + "al s", + "iz e", + "ê °", + "Ġc are", + "Ġne ver", + "ìĿ ´", + "es e", + "Ġm et", + "ol og", + "ĠWh en", + "u ck", + "е ÑĢ", + "Ġ é", + "Ġd at", + "à §", + "Ġex am", + "il ity", + "Ġd et", + "c ri", + "Ġus ed", + "ĠD o", + "Ġtr ans", + "e g", + "t en", + "Ñ İ", + "c us", + "Ġsec ond", + "Ġb est", + "Ġh ard", + "Ġ ide", + "Ġpro blem", + "ê ³", + "ĠU n", + "Ñ ħ", + "Ġ Î", + "Ġw atch", + "ĠS h", + "at ter", + "Ġpre t", + "Ġd er", + "Ġcour se", + "Å Ł", + "at ive", + "ic s", + "Ġquest ion", + "ut e", + "ì Ĺ", + "ĠF or", + "at her", + "Ġc ol", + "i end", + "Ġ í", + "Ġ Z", + "Ġdoes n", + "ar ch", + "Ġinter est", + "Ġp ol", + "Ġc or", + "i ence", + "Ġp res", + "Ġe ach", + "Ġsy stem", + "Ġf act", + "i el", + "ab ly", + "Ġ er", + "Ġr un", + "Ġì Ŀ", + "Ġto p", + "n er", + "Ġth ought", + "Ġe as", + "i ent", + "Ġc re", + "Ñ Ī", + "Ġcomm un", + "y e", + "re ady", + "ll ow", + "Ġevery thing", + "om m", + "Ġm ed", + "ļ Ķ", + "Ġc ount", + "it s", + "Ġcom pl", + "h ip", + "Ù Ħ", + "o ok", + "Ġto get", + "Ġtoget her", + "am p", + "Ġg ame", + "Ġal ready", + "аР»", + "Ġcall ed", + "al e", + "Å Ĥ", + "ĠM y", + "Ġunder stand", + "Ġd r", + "Ġm om", + "it ed", + "оР»", + "Ġus ing", + "z y", + "Ġnum ber", + "ãĢ ģ", + "c ed", + "Ġc le", + "н о", + "ëĭ ¤", + "in ce", + "Ġlook ing", + "Ġpret ty", + "Ġpro b", + "ĠS he", + "Ġ ve", + "Ġget ting", + "Ġwe ek", + "Ġe ff", + "u ff", + "a ir", + "u es", + "er n", + "Ġ Q", + "ou p", + "ent ion", + "Ġs ide", + "оР¼", + "Ġfor m", + "Ġb us", + "Ġas s", + "Ġ ed", + "as on", + "we en", + "âĢ ¦", + "Ġt urn", + "Ġc ur", + "Ġco ll", + "Ġd ire", + "ĠG od", + "Ġ1 0", + "Ġe qu", + "ĠÐ ±", + "Ġop en", + "Ġsu ch", + "ir d", + "аРº", + "Ġe ar", + "Ä Ļ", + "g an", + "Ġpart ic", + "Ġfr iend", + "Ġex p", + "Ġex t", + "Ġh ome", + "Ġw ater", + "ĠO n", + "ÑĤ ÑĮ", + "or k", + "Ġп ÑĢ", + "Ġmo ve", + "n ess", + "en se", + "h o", + "Ġch ar", + "c o", + "in s", + "Ġb oth", + "Ġ1 9", + "Ġg ra", + "Ġbet ween", + "á »", + "Ġì ķ", + "as h", + "ĠR e", + "a i", + "al th", + "u res", + "em ber", + "Ġa v", + "Ġ ver", + "à ª", + "one y", + "Ġth ank", + "Ġmay be", + "u c", + "im e", + "ê³ ł", + "Ġa way", + "Ġn ame", + "ou se", + "Ġac c", + "Ġmus ic", + "Ġch ange", + "Ġp ass", + "g er", + "Ġbu ild", + "Ġv al", + "in ess", + "an y", + "Ġfe w", + "´ ë", + "t a", + "Ġl ist", + "à ¥", + "Ġo ld", + "Ġì ŀ", + "Ġs ort", + "Ġme m", + "Ġc a", + "ce pt", + "Ġgen er", + "Ġye ah", + "Ġwh ile", + "Ġany thing", + "r ic", + "gr am", + "Ġe in", + "c y", + "ur ing", + "ĠD e", + "Ġp ower", + "Ġcom ing", + "Ġwor d", + "Ġ- -", + "Ġbel ie", + "Ġf ound", + "t o", + "Ð ¿", + "Ġme ans", + "Ġin form", + "Ġ Ø", + "Ġ Ñĩ", + "Ġsm all", + "00 0", + "Ġc ame", + "Ġ íķ", + "w h", + "Ġwork ing", + "Ġexam ple", + "Ġp os", + "Ġde p", + "ê ²", + "ä º", + "ot e", + "Ġde m", + "ì §", + "t s", + "Ġv ar", + "a ut", + "Ġt ri", + "ch n", + "Ġhe ad", + "Ġwho le", + "× Ļ", + "z e", + "Ġtry ing", + "Ġt em", + "Ġc ou", + "et s", + "Ġ 6", + "Ġf il", + "vel op", + "Ġc ase", + "à ¯", + "Ġprob ably", + "Ġo kay", + "Ġpl an", + "Ġs it", + "Ġsch ool", + "ĠTh en", + "¸ ë", + "m e", + "Ġpro cess", + "Ġf ar", + "Ġre ad", + "Ġp oss", + "Ġb re", + "Ġso l", + "ic ht", + "Ġsupp ort", + "ĠT o", + "ert ain", + "Ġstart ed", + "Ġc ap", + "Ġle ft", + "Ġdat a", + "Ġtim es", + "еР»", + "Ġwant ed", + "а н", + "Ġtalk ing", + "Ġis t", + "Ġha ving", + "um p", + "Ġcont in", + "Ġsu b", + "ĠÐ ·", + "p r", + "ëĭ Ī", + "in a", + "Å ¼", + "Ġc reat", + "od e", + "× ķ", + "æ ĺ", + "! !", + "Ġt erm", + "is m", + "оР´", + "ĠBe cause", + "Ġw ent", + "id er", + "Ġpro v", + "Ġch ild", + "Ġd en", + "Ġl ight", + "b r", + "³ о", + "o h", + "Ġbo ok", + "Ġ Ù", + "ut ion", + "ĠJ ust", + "en e", + "Ġf our", + "Ġv is", + "ê° Ģ", + "Ġh ope", + "Ġmak ing", + "ĠL e", + "ì ķ", + "Ġo pp", + "a u", + "Ġm oney", + "Ġpro gram", + "à ¨", + "Ġst and", + "I N", + "Ġs ign", + "Ġle arn", + "à ł", + "ĠD on", + "Ġte am", + "Ġн а", + "l ud", + "Ġre st", + "ic es", + "æ ľ", + "Ġ ÑĢ", + "Ġa ut", + "Ġle ad", + "ation al", + "d e", + "g y", + "Ġn ice", + "Ġd as", + "Ġd ist", + "Ġh um", + "ĠO ne", + "æ Ī", + "Ġcom es", + "Ġj o", + "Ġc ent", + "Ġex pl", + "Ġm ark", + "re en", + "l ed", + "g in", + "ì ļĶ", + "Ġle vel", + "Ġcon f", + "us h", + "Ġde velop", + "Ġt est", + "en g", + "v ious", + "at ure", + "еР¼", + "re t", + "Ġj e", + "Ġst uff", + "Ġcl ass", + "ow s", + "Ġê ·", + "Ġs i", + "Ġl es", + "ro p", + "ç ļ", + "Ġp or", + "Ġw ar", + "ìĹ IJ", + "Ġevery one", + "Ġg e", + "Ġche ck", + "ot t", + "Ġs ing", + "Ġar t", + "Ġfo llow", + "Ġ20 1", + "ĠF r", + "a is", + "ì ĸ", + "Î ±", + "å °", + "Ġà ł", + "im es", + "Ġre t", + "Ġch ang", + "Ġp ub", + "Ġin f", + "Ġte chn", + "ad a", + "iv es", + "Ġbe h", + "æĺ ¯", + "Ġlook s", + "ãĢ Ĥ", + "Ð ·", + "ĠWh y", + "çļ Ħ", + "Ġen ough", + "Ġb ra", + "it ch", + "ä »", + "Ġad v", + "Ð ±", + "Ġwith out", + "w er", + "mer ic", + "d en", + "Ġcompl et", + "Ġide a", + "ter s", + "o ck", + "Ġdef in", + "Ġe ver", + "Ġg l", + "Ġon ce", + "Ġbr ing", + "Ġsay ing", + "Ġan s", + "Ġhe ar", + "n ect", + "Ġl ess", + "g o", + "re am", + "ad o", + "ì ŀ", + "Ġm ind", + "ent e", + "Ġf ull", + "Ġb ad", + "Ġw om", + "Ġsome one", + "Ġd u", + "Ġw on", + "Ġcont ro", + "ort un", + "Ġhe alth", + "Ġch o", + "ĠA r", + "Ġcon c", + "Ġinform ation", + "Ġst op", + "at t", + "at ely", + "ä ½", + "Ġgr oup", + "Ġ Ñĥ", + "Ġqu ite", + "Ġres p", + "E R", + "ug ht", + "ê ¸", + "m an", + "iz ed", + "ĠB r", + "Ġrem ember", + "Ġfam ily", + "Ġbus iness", + "a w", + "Ġspe c", + "Ġa u", + "ĠO r", + "Ä ħ", + "Ġse en", + "Ġl ar", + "Ġ 7", + "g g", + "b ers", + "Ġd ra", + "Ġmon th", + "Ġsay s", + "Ġis s", + "Ġli ve", + "Ġl ine", + "Ġmom ent", + "Ġex c", + "el s", + "Ġs ound", + "Ġco ol", + "Ġlo c", + "Ġc ertain", + "Ġd ri", + "о ÑĤ", + "am es", + "Ġm ust", + "n y", + "и ÑĤ", + "Ġk id", + "Ġinc lud", + "ìĿ Ħ", + "at or", + "Ä Ł", + "h a", + "are d", + "Ġse em", + "Ð ¹", + "ì Ħ", + "Ġel se", + "Ġì ł", + "ir l", + "Ġ 8", + "Ġv o", + "Ġquest ions", + "in es", + "e e", + "æĪ ij", + "ü r", + "ĠA meric", + "Ġst ory", + "Ġser v", + "ver n", + "ag es", + "l and", + "ĠâĢ ĵ", + "er a", + "ĠC an", + "Ġp op", + "et her", + "Ġn a", + "Ġor der", + "Ġmak es", + "Ġs ince", + "c on", + "ct or", + "Ġth ough", + "Ġprodu ct", + "л и", + "Ġle g", + "Ġme et", + "al f", + "Ñģ Ñı", + "un ch", + "it er", + "o ve", + "×ķ ×", + "i et", + "аР¼", + "it al", + "Ġsu per", + "l ing", + "Ġp ay", + "Ġpar a", + "Ġj ob", + "ĠH ere", + "Ġs w", + "k s", + "pt ion", + "m a", + "Ġbelie ve", + "¬ ë", + "Ġw ait", + "оР¹", + "Ġun t", + "Ġqu ick", + "h r", + "ĠÑ į", + "ĠP ro", + "Ġm en", + "à ¹", + "Ġday s", + "Ġgo es", + "Ġspe ak", + "ĠA t", + "em ent", + "Ġm iss", + "Ġa w", + "Ġdes ign", + "Ġpro ject", + "о ÑĢ", + "i j", + "ant s", + "at s", + "ĠCh r", + "Ġ 9", + "Ġc ut", + "Ġre qu", + "Ġн е", + "ĠN ot", + "as ter", + "Ġm ill", + "Ġpartic ular", + "Ġp ie", + "Ġstud ents", + "Ġf ive", + "ou n", + "ĠN e", + "Ġg i", + "Ġp as", + "Ġf ree", + "ĠS p", + "l ich", + "Ġpro f", + "Ġen g", + "Ġpr ot", + "ĠL ike", + "os ed", + "Ġcon nect", + "a pp", + "Ġë §", + "it ing", + "Ġb lo", + "Ġl os", + "ist s", + "Ġexper ience", + "re nt", + "Ġst ay", + "Ġfo od", + "t on", + "ru ct", + "Ġh ist", + "v iew", + "in ing", + "m ost", + "i vers", + "b o", + "ãģ Ħ", + "ĠT r", + "g en", + "Ġp lease", + "Ġcommun ity", + "Ġc e", + "A N", + "n o", + "Ġb ody", + "Ġh our", + "Ġ vers", + "á º", + "c er", + "Ġê °", + "Ġre ason", + "ĠR ight", + "Ġl ater", + "Ï Ħ", + "Ġh ouse", + "Ġ X", + "оР½", + "Ġst ate", + "f ic", + "å ¤", + "Å Ľ", + "iel d", + "Ġp ri", + "Ġp ast", + "Ġw alk", + "olog y", + "er ing", + "an na", + "Ġt er", + "Ġho ld", + "Ġor gan", + "b en", + "Î ¿", + "ó n", + "Ġeff ect", + "Ġyour self", + "Ġpl us", + "a j", + "and o", + "ur al", + "Ġro om", + "le ct", + "ê² Į", + "? \"", + "s ide", + "Ġbe come", + "Ñ Ĩ", + "Ġ Â", + "o od", + "Ġcon st", + "Ġn ight", + "ut es", + "Ð ¶", + "Ġbre ak", + "Ġp ain", + "Ġst ep", + "ire d", + "Ġnot hing", + "Ġunt il", + "Ñ ĸ", + "аР²", + "Ù Ĭ", + "Ġd uring", + "ì§ Ģ", + "l ess", + "o ll", + "н Ñĭ", + "Î ¹", + "f ect", + "i ver", + "ı Ħ", + "ith er", + "y ing", + "Ġbe gin", + "×Ļ ×", + "iv id", + "Ġà §", + "Ġs al", + "Ġt a", + "Ġp ot", + "Ġ $", + "Ġm ar", + "Ġcle ar", + "Ġf ace", + "Ġgr ow", + "Ġ *", + "Ġins ide", + "Ġfriend s", + "Ġle ave", + "en n", + "Ġeas y", + "Ġare a", + "al ity", + "ou d", + "Ġe at", + "Ù Ĩ", + "Ġp ur", + "or n", + "Ġsa w", + "Ġans wer", + "Ġfr ont", + "Ġbe aut", + "¼ ë", + "Ġm atter", + "Ġs on", + "ĠN ew", + "Ġres ult", + "id es", + "ch e", + "Ġf ut", + "p s", + "Ġfo cus", + "Ġinterest ing", + "å ¥", + "Ġa p", + "\" .", + "Ġcre ate", + "о Ñģ", + "Ġp ress", + "r oss", + "Ġp ick", + "l ine", + "Ġto ok", + "ĠM ay", + "r ow", + "Ġ ich", + "ĺ ë", + "Ġre f", + "Ġm or", + "r act", + "are nt", + "A R", + "Ġex act", + "Ġsp ace", + "w ork", + "н и", + "Ġb ir", + "Ġde v", + "Ð ³", + "Ġto ld", + "Ġpub lic", + "ci ally", + "Ġv iew", + "ĠHe y", + "m ed", + "ll o", + "c c", + "Ġf ac", + "Ġcou ple", + "Ġhe art", + "l er", + "Ġre ady", + "Ġal most", + "ar ing", + "Ġh alf", + "ĠM e", + "av or", + "i que", + "Ġchar ac", + "Ġpr act", + "O N", + "an e", + "Ġ il", + "н а", + "Ġv i", + "l ish", + "he ad", + "Ġle ast", + "Ġbas ically", + "as ed", + "r ight", + "Ġy et", + "Ġtak ing", + "Ġcount ry", + "Ġw in", + "Ġis n", + "Ġposs ible", + "Ġc am", + "Ġinc re", + "Ġp at", + "Ġw anna", + "Ġcons ider", + "Ġab s", + "Ġwith in", + "Ġhum an", + "Ġthink ing", + "Ġo h", + "¡ ľ", + "Ġqu i", + "as es", + "Ġ 0", + "it ely", + "ä¸ į", + "Ġk ill", + "Ġm il", + "Ġinv est", + "is ter", + "Ġsu c", + "ion al", + "el f", + "Ġwh ether", + "Ġcontro l", + "Ġagain st", + "ot s", + "ëĭĪ ëĭ¤", + "i or", + "Ġpres ent", + "Ġ ا", + "Ġwatch ing", + "u be", + "er v", + "Ġn icht", + "Ġgo vern", + "ĠTh ese", + "Ġ :", + "u it", + "ug h", + "Ġwork s", + "o o", + "Ġw ir", + "Ġa ir", + "ĠT e", + "аР·", + "is ion", + "wh ere", + "Ġto t", + "j oy", + "ì ĭ", + "Ġv ol", + "ĠÐ µ", + "Ġcl ose", + "ĠA d", + "Ñ ī", + "in ed", + "Ġun a", + "Ġê· ¸ë", + "° ë", + "or ry", + "Ġb ro", + "Ġfil m", + "if t", + "2 0", + "Ġty pe", + "Ġhappen ed", + "ĠA m", + "Ġg irl", + "ĠA re", + "ward s", + "Ġp our", + "Ġcol or", + "el t", + "а Ñģ", + "Ġs ense", + "le x", + "ĠW ith", + "us s", + "ri b", + "Ġre se", + "Ġn orm", + "Ġfut ure", + "Ġde al", + "end ing", + "e y", + "Ġ x", + "er o", + "ĠC l", + "u k", + "Ġwhat ever", + "sel ves", + "Ġyou ng", + "ì Ĭ", + "ĠM ar", + "ĠChr ist", + "Ġgu ess", + "Ġper form", + "Ġen er", + "r on", + "Ġh it", + "Ġw ond", + "Ġdire ct", + "ĠE very", + "Ġof ten", + "Ġf a", + "Ġal ong", + "Ġcl ick", + "ĠL ook", + "Ġsit u", + "Ġhapp y", + "e ad", + "Ġag o", + "Ġen c", + "Ġmy self", + "Ġco ver", + "оР±", + "Ġm id", + "Ġc ost", + "Ġt en", + "ĠS ch", + "Ġex pect", + "Ġwas n", + "Ġstr ong", + "if ul", + "Ġopp ortun", + "in al", + "y le", + "Ġsh are", + "Ġtr ue", + "Ġapp ro", + "Ġch all", + "Ġmin utes", + "Ġch ann", + "Ġë Ĥ", + "Î µ", + "l i", + "Ġm ess", + "or ies", + "pe cially", + "Ġwr ong", + "Ġy es", + "Ġì Ĺ", + "ir on", + "Ġall ow", + "Ġsu bs", + "Ġf ore", + "Ġf ight", + "Ġso cial", + "Ġc ra", + "an a", + "Ġa ff", + "Ġ ess", + "Ġway s", + "Ġsh ort", + "Ġf all", + "Ġla w", + "ĠWh o", + "Ġen joy", + "Ġc al", + "Ġac cess", + "f e", + "Ġn on", + "Ġac ross", + "er y", + "vious ly", + "ĠE x", + "id ed", + "Ġl ink", + "ĠP r", + "Ġterm s", + "ac es", + "Ġl and", + "az ing", + "Ġ1 5", + "Ġm ult", + "Ġspe cial", + "å Ģ", + "iv ing", + "ìĿ Ģ", + "Ġty p", + "Ġst e", + "Ġ Ä", + "Ġfor ward", + "å ı", + "Ġf re", + "å¥ ½", + "Ġrese arch", + "௠į", + "а ÑĤ", + "Ġma in", + "Ġrec ord", + "Ġh u", + "Ġdefin itely", + "Ġe ither", + "Ġlist en", + "Ġke y", + "Ġmark et", + "ĠÑĩ ÑĤо", + "iz ation", + "Ġvide os", + "Ġgu y", + "Ġf ig", + "Ġst ra", + "ĠP l", + "ull y", + "am os", + "Ġm ention", + "Ġs ong", + "Ġinter n", + "r al", + "ur s", + "Ġh on", + "Ġval ue", + "Ġb ar", + "c le", + "оР¶", + "Ä ĩ", + "ľ ë", + "Ġz u", + "и м", + "ä½ ł", + "Ġsing le", + "Ġa uch", + "cus s", + "Ġget s", + "Ġsomet imes", + "å ¾", + "am b", + "m m", + "c ing", + "Ġper fect", + "ĠB l", + "out h", + "ì ł", + "Ġs ci", + "p ar", + "Ġre d", + "Ġp ost", + "Ġm ot", + "Ġele ct", + "ĠE u", + "it ive", + "ĠS ome", + "Ġdes cri", + "Ġcur rent", + "é s", + "Ġt re", + "ĠE n", + "Ġm it", + "E N", + "Ī ë", + "i um", + "Ġhe ard", + "Ġsim ple", + "l ar", + "Ġevery body", + "il ar", + "Ġneed s", + "Ġdif fic", + "ĠGo od", + "um ent", + "c ent", + "Ġo per", + "а ÑĤÑĮ", + "et y", + "Ġbl ack", + "Ġgi ven", + "on es", + "Ġwe l", + "é Ģ", + "Ġìķ Ħ", + "Ġ3 0", + "A T", + "Ġst at", + "ou ch", + "ĠM r", + "а ÑĢ", + "Ġsh o", + "Ġcon d", + "× Ķ", + "m y", + "Ġchild ren", + "Ġe u", + "еР´", + "ìķ Ħ", + "ter n", + "Ġu h", + "Ġh ar", + "Ġpr om", + "Ġp ull", + "re w", + "Ġcomp any", + "Ġbeaut iful", + "ust om", + "íķ ĺ", + "к и", + "Ġst re", + "Ġam azing", + "ri es", + "Ġsuc cess", + "Ġm ach", + "n ot", + "Ġdis cuss", + "Ġn at", + "¦ ¬", + "Ġun e", + "Ġdiffic ult", + "Ġr is", + "Î ½", + "Ġc amp", + "Ġbu y", + "ä¸ Ģ", + "Ġma g", + "p o", + "ĠY our", + "Ġbeh ind", + "ic a", + "ı n", + "ĠO K", + "Ġl ang", + "Ġwom en", + "Ġen v", + "Ġre ce", + "Ġchann el", + "i ally", + "u le", + "Ġ1 2", + "th ers", + "Ġb ott", + "Ġrep ort", + "ent ly", + "f ully", + "T he", + "Ġs ent", + "Ġev ent", + "Ġener gy", + "l t", + "Ġword s", + "ar r", + "d le", + "Ġa head", + "ard s", + "Ø ±", + "äº Ĩ", + "Ġto ol", + "con om", + "е Ñģ", + "Ġexact ly", + "Ġf avor", + "Ġl ow", + "Ġpro per", + "Ġìŀ Ī", + "Ġ !", + "Ġrel ations", + "Ġm as", + "Ġkid s", + "Ġent ire", + "ud e", + "Ù ħ", + "ĠWh ere", + "Ġon es", + "Ġc ity", + "ol ut", + "Ġs ix", + "ab ility", + "ö r", + "il i", + "ĠE s", + "Ġhapp ens", + "ain s", + "Ġmod el", + "Ġp ict", + "Ġes pecially", + "Ġ1 00", + "k t", + "Ġso on", + "b y", + "ro du", + "Ġan n", + "Ġsubs cri", + "ĠQ u", + "Ġav ail", + "im ent", + "Ġv oc", + "k a", + "Ġ2 00", + "ap er", + "ĠI nd", + "Ġì §", + "h or", + "į °", + "j or", + "и л", + "Ġs qu", + "A U", + "ar ning", + "ĠÐ ³", + "I S", + "ĠÐ »", + "еР¹", + "y es", + "å ħ", + "ĠÐ Ĵ", + "Ġor ig", + "оР³Ð¾", + "Ġask ed", + "il t", + "оР³", + "Ġcontin ue", + "Ġì ĺ", + "r am", + "Ġo thers", + "E S", + "oh n", + "Ġl ay", + "Ġbas ed", + "Ġp u", + "Ġapp e", + "Ġl im", + "Ġpro p", + "Ģ ë", + "m in", + "Ġh ot", + "ĠL a", + "Ġf ast", + "Ġprot ect", + "Ġam ount", + "Ġa qu", + "Ġf und", + "Ġc ustom", + "Ġc ult", + "Ġhand s", + "Ġha ven", + "Ġa ud", + "Ġout side", + "ĠA fter", + "ap s", + "Ġan im", + "pl oy", + "Ġh at", + "ĠF irst", + "Ġt reat", + "Ġe p", + "Ġm ater", + "Ġbuild ing", + "Ġë °", + "å IJ", + "ìĦ ľ", + "z a", + "ught er", + "ĠP e", + "ne y", + "et er", + "at ic", + "Ġed uc", + "ê¸ °", + "Ġmo v", + "ĵ ¤", + "am a", + "r ation", + "Ġs n", + "Ù Ī", + "Ġs um", + "Ġph ot", + "ĠÐ Ŀ", + "Ġ .", + "æľ ī", + "Ġfin ish", + "itt ing", + "å ®", + "Ġlar ge", + "Ġì ĸ", + "Ġwh ite", + "ar a", + "Ġma is", + "ĠH i", + "Ġd am", + "Ġا ÙĦ", + "Ġbo x", + "ĠHe llo", + "Ġs le", + "Ġo pt", + "ri ed", + "¥ ¼", + "Ġact iv", + "Ġn ão", + "ĠC om", + "Ġplay ing", + "T h", + "Ġavail able", + "Ġp ort", + "å Ī", + "ĠA h", + "Ġl as", + "Ġear ly", + "Ġwond er", + "± °", + "Ġ1 8", + "c ul", + "Ġfun ction", + "Ġmor ning", + "ll e", + "i ents", + "u x", + "Ġc ir", + "it ions", + "Ġde ep", + "Ġpol it", + "y or", + "m p", + "ak ing", + "Į ë", + "ĠM an", + "Ġmill ion", + "Ġ /", + "Ġind ivid", + "Ġp an", + "Ġgovern ment", + "Ġwr ite", + "ĠT od", + "am ent", + "Ġ Ï", + "Ġw ind", + "ĠE ng", + "ch en", + "W h", + "ì ľ", + "Ġ ident", + "ãģ §", + "v ent", + "ur ch", + "Ġh y", + "Ġy a", + "Ġtr ad", + "Ġrelations hip", + "à º", + "Ġd ou", + "O R", + "Ġs we", + "Ġne g", + "in ation", + "Ġte xt", + "i pp", + "Ġf ine", + "á s", + "ĠD r", + "ĠC ome", + "Ġmonth s", + ", \"", + "ен и", + "Ġhour s", + "Ġp od", + "ir t", + "Ġinv ol", + "Ġcoll ect", + "Ġau f", + "Ġp a", + "Ġhist ory", + "m b", + "if y", + "Ġ ?", + "Ġbel ow", + "as ure", + "ab y", + "Ġlang u", + "Ġan t", + "Ġcom b", + "at o", + "Ġex ist", + "Ġë ĭ", + "Ġtak es", + "Ġcharac ter", + "a ff", + "Ġf ield", + "Ġe conom", + "ie f", + "Ġpie ce", + "å ľ", + "Ġre ach", + "Ġê ²", + "on y", + "Ġmater ial", + "Ġd ig", + "Ġph ys", + "Ġimp ro", + "Ġsim ilar", + "I C", + "Ġn et", + "y n", + "Ġpos ition", + "à Ł", + "Ġb ene", + "re ad", + "Ġle arning", + "um e", + "Ġcle an", + "ÑĤо ÑĢ", + "Ġco ok", + "Ġseem s", + "Ġo l", + "ĠU S", + "ĠJ es", + "Ġ à®", + "ent ial", + "ivers ity", + "ac y", + "Ġ Ñı", + "olut ely", + "re ct", + "ĠP lease", + "Ġrep res", + "Ġt ouch", + "m en", + "ĠÐ °", + "i ón", + "ĠThank s", + "Ġan g", + "Ġma jor", + "Ġit self", + "ill s", + "\" ,", + "i ans", + "Ġsc reen", + "Ġh or", + "Ġknow n", + "Ġenv iron", + "Ġfin al", + "Ġfig ure", + "ĠT w", + "Ġe yes", + "Ġim ag", + "Ġsee ing", + "Ġha ir", + "re m", + "Ġapp lic", + "end s", + "p ut", + "Ġnew s", + "Ġcomplet ely", + "ugh s", + "Ġkn ew", + "if ied", + "ĠJ e", + "ĠD id", + "Ġsitu ation", + "Ġf lo", + "m s", + "Ġph one", + "Ġb all", + "d o", + "Ġp arent", + "Ġs orry", + "ur y", + "и н", + "ip s", + "аР´", + "Ġinst ead", + "Ġhu ge", + "Ġt u", + "Ġ ãģ", + "ĠG r", + "Ġdet ail", + "ĠÐ Ł", + "Ġindivid ual", + "Ġf ire", + "Ġcl os", + "Ġw er", + "un e", + "Ġrun ning", + "Ġcon vers", + "Ġrec omm", + "Ġcom o", + "Ġsome body", + "ĠJ ohn", + "ĠìĿ ´", + "ĠO ur", + "pl es", + "ĠP h", + "Ġan al", + "Ġ5 0", + "Ġof fer", + "Ġ <", + "ition al", + "g est", + "Ġv ous", + "l et", + "ic y", + "Ġfeel ing", + "L E", + "r os", + "Ġth ird", + "оРº", + "Ġser ies", + "ĠAn y", + "is ed", + "o ld", + "Ġdra w", + "Ġserv ice", + "Ġcan not", + "b al", + "ãģ Ĩ", + "Ġli ving", + "ı m", + "Ġdiffer ence", + "Ġopportun ity", + "Ġne ar", + "or th", + "k en", + "Ġloc al", + "Ø ª", + "ĠC on", + "Ġob ject", + "Ġd ass", + "ãģ Ļ", + "IJ ×", + "Ġquick ly", + "ra ph", + "Ġiss ues", + "éĢ Ļ", + "ĠAmeric an", + "Ġpre p", + "en ces", + "Ġprof ess", + "ll ing", + "o f", + "Ġfo ot", + "b re", + "Ġus ually", + "Ġgener al", + "d a", + "an ces", + "Ġd est", + "Ġo cc", + "Ġmem bers", + "Ġd ans", + "Ġequ al", + "z t", + "Ġbe com", + "Ġmo ving", + "Ġspec ific", + "ÃŃ a", + "Ġf ur", + "Ġne cess", + "Ġcomm on", + "Ġatt ack", + "ĠÑį ÑĤо", + "ĠTod ay", + "Ġun s", + "ĠG u", + "i od", + "Ġacc ount", + "Ġgra nd", + "Ġs elf", + "ĠE l", + "Ġt ast", + "Ġcont ent", + "Ġc u", + "Ħ ë", + "ĠMay be", + "ĠJes us", + "ore s", + "p ort", + "© ´", + "Ġg ives", + "Ġnorm al", + "ÑĢ Ñĥ", + "Ġimp act", + "ä r", + "Ġd ies", + "Ġl ab", + "s h", + "i os", + "ĠP res", + "ĠU nd", + "ĠO f", + "Ġfin ally", + "Ġdo ll", + "Ġvoc ê", + "p ly", + "ĠA g", + "Ġtak en", + "Ġgr ound", + "f ort", + "Ġg ave", + "ĠIn st", + "Ġl ost", + "Ġwork ed", + "Ġl iter", + "Ġiss ue", + "Ġind ust", + "Ġret urn", + "Ġhappen ing", + "Ġwant s", + "и в", + "Ġproblem s", + "ĠC ar", + "Ŀ ¼", + "ĠAl so", + "Ġs ize", + "Ġob viously", + "ĠS u", + "ĠS c", + "Ġrecomm end", + "our ces", + "ast ic", + ".. ..", + "Ġm i", + "l ier", + "ĠE ven", + "ci a", + "Ġh ur", + "v a", + "Ġm ass", + "Ġwould n", + "un t", + "ck s", + "Ġf elt", + "os p", + "l ight", + "ол ÑĮ", + "n ie", + "Ġbott om", + "Ġб Ñĭ", + "ore d", + "is on", + "Ġgr ad", + "Ġum a", + "Ġv a", + "Ġì Ĥ", + "ress ion", + "ul ation", + "I D", + "id ence", + "Ġb ur", + "Ġg one", + "l u", + "ìĸ ´ì", + "Ġre du", + "Ġj a", + "ìĿ ĺ", + "it a", + "Ġso ft", + "Ġç a", + "ic o", + "er al", + "à ±", + "a f", + "Ġpoint s", + "g u", + "Ġd é", + "ap t", + "a x", + "ĠAl right", + "Ġcam era", + "Ġa ch", + "Ġп о", + "Ġse ver", + "5 0", + "Ġs ie", + "Ï ģ", + "Ġm al", + "Ġcomp ut", + "Ġmid dle", + "Ġcould n", + "m ing", + "Ġì ĭ", + "ĠH is", + "Ġg ames", + "Ġint rodu", + "Ġc ell", + "p or", + "Ġsle ep", + "Ġë ³", + "id ing", + "Ġ ou", + "Ġde g", + "Ġdr ink", + "Ġenviron ment", + "ĠUn ited", + "Ġtalk ed", + "Ġcho ose", + "Ġj our", + "e ge", + "ĠM in", + "Ġint e", + "Ġr ather", + "Ġoff ic", + "к а", + "ac hing", + "Ġmention ed", + "Ġf ill", + "Ġtr ack", + "Ġn ie", + "Ġ ut", + "Ġв Ñĭ", + "ib ility", + "Ġv ac", + "Ġr ad", + "Ġp ack", + "Ġs end", + "ĠD as", + "ĠA b", + "Ġeng ine", + "ãģ Ĺ", + "Ġcomp et", + "à ´", + "Ġв Ñģ", + "Ġdo or", + "Ġlong er", + "å° į", + "Ġlangu age", + "Ġext ra", + "pl ay", + "Ġwe bs", + "um b", + "ro om", + "ç ľ", + "Ġbegin ning", + "Ġre fer", + "A M", + "n en", + "ig her", + "f ace", + "er c", + "Ġfor get", + "Ġcom ment", + "еРº", + "л Ñı", + "r or", + "ż e", + "ĠG e", + "Ġd ark", + "Ġany one", + "ant e", + "g es", + "ìĬ µ", + "Ñ ij", + "b ed", + "j e", + "ruct ure", + "Ġpr im", + "id a", + "è ¦", + "ãģ ¾", + "Ġm ix", + "Ġstart ing", + "ĠìĿ ´ë", + "Ġprov ide", + "act ion", + "Ġm other", + "Ġper iod", + "Ġst ick", + "ĠYou T", + "Ġtechn ology", + "ê ¹", + "Ġb ed", + "Ġg iving", + "Ġexpl ain", + "z en", + "im ate", + "Ġrepres ent", + "lo ad", + "ĠHow ever", + "Ġli ves", + "ut h", + "ir it", + "og n", + "Ġli k", + "Ġresp ons", + "Ġpri v", + "Ġto m", + "ç ão", + "i am", + "Ġexc ited", + "Ġc ard", + "gr ound", + "Ġ× Ķ", + "Ġs ens", + "Ġte ach", + "id o", + "h od", + "Ġep is", + "Ġwel come", + "Ġw all", + "ä ¹", + "Ġch ance", + "h en", + "ĠÐ ¡", + "ĠÄ ij", + "Ġsim ply", + "ĠÑĤ ак", + "r ing", + "j a", + "b ook", + "Ġsever al", + "st e", + "Ġcreat ed", + "Ġо ÑĤ", + "Ġp ush", + "= =", + "Ġh igher", + "u f", + "our ce", + "o ke", + "Ġon line", + "Ġre le", + "Ġt on", + "ens ive", + "Ġfavor ite", + "Ñĥ д", + "Ġlook ed", + "Ġv on", + "âĢ Ķ", + "Ġf ür", + "Ġbut ton", + "Ġb ill", + "Ġchang es", + "! \"", + "Ġsl ow", + "ab les", + "Ġde ath", + "and s", + "ate g", + "Ġthem selves", + "ãģ £", + "Ġc op", + "ãģ ®", + "Ġperson al", + "ug hing", + "Ġ1 1", + "g ar", + "ad es", + "Ġneed ed", + "Ġstud y", + "ag ed", + "ÑģÑĤ в", + "in o", + "Ġdis c", + "k i", + "Ġadd ress", + "× ¨", + "itt en", + "es ome", + "ĠÐ ¶", + "¤ ë", + "ur a", + "Ġm u", + "Ġcontin u", + "f or", + "Ġm atch", + "ãģ ¦", + "Ġstra ight", + "IJ ë", + "n ers", + "Ġdo g", + "Ġde b", + "ĠC O", + "Ġo s", + "g ed", + "c ame", + "Ġcor rect", + "et te", + "ĠSe e", + "Ġinclud ing", + "ĠEu ro", + "est er", + "Ġj ump", + "ĠWh ich", + "Ġк ак", + "s on", + "y a", + "IN G", + "Ġe ine", + "os h", + "en cy", + "Ġmed ia", + "Ġsubscri be", + "é Ĥ", + "Ġpr in", + "Ġha b", + "ĠP er", + "ĠW as", + "Ġp age", + "it or", + "Ġto wards", + "Ġtri ed", + "en ge", + "art ment", + "Ġvar i", + "Ġp aper", + "Ġpict ure", + "Ġvers ion", + "Ġbr ought", + "w are", + "ĠSt ates", + "Ġs ich", + "led ge", + "Ġper cent", + "Ġgo d", + "e c", + "ĠC omm", + "Ġdec ided", + "Ġse lect", + "íķ ľ", + ") .", + "ur ity", + "Ġfur ther", + "Ġcom ments", + "le ment", + "Ġd ream", + "Ġcent er", + "m i", + "Ġc as", + "Ġwom an", + "Ġro ad", + "Ġf ail", + "Ġbe came", + "l us", + "il ities", + "ãģ ¯", + "ĠC o", + "Ġman age", + "Ġrec ogn", + "Ġact ion", + "Ġbene f", + "Ġear lier", + "× ľ", + "Ġspe ed", + "Ġm ent", + "Ġso ci", + "Ġsho ot", + "u i", + "Ġà ¤", + "Ġapp ly", + "v o", + "x im", + "Ġca use", + "Ġsur pr", + "Ġha ben", + "D I", + "Ġf ather", + "ĠNe xt", + "ĠYouT ube", + "Ġc ode", + "Ġro le", + "g ress", + "Ġg reen", + "et t", + "Ġbu ilt", + "Ġfl ow", + "Ġb ase", + "Ġtra ining", + "Ġr ound", + "ĠW ill", + "Ġp ath", + "ĠR o", + "Ġinterest ed", + "ìĸ ´", + "Ġres pect", + "Ġchang ed", + "iss ion", + "Ġstud ent", + "og raph", + "Ġappro ach", + "Ġshow s", + "å° ±", + "Ġt ar", + "Ġcr it", + "Ġg lo", + "ìĬµ ëĭĪëĭ¤", + "Ġde ad", + "ĠPres ident", + "Ġth ous", + "Ġb al", + "st er", + "e x", + "Ġabs olutely", + "Ġm ic", + "Ġpract ice", + "Ġqu ality", + "Ġl ower", + "og le", + "Ġse par", + "b all", + "med i", + "Ġre view", + "ĠA pp", + "Ġo k", + "âĢ ĭ", + "Ġexper ien", + "Ġconc ern", + "ent ially", + "m ore", + "ĠJ o", + "ap an", + "ĠI ch", + "ist ic", + "Ġf air", + "Ġwebs ite", + "i res", + "ĠB y", + "Ġtra vel", + "Ġris k", + "Ġm ir", + "Ġbo ard", + "Ġs en", + "Ġparent s", + "ĠW ow", + "Ġfe ed", + "Ġsa ve", + "Ġser ious", + "Ġin it", + "E L", + "und red", + "A S", + "Ġv an", + "or row", + "Ġwor th", + "Ġse arch", + "Ġ1 6", + "Ġpart s", + "ÑģÑĤ ÑĮ", + "Ġcomp an", + "Ġmov ie", + "Ġmet hod", + "Ġ ill", + "Ġw ish", + "d y", + "Ġit em", + "Ġmin us", + "ang er", + "Ġvo ice", + "Ġsk in", + "Ġare as", + "Ġe ight", + "Ġo bs", + "Ġ ,", + "аР¹", + "Ġo il", + "Ġc y", + "Ġb aby", + "s y", + "Ġem ploy", + "ĠK e", + "Ġpl aces", + "Ġf ix", + "Ġest á", + "ãģ ¨", + "iv ed", + "Ġlot s", + "Ġse ason", + "un k", + "al t", + "Ġt able", + "ĠÐ ¢", + "à ¢", + "Ġatt ention", + "ãģ ª", + "ĠH er", + "Ġa ge", + "Ġp ra", + "b ack", + "c il", + "Ġnet work", + "r it", + "Ġdo c", + "Ġare n", + "ig en", + "Ġë Ħ", + "Ø ¯", + "end er", + "Ġtot al", + "Ġpr ice", + "Ġcra zy", + "ì ļ", + "i qu", + "th ough", + "Y ou", + "Ù ĩ", + "ãĤ ĵ", + "Ï ħ", + "Ġs at", + "Ġb i", + "ĠD ie", + "Ġsh a", + "Ġthank s", + "u h", + "Ġst age", + "аР¶", + "ĠF l", + "Ġle av", + "Ġbo y", + "Ġa f", + "ö n", + "ĠG et", + "Ġac cept", + "Ġent er", + "Ġt ur", + "Ġsi ÄĻ", + "Ġhon est", + "ãĢ Į", + "Ġs am", + "Ġre pl", + "g ing", + "Ġdevelop ment", + "ĠA ct", + "or a", + "ãĢ į", + "ä ¾", + "Ġknow s", + "Ġim age", + "ĠL ord", + "и ÑĤÑĮ", + "Ġweek s", + "Ġse x", + "Ķ ë", + "Ġh undred", + "Ġsound s", + "Ġlearn ed", + "Ġb ud", + "ĠÑģ ÑĤ", + "Ġinc red", + "â Ļ", + "Ġn os", + "Ġd rop", + "Ġb en", + "ĠÐ ĺ", + "Ġsa fe", + "at a", + "Ġf uck", + "so ci", + "Ġd an", + "Ġcr oss", + "1 0", + "m o", + "ver t", + "Ġ1 7", + "z ie", + "å ķ", + "Ġd om", + "ĠB o", + "Ġset ting", + "Ġinvol ved", + "ar ily", + "Ġs ind", + "Ġs us", + "Ġwor ry", + "et h", + "ê¹ Į", + "Ġs un", + "Ġh ier", + "Ġcertain ly", + "ou l", + "ort s", + "ĠE r", + "ĠU m", + "Ġca us", + "Ġnat ural", + "Ġà ¼", + "Ġc ry", + "ĠSe c", + "Ġs om", + "æ ²", + "Ġeduc ation", + "а еÑĤ", + "Ġmult ip", + "Ġal one", + "Ġe ye", + "Ġr ate", + "ĠEuro pe", + "è ¿", + "m on", + "Ġf it", + "iz ing", + "pp ed", + "Ġpress ure", + "th e", + "и Ñģ", + "it es", + "ĠA f", + "re ci", + "att le", + "Ġserv ices", + "ĠGo ogle", + "é ģ", + "Ġc ases", + "Ġdri ve", + "Ġchall eng", + "u z", + "ĠM o", + "ìľ ¼ë", + "v al", + "åĢ ĭ", + "Ġf ol", + "Ġì ¢", + "ff ic", + "Ġr a", + "Ġs in", + "Ġbl ue", + "Ġaff ect", + "Ġm is", + "Ġsh ot", + "Ġо б", + "as ing", + "Ġsign ific", + "ĠC he", + "Ġê ³", + "Ġpos itive", + "ì £", + "Ġw ie", + "Ġ4 0", + "ord ing", + "ĠFr om", + "ê µ", + "Ġbra nd", + "Ġtr ust", + "Ġp le", + "Ġcommun ic", + "Ġwe ight", + "Ġask ing", + "Ġta x", + "ĠJ apan", + "ãģ Ł", + "Ġíķ ĺ", + "op s", + "Ï Ĥ", + "Ġput ting", + "Ġro ll", + "ĠAmeric a", + "re g", + "ŀ ×", + "at ures", + "ens ion", + "ĠS omet", + "Ġorig inal", + "p ing", + "Ġ ÅŁ", + "Ġproduct s", + "ãĥ ¼", + "Ġcont act", + "ol ution", + "Ġgo al", + "Ġp ow", + "Ġperform ance", + "Ġblo od", + "at ors", + "ĠM ich", + "Ġtem per", + "ĠD an", + "Ġsu gg", + "ÑĤ и", + "Ġim m", + "Ġoff ice", + "Ġar ri", + "Ġcom fort", + "ĠÐ Ķ", + "Ġsugg est", + "Ġpl at", + "Ĥ ĺ", + "1 9", + "Ġo m", + "Ġse ven", + "ĠC ent", + "ill e", + "Ġcon cept", + "Ġb ag", + "ü n", + "ive ly", + "Ġd iv", + "m os", + "æ ī", + "Ġfeel s", + "Ġ ir", + "ak es", + "le y", + "Ġpartic ip", + "ĠÐ ļ", + "f l", + "j ust", + "Ġs il", + "ĠP a", + "A L", + "Ġgot ta", + "Ġf an", + "Ġchall enge", + "Ġcompan ies", + "ĠPe ople", + "< /", + "оР·", + "Ġp en", + "is ing", + "Ġa us", + "em ic", + "am ente", + "Ġmeet ing", + "Ġvis it", + "Ġsupp osed", + "ĠOn ce", + "д а", + "or ld", + "3 0", + "U S", + "Ġvi ol", + "Ġnot ice", + "ĠÐ IJ", + "h an", + "p ed", + "ì ĺ", + "h h", + "Ġtr ou", + "Ġmin ute", + "ĠP ar", + "r ay", + "Ġt it", + "Ġup d", + "Ġblo ck", + "Ġd ue", + "a ur", + "Ġfor ce", + "Ġcou n", + "ĠâĢ Ķ", + "Ġtyp es", + "ë §", + "Ġl ate", + "Ġimpro ve", + "Ġì Ī", + "Ġa ve", + "ul es", + "c l", + "am ed", + "Ġaw esome", + "ĠO k", + "Ġv ot", + "Ġmach ine", + "Ġfollow ing", + "Ġme asure", + "ac ión", + "u el", + "ch an", + "Ġab ility", + "Ġt out", + "Ġide as", + "Ġincre ase", + "Ġen s", + "ĠÑ ħ", + "Ġë ª", + "Ġj est", + "ĠÐ ľ", + "Ġtr uth", + "h y", + "Ġsp end", + "Ġsci ence", + "et e", + "Ġ1 4", + "Ġepis ode", + "Ġal g", + "end ed", + "ãģ ĵ", + "ar i", + "ll a", + "Ġf ish", + "Ġthr ow", + "m it", + "å ¹", + "Ġcir c", + "ĠC al", + "Ġt our", + "Ġdire ction", + "Ġno ch", + "еР²", + "é n", + "Ġcount ries", + "Ġindust ry", + "in y", + "ic le", + "Ġfe et", + "I t", + "Ġlead ers", + "et zt", + "Ġst aff", + "ç Ķ", + "Ġpur p", + "it o", + "? !", + "ĠJ a", + "Ġst ore", + "et ic", + "ĠCh ina", + "Ġë IJ", + "ĠUn iversity", + "Ġ #", + "Ġdec ision", + "Ġach ie", + "Ġact ual", + "u ly", + "Ġse ction", + "Ġresult s", + "Ġst ar", + "Ġm ist", + "ib ly", + "Ġd ad", + "Ġnum bers", + "om b", + "è ª", + "ĠS pe", + "Ġm er", + "Ġ2 5", + "Ġaut om", + "Ġco ld", + "Ø ¨", + "Ħ ľ", + "ag er", + "ĠT V", + "ĠS ie", + "ĠH ave", + "Ġ że", + "ug g", + "ain ed", + "Ġup on", + "Ġlo g", + "Ġcomplet e", + "Ġbra in", + "ag ing", + "ĠM us", + "o ver", + "Ġeas ier", + "Ġinte gr", + "Ġm ás", + "Ġturn ed", + "Ġst ri", + "iv al", + "Ġhe av", + "ĠT H", + "Ġwr iting", + "ÑĢ а", + "åľ ¨", + "å¤ §", + "Ġcl a", + "d ing", + "Ġtell ing", + "и д", + "ic ated", + "ä» ¥", + "ac ht", + "ãģ Ĥ", + "h aps", + "ĠSt e", + "Ġres ources", + "Ġd ann", + "Ġpart y", + "Ġ ÏĦ", + "Ġsa f", + "is es", + "t re", + "o int", + "Ġknow ledge", + "Ġany more", + "Ġf ly", + "Ġma int", + "и к", + "å ij", + "Ġse ll", + "la ughs", + "ĠY ork", + "Ġb ien", + "Ġo d", + "Ġeas ily", + "Ġr ange", + "Ġo ption", + "Ø ¹", + "Ġapp reci", + "oc r", + "Ġdet erm", + "Ñ Ħ", + "Ġmean ing", + "Ġs ite", + "Ġdis co", + "ver age", + "Ġl ose", + "Ġinst all", + "Ġem ot", + "ant ly", + "ä t", + "Ġt amb", + "ĠW ar", + "ĠH o", + "ĠG en", + "em y", + "еР·", + "ĠP ol", + "Ġmess age", + "Ġnot e", + "Į Ģ", + "Ġh et", + "Ġim medi", + "Ġav o", + "Ġbook s", + "Ġbecom es", + "res h", + "è s", + "as ons", + "Ġhim self", + "ut s", + "Ġj u", + "Ġaw are", + "Ġrequ ire", + "Ġsystem s", + "ĠH ar", + "Ġam ong", + "Ġh om", + "Ġb reat", + "Ġwe ird", + "Ġë ¶", + "Î »", + "Ø ©", + "if f", + "or ing", + "Ġplat form", + "ĠT ake", + "Ġhelp s", + "ut ions", + "Ġfor g", + "Ġl uck", + "ĠEng lish", + "Ġwe b", + "Ġneg ative", + "Ġt ut", + "Ġab ove", + "ng th", + "Ġê ±°", + "Ġst ories", + "Ġlo ad", + "Ġback ground", + "Ġsw itch", + "g a", + "Ġprin ci", + "Ġfin an", + "Ġvar ious", + "Ġl Ãł", + "Ġkind s", + "ain ing", + "Ġn ature", + "ĠÐ ŀ", + "c z", + "Ġpr ay", + "Ġg ar", + "ir m", + "Ġ &", + "Ġì ĥ", + "n s", + "ĠR ep", + "ĠF e", + "Ġre v", + "ra nd", + "Ġlike ly", + "Ġunderstand ing", + "ı r", + "ãģ ĭ", + "Ġf al", + "Ġ1 3", + "ÑĨ и", + "Ġsu d", + "Ġbr other", + "Ġpl ant", + "Ġthrough out", + "w ise", + "p re", + "Ġcult ure", + "ĠÙ ħ", + "Ġwonder ful", + "Ġa h", + "pp er", + "Ġso ld", + "Ġstart s", + "Ġwr itten", + "Î ¯", + "n i", + "Ġ×Ķ ×", + "ĠD av", + "Ġu lt", + "Ġar m", + "Ġro ck", + "Ġwe ar", + "ë į°", + "an o", + "ra g", + "Ġsqu are", + "ан и", + "c ast", + "le br", + "Ġliter ally", + "Ġplay ed", + "Ġhe at", + "on se", + "r ict", + "Ġins p", + "id s", + "Ġpop ular", + "ë ıĦ", + "Ġc atch", + "Ġm ount", + "Ġj ud", + "Wh at", + "еР±", + "R A", + "a ud", + "к о", + "Ġsur face", + "Ġcon v", + "Ġpie ces", + "O h", + "æ Ģ", + "Ġst yle", + "pp ing", + "Ġread ing", + "Ġconvers ation", + "оР¿", + "ä¾ Ĩ", + "ĠAg ain", + "Ġb ank", + "t ime", + "Ñĥ ÑĤ", + "er ve", + "ĠG reat", + "Ġcap t", + "аР±", + "ay s", + "ĠF in", + "ific ation", + "Ġä r", + "а Ñİ", + "Ġe gg", + "ĠW el", + "Ġtar get", + "ul a", + "ch es", + "an i", + "O O", + "ic ious", + "n ow", + "Ï ĥ", + "bo ard", + "Ġg ente", + "Ġd ro", + "ĠE t", + "Ġd in", + "Ġc os", + "Ġaut hor", + "Ø ³", + "Ġo ch", + "Ġem ail", + "Ġsp irit", + "Ġs itting", + "m as", + "Ġstre ngth", + "Ġbig ger", + "ĠW ait", + "Ġm at", + "Ġpol ice", + "ress ed", + "Ġwait ing", + "is hing", + "Ġdoll ars", + "ho od", + "s s", + "Ġimag ine", + "in i", + "Ġm es", + "Ġdis e", + "id ge", + "ab or", + "Ġp et", + "Ġh op", + "ĠK ing", + "Ġcomput er", + "Ġgo ld", + "Ġn u", + "Ġf ing", + ") ,", + "Ġsec urity", + "ru ction", + "Ġsol ution", + "e xt", + "Ġp atter", + "ick en", + "ure d", + "Ġstand ard", + "ìĭ ľ", + "Ġdou ble", + "Î ·", + "Ġw ife", + "is a", + "Ġdirect ly", + "ac ed", + "Ġb unch", + "Ġ ¿", + "ал ÑĮ", + "Ġreg ard", + "Ġswe et", + "Ġun ique", + "ĠâĻ «", + "Ġtra in", + "ĠG erm", + "Î ¬", + "R E", + "Ġbeh av", + "Ġpre d", + "ì ĥ", + "s et", + "Ġdescri ption", + "é e", + "Ġc at", + "å ĵ", + "Ġcoll ege", + "ì Ľ", + "Ġapplic ation", + "ĠS en", + "as k", + "Ġc red", + "ub lic", + "Ġmultip le", + "Ġn i", + "Ġpres ident", + "Ġadd ed", + "Ġro b", + "Ġaqu i", + "Ġh osp", + "Ġtool s", + "Ġg un", + "Ġbas ic", + "Ġl ines", + "Ġst ructure", + "ĠR uss", + "Ġtot ally", + "Ġbig gest", + "Ġe en", + "Ġar g", + "Ġ× ľ", + "Ġp ark", + "ĠD es", + "Ġce lebr", + "Ġf ait", + "ен ÑĮ", + "Ġsu ff", + "Ġreg ular", + "¨ ë", + "Ġm ine", + "ĠK ore", + "Ġpre vious", + "Ġp i", + "Ġse g", + "Ġpol icy", + "Ġк о", + "ĠTr ump", + "Ġvac c", + "ó w", + "ĠS y", + "и Ñĩ", + "it ter", + "Ġpolit ical", + "r as", + "Ġal s", + "ел ÑĮ", + "Ġsha pe", + "an z", + "Ġon to", + "Ġar ch", + "Ġam b", + "ag ram", + "ĠS m", + "ct ions", + "Ġjo in", + "b or", + "å Ľ", + "Ġfr ame", + "ł ĩ", + "Ġcho ice", + "௠ģ", + "Ñĥ Ñİ", + "ĠC or", + "ĠS w", + "I T", + "Ġt end", + "ĠE ar", + "Ġto r", + "Ġev ents", + "Ġcla im", + "ĠD a", + "ĠM ark", + "Ġgroup s", + "Ġe ating", + "ĠW orld", + "Ġrec ently", + "Ġtast e", + "Ġsur v", + "à ¤", + "Ġsk ills", + "Ġи з", + "itt ed", + "Ġsh op", + "ìĿ ´ì", + "Ġest ab", + "ĠëĤ ĺ", + "Ġsecond s", + "ĠTh ose", + "ĠE nt", + "Ġì Ħ", + "ers on", + "Ġto wn", + "Ġc and", + "Ġopt ions", + "Ġ ing", + "V ID", + "Ġenc our", + "Ġr é", + "âĻ ª", + "Ġent re", + "Ġmove ment", + "ĠB en", + "Ġbir th", + "Ġwh e", + "Ġh ang", + "ĠE m", + "ig e", + "ro ll", + "Ġun f", + "ì Ĥ", + "Ġr id", + "Ġsp read", + "Ġh ost", + "al d", + "ĠE d", + "Ġcons um", + "U N", + "Ġop in", + "it ar", + "ĠM ed", + "Ġsub ject", + "Ġp al", + "Ġcar ry", + "Ġag ree", + "ĠWh ile", + "Ġcare er", + "Ġsci ent", + "Ġsud den", + "Ġf ile", + "z i", + "Ġex cept", + "é º", + "Ġpot ential", + "ĠAn other", + "Ġcomp lex", + "ĠS im", + "end o", + "Ġr ais", + "Ġphys ical", + "Ġd ate", + "ak er", + "ĠC ol", + "Ġpower ful", + "Ġmem ber", + "ra p", + "Ġsp ot", + "Ġs ource", + "Ġf em", + "é m", + "Ġem p", + "j i", + "iet y", + "Ġinf lu", + "Ġd ry", + "Ġlo ck", + "Ġz ero", + "ĠU h", + "Ġr out", + "Ġpor que", + "Ġ2 4", + "Ġt al", + "Ġfol ks", + "Ġla unch", + "Ġcomp on", + "ĠWel come", + "Ġk ann", + "ä n", + "ĠÑį ÑĤ", + "e es", + "ĠÙ Ī", + "Ġany way", + "Ġaud ience", + "äº º", + "Ġsl ight", + "on a", + "Ġu r", + "Ġrel ig", + "Ġext rem", + "ı z", + "ĠM a", + "Î ¼", + "Ġà ¶", + "Ġall ows", + "Ġf at", + "ĠF ace", + "Ġn ational", + "Ġinter view", + "ĠM c", + "é t", + "Ġc ute", + "el a", + "Ġsec ret", + "ĠW est", + "ĠD ep", + "Ġex erc", + "Ġhist or", + "Ġpri or", + "Ġ6 0", + "av a", + "ac her", + "y ond", + "ĠH a", + "Ġest e", + "in ary", + "ĠN orth", + "on st", + "Ġsm art", + "am s", + "ал и", + "Ġd ar", + "er ed", + "Ġfun ny", + "ĠO b", + "ĠBl ack", + "Ġrel ated", + "ĠB u", + "Ġsome where", + "ĠR em", + "n es", + "ment e", + "ĠRe ally", + "Ġcreat ing", + "Ġfam il", + "Ġsoci ety", + "Ġg el", + "Ġtrans form", + "Ä ĥ", + "Ġinclud e", + "Ġh ol", + "l ike", + "k o", + "air s", + "Ġп од", + "Ġpers pect", + "Ġb es", + "Ġparticular ly", + "Ġshow ing", + "ĠP art", + "Ġqu al", + "lo ck", + "Ġreal ity", + "ho ld", + "ict ion", + "o on", + "Ġv ir", + "ãģ «", + "it ary", + "Ġdr ug", + "Ġfe ature", + "Ġre asons", + "Ġ× ©", + "Ġwr ote", + "Ġf ant", + "Ġb and", + "Ù ĥ", + "en a", + "ke y", + "Ġear th", + "d om", + "Ġfe atures", + "Ġflo or", + "Ġspeak ing", + "Ġt ip", + "ĠA ust", + "Ġst ock", + "Ġch urch", + "Ġr ac", + "ìľ¼ë ¡ľ", + "ภĻ", + "ãĤ Į", + "k y", + "Ġresp onse", + "Û Į", + "ul ations", + "Ġsl ide", + "Ġgrad u", + "ci ous", + "Ġme ant", + "Ġ ==", + "Ġ× IJ×", + "ã ħ", + "Ġkind a", + "Ġsc ene", + "Ġm uit", + "Ġê° Ģ", + "r ast", + "re st", + "Ġplay ers", + "w a", + "Ġbro ad", + "Ġtom orrow", + "oc ol", + "ĠÑģ в", + "ĠB ar", + "ı k", + "Ġse a", + "Ġrem ove", + "Ġrem ind", + "ом Ñĥ", + "ĠS ince", + "Ġave c", + "ce ll", + "и Ñħ", + "Ġdoc ument", + "Ġê·¸ë Ł", + "Ġne igh", + "be at", + "Ġp Ã¥", + "Ġas pect", + "Ġd ed", + "lish ed", + "il s", + "Ġour selves", + "u ce", + "Ġhe y", + "ĠпÑĢ о", + "ent y", + "Ġas soci", + "ad os", + "um ber", + "Ġ ]", + "éĤ £", + "no v", + "Ġì Ļ", + "Ñĥ Ñĩ", + "Ġcond ition", + "ëĬĶ ëį°", + "Ġval ues", + "Ġsc en", + "min ist", + "Ġc ast", + "Ġgrow ing", + "Ġus er", + "Ġresp ond", + "l im", + "é r", + "y m", + "çľ ĭ", + "os es", + "sy ch", + "ĠÑĢ аз", + "Ġappe ar", + "Ġpro gress", + "eng th", + "Ġj ak", + "ĠD is", + "Ġpat ients", + "ĠS er", + "Ġg as", + "è re", + "ìĸ´ì ļĶ", + "Ġre ci", + "ìĿ ¸", + "Ġs ca", + "ep end", + "Ñģ к", + "аР¿", + "Ġb atter", + "Ġve h", + "ð Ł", + "Ġac com", + "Ġbe at", + "Ġpain t", + "Ġcont rib", + "Ġs ad", + "Æ °", + "al es", + "Ġt ree", + "b a", + "Ġb orn", + "ic ed", + "à® ķ", + "b and", + "Ġme chan", + "ĠD et", + "Ġcap ital", + "Ġdel iver", + "Ġfe ar", + "ŀ ĺ", + "ĠS outh", + "Ġb ought", + "Ġst ress", + "Ġv or", + "? ?", + "i h", + "ìķ ¼", + "Ġer a", + "ìĿ´ ë", + "а Ñı", + "is ions", + "iv ity", + "Ġhelp ed", + "Ġass ist", + "Ġplay er", + "r an", + "Ġimmedi ately", + "Ġmo ved", + "c ie", + "ê ±", + "Ġann oun", + "å ¿", + "ìŀ IJ", + "Ġprodu ction", + "Ġsum mer", + "Ġt un", + "Ġprogram s", + "G H", + "al ing", + "ir a", + "el ess", + ". )", + "Ġa verage", + "è¦ ģ", + "Ġgl ass", + "om an", + "if ically", + "Ġëĭ ¤", + "ĠC ong", + "ĠV er", + "Ġtr ick", + "Ġbe gan", + "Ġv ill", + "ê ±°", + "h ow", + "æ Ń", + "Ġt ill", + "Ġ9 0", + "ber t", + "Ġê ¸", + "Ġtemper ature", + "à ²", + "๠Ī", + "Ġgra ph", + "Ġê· ¸", + "Ġr ot", + "Ġmo b", + "A Y", + "a el", + "Ġre pe", + "Ġdev ice", + "Ġ19 9", + "Ġte le", + "Ġke pt", + "p a", + "æ ĸ", + "ver se", + "Ġst ream", + "е Ñĩ", + "ess ion", + "Ġstr ugg", + "z z", + "Ġdeg ree", + "Ġhelp ing", + "Ġsm ell", + "Ġper haps", + "p ro", + "Ġcont ext", + "Ġi k", + "Ġп еÑĢ", + "Ġcal cul", + "éº ¼", + "b ing", + "Ġreal ize", + "l am", + "ĠCh ar", + "y t", + "ĠìĿ ´ì", + "Ġd anger", + "ĠI m", + "a a", + "Ġlo ved", + "Ġpurp ose", + "Ġfinish ed", + "Ġpe ace", + "Ġo t", + "Ġglo bal", + "Ï Ģ", + "Ġab er", + "ĸ Ī", + "Ġcharac ters", + "Ġn ur", + "Ġdam age", + "Ġem er", + "Ġpre c", + "ĠW ir", + "Ġinst it", + "ij ×", + "Ġallow ed", + "b on", + "Ġto d", + "еР³Ð¾", + "Ġj etzt", + "Ġmed ic", + "Ġsmall er", + "ce ed", + "Ġlevel s", + "Ġint ell", + "W e", + "Ġse m", + "Ġcurrent ly", + "Ġmod ern", + "Ġcont ract", + "Ġdetail s", + "ortun ately", + "O S", + "Ġst ates", + "Ġad just", + "ant age", + "e z", + "ĠV ery", + "Ġsc ale", + "Ġre lease", + "Ġf az", + "Ġ ic", + "it ude", + "A C", + "ĠP at", + "id en", + "Ń IJ", + "Ġpre fer", + "olog ical", + "ĠFace book", + "Ġê° Ļ", + "Ġ ..", + "ĠM ake", + "Ġко ÑĤоÑĢ", + "ĠDav id", + "ĠAf ric", + "Ġmod e", + "ĠC ity", + "Ġsh all", + "ĠÑ Ħ", + "im in", + "Ġз а", + "r om", + "u a", + "Ġbe yond", + "Ġdist rib", + "к Ñĥ", + "ĠDo es", + "Ġv ict", + "r ate", + "Ġv ai", + "Ġsuccess ful", + "Ġh ous", + "ah a", + "est s", + "ĠE st", + "Ġdisco ver", + "Ġthere fore", + "ch a", + "Ġc up", + "Ġpop ulation", + "ĠI l", + "s c", + "Ġsp ent", + "re l", + "Ġuse ful", + "Ġt ab", + "æ Ŀ", + "Ġ Å", + "Ġìł ľ", + "Ġcon se", + "Ġqu ant", + "ay a", + "Ġb on", + "åı ¯", + "ĠCh in", + "Ġê² ĥ", + "ound s", + "е ÑĪ", + "ell e", + "Ġ ice", + "2 1", + "Ġk ick", + "ä¸ ĭ", + "Ġstep s", + "Ġton ight", + "нÑĭ й", + "ren ch", + ". '", + "Ġgra b", + "Ġimp lement", + "ĠìĪ ĺ", + "Ġmiss ion", + "Ġclear ly", + "Ġappreci ate", + "è Ģ", + "Ġf resh", + "ar m", + "ĠTw o", + "Ġex ec", + "Ġproject s", + "Ġcommun ities", + "ri ble", + "Ġreg ion", + "Ġfre qu", + "ro y", + "Ġhow ever", + "Ġpart ners", + "an c", + "Ġmin im", + "Ġl at", + "Ġfamil ies", + "Ġev idence", + "Ġp un", + "ra ft", + "Ġl oss", + "Ġma p", + "Ġany body", + "Ġchang ing", + "Ġr ules", + "Ġorgan ization", + "Ġess entially", + "ĠR ed", + "Ġele ment", + "æ Ĺ", + "Ġv irt", + "r at", + "Ġpr int", + "and er", + "are n", + "em os", + "ο Ïħ", + "Ġcond itions", + "ab e", + "Ġd ance", + "и ÑĢ", + "Ġd os", + "о Ñĩ", + "ĠQ ue", + "Ġwalk ing", + "Ġt ro", + "Ġ id", + "Ġadd itional", + "Ġfull y", + "Ġf ans", + "Ġadd ition", + "Ġlik ed", + "Ġü ber", + "Ġb ow", + "d i", + "Ġm aster", + "o ff", + ") :", + "m ber", + "Ġë ¬", + "å ¯", + "åĪ °", + "la use", + "Ġo der", + "Ġsaf ety", + "Ġre act", + "à® ¿", + "b t", + "Ġdis app", + "Ġgirl s", + "S t", + "ĠA ng", + "Ġfa ith", + "Ġturn s", + "Ġt ight", + "Ġm outh", + "am i", + "z er", + "Ġwe ap", + "Ġб Ñĥд", + "Ġhosp ital", + "ra id", + "Ġmic ro", + "ĠSt ate", + "ĠM ost", + "ag n", + "Ġdec ide", + "Ġpat ient", + "Ġcor ner", + "Ġdi ed", + "N o", + "ĠSt ud", + "re nd", + "em pt", + "Ġli e", + "Ġl if", + "ĠBe fore", + "t ó", + "ĠSu per", + "Ġbe ll", + "6 0", + "Ġpriv ate", + "ĠPa ul", + "Ġg ib", + "Ġag re", + "´ì Ħľ", + "Ġs ig", + "Ġinvest ig", + "Ñı ÑĤ", + "en ing", + "Ġdist ance", + "Ġwar m", + "Ġdig ital", + "å¾ Ī", + "in er", + "Ġp and", + "ĠCO VID", + "Ð ³Ð¾", + "g n", + "Ġr ace", + "Ġpr oud", + "Ġte aching", + "Ġ ÑĤо", + "ìŀ ¥", + "ĠAll ah", + "I n", + "Ġw ood", + "Ġcol ors", + "Ġw ird", + "u j", + "id ad", + "Ġcustom ers", + "Ġconnect ed", + "Ġlay er", + "Ġachie ve", + "Ġperspect ive", + "ĠC oll", + "Ù Ĥ", + "Ġcl oud", + "!! !", + "Ġend ed", + "łĩ ê²Į", + "Ġmanage ment", + "Ġr ich", + "Ġsub st", + "Ġrem o", + "Ġser ve", + "Ġres ist", + "Ġthought s", + "Ġgrow th", + "ili ar", + "Ġright s", + "Ġchar ge", + "Ġcons ist", + "Ġwer den", + "Ġem b", + "and om", + "Ġhur t", + "Ġk an", + "i as", + "л о", + "Ġsh it", + "Ġbe g", + "Ġrece ived", + "it ation", + "Ġme at", + "Ġis so", + "ff ee", + "Ġfam ous", + "Ġcomfort able", + "I L", + "ĠB ye", + "èª ª", + "åĢ ij", + "oth es", + "Ġmed ical", + "Ġenjoy ed", + "Ġhealth y", + "Ġw y", + "c ies", + "Ġeff ort", + "Ġdo ctor", + "Ġmil itary", + "L AU", + "Ġg ro", + "Ġb attle", + "Ġf ed", + "Ġcap ac", + "Ġaf raid", + "iv il", + "ĠвÑģ е", + "Ġl ength", + "ys is", + "Ġbe i", + "¤ í", + "Ġorgan iz", + "or g", + "in c", + "Ġinter act", + "ĠChin ese", + "Ġacc ording", + "Ġincred ible", + "Ġkill ed", + "Ġda ughter", + "ĠÏ Ģ", + "Ñĭ в", + "Ġschool s", + "Ġ «", + "ll er", + "Ġshould n", + "n al", + "Ġcr is", + "Ġch icken", + "Ġf aster", + "Ġextrem ely", + "Ġopp os", + "Ġn ous", + "Ġ +", + "ri a", + "Ġfinan cial", + "Ġexc iting", + "Ġjour ney", + "×Ļ× Ŀ", + "ł ë", + "Ġdis play", + "Ġmem ory", + "Ġheav y", + "н е", + "Ġpass ed", + "ÑĢ и", + "il es", + "Ġp sych", + "Ġspec ifically", + "Ġeng age", + "Ġl ed", + "or ge", + "ĠD em", + "ord er", + "Ġ8 0", + "Ġcre am", + "ester day", + "Ġed ge", + "Ġп ол", + "Ġbu ll", + "Ġind ic", + "Ġk tó", + "Ġhope fully", + "um ents", + "ag en", + "н ого", + "Ġh ate", + "ch t", + "8 0", + "Ġeff ic", + "Ġì§ Ģ", + "Ġintern et", + "Ġbud get", + "Ġproper ty", + "id ay", + "Ġì ļ", + "Ġм ож", + "ol a", + "Ġshow ed", + "ĠM on", + "Ġthous and", + "A P", + "Ġpo or", + "us ed", + "ĠJ ack", + "Ġs Ã¥", + "ĥ ½", + "Ġes c", + "Ġsoft ware", + "Ġqu ar", + "ĠØ ¨", + "Ġnecess arily", + "om en", + "i y", + "Ġevent ually", + "ish ed", + "Ġbr ight", + "E D", + "Ġs pl", + "Ġdem and", + "Ġth reat", + "Ġs ir", + "Ġrele ased", + "ck et", + "ĠâĢ «", + "Ġrequ ired", + "Ġv ote", + "ì ¹", + "à® ¤", + "Ġdevelop ed", + "ĠìĤ ¬", + "at ory", + "Ġd ir", + "ca pe", + "Ġslight ly", + "à ¬", + "๠ī", + "re et", + "Ġdise ase", + "Ġcour t", + "Ġitem s", + "ĠEar th", + "ÑģÑĤ и", + "ж е", + "ì ²", + "Ġchalleng es", + "ĠBr it", + "Ġdesign ed", + "1 2", + "Ġhear ing", + "Ġlisten ing", + "z o", + "ĠÑģ л", + "ãģ§ ãģĻ", + "Ġper o", + "Ġwe aring", + "pl ic", + "Ġch em", + "Ġbal ance", + "Ġb a", + "Ġrece ive", + "im a", + "Ġsignific ant", + "Ġм Ñĭ", + "an ch", + "ĠC r", + "ĠC oun", + "ê¸ Ī", + "Ġjo bs", + "Ġoffic ial", + "Ġper m", + "om s", + "Ġopportun ities", + "Ġover all", + "Ġh us", + "od es", + "Ġn ation", + "ĠR eg", + "Ġor d", + "Ġrest aur", + "Ġì Ĩ", + "Ġm el", + "v in", + "Ġw enn", + "Ġk ön", + "æ ĥ", + "Ġopin ion", + "ãĤ Ĥ", + "è ¬", + "ĠSomet imes", + "ç Ĥ", + "Ñī е", + "as c", + "O U", + "Ġ20 20", + "Ġdel icious", + "ig er", + "Ġìķ Ī", + "o le", + "Ġhand le", + "Ġc it", + "Ġíķ ľ", + "Ġf ör", + "o oth", + "Ġnecess ary", + "Ġind epend", + "æ Ħ", + "ist en", + "h am", + "Ġé t", + "ãĥ ³", + "Ġmult i", + "Ï Į", + "? )", + "Ġcamp us", + "Ġtop ic", + "Ġr ain", + "Ġpan el", + "ĠS am", + "Ġlar ger", + "aud ience", + "Ġpa id", + "Ġeconom ic", + "ol t", + "Ġstre et", + "ĠC ont", + "Ġdri ving", + "Ġìł Ģ", + "Ġh ay", + "Ġprofess ional", + "ĠIn tern", + "å ¸", + "Ġin put", + "Ġc ateg", + "Ġc ro", + "Ġ ll", + "E T", + "Ñĭ й", + "* *", + "ĠZ e", + "B LE", + "Ġì ¤", + "re es", + "ĠÐ ¯", + "ed e", + "ier t", + "Ġfo ld", + "Ġd ur", + "ĠN ational", + "Ġìĸ ´ë", + "an ced", + "Ġfa ire", + "ut ed", + "Ġk ing", + "Ġw ild", + "o i", + "up beat", + "Ġpre vent", + "i us", + "Ġà ¨", + "Ġw ide", + "Ġr ing", + "Ġtit le", + "Ġstand ing", + "Ġal though", + "Ġh i", + "Ġsa uce", + "Ġs ides", + "Ġanim als", + "il ing", + "at ives", + "ìĹIJ ìĦľ", + "ĠO ver", + "Ġdes p", + "Ġconsider ed", + "ar ies", + "i ers", + "Ġein en", + "Ġs ister", + "Ġë ķ", + "ĠS ure", + "ãĤ ĭ", + "ri end", + "a ign", + "Ġsh own", + "Ġs ac", + "Ġs ont", + "Ġcent ury", + "Ġt ien", + "ĠÎ º", + "ĠS T", + "åķ Ĭ", + "Ġold er", + "ie m", + "Ġtr uly", + "ĠS i", + "Ġwind ow", + "iqu es", + "ar io", + "æ² Ĵ", + "Ġloc ation", + "Î º", + "Ġì ľ", + "v i", + "ag ue", + "ĠS orry", + "Ġdis p", + "Ġhe ll", + "Ġà ī", + "Ġtr ade", + "Ġcrit ical", + "Ġê ±", + "Ġn amed", + "Ġprep ared", + "ĠH ouse", + "al u", + "Ġt ough", + "Ġtri p", + "Ġs and", + "c el", + "ü z", + "ĠP ut", + "Ġap art", + "is f", + "v is", + "Ġli br", + "a ven", + "Ġv ie", + "Ġeffect ive", + "ภ²", + "Ġmag n", + "Ġmuit o", + "Ġê µ", + "h al", + "Ġlim it", + "Ġn ine", + "Ġwill ing", + "ı ÅŁ", + "s p", + "еР³", + "h i", + "Ġal t", + "ĠJ an", + "Ġorig in", + "ĠU s", + "Ġele ments", + "Ġus es", + "Ġhelp ful", + "Ġfl at", + "Ġfam iliar", + "ĠP ark", + "Ġc ore", + "Ġclos er", + "Ġact ive", + "Ġad minist", + "C E", + "нÑĭ е", + "ç Ħ", + "Ġrel ative", + "Ġment al", + "Ġr andom", + "Ġpart ner", + "Ġut il", + "ph one", + "Ġr ule", + "w w", + "Ġìł ķ", + "Ġsch on", + "Ġco ffee", + "H A", + "Ġconnect ion", + "Ġun it", + "la ughing", + "l og", + "Ġapp l", + "л а", + "us ic", + "ĠB ra", + "Ġany where", + "AU DI", + "Ġsepar ate", + "bo x", + "Ġd ivid", + "Ġtest ing", + "Ġs ick", + "Ġwer en", + "ä» ĸ", + "Ġ׾ ×", + "Ġadv antage", + "Ġtrans fer", + "' .", + "Ġë ¹", + "Ġfind ing", + "н ой", + "Ġì¢ ĭ", + "Ġfor t", + "Ġeconom y", + "Ġl ack", + "Ġleav ing", + "Ġd im", + "å İ", + "ĠR es", + "Ø Ń", + "Ġdiscuss ion", + "еР¿", + "Ġg es", + "du ct", + "Ġch ain", + "Ġus ers", + "e ch", + "ÅĤ a", + "Ġdis h", + "Ġcare ful", + "Ġte acher", + "Ġopt im", + "Ġfl u", + "at ically", + "Ġref lect", + "Ġtreat ment", + "e ed", + "i ÄĻ", + "à ¹", + "à® ¾", + "Ġequ ip", + "Ġplan ning", + "Ġsol ve", + "ãģ Ŀ", + "ĠT om", + "Ġavo id", + "Ġp ou", + "Ġgreat er", + "l in", + "O L", + "ĠL u", + "ĠM ore", + "Ġatt ract", + "ê n", + "un a", + "Ġphot o", + "er ation", + "Ġplan et", + "Ġcop y", + "Ġvis ual", + "ir ing", + "Ġintern ational", + "Ġla ughing", + "Ġth ick", + "Ġhold ing", + "Ġbring ing", + "Ġlet ter", + "Ġb urn", + "Ġeffect s", + "it é", + "our s", + "O T", + "ê me", + "ĠSch ool", + "×ķ× ª", + "rop ri", + "l ig", + "α ι", + "Ġad ult", + "Ġsu gar", + "Ġr ide", + "Ġhigh light", + "Ġno body", + "Ġ2 1", + "Ġch at", + "ĠпÑĢ и", + "Ġin nov", + "ung en", + "Ġatt ach", + "ed om", + "å Ĭ", + "y l", + "Ġleg al", + "Ġr ice", + "Ġcoll abor", + "k ing", + "d own", + "æ Ļ", + "ãĤ Ĭ", + "Ġi h", + "ĠA c", + "ous ly", + "Ġr ap", + "Ġsol id", + "Ġgener ally", + "Ġpatter n", + "al i", + "ภŃ", + "Ġtrans l", + "in ter", + "a ult", + "Ġë ¨", + "Ġexp ress", + "Ġexam ples", + "Ġch ose", + "Ġtell s", + "ÃŃ s", + "ain t", + "ĠT ell", + "ĠMich ael", + "æ ¨", + "ĠN umber", + "Ġt ap", + "Ġexper iment", + "Ġbenef it", + "Ġì °", + "Ġse qu", + "Ġexp ensive", + "Ġgener ation", + "ĠM any", + "Ġadd ing", + "Ġk il", + "Ġcamp aign", + "ĠA nt", + "ra w", + "omm en", + "Ġs oul", + "j o", + "ĠAct ually", + "am m", + "ê² ł", + "Ġma xim", + "Ġsal t", + "Ġc ru", + "Ġcall ing", + "ãģ Į", + "Ġbas is", + "b an", + "Ġkeep ing", + "ĠM or", + "ed s", + "ì Ĩ", + "Ġto do", + "ам и", + "н Ñı", + "Ġli ved", + "ĠD u", + "ãĤ ī", + "å® ¶", + "for ce", + "å¹ ´", + "fer ence", + "al a", + "Ġocc ur", + "s k", + "Ġrec ent", + "Ġc ars", + "Ġtrad itional", + "ent le", + "² Ī", + "Ġhel d", + "Ġn ach", + "ĠCent er", + "er en", + "Ġb in", + "Ù ģ", + "Ġcomm e", + "Ġre ve", + "Ġìĺ ¤", + "Ġexpect ed", + "ab il", + "Ġfocus ed", + "o v", + "Ġi P", + "or ial", + "i ro", + "Ġet c", + "am ing", + "ĠS on", + "Ġy esterday", + "Ġstr ate", + "ĠÑ Ĩ", + "Ġë ı", + "p es", + "Ġactiv ity", + "Ġadv ice", + "Ġopen ing", + "f in", + "Ġre la", + "é ĸ", + "Ġinst ance", + "ĠEvery one", + "b l", + "p en", + "Ġvis ion", + "ĠA lex", + "if orn", + "Ġt ick", + "H e", + "Ġstrate gy", + "Ġk om", + "P E", + "ĠG l", + "Ġelect ric", + "1 5", + "Ġda ily", + "Ġhus band", + "Ġst ation", + "Ġanal ysis", + "yn am", + "Ġatt empt", + "Ġbill ion", + "v ant", + "Ġfor th", + "Ġm ath", + "al y", + "Ġbehav ior", + "ĠM as", + "k an", + "ĠD ay", + "Ġbl ess", + "Ġg ut", + "ĠH igh", + "o x", + "Ġd ress", + "Ġj ed", + "è ¯", + "å ĸ", + "Ġexperien ces", + "ist a", + "Ġfight ing", + "å ·", + "ĠÑģ к", + "Ġmost ly", + "a use", + "Ġpict ures", + "ен ÑĤ", + "Ġm ad", + "Ġmod els", + "ÑĪ е", + "ĠC ount", + "Å Ħ", + "ÅĤ o", + "ep t", + "O M", + "ĠA N", + "Ġtrou ble", + "4 0", + "Ġb ird", + "ul ate", + "Ġm ur", + "Ġprodu ce", + "Ġmar ried", + "b it", + "Ġthe ory", + "í ĺ", + "Ġlead er", + "ĠL ast", + "A A", + "è µ", + "Ġim ages", + "Ġexp and", + "ĠP or", + "Ġpur ch", + "ĠS an", + "ĠChrist mas", + "ĠAust ral", + "Ġw id", + "ĠM iss", + "Ġknow ing", + "Ġz e", + "s hip", + "k u", + "Ñħ од", + "ĠInst agram", + "ĠInd ia", + "Ġest a", + "ĠCal iforn", + "Ġ7 0", + "Ġdra g", + "Ġbr ush", + "Ġn ames", + "A nd", + "Ġy o", + "ill a", + "Ġsch ed", + "Ġdest roy", + "ye ar", + "Ġv amos", + "Ġ ÙĦ", + "ç a", + "Ġforg ot", + "и е", + "Ġra ise", + "re me", + "íķ ´", + "ĠG ive", + "Ġcont ain", + "ra b", + "Ġg ift", + "ĠÑģ п", + "Ġrequ est", + "Ġsh ut", + "Ġdeg rees", + "Ġbenef its", + "Ñĭ е", + "Ġstud ies", + "Ġend s", + "Ġevery where", + "Ġher o", + "op h", + "er ry", + "Ġmaterial s", + "en ed", + "N A", + "å į", + "Ġmu y", + "Ġwor se", + "ä» Ģ", + "ĠM ad", + "Ġdec isions", + "ion e", + "Ġfore ign", + "la ughter", + "i ber", + "ени Ñı", + "ãħ ĭ", + "Ġreal ized", + "Ġ ign", + "Ġwe ak", + "ĠÎ ¼", + "Ġsca red", + "Ġass um", + "A K", + "ï ¿", + "ï¿ ½", + "Ġcover ed", + "ĠS at", + "Ġо н", + "Ġindividual s", + "Ġcomp ared", + "1 1", + "ĠAd d", + "ic les", + "Ġc ert", + "r ar", + "Ġbr ief", + "Ġactiv ities", + "Ġf ab", + "b ar", + "Ġa st", + "ĠO ther", + "Ġclass es", + "Ġo g", + "Ġmiss ing", + "ãģ ł", + "é Ŀ", + "w ers", + "× ©", + "Ġintrodu ce", + "Ġequ ation", + "ãģ¾ ãģĻ", + "Ġn om", + "Ġpain ting", + "us hing", + "ĠA P", + "Ġencour age", + "Ġsh ip", + "itt ee", + "iver se", + "ot a", + "n am", + "ãĥ »", + "Ġexerc ise", + "ĠÐ Ń", + "Ġn as", + "Ġthous ands", + "ĠCaliforn ia", + "Ġs es", + "Ġr ow", + "ŀ Ī", + "Ġpand emic", + "Ġsk ill", + "b el", + "Ġdire ctor", + "Ġmil k", + "Ġn ut", + "Ġmot ion", + "Ġcl osed", + "è ¨", + "Ġcred it", + "ah r", + "Ġche ese", + "Ġal tern", + "im ately", + "Ġs ust", + "ĠT ra", + "Ġgl ad", + "Ġhigh ly", + "Ġw a", + "Ġredu ce", + "Ġb le", + "ad or", + "in ated", + "ion es", + "ci ent", + "Ġdep ending", + "Ġsh aring", + "Ġca ught", + "ra el", + "Ġme hr", + "Ġpass ion", + "ç Ľ", + "Ġr u", + "Ġfar m", + "T I", + "av es", + "ĠR ob", + "ĠB ro", + "Ġmot iv", + "ret ch", + "ru pt", + "ĠB ig", + "Ġall e", + "Ġet t", + "ub s", + "ĠJapan ese", + "ĠH all", + "и ли", + "AUDI BLE", + "ç ¬", + "Ġcell s", + "ik a", + "el ine", + "il er", + "Ġì £", + "Ġsk y", + "IN AUDIBLE", + "end e", + "ap ter", + "Ġp in", + "Ġg ather", + "h ol", + "le ction", + "Ġsy n", + "Ġpl ug", + "r ound", + "Ġun iversity", + "h ib", + "Ġfant astic", + "k n", + "Ġho le", + "ĠRem ember", + "in ct", + "ak s", + "C H", + "Ġbro ken", + "Ġstr ateg", + "Ġal ive", + "Ġt ank", + "Ġc art", + "r ated", + "r ie", + "ĠSt ep", + "ĠEvery thing", + "Ġb ound", + "Ġso bre", + "Ġcustom er", + "¡ Į", + "ur g", + "ĠB ill", + "L a", + "wh at", + "Ġre action", + "Ġs ession", + "Ġpl ans", + "ĠìĿ´ë łĩê²Į", + "Ġdown load", + "ì Ļ", + "u er", + "Ġc ab", + "Ġinst r", + "if ying", + "ĠN ice", + "Ġteam s", + "ı l", + "Ġgo als", + "is ch", + "Ġtrans port", + "Ġanim al", + "Ġcost s", + "Ġcall s", + "Ġse hr", + "ì Ī", + "ri an", + "Ġd ial", + "Ġwe ather", + "๠Ģ", + "Ġв оÑĤ", + "ĠPl ay", + "Ġsh ared", + "Ġsm ooth", + "ab a", + "Ġleav es", + "à® ©", + "Ġconc ent", + "Ġsh ift", + "ĠëIJ ĺ", + "ĠGo vern", + "Ġdem onst", + "Ġbut ter", + "ĠìĹ ¬", + "Ġsat isf", + "Īë ¬", + "Ġrecogn ize", + "ĠF rench", + "Ġvol ume", + "ä nd", + "Ñĥ м", + "Ġì§ Ħ", + "ĠKe ep", + "ow a", + "ipp ed", + "ÑģÑĤ ÑĢ", + "Ġdet ect", + "ĠÏ ĥ", + "Ġl ift", + "Ġcl othes", + "ĠSt op", + "à µ", + "m et", + "Ġcl in", + "Ġar r", + "f riend", + "Ġst uck", + "Y e", + "h and", + "um a", + "Ġsc ri", + "Ġfuck ing", + "ct ors", + "× ª", + "Ġjo ining", + "Ġc ette", + "ĠØ £", + "ĠWh ite", + "Ġi hr", + "Î Ń", + "ãģ Ń", + "Ġinclud ed", + "ess o", + "Ġac ad", + "b um", + "Ġs ab", + "Ġд лÑı", + "è¿ Ļ", + "uf act", + "ĠRep ublic", + "r im", + "Ġye llow", + "Ġlim ited", + "T ER", + "ĠT y", + "Ġnot es", + "v est", + "и з", + "al ed", + "Ġph ase", + "and a", + "ĠM om", + "R I", + "Ġim mer", + "m al", + "Ġin j", + "Ġy ang", + "ud ible", + "аР³", + "Ġset t", + "Ġmag ic", + "Ġens ure", + "Ġsp ring", + "Ġsh ock", + "Ġwhe el", + "ог да", + "ãĤ Ī", + "Ġcan cer", + "Ġro ot", + "Ð IJ", + "gen cy", + "Ġë į", + "i i", + "Ġout put", + "Ġcomm it", + "Ġwork ers", + "ìķĦ ìļĶ", + "ĠÑģ ам", + "ve y", + "Ġpe u", + "Ġc ivil", + "is c", + "Ġbr ings", + "ÑĢ ав", + "an ia", + "Ä ģ", + "c raft", + "mb ol", + "Ġintell ig", + "b i", + "ac ing", + "y ou", + "Ġbecom ing", + "ĠD er", + "em a", + "å°± æĺ¯", + "Ġing red", + "Ġcomm and", + "Ġupd ate", + "Ġpre m", + "Ġopen ed", + "Ħ ¤", + "ени е", + "Ġg ard", + "Ġstat ement", + "Ġsc rew", + "Ġpr ote", + "Ġc ards", + "Ġt ask", + "Ġeven ing", + "Ġst itch", + "in en", + "ĠB er", + "m ark", + "ĠD ad", + "Ġе ÑģÑĤÑĮ", + "Ġ× ŀ×", + "ìĹ Ī", + "Ġb an", + "Ġcl im", + "Ġfre edom", + "Ġnorm ally", + "еÑģ ÑĮ", + "å ¦", + "Ġprov ided", + "Ġìŀ IJ", + "ĠìķĦ ëĭĪ", + "ĠK im", + "ied er", + "ìĿ Į", + "Ġcit iz", + "Ġb ike", + "Ġb ak", + "Ġno ise", + "Ġcl imate", + "iz es", + "å¾ Į", + "Ġincre asing", + "ĠTH E", + "Ġli qu", + "Ġperson ally", + "e f", + "res p", + "Ġleg s", + "ind er", + "Ġp ed", + "Ġë§ İ", + "Ġdep end", + "Ġvar iety", + "ĠIs rael", + "Ġwas h", + "å Ĩ", + "Ġqu iet", + "ĠJ ames", + "ĠJ ew", + "Ġfore ver", + "ĠI nt", + "Ġcoun ter", + "ur ance", + "ĠAny way", + "ca re", + "ĠOn ly", + "ci ón", + "ad i", + "ĠE v", + "ëĭĪ ê¹Į", + "ĠÎ ±", + "Ġslow ly", + "Ġо д", + "Ġnot iced", + "ier en", + "Ġfe ll", + "ĠÐ ij", + "Ġm ême", + "Ġwhen ever", + "! )", + "ĠH y", + "å ¼", + "ord s", + "us ion", + "ĠSt ar", + "Ġí ĺ", + "ĠM ac", + "ä¸ Ĭ", + "i ven", + "Ġìĭ ľ", + "ĠìĹ Ĩ", + "ĠT ur", + "Ġg er", + "r is", + "Ġve z", + "Ġл Ñİ", + "Ġvers us", + "ا Ø", + "ocol ate", + "Ġplan e", + "Ġz o", + "Ġsu it", + "Th is", + "Ġn erv", + "ĠA cc", + "Ñĥ ж", + "ìĤ ¬", + "n h", + "em e", + "Ġa uss", + "Ġme as", + "Ġtr ès", + "Ï ī", + "Ñģ ли", + "ĠAr t", + "ĠSec ond", + "олÑĮ ко", + "ch o", + "it ect", + "е ÑģÑĤ", + "Ġb oss", + "Ġinc ome", + "ł ¤", + "Ġsh ad", + "Ġapp ropri", + "ĠM al", + "op t", + "Ġart ist", + "Ġplay s", + "oth ers", + "ĠIn ter", + "Ġvir us", + "Ġh ung", + "Ġconst ant", + "Ġscri pt", + "Ġsn ow", + "ul f", + "k et", + "Ġdev ices", + "Ġmet al", + "ight s", + "ìĦ ¸", + "Ġsal es", + "Ġve get", + "Ġcollect ion", + "Ġv ia", + "k er", + "Ġgot ten", + "O W", + "i én", + "Ġacc ur", + "Ġw ave", + "ult y", + "ĠA ir", + "Ġlead ing", + "ic ing", + "Ġcent ral", + "ĠChrist ian", + "f r", + "ĠAl though", + "Ġsong s", + "Ġf if", + "нÑĭ Ñħ", + "Ġbel ong", + "oss ible", + "ì °", + "Ġphot os", + "is l", + "Ġrela x", + "s a", + "US IC", + "ê ·", + "Ġman ufact", + "ĠTw itter", + "Ġdanger ous", + "Ġhy d", + "le ar", + "i ant", + "ĠâĢ ¦", + "Ġsudden ly", + "Ġla ugh", + "Ġang le", + "ĠG ot", + "Ġwor ried", + "о е", + "Ġp ap", + "ĠM art", + "en o", + "Ġbatter y", + "Ġп оÑģ", + "Ġlight s", + "Ġar ms", + "ĠA bs", + "m es", + "âĢ ĵ", + "use um", + "Ġte a", + "ĠM ic", + "Ġfor mer", + "ograph y", + "Ġapplic ations", + "ĠD ire", + "çĦ ¶", + "Ġfeed back", + "itch en", + "yor um", + "u ed", + "ig t", + "Æ° á»", + "os ition", + "ĠD el", + "Ġíķ ĺë", + "ĠB ack", + "ad s", + "Ġpr ime", + "ì£ ¼", + "ì£ ł", + "× ij", + "Ġm ut", + "] .", + "ĠÐ Ĺ", + "lo c", + "k in", + "Ġexper t", + "Ġal right", + "ung s", + "Ġsupp ly", + "Ġleaders hip", + "ĠF ra", + "Ġtyp ically", + "Ġs el", + "Ġtre es", + "Ġ2 2", + "h ar", + "Ġwor st", + "Ġbus y", + "ant o", + "ĠU p", + "ĠB as", + "Ġpresent ation", + "Ġstr ange", + "Ġth in", + "ÑĤ е", + "Ġveh icle", + "Ġд о", + "cell ent", + "7 0", + "Ġt ired", + "Ġcris is", + "Ġt iny", + "as y", + "Ġr an", + "é ĩ", + "Ġfor ces", + "Ġо Ñĩ", + "Ġident ify", + "Ġass ess", + "иÑĤ е", + "S E", + "Ġcreat ive", + "ç Ł", + "Ġdep artment", + "Ġinit ial", + "æĪij åĢij", + "ĠD am", + "ak t", + "v ere", + "Ġinf ect", + "Ġp ump", + "Ạ¡", + "Ġv iel", + "Ġr are", + "Ġd ot", + "ash ion", + "em pl", + "Ġf lex", + "Ġk on", + "Ġtr uck", + "Ġle ct", + "Ġpl astic", + "la w", + "Ġlik es", + "Ġr ough", + "ĠM AT", + "í ŀĪ", + "Ġcomm er", + "Ġas se", + "Ġc ake", + "Ġact ions", + "Ġad m", + "Ġother wise", + "ĠHe alth", + "Ġcoll e", + "à¹Ģ à¸", + "Ġr ub", + "å¾ Ĺ", + "æ Ķ", + "Ġsc r", + "Ġz um", + "ĠH im", + "Ġch amp", + "Ġconcern ed", + "Ġ5 00", + "Ġpl ate", + "ĠO ut", + "Ġdon c", + "Ġequip ment", + "Ġta ught", + "ll ed", + "Ġí Ļ", + "iv a", + "Ġmot or", + " »", + "Ġgu ide", + "å ī", + "Ġstop ped", + "Ġr at", + "Ġlab or", + "Ġa im", + "Ġprep are", + "ĠÑ Ī", + "Ġshoot ing", + "ann ed", + "cri pt", + "Ġen emy", + "Ġdep ends", + "Ġn av", + "Ġb er", + "Ġland s", + "Ġun ivers", + "i u", + "Ġfact or", + "ok ing", + "Ġcar bon", + "b ut", + "ĠL ove", + "el d", + "ĠÎ µ", + "Ġg a", + "Ġé s", + "Ġbre ad", + "Ġvol t", + "í Ĭ", + "Ġwas te", + "Ġkeep s", + "æī Ģ", + "Ġst or", + "Ġhon or", + "Ġun less", + "Ġcol um", + "Ġë ĮĢ", + "Ġpl ants", + "Ye ah", + "Ġinclud es", + "ä¸ Ń", + "Ġo x", + "Ġpe ut", + "ë§ Į", + "ìĥ ģ", + "ist ry", + "ภ±", + "ĠDep artment", + "ant a", + "Ġfing er", + "Ġst retch", + "Ġsy mbol", + "Ġneigh bor", + "æ ¬", + "ê° Ħ", + "~ ~", + "ĠÑĤ Ñĭ", + "ĠA ber", + "k es", + "Ġmass ive", + "ĠC H", + "ĠS al", + "× ł", + "ãĤ Ĵ", + "Ġd ynam", + "ach e", + "ĠP re", + "Ġmon itor", + "ent ed", + "E O", + "Ġrais ed", + "ist ics", + "Ú ©", + "Ġv ou", + "it en", + "¡ °", + "Ġbusiness es", + "Ġe arn", + "Ġmob ile", + "id ade", + "Ġha be", + "y r", + "l ict", + "Ġcon duct", + "Ġfed eral", + "Ġw o", + "b u", + "Ġn one", + "Ġteach ers", + "ĠاÙĦ Ø", + "éģ ĵ", + "id ents", + "ا ÙĦ", + "Ġtre nd", + "еР¶", + "Ġal bum", + "Ġm ich", + "b ased", + "ภµ", + "Ġtrans ition", + "Ġн о", + "õ es", + "h ost", + "ed y", + "ĠPro f", + "p an", + "ij n", + "Ġcapac ity", + "und o", + "Ġ× ij×", + "Ġbreat h", + "Ġм ен", + "Ġm ü", + "í Ļ", + "ĠA ut", + "hing ton", + "Ġn or", + "Ġg ain", + "po int", + "Y es", + "ĠØ ª", + "ĠN a", + "Ã¥ r", + "Ġi ç", + "ĠM ary", + "Ġsp in", + "Ġant i", + "åIJ §", + "Ġsome how", + "Ġlaw s", + "Ġmom ents", + "Ġg re", + "Ġmo ves", + "ĠW ould", + "Ġpred ict", + "Ġv ra", + "Ġ201 9", + "¶ Ħ", + "Ġfund ament", + "2 5", + "Ġp ure", + "Ġw ow", + "Ġis land", + "Ġinvest ment", + "Ġb ath", + "ĠY a", + "Ġhard er", + "Ġt ips", + "å Ĺ", + "Ġelect ron", + "ĠB ob", + "Ġb ond", + "od ies", + "ĠA ug", + "Ġgib t", + "Ġch air", + "Ġtw ice", + "w ood", + "Ġcl ar", + "Ġmas k", + "Ġhonest ly", + "Ġ201 8", + "t ies", + "' ,", + "Ġp ens", + "Ġsurpr ised", + "Ġcommunic ation", + "ãģ£ ãģ¦", + "Ġsp r", + "Ġwh ose", + "Ġst ars", + "× IJ×", + "ĠâĢ ĭ", + "Ġproper ly", + "Ġg rew", + "os ing", + "Ġdi vers", + "A D", + "Ġem pt", + "Ġexp ression", + "Ạ¿", + "ĠP al", + "ãģ Ĭ", + "Ġjust ice", + "Ġp air", + "w o", + "Ġse at", + "or ter", + "Ġlink s", + "ĠM er", + "Ġre nd", + "но е", + "up id", + "ĠH el", + "ĠM arch", + "ĠL o", + "Ñģ ÑĮ", + "Ġhas n", + "Ġev alu", + "ãģ ı", + "å¤ ©", + "il os", + "Ġfund ing", + "Ġv en", + "u an", + "ĠM aster", + "ĠO l", + "ĠF re", + "Ġy ap", + "ĠS ir", + "s ch", + "Ġmist ake", + "am an", + "Ġdin ner", + "ĠWas hington", + "Ġorganiz ations", + "Ġж е", + "av ing", + "Ġv ÃŃ", + "Ġbirth day", + "Ġbe ar", + "ĠÙ ģ", + "Ġaff ord", + "Ġre ven", + "Ġrelationship s", + "r ough", + "ĠT ime", + "Ġt ag", + "ĠS un", + "u ary", + "ĠP o", + "c ar", + "ab ilities", + "Ġpr ison", + "Ġl ic", + "ìł ķ", + "id den", + "Ġspec ies", + "é »", + "Ġf irm", + "Ġsc ore", + "Ġd it", + "Ġspe ct", + "Ġp el", + "Ġcompl icated", + "æ¨ £", + "Ġr ank", + "Ġoppos ite", + "Ġpick ed", + "Ġк он", + "el er", + "Ġm ig", + "ĠS l", + "ĠN et", + "Ġne ck", + "ĠFr ance", + "Ġtechn ical", + "ภ¡", + "Ġmil es", + "Ġprim ary", + "Ġse in", + "s es", + "Ġla ughs", + "b ra", + "ÅĽ ci", + "ri age", + "Ġn ic", + "et ers", + "Ġà ª", + "olog ies", + "ĠI S", + "r ad", + "ud o", + "ı nd", + "m ar", + "Ġex ch", + "Ġcompet ition", + "Ġauss i", + "ĠS erv", + "Ġre nt", + "Ġch ocolate", + "Ġw ieder", + "Ġnear ly", + "Ġspe ech", + "Ġun c", + "Ġpar am", + "ĠBrit ish", + "Ġrem ain", + "ภģ", + "ur t", + "ĠØ ¹", + "Ġcr ack", + "ail s", + "Ġprom ise", + "Ġpay ing", + "i ÃŁ", + "Ġad apt", + "ал а", + "Ġmov ies", + "Ġw ire", + "Ł ¬", + "æľ ĥ", + "Ġter rible", + "Ġs ó", + "Ġperfect ly", + "åij ¢", + "ord in", + "Ġj á", + "Ġimp ossible", + "ĠTh ree", + "Ġn h", + "Ġtur ning", + "r um", + "ĠB el", + "ig g", + "Ġrespons ible", + "и й", + "Ġincred ibly", + "w i", + "ian o", + "Ġhum ans", + "Ġà ĩ", + "Ġsetting s", + "Ġj oy", + "o ot", + "Ġdeal ing", + "ill ed", + "Ġsur round", + "Ġfollow ed", + "Ġposs ibly", + "Ġinit i", + "st en", + "Ġpr os", + "Ġcand id", + "Ġass ign", + "Ġviol ence", + "W ell", + "Ġr ise", + "P S", + "Ġtamb ém", + "Ġë ĵ¤", + "i ance", + "y an", + "Ġaud io", + "ĠB et", + "ĠAmeric ans", + "ĠAs s", + "is chen", + "ìŀ ħ", + "Ġult imately", + "Ġpol ic", + "Ġmajor ity", + "éĢĻ åĢĭ", + "ĠFin ally", + "er ap", + "Ġgu ard", + "ĠMAT T", + "Ġbr own", + "м и", + "Ġch a", + "ĠHo ly", + "Ġnerv ous", + "ipp ing", + "ÄĻ d", + "ĠS a", + "ĵ ľë", + "¶ Ģ", + "l ie", + "çľ Ł", + "Ġn uc", + "ĠA pr", + "é Ľ", + "ĠKore a", + "eg o", + "ĠCan ada", + "Ġkön nen", + "Ġcomp ar", + "Ġg anz", + "ĠM ais", + "Ġthem e", + "Ġk i", + "Ġdraw ing", + "az on", + "ĠO ff", + "t t", + "ĠW ind", + "Ġtod os", + "Ġob vious", + "на Ñı", + "I M", + "ĠÐ ł", + "we ll", + "Ġbl ow", + "Ġho ok", + "Ġcir cle", + "Ġë³ ´", + "Ġarch itect", + "ĠK r", + "Ġc ó", + "Ġprotect ion", + "eg a", + "å ĩ", + "Ġwatch ed", + "Ġans wers", + "Ġdi et", + "iv o", + "Ġpow der", + "Ġyour s", + "Ġhigh est", + "çĤ º", + "F F", + "å º", + "Ġbo ys", + "ö yle", + "Ġl unch", + "è¬ Ŀ", + "ĠI I", + "Ġset s", + "Ġmo le", + "Û ģ", + "Ġwin ter", + "Ġluck y", + "Ġrespons ibility", + "Ġsign al", + "Ġwond ering", + "Ġa x", + "Ġcook ing", + "ов оÑĢ", + "le g", + "Ġп оÑĤ", + "Ġsurpr ise", + "Ġdem ocr", + "Ġlo op", + "Ġj ag", + "Ġcur ious", + "Ġmarket ing", + "Ð Ŀ", + "ar on", + "ĠApp le", + "Ġvirt ual", + "Ġ19 8", + "no on", + "ĠM et", + "оÑģ ÑĤо", + "об Ñĭ", + "it u", + "ĠA w", + "Ġbu ying", + "Ġrestaur ant", + "ĠB ud", + "Ġdou bt", + "Ġgr ant", + "Ġver d", + "Ġc ash", + "Ġfac ulty", + "Th at", + "ĠE in", + "å¤ ļ", + "Ġw ed", + "it ness", + "ĠM ag", + "n el", + "Ġn arr", + "Ġacc ident", + "Ġmed ium", + "em ents", + "Ġcr ow", + "n ight", + "ìĿ ¼", + "ä¹ Ł", + "Ġlibr ary", + "аÑİ ÑĤ", + "Ġtamb ién", + "Ġrefer ence", + "Ġfour th", + "h ouse", + "v ention", + "Ġfill ed", + "ĠC our", + "ib r", + "Ġn g", + "Ġdevelop ing", + "Ġprov ides", + "Ġpo ll", + "Ġtra ffic", + "arent ly", + "à® Ł", + "Ġform s", + "Ġcl ient", + "Ġg entle", + "Ġmus s", + "ĠCong ress", + "ĠInd ian", + "ce an", + "Ġp il", + "Ġc zy", + "st ood", + "ut y", + "Ġn ä", + "Ġsp ending", + "Ġconst ruction", + "ina udible", + "Ġë§ Ī", + "Īë¬ ´", + "Ġìĥ Ŀ", + "om a", + "os en", + "ag o", + "Ġlar gest", + "ãħĭ ãħĭ", + "Ġun iverse", + "b es", + "os a", + "Ġе го", + "Ġd ude", + "ĠM AR", + "Ġind eed", + "ε ι", + "Ġman aged", + "ĠSh ould", + "S o", + "Ġappl ied", + "Ġfair ly", + "ĠD en", + "Ġanal y", + "Ġconst antly", + "Ñģ п", + "H ow", + "ĠS ay", + "en cies", + "ĠP C", + "Ġegg s", + "à® °", + "Ġet h", + "ĠEnt ão", + "in ar", + "i ot", + "Ġc z", + "ĠEurope an", + "ãģ Ī", + "ĠA M", + "Ġc á", + "Ġrad io", + "§ Į", + "Ġh ide", + "ä» Ĭ", + "ĠSt art", + "Ġcl ub", + "ĠH ope", + "Ġeff orts", + "lus ion", + "Ġc ities", + "h one", + "Ġreach ed", + "Ġgu id", + "ro id", + "Ġhar m", + "Ġcut ting", + "Ġb ul", + "1 8", + "i est", + "ĠMe x", + "Ġ iron", + "çŁ ¥", + "Ġafter noon", + "Ġha ll", + "Ġpr zy", + "Ġg osh", + "Ġinflu ence", + "Ġв ид", + "Ġincre ased", + "ĠMin ister", + "Ġdis ci", + "ĠP eter", + "Ġver t", + "Ġmen u", + "Ġse lling", + "ur ally", + "Ġqu ote", + "Ġ ¡", + "Ġcontin ues", + "mp re", + "ĠÅŁ ey", + "it ution", + "Ġна Ñģ", + "c les", + "ĠGerm an", + "c zy", + "ĠÐ £", + "B e", + "Ġk itchen", + "ĠT ry", + "i pe", + "Ġic on", + "ar p", + "Ġprov iding", + "ĠTr ans", + "Ġtechn ique", + "Ġh är", + "Ġinf rast", + "Ġsus p", + "ü ck", + "ic ip", + "ĠÐ ķ", + "Ġc in", + "ìĸ ´ë", + "Ġpr z", + "Ġcompon ent", + "Ġby e", + "ĠB ible", + "iz er", + "C h", + "Ġsol utions", + "Ġaccom pl", + "Ġ201 6", + "I E", + "ĠT a", + "Ġass ume", + "Ġliqu id", + "Ġë¨ ¹", + "Ġquar ter", + "Ġfem ale", + "ĠTh ink", + "Ġstat us", + "it ute", + "Ġco ach", + "Ġre in", + "Ġcomb ination", + "è ·", + "ĠT er", + "Ġobject s", + "Ġdist rict", + "Ġmake up", + "Ġmur der", + "w as", + "f en", + "Ġbow l", + "Ġpub lished", + "Ġsp orts", + "ãģ ¡", + "Ġident ity", + "Ġseem ed", + "Ġact ing", + "л Ñİ", + "ri x", + "Ġup load", + "Ġh ast", + "Ġbo at", + "ĠM od", + "ri o", + "Ġ =", + "Ġcy cle", + "¯ ¸", + "Ġl oud", + "ust ed", + "com ing", + "Ġ201 7", + "Ġon t", + "Ġleg isl", + "Ġst ruct", + "ĠSomet hing", + "Ġconf lict", + "Ġu pper", + "Ġman ager", + "Ġm ort", + "Ġf ra", + "ĠÄ °", + "ĠM ike", + "ĠW ork", + "Ġn ó", + "ph ere", + "ĠìĤ ¬ë", + "ĠL and", + "Ġfil ter", + "Ġprom ot", + "æ °", + "æĻ Ĥ", + "ķ ¼", + "Ġrecord ing", + "× Ŀ", + "Ġassoci ated", + "Ġf uel", + "und er", + "Ġele ction", + "Ġemploy ees", + "ĠCom p", + "ÑĢÑĥ г", + "ĠW o", + "ro l", + "Ġsa ved", + "ĠH on", + "ĠV i", + "åĪ Ĩ", + "ac a", + "p ret", + "Ġw et", + "Ġst upid", + "Ġl ad", + "Ġf est", + "Ġw ake", + "Ġи н", + "Ġgreat est", + "ĠJ im", + "Ġserious ly", + "Ġì ¹", + "Ġfeel ings", + "Ġ3 00", + "i ation", + "Ġbeaut y", + "Ġìŀ ĺ", + "Ġs an", + "ĵ ł", + "Ġ- (", + "Ġcons cious", + "Ġд ел", + "b ye", + "ç Ļ", + "M an", + "Ġlet s", + "Ġsho es", + "y d", + "ä¹ Ī", + "Ġdisapp e", + "ĠCount y", + "ĠSc ott", + "Ġbut t", + "Ġaqu ÃŃ", + "Ġconf ig", + "resp ond", + "LAU GH", + "© ëĭĪëĭ¤", + "Ġdivid ed", + "Ġac qu", + "Ġz one", + "Ġk omm", + "a ção", + "ì§ ľ", + "c ut", + "Ġ2 3", + "Ġmaxim um", + "ro g", + "Ġrun s", + "Ġcompon ents", + "Ġarri ved", + "Ġconf ident", + "ÑĢ ов", + "Ġhe ight", + "Ġpro ced", + "E M", + "ĠÐŃ ÑĤо", + "ĠM en", + "Ġtalk s", + "Ġconf idence", + "ĠChr is", + "Ġlead s", + "Ġn ose", + "f all", + "b b", + "ĠNot hing", + "is er", + "Ġindepend ent", + "Ġmin or", + "Ġsy m", + "l en", + "ci ence", + "Ġf ashion", + "Ġsex ual", + "Ġb un", + "h ere", + "Ġso il", + "Ġdies e", + "Ġsh ap", + "Ġempt y", + "Ġjour nal", + "ag on", + "ĠThe ir", + "Ġweek end", + "ÃŃ t", + "Ġer ror", + "Ġn ar", + "à ¸", + "è ©", + "an cy", + "Ġìķ Ĭ", + "Ġfore st", + "Ġha cer", + "Ġmiss ed", + "ãģ ķ", + "åı¯ 以", + "Ġev il", + "Ġstor age", + "Ġsing ing", + "in ha", + "Ġkn ock", + "Ġimp ress", + "ĠоÑĩ енÑĮ", + "ĠGo ld", + "ĠS ur", + "ĠP ort", + "åİ »", + "ĠL ond", + "Ġfaz er", + "ot y", + "ot o", + "Ġan x", + "ĠWill iam", + "Ġexist ing", + "pl ace", + "ĠC D", + "Î ³", + "ĠColl ege", + "l or", + "ĠE ast", + "s en", + "f ach", + "o ft", + "Ġexperien ced", + "Ġlo ves", + "im m", + "Ġpo ly", + "Ġes se", + "ì ¤", + "ĠG rand", + "è §", + "ch er", + "Ġvict im", + "ĠG es", + "л ÑĮ", + "v ision", + "Ġt all", + "Ġl ens", + "Ġз на", + "ĠB oth", + "Ġì ²", + "Ġsust ain", + "Ġarg ument", + "Ġfact ors", + "Ġautom atically", + "Ġfr uit", + "Ġli ber", + "Ġa le", + "ĠP ress", + "ĠB a", + "ĠÐ ³Ð¾", + "Ġhundred s", + "th at", + "ĠR ich", + "Ġreci pe", + "ĠI T", + "è ĩ", + "Ạ¥", + "Ġdescri be", + "Ġdri ver", + "ĠO ct", + "ĠM at", + "д е", + "Ġme al", + "Ġlat est", + "Ġth erap", + "Ġcomp are", + "ĠAm azon", + "Ġì¢ Ģ", + "ĠRuss ia", + "Ġstr ing", + "Ġk a", + "ĠComm un", + "Ġd ia", + "I s", + "Ġmill ions", + "Ġcor por", + "Ġcor respond", + "Ġfix ed", + "ĠJo e", + "Ù İ", + "Ġview s", + "Ġr iver", + "Ġstud io", + "ig ger", + "Ġfl avor", + "Ġpres ence", + "Ġun its", + "Ġsa ving", + "av our", + "Ġp esso", + "or ith", + "Ġh ers", + "ĠN at", + "as ion", + "ĠFr ank", + "о ÑĪ", + "ÅĤ y", + "í Ħ", + "Ġein em", + "Ġfun ctions", + "um an", + "Ġn orth", + "Ġìł Ħ", + "Ġhor se", + "v id", + "Ġple asure", + "а ÑĪ", + "é es", + "ind a", + "Ġt ail", + "Ġexpl ore", + "S T", + "Ġcommer cial", + "ĠD uring", + "ar l", + "] :", + "f it", + "Ġr ates", + "æ ³", + "M USIC", + "Ġhous ing", + "Ġein er", + "Ġsitu ations", + "æ ĭ", + "Ġdec re", + "Ġappropri ate", + "ен но", + "% .", + "Ġb ac", + "Ġw at", + "ens ity", + "ä h", + "kn own", + "it z", + "Ġemot ional", + "erv ation", + "Ġbl ind", + "1 6", + "í ĥ", + "大 家", + "Ġjo ined", + "Ġloc ated", + "ĠÑģ м", + "ad as", + "ber g", + "Ġd ess", + "Ġde ar", + "ed en", + "c os", + "Ġad opt", + "1 00", + "ow e", + "ĠChe ck", + "ism o", + "Ġsim pl", + "Ġang ry", + "Ġмен Ñı", + "ĠC am", + "Ġp ad", + "Ġatt end", + "Ġsam ple", + "æĹ ¥", + "Ġì Ľ", + "ĠI N", + "ul ous", + "ĠS ar", + "ĠSh ow", + "Ġinfrast ructure", + "ĠAug ust", + "Ġless on", + "Ġn iet", + "æ İ", + "Ġfo i", + "Ġbro ke", + "t r", + "ç ķ", + "Ġ4 5", + "Ġg ew", + "Ñĥ п", + "at i", + "Ġmaint ain", + "Ġart ists", + "ing er", + "æĿ ¥", + "er ved", + "I A", + "Ġequ als", + "Ġoper ation", + "ill y", + "ĠëĤ ´", + "Ġcrow d", + "Ġintern al", + "Ġtest s", + "ĠR ock", + "ĠC ons", + "ĠëĦ Ī무", + "w ar", + "Ġs ou", + "Ġch art", + "ĠJ une", + "ĠApr il", + "g ent", + "Ġv ent", + "Ġqu and", + "ĠKore an", + "im o", + "ç ī", + "id ers", + "Ġmount ain", + "ÑģÑĤ ав", + "æľ Ī", + "ij k", + "Ġdiscover ed", + "ĠS und", + "ĠS il", + "Ġso lo", + " ´", + "Ġsch ol", + "ĠE ach", + "ç µ", + "Ġb are", + "Ġí Į", + "ĠvÃŃ de", + "Ġingred ients", + "ĠIt s", + "Ŀ¼ ê³ł", + "Ġì Ĭ", + "Ï į", + "ĠLe e", + "Ġsc ary", + "Ġprinci p", + "Ġspirit ual", + "ì ħ", + "ĠH old", + "æ²Ĵ æľī", + "Ġdef ine", + "ĠL es", + "ĠN or", + "ĠE nd", + "Ġbl og", + "ĠG reen", + "аеÑĤ ÑģÑı", + "p art", + "el es", + "äº ĭ", + "ĠUnd er", + "Ġpart e", + "Ġ3 5", + "Ġse ctor", + "ĠS ept", + "Ġaut h", + "à® ®", + "om in", + "Ġcl ients", + "Ġc i", + "ĠFr iday", + "er as", + "Ġtw e", + "ul ated", + "Ġcult ural", + "ĠÑģв о", + "Ġëį Ķ", + "Ġà º", + "Ġpar ce", + "à® ²", + "Ġtrad ition", + "Ġjud ge", + "ĠGen eral", + "Ġdeterm ine", + "ĠIs n", + "ĠP L", + "ne ath", + "Ġmatter s", + "íķ ´ì", + "! ]", + "а Ñħ", + "Ġpo ol", + "Ġvari able", + "Ġvacc ine", + "Ġcaus ed", + "Ġw est", + "ĠY ep", + "f ast", + "Ġph ilos", + "hor a", + "Ġcontinu ed", + "Ġunf ortunately", + "ãģ į", + "æ ķ", + "Ġfl ight", + "Ġw rap", + "Ġhu h", + "ĠAbs olutely", + "Ġp ink", + "Ġrem ains", + "Ġn é", + "Ġf le", + "ĠS ol", + "Ġlos ing", + "Ġalg orith", + "Ġrequ ires", + "Ġfound ation", + "ĠB ur", + "Ġprofess ion", + "ĠM id", + "Ġë ŃIJ", + "c an", + "ĠM il", + "Ġyoung er", + "Ġappe ars", + "ter m", + "íķĺ ê³ł", + "ac le", + "ĠLond on", + "Ġengine ering", + "ภ¢", + "Ġadv ent", + "ìĦ¸ ìļĶ", + "Ġê¸ °", + "ĠM aj", + "ÑĢ ем", + "ing u", + "ĠU K", + "u ro", + "s pe", + "Ġt ent", + "Ġreport ed", + "ĠA L", + "H ey", + "Ġë§ IJ", + "Ġd ent", + "ĠAustral ia", + "ĠJan uary", + "³ ´", + "ag ues", + "ars h", + "r ig", + "Ġtien e", + "ภ£", + "Î ®", + "Ġmach en", + "un te", + "Ñĥ Ñģ", + "Ġelect r", + "Ġtut orial", + "Ġpl aced", + "ĠìĿ´ ê±°", + "ĠCoun cil", + "í ĸĪ", + "°ë ¦¬", + "ah ren", + "Ġê·¸ë ŀĺ", + "Ġpro ve", + "f ol", + "Ġqu er", + "Ġche ap", + "ĠF ather", + "ĠP ower", + "ĵ ľ", + "Ġpur s", + "Ġes p", + "ĠB re", + "ê¸ °ë", + "om as", + "æĥ ³", + "ил ÑĮ", + "Ġge ht", + "os ter", + "ê³ ¼", + "Ġfil es", + "ĠÐ §", + "be ll", + "Ġwh om", + "Ġë ĺ", + "Ġex cellent", + "Ġdat ab", + "Ġg ö", + "Ġì§Ħ ì§ľ", + "Ġbelie f", + "j et", + "Ġj ack", + "Ġsw im", + "ri al", + "um in", + "a uc", + "Ġso ll", + "Ġess ential", + "íķĺ ëĬĶ", + "Ġev ol", + "cha ft", + "ain e", + "th let", + "Ġinc or", + "Ġreport s", + "Ġdefin ition", + "ke l", + "Ġcirc um", + "Ġprodu ced", + "Ġ× Ľ", + "ant ic", + "n et", + "Ġa ward", + "Ġd urch", + "Ġtrans p", + "Ġm ale", + "¦ ¬ë", + "Ġmo on", + "ĠGe orge", + "Ġfly ing", + "i ó", + "Ġs ources", + "Ġpl enty", + "ĠDem ocr", + "R O", + "Ġ 00", + "Ġsec ure", + "ĠB ir", + "ra in", + "Ġz ur", + "Ġeffic ient", + "Ġrepe at", + "Ġmethod s", + "Ġcal m", + "Ġdiscuss ed", + "ĠìŀĪ ëĬĶ", + "Ġser ver", + "an ie", + "ĠInst ead", + "Ġide al", + "Ġcon ven", + "Ġhop ing", + "ĠT or", + "Ġdep th", + "Ġhe aven", + "EN CE", + "Ġhab it", + "gr ad", + "Ġfl ag", + "Ġin e", + "Ġk h", + "ĠL I", + "Ġfac ing", + "ĠA U", + "ĠT im", + "Ġg em", + "ĠJ ul", + "Ġel a", + "iz za", + "Ġfe llow", + "Ġqu el", + "Ġsp oke", + "Ġcitiz ens", + "u ge", + "é ĥ½", + "Ġp ages", + "Ġf asc", + "Ġrelig ious", + "at en", + "Ġch apter", + "ĠV al", + "Ġcons ult", + "ĠM ill", + "g l", + "op er", + "Ġinf in", + "Ġmar riage", + "Ġmedic ine", + "Ġд в", + "Ġdog s", + "Ġinstr ument", + "ĠEx act", + "á n", + "Ġ20 21", + "Ġf er", + "Ġwe alth", + "Ġgr ade", + "Ñĭ Ñħ", + "Ġcr ime", + "Ġth read", + "Ġess a", + "Ġw ine", + "co hol", + "ph a", + "ภĩ", + "og ue", + "Ġins urance", + "arr ator", + "ĠSept ember", + "Ġv id", + "ĠSp irit", + "Ġg est", + "ĠRuss ian", + "Ġproper ties", + "Ġart icle", + "Ġunder neath", + "y er", + "Ġjo int", + "Ġrelative ly", + "Ġin ch", + "Ġdesp ite", + "ĠG ree", + "Ġclass ic", + "Ġsupport ing", + "Ġinst ruct", + "lus ive", + "Ġdi agn", + "æ Ĭ", + "Ġadminist ration", + "аб оÑĤ", + "ĠO pen", + "æīĢ 以", + "Ġп ок", + "Ġdoll ar", + "Ġconse qu", + "o ber", + "ĠGerm any", + "Ġter r", + "ĠQ U", + "ĠÐ ĵ", + "ç ¾", + "Ġstrong er", + "É Ļ", + "ĠÙ Ĭ", + "ĠiP hone", + "Ġfab ric", + "ü h", + "Ġen em", + "æ ¯", + "Ġsub t", + "E E", + "ond e", + "Ġcre w", + "Ġremo ved", + "Ġl ady", + "Ġpot entially", + "ĠÐĿ о", + "y al", + "Ġsym pt", + "Ġar my", + "Ġintrodu ced", + "t es", + "Ġaspect s", + "1 4", + "ĠL ou", + "Ġ )", + "Ġde ploy", + "p et", + "Ġh an", + "ĠW atch", + "Ġweap ons", + "Ġph en", + "Ġreg ister", + "Ġein fach", + "Ġsp ort", + "Ġbr idge", + "Ġin ner", + "Ġminim um", + "Ġw itness", + "Ġes o", + "Ġvill age", + "Ġown er", + "¦¬ ê³ł", + "Ġsc ream", + "il ed", + "Ġp itch", + "b ru", + "Ġadv ance", + "ä¸į æĺ¯", + "Ġsupp ose", + "ĠAt t", + "еÑĤ ÑģÑı", + "Ġdiffer ences", + "ak ed", + "Ġinter pret", + "à ¦", + "iend o", + "Ġabs ol", + "ĠбÑĥд еÑĤ", + "Ġë ²", + "Ġtri al", + "Ġthink s", + "ly ing", + "cept ion", + "ĠAfric an", + "Ġchem ical", + "Ġta pe", + "Ġconvers ations", + "Ġdistrib ution", + "t i", + "ĠA I", + "Ġfl ash", + "Ġunder stood", + "ĠGovern ment", + "å° ı", + "! ?", + "ĠS k", + "ê± °ë", + "ri er", + "T S", + "ĠAcc ording", + "Ñİ ÑĤ", + "Ġsp ons", + "ÑĤ обÑĭ", + "Ġval u", + "ere m", + "icht ig", + "Ġresist ance", + "ĠG al", + "ger y", + "Ġbeg ins", + "Ġadv anced", + "Ġrele vant", + "Ġpolit ics", + "ĠF am", + "Ġç ok", + "ĠN ever", + "ill ing", + "Ġfoot ball", + "и и", + "ĠI D", + "ĠAfric a", + "Ġfing ers", + "Ġб олÑĮ", + "Ġà ¡", + "Ġcl ip", + "ĠL at", + "ãĤ Ħ", + "Ġì§Ģ ê¸Ī", + "es se", + "Ġvo or", + "Ġas ide", + "æ ŀ", + "Ġto ward", + "Ġb at", + "Ġval id", + "ĠM ens", + "Ġcomplet ed", + "ı ÄŁ", + "Ġpod cast", + "ĠB on", + "Û Ĵ", + "ĠJ uly", + "il a", + "Ġpack age", + "Ġpull ed", + "ch ar", + "ĠM el", + "o is", + "Ġs outh", + "Ġë Ķ", + "Ġimport ance", + "Ġp ushing", + "Ġis ol", + "Ġstand s", + "c ill", + "ä ¼", + "Ġ ðŁ", + "or i", + "ê° ģ", + "Ġhom es", + "Ġconcern s", + "Ġb iz", + "å ½", + "b ie", + "Ġb is", + "Ġge ar", + "ĠM S", + "Ġh un", + "ĠM att", + "Ạ£", + "se y", + "ĠSec ret", + "Ġod d", + "ĠM ax", + "oll y", + "f ord", + "ĠS H", + "Ġrepl ace", + "Ġnav ig", + "Ġin i", + "и Ñı", + "Ġgi ant", + "Ġma nd", + "ĠH app", + "TI ON", + "g un", + "iam o", + "ìŀħ ëĭĪëĭ¤", + "Ġg ap", + "Ġê tre", + "Ġclass room", + "Ġhy p", + "ak i", + "è ®", + "is ters", + "ack s", + "ĠÑģ о", + "Ġb ug", + "Ġgra v", + "am in", + "Ġevery day", + "Ġì ¡°", + "Ġgard en", + "ce mber", + "Ġest o", + "åĹ İ", + "Ø ¬", + "Ł °", + "å ģ", + "Ġr om", + "Ġìłľ ê°Ģ", + "Ġfall ing", + "Ġfa ult", + "ell y", + "Ġch est", + "Ġл и", + "Ġpot ato", + "Ġbuild ings", + "Ġoper ating", + "Ġp are", + "w r", + "D on", + "ĠF our", + "Ġv ul", + "Ġl á", + "Ġfr ust", + "ĠD ann", + "ol es", + "ny a", + "Ġì ¶", + "ĠÑĢ аÑģ", + "× Ľ", + "Ġa ÃŃ", + "w ord", + "Ġweap on", + "Ġob t", + "ĠF all", + "ĠSte ve", + "Ġmix ed", + "Ġp ode", + "ĠA S", + "ĠL eg", + "Ġdes c", + "Ġspl it", + "Ġemer gency", + "ĠS ing", + "Ġprof it", + "Ġtyp ical", + "ĠDon c", + "Ġannoun ce", + "ĠTe x", + "Ġsac r", + "tern al", + "Ġcomm ittee", + "ig o", + "Ġdi am", + "ph as", + "Ġdef e", + "ĠProf ess", + "Ġdec l", + "Ñĥ ÑĢ", + "2 2", + "ol f", + "ĠM ond", + "u y", + "Ġa y", + "Ġl em", + "Ġlove ly", + "ĠC ould", + "Ġgu ar", + "H H", + "Ġcare fully", + "ĠL isten", + "Ġк ÑĢ", + "Ġyou th", + "ĠThere fore", + "Ġdream s", + "ĠJe ff", + "? ]", + "Ġë Ī", + "D A", + "Ġb odies", + "au x", + "Ġtechn iques", + "Ġmechan ism", + "× ĵ", + "Ġо ни", + "Ġdes ire", + "à ®", + "ĠV o", + "qu es", + "ĠÑĥ же", + "ĠWho a", + "ĠG ame", + "Ġh al", + "an ish", + "Ġpract ices", + "5 00", + "Ġsort s", + "up s", + "ate ful", + "Ġhers elf", + "Ġgu itar", + "Ġprop os", + "Ġsit es", + "Ġbe ach", + "Ġ× ¢", + "ç¬ ¬", + "н Ñĥ", + "Ġdr am", + "ĠNo ve", + "V E", + "r ant", + "Ġpl ot", + "ĠìŬ 기", + "ĠC a", + "Ġestab lished", + "Ġ201 5", + "Ġinsp ired", + "Ġannoun ced", + "ä¸ ª", + "ĠÑĤ ÑĢ", + "Ġ2 6", + "Ġv oy", + "Ġte ch", + "ìł ģ", + "Ġprocess es", + "ont o", + "ĠP an", + "Ġrap id", + "ist an", + "Ġ19 7", + "Ġrelig ion", + "Ġ2 8", + "Ġsm ile", + "Ġb ab", + "Ġ Ú©", + "ĠV ir", + "Ġsched ule", + "Ġexec ut", + "Ġpr on", + "Ñ į", + "ĠÐĿ Ñĥ", + "m usic", + "ìĽ IJ", + "Ġg an", + "ìĭ ł", + "Ġdef ault", + "Ġbe m", + "Ù ī", + "Ġfor ced", + "ĠOb viously", + "Ġst one", + "Ġt ie", + "Ġdrink ing", + "Ġser ved", + "C ause", + "Ġcon ference", + "ĠExact ly", + "ãĥ Ī", + "ł ľ", + "ìĻ Ģ", + "ĠR a", + "Ġf ake", + "Ġdif f", + "ãģ ©", + "Ġchalleng ing", + "Ġì¤ ij", + "Ï ĩ", + "ä»Ģ 麼", + "Ġintellig ence", + "re te", + "Ġstud ying", + "Ġapp oint", + "Ġt an", + "Ġи м", + "Ġcur ve", + "ĠTe am", + "ĠA z", + "Ġз д", + "ĠMus ic", + "f ield", + "ir ation", + "Ġfail ed", + "Ġno vel", + "Ġdifferent ly", + "Ġes cape", + "ĠY o", + "ĠOct ober", + "ı yor", + "Ġdescri bed", + "Ġcon vert", + "ac ement", + "Ġhot el", + "is ation", + "Ġsu is", + "ãģ ij", + "å ŃIJ", + "æĢ İ", + "Ġwalk ed", + "2 00", + "Ġneighbor hood", + "is p", + "ĠL os", + "Ġh idden", + "Ġ2 7", + "л е", + "Ġph r", + "ĠIs land", + "ĠSt reet", + "end a", + "hip s", + "os ure", + "Ġdefin ed", + "ภ§", + "Ġv ida", + "Ġlab el", + "ĠEvery body", + "Ġjo ke", + "ia o", + "ا ÙĨ", + "Ġa thlet", + "... \"", + "ĠF ire", + "D o", + "Ġdef ense", + "Ġent ertain", + "á t", + "Ġpolic ies", + "Ġal cohol", + "ĠEng ine", + "Ġg al", + "ĠJ ud", + "Ġvol unte", + "ick s", + "et a", + "ag t", + "Ġ× ķ", + "Ġm ö", + "1 3", + "Ġenc oun", + "Ġe h", + "Ġor ange", + "Ġabs or", + "Ġsp aces", + "ĠNove mber", + "êµ ¬", + "i at", + "Ġt am", + "ck now", + "Ġst orm", + "ĠDire ctor", + "Ġpre gn", + "ĠìĿ ¼", + "Ġо п", + "Ġres ource", + "Ġb ard", + "ne w", + "ĠDe cember", + "u its", + "Ġwe il", + "Ġconst ruct", + "s i", + "n ic", + "Ġfl our", + "Ġrest rict", + "ü t", + "Ġentire ly", + "Ġbreak ing", + "ent lich", + "Ġtw enty", + "Ġcaus es", + "Ġele v", + "ĠS pr", + "ĠIntern et", + "Ġk iss", + "Ġoper ations", + "s zy", + "Ġë Ĭ", + "Ġscient ists", + "Ġgr own", + "Ġown ers", + "out s", + "Ġcour ses", + "Ġus ual", + "Ġin n", + "Ġtrans m", + "ñ o", + "Ġnu est", + "к ов", + "Ġcateg ory", + "ĠL ife", + "ĠPl us", + "Ġat mos", + "wh ile", + "Ġrecord s", + "Ġde ÄŁ", + "ëĭ¤ ê³ł", + "ĠìĤ¬ë ŀ", + "Ġrequire ments", + "in n", + "Ġimm ig", + "Ġdeep er", + "ç ´", + "Ġapp s", + "Ġcolle agues", + "ż y", + "Ġoff ers", + "Ġt á", + "Ġcolum n", + "la ud", + "I R", + "ĠM s", + "Ġexch ange", + "l as", + "ĠL aw", + "ĠJ on", + "is se", + "ro gen", + "Ġmo i", + "× Ĺ", + "Ġs ending", + "Ġhe llo", + "е е", + "ÅĽ Äĩ", + "Ġsuc ceed", + "Ġsuff ering", + "Ġad vert", + "Ġì£ ¼", + "çŁ¥ éģĵ", + "Ġrec o", + "ın ı", + "Ġк ом", + "all ey", + "Ġfail ure", + "ie j", + "Ġëķ Į", + "Ġdrug s", + "Ġcu ando", + "Ġìĸ´ë ĸ", + "ĠAb out", + "Ġqu ando", + "9 0", + "ĠF ed", + "1 7", + "S h", + "in ho", + "ĠSund ay", + "ĠPh il", + "Ġacad emic", + "ĠIn c", + "Ġmaint en", + "åĩ º", + "Ġre ward", + "er d", + "Ġcomm itted", + "ìĬ ¤", + "г ÑĢ", + "Ġstand ards", + "Ġk al", + "Ġint ention", + "ĠZ h", + "Ġa cknow", + "ä ¿", + "Ġ== =", + "og y", + "å §", + "Ġfilm s", + "is k", + "Ġte eth", + "Ġstrugg le", + "r d", + "u en", + "Ġdis s", + "ĠD ar", + "am y", + "Ġenem ies", + "Ġve loc", + "ĠC all", + "um bs", + "иÑĤ елÑĮ", + "Ġo cean", + "é d", + "ìļ °", + "Ġtre m", + "ient o", + "еÑĪ ÑĮ", + "ffic ient", + "Ġbott le", + "Ġinstit ution", + "est y", + "ĠH an", + "h ab", + "ëĬ ĺ", + "Ġar rest", + "éĤ Ħ", + "Ġlet ters", + "oun ce", + "í Į", + "A n", + "Ġcreat es", + "Ġcl ock", + "Ġdeb t", + "Ġan cient", + "ific ations", + "g i", + "B ut", + "ĠT u", + "k l", + "Ġb order", + "Ġo ok", + "ĠB ay", + "est a", + "Ġë³ ´ì", + "Ġw ra", + "pre ne", + "Ġê² Į", + "ang le", + "Ġbelie ved", + "ien cy", + "ak a", + "Ġcrit ic", + "Ġb omb", + "Ġha m", + "ĠÐ Ľ", + "êµ Ń", + "ĠGu ys", + "ros oft", + "Ġcr im", + "et ch", + "AR R", + "Ġs ight", + "и на", + "Ġa in", + "á» ij", + "is che", + "Ġau x", + "Ġnum er", + "Ġsurv ive", + "A ll", + "B C", + "Ġs z", + "Ł ¬ë", + "Ġj am", + "ĠCour t", + "Ġall es", + "Ġtr igger", + "Ð ŀ", + "Ġform at", + "Ġdec ades", + "Ġc es", + "Ġsign s", + "Ġrob ot", + "ĠCh urch", + "Ġa z", + "Ġs oup", + "ĠTex as", + "ut en", + "ĠÑĩ ÑĤобÑĭ", + "Ġneigh b", + "ĸ ×Ķ", + "Ġcommunic ate", + "Å ¡", + "Ġel imin", + "Ġfrequ ency", + "her n", + "id os", + "Ġem phas", + "Ġmess ages", + "Ġg ender", + "ĠW enn", + "Ġв о", + "Ġpr ices", + "ol o", + "Ġп он", + "w ing", + "ĠF il", + "а ем", + "ĠC ur", + "Ġfal se", + "Ġfield s", + "Ġs é", + "2 4", + "Ġm ac", + "u ÅŁ", + "Ġlay ers", + "Ġadv oc", + "w an", + "Ġk ar", + "ĠÅ ŀ", + "Ġdec or", + "Ġwall s", + "o e", + "iss ions", + "Ġres ol", + "× ¢", + "ĠCar ol", + "ĠV ide", + "le ep", + "ĠY OU", + "Ġfl ip", + "Ġsur gery", + "Ġch op", + "U R", + ". ,", + "Ġag ency", + "Ġwant ing", + "Ġsol ar", + "Ġhor iz", + "ĠAd am", + "Ġstay ing", + "ol ic", + "Ġgr ateful", + "Ġrem ark", + "Ġtechn ologies", + "Ġprote in", + "å¿ ĥ", + "д ел", + "ĠM ont", + "Ġshould er", + "Ġz a", + "re y", + "ĠO oh", + "Ġst y", + "ic ar", + "оÑĤ ÑĢ", + "Ġrout e", + "ĠT urn", + "Ġb om", + "Ġdeb ate", + "Ġposs ibility", + "Ġíķ ´ì", + "ap a", + "Ġinv ent", + "ür lich", + "Ġprof ile", + "Ġsen ior", + "pp y", + "v as", + "Ġm undo", + "ate ver", + "Ġapp arently", + "en er", + "× IJ", + "ç Ń", + "Ġprec is", + "Ġal ign", + "Ġkn ife", + "ĠRo bert", + "å ĭ", + "Ġfo ol", + "Ġinv ite", + "us ing", + "Ġcircum st", + "Ġcapt ure", + "Ġd ough", + "ĠS and", + "Ġse u", + "ĠNew s", + "Ġb ite", + "Ġne ut", + "w ide", + "Ġlect ure", + "Ġëĺ IJ", + "Ġorigin ally", + "Ġcho ices", + "ĠG ar", + "Ġver se", + "Ġl it", + "Ġ19 6", + "íķ ł", + "Ġmeas ures", + "ç ões", + "w ater", + "ri ve", + "Ġz ijn", + "í ģ", + "ĠB us", + "Ġhe b", + "е Ñħ", + "ĠK ar", + "ĠN ão", + "Ġkill ing", + "à® ª", + "Ġmir ror", + "m od", + "Ġm ol", + "Ġcre ation", + "Ġest im", + "Ġatmos phere", + "Ġg am", + "Ġt ables", + "is i", + "ĠL ittle", + "Ġt as", + "ĠE le", + "é l", + "Ġscen es", + "Ġt one", + "Ġaffect ed", + "ĠAU DI", + "ĠBr own", + "I f", + "ĠÙ ĩ", + "ĠDan iel", + "羣 çļĦ", + "qu er", + "ch i", + "íķ ĺë", + "Ġmist akes", + "Ġs la", + "ãĤ ¤", + "Ġent r", + "Ġе Ñģли", + "Ġsh out", + "Ġport ion", + "Ñ Ĺ", + "Ġpre viously", + "á» Ļ", + "ĠпÑĢ ед", + "оÑģ ÑĮ", + "Ġhead s", + "ç İ", + "å Ń", + "åľ ĭ", + "Ġgr ass", + "ภ°", + "cri be", + "Ġqu é", + "ĠSp anish", + "Ġoffer ed", + "ĠбÑĭ ло", + "ĠCl oud", + "Ġve ctor", + "ĠH uh", + "Ġk ad", + "if ts", + "ĠÎ ½", + "Ġhung ry", + "Ð ¡", + "Ġpar all", + "AN D", + "ĠvÃŃde o", + "iz z", + "Ġocc up", + "Ġí Ķ", + "Ġsee k", + "h es", + "Ġdo ors", + "Ġhous es", + "Ġconsider ing", + "Ġgradu ate", + "Ġf ulf", + "è ¡Į", + "è £", + "Ġext reme", + "Ġflow ers", + "it ate", + "ĠP ri", + "Ġfundament al", + "Ñĩ аÑģ", + "è¯ ´", + "Ġtext ure", + "į ĺ", + "ĠAN D", + "à® ±", + "ĠT em", + "Ġn ada", + "ì§ Ħ", + "Ġcelebr ate", + "um s", + "Ġp ill", + "Ġи ли", + "go ing", + "Ġh ip", + "Ġsupport ed", + "Ġper man", + "Ġagre ement", + "Ġty m", + "Ġë ij", + "ĵ¤ ìĿ´", + "Ġpurch ase", + "í Ķ", + "ĠPl an", + "eg en", + "Ġrec over", + "P U", + "ĠMic rosoft", + "du c", + "Ġhol es", + "Ġdro pped", + "Ġp ig", + "Ġend ing", + "Ġattack s", + "be c", + "Ġre n", + "Ġr app", + "Ġìļ °ë¦¬", + "Ġter ror", + "Ġ× Ļ", + "Ġed it", + "Ġa o", + ". ", + "Ġhero es", + "ĠB oston", + "Ġdepend ent", + "Ġmotiv ation", + "fl ix", + "Ġse am", + "ки е", + "Ġdra in", + "od ed", + "Ġgu ilty", + "ĠJ enn", + "ing en", + "Ġgrant ed", + "ĠK elly", + "ĠS av", + "ĠUn cle", + "ĠHon estly", + "EL I", + "Ġnavig ate", + "Ġbless ed", + "c ore", + "Ġear ning", + "Ġsign als", + "Ġdis k", + "ial s", + "Ġag es", + "æ ħ", + "Ġpartic le", + "ĠÑĩ еÑĢ", + "Ġcan n", + "Ġt ier", + "Ġstat ements", + "ê³ł ìļĶ", + "ĠëķĮ문 ìĹIJ", + "ĠCh o", + "Ġpol ar", + "an ç", + "ĠK enn", + "ĠN i", + "ĠF ight", + "or gan", + "é ķ", + "ĠCh a", + "ĠS ÃŃ", + "ãĥ ª", + "Ġs lic", + "Ġcert ific", + "Ġtempl ate", + "ĠFed eral", + "Ġconsider ation", + "Ġexpl o", + "ĠM ain", + "ĠN E", + "Ġalong side", + "Ġd ressed", + "ĠP oint", + "Ġenviron ments", + "Ġpró xim", + "Ġda ar", + "Ġprom pt", + "Ġpurs ue", + "Ġentertain ment", + "Ġth roat", + "Ġproblem a", + "Ġm art", + "ì ¼", + "Ġprov ider", + "Ø Į", + "Ġ× Ĺ", + "int e", + "m aking", + "Ġstro ke", + "Ġtiss ue", + "U n", + "Ġpre cious", + "ĠAr ts", + "ink ing", + "ĠÐŀ н", + "Ġи Ñģ", + "n ah", + "ĠÐķ Ñģли", + "Ġcor ners", + "Ġtrick y", + "in ch", + "l ijk", + "Ġpress ing", + "le vel", + "AN G", + "Ġrad iation", + "ìĦ ł", + "Ġconf ront", + "Ġv et", + "Ġrepresent ative", + "Ġprop ag", + "Ġcra p", + "ĠDe c", + "Ġr amp", + "еп еÑĢÑĮ", + "u és", + "ess en", + "cri ption", + "Ġb ills", + "ĠMatth ew", + "Ġan ime", + "ấ t", + "Ġlow est", + "h as", + "sc reen", + "og rap", + "ал о", + "int on", + "ĠJ ah", + "èĢ ħ", + "it Ãł", + "Ġk ay", + "Ġrot ation", + "ĠW ere", + "abe i", + "Ġtri als", + "Ġle ver", + "ight y", + "Ġsp oon", + "Ġh unt", + "c ling", + "Ġdis m", + "ĠболÑĮ ÑĪ", + "Ġass ault", + "Ġíĺ ķ", + "Ġweek ly", + "Ġm ismo", + "Ġgen etic", + "ul pt", + "ĠStud ent", + "Ġreal istic", + "Ġauthent ic", + "æī ĵ", + "ast a", + "Ġarrest ed", + "Ġguid elines", + "Ġ×ľ× IJ", + "Ġд ав", + "ĠCom ing", + "f ür", + "Ġrequ ests", + "ĥ IJ", + "Ġanaly ze", + "Ġinter ess", + "Ġh alt", + "ĠO per", + "on om", + "Ġd uck", + "Ġwith d", + "s er", + "ĠÏ Į", + "ĠHist ory", + "Ġyout ube", + "ãĤ į", + "Ġsab er", + "w alk", + "f ont", + "Ġover view", + "3 9", + "ü y", + "ett i", + "Ġfro zen", + "Ġf lesh", + "ÄŁ i", + "ĠP M", + "ĠìĻ Ģ", + "é ¢", + "ÑĨи и", + "Ġê¸ °ë", + "íģ ¬", + "Ġpr ose", + "oo oo", + "r ates", + "W S", + "Ġautom atic", + "Ġcollect ing", + "Å ij", + "Ġneighb ors", + "» .", + "ĠEx pl", + "Ġcir cul", + "co ver", + "we g", + "Ġstick s", + "Ġe ller", + "Ġw ww", + "Ġd orm", + "ĠEx per", + "Ġstat istics", + "Ġemail s", + "Ġgra ve", + "im iz", + "H S", + "Ġu it", + ", '", + "Ġlas er", + "è ī", + "ĠÑĤ ем", + "Ñĭ ÑĪ", + "Ñī Ñij", + "Ġgen au", + "Ġtien en", + "Ġmed itation", + "ĠOr gan", + "Ġest imate", + "Ġë¬ ´ì", + "l ets", + "Ġn Ãły", + "Ġmind set", + "Ġres on", + "Ġm és", + "Ġnumer ous", + "Ġvie lleicht", + "ĠTh ird", + "u ous", + "ĠDe ad", + "ан д", + "H N", + "Ġrac ing", + "Ġag ents", + "ĠU t", + "Ġte ar", + "ĠH P", + "Ġchem istry", + "Ġsurv ival", + "æĸ °", + "Ġconvin ced", + "Ġ ;", + "Ġreg ulations", + "ĠE S", + "åĴ Į", + "3 00", + "Ġen se", + "Ġì µ", + "Ġd ict", + "G A", + "Ġah ÃŃ", + "åĭ ķ", + "Ġte j", + "Ġо ÑģÑĤ", + "ĠE lect", + "Ġintellect ual", + "Ġbi as", + "Ġbur den", + "çĤ ¹", + "Ġìĸ´ëĸ »", + "Ġche er", + "Ġso ph", + "Ġportfol io", + "ub a", + "Ġest os", + "T V", + "F or", + "Ġas h", + "Ġkom mer", + "Ġcollect ive", + "Ġw rest", + "ĠJ etzt", + "ĠW at", + "re ich", + "Ġprim er", + "act ive", + "Ġm ie", + "ick ed", + "Ġhun ting", + "Ġtest im", + "Ġcompass ion", + "ĠØ ±", + "Ġbr ut", + "Ġsal ad", + "об Ñīе", + "Ġsol ving", + "Ġflo ating", + "ç ·", + "Ġattract ive", + "ÙĪ ÙĦ", + "Ġper d", + "if fer", + "Ġsc ulpt", + "hh h", + "ĠWe ek", + "Ġent hus", + "Ġn ad", + "Ġmer ch", + "ĠíĻ ķ", + "Ġm ile", + "好 äºĨ", + "ĠÎ ¸", + "ĠëĤ ĺë", + "éĩ į", + "3 8", + "Ġch ains", + "ĠAl most", + "Ġtick ets", + "r in", + "ĠC C", + "Ġdistrib uted", + "abet es", + "Ġtemper atures", + "Ġg ained", + "Ġflex ibility", + "Ġscream ing", + "Ġab road", + "un o", + "Ġentreprene urs", + "ĠNet work", + "ĠCanad ian", + "Ġpre v", + "Ġs ö", + "ĠÑĤеб Ñı", + "ĠP oke", + "ĠP od", + "ĠTur key", + "çı¾ åľ¨", + "Ġabst ract", + "Ġsn ake", + "ĠAm y", + "ĠëĬIJëĤ Į", + "Ġbra ve", + "ĠìŀĪ ìĸ´ìļĶ", + "ĠK al", + "Ġ200 7", + "á rio", + "Ġmark ed", + "gin es", + "Ġall oc", + "ON G", + "Ġscient ist", + "Ġes ca", + "Ġrac ism", + "× ij×", + "ĠS ams", + "ĠP enn", + "Ġload s", + "Ġà® ¨", + "ü ber", + "M e", + "ix ò", + "Ġper ò", + "an ne", + "Ġexp ressed", + "м еÑĢ", + "Ġmo et", + "Ġret urning", + "n ia", + "Ġexp on", + "P ro", + "Ġlo yal", + "M L", + "Ġl amp", + "Ġsh y", + "Ġcomp osition", + "ĠL y", + "Ġmagn etic", + "Ġprem ier", + "Ġmeasure d", + "Ġsumm ary", + "Ġattack ed", + "Ġfin ishing", + "Ð Ĺ", + "ç ¥", + "Ġs its", + "Ġhyd rogen", + "Ġma i", + "ĠDeuts ch", + "as ı", + "Ġobt ain", + "v ie", + "Ġso it", + "Ġë° Ķ", + "Ġl ane", + "Ġconse gu", + "в о", + "Ġe ase", + "ak in", + "ĠF a", + "Ġunt uk", + "Ġbur st", + "Ġc um", + "al ım", + "ú blic", + "id i", + "ĠRoy al", + "ĠK on", + "Ġcommon ly", + "Ġremo ving", + "Ġj ur", + "il ib", + "Ġan ch", + "íĸ ī", + "Æ°á» £", + "ĠÐľ Ñĭ", + "ĠAn th", + "ĠS Ã¥", + "Ġinter rupt", + "Ġst ere", + "ĠO S", + "ony m", + "ter y", + "ĠMar ia", + "ê² ĥ", + "Ġexpl oring", + "Ġtransp arent", + "Ġf ate", + "ĠJ ung", + "Ġgr up", + "Ġdark er", + "ĠD oug", + "Ġman e", + "æĶ ¾", + "ạ i", + "d ri", + "lo ok", + "ĠDes ign", + "Ġtut aj", + "Ġhorizont al", + "re on", + "ort e", + "ĠCor rect", + "ĠSte ven", + "Ġv ine", + "0 2", + "i Äĩ", + "Ġsie mpre", + "ĠK ey", + "åĥ ı", + "ĠG ames", + "Ġna ar", + "Ġshock ed", + "el ve", + "ĠR ose", + "ìĭ ¬", + "Ġstop ping", + "oh l", + "ĠM ix", + "Ġsuff ered", + "Ġsig ma", + "Ġweak ness", + "ĠO w", + "ี à¹Ī", + "I F", + "Ġà® ħ", + "ad ed", + "ĠNet flix", + "an es", + "Ġrem ained", + "ir y", + "Ġr ip", + "ell t", + "Ġsil ent", + "Ġpro ven", + "Ġtox ic", + "Ġal umin", + "Ġmulti pl", + "al and", + "Ġ3 4", + "0 6", + "ĠB ru", + "Ġìłķ ë§IJ", + "J ust", + "b oy", + "Ġsho e", + "Ġcreat ure", + "Ġhead ed", + "ĠоÑĤ к", + "æ ±", + "Ġess ence", + "Ġremark able", + "Ġnú mer", + "Ġd rew", + "Ġpu zzle", + "ĠLibr ary", + "ĠF u", + "ash es", + "k k", + "ĠI st", + "¦ °", + "ĠB ry", + "Ġc eremony", + "Ġà® İ", + "Ġc ri", + "e qu", + "ãĤ ¢", + "Ġpri ze", + "Ġdim ensions", + "og ram", + "Ġle ather", + "Ġpop ulations", + "u um", + "Ġve gan", + "Ñı д", + "Ġcó mo", + "å Ħ", + "Ġstri p", + "å £", + "Ġvac ation", + "ħ ķ", + "Ġme als", + "ili pp", + "Ġ ents", + "ar am", + "ric ht", + "Ġgra in", + "ĠSp ain", + "Ġche ek", + "ĠA ff", + "I ON", + "ĠBr ing", + "Ġ3 8", + "iel en", + "ul u", + "ĠболÑĮ ÑĪе", + "Ġannounce ment", + "ĠÑĤ ÑĥÑĤ", + "ĠPro phet", + "ard o", + "3 7", + "Ġw oke", + "Ġtransl ation", + "ĠN OT", + "ĠC L", + "Ġd Ã¼ÅŁ", + "ÑĨ Ñĸ", + "ac er", + "ĠL oc", + "Ġper ception", + "N O", + "Ġdies en", + "L ook", + "he art", + "av ed", + "Ġbound ary", + "Ġfl ows", + "Ñij м", + "Ġarg uments", + "Ġelect ions", + "ı s", + "Ġhe ck", + "Ġsuit able", + "Ġf iber", + "ĠSt ra", + "x y", + "ĠH um", + "Ġmonth ly", + "u per", + "Ġgol f", + "Ġl ately", + "ĠG ard", + "ĠR en", + "ĠA st", + "ĠF ant", + "аÑģ Ñģ", + "Ġobs er", + "ë ¡ľ", + "Ġeas iest", + "į Ķë", + "Ġwebs ites", + "p ol", + "Ġco con", + "Ġà® ĩ", + "ĠV eg", + "Ġwalk s", + "Ġint ro", + "Ġdirect ed", + "ĠAn na", + "Ġëĵ¤ ìĸ´", + "ĠEaster n", + "ĠS aint", + "ĠB ow", + "Ġro ast", + "ĠU RL", + "Ġjed en", + "ur as", + "aj a", + "Ġse mi", + "Ġrapid ly", + "Ġtarget s", + "ĠCont rol", + "Ġb ah", + "Ġref lection", + "Ġcreat ivity", + "hold ers", + "Ġìĺ ¬ë", + "Ġamong st", + "Ġfeed ing", + "ÑįÑĤ омÑĥ", + "Ġвид е", + "Ġë§Įë ĵ¤", + "ĠSm art", + "Ġrel iable", + "Ġvez es", + "Ġ× ¨", + "ch uckles", + "az ione", + "ĠWilliam s", + "Ġa ç", + "Ġsle e", + "е Ñī", + "Ġtim eline", + "Ġthor ough", + "á» į", + "ĠO t", + "ạ n", + "Ġimag ination", + "Ġmechan ics", + "r ist", + "Ġclaim ed", + "ÏĦ η", + "ê te", + "ĠHur ry", + "ĠiP ad", + "Ġconst ru", + "ĠC la", + "ĠAl s", + "ä¼ ļ", + "ut z", + "Ġcult ures", + "Ġìĸ´ëĸ» ê²Į", + "Ġbelong s", + "Ġy er", + "ĠDoes n", + "Ġge omet", + "Ġb id", + "Ġfo am", + "Ġh ob", + "ĠBrit ain", + "Ġsubst ance", + "Ġann iversary", + "ĠëĦ Ī", + "Ġnot ed", + "Ġgovern or", + "Ġstock s", + "3 1", + "Ġdi ye", + "ìĬ ¤ë", + "Ġre b", + "z el", + "Ġmultip ly", + "Ġoper ator", + "Ħ¤ ìļĶ", + "Ġwat ers", + "Ġd är", + "Ġuns er", + "ĠEliz abeth", + "é« ĺ", + "Ġincreasing ly", + "ĠG ro", + "Ġen gines", + "ir s", + "Ø «", + "Ġtre asure", + "P C", + "in ction", + "ir i", + "Ġacc um", + "Ġvari ation", + "Ġp om", + "Ġtit les", + "ĠF est", + "ó s", + "Ġeld er", + "ny m", + "r un", + "Ñı в", + "Ġinnov ative", + "Ġnom bre", + "Ġco inc", + "Ġfr anch", + "Ġent onces", + "Ġnicht s", + "Ġexc lusive", + "ĠChe ers", + "ĠB i", + "u je", + "æŃ ¡", + "Ġp ok", + "ĠP rem", + "Ġrock et", + "ELI PE", + "Ġhosp itals", + "ri um", + "Ġjust e", + "Ġham mer", + "Ġquant um", + "Ġrespons es", + "ll y", + "end i", + "Ġact ively", + "Ġfr idge", + "i ate", + "l ong", + "Ġqu em", + "Ġdeath s", + "Ġsuper ior", + "ck en", + "ìĿ´ì ĹIJ", + "kt op", + "Ġgather ed", + "£ ¨", + "Ġd azu", + "Ġreci pes", + "Ġbu zz", + "c en", + "Ġany time", + "ons ense", + "Ġcirc les", + "Ġsol ved", + "Ġìĭ ł", + "Ġcoron avirus", + "ĠLu ke", + "Ġbu bb", + "Ġcont empor", + "r zy", + "ĠJ ane", + "Ġд ом", + "Ġscrew s", + "Ġhy brid", + "Ġcas ual", + "Ġsel bst", + "be ing", + "ĠÄ IJ", + "ĠCol umb", + "ĠÑħ оÑĩ", + "Ġbu cket", + "Ġevalu ate", + "Ġid ol", + "Ġrep utation", + "ĠìĨ Įë", + "ÙĪ ر", + "Ġhe cho", + "Ġpo em", + "Ġsubject s", + "pl ant", + "ĠBe h", + "ĠSpe aking", + "Ġbatter ies", + "Ġfollow ers", + "ö l", + "Ġg ently", + "Ġsi xt", + "Ġparam eter", + "Ġik ke", + "ĠT our", + "ĠD J", + "ot te", + "ĠJ ahren", + "Ġprepar ation", + "Ġд Ñĥм", + "Ġ8 00", + "c op", + "ik ing", + "Ġë¬ ¸", + "Ġн Ñĥ", + "Ġл еÑĤ", + "åIJ Į", + "ĠI de", + "Ġì¡° ê¸Ī", + "Ġla ughter", + "Ġmole cules", + "ĠR est", + "Ġobs erved", + "d zie", + "Ġadvert ising", + "ert o", + "Ġmo ins", + "ĠM IT", + "Ġexc it", + "Ġt um", + "Ġty l", + "Ġinvest ed", + "Ġph arm", + "Ġunex pected", + "Ġph i", + "oty pe", + "we ise", + "Ġge ç", + "jour d", + "Ġhors es", + "n Äħ", + "= \"", + "ĠS M", + "Ġf ib", + "Ġcl ips", + "çķ ¶", + "å¦Ĥ æŀľ", + "Ġreg ime", + "Ġrot ate", + "r ou", + "n ik", + "Ġarm or", + "ðŁ ĺ", + "еÑĢ а", + "åº ¦", + "ĠO ch", + "Ġr ichtig", + "üz el", + "ane ously", + "m ek", + "éĮ ¯", + "ĠX iao", + "Ġexist ed", + "w orth", + "ãģ£ ãģ¨", + "Ġna ught", + "Ġhe iÃŁt", + "ĠB al", + "Ġres id", + "iv ot", + "om atic", + "Ġh ired", + "Ġgrad ually", + "Ġon ions", + "Ġcomp at", + "Ġint im", + "Ġj ew", + "Ġcontrib ution", + "ĠI re", + "ac ji", + "Ġsl ice", + "Ġimm un", + "ĠR us", + "Ġgr ows", + "ĠSimilar ly", + "Ġhard est", + "Ġst ruck", + "Ġmeasure ment", + "... ]", + "th ey", + "Ġìł Ģë", + "Ġsne ak", + "Ġappl ies", + "Ġн ем", + "æ ĵ", + "×ij ר", + "ĠЧ ÑĤо", + "Ġout ro", + "Ġinnoc ent", + "Ġm og", + "ĠSams ung", + "Ġmer cy", + "Ġhand ling", + "Ġinter vention", + "id ays", + "g ot", + "Ġcur ric", + "Ġbound aries", + "Ġconf using", + "Ŀ¼ ëĬĶ", + "æ ĩ", + "Ġstitch es", + "ÃŃ vel", + "Ġtun nel", + "it ä", + "Ġg ost", + "im y", + "Ġcz as", + "Ġm é", + "Ġcat al", + "ĠSim on", + "ĠLI AM", + "m ic", + "ĠÐ ¤", + "Ġey el", + "is as", + "ĠC PU", + "ĠD ou", + "Ġnä ch", + "Ġinfin ity", + "Ġr if", + "ĠPe ace", + "ĠC u", + "Ġminim al", + "Ġlisten ed", + "Ġpo le", + "hal b", + "Ġload ed", + "Ġste ady", + "ĠBes ides", + "ê m", + "Ġl ap", + "Ġco op", + "Ġfriends hip", + "w orld", + "Ġge h", + "Ġtyl ko", + "ĠLa ura", + "Ġsurround ed", + "ĠE vent", + "Ġch ap", + "ĠW onder", + "bre ak", + "Ġdro ve", + "Ġbroad er", + "Ġch i", + "F i", + "Ġge hen", + "Ġwest ern", + "Ġintellig ent", + "Ġpers ist", + "Ġfound ed", + "ãģĵ ãģ¨", + "Ġhistor ic", + "Ġfr Ã¥", + "cks Ã¥", + "Ġhand y", + "Ġsy mp", + "Ġr ows", + "Ġnut ri", + "b ur", + "ĠLe on", + "Ġsist ema", + "Ġext ensive", + "ĠÑĥ в", + "í ı", + "Ġnight s", + "Ġcá c", + "Ġcount ing", + "ĠM ust", + "all ow", + "еÑģ Ñģ", + "M om", + "Ġнад о", + "Ġbar rel", + "ãĥ ŀ", + "AR D", + "Ġinstall ation", + "Ġin sect", + "Ġëħ ¸ë", + "uj Äħ", + "ĠÄij i", + "Ġpack ed", + "Ġf iction", + "N ow", + "ĠY ay", + "Ġper t", + "r ons", + "und e", + "ach es", + "Ġsty les", + "Ġapr ès", + "ok u", + "ĠV ice", + "ın ız", + "com m", + "Ġassign ed", + "Ġinteract ions", + "Ġac ab", + "F ELIPE", + "Ġresc ue", + "Ġindust ries", + "ĠAnd y", + "Ġpra ise", + "Ġfl ame", + "Ġsn ack", + "í Ĥ", + "ç ģ", + "Ġsw o", + "rend er", + "Ġbo ards", + "ĠÑĤ ом", + "en ne", + "Ġpast a", + "Ġdev il", + "ĠF el", + "Ġhat te", + "Ġcoll eg", + "e h", + "ì »", + "ãģĵ ãģ®", + "Ġproduct ive", + "for ward", + "и п", + "Ġsmart phone", + "Ġinv is", + "Ġb um", + "Ġwho a", + "ìŀ Ħ", + "Ġo cksÃ¥", + "ĠL ang", + "ĠSy ria", + "Ġses i", + "ί α", + "Ġappro val", + "4 8", + "Ġод ин", + "Ġë ĸ", + "ĠH arr", + "ĠAd minist", + "Ġ× ¤", + "ĠDe an", + "f i", + "Ġcitiz en", + "Ġsh ark", + "0 5", + "Ġbo il", + "Ġindic ate", + "å ¡", + "A re", + "Ġlay out", + "Ġref r", + "ĠPac ific", + "AA AA", + "ĠAustral ian", + "g ression", + "V oice", + "ал ÑģÑı", + "Ġshel ter", + "T o", + "au pt", + "Ġevalu ation", + "ap or", + "Ġcur rency", + "Ġм ного", + "ig os", + "ãģ °", + "Ġo ct", + "Ġro yal", + "è ³", + "as il", + "ĠChild ren", + "Ġr ien", + "Ġë ĵľë", + "Ġbar rier", + "Ġej emplo", + "Ġe k", + "N D", + "es p", + "ен а", + "Ġp ic", + "Ġkill er", + "Ġintegr ate", + "Ġfew er", + "Ġdis abilities", + "Ġ ....", + "Ġtri angle", + "Ġfe es", + "Ġwid ely", + "em i", + "Ġoverwhel ming", + "Ġz omb", + "Ġb ere", + "Ġho od", + "ĠA ye", + "ĠHar vard", + "e v", + "ĠÏĦ οÏħ", + "Ġcup s", + "ĠA uch", + "z ona", + "Ġ199 0", + "Ġwe iÃŁ", + "Ġcr unch", + "æ ¥", + "Ġз ав", + "Ġmeas uring", + "Ġst ations", + "ĠStep hen", + "Ġshort ly", + "Ġsig ning", + "Ġcom edy", + "om o", + "Ġsuggest ions", + "Ġsign ature", + "ĠпÑĢ ив", + "Ġdis order", + "as ka", + "Ġworld s", + "Ġprecis ely", + "n orm", + "ra v", + "ĠC ivil", + "In ter", + "ĠC ertain", + "Ġinj ured", + "Ġsuggest s", + "ĠGold en", + "Ġcy ber", + "ĠØ ´", + "Ġtempor ary", + "Ġco oper", + "Ġvot ed", + "Ġ ought", + "ấ y", + "x ual", + "Ġpan els", + "Ġ9 5", + "Ġhands ome", + "ĠпÑĢ ов", + "Ġper mit", + "Ġke in", + "Ġbad ly", + "Ġnot ifications", + "iz a", + "ĠNot ice", + "Ġinc lusive", + "Ġanswer ing", + "Ġí Ĺ", + "u ld", + "íħ Į", + "Ġnow adays", + "Ġ3 7", + "Ġb olt", + "Ġstat ic", + "ĠH op", + "Ġav ant", + "aj o", + "Ġ맼 ìŀĪ", + "Ġfif ty", + "ĠF inal", + "Ġsc ores", + "ĠT ap", + "Ġcy l", + "Ġconv ince", + "Ġany ways", + "od a", + "Ġìķ ¼", + "Ġser ves", + "ĠÑĤак ой", + "ĠZo om", + "Ġsaving s", + "ul o", + "Ġs outhern", + "view er", + "Ġho je", + "Ġse ja", + "Ġrepresent ing", + "Īë įĺ", + "l ik", + "ĠSome body", + "Ġbe ast", + "Ġstick ing", + "Ġins ist", + "Ġtal ented", + "Ġexplain ing", + "Ġatt orney", + "éĥ ¨", + "Ġst airs", + "ĠD og", + "í ĭ", + "Ġc ig", + "Ġshap ed", + "Ġs ons", + "Ïģ ι", + "ut t", + "Ġì Ķ", + "Ġpar ad", + "ìĿ¸ë į°", + "Ġh orn", + "ĠJ our", + "ann o", + "Ġworld wide", + "åĬ Ľ", + "Ġparticip ation", + "¦ Ħ", + "Ġm ów", + "Ġburn ed", + "Ġwrit ers", + "all ah", + "ĠF und", + "Ġcle ver", + "ĠLe ute", + "b in", + "Ġbe ating", + "f oot", + "ĠìĽ IJ", + "ĠStud io", + "Ġv ag", + "be y", + "r ze", + "Ġoppos ition", + "Ġж из", + "w ho", + "Ġê± ´", + "Ġtr ace", + "Ġд енÑĮ", + "Ġep id", + "Ġges ch", + "ĠN ar", + "ĠB E", + "Ñĥ й", + "ĠS ign", + "ed ly", + "Ġcl ay", + "Ġinst antly", + "Ġgather ing", + "ĠGal axy", + "Ġb ored", + "ĠBudd h", + "c é", + "Ġm am", + "Ġsl ope", + "Ġëĭ¤ ìĿĮ", + "Ġsch ön", + "Ġp ir", + "ge f", + "am er", + "Ġh ö", + "Ġcolle ague", + "Ġpres ents", + "ad ium", + "Ġà® µ", + "Ġfal ar", + "be ep", + "Ġdri ed", + "ism s", + "Ġro pe", + "Ġworks hop", + "Ġest ud", + "Ġb ands", + "Ġthem es", + "åħ ¬", + "ÙĬ ر", + "åIJ İ", + "Ġremind er", + "ÑĤ Ñĥ", + "ĠB h", + "Ġcocon ut", + "ĠÑģ ÑĤо", + "ĠCh annel", + "Ġimmig ration", + "ä s", + ".. ...", + "ä¸ »", + "çĻ ½", + "st op", + "Ġк аÑĢ", + "Ġco ins", + "ĠÑĩ аÑģ", + "Ġdest ruction", + "l ined", + "Ġbar riers", + "ant ine", + "Ġprint ed", + "Ġcongrat ulations", + "ĠHe art", + "Ġin qu", + "th a", + "Ġhard ly", + "ĠA ven", + "Ġt inha", + "ĠS ony", + "ĠN F", + "Ġgradu ates", + "Ġsque eze", + "ere my", + "ÏĦ ι", + "Ġep ic", + "ĠJ u", + "Ġol m", + "ĠLa ughter", + "Ġbelief s", + "ĠC ru", + "ĠTr ue", + "ĠS oul", + "owe en", + "Ġrom antic", + "Ġз в", + "Ġan os", + "ĠY up", + "éĺ ¿", + "d im", + "Ġin fer", + "Ġз ам", + "Ġso c", + "uk a", + "Ġprec ise", + "Ġdro pping", + "Ġcl ue", + "Ġer rors", + "char ge", + "ĠP u", + "omet er", + "Ġlamb da", + "ac ional", + "ĠD ong", + "Ġcham ber", + "Ġthank ful", + "ĠN u", + "ĠHaw ai", + "Ġinf o", + "Ġactiv ate", + "ĠQ ual", + "Ġqu ed", + "Ñĥ лÑĮ", + "Ġcl oth", + "åĸ ľ", + "Ġw ichtig", + "5 5", + "Ġot ra", + "ograp her", + "Ġcur ios", + "Ġ19 80", + "Ġemp res", + "d ess", + "e ur", + "Ġcl uster", + "ar ter", + "ob ile", + "ĠY an", + "ĠAd v", + "Ġdiscipl ine", + "Ġìłķ ëıĦ", + "ĠPl ace", + "ĠSe lect", + "T E", + "ĠбÑĭ ла", + "Ġwh is", + "Ġb ay", + "ĠD or", + "en cing", + "Ġrep et", + "Ġf icar", + "p ad", + "Ġf og", + "u yor", + "Ġsn ap", + "ib t", + "Ġso bie", + "Ġappoint ment", + "ĠR y", + "Ġce iling", + "our se", + "Ġwr ites", + "ĠAfghan istan", + "Ġm os", + "az e", + "Ġpen al", + "Ġcry stal", + "IC E", + "ê° IJ", + "é Ł", + "ĠTes la", + "Ġthe ories", + "Ġappe al", + "Ġnewsp aper", + "Ġcook ies", + "æ ©", + "ĠاÙĦ ÙĦ", + "Ġma j", + "ĠGet ting", + "k ommen", + "ĠHe aven", + "ell s", + "Ġdiv ine", + "Ä «", + "Ġa kt", + "Ġhop es", + "ĠCh en", + "we gen", + "** *", + "ĠFra ge", + "Ġн и", + "ภ¹", + "min ister", + "nes ota", + "wh ich", + "Ġexpl icit", + "Ġverd ad", + "Ġgradu ated", + "ĠPh ilipp", + "Q L", + "ĠM I", + "Ġdev ot", + "Ġc ure", + "Ġclos est", + "Ġà Ħ", + "Ġsex y", + "ãģ Ľ", + "ĠDe ath", + "ok o", + "ug u", + "ĠAn ne", + "itar ian", + "es a", + "ег од", + "ĠD ur", + "Ġ 000", + "ze it", + "Ġtour nament", + "Ġmel hor", + "ภª", + "Ġin du", + "Ġf law", + "Ġw ars", + "ĠM ind", + "ĠI ron", + "ÑĤ ак", + "ĠV R", + "Ġs iz", + "ĠS outhern", + "Ġê·¸ëŁ ¬ë", + "Ġaw ak", + "Ġìķ ŀ", + "Ġc ube", + "believ able", + "if all", + "d is", + "Ġabandon ed", + "m ind", + "Ġpar l", + "Ġclass ical", + "è ĭ", + "á»Ļ t", + "ĠAut o", + "ĠB or", + "ç ©", + "4 00", + "ĠSoci ety", + "Ġsubt le", + "Ġmiss ions", + "Ġremember ed", + "ĠE ither", + "Ġda für", + "OR D", + "Ġint ensity", + "ES IN", + "ĠC up", + "Ġrare ly", + "Ġto ys", + "ĠChar lie", + "á» Ł", + "Ġgla ube", + "Ġround s", + "T IN", + "Ġcap ability", + "Ġderiv ative", + "Ġrefer ring", + "Ġd Ã¥", + "ĠT ALI", + "Ġcott on", + "Ġcon fer", + "Ġcolum ns", + "Ġliber al", + "Ġnun ca", + "Ġμ ε", + "Ġind o", + "ib en", + "ĠBe ispiel", + "Ġê·¸ë łĩ", + "ĠÑĥ Ñĩ", + "Ġh oy", + "Ġfr y", + "ĠScott ish", + "è Ĭ", + "Ġc iv", + "Ġconserv ative", + "Ġair pl", + "Ġs ar", + "r us", + "Ġinvest ments", + "Ġinfin ite", + "Ġà® ķ", + "ĠTALI ESIN", + "ĠG ary", + "ue ll", + "Ġа к", + "ĠC ir", + "Ġrit ual", + "Ġ>> >", + "Ġtem pt", + "ĠTe ch", + "ĠPoke mon", + "Ġimprove ments", + "Ġsp are", + "Ġtransl ate", + "Ġson ra", + "ĠFil m", + "w ort", + "Ġм и", + "Ġperiod s", + "Ġje alous", + "ãģĦ ãģĦ", + "Ġt ir", + "M I", + "Ġconduct ed", + "ĠìķĪë ħķ", + "0 9", + "ĠPol it", + "ĠWhere as", + "Ġmoist ure", + "Ġs ins", + "Ġk ap", + "ĠÑį к", + "Ġben im", + "Ġelimin ate", + "Ġathlet es", + "ĠMan ager", + "Ġfeature d", + "ap ore", + "äº Ľ", + "Ġë° ľ", + "Ġper f", + "ĠTh us", + "Ġdeb ut", + "об ÑĢ", + "Ġse ñ", + "Ġmyster ious", + "w ords", + "Ķ ê°Ģ", + "Ġcheck s", + "Ġvolunte er", + "Ġwas hing", + "ĠMar vel", + "ĠA B", + "iss ors", + "! '", + "ĠF ull", + "ye on", + "Ġwe igh", + "ĠJO HN", + "Ġv os", + "Ġproced ures", + "Ġaddress ed", + "ĠBer lin", + "put er", + "ĠB an", + "Ġmedic ation", + "Ġdr one", + "ĠÑĥ б", + "ĠJe an", + "Ġcap s", + "Ġdisappoint ed", + "Ġw ore", + "Ġêµ Ń", + "Ġorgan ize", + "ĠHall oween", + "Ġfant asy", + "y ard", + "Ġnos otros", + "Ġjump ed", + "Ġphot ography", + "ĠN ame", + "re c", + "A B", + "Ġbless ing", + "ĠSh ut", + "Ġbit ter", + "p op", + "ãģĿ ãĤĮ", + "Ġde i", + "Ġfulf ill", + "çIJ Ĩ", + "Ġden gan", + "Ġbe lo", + "ĠMean while", + "Ġdep ois", + "Ġdi abetes", + "Ġbu nd", + "ĠZe aland", + "Ġdig est", + "Ġt ires", + "Ġdo d", + "ag ne", + "ế t", + "Ġpe el", + "Ġз аб", + "Ġn odes", + "Ġtrend s", + "ĠSw itch", + "ĠA ward", + "ĠOr ig", + "ĠH al", + "Ġest as", + "Ġ3 60", + "Ġsim ult", + "Ġcom ic", + "Ġm Ãł", + "Ġbal anced", + "ĠPrin cess", + "Ġkilomet ers", + "á» ©", + "Ġpart ir", + "ì¤ ij", + "so ft", + "ĠV iew", + "Ġbi ological", + "in st", + "4 4", + "Ġman era", + "Ġcompreh ensive", + "ĠS ab", + "Ġcr imes", + "y ers", + "ĠComp any", + "ĠPh ot", + "Ġpou co", + "i ac", + "Ġbe im", + "in ate", + "Ġsub sequ", + "ĠMay or", + "Ġcent uries", + "è res", + "ìŀĸ ìķĦìļĶ", + "Ġê·¸ëŁ ¼", + "ĠFra u", + "ĠO H", + "Ġëģ Ŀ", + "ĠN ah", + "ĠSer ies", + "Ġover night", + "íĴ Ī", + "ĠâĢ ¢", + "Ġtra ve", + "atter ed", + "Ġwar ri", + "ĠGru nd", + "ĠInd ones", + "Ġsc ra", + "ob y", + "ĠBro ok", + "Ġcur s", + "Ġë ¸", + "Ġexpl ains", + "ram atic", + "Ġparticip ating", + "Ġmin ut", + "Ġcontract s", + "Ġg egen", + "Ġdisappe ared", + "ĠS N", + "Ġrob ust", + "ap h", + "Ġsh rim", + "Ġdev ast", + "c ope", + "Ġme ets", + "Ġpeace ful", + "m ate", + "Ġwe ld", + "Ġ× ª", + "d on", + "Ñĥ ÑĤÑĮ", + "Ġregister ed", + "ĠN ik", + "j in", + "Ġc av", + "Ġe cht", + "io x", + "Ġflow ing", + "но ÑģÑĤи", + "Ġto e", + "Ġent ity", + "ов а", + "f its", + "ĠPat rick", + "ÑĤ ÑĢ", + "Ġle verage", + "Ġcor rel", + "i ah", + "Ġstr ings", + "ist inct", + "Ġg ue", + "arch y", + "Ġteng o", + "ım ız", + "Ġor bit", + "ä¸ º", + "Ġе ÑīÑij", + "ca ke", + "Ġ׾ ×Ķ", + "ĠMin nesota", + "Ġbra ke", + "ow ie", + "Ġcra w", + "ê¸°ë ¥¼", + "Ġprogram me", + "ĠÑģл ÑĥÑĩ", + "åı ª", + "ien ces", + "ĠO ui", + "ĠP ers", + "im iento", + "ĠIn vest", + "Ġsl ower", + "æĻĤ åĢĻ", + "ĠB eth", + "Ġnur se", + "ĠSpr ing", + "S p", + "Ġun employ", + "д и", + "Ġgen ius", + "ĠA aron", + "Ġê·¸ëŁ ¬", + "Ġe i", + "ãģĹ ãĤĩ", + "Ġtank s", + "Ġau jourd", + "Ġcomplex ity", + "ĠÑĢ еÑĪ", + "Ġold est", + "Ġlet z", + "åħ ¥", + "Ġphenomen on", + "pr int", + "ĠBund es", + "it at", + "ê» ĺ", + "Ġ4 2", + "ĠW i", + "Ġinc om", + "Ġg ek", + "Ġembr ace", + "Ġt ies", + "out e", + "Ġd ose", + "ĠF riends", + "Ñĭ ÑĤ", + "егод нÑı", + "Ġor g", + "Ħë ¡ľ", + "ó g", + "Ġex ceed", + "Ġgod s", + "Ġê±° ìĺĪìļĶ", + "Ġsoci et", + "ĠUn ivers", + "it ät", + "Ġword en", + "Ġsm oking", + "Ġint ens", + "ab ul", + "em ia", + "è ij", + "4 7", + "f ly", + "Ġ200 6", + "ĠSer iously", + "Ġprze z", + "æ ¼", + "c re", + "Ġn an", + "Ġmod es", + "ов аÑĤÑĮ", + "ĠH ang", + "em en", + "Ġbenefic ial", + "Ġvot ers", + "ĠBro ad", + "Ġb ent", + "W ow", + "Ġm ul", + "åĵ ¥", + "ĠU C", + "Ġdam aged", + "ĠUk raine", + "Ġw ipe", + "Ġst ones", + "Ġman agers", + "Ġr ab", + "ÑģÑĤÑĢ о", + "l at", + "Ġde ce", + "Ġgraph ic", + "Ġf oss", + "Ġdisag ree", + "ĠAm en", + "Ġsec rets", + "ho le", + "ink le", + "Ġfortun ate", + "Ġì ±", + "ìľ Ħ", + "èIJ ¬", + "Ġhab its", + "Ġbur ied", + "Ġh in", + "Ġvirt ually", + "ol as", + "ĠR P", + "ĠT ab", + "l ow", + "Ġsacr ific", + "Ġestim ated", + "ol n", + "Ù ĭ", + "c ur", + "ĠFe el", + "Ġcast le", + "Ġus eless", + "Ġdis g", + "ĠJac ob", + "Ġga an", + "Ġup side", + "Ġpare ce", + "ãĥ³ ãĥ", + "Ġsh ipping", + "ĠC R", + "Ġdis rupt", + "ac ter", + "UN D", + "f u", + "å® Į", + "ĠP ick", + "ĠChar l", + "ĠB ull", + "Ġenter prise", + "Ġpunish ment", + "ack ing", + "Ġfr action", + "Ġtab let", + "Ġch ord", + "Ġsimilar ly", + "åħ¶ 實", + "ĠTor onto", + "Ġcour ts", + "ÄŁ l", + "esz cze", + "Ġpron oun", + "ĠS ister", + "ĠM P", + "Ġgreat ly", + "ĠD ank", + "ic op", + "Ġgar bage", + "Ġresol ve", + "ĠS af", + "ĠG un", + "Ġcomp ound", + "Ġë° °", + "ĠMus ik", + "âĻ «", + "Ġcha os", + "ĠWhen ever", + "Ġe uros", + "Ġor chest", + "Ġrefr iger", + "al an", + "ภ·", + "ĠAm azing", + "Ġp ud", + "ag an", + "Ġj eszcze", + "is y", + "Ġaccur acy", + "ĠA ma", + "is ode", + "ë ĮĢ", + "Ġinterpret ation", + "ĠL iber", + "æ ·", + "c am", + "Ġevol ved", + "ĠK ay", + "ÑĨ Ñĭ", + "Ġcreat or", + "it as", + "Ġal arm", + "Ġcelebr ation", + "z ent", + "Ġfun cion", + "Ġo v", + "umb ling", + "Ġ %", + "ภĪ", + "Ġrestrict ions", + "Ġн ав", + "ĠK inder", + "Ġban ana", + "ÑĮ Ñı", + "Ġdiam eter", + "Ġnor thern", + "ur ers", + "ĠP as", + "æĪij çļĦ", + "Ġwork force", + "Ġj ung", + "Ġguar ante", + "Ġequ ilib", + "Ġsu ite", + "Ġeu ro", + "Ġdel iber", + "S te", + "Ġdownt own", + "Ġch in", + "Ġc odes", + "ed ia", + "Ġshe ep", + "res hold", + "wn ie", + "ó b", + "Ġunder lying", + "l ia", + "j er", + "ÏĢ ÏĮ", + "ç Ŀ", + "th rop", + "Ġz ap", + "Ġvac uum", + "ĠH ab", + "Ġwra pped", + "ì ¢", + "Ġinvent ory", + "м а", + "Ġco ord", + "Ġpl ates", + "Ġsy mm", + "T e", + "ĠwÅĤa ÅĽnie", + "Ġreach es", + "Ġlon ely", + "S cript", + "le e", + "ess er", + "Ġê± ¸", + "ĠGes ch", + "ĠMo ving", + "Ġré p", + "ĠV ill", + "åIJ Ī", + "ĠR achel", + "Ġtem os", + "ON E", + "Ġstra in", + "Ġang el", + "Ġf Ã¥", + "T r", + "Ġach o", + "Ġhighlight s", + "ĠW er", + "ĠCar l", + "Ġbl ur", + "Ġreg ards", + " ·", + "ил ÑģÑı", + "Ġrec re", + "ĠY ani", + "U CK", + "ł ¸", + "Ġelectr ons", + "ĠSp iel", + "Ġv ed", + "Ú ¾", + "Ġbe am", + "Ġid iot", + "ë ĵ¤", + "на Ñĩ", + "id d", + "Ġsk i", + "it ative", + "Ġhyp othes", + "ãģ§ãģĻ ãģŃ", + "ent er", + "ĠìķĦëĭĪ ë", + "Ġih re", + "Ġpre view", + "ang el", + "Ġdem on", + "Ġd us", + "Ġd ic", + "ĠK om", + "LE Y", + "... !", + "Ġsie ht", + "ĠSon ic", + "Ġten ho", + "an as", + "Ġdig it", + "ĠMa ar", + "Ġunder grad", + "oun cer", + "uff y", + "Ġconvers ion", + "Ġdis connect", + "Ġe cho", + "om er", + "Ġcurric ulum", + "Ġper ché", + "Ġw and", + ".. ?", + "Ġroll ed", + "Ġentreprene ur", + "Ġtheore t", + "ĠÑī о", + "Ġins ights", + "Ġzus ammen", + "o in", + "ret t", + "p rodu", + "Ġvisit ors", + "e ous", + "Ġgrand mother", + "Ġhum or", + "Ġн иÑħ", + "zen ia", + "ins on", + "Ġres et", + "Ġbase ball", + "Ġmatch ing", + "ëĭ¤ ê°Ģ", + "Ġpun to", + "ì ¡", + "Ġre de", + "Ġaddress ing", + "Ġfore cast", + "ĠB ol", + "Ġcol ored", + "Ġdocument ation", + "Ġexpect ation", + "ĠNor thern", + "Ġcre o", + "Ġà® ļ", + "f on", + "Ġuns ere", + "U M", + "Ġcop ies", + "Ġexpand ed", + "Ġveter ans", + "ĠAl m", + "Ġво обÑīе", + "Ġpsych ological", + "Ġnos so", + "Ġpay ments", + "im eters", + "Ġ-- >", + "ĠJenn ifer", + "Ġvolunte ers", + "os se", + "or ious", + "ĠбÑĭ ли", + "è Ĥ", + "ĠEs s", + "w s", + "ĠB C", + "ĠI C", + "W oman", + "Ġv ont", + "Ġeth nic", + "EN N", + "им о", + "Ġlo b", + "Ġou i", + "c s", + "Ġre he", + "Ġìł ģ", + "Ġch ick", + "ús ica", + "Ġk ont", + "ĠDist rict", + "Ġp ile", + "Ġа в", + "ей ÑģÑĤв", + "Ġ £", + "Ġiss ued", + "Ġком п", + "Ġpros per", + "Ġprof ound", + "ĠDe ar", + "Ġãģ ĵ", + "Ġfund ed", + "Ġb isa", + "ŀ ĺë", + "× Ł", + "ĠìĿ ĺ", + "Ġtw elve", + "ĠChamp ions", + "éĿŀ 常", + "Ñģ л", + "Ġ200 5", + "p m", + "Ġon de", + "Ġdiff é", + "ĠCh all", + "Ġdifficult ies", + "Ġgar age", + "Ġd á", + "ün k", + "Ġë¬ ¼", + "Ġtr an", + "Ġsubm itted", + "z w", + "ÙĪ ا", + "Ġar k", + "ĠìĦ ±", + "Ġgrocer y", + "он а", + "i ere", + "Ġa est", + "Ġexhib ition", + "Ġr és", + "Ġconsist ency", + "Ġcook ie", + "н ей", + "Ġrepl acement", + "æ² ¹", + "ĠS em", + "ĠìĤ¬ ìļ©", + "8 00", + "Ġgen es", + "Ġtrans action", + "ĠE L", + "Ġdur ante", + "ib les", + "ĠE at", + "t ail", + "iss ance", + "Ġto ss", + "Ġsurv ived", + "Ġoff ices", + "Ġsupport ive", + "Wh ere", + "Ġtout es", + "Ġë§ ī", + "Ġj okes", + "ier on", + "ap ers", + "Ġm ature", + "ĠM arsh", + "Ġs ido", + "k ind", + "Ġreal mente", + "ĠChe f", + "Ġquel que", + "Ġjud ges", + "e ft", + "ER S", + "Ġj et", + "Ġpers ons", + "è »", + "iz ations", + "ri k", + "Ġsh ops", + "ĠW y", + "Ġele g", + "qu è", + "qu oi", + "Ġjug a", + "Ġíķľë ²Ī", + "ĠQuest ion", + "ĠGlo bal", + "Ġìķ½ ê°Ħ", + "ĠSt ation", + "æİ ¥", + "ĠOh io", + "Ġstick y", + "Ġst ressed", + "Ġg ün", + "Ġí Ŀ", + "ÑģÑĤ Ñĥп", + "é ¡Į", + "ĠPh D", + "im mer", + "Ġment or", + "Ġinv ented", + "Ġre un", + "Ġine vit", + "Ġpol ÃŃt", + "Ġexec ute", + "ĠSt ory", + "Ġout standing", + "Ġgu er", + "ĠR ain", + "Ġch oses", + "ĠT it", + "ĠÑģ еÑĢ", + "ĠSing apore", + "ĠN one", + "Ġch ronic", + "°ë į°", + "Ġe go", + "æł ·", + "ES T", + "ãģĤ ãĤĬ", + "ĠW ang", + "ĠN AT", + "Ġa ug", + "Ġdes ktop", + "Ġetern al", + "ĠìĤ¬ ìĭ¤", + "ĠConst itution", + "ìĤ ¬ë", + "×Ļ× ľ", + "p res", + "ĠТ Ñĭ", + "Ġinter f", + "Ġlist s", + "Ġfight s", + "ft en", + "ĠI owa", + "Ġmotiv ated", + "ĠH osp", + "Ġelse where", + "Ġpath s", + "Ġinst ances", + "B l", + "r ange", + "á» ±", + "ĠS it", + "man a", + "Ġìĭľ ìŀij", + "Ġm ình", + "ans as", + "Ġs na", + "Ġphilos oph", + "Ġpas se", + "Æ°á» Ŀi", + "ak h", + "ent al", + "Ġih n", + "ru ctor", + "Ġв аÑĪ", + "Ġgener ous", + "Ġp ivot", + "п ол", + "Ġjam ais", + "Ġcom ent", + "ĠL ew", + "od zi", + "ĠX box", + "Ġв од", + "Ġcons ent", + "ī ìŀ¥", + "Ġdis par", + "l ass", + "ĠGovern or", + "Be ifall", + "Ġê° ľ", + "Ġbelo ved", + "׳ ×ķ", + "se ll", + "Ġhon ored", + "le h", + "Ġw äre", + "un ting", + "Ġfra ud", + "ĠR AM", + "ê± ¸", + "Ġkill s", + "Ġeconom ics", + "0 4", + "п еÑĢ", + "Ġco isas", + "Ġи гÑĢ", + "ÃŃ m", + "Ġmö chte", + "Ġìµ ľ", + "Ġstim ul", + "Ġfast est", + "l v", + "Ġg én", + "ĠS ounds", + "Ġ19 70", + "Ġhome work", + "spe aking", + "Ġencour aging", + "Ġqu ery", + "Ġre vers", + "pro fit", + "Ġd y", + "Ġìŀ ij", + "ëĬĶëį° ìļĶ", + "Ġso ap", + "ĠG all", + "ĠC N", + "ĠAn s", + "Ġf ic", + "ank s", + "Ġdess ert", + "ĠìłĢ íĿ¬", + "ĠM aking", + "Ġcome ç", + "ê³ Ħ", + "Ġassoci ation", + "D ad", + "he e", + "Ġh ogy", + "Ġap ro", + "Ġinvis ible", + "Americ an", + "í İ", + "Ġvi be", + "Ġem issions", + "Ġadvoc ate", + "Ġkick ed", + "Ġ vel", + "Ġsum mar", + "Ġfre aking", + "ch ron", + "Ġpin ch", + "Ġwszyst k", + "isc al", + "Ġpro ved", + "Ġmind ful", + "Ġt ä", + "Ġno ises", + "Ġisol ated", + "Ġcross ed", + "Ġê° ķ", + "Ġvo ilÃł", + "Ġch ore", + "ĠR A", + "C om", + "Ġrelax ed", + "at ro", + "Ġpre vention", + "Voice over", + "O D", + "ĠCo vid", + "Ġsepar ation", + "Ġ- [", + "иÑĩ его", + "çĻ ¼", + "ĠS D", + "ble ep", + "Ġindepend ence", + "Ġpart ial", + "Ġalgorith ms", + "ĠAny one", + "Ġassoci ate", + "h um", + "ic ular", + "Ġb ạn", + "Ġbatt les", + "G ood", + "App lause", + "Ġbast ante", + "Ġadv ant", + "ĠS weet", + "Ġref used", + "ãĤ ¸", + "ĠÑĤеб е", + "pl et", + "Ġencour aged", + "åĵ ¦", + "Ġmir acle", + "ĠB un", + "ĠV ar", + "rim ination", + "e lect", + "ĠM ult", + "Ġdeliver ing", + "e ing", + "Ġc m", + "ne hmen", + "ĠL ine", + "Ġë§ Į", + "en ced", + "ĠS ound", + "ĠCont in", + "ij d", + "UN G", + "k le", + "Ġth reshold", + "Ġcomp act", + "ad t", + "Ġto es", + "ĠP ur", + "own ed", + "ment ed", + "Ġdes igning", + "Ġvacc inated", + "Ġexha ust", + "Ġbas ics", + "Ġcons ists", + "ĠGu y", + "ac zy", + "Ġm ÃŃ", + "w on", + "å® ³", + "Ġ8 5", + "æ Ĥ", + "Ġm um", + "Ġign or", + "Ġprint ing", + "ac ular", + "p ow", + "Ġexpand ing", + "Ġg ir", + "ĠC ab", + "íĺ ¸", + "ÑĤÑĮ ÑģÑı", + "ĠìĹ¬ëŁ¬ë ¶Ħ", + "Ġang les", + "Ġterm inal", + "ĠW on", + "ĠInter esting", + "Ġcross ing", + "Ġbond s", + "Ġpu eden", + "Ġor b", + "lar ın", + "Ġcreep y", + "Ġnutr ition", + "Ġall ies", + "Ġwire less", + "Ġdes ired", + "Ġcomp ute", + "ĠAri zona", + "ĠBeaut iful", + "Ġprodu ces", + "Ġnuest ro", + "t ed", + "Ġel igible", + "ĠÑģ оз", + "ic ial", + "ĠH ero", + "Ġcons ume", + "Ġrob ots", + "Ġpurch ased", + "c ción", + "Ġ iz", + "ượ c", + "ίν αι", + "ĠØ£ ÙĨ", + "Ġshad ows", + "ĠMed ia", + "Ġprin cess", + "Ġk lar", + "Ġwood en", + "Ġus ar", + "Ġg üzel", + "Ġsl ot", + "r ade", + "Ġë Ĵ", + "Ġhar mon", + "Ġingred ient", + "ors hip", + "ek i", + "Ġgrand father", + "Ġexcit ement", + "Ġpolit icians", + ".. !", + "Ġout s", + "Ġsepar ately", + "ĠÑı к", + "ĠW elt", + "ĠP ow", + "j an", + "Ġorient ation", + "åı ĭ", + "L C", + "age m", + "ÛĮ Úº", + "åIJ Ĺ", + "Ġbran ches", + "ad en", + "rent e", + "ĠI hr", + "as m", + "Ġest ão", + "ĠN ic", + "Ġsla ve", + "Ġcomp ress", + "c rowd", + "Ġclim bing", + "ĠMan agement", + "ĠB ah", + "Ġpan ic", + "Ġk or", + "Ġcool ing", + "Ġb ind", + "Ġз ад", + "Ġr ack", + "Ġent it", + "Ġs ends", + "Ġyour selves", + "d es", + "ĠMuslim s", + "Ġí ļ", + "ism a", + "cy cle", + "un kt", + "ĠC ore", + "Ġinj uries", + "Ġident ical", + "ка Ñı", + "ĠDeutsch land", + "Ġе е", + "is an", + "Ġtr uc", + "let on", + "Ġback up", + "Ġult ra", + "Ġab und", + "ille urs", + "Ġby ÅĤo", + "åħ ĥ", + "ort ed", + "Ġearth qu", + "Ġк л", + "Ġobs ervation", + "Ġmainten ant", + "el en", + "Ġsett led", + "Ġp ela", + "ĠE conom", + "Ġ Õ", + "Ġste ering", + "ĠAL L", + "ĠC her", + "Ġpat ience", + "ĠS now", + "Ġb or", + "Ġworth y", + "Ġcá i", + "Ġ× §", + "Ġκ α", + "d og", + "ĠK aren", + "ill es", + "Î ²", + "Ġagric ulture", + "×ķ× Ł", + "ĠSe an", + "Ġsens ors", + "íķ ´ë", + "ag h", + "Ġpublic ly", + "Ġpe ux", + "ĠAlex ander", + "Ġprior it", + "Ġla zy", + "ard on", + "atter ing", + "Ġcost ume", + "س ت", + "è¿ ĺ", + "Ġun w", + "Ð Ľ", + "Ġthick ness", + "qu ito", + "g unt", + "ist as", + "ne ys", + "ĠëIJĺ ê²Į", + "ĠBr asil", + "Ġto ken", + "Ġaff ili", + "l on", + "Ġf Ã¥r", + "ĠBe ach", + "Ġw itch", + "ĠSe ven", + "Ġp ant", + "λ λ", + "Ġcapt ain", + "å Ŀ", + "Ġve ut", + "Ġpou voir", + "ac z", + "ĠBar b", + "Ġut ility", + "Ġcontempor ary", + "Ġobt ained", + "Ġpainting s", + "e ar", + "Ġpe an", + "ĠO g", + "Ġc ust", + "л ем", + "Ĥ ĺë", + "ĠIs so", + "Ġac onte", + "ĠTe le", + "ĠAss istant", + "à ī", + "íĸĪ ìĬµëĭĪëĭ¤", + "Ġcount s", + "Ġbu ck", + "ĠDe ep", + "Ġtack le", + "Ġh arsh", + "Ġdec ides", + "éĹ ľ", + ". âĢĭ", + "éĤ Ĭ", + "ĠAng el", + "Ġlay ing", + "Ġcal ories", + "Ġcontro lling", + "Ġadvant ages", + "ĠÑįÑĤ ой", + "Ġappro aching", + "Ġthreat s", + "ak an", + "em atic", + "m ann", + "ê³ µ", + "m umbles", + "ac ió", + "Ġmaint aining", + "Ġfound er", + "l ah", + "f ight", + "Ġadm itted", + "âĢ¦ .", + "ķ Į", + "ab ol", + "Ġus age", + "Ġn onsense", + "ĠPal est", + "Ġcont re", + "ĠDemocr atic", + "ĠE R", + "j ekt", + "Ġar bit", + "Ġг ол", + "ĠMich elle", + "ich er", + "es h", + "ĠP ho", + "к ом", + "4 9", + "ĠEner gy", + "ο Ïį", + "Ġc ents", + "Ġref ers", + "Ġg ospel", + "ĠSh a", + "ĠSh are", + "×Ļ× ł", + "Ġclin ic", + "ĠëĦ £", + "Ġequ ality", + "ug s", + "Ġsh ed", + "Ġplan es", + "Ġtout e", + "re ck", + "Ġstra nd", + "Ġbi ology", + "Ġle ague", + "ĠP ok", + "Ġnúmer o", + "ĠCo ast", + "Ġconsist ently", + "Ġnuc le", + "OO OO", + "Ġob jet", + "Ġch or", + "Ġg inger", + "Ġd abei", + "Ġcoop eration", + "à¯į .", + "nt en", + "ç ¤", + "l Ãł", + "ìĸ ij", + "r ado", + "Ġpass ive", + "Ġglo ves", + "Ġunder ground", + "Ġlog ical", + "Ġk et", + "Ġfunction ality", + "¸ë ¦¬", + "Ġport al", + "ell er", + "×Ļ× ¨", + "ĠT ed", + "ĠG re", + "IJ ľ", + "Ġperson nel", + "Ġemer ging", + "ĠF ür", + "Ġmeant ime", + "usal em", + "ĠC lear", + "Ġtra pped", + "Ġìļ °", + "Ġdis pl", + "Ġmet tre", + "Ġmun icip", + "Ġwithd raw", + "Ġsp at", + "un es", + "Ġaccess ibility", + "æĪij 们", + "Ġap are", + "Ġpros pect", + "Ġн аз", + "Ġcop per", + "ĠP RO", + "Ïħ ÏĦ", + "Ġattack ing", + "ĠV in", + "ĠSt one", + "Ġinvestig ate", + "st yle", + "ĠÎ »", + "ë ¡Ŀ", + "ë§ Ī", + "Ġins pect", + "Ġli ver", + "ал иÑģÑĮ", + "Ġser a", + "hal ten", + "em an", + "Ġmin istry", + "' '", + "Ġd ots", + "ãħĭãħĭ ãħĭãħĭ", + "Ñĥ ÑģÑĤ", + "ĠJ ak", + "AK E", + "Ġg aps", + "uck er", + "ĠинÑĤеÑĢ еÑģ", + "ĠEm ily", + "Ġinter val", + "Ġt ender", + "ĠTechn ology", + "g ame", + "Ġtri b", + "ÙĦ ا", + "ĠDevelop ment", + "Ùħ ا", + "Ġwr ist", + "Ġf ires", + "Ġtarget ed", + "ìł IJ", + "Ġso d", + "íļ Į", + "Ġoldu ÄŁ", + "Ġse asons", + "vent ions", + "Ġн его", + "Ġsomet ime", + "ли в", + "n é", + "Ġt ú", + "ĠDe us", + "Ġexec ution", + "á p", + "ĠCh ange", + "ĠInd eed", + "Ġreg ulation", + "ĠH ung", + "é is", + "Ġwish es", + "Ġj azz", + "Ġstruct ural", + "Ġblow ing", + "Ġby Äĩ", + "Ġtherm al", + "ph ant", + "ÑĢÑĥ з", + "ан ÑĤ", + "ĠP ull", + "Ġconf usion", + "нÑĭ ми", + "Ġscen arios", + "ìłģ ìľ¼ë¡ľ", + "Ġд еÑĤ", + "Ġtatto o", + "Ġaut re", + "Ġhe ating", + "Ġtreat ing", + "Ġпон им", + "Ġexc lus", + "ĠL OL", + "we ar", + "ag le", + "Ġzur ück", + "Ġr ational", + "s u", + "Ġdet er", + "ĠN ative", + "à®ķ ள", + "ach ed", + "Ġ ãĥ", + "ĠEnt onces", + "Ġhor a", + "ìĿ´ìĹIJ ìļĶ", + "Ġl ite", + "à «", + "Ġsix th", + "Ġбол ее", + "act or", + "Ġpsych ology", + "çĽ ¸", + "Ġdem ands", + "Ġpe er", + "Ġnew ly", + "ĠWW E", + "Don ald", + "ĠBo x", + "Ġp ine", + "Ġload ing", + "ĠN ico", + "Ġs ÅĤ", + "omm e", + "AR T", + "Ġrecru it", + "Ġbug s", + "arent s", + "ĠпÑĢ об", + "ĠIn side", + "ipp er", + "d ramatic", + "Ġplan ets", + "ord e", + "Ġy oga", + "ch ild", + "ĠMar ie", + "Ġãģ Ĥ", + "ĠB L", + "Ġfil med", + "Ġref resh", + "Ġtomato es", + "Ġf et", + "Qu é", + "Ġ !!", + "ĠëĤ ´ë", + "r ine", + "Ġinteract ive", + "s al", + "ann ah", + "pe z", + "ç¶ ĵ", + "Ġunderstand s", + "ĠTok yo", + "Ġlibr aries", + "Ġread er", + "ij IJ", + "o z", + "ĠEnd e", + "ĠF lo", + "Ġm ild", + "Ġpo etry", + "Ġж ив", + "æĦ Ľ", + "Ġbeh ave", + "Ġdo en", + "ĠSus an", + "p age", + "ra ham", + "Ġcommunic ations", + "Ġtun ing", + "Ġp ac", + "Ġanx ious", + "I O", + "M ark", + "Ġhi ç", + "book s", + "Ġp iss", + "Ġen abled", + "achel or", + "ĠF OR", + "Ġé c", + "ĠT R", + "il st", + "h at", + "ĠìĿ Į", + "Ġty ch", + "Ġj ar", + "Ġbuild s", + "ĠAr gent", + "Ġinter medi", + "Ġl ou", + "Ġa ra", + "Ġassign ment", + "Ġcabin et", + "Ġretire ment", + "ãģ »", + "Ġdis abled", + "ric a", + "Ġa wards", + "Ġbo ots", + "Ġacknow led", + "Ġth y", + "Ġêµ ¬", + "Ġsy nd", + "ни й", + "il ton", + "Ġprob l", + "ĠF al", + "Ġverd ade", + "Ġ7 00", + "ĠLe arning", + "oc us", + "Ġpal ace", + "N ot", + "t ain", + "c m", + "Ġmagn et", + "inc oln", + "Ġfig uring", + "ĠL yn", + "ĠB oss", + "ĠV O", + "Ġdiagn osis", + "Ġequ ipped", + "w atch", + "in os", + "ad ers", + "Ġsh elf", + "Ġorgan is", + "Ġn od", + "Ġk ız", + "pp ers", + "Ġrest ore", + "Ġart ic", + "ĠVo ice", + "ı yorum", + "ê² ©", + "Ġspread ing", + "Ġh ips", + "Ġw ard", + "ure au", + "Ġinter section", + "6 6", + "Ġ3 9", + "ç ³", + "Ġwait ed", + "ì ´", + "hh hh", + "Ġd ys", + "ĠE N", + "Ġb atch", + "Ġca f", + "Ġmark er", + "大家 好", + "or able", + "ó ria", + "Ġste pped", + "Ġcelebr ating", + "ан а", + "Ġwor n", + "ĠF ol", + "Ġpl a", + "Ġattempt s", + "Ġtwe et", + "Ġr ust", + "g ence", + "í Ĩµ", + "Ġre vel", + "Ġre cept", + "en ess", + "Ġ( (", + "ãĥ¼ ãĥ", + "! âĢĭ", + "ĠìĨ IJ", + "Ġinfluen ced", + "и ж", + "Ġкон еÑĩно", + "Ġcolleg es", + "ion i", + "Ġs ag", + "An n", + "ol ar", + "Ġexpress ions", + "Ġsu its", + "Ġowners hip", + "el and", + "pie ce", + "æĢİ ä¹Ī", + "Ġdesp ués", + "Ġt el", + "Ġins ult", + "Ġêµ īìŀ¥", + "ĠSm all", + "ĠF R", + "ok a", + "ber ries", + "ĠAnt on", + "ел Ñı", + "Ñı Ñģ", + "Ġval ve", + "act s", + "Ġwood s", + "à® £", + "Ġcult iv", + "Ġf á", + "ãģ¨ ãģĦãģĨ", + "Ġche ers", + "Ġassum ption", + "Ġfit ness", + "ÃŃ cul", + "Ġpod r", + "Ġwe it", + "ĠH ind", + "Ġd ign", + "Ġз н", + "Ġsqu ad", + "Ġdest ro", + "c ere", + "sh irt", + "imm t", + "eng ers", + "Ġs ä", + "k ÅĤad", + "Ġ ÈĻ", + "Ġocc as", + "Ġì¤ Ħ", + "Ġprocess or", + "ĠD M", + "ĠDad dy", + "Ġsoon er", + "Ġstraight forward", + "Ġdepart ments", + "ĠChr ome", + "Ġwork place", + "ĠPy thon", + "Ġm eng", + "ĠD AN", + "ĠI ce", + "ĠëĪ Ī", + "ĠG i", + "Ġh iring", + "Ġland ed", + "Ġdemocr atic", + "ied z", + "ãģĺ ãĤĥ", + "Ġse v", + "ic ia", + "Ġespe cial", + "ĠN ous", + "Ġh ät", + "Ġb ou", + "per t", + "ies z", + "åij Ģ", + "Ġv il", + "ÅĽ li", + "Ġî n", + "Ġloss es", + "éķ ·", + "Ġto ast", + "Ġreal m", + "ĠAust in", + "ĠIn formation", + "Ġres ume", + "Ġch ase", + "Ġsal ary", + "Ġë¶ Ħ", + "ли Ñĩ", + "ĠÑģл ед", + "ĠFur ther", + "Ġcar ing", + "Ġv ig", + "Ġval or", + "è¿Ļ 个", + "ĠÑĩ а", + "Ġanalyt ics", + "Ġglo be", + "ĠM AN", + "Ġn el", + "ìĿ´ì ķ¼", + "Ł ¼", + "Ġo y", + "íķĺ ìĦ¸ìļĶ", + "j en", + "Ġtrou bles", + "ah aha", + "Ġchurch es", + "u et", + "Ġmeasure ments", + "b il", + "ì ½", + "if ully", + "ин Ñĥ", + "ĠWil son", + "¦ ´", + "ĠíĮ Į", + "Ġì° ¨", + "Ġp úblic", + "ĠJer usalem", + "Ġn ails", + "Ġsp ine", + "Ġhe mos", + "Ġz n", + "qu is", + "ĠLe ben", + "Ġrefer ences", + "IT H", + "i per", + "ĠÑģеб Ñı", + "ì ģ", + "ĠW a", + "st ate", + "§ Ŀ", + "åħ ±", + "ĠGen er", + "Ġact ress", + "ĠEn joy", + "๠ĥ", + "Ġ× Ĵ", + "Ġinfect ed", + "Ġsh aking", + "Ġn ick", + "ภ¸", + "Ġf ot", + "Ġaccompl ished", + "u ke", + "Ġshe ets", + "Ġf ence", + "Ġnurs ing", + "Ġintrodu cing", + "Ġfe at", + "O ne", + "T O", + "Ġcl ubs", + "ĠBru ce", + "on ge", + "ch ange", + "ĠBat man", + "åı °", + "ĠOffic er", + "Ġhyd ro", + "Ġsupp lement", + "Ġc ela", + "Ġlong est", + "Ġcompet ing", + "Ġcon he", + "g iving", + "Ġbra ins", + "Ġlo ans", + "Ġw age", + "ĠCl inton", + "Ġs Äĥ", + "ane ous", + "Ġl ord", + "ÑĢÑĥ ж", + "Ġqu iz", + "Ġst iff", + "ĠL GB", + "s z", + "M E", + "m are", + "th ere", + "Ġn är", + "ĠM and", + "l ast", + "Ġd ag", + "Ġhalf way", + "ĠB and", + "Ġëĭ¤ ìĭľ", + "ĠA ren", + "Ġi le", + "P N", + "ent o", + "Ġalg um", + "Ġsoc cer", + "Ġblock ed", + "ĠJon athan", + "Ġse w", + "ĠTest ament", + "Ġv ale", + "Ġbehav i", + "å§ ĭ", + "Ġcon na", + "IC H", + "Ġaud iences", + "m l", + "amm ad", + "ĠìĤ ´ì", + "I GH", + "Ġr aces", + "em ed", + "Ġm á»Ļt", + "à ¯", + "Ġover s", + "Ġdecl ared", + "Ġs ana", + "ĠU na", + "ĠÑĢ е", + "uck s", + "Ġp airs", + "Ġan ge", + "N e", + "Ġup s", + "av y", + "ø r", + "ree k", + "Ġbehav iors", + "Ġreflect ed", + "Ġprior ities", + "Ġcon du", + "Ġret reat", + "Ġexp enses", + "Ġë´ IJ", + "Ġtri ple", + "Ġêµīìŀ¥ íŀĪ", + "ä lt", + "Ġind igenous", + "Ġmin ing", + "Ġaccept able", + "Ġru in", + "C A", + "u ine", + "Ġpip eline", + "ct ic", + "ê t", + "ĠвÑģ его", + "Ġb oun", + "ĠDig ital", + "ĠBo om", + "ÑĨ е", + "Ġл ÑĥÑĩ", + "Ġas c", + "ĮĢë ¡ľ", + "ĠGood bye", + "Ġrend er", + "ene z", + "ar re", + "ĠTH AT", + "b our", + "ic ión", + "ãĤ Ń", + "E very", + "Ġw ires", + "ĠPar liament", + "n ung", + "ate ur", + "ĠS ave", + "ĠPh ys", + "Ġam or", + "ĠE ve", + "Ġfr ight", + "Ġgam ma", + "Ġmic ros", + "m itt", + "ĠC ode", + "ĠBe y", + "pl ed", + "ĠиÑģп олÑĮз", + "ç Ĺ", + "ìĥ ī", + "å¥ ¹", + "Ġmon et", + "ĠJah re", + "Ġlux ury", + "Ġde af", + "Ġbet ray", + "Ġê² °", + "и ки", + "Ġdefe ated", + "Ġunder t", + "Ġwe g", + "Ġcool er", + "ãģķ ãĤĵ", + "iam i", + "éĤĦ æľī", + "ĠJess ica", + "ĠJ oy", + "Ġsoph istic", + "ени и", + "ðĿ ĺ", + "Ġch ili", + "ĠTy pe", + "Ġprote ins", + "Ġpresent ing", + "al ia", + "ìļ ¸", + "ĠMaj or", + "Ġmolec ule", + "um er", + "Ġcoll apse", + "ĠAny ways", + "ĠMount ain", + "ant ed", + "ãĢ IJ", + "Ġвиде о", + "æ° ´", + "A ud", + "Ġcon qu", + "Ġvo ll", + "Ġkn it", + "Ġmem br", + "ĠMark et", + "Ġd ari", + "Ġcalcul ated", + "г и", + "Ġshrim p", + "ĠM u", + "ĠпÑĢ оÑĤ", + "Ġìĺģ ìĥģ", + "Ġproduct ivity", + "Ġcogn itive", + "ĠHe b", + "ict ions", + "ê² ½", + "Ġcr é", + "f ör", + "Ġpray ing", + "ash i", + "ĠT ik", + "ó r", + "w en", + "ÑĮ Ñİ", + "ix o", + "Ġ( \"", + "ĠÑĤ ел", + "Ġìĸ´ëĸ ¤", + "ĠпеÑĢ ед", + "ĠD rive", + "ãĢ ij", + "ĠE qu", + "Ġequilib rium", + "Ġdescri bes", + "не е", + "4 2", + "ĠCur rent", + "y y", + "Ġabsor b", + "Ġsold ier", + "d ers", + "Ġtestim ony", + "Ġdec line", + "ľë ¡ľ", + "g age", + "Ġinsp ire", + "la pping", + "Ġspin ning", + "Ġsla very", + "Ġfac ial", + "Ġtrad itions", + "ári os", + "ĠHosp ital", + "Ġn est", + "ĠëĪ Ħ", + "Ġto i", + "Ġfe ars", + "ìħ ¨", + "ĠM uh", + "Ġgradu ation", + "Ġimpact ed", + "Ġa unt", + "ĠLet s", + "Ġalumin um", + "Ġdomin ant", + "ĠDav is", + "ĠNav y", + "Ġcom pt", + "op les", + "Ġest ava", + "è ¥", + "Ġsc al", + "Ġpres erve", + "ĠO pp", + "Ġpract ically", + "Ġmagn itude", + "Ġf itting", + "Ġcoordin ate", + "Ġfurn iture", + "ĠFam il", + "Ġexplos ion", + "Ġdocument ary", + "ĠS cript", + "Ġport ray", + "m at", + "Ġschedul ed", + "Ġdynam ics", + "ph y", + "ak y", + "ĠU I", + "C he", + "Ġcontinu ously", + "ĠPro v", + "å° ij", + "Ñĥ з", + "ra h", + "Ġger ne", + "pro of", + "Ġsecret ary", + "ĠPat reon", + "sc ream", + "ĠK ids", + "á»ĵ i", + "Ġk g", + "Ġuncertain ty", + "Ġк ажд", + "Ġmit ig", + "Ġread s", + "å· ²", + "ĠR u", + "Ġpri est", + "Ġн ед", + "Ġlimit ations", + "Ġflo at", + "6 00", + "ĠT oy", + "ĠJim my", + "Ġoff ensive", + "en i", + "ĠX i", + "Ġeye br", + "ĠTur k", + "Ġaccident ally", + "Ġoh ne", + "ĠS aud", + "9 5", + "ĠD utch", + "ан Ñģ", + "ĠSe attle", + "Ġëĵ ±", + "che ck", + "k ÄĻ", + "Ġcontrib utions", + "Ġbes ide", + "Ġqu indi", + "Ġfle w", + "æĹ ¶", + "Ø° ا", + "ĠL O", + "Ġwa ist", + "ĠE V", + "Ġhol idays", + "j on", + "Ġmis under", + "Ñı н", + "Ġb out", + "Ġd imin", + "Ạ½", + "ó l", + "ĠGr ace", + "Ġinput s", + "Ġden y", + "Ġform ing", + "ĠB ild", + "Ġad equ", + "Ġfol k", + "Ġreject ed", + "se mb", + "Ġfrust rated", + "op en", + "ĠBet ter", + "il on", + "Ġtow el", + "Ġdifferent ial", + "Ġsac red", + "Ġsa il", + "éĩ Į", + "ent imes", + "Ġgentle man", + "Ġicon ic", + "Ġcomp aring", + "Ġs agt", + "Ġtext s", + "Ġgrand ma", + "Ġroll s", + "Ġcont ents", + "ä¸į 好", + "оÑģ Ñģ", + "Ġsusp ension", + "ro it", + "¦ ¼", + "Ġasse z", + "Ġd ort", + "ĠM ath", + "ĠVict or", + "ĠJava Script", + "ä¸į å°į", + "Ġen han", + "Å Ļ", + "ĠB ush", + "Ġpromot ion", + "Ġk in", + "Ġmon sters", + "ĠColor ado", + "ĠÎ ²", + "íķ´ì ļĶ", + "æŃ £", + "iffer ent", + "Ġn aked", + "Ġpro d", + "et ics", + "ĠW oman", + "Ġtreat ments", + "Ġest oy", + "v é", + "Ġlif ting", + "Ġy apt", + "ĠRo ber", + "Ġì¹ ľ", + "Ġsubst itute", + "ak u", + "r idge", + "Ġê± °ë", + "Ġrespond ed", + "Ġb é", + "ĠEngine er", + "Ġtransfer red", + "ë ²", + "Ġha ber", + "o op", + "ĠW E", + "Ġv est", + "Ġfor ty", + "ĠD S", + "Ġ200 4", + "Ġco aching", + "n om", + "ĠB ab", + "Ġn ossa", + "ĠJ ake", + "Ġg y", + "Ġde leg", + "Ġìŀ ł", + "ĠкÑĢ аÑģ", + "Ġstand point", + "Ġdis ad", + "Ġart work", + "A d", + "ill o", + "ĠÄij ược", + "ĠPr om", + "ĠL ib", + "Ġcritic ism", + "Ġcontact s", + "ÑĢ ам", + "Ġachieve ment", + "ÐĶ а", + "Ġdiss ol", + "ĠVeg as", + "Ġstream s", + "ĠK ent", + "ĠعÙĦ Ùī", + "Ġrad ius", + "Ġsu cks", + "ĠA ch", + "Ġf i", + "ou st", + "ĠлÑİд и", + "Ġpal ette", + "ĠH az", + "ĠAnth ony", + "Ġtem a", + "ĠC os", + "Ġsa fer", + "α ÏĤ", + "Ġcont rad", + "Ġma ior", + "Ġinfl ation", + "ĠSil ver", + "Ġatt ending", + "íķľ íħĮ", + "art o", + "Ġapplaud ing", + "Ġcomput ing", + "ĠH at", + "æ »", + "k now", + "mak ers", + "Ġcon oc", + "Ġeduc ated", + "Ġmod ified", + "Ġinc lusion", + "ment al", + "ŀ IJ", + "is ia", + "ĠÏĢ οÏħ", + "Ġa un", + "ĠIre land", + "Ġk ö", + "Ġcompl iance", + "Ġinsp iring", + "иÑĤелÑĮ но", + "Ġdisp os", + "ì° ¨", + "Ġw ip", + "r ical", + "raw d", + "Ġt res", + "Ġmob il", + "olut ions", + "B O", + "Ġb ounce", + "Ġassum ed", + "ĠMed ical", + "Ġf iscal", + "Ġng Æ°á»Ŀi", + "ition ally", + "Ġst olen", + "ĠB M", + "Ġmechanism s", + "ε ί", + "Ġqual ified", + "Ġìŀ IJë", + "ught ers", + "ĠH IV", + "ĠL ots", + "Ġser vers", + "Ġcar r", + "ĠT ogether", + "Ġattract ed", + "Ġk r", + "æĪij æĺ¯", + "th ur", + "in in", + "ĠH alf", + "È Ľ", + "ĠP ap", + "Ġremind ed", + "AL L", + "Ġhel met", + "Ġbott les", + "Ġprofess ors", + "Ġse ine", + "ÅĤ Äħ", + "ãĥ ı", + "Ġê±° ìķ¼", + "Ġ×¢ ׾", + "f un", + "ĠB ird", + "Ġfight er", + "ĠëĶ °ë", + "ĠT ool", + "Ġt in", + "ino is", + "ë ¶Ħ", + "×Ļ× Ł", + "ĠC AR", + "åIJ į", + "irst y", + "Ġout door", + "ĠN S", + "ãħ İ", + "ff en", + "Ġl ud", + "H ello", + "Ġroll er", + "ie le", + "ĠPol and", + "Ġap a", + "ex p", + "Ġcertific ate", + "ĠT own", + "аÑİÑĤ ÑģÑı", + "ild e", + "Ġdeterm in", + "P R", + "Ġfree ze", + "Ġmain stream", + "Ġobject ives", + "b lo", + "Ġtak ie", + "åĵĪ åĵĪ", + "Ġë°Ķë ¡ľ", + "el et", + "ĠI V", + "ĠF ast", + "Ġd ere", + "em p", + "ĠD ra", + "ĠìŀĪ ìĹĪ", + "Ġdisc rimination", + "Ġε ίναι", + "ne cess", + "æ ®", + "ıģ ı", + "Ġpost ing", + "wi ÅĽcie", + "Ġl ub", + "Ġol ive", + "Ġr im", + "Ġmodel ing", + "Ġa ño", + "ĠPak istan", + "Ġover l", + "Ġinf lam", + "N E", + "ìĹIJ ê²Į", + "Ġatt ended", + "Ġdeal t", + "ĠAl t", + "ĠL incoln", + "Ġaw ake", + "Ġfil ters", + "ĠWith in", + "czy wiÅĽcie", + "Ġs û", + "ĠJohn ny", + "Ġintegr ity", + "Ġisol ation", + "ĠE asy", + "ĠпÑĢ ин", + "ĠAl ice", + "Ġsm iling", + "en ix", + ", ...", + "Î ¶", + "Ġbeg un", + "Ġjew el", + "Ġconvention al", + "Ġstat ist", + "Ġhand ed", + "Ġir re", + "Ġpro hib", + "Ġsatell ite", + "é¦ Ļ", + "ĠInd ust", + "Ġtra ged", + "Ġtra va", + "Ġih m", + "Ġcru el", + "ĠAg ora", + "ĠD oc", + "Ġz ones", + "Ġm all", + "Ġtr ay", + "×ķ× ł", + "Ġir rit", + "Ġk ans", + "ĠBe at", + "ud ge", + "ie lle", + "Ġtrust ed", + "Ġb ikes", + "ĠÑĥ п", + "ĠM ember", + "w ick", + "Ġcreat ors", + "Ġher itage", + "ind istinct", + "Ġres ur", + "enn en", + "C ome", + "Ġf iring", + "ĠBu eno", + "ĠТ о", + "ik an", + "ett es", + "Ġk es", + "Ġtri ps", + "Ġdivor ce", + "ĠK l", + "Ġcons ol", + "ke ep", + "기 ê°Ģ", + "ĠRep ort", + "Ġhost ing", + "Ġdiam ond", + "Ġcompl ic", + "Ġhel icop", + "Ġdep uis", + "d s", + "ĠCh an", + "Ñı л", + "Ġsc issors", + "il ation", + "Ġprop ortion", + "ER E", + "ĠÙĪ اÙĦ", + "int a", + "Ġmuch as", + "u ation", + "it is", + "æĬ Ĭ", + "Ñı Ñī", + "Ġni in", + "Ġemphas ize", + "uel a", + "Ġprodu cers", + "Ġr ze", + "änd er", + "ET H", + "æ º", + "Ġconst itu", + "åĽ ½", + "Ġperform ances", + "ist le", + "go v", + "ĠL iter", + "Ġincorpor ate", + "Ġeduc ate", + "ĠN in", + "ì ª½", + "Ùĩ Ùħ", + "el eration", + "×ķ× ij", + "Ġya ÅŁ", + "or ous", + "ĠC as", + "Ġgr ants", + "ëĬ ¥", + "am el", + "Ġê·¸ë łĩê²Į", + "ĠE ste", + "Ñħод иÑĤ", + "ĠпоÑģ ле", + "Ġg ent", + "Ġfocus es", + "al ities", + "ĠR h", + "ë ³´", + "æ° ij", + "ĠD ance", + "r r", + "Ġam er", + "Ġutil ize", + "Ġl ÃŃ", + "ĠAm ong", + "Ġpregn ancy", + "Ġlo ops", + "ал оÑģÑĮ", + "ĠM oh", + "Ġcatch ing", + "Ġglo b", + "Ġa jud", + "Ġ[ ?", + "ĠAn al", + "lo oking", + "Ġsurf aces", + "Ġprogress ive", + "Ġvir al", + "0 8", + "Î ¾", + "K A", + "Ġ ży", + "Ġpick s", + "ann on", + "Ġbul k", + "ĠR oss", + "Ġdescri bing", + "ĠG el", + "Ġloc ally", + "Ġend less", + "Ġmass age", + "Ġclean ed", + "Ġtravel ed", + "ен Ñĭ", + "Ġsent iment", + "ig ma", + "ĠN as", + "Ġchemical s", + "Ġright eous", + "ĠMag ic", + "Ġrel ates", + "Ġtruck s", + "Ġ19 60", + "åĪ ¥", + "Ġapp et", + "Ġsn acks", + "ĠSum mer", + "Ġy üz", + "Ġpr is", + "ĠMex ican", + "Ġtransp aren", + "Ġminor ity", + "Ġver te", + "Ġl assen", + "4 6", + "л ек", + "é p", + "ĠÑĦ илÑĮ", + "Ġi yi", + "Ġsp an", + "íķĺ ì§Ģ", + "Ġind icated", + "qu ar", + "Ġscholars hip", + "ĠLGB T", + "Ġhistor ically", + "ó ÅĤ", + "Ġmin ist", + "Ġpen et", + "ĠR ap", + "Ġcons ervation", + "çĽ ´", + "ĠH oney", + "ĠBe i", + "id el", + "Ġrespons ibilities", + "Ġmess y", + "ĠEx cept", + "OR E", + "Ġiniti atives", + "Ġjun ior", + "Ġdesign ers", + "Ġexpl oration", + "Ġspons or", + "Ġmob ility", + "Ġint eg", + "land o", + "Ġb ark", + "Ġindic ates", + "à ¶", + "Ġemploy er", + "å® ī", + "Ġcous in", + "Ġbo iling", + "Ġch rom", + "Ġç al", + "Ġper pet", + "Ġcont ained", + "Ġpark s", + "Ð «", + "ĠEngine ering", + "P lease", + "ĠStart ing", + "her o", + "Ġlaw yers", + "è¥ ¿", + "Ġz d", + "Ġfranch ise", + "ra ge", + "Ġint uit", + "ĠG L", + "re ach", + "ĠE lle", + "Ġnh Æ°", + "ĠN ord", + "Ġbe an", + "0 7", + "Ġple asant", + "å½ ĵ", + "v iron", + "Ġgrad ient", + "z us", + "ĠE M", + "Ġess ay", + "ìĹIJ ìļĶ", + "ế n", + "n u", + "á» «", + "ĠÃī s", + "Ġden omin", + "ĠGirl s", + "Ġperson nes", + "ĠاÙĦØ £", + "b ild", + "ĠSt at", + "Ġcompl iment", + "ĠK ate", + "Ġoptim al", + "Ġh id", + "د ÙĬ", + "Ġquick er", + "w all", + "E n", + "IN E", + "?? ?", + "ì² ´", + "ĠA ction", + "å Ł", + "Ġpenal ty", + "ĠK az", + "' ?", + "Ġc ried", + "Ġcan vas", + "ft e", + "Ġexc lud", + "¸ë ¡ľ", + "Ġemphas is", + "Ġen zy", + "ĠH ou", + "Ġoverse as", + "ÃŃ amos", + "å¸ «", + "ö glich", + "Ġhead phones", + "c n", + "ĠA ge", + "Ġa kan", + "Ġcharacter istic", + "íķĺë ©´", + "get s", + "Ġë¶ Ī", + "Ġr ival", + "Ġb orders", + "em ente", + "em ás", + "Ġy ol", + "Ġcom pe", + "end ers", + "ınd an", + "Ġmö glich", + "Ġbubb les", + "nat ural", + "Ġar med", + "Ġel abor", + "ĠìĿ´ë ²Ī", + "Ġwash ed", + "οÏħ με", + "è« ĭ", + "Ġfl avors", + "Ġexist e", + "Ġpre st", + "ĠThe ma", + "оп ÑĢоÑģ", + "er on", + "U E", + "er i", + "Ġconc er", + "Ġa ixò", + "åħ ©", + "Ġprotect ive", + "Ġзна Ñİ", + "ĠëĤ ł", + "ĠII I", + "Ġme er", + "ĠSh op", + "ll i", + "ĠOr der", + "ĠM Y", + "ĠG host", + "ãĤĤ ãģĨ", + "ad el", + "Ġst ole", + "Ġrele asing", + "ĠCom ment", + "Ġtra ins", + "ë ªħ", + "Ġw issen", + "ens ed", + "Ġdesc end", + "Ġf ier", + "Ġrad i", + "Ġpers u", + "ç ¢", + "Ġм н", + "ĠD est", + "Ġwor ries", + "it et", + "b as", + "Ġst ab", + "n ame", + "or ic", + "ĠCl ose", + "Ġalum ni", + "ĠS elf", + "ff e", + "it ating", + "ather ine", + "ĠRight s", + "Ġell os", + "Ġwar rant", + "Ġn erve", + "Ġveget able", + "ĠTe il", + "Ġê°Ļ ìĿ´", + "R Y", + "Ġsustain ability", + "Ġste ht", + "Ġbr id", + "ada ÅŁ", + "Ġt v", + "Ġdur ation", + "Ġpesso a", + "Ġmet rics", + "Ġad am", + "c as", + "аÑĢ и", + "Ġev ident", + "Ġdisplay ed", + "Ø§Ø ¦", + "Ġre ck", + "ĠBudd ha", + "Ġde le", + "ĠDie go", + "os ph", + "Ġb la", + "ĠM ik", + "ul ator", + "Ġ200 1", + "Ġpromot ing", + "y ch", + "ĠE X", + "Ġlast ly", + "Ġout line", + "Ġspir its", + "Ġve ux", + "Ġsubt ract", + "ĠÅŁ imdi", + "Ġp ins", + "Ġbur ger", + "Ġmol to", + "Ġhab ÃŃa", + "Ġë° ĺ", + "ig u", + "er st", + "Ġn en", + "Ġbac on", + "it ious", + "Ġcar ries", + "Ġprom ises", + "nd e", + "ĠLe ft", + "ĠL im", + "æ £", + "Ġ4 4", + "Ġcare ers", + "Ġì£ ¼ë", + "Ġspeed s", + "qu é", + "m ad", + "mark et", + "is me", + "Ġ200 3", + "Ġre cess", + "ĠJ UD", + "Ġrac ist", + "ĠSch l", + "Ġpar ler", + "Ġot ros", + "ish es", + "Ġconvert ed", + "aa aa", + "ани и", + "ĠAr k", + "ĠCh ance", + "Ġelement ary", + "ε ν", + "ink s", + "Inter viewer", + "Ġfre ely", + "al ah", + "Ġëĭ¤ë ¥¸", + "Ġrequest ed", + "Ġtor que", + "no ÅĽci", + "ou red", + "ĠSt aff", + "Ġst ain", + "ĠAl an", + "Ġv ere", + "ĠW inter", + "Ġdef ect", + "ied y", + "Ġbe ats", + "Ġh á", + "um n", + "o ons", + "it udes", + "Ġse it", + "o ly", + "Ġres erv", + "Ġext r", + "Ġphys ician", + "vis or", + "Ġhand ful", + "ĠN ations", + "Ġì¢ĭ ìĿĢ", + "uc cess", + "Ġup stairs", + "ĠSqu are", + "Ġhe in", + "ĠSe ason", + "ol is", + "Ġpr ince", + "Ġdef ensive", + "ç ½", + "Ġм еÑģÑĤ", + "Ñĸ й", + "Ġا ÙĨ", + "um ble", + "ê¹Į ìļĶ", + "Ġass ass", + "Ġcirc ular", + "Ġqual ities", + "Ġh mm", + "Ġbl own", + "ĠL iz", + "ĠK ur", + "ĠS A", + "Ġfind ings", + "Ġcol ours", + "Ġde lle", + "ĠI R", + "ĠA th", + "ĠD ub", + "ĠO x", + "ĠØ ®", + "Ġpo ckets", + "Ġgr ill", + "Ġswitch ing", + "Ġprefer red", + "ĠW ales", + "Ġex emplo", + "Ġchop ped", + "Ġvacc ination", + "Ġne uro", + "Ġspec ify", + "iv os", + "Ġser á", + "Ġz ie", + "Ġà® ®", + "Ġresult ing", + "ĠU gh", + "Ġmess ed", + "C D", + "Ġpa ar", + "Ġcom er", + "Ġcou ch", + "ĠFest ival", + "Ġ4 9", + "v ous", + "z ens", + "ç¨ ®", + "ĠKenn edy", + "ĠT s", + "Ġë³´ì Ĺ", + "Ġdemonst ration", + "Ġun to", + "Ġfrust rating", + "Ġlabor atory", + "Ġe gy", + "Ġbeaut ifully", + "Ġìŀ ¬ë", + "Ġal gu", + "Ġö yle", + "ä½ł çľĭ", + "ĠP H", + "Ġfort une", + "Ġclean er", + "ĠRob in", + "Ġsa us", + "ĠG eld", + "Ġk at", + "o bs", + "Ġol ur", + "Ġm att", + "Ġquest a", + "Ġsuggest ion", + "en cer", + "о ÑģÑĤ", + "Ġrad ar", + "Ġìŀ ¡", + "ish a", + "à® ¨", + "ãĤĵ ãģª", + "j es", + "Ġve el", + "ìĤ °", + "Ġauth ors", + "ãĢ İ", + "pl an", + "Ġcollabor ative", + "Ġinst inct", + "Ġfar ming", + "au ge", + "E du", + "Ġmembers hip", + "Ġsimult aneously", + "Ġb ake", + "Ġk ä", + "Ġlect ures", + "Ñĩ еÑģ", + "Ġprend re", + "Ġcoll aps", + "ĠS aya", + "ĠF ut", + "Ġy og", + "ĠR ather", + "ر ÙĬ", + "Ġcamp s", + "ол од", + "Ġsim ulation", + "ĠM ak", + "La ughs", + "Ġgre y", + "Ġsent ences", + "y en", + "ĠUn less", + "J e", + "ĠSat an", + "ĠÑĤак же", + "ĠN A", + "Ġbr on", + "Ġ? ]", + "Ġsoul s", + "Ġlight ning", + "Ġimag ined", + "Ġczy li", + "ps ilon", + "et ta", + "Ġbelie ving", + "Ġstrong est", + "ĠC ON", + "Ġquel ques", + "Ġimmig rants", + "Ġwall et", + "éĢĻ æĺ¯", + "ĠJer sey", + "Ġimplic ations", + "Ġfor b", + "ãĢ ı", + "Ġun believable", + "Ø§Ø ¡", + "Ġoper ational", + "ü s", + "ĠG M", + "Ġê·¸ëŁ °ëį°", + "Ġgrac ias", + "Ġent end", + "ĠReg ard", + "ro b", + "ĠÑĤ еÑħ", + "è ı", + "ĠRev olution", + "Ġwa ar", + "ĠB iz", + "th eless", + "Ġspons ored", + "qu ier", + "ĠìĿ ¼ë", + "Ġte k", + "ĠëIJ ł", + "ig keit", + "ĠL uck", + "ĠCertain ly", + "Ġto ll", + "Ġн иÑĩего", + "ĠM oney", + "ĠÑģ ÑĤоÑĢ", + "ĠDou ble", + "ĠW olf", + "Ġch unk", + "ά ν", + "it és", + "on ing", + "M ar", + "Ġgrand es", + "Ġcollect ions", + "ĠEurop a", + "Ġа ÑĢ", + "ĠâĢĭâĢĭ âĢĭ", + "Ġê·¸ëŁ¬ë ©´", + "Ġоб ÑĬ", + "Ġãģ ª", + "Ġìĭľ ê°Ħ", + "ĠC ustom", + "Ġì² ĺ", + "Ñĸ лÑĮ", + "Ġindivid ually", + "í Ĺ", + "Ġdo zen", + "Ġo we", + "ĠVict oria", + "åı¯ èĥ½", + "Ġbe et", + "ur b", + "Ġanal og", + "i ção", + "Ĥ ľ", + "so ever", + "Ġmod o", + "Ġsubscri bed", + "ìŀ ¬", + "Ġent ities", + "çī ĩ", + "Ġclos et", + "Ġrespond ing", + "Ġprin ter", + "ĠStep han", + "Ġby ÅĤ", + "ĠD om", + "ĠF ern", + "ĠP ier", + "ĠwiÄĻ c", + "Ġh ence", + "Ġmod ules", + "ãĥ ¬", + "ĠëĶ ±", + "ĠDann y", + "ĠÑģеб е", + "Ġv ad", + "ĠìĹ Ħ", + "Ġs ous", + "Ġsp here", + "B Y", + "ĠP ed", + "ign ed", + "Ġwhe at", + "Ġund ers", + "Ġevol ve", + "Ġdec lar", + "Ġlight ly", + "Ġident ifying", + "æĦı æĢĿ", + "Ġlegend ary", + "Ġgen uine", + "Ġgr ind", + "ĠU ne", + "ge ben", + "Ġb icy", + "Ġjump s", + "Ġprov ince", + "zi ÄĻ", + "Ġ×IJ× ł×Ļ", + "Ġh oc", + "Ġб л", + "ĠGr ad", + "Ġreven ge", + "ĠاÙĦ ت", + "o oh", + "æĭ ľ", + "аÑĨи и", + "å¹ ³", + "Ġelect ro", + "ĠëIJ IJ", + "ãģ§ ãģ¯", + "Ġf als", + "ri el", + "ok er", + "ĠEx cellent", + "ĠMor gan", + "Ġbr ick", + "Ġsubstant ial", + "Ġpoll ution", + "ĠT ür", + "ĠEv et", + "Ġl ung", + "ãģ ĸ", + "×Ļ× ©", + "omm es", + "Ġreal izing", + "Ġhum ble", + "ĠL ock", + "Ġb od", + "Ġìĸ ¸", + "Ġpe ers", + "uz z", + "Ġembed ded", + "Ġclar o", + "Ġag greg", + "Ġemploy ers", + "ĠR aj", + "Ġãģ ¨", + "ĠY i", + "Ġje u", + "at ers", + "Ġstri kes", + "n os", + "aut res", + "d r", + "op her", + "ĠApp arently", + "íĺ Ħ", + "Ġinf ant", + "ا ب", + "ÑĤ Ñĭ", + "í Ľ", + "Ú ¯", + "Ġred es", + "acaÄŁ ım", + "ĠDA VID", + "ĠCh icken", + "Ġperspect ives", + "Ġview er", + "Ġsh ar", + "ĠпÑĢо из", + "lig t", + "er os", + "it able", + "ил оÑģÑĮ", + "Ġdif ÃŃ", + "´ë į°", + "Ġret ired", + "Ġthat s", + "zen ie", + "be iten", + "Ġmy cket", + "ĠR ab", + "Ġinflam m", + "ì° ®", + "Ġd um", + "Ġdad dy", + "æľ Ł", + "Ġimm ers", + "Ġplay list", + "௠Ĩ", + "Ġtra um", + "Ġref use", + "st ep", + "à® ļ", + "c up", + "Ġpop s", + "r imin", + "ay ım", + "Ġa ld", + "Ġun necess", + "Ġd ah", + "ĠIr ish", + "Ġcomp r", + "la ÅŁ", + "T P", + "Ġtransl ated", + "S c", + "ce ÄŁim", + "´ IJ", + "Ġd rei", + "ĠлÑİд ей", + "Ġqu iero", + "Ġhe le", + "z lich", + "Ġapp les", + "Ġdistrict s", + "Ġcred its", + "Ġas p", + "Ġëĭ ¨", + "or al", + "å½ ±", + "Ġste pping", + "ĠV a", + "Ġg ains", + "6 5", + "Ġnuest ra", + "ed ay", + "ass ador", + "ĠL ind", + "Ġcrop s", + "ci endo", + "ig ue", + "Ġb ana", + "A m", + "Ġp ent", + "Ġadd iction", + "Ġpack aging", + "ä d", + "ª ¨", + "Ġper què", + "Ġcampaign s", + "Ġste ep", + "Ġne ue", + "Ġembarrass ed", + "Ġdist inction", + "it zer", + "åij Ĭ", + "Ġregist ration", + "Ġll am", + "ĠAlm ighty", + "li est", + "Ġu z", + "n ak", + "ç º", + "Ġter az", + "iam ente", + "Ġtrans actions", + "Ġc ôt", + "Ġswitch ed", + "Ġcom bo", + "Ġpray ers", + "Ġintern ship", + "Ġaddress es", + "Ġchar ity", + "ĠW OO", + "Ġb ait", + "è¿ ĩ", + "Ġ �", + "Ġf ica", + "ĠTy ler", + "ar u", + "Ġat oms", + "ĠLe vel", + "ĠпоÑĤ ом", + "Ġf ame", + "ul k", + "Ġteach es", + "Ġre build", + "ед ÑĮ", + "ĠIndones ia", + "ush i", + "ĠSh ort", + "Ġens uring", + "f s", + "e le", + "Ġmargin al", + "Ġconclud e", + "am t", + "Ġver ify", + "ĠMc Donald", + "Ġsk al", + "Ġrec onst", + "ĠM ann", + "Ġbas ement", + "Ġtransform ed", + "Ġoccasion ally", + "z one", + "ĠD ans", + "Ġкак ой", + "Ġdiagn osed", + "ĠÏĦ α", + "Ġcomm ands", + "Ġpresident ial", + "Ġab b", + "Ġbrack et", + "ĠL em", + "Ã¥ ng", + "Ġfavor ites", + "Ġrev ol", + "ĠíĬ ¹", + "Ġhar ass", + "é ħ", + "Ġcle ans", + "st änd", + "Ġknock ed", + "Ġpe oples", + "Ġmusic ians", + "Ġmut ual", + "ĠC old", + "8 8", + "ze j", + "at ie", + "ĠHon or", + "Ġobs essed", + "ĠM USIC", + "ĠBre ak", + "ú ng", + "Ġmod ify", + "Ġs öyle", + "Ġ×ŀ ×Ķ", + "ĠOn line", + "f o", + "ĠMill er", + "Ġlik ing", + "Ġin hab", + "Ġgrat itude", + "ĠJour nal", + "arn ess", + "J ohn", + "ĠG it", + "åī Ľ", + "Ġsin cere", + "ĠS ci", + "ĠE li", + "Ġsymbol s", + "Ġman ually", + "ε ÏĤ", + "Ġв Ñĸд", + "ĠF at", + "Ġlab els", + "Ġsophistic ated", + "ump s", + "Ġrele ases", + "Ġ4 7", + "ĠO M", + "ê°Ģ ë", + "ĠB ien", + "ĠRe f", + "è¨ ĺ", + "ĠSt a", + "ĠE gg", + "Ġindic ator", + "ps on", + "Ġnas ıl", + "R ight", + "Ġcon vey", + "Ġkn ot", + "Ġconnect s", + "ul as", + "Ġpre ced", + "Ġine quality", + "am iento", + "Ġrep ly", + "O Y", + "Ġdism iss", + "ĠëIJ ľ", + "çĦ ¡", + "ĠÑħоÑĢоÑĪ о", + "Ġm éd", + "Ġrandom ly", + "ĠO nt", + "u ard", + "Ġpull s", + "ĠÑĤ епеÑĢÑĮ", + "ĠNe ed", + "ĠSo ft", + "Ġstrength s", + "Ġgo ed", + "um en", + "æŃ »", + "Ġíİ ¸", + "Ġд об", + "Ġclar ity", + "ĠA i", + "Ġball oon", + "ĠP and", + "ĠìķĦ ëĭ", + "Ġsh iny", + "Ġsmall est", + "on ia", + "h ill", + "ot ing", + "Ġe ing", + "Ġmere ly", + "Ġse us", + "Ġн еп", + "Ġí Ĩµ", + "Ġgu ides", + "Ġspecial ist", + "Ġste ak", + "ãĤĪ ãģĨ", + "Ġmig ration", + "que le", + "Ġru ined", + "Ġpu pp", + "å¥ ³", + "Ġk end", + "ang an", + "Ġpal m", + "Ġunf air", + "Ġz m", + "ĠD V", + "ch ester", + "и Ñİ", + "Ġo oh", + "er g", + "AT H", + "° ©", + "åĵ ª", + "r ison", + "Ġinvol ving", + "Ġpart ly", + "anç ais", + "Ġv ow", + "Ġprom inent", + "Ġcry st", + "ib a", + "Ġdes erves", + "Ġover t", + "Ġsens it", + "ĠWh e", + "Ġtight en", + "Ġintim id", + "Ġal iment", + "w ill", + "Ġstrength en", + "ĠT an", + "åı Ī", + "ãģĹ ãģ¾ãģĻ", + "on i", + "ĠM un", + "Ġpro ph", + "Ġrehe ars", + "ĠK le", + "Ġve ces", + "Ġwonder ed", + "ok i", + "Ġsens es", + "´ì ĭ", + "Æ°á» Ľ", + "ĠÈĻ i", + "Ġmuch os", + "Ġwatch es", + "ortun ate", + "ĠJ uan", + "ìŀĸ ìķĦ", + "ÑĢ е", + "e i", + "ion en", + "Ġexperiment al", + "Ġda ughters", + "ภĽ", + "Ġment ally", + "bec ca", + "aw are", + "ìĦ Ŀ", + "Ġwhat soever", + "Ġen ables", + "ĠL ow", + "o id", + "ภĬ", + "ó d", + "Ø º", + "Ġconstruct ed", + "ĠLad ies", + "Ġaccus ed", + "Ġа н", + "D an", + "Ġsp awn", + "Ġcontain ers", + "Ġart istic", + "ı p", + "Ġdisc l", + "Ġaut res", + "in as", + "ĠN ation", + "Ġn ag", + "be an", + "w he", + "ľë ıĦ", + "ĠSe oul", + "Ġíı ¬", + "ĠN ich", + "Ġcomp lement", + "Ġinter ven", + "ĠMod el", + "ĠOr ange", + "nam on", + "Ġcalcul ation", + "se e", + "Ġusted es", + "Ġle b", + "Ġdo ct", + "Ñĸ н", + "Ġf oster", + "Ġel astic", + "ĠAh h", + "Ġa ce", + "ĠP ink", + "ĠJ eg", + "Ġde er", + "ãģĹ ãģĦ", + "s is", + "Ġjak o", + "ĠEm ma", + "ÑģÑĤв енно", + "Ġport rait", + "Ġmak er", + "Ġa ument", + "ÑĢ об", + "Ġairpl ane", + "Ġtransparen cy", + "Ġadjust ment", + "ĠCD C", + "ç on", + "Ġupload ed", + "Ġд ейÑģÑĤв", + "Ġго ÑĤов", + "Ġit er", + "Ġcur se", + "ô n", + "mer ce", + "ar an", + "Ġle ak", + "çµ IJ", + "Ġabs ence", + "Ñģ кий", + "Ġread ers", + "al er", + "Ġbene ath", + "ang o", + "h etic", + "Ġfin ns", + "Ġpo op", + "Ġdu plic", + "H i", + "ig s", + "olog ically", + "op p", + "Ġd izer", + "ĠAll en", + "Ġgl i", + "Ġacc eleration", + "Ġvit amin", + "ãĥ Ń", + "v ä", + "ĠAc cess", + "à® Ļ", + "r ás", + "Ġappreci ated", + "Ġn ah", + "Ġpos ter", + "Ġt ale", + "Ġhighlight ed", + "æĸ ĩ", + "ż eli", + "Ġblock chain", + "Ġmic row", + "Ġcin ema", + "ĠCh ang", + "ĠSe arch", + "ust ers", + "ĠZ ero", + "ĠDiv ision", + "ÑĢ аÑģ", + "Ġsca re", + "Ġj elly", + "ĠAdminist ration", + "S O", + "Ġl ined", + "Ġê° Ħ", + "Ġge ben", + "Ġso da", + "Ġwin ners", + "³ ¼", + "Ù Ĵ", + "ĠAm b", + "åķı é¡Į", + "å Ķ", + "Ġpe g", + "å· ±", + "4 3", + "Ġra us", + "Ġre wards", + "Ġinc lus", + "Ġhigh way", + "Ġha h", + "Ġmultipl ied", + "Ġs ẽ", + "Ġdisci ples", + "Ġn ing", + "Ġdress ing", + "Ġattrib utes", + "ĠM osc", + "ĠGree ce", + "Ġse k", + "ĠLe arn", + "Ġj us", + "rend re", + "Ġperson ne", + "pl ete", + "Ġpl acing", + "Ġl uego", + "ill ance", + "Ġоб Ñī", + "Ġprov ision", + "Ġl ion", + "t ra", + "bo ards", + "Ġbehavi our", + "he y", + "Ġsubscri ption", + "Ġprot agon", + "ãĥ £", + "Ġvar a", + "ĠÅŁ u", + "Ġha ha", + "Ġteas poon", + "æ Ł", + "av oir", + "Ġcrypt o", + "ĠÑģÑĤ аÑĢ", + "ĠSt ore", + "ab s", + "ĠStud ents", + "Ġla und", + "int o", + "Ġapproach ed", + "° ľ", + "ÑĥÑİ Ñī", + "ĠL abor", + "ot es", + "iat ric", + "Ġgro ÃŁ", + "ut ive", + "Ġи д", + "ĠG ib", + "Ġpl acement", + "ĠdifÃŃ cil", + "Ġf rog", + "ĠвÑģе Ñħ", + "ĠJ r", + "az ed", + "Ñĥ Ñī", + "Ġê ¼", + "fr ame", + "а еÑĪÑĮ", + "Ġlock down", + "åij ³", + "Ġmed i", + "Ġ×Ķ× ŀ×", + "ени й", + "em ale", + "ì¢ ħ", + "ater al", + "Ġdist ant", + "Ġbe ars", + "Ġjournal ist", + "è§ £", + "ĠMarsh all", + "ĠIh nen", + "uet ooth", + "b ag", + "ĠÄij ã", + "ĠHigh ness", + "Ġì° į", + "и ка", + "ĠW u", + "ĠFr an", + "Ġp eng", + "Ġf on", + "Ġhypothes is", + "ĠÑĢ Ñĥ", + "Ġl y", + "× ļ", + "ìĽ Ķ", + "ĠRad io", + "ภŀ", + "D av", + "Ġembarrass ing", + "ĠìŀĪ ìĸ´", + "Ġcast ing", + "Ġc age", + "ĠP sych", + "ĠìĿ¼ ëĭ¨", + "ĠÅ ¾", + "im b", + "Ġdirect ors", + "S H", + "ĠÏĦη ν", + "á»ģ u", + "Ġkon uÅŁ", + "Ġoption al", + "quar ters", + "ik er", + "ĠS ant", + "Ġvers es", + "ë ¶Ģ", + "Ġo lar", + "ĠÏ ĩ", + "ãĥ ķ", + "Ġγ ια", + "ĠI mm", + "Ġcontrovers ial", + "Ġer sten", + "Ġreci p", + "ĠChristian ity", + "Ġê´ ľ", + "ord on", + "×ķ× ©", + "Ġsl ash", + "ĠP f", + "Ñĥд ÑĮ", + "×ķ× Ŀ", + "ĠPer ry", + "Ġm amy", + "Ġbackground s", + "Ġà®İ ன", + "Ġpend ant", + "ĠColumb ia", + "Ġin verse", + "ĠÑĩеÑĢ ез", + "Ġs v", + "Ġdig ging", + "4 1", + "ch em", + "Ġnavig ation", + "ĠSh in", + "ĠFr ont", + "P D", + "Ġbe aring", + "ĠW asser", + "Ġw ax", + "ĠCH RIS", + "ch ing", + "Ġpress ed", + "E l", + "ĠD al", + "ons in", + "Ġb inding", + "Ñģк ой", + "po ons", + "Ġmo ck", + "are st", + "к ÑĢа", + "M M", + "Ġcor rupt", + "st orm", + "Ġref res", + "ĠCo ach", + "ll ä", + "ĠTH IS", + "Ġpar ag", + "Ġìĵ °", + "p ool", + "Ġbill ions", + "Ġê¹ Ģ", + "gr oup", + "Ġwel coming", + "cell ence", + "ĠDu ke", + "ê¸ ´", + "Ġprim era", + "ìł ¸", + "Ġp ond", + "Ġstat ue", + "Ġêµ ¬ë", + "Ġh atch", + "Ġinstrument al", + "Ġresident ial", + "ì» ¤", + "Ġaccept ing", + "osh i", + "d ate", + "ĠìĶ ¨", + "Ġplant ed", + "Ġj oking", + "Ġì Ħľ", + "Ġh ated", + "ĠÑĢаÑģ Ñģк", + "Ġsle pt", + "Ġpack ages", + "Ġisland s", + "es en", + "ÄŁ ı", + "Ġdi agon", + "ĠO sc", + "Ġmes h", + "Ġsc ales", + "ar ity", + "ĠDef ense", + "ãģ¡ ãĤĩ", + "ĠLew is", + "ĠÑģ егоднÑı", + "Ġfl ies", + "uin ely", + "ĠCons ider", + "Ġst ark", + "he w", + "ĠAs ÃŃ", + "³ ´ë", + "Ġprop ose", + "Ġíķĺë ©´", + "od o", + "ĠNorm ally", + "Ġhe eft", + "ĠHarr is", + "g ro", + "ĠBlo od", + "b ase", + "Ġi OS", + "Ġtouch es", + "Ġinsp ir", + "Ġ× ĵ", + "Ġb inary", + "Ġì¶ Ķ", + "Ġser ial", + "Ġ ion", + "Ġunemploy ment", + "Ġodd s", + "ĠF ab", + "ĠF BI", + "BR UN", + "Ġweight s", + "ν ο", + "at ile", + "Ġnurs es", + "Ġinvolve ment", + "ĠíĶ ¼", + "Ġgovern ance", + "Ġâ Ĥ¬", + "ÑĢÑĥ п", + "ier ra", + "íĺ ķ", + "ĠJ erry", + "Ġbe ard", + "Ġsal vation", + "ĠAl ong", + "g entle", + "ĠK i", + "b ol", + "ĠPl at", + "Ġhas ht", + "è¿ ij", + "Ġw are", + "Ġpart ie", + "y cz", + "Ġint r", + "F ih", + "n ent", + "Ġche at", + "il en", + "Ġë ¯", + "or ie", + "Ġfá cil", + "et ric", + "Ġaffect ing", + "unci ation", + "Ġaff airs", + "Ġbe e", + "Ġview ing", + "Ġor ang", + "ĠL an", + "ĠС ÑĤ", + "ä¸ ĸ", + "ĠM es", + "ĥ ģ", + "er ie", + "Ġes pa", + "Ġinter pre", + "Ġposs ess", + "Ġpure ly", + "rit o", + "f ound", + "as ma", + "ìłģ ìĿ¸", + "Ġexam ine", + "ĠÑĥ м", + "Ġbes ch", + "ĠTom orrow", + "ĠB lock", + "Ġvari ant", + "Ġprefer ence", + "Ġcoach es", + "Ġmedic ations", + "Ġíĺ Ħ", + "Ġemp ire", + "ë Ħ¤", + "ĠIll inois", + "Ġcris py", + "Ġth ì", + "Ġbe es", + "7 7", + "Ġgl ow", + "è º", + "ĠStud ies", + "åIJ Ħ", + "ĠChall enge", + "Ġunlike ly", + "Ð §", + "ıy orsun", + "DI E", + "Ġminim ize", + "iz ard", + "Ġú n", + "Ġencont rar", + "ĠK ill", + "å »", + "Ġvan illa", + "ĠGr ant", + "ĠG T", + "se a", + "Ġs ought", + "в од", + "Ġnä m", + "ĠA unt", + "OW N", + "Ġpump kin", + "st ellen", + "Ġr ag", + "ег да", + "Ġstory t", + "Ġfor um", + "æ© Ł", + "Ġestab a", + "uch e", + "Ġcon gress", + "ĠRe y", + "Ġdram atically", + "ĠSp ort", + "ĠYe llow", + "Ġê³Ħ ìĨį", + "Ġdisg usting", + "ĠRe cent", + "Ġacqu ired", + "Ġc ables", + "çĶ ļ", + "d in", + "Ġv isto", + "Ġcommunic ating", + "ÑģÑĤав лÑı", + "еÑģ ÑĤо", + "ãĥ»ãĥ» ãĥ»", + "Ġré g", + "Ġso cks", + "Ġpro ces", + "be cause", + "Ġut ter", + "Ġcoloc ar", + "Ġnew est", + "Ġgr amm", + "è¡ ¨", + "ä¸į çŁ¥éģĵ", + "Ġsh ifting", + "Ġcar rier", + "ĠÑģк оÑĢ", + "ĠSch w", + "Ġexec uted", + "Ġmaint ained", + "ĠÏ Ĩ", + "ĠM oses", + "Ġdis se", + "Ġhor r", + "ãĢ ľ", + "Ġr ally", + "Ġall em", + "ĠEvent ually", + "Ġdi yor", + "lv ania", + "Ġsch nell", + "Ġê³ ¼", + "Ġë§ ¤", + "Ġstrugg les", + "l ate", + "Ġclar ify", + "é ment", + "Ġmulti plic", + "иб о", + "Ġjour n", + "Ġfra gr", + "Ġsurprising ly", + "Ġdesper ate", + "5 2", + "Ġs ul", + "ĠRe ad", + "ĠF ried", + "Ġm ond", + "w oo", + "Ġorgan izing", + "ãģĹãĤĩ ãģĨ", + "ĠSo on", + "Ġв опÑĢоÑģ", + "ĠN ur", + "ĠÐĹ Ð´", + "Ġsp ider", + "е ÑģÑı", + "Ġtutorial s", + "Ġnutri ents", + "or er", + "Ġcoe fficient", + "Ġarrange ment", + "Ġpr icing", + "n an", + "y u", + "B L", + "Ġtri be", + "ĠHow ard", + "un ks", + "Ġnew er", + "Ġprov in", + "Ġpred iction", + "h os", + "Ġol sun", + "ĠAr ound", + "Ġv ier", + "ĠÑģÑĤоÑĢ он", + "Ġv alley", + "ĠE la", + "if i", + "Ġgal axy", + "Ġtran qu", + "Ġad vers", + "ĠTem ple", + "iff s", + "ig ence", + "èĩª å·±", + "Ġkön nte", + "ĠÄij ó", + "D id", + "Ġphotograph s", + "ĠA WS", + "ÑĨи Ñı", + "Ġgu ards", + "Ġappoint ed", + "ĠG il", + "Ġм ом", + "Ġc od", + "ĠUn like", + "Ġeven ly", + "isc onsin", + "Ġest ou", + "Ġm nie", + "ĠEx ec", + "ĠM V", + "ĠE ine", + "ä¿ ¡", + "ĠRog er", + "ĠF ac", + "ĠL ist", + "Ġf uer", + "аеÑĤ е", + "om ed", + "Ġattract ion", + "èī ²", + "Ġter rain", + "ĠD rop", + "Ġcorpor ations", + "Ġsci ences", + "Ġthr one", + "ãģĦ ãģŁ", + "Ġa j", + "ĠR ot", + "çī ¹", + "Ġsupp orters", + "ĠB ere", + "H ere", + "Ġdifer entes", + "Ġsignific ance", + "Ïĥ η", + "æĪij 覺å¾Ĺ", + "Ġcl amp", + "Ġë ĮĢë", + "Ġfab ulous", + "re z", + "æĮ ģ", + "Ġassum ptions", + "ut her", + "w id", + "p ot", + "è¿ İ", + "Ġy an", + "ul in", + "ÑĢ Ñĭв", + "ĠSl ow", + "ĠPenn sy", + "Ġíķ ´ìĦľ", + "Ġme io", + "Ġwealth y", + "ĠE ight", + "Ġpul se", + "Ġfr iction", + "id ity", + "ĠH oll", + "i yorum", + "Ġsound ed", + "ĠC arr", + "Ġfor k", + "â ĺ", + "ĠP A", + "Ġcons pir", + "Ġc oding", + "r t", + "ĠTy p", + "Ġìĸ ij", + "Ġп ог", + "Ġmis er", + "ĠÑģм оÑĤÑĢ", + "ĠSw eden", + "Ġolar ak", + "ĠZh ang", + "ĠCh i", + "ĠT itan", + "Ġscreen ing", + "ĠSp ider", + "ĠÅŀ imdi", + "Ġobst acles", + "lar a", + "Ġchalleng ed", + "p se", + "T ON", + "á» ¥", + "ĠP i", + "Ġlag i", + "ie urs", + "Ġhur ting", + "Ġneg lect", + "Ġgener ating", + "Ġyoung est", + "Ġaud it", + "ĠÑĢ ез", + "Ïģ ά", + "Ġdon ate", + "ĠPD F", + "Ġvis its", + "Ġcru ise", + "P P", + "as er", + "Ġw sp", + "back s", + "iv als", + "ãģĨ ãĤĵ", + "Ġde ve", + "Ġprop ort", + "Ġc ath", + "ĠE ffect", + "Ġwind s", + "ĠìĻ Ķ", + "Ġchart s", + "Ġs ama", + "Ġautom ation", + "Ġпок а", + "Ġol an", + "Ġbo ats", + "Ġca fe", + "Ġden ied", + "ĠM ama", + "Ġblock ing", + "ĠTh or", + "Ġphenomen al", + "Ġstake holders", + "Ġun os", + "Ñĥ еÑĤ", + "ĠAb raham", + "ãģ§ ãĤĤ", + "Ġdetect ion", + "Ġjur is", + "Ġpower ed", + "z ial", + "Ġwel fare", + "Ġup grad", + "Ġmoż na", + "ĠC ase", + "c ular", + "Ķ ìĿ´", + "ãĥ ģ", + "ĠGu ess", + "Ġcy cles", + "ä¾ ĭ", + "çµ ¦", + "ro ck", + "um i", + "Ġel ite", + "Ġqu è", + "åł ±", + "ÑĤ ом", + "Ġsh ore", + "gun ta", + "Ġk u", + "Ġfaith ful", + "ĠJ eremy", + "a id", + "à ·", + "ug al", + "å°į åķĬ", + "ĠV el", + "Ġvra i", + "st ell", + "¨ ¸", + "Ġk ol", + "è ½", + "Ġquant o", + "Ġз аÑĢ", + "Ġ200 2", + "es y", + "Ġres erve", + "Ġмом енÑĤ", + "Ġdeploy ed", + "Ġdefin ing", + "Ġsa u", + "Ġga at", + "\" )", + "Ġtrans mit", + "Ġpubl ishing", + "Ġrank ing", + "Ġoff ense", + "Ġ4 6", + "p in", + "ĠT aking", + "Ġentit led", + "Ġgen uinely", + "Ġvari ations", + "Ġfind e", + "Ġt au", + "Ġunf ortunate", + "ĠR ah", + "port s", + "Ġc Å", + "Ġmon key", + "Ġbr ac", + "we i", + "l ung", + "Ġart if", + "Ġsy rup", + "ĠÐĶ ав", + "Ġlift ed", + "Ġche z", + "ĠAd vent", + "ĠSt ock", + "Ġdo l", + "м ен", + "иÑĪ ÑĮ", + "Ġy n", + "g io", + "d et", + "Ġdes se", + "Ġg ri", + "ĠChair man", + "ç ħ", + "Ġcu enta", + "an im", + "Ġcra b", + "Ġesc al", + "Ġpremi ère", + "ĠGe f", + "Ġd ining", + "Ġsevent h", + "Ġch asing", + "ĠT ower", + "Ġbrut al", + "Ġfundament ally", + "ãģ¨ ãģĨ", + "л ениÑı", + "st age", + "Ġacqu is", + "Ġcyl inder", + "Ġcomm ander", + "m em", + "ĠU V", + "ha ppy", + "Ġe psilon", + "Ġinv itation", + "Ġfar mer", + "ch air", + "Ġdest iny", + "Ġso vere", + "ĠHeb rew", + "Ġserv ant", + "Ġbe w", + "Ġg ast", + "ut ies", + "Ġadministr ative", + "ĠComm and", + "é ta", + "Ġnit rogen", + "ê· ¼", + "Ġab i", + "Ġvill ain", + "Ġblank et", + "ĠS end", + "Ġbeat en", + "² Ħ", + "Ġvol unt", + "Ġschol ar", + "ĠEm peror", + "Ġ4 3", + "v able", + "ĠD us", + "ĠG U", + "Ġtarget ing", + "ww w", + "Ġamend ment", + "ìĨ Įë", + "Ġt ing", + "Ġn asty", + "Ġg auge", + "ĠÑĢ од", + "ĠH ans", + "Y our", + "α ν", + "Ġpro jet", + "ĠHawai i", + "Ġsusp icious", + "Ġsch w", + "Ġremo val", + "Ġint rig", + "ĠM U", + "Ġp onto", + "ठ¾", + "Ġоб ÑĢаз", + "Ġguess ing", + "p ace", + "Ġm others", + "Ġmill imeter", + "л ение", + "没 æľī", + "Ġavail ability", + "ic z", + "æŃ ¤", + "Ġfr act", + "Ġbas es", + "k m", + "ĠB TS", + "ĠF ield", + "Ġd zie", + "Ġseg undo", + "ĠëĤĺ ëĬĶ", + "Ġlegit imate", + "im as", + "Ġв н", + "Ġcor ruption", + "Ġsm ash", + "ĠVal ent", + "Ġalign ed", + "ĠPennsy lvania", + "Ġg ab", + "ĠE un", + "ent h", + "ĠMor ning", + "Ġcand le", + "Ġback pack", + "ĠIslam ic", + "a ções", + "Ġenc ry", + "Ġmushroom s", + "íĮ Į", + "d it", + "Ġtrans it", + "ĠW isconsin", + "Ġparticip ated", + "ĠIl s", + "Ġunf old", + "¶ Ģë", + "Ġprof its", + "Ġwar ming", + "ĠG ang", + "Ġnetwork ing", + "Ġme ga", + "Ġthorough ly", + "le ments", + "ĠH m", + "Ġdec iding", + "Ġemotion ally", + "Ġexha usted", + "ĠÐŁ оÑĤ", + "c ido", + "ĠHT ML", + "Ġcopy right", + "Ġmel ody", + "y im", + "Ġand ers", + "osh op", + "Ġë³ ¼", + "Ġathlet e", + "ĠG E", + "Ġfrequ ent", + "Ġdes ires", + "Ġneed ing", + "ĠY un", + "Ġrif le", + "Ġlo ver", + "' T", + "Ġd ense", + "Ġt ão", + "Ġnot ified", + "Ġid i", + "ìĹ Ń", + "í Ĩ", + "Ġinteract ing", + "Ġrapp ort", + "еÑĢ и", + "s ki", + "Ġb esser", + "Ġmanufact urer", + "ĠK yle", + "Ġaccount able", + "ĠS ak", + "ĠP il", + "ĠD omin", + "Ġpres um", + "ĠÐĴÑģ е", + "Ġvine gar", + "Ġguarante ed", + "çľĭ åĪ°", + "Ġhand led", + "éŁ ³", + "c at", + "Ġcivil ization", + "Ġaccom p", + "ĠV M", + "é mon", + "Ġde ze", + "Ġgrad es", + "Ġsoll te", + "Ġst aring", + "×IJ× ª", + "ar nt", + "Ġhoriz on", + "Ġtrav ail", + "h our", + "第 ä¸Ģ", + "ĠE D", + "ĠD ak", + "Ġn y", + "Ġcon ve", + "ĠCh am", + "Ġfir ms", + "ĠL iu", + "ĠÑģÑĤ ÑĢан", + "Ġli bert", + "Ġlens es", + "Ġint ake", + "ĠвÑĭ б", + "Ġmens en", + "h el", + "Ġpract ition", + "Ġ3 50", + "ãĤ ³", + "F O", + "Ġbed s", + "Ġancest ors", + "ĠìĹĦ ì²Ń", + "Ġdistur b", + "ĠLast ly", + "ĠSupp ort", + "ี à¹ī", + "ĠCor ona", + "Ġenthus i", + "Ġвоз м", + "ĠìĤ¬ëŀ Įë", + "Ġ5 2", + "b ird", + "Ġredu ces", + "ĠìŀĪ ìĿĦ", + "ĠG ene", + "êµ IJ", + "ÄĻ p", + "ĠÃľ ber", + "Ġconcer ning", + "us er", + "Ġconcent rate", + "ĠWH AT", + "ish op", + "onym ous", + "no ld", + "Ġsuggest ing", + "© °", + "ĠF ish", + ".... ....", + "Ġvess el", + "Ġtrabaj o", + "ãģ µ", + "ĠO cean", + "å§ IJ", + "y g", + "Ġtown s", + "d el", + "Ġterr ifying", + "Ġçal Ä±ÅŁ", + "Ġs ino", + "Ġe ats", + "Ġge z", + "Ġg eme", + "ĠìĻ Ħ", + "Ġcomp art", + "Ġimplement ing", + "ĠPot ter", + "ĠGerm ans", + "Ġg ÅĤ", + "Ġt ennis", + "Ġcar pet", + "au er", + "ĠSaud i", + "ye ong", + "Ġcur ry", + "ĠFore st", + "Ñĭ л", + "Ġfif teen", + "Ġbol ts", + "Ġ{ \\", + "¬ ´", + "Ġsett lement", + "Ġl ange", + "Ġb am", + "G et", + "íķ Ļ", + "Ġsw ap", + "ĠK han", + "Ġcomm ence", + "Ġquar antine", + "Ġsc ored", + "ç ĸ", + "Ġ19 50", + "Ġthick er", + "Ġsû r", + "åı £", + "ĠLar ry", + "Ġall ez", + "ìĭľ ëĬĶ", + "Ġg ü", + "Ġspect acular", + "/ /", + "b oth", + "Ġst ats", + "å¦ ³", + "ĠN ancy", + "Ġbun u", + "Ġcr ust", + "Ġactiv ated", + "Ġê·¸ë ŀ", + "out he", + "Ġport s", + "Ġne ural", + "Ġj aw", + "Ġobserv ations", + "Ġvo it", + "ab an", + "ả i", + "¦¬ë ¥¼", + "om es", + "௠ĭ", + "qu i", + "Ġkind ness", + "Ð ij", + "Ġ4 1", + "Ġmoder ate", + "Ġang els", + "ĠT amb", + "è t", + "Ġch lor", + "ĠBill y", + "ì² ĺë", + "ac on", + "Ġselect ing", + "ĠDel ta", + "Ġn ull", + "den ly", + "Ġci ud", + "Ġtend ency", + "Ġbreak down", + "Ġm int", + "ÑĦ оÑĢм", + "or ph", + "Ġda wn", + "s pr", + "ĠW ILL", + "äch lich", + "Ġpu ppy", + "7 00", + "Ġà® ¤", + "Ġfail s", + "ĠCon c", + "Ġrel atives", + "Ġinv iting", + "Ġaut onom", + "Ġcomp osed", + "Ġun ity", + "Ġdec is", + "Ġaccess ories", + "ĠC ass", + "Ġb ist", + "ĠT ip", + "ì§ ¸", + "Ġp unt", + "Ġr áp", + "éĢ ²", + "AN K", + "ãģ ļ", + "ex ist", + "Ġcompat ible", + "Ġn er", + "Ġе мÑĥ", + "Ġa plic", + "Ġb apt", + "Ġfail ing", + "ĠTam am", + "Ġos cill", + "Ġletz ten", + "Ġrepeated ly", + "Ġjung le", + "ĠP ush", + "h ai", + "ĠÎ ·", + "Ġdead ly", + "Ñı ж", + "wi Äħ", + "ĠComm on", + "ĠÎ ķ", + "Ġsk ate", + "T C", + "ĠMin i", + "Ġhob by", + "ầ n", + "Ġrout es", + "Ġam igos", + "Ġcon jun", + "Ġpartners hips", + "Ġno vo", + "Ġa ver", + "Ġpou vez", + "br idge", + "Ġpre oc", + "h im", + "Ġtur b", + "Ġso b", + "ĠSn ap", + "Ġì° ¸", + "min ute", + "Ġtra ject", + "uj ÄĻ", + "Ġe ager", + "Ġregul atory", + "Ġbank ing", + "b ling", + "ÑĪ ÑĮ", + "a ż", + "Ġbiz arre", + "it ated", + "d ire", + "Ġthreat ened", + "Ġsh ining", + "Ġn esse", + "Ġcor ps", + "ĠÑģ Ñĥ", + "Ġt eles", + "Ġtem p", + "t em", + "Ġк ан", + "Ġfe ver", + "N ew", + "Ġheav ier", + "ĠS ah", + "b ud", + "Ġout ros", + "Ġì° ¾", + "Ġëª ħ", + "arr ing", + "Ġê´ľ ì°®", + "ĠN ap", + "Ġse min", + "ĠTh an", + "if s", + "Ġdes en", + "ĠÑĤак ое", + "Ġlos es", + "ĠB alt", + "k on", + "Ġнап ÑĢ", + "Ġvo is", + "ĠMosc ow", + "Ġch airs", + "h is", + "Ġrefuge es", + "k g", + "Ġk ole", + "į ¨", + "аÑģ ибо", + "¦ ½", + "ĠUn iverse", + "ĠDire ct", + "Ġche ating", + "ĠC in", + "Ġpat ri", + "Ġadv ise", + "ĠN ether", + "Ġprime iro", + "Ġmention ing", + "n ut", + "5 6", + "ar ı", + "Ġpet ite", + "b led", + "Ġpens ar", + "ic io", + "IN D", + "Ġveter an", + "Ġlad der", + "Ġconsequ ence", + "ож ал", + "ĠB urn", + "Ġr ug", + "ĠM ade", + "Ġg it", + "\" ...", + "Ġcompet itors", + "Ġprz ed", + "Ġapp arent", + "ĠArgent ina", + "ĠWork ing", + "Ġcollabor ate", + "w oman", + "Ġret ain", + "Ġle urs", + "Ġdash board", + "×Ļ× ĵ", + "ĠEar ly", + "B M", + "Ġе Ñij", + "ол ог", + "Ġsatisf ying", + "Ġoft entimes", + "Ġma pping", + "ünk ü", + "ar th", + "f old", + "Ġlaunch ing", + "Ġa ura", + "Ġprec ision", + "work s", + "G od", + "Ġstra p", + "ĠIm per", + "Ġr ivers", + "Ġ |", + "Ġcu er", + "reg on", + "Ġarri val", + "ка Ñħ", + "ĠM iami", + "ан Ñĭ", + "Ġsurviv ors", + "ĠSen ior", + "Dav id", + "Ġest ado", + "Ġse ctors", + "Ġpop ping", + "Ġch im", + "ay ı", + "Ġkun nen", + "Ġgall ery", + "Ġsun light", + "ese hen", + "Ġye lling", + "ĠMe in", + "ĠPho enix", + "Ġman o", + "Ġhistor ia", + "Ġoccur ring", + "æ¬ ¸", + "ì ¸", + "ад и", + "å¾ ħ", + "Ġinstitution al", + "ĠT ut", + "ç ²", + "Ġsl aves", + "ãģ© ãģĨ", + "Ġforg iveness", + "Ġtw in", + "ĠHy un", + "н ÑĮ", + "ĠK omm", + "and ra", + "sh ot", + "ss ä", + "ĠÑĨ е", + "at ta", + "Ġexp ense", + "ĠG PU", + "ĠP ast", + "rib ly", + "ĠëŃIJ ìķ¼", + "Ġгод а", + "Ġresp ir", + "æĿ ±", + "ĠQue ens", + "h ops", + "Ġs érie", + "Ġpre f", + "Ġcom ed", + "Ġpl ut", + "ĠOver all", + "Ġãģ Ŀ", + "Ġc ush", + "Ġring ing", + "Ġincor rect", + "ĠÑģÑĤ ÑĢ", + "Ġgeomet ry", + "Ġadvert is", + "ĠÐ ¨", + "Ġreview ed", + "ãģĤ ãģĤ", + "Ġdo zens", + "Ġdeterm ination", + "ĠPh ill", + "Ġcontrib uted", + "ĠC it", + "Ġpass engers", + "Ġcôt é", + "Ġre ver", + "Ġtechn ological", + "Ġall en", + "Ġr aining", + "av i", + "Ġsal ty", + "Ġtyp ing", + "ĠÑĤ е", + "Ġt ilt", + "Ġì¹ ĺ", + "Ġо ÑĢ", + "ĠпÑĢ Ñıм", + "Ġr ou", + "Ġare na", + "ar at", + "åĪ «", + "HH HH", + "Ġmanufact urers", + "ĠEd ward", + "Ġt uck", + "Ġbl ows", + "ing o", + "ĠMar c", + "ìķĦ ìĦľ", + "M ich", + "ĠCle an", + "è ´", + "est o", + "ĠP ack", + "Ġsha ft", + "BRUN O", + "Ġa ven", + "u ur", + "Ñģк олÑĮко", + "ê´ Ģ", + "Ġautom ated", + "Ġvent ure", + "Ġsurve illance", + "ĠG row", + "ĠE mer", + "Ġд оÑĢ", + "Ġinvest or", + "ĠY ok", + "Ġl atter", + "ĠN I", + "Ġfunction ing", + "ĠHam ilton", + "Ġ5 1", + "Ġmurder ed", + "Ġanch or", + "Ġc uc", + "ĠSC P", + "ĠMad am", + "Ġconstra ints", + "Ġb arn", + "ank en", + "Ġë§İ ìĿĢ", + "ĠMot or", + "ĠDo ing", + "Ġam en", + "et ts", + "Ġinst ructor", + "eg t", + "ak o", + "Ġpost ure", + "iv ia", + "ĠPol ish", + "Ġдв а", + "Ġcolor ful", + "Ġel bow", + "Ġpar le", + "Ġpass er", + "Ġcond em", + "ort al", + "Ġfert il", + "ا د", + "ĠCol omb", + "Ġalign ment", + "Ġastron aut", + "ĠM ut", + "Ġsal mon", + "Ġstructure d", + "ŀ ר", + "Ġclick s", + "Ġm iej", + "æĶ ¿", + "ãģĦ ãĤĦ", + "ĠR ound", + "Ġrain bow", + "ĠV A", + "ãģĶ ãģĸ", + "ì§ Ī", + "ot z", + ", ", + "Ġch ords", + "ĠSand ers", + "Ġë¶ Ħë", + "B en", + "Ġdar über", + "ili ans", + "Ġorder ing", + "ĠMan h", + "Ġkil ogram", + "Ġkar ÅŁ", + "Ġgr asp", + "Ġghost s", + "al en", + "ĠJ edi", + "Ġб ли", + "Ġdownload ed", + "Ġconduct ing", + "ĠH ak", + "Ġresearch er", + "il an", + "go od", + "ĠH annah", + "ĠdÃ¼ÅŁ ün", + "ĠMess iah", + "u ity", + "ion a", + "Ġprob able", + "ĠY E", + "Ġindepend ently", + "Ġbuff er", + "b urn", + "our d", + "ĠMc K", + "Ġl ingu", + "uj emy", + "еÑĢ ÑĤ", + "Ġintuit ive", + "Ġcrack s", + "app ropri", + "nt y", + "Ġge en", + "Ġl end", + "Ġcert ification", + "ID S", + "un ter", + "pe es", + "Ġtr ump", + "Ġbank rupt", + "Ġfe as", + "è Ĺ", + "Ġdu ż", + "æ¸ ħ", + "Ġvirus es", + "Ġ5 8", + "g od", + "Ġж ел", + "Ġst alk", + "I nd", + "ach i", + "ĠC F", + "ĠC ond", + "Ġsan ct", + "Ġcont en", + "Ġfre ed", + "ĠR T", + "Ġment ors", + "ì¡ ±", + "Ġport able", + "ĠPaul o", + "r ane", + "HA HA", + "ĠS ection", + "ç Ĩ", + "hy un", + "ĠÎŃ Ïĩ", + "ĠP ub", + "ĠInd epend", + "Ġcomp ounds", + "ĠÑģ Ñĭ", + "Ġmess aging", + "Ġded ication", + "Ġnot icing", + "Ġdevot ed", + "ÑİÑĤ ÑģÑı", + "Ġsn akes", + "Ġbattle field", + "p ers", + "Ġdel a", + "9 2", + "Ġha i", + "ill ä", + "ér er", + "e very", + "Ġrespons ive", + "×Ļ ×ķ", + "op f", + "é ī", + "Ĭ ¸", + "Be cause", + "Ġtour ism", + "Ġê·¸ ê²Į", + "×ķ× ¦", + "Ġcan s", + "st üt", + "Ġdon ne", + "ĠD ios", + "ĠU ber", + "act ory", + "Ġorient ed", + "ĠH erm", + "Ġpat ron", + "ur f", + "be i", + "Ġprogram a", + "ĠOh h", + "gen er", + "Ġf ist", + "ĠW endy", + "Ġand a", + "Ġguess ed", + "Ġfre ak", + "ä¸Ń åľĭ", + "ĠK ings", + "ch ool", + "Ġoff line", + "ĠIndian a", + "ĠAll iance", + "Ġ5 3", + "Ġpartic ul", + "ĠF ocus", + "Ġinhab it", + "Ġê°ĻìĿĢ ëį°", + "ĠMc G", + "ows ki", + "ĠìĿ´ ê±´", + "Ġpa ÅĦst", + "он и", + "itt a", + "Ġconfirm ation", + "ĠBrook lyn", + "Ġnood le", + "f und", + "it ud", + "Ġgrand parents", + "Ġbar becue", + "ει ÏĤ", + "Ġ á", + "Ġball ot", + "ĠV eter", + "Ġpip es", + "ig ious", + "ĠG raph", + "est ed", + "Ġë¸ Įë", + "ĠK E", + "ãģ¡ãĤĩ ãģ£ãģ¨", + "Ġe ins", + "Ġhat red", + "ãģij ãģ©", + "Ġd ang", + "ee ee", + "Ġarch ae", + "ĠJes se", + "Ġdetect ed", + "Ġsen i", + "burg h", + "Ġdispl acement", + "Ġdo p", + "Ġcondition ing", + "Ġне ÑģколÑĮко", + "Ġdistur bing", + "P H", + "Ġthin ner", + "Ġwound ed", + "ĠCu ando", + "Ġcush ion", + "Ġwh ites", + "Ġprefer ences", + "Ġì¤Ģë ¹Ħ", + "Ġka ż", + "ĠG ate", + "ĠP ath", + "d les", + "à¸Ħ ร", + "im ore", + "Ġë³´ìĹ ¬", + "Ġdiscipl ines", + "á» ı", + "Ġmes ma", + "Ġìĥ Īë", + "Ġìĭ ¬", + "Ġg ing", + "Ġumbre lla", + "IGH T", + "Ġp ension", + "Ġcomb ining", + "S S", + "Ġrect angle", + "á»ĩ t", + "Ġpro xim", + "ĠC ow", + "¸ Į", + "Ġintention al", + "æķ Ļ", + "Ġdec id", + "ĠÑģк аж", + "ĠU ma", + "ias m", + "b uz", + "Ġdebr is", + "Ġc ass", + "ĠP rop", + "is ka", + "ë ł¥", + "ester ol", + "uss ian", + "ìĿ´ë ŀij", + "Ġun limited", + "Ġadm ire", + "Ġtight ly", + "Ġgen ome", + "ĠJun ior", + "ven ir", + "g us", + "Ġc Äĥ", + "ĠV lad", + "Ġí Ĥ", + "Ġrel ativ", + "in ci", + "Ġaun que", + "ĠBo ys", + "ÑĨи он", + "ĠSw iss", + "Ġphys icians", + "Ġíı ī", + "ĠP ET", + "Ġw ounds", + "ab out", + "Ãł i", + "on z", + "ur ities", + "ĠÑĥв ид", + "å· ¦", + "Ġment ality", + "Ġvari ance", + "Ġseg unda", + "Ġvol cano", + "al ie", + "ॠĩ", + "Ġt iles", + "ĠT erry", + "ĠاÙĦÙĦ Ùĩ", + "Ġcan on", + "Ġsc attered", + "pt on", + "Ġdefin itions", + "Ġal gebra", + "ot en", + "ab lo", + "ij uana", + "Ġwra pping", + "Ġses ame", + "ĠнаÑĩ ина", + "ĠAl f", + "ĠÐł оÑģÑģ", + "or no", + "Ġan kle", + "Ġspecial ty", + "Ġattempt ing", + "ili ation", + "Ġ19 20", + "Ġphen omena", + "ĠPro duct", + "ĠB uck", + "ĠA ww", + "se en", + "Ġvo id", + "ĠFrank lin", + "Ġadvoc acy", + "ĠS ep", + "Ġcool est", + "ĠÑģ ÑĢазÑĥ", + "ĠQu and", + "Ġ9 00", + "ĠTr ad", + "d ies", + "Ġhas h", + "æĪij å°±", + "ä¹Ł æĺ¯", + "Ġpot s", + "Ġsad ly", + "Ġvi able", + "ĠT iger", + "ĠON E", + "Ġneur ons", + "ow anie", + "Ä Ĺ", + "ĠSh ar", + "ĠLand es", + "Ġconfer ences", + "è© ²", + "Ġcred ential", + "Ġl ime", + "ine e", + "x it", + "p ay", + "Ġinc ons", + "Ġ>> :", + "èª į", + "Ġí ŀĺë", + "Ġless er", + "Ġsp ill", + "Ġprem ise", + "Ġ36 5", + "ĠH ost", + "Ġtom ar", + "×IJ× ľ", + "ë ²Ī", + "ĠWhat s", + "Ġlight weight", + "ĠM ap", + "f ia", + "ells chaft", + "Ġvend ors", + "uest o", + "ĠM ister", + "ĠÐŁ ÑĢи", + "åı ³", + "h ma", + "Ġintention ally", + "ĠT ang", + "éĹ ®", + "Ġident ification", + "Ġetc etera", + "ĠN ee", + "ĠÑĤ ÑĢи", + "ê· ¸", + "Ġcrypt ocur", + "Ġin hale", + "Ġadd ict", + "åIJĦ ä½į", + "Ġma u", + "ĠÑĤак аÑı", + "Ġë² Ħ", + "Ġcomp rar", + "ied zieÄĩ", + "ĠоÑĤ но", + "Ġbegin ner", + "Ġм Ñĥж", + "Ġobs c", + "Ġlim iting", + "asc ular", + "Ġins pection", + "ac i", + "Ġre jo", + "M us", + "Ġz aten", + "Ġsz cz", + "ĠMad rid", + "Ġvar ieties", + "Ġest Ãł", + "ĠSh akes", + "Ġk its", + "Ġad minister", + "Ġla va", + "Ġg Ã¥", + "è© ¦", + "ת ×Ļ", + "ĠWay ne", + "Ġinst agram", + "Ġr ated", + "p aper", + "Ġb ild", + "Ġpret ending", + "Ġobser ving", + "ĠÑģам ом", + "Ġtr or", + "Ġorgan isms", + "Ġfal ta", + "Ġh ometown", + "ç ±", + "Ġí ĭ", + "Ġche g", + "Ġì ¡", + "Ġcomm a", + "is é", + "Ġlike lihood", + "av ored", + "Ġgel di", + "ни ков", + "Ġmed io", + "Ġjak ie", + "ĠJ up", + "Ġgreen house", + "Ġsp it", + "ко е", + "Ġк аж", + "ĠG ram", + "ĠCon ference", + "Ġdef icit", + "s ın", + "in se", + "u ÄŁ", + "Ġr icht", + "Ġcoinc idence", + "åı į", + "Ġeu rop", + "Ġbutter fly", + "p read", + "Ġìĸ ¼", + "èĢ ¶", + "Ġwa vel", + "ĠIn fin", + "ĠPlan et", + "Ġself ie", + "ient ras", + "Ġar rog", + "os er", + "id al", + "ł×Š׳×ķ", + "üt ün", + "Ġfresh man", + "ĠMach ine", + "Ïĥ ÏĦ", + "ĠD ia", + "ìĿ´ ëĭ¤", + "ãģĵ ãģĨ", + "ne a", + "Ġlist ing", + "Ġconfig ure", + "ut or", + "U p", + "ts chaft", + "ri ère", + "Ġup wards", + "ĠÑħоÑĩ Ñĥ", + "Ġswe ep", + "B r", + "Ġexpress ing", + "Ġun happy", + "Ġmand atory", + "g ender", + "ĠA ÃŃ", + "Ġindic ators", + "Ġoil s", + "n ote", + "Ġseg ur", + "ож еÑĤ", + "yn asty", + "Ġdist ances", + "Ġmer ge", + "BER T", + "Ġsur render", + "Ġbu at", + "ĠA wards", + "Ġseñ or", + "od ox", + "Ġfl avour", + "Ġab dom", + "Ġconfig ur", + "8 6", + "ĠDI Y", + "Ġrig id", + "° ĺ", + "Ġcorpor ation", + "Ġg room", + "j aw", + "ĠNe ar", + "ил о", + "Ġoper a", + "ĠIn nov", + "и ÑĢа", + "ĵ ±", + "Ġspec ified", + "Ġcos m", + "ĠFre edom", + "Ġcl own", + "ĠN em", + "Ġв ол", + "Ñij н", + "Ġchar ger", + "à¹ģ ล", + "Ġinflu ential", + "äs ident", + "é ¤", + "ĠìĦ łë", + "Ġvol umes", + "æ IJ", + "Ġout ras", + "ĠTw itch", + "Ġfound ing", + "Ġa while", + "Ġco il", + "ê° Ļ", + "Ġc ả", + "ĠTh row", + "ĠH ence", + "omm t", + "ĠBen jamin", + "глÑı д", + "T ime", + "ob ic", + "Ġm our", + "Ġd read", + "ĠL Ãł", + "ĠCh ile", + "Ġpre val", + "Ġv ain", + "Ġart ık", + "Ġpres erved", + "ĠоÑĤ д", + "Ġware house", + "Ġbest e", + "ĠSever al", + "ĠS ituation", + "Ġcard board", + "T od", + "er na", + "Ġgar ant", + "Ġgest ure", + "Ġh en", + "Ġspe lling", + "ose xual", + "Ġan ne", + "Ġm ice", + "ĠMe ine", + "c ard", + "Ġre bell", + "Ġcert o", + "Ġìľ łë", + "Ġvers chied", + "ĠB os", + "Ġinv ention", + "Ġtr ze", + "Ġman ière", + "ĠCh ad", + "Ġsp re", + "Ġorganis ations", + "Ġpoor ly", + "Ġan terior", + "Ġst air", + "к ÑĢ", + "Ġatom ic", + "Ġsymp ath", + "Ġcontin ually", + "Ġkle ine", + "è te", + "и Ñī", + "ο ÏĤ", + "pe ut", + "Ġrep osit", + "Ġent ra", + "E m", + "Ġfinan cing", + "Ġмн ог", + "Ġthe sis", + "ĠCom puter", + "e au", + "ĠT ree", + "Ġbr ide", + "ons ieur", + "sh ire", + "w ic", + "D E", + "ĠìĪ ĺë", + "Ġac om", + "ĠP O", + "ers ch", + "Ġпом оÑī", + "ĠAr men", + "Ġì£ ½", + "Ġz or", + "Ġprint s", + "ĠD ass", + "æ¸ ¯", + "Ġdur able", + "ĠTrans port", + "ìŀIJ ê°Ģ", + "Ġл ег", + "Ġdé t", + "ô le", + "am ous", + "Y N", + "Ġcl iff", + "Ġgramm ar", + "ĠÐŁÐ¾ ÑįÑĤомÑĥ", + "ĠlÃł m", + "es ch", + "Ġmiser able", + "Ġvol ts", + "ĠC ad", + "uk an", + "ÑĤ ив", + "r ust", + "Ġìĺ¬ë Ŀ¼", + "Ġver k", + "Ġchick ens", + "ĠY oo", + "Ġout fits", + "c ode", + "Ġhier archy", + "net es", + "Ġcounter part", + "Ġt ôi", + "Ġt ed", + "ĠB art", + "Ġë Ŀ¼", + "ĠGen au", + "Ġinc oming", + "ĠA BC", + "ri que", + "ĠоÑĤ п", + "qu al", + "Ġincent ive", + "Ġih ren", + "׳ ×Ļ", + "lo e", + "Ġ19 30", + "Ġbar g", + "Ġd iction", + "Ġön ce", + "IN S", + "Ġre h", + "isia j", + "m outh", + "Ġsc oring", + "l ık", + "ĠìķĦ 주", + "OR IA", + "ĠEst ados", + "Ġcompan ion", + "Ġasse mble", + "Ġpun ished", + "Ġit al", + "Ġprev ents", + "ist es", + "ĠKent ucky", + "Ġloc ate", + "Ġfast ing", + "ãģ¨ æĢĿ", + "ĥ Ģ", + "ĠSe b", + "ĠCr own", + "op ia", + "Ġwh ip", + "us z", + "к ами", + "Ġdatab ases", + "åŃ Ĺ", + "Ġprose c", + "Ġ199 7", + "ĠìĤ´ì §Ŀ", + "ĠSol ar", + "ĠP ues", + "ĠZ en", + "oll o", + "ĠG uru", + "Ġsque ez", + "ĠÐĹ Ð°", + "ĠÄ į", + "cept ions", + "c ca", + "iz able", + "m and", + "Ġbreak through", + "Ġtables poon", + "ĠS EC", + "ik h", + "ĠS ão", + "Ġп ло", + "am en", + "Ġpr ac", + "Ġdar ling", + "Ġtall er", + "Ġrend ering", + "Ġìļ°ë¦¬ ê°Ģ", + "ĠÏĦη ÏĤ", + "Ġm ã", + "Ġes os", + "uer do", + "ĠÑģ ÑĩиÑĤ", + "all er", + "ìĹĪ ìĸ´ìļĶ", + "Ġmill ones", + "ler in", + "Ġpe gar", + "on ne", + "Ġenroll ment", + "Ġli egt", + "Ġbo a", + "w iÄĻ", + "bs p", + "Ġcy cling", + "ĠBern ie", + "Ġ198 9", + "Ġд алÑĮ", + "ĠDak ota", + "ĠÑģв Ñıз", + "ĠC P", + "Ġst are", + "íĤ ¤", + "Ġprosper ity", + "Ġarrange ments", + "Ġarri ving", + "m ä", + "Ġkay ak", + "ip t", + "Ġp ardon", + "Ġrel at", + "Ġver ste", + "ĠF ig", + "Ġfo il", + "ĠTalk ing", + "pe are", + "Ġno i", + "ĠпÑĢи ÑĪ", + "Ġhoc key", + "Ġad o", + "ĠO UT", + "6 7", + "Ġhorm ones", + "ĠAven ue", + "ĠSuper man", + "Ġpres cription", + "uber netes", + "C L", + "ot ive", + "N IS", + "ien en", + "Ġsad ness", + "ĠV it", + "T y", + "Ġstar ter", + "Ġbed e", + "Ġfound ations", + "Ġso re", + "åº Ĺ", + "Ñīе ÑģÑĤв", + "ìļ °ë", + "ĠÑĩ Ñĥв", + "l ink", + "Ġmane u", + "work ing", + "Ãł n", + "ĠAtt ack", + "ĠC art", + "ve is", + "ĠRes p", + "ens ing", + "Ġì¢ĭ ìķĦìļĶ", + "Ġesc uch", + "ĠR NA", + "Ĥ ´", + "Ġad op", + "Ġb ending", + "ع د", + "Ġman ages", + "us p", + "Ġt art", + "Ġrout er", + "B o", + "Ġestab lishing", + "Ġbal ancing", + "Ġathlet ic", + "ĠS lo", + "Ġf ills", + "Ġн аб", + "Ġд ал", + "Ġpos so", + "ĠV ielen", + "Ġcrit ics", + "Ġlaws uit", + "ĠIsa ac", + "ĠÑĦилÑĮ м", + "Ġtr as", + "Ġpra w", + "ĠCra zy", + "Ġne u", + "Ġk ull", + "Ġtum or", + "ĠAP P", + "g ate", + "ĠA RE", + "9 8", + "ĠSte am", + "Ġfuck ed", + "l age", + "ĠâĻ ¬", + "ĠM D", + "f y", + "Ġshell s", + "ĠSe ems", + "iz ers", + "Ġr anges", + "ĠAnton io", + "AT ION", + "ĠB aba", + "Ġìĥ ī", + "k un", + "Ġpray ed", + "ÑĢ Ñı", + "ĠпÑĢоÑĤ ив", + "Ġse as", + "b ury", + "Ġ×Ķ× ©", + "Ġtra it", + "ĠDep ending", + "Ġd re", + "Ġkön nt", + "ÑĨ Ñĥ", + "Ġlip stick", + "ee z", + "ĠпÑĢ имеÑĢ", + "Ġassign ments", + "B ob", + "Ġmet als", + "Ġspe cially", + "å°į ä¸įå°į", + "Ġìĺ Īë", + "ĠÅ ¡", + "Ġv ista", + "ĠÎ ¬", + "Ġtw ins", + "Ġnot able", + "ĠS au", + "Ġdé velop", + "Ġç ek", + "Ġpoly nom", + "av am", + "Ġtamb é", + "он ом", + "Ġpl asma", + "Ġe fect", + "Ġlä ng", + "Ġcas i", + "Ñģ а", + "ım ı", + "ãģĻ ãĤĭ", + "ĵ¤ ìĿĢ", + "Ġlab our", + "oss en", + "ĠP un", + "r if", + "Ġd oses", + "Ġoper ates", + "ил ли", + "Ġja ar", + "st aw", + "ĠìĤ¬ëŀ ij", + "Ġat m", + "Ġprotect s", + "Ġimp ed", + "H O", + "Ġc ima", + "Ġto ch", + "ab is", + "Ġsend o", + "la us", + "Ġcur l", + "ĠN um", + "Ġspons ors", + "Ġdé but", + "ĠAlex a", + "ĠB ür", + "ĠA mer", + "Ġc ope", + "Ġиз в", + "j al", + "Ġ199 5", + "ap at", + "res se", + "ĠPri ze", + "ĠCla ire", + "ĠBrand on", + "Ġwszyst ko", + "Ġval ued", + "à¸Ļ ะ", + "Ġse ct", + "Ġsecret ly", + "Ġdiam onds", + "ĠEv an", + "ĠRP G", + "ãģ« ãģª", + "Īë ıĦ", + "ĠUnivers al", + "Ġdoub ts", + "ĠP in", + "wiÄħ z", + "ļ ©", + "Ġal bo", + "Ġbra ucht", + "AU L", + "ĠM obile", + "gr ades", + "Ġsch em", + "wh y", + "ĠN icht", + "p i", + "g le", + "Ġchor us", + "Ġg ly", + "Ġrein force", + "Ġm uff", + "ĠSh en", + "ĠH ola", + "Ñĥ г", + "vid emment", + "v ial", + "ac ious", + "laim ed", + "ĠR ico", + "Ġve gg", + "Ġillust ration", + "ĠBut ter", + "ow ad", + "Ġeu x", + "Ġenf ants", + "ĠLe ader", + "ĠVill age", + "et ically", + "ÙĨ ÙĬ", + "Ġst ew", + "Ġsurpr ises", + "Ġc ue", + "ĠGrand ma", + "ĠC elsius", + "ĠR icht", + "en c", + "Ġpet ition", + "Ġher b", + "Ġw icked", + "Ġsch le", + "oc aly", + "Ġtrans f", + "Ġtok ens", + "ĠGr ay", + "ĠB BC", + "I K", + "Ġ15 00", + "z n", + "ĠNe v", + "Ġk oy", + "Ġz ar", + "Ġbull shit", + "ĠColomb ia", + "ul ative", + "Ġwides pread", + "y ect", + "k it", + "Ġempres a", + "Ġn our", + "Ġburn s", + "at in", + "a ired", + "Ġrevolution ary", + "Ġгод Ñĥ", + "ĠLog an", + "Ġ199 6", + "ĠGra ham", + "re b", + "ĠN HS", + "æľ Ľ", + "Ġcost umes", + "Ġnaw et", + "Ġlo vers", + "ĠLuc y", + "ĠInd igenous", + "íķĺ 기", + "Ġimmun ity", + "¥ ´ë", + "uit o", + "Ġexcess ive", + "Ġdon ations", + "Ġ×Ķ ר", + "Ġì² «", + "éī Ħ", + "Ġdry ing", + "mel on", + "Ġsurve ys", + "Ġ무ì Ĭ¨", + "é¢ ¨", + "aa a", + "Ġpro be", + "an cial", + "Ġlou der", + "Ġhot els", + "ü ÄŁ", + "ag ner", + "Ġorig ins", + "Ġë§Ī ì§Ģë§ī", + "Ġ* *", + "Ġstr angers", + "ĠHa us", + "com ed", + "Ġan throp", + "Ġus o", + "ĠìķĦ ì§ģ", + "ĠY uan", + "ĠíķĦ ìļĶ", + "pl er", + "ress ive", + "Ġsp raw", + "ĠSt ew", + "Ġ199 4", + "Ġeld ers", + "Ġme inen", + "Ġj unt", + "Ġac oust", + "ĠW ohn", + "Ġban anas", + "Ġproject ion", + "ĠSt ick", + "leg t", + "spe ed", + "ĠcÅ ©ng", + "ĠW ort", + "ĠBalt imore", + "ĠÑĨ ел", + "Ġdun no", + "å¼ ·", + "? ,", + "ãĥī ãĥ³", + "ĠLoc al", + "ost o", + "Ð Ń", + "од а", + "ĠPort uguese", + "Ġtheir s", + "Ġdé m", + "åı ¦", + "Ġdra uf", + "ĠBuddh ist", + "ert a", + "G e", + "Ġcar rot", + "ĠWonder ful", + "Ġso ak", + "Ġchair man", + "gg i", + "IC A", + "f ried", + "Ġfl ick", + "ĠThrough out", + "Ġìļ °ë", + "Ġc ough", + "Ġfl uffy", + "sch ool", + "Ġr ipped", + "---- ----", + "ĠZuk unft", + "Ġн еб", + "Ġst o", + "ĠB O", + "p ent", + "ĠLaw rence", + "Ïī ÏĤ", + "st icks", + "ĠE ins", + "ĠÑĢ Ñĭ", + "ĠStr ong", + "Ġcar amel", + "Ġsp ite", + "az ar", + "éĥ½ æĺ¯", + "Ġcrit ically", + "Ġob ra", + "ow itz", + "ĠZ one", + "ĠÑĢ ек", + "Ġsu g", + "ard ed", + "Ġg ì", + "ff entlich", + "an che", + "Ø Ł", + "ast ically", + "ìĿ ¼ë", + "л ав", + "Ġsimpl est", + "ĠF riend", + "Ġque llo", + "Ġamb ition", + "Ġabb iamo", + "åº ķ", + "ĠÑĦ оÑĢм", + "ĠEs sa", + "Ġeduc ators", + "Ġstatist ical", + "éĢĻ éĤĬ", + "Ġchang er", + "Ġat au", + "éta is", + "ĠShakes peare", + "ë IJĺ", + "Ġtr iggers", + "Ġreal iz", + "Ġcel ui", + "whe el", + "Ġloyal ty", + "Ġscream s", + "ke hr", + "ĠM ega", + "e ast", + "Ġtop s", + "ĠTot ally", + "ount ain", + "l ord", + "Ġviol ation", + "ĠG A", + "Ġnic er", + "ĠF resh", + "ĠMel issa", + "fun ction", + "Ġra pe", + "Ġexcept ions", + "Ġsil icon", + "Ġliber ty", + "Ġhousehold s", + "ãģį ãģ¾ãģĻ", + "ĠC A", + "ĠÐŀ б", + "Ġli b", + "ŀ Į", + "c ific", + "Ġtrop ical", + "Ġinvestig ating", + "H D", + "Ġad apter", + "ĠP itt", + "an cia", + "ĠShe ll", + "friend ly", + "Ġconclus ions", + "Ġtur tle", + "Ġdec omp", + "Ġanim ations", + "ĠÑģ ек", + "ins i", + "Ġret ention", + "k ie", + "Ġinject ion", + "ĠMad ison", + "ì° °", + "Ġv ient", + "Ġvar ied", + "Ġviol in", + "ĠB il", + "Ġluck ily", + "Ġh tt", + "l ä", + "Ġr anch", + "çľĭ çľĭ", + "Ġsó lo", + "ìķ ħ", + "ĠD erek", + "ĠScript ure", + "оÑĢ а", + "Ġclassroom s", + "av il", + "form ed", + "Ġbefore hand", + "ĠG em", + "pre ch", + "Ġl in", + "Ġgre ens", + "ÑĨ ев", + "ĠMer cedes", + "Ġdr ought", + "gas ps", + "Ġab ortion", + "Ġter ribly", + "Ġspos ób", + "Ġsec ured", + "Ġat rás", + "Ġwavel ength", + "Ġgra ins", + "ect ive", + "Ġspace craft", + "Ġtour s", + "Ġprof es", + "Ġsur geon", + "ĠP ie", + "Ġide ally", + "arn er", + "U P", + "op ard", + "s ce", + "Ġimm ense", + "ĠOr t", + "roll er", + "ĠD allas", + "ĠNich olas", + "Ġs ulf", + "ĠToy ota", + "Ġquant ities", + "ce ans", + "Ġcu i", + "an ça", + "ĠC AN", + "itzer land", + "åĦ ¿", + "Ġz ou", + "ĠCy ber", + "le gen", + "ĠIn it", + "ed u", + "Ġa pert", + "Ġad jac", + "ou v", + "èĢĮ ä¸Ķ", + "r s", + "Ġcab bage", + "Ġwheel chair", + "iny l", + "ĠD ynam", + "ĠìķĦëĭĪë Ŀ¼", + "Ġl ing", + "h l", + "Ġмог Ñĥ", + "Ġcris p", + "Ġm ij", + "Ġd ug", + "n in", + "Ġbl oss", + "Ġbelong ing", + "Ġloud ly", + "Ġminer als", + "Ġconclud ed", + "Ġsearch ed", + "9 6", + "ĠMe et", + "ĠS EO", + "ĠС к", + "ĠH ob", + "ot ta", + "Ġpropag anda", + "Ġcin namon", + "Ġhun ter", + "Ġgeme ins", + "Ġsculpt ure", + "uls ion", + "Ġv äl", + "Ġmagaz ines", + "Ġcontrovers y", + "ä¸Ģ 樣", + "Ġsequ ences", + "ãģĦ ãĤĭ", + "Ġíļ Į", + "Ġdel eted", + "ä½ ¿", + "IJë ıĦ", + "Ġvary ing", + "ãĥ Ĩ", + "Ġmount ing", + "Ġaff air", + "Ġpath ways", + "æ ¦", + "Ġdig o", + "äº ®", + "Ġд ок", + "A lex", + "Ġtob acco", + "ĠC V", + "Ġbother ed", + "Ġamb ient", + "ink y", + "ĠS L", + "Ġh ates", + "Ġje żeli", + "Ġcon greg", + "Ġel as", + "Ġde uts", + "ĠStud ios", + "ch ÄĻ", + "Ġdocument ed", + "ĠCru z", + "ĠL en", + "ĠDoug las", + "ĠPort ugal", + "ent i", + "Ġsp ouse", + "Ġanal ys", + "av ia", + "Ġed ited", + "Ġl ại", + "bu ilt", + "Ġv ille", + "ad ora", + "Ġbrac elet", + "Ġs ushi", + "Ġp m", + "Ġtra ils", + "Ġl ug", + "Ġö ver", + "Ġs orrow", + "Ġcol ony", + "ado x", + "Ġser ie", + "any ak", + "ĠØ ·", + "ĠG ulf", + "æĺ¯ ä¸įæĺ¯", + "ĠP V", + "ĠSam uel", + "ĠK it", + "ĠR al", + "ont in", + "ex pl", + "Ġent ries", + "Ġactiv ists", + "P s", + "Ġs ant", + "ĠÑĤо Ñĩ", + "ĠBr uno", + "ke ley", + "Ġtut to", + "é Ķ", + "Ġv intage", + "Ġterr ified", + "Ġпо Ñħ", + "us ive", + "ow ers", + "ай ÑĤ", + "ë ıĻ", + "Ġtwist ed", + "ĠTh ought", + "Ġt ah", + "Ġshr ink", + "Ġshe er", + "l it", + "Ġdal am", + "Ġd ib", + "Ġv ard", + "ow ane", + "Ġdo br", + "ĠR ena", + "ĠÑģво Ñİ", + "ĠpaÃŃs es", + "ĠE ra", + "ãģ® ãģ§", + "ĠB UT", + "s ighs", + "Ġê·¸ ê±°", + "Ġgro ÃŁen", + "Ġë¹ ¨ë¦¬", + "Ġn erves", + "Ġconst it", + "Ġpreoc up", + "ĠG ay", + "ĠX u", + "keep er", + "he ure", + ".. )", + "ĠCal m", + "ĠUn idos", + "ĠìĿ´ ê²ĥ", + "ĠAqu i", + "Ġìłľ ìĿ¼", + "d ır", + "ì¦ ĺ", + "y our", + "ĠÑįÑĤ им", + "20 20", + "Ġr und", + "ĠH O", + "ĠC atherine", + "iel i", + "Ġf usion", + "Ġide ology", + "Ġfor am", + "sh aped", + "ĠíĽ Ħë", + "Ġw t", + "Ġret r", + "Ġpr éc", + "Ġê° ij", + "Ġopen ly", + "v ity", + "구 ìļĶ", + "Ġobst acle", + "Ġbo o", + "Ġse iner", + "ic orn", + "Ġeigen lijk", + "Ġhead er", + "are mos", + "Ġso fter", + "ĠÐŁ од", + "Ġpre jud", + "Ġdefin es", + "ier te", + "Ġbl ending", + "Ġbelie vers", + "ĠWo chen", + "Ġник ак", + "ĠÐļ огда", + "ĠTyp ically", + "Ġíģ ¬", + "ç® ¡", + "ci os", + "Ġmiss iles", + "Ġsp onge", + "ĠK itchen", + "Ġt ren", + "ning en", + "Ġsc rap", + "Ġser ait", + "´ì ł", + "ç ¹", + "Ġë° ĺë", + "Ġrest ored", + "Ġprzy kÅĤad", + "ĠK ubernetes", + "Ġsa it", + "Ġu w", + "Ġen abling", + "Ġtra vers", + "amp s", + "åı Ĺ", + "ĠOM G", + "ens or", + "Ġz osta", + "Ġpronoun ced", + "A ng", + "norm al", + "Ġeconom ies", + "t in", + "ĠChamp ion", + "iz en", + "Ġar beiten", + "ĠG ospel", + "ĠZ u", + "ng a", + "Ġliter acy", + "ĠM ans", + "Ġcircul ation", + "Ġad ap", + "ĠTot al", + "Ġmere ka", + "Ġol acak", + "ÑģÑĤ аÑĤи", + "J ack", + "Ġm und", + "Ġth ief", + "b ies", + "Ġê² ģ", + "a que", + "ĠÚ© ÛĮ", + "ĠSc ar", + "å ²", + "Ġab ol", + "Ġdev ote", + "Ġ0 1", + "Ġs itten", + "ĠVis ual", + "we ek", + "s ome", + "ing t", + "Ġjournal ism", + "ĠH ir", + "ĠB achelor", + "in ery", + "Ãľ ND", + "ãĥ Ł", + "ç» Ļ", + "Ġcolor ing", + "ĠCr ist", + "Ġcelebr ities", + "ĠÑĩ иÑģ", + "ĠC rit", + "Ġdifferent iate", + "ĠÐľ не", + "el im", + "Ġse afood", + "Ġalgum as", + "otherap y", + "æĪ °", + "Ġgla ub", + "Ġarbitr ary", + "g ens", + "ĠбÑĥд ем", + "Ġt av", + "Ġcream y", + "ĠCount ry", + "a ñ", + "м еÑĤ", + "Ġh inter", + "Ġm ism", + "Ġillust rate", + "ÃľND NIS", + "Ġdecre asing", + "Ġwen iger", + "AK I", + "ix on", + "Ġн ей", + "Ġfat to", + "Ġn erd", + "ç ł", + "Ġb itte", + "P er", + "Ġt ane", + "Ġgö z", + "Ġfor te", + "ĠE y", + "Ġнав еÑĢ", + "è¢ «", + "ĠWord Press", + "ĠM is", + "Å ¯", + "z äh", + "Ġinté ress", + "osa urs", + "ĠFall s", + "Ġn essa", + "9 7", + "Ġmuseum s", + "Ġcorrespond s", + "Ġs ings", + "f our", + "Ġed er", + "ĠCommun ist", + "o a", + "ne k", + "ĠWH O", + "Ġcor po", + "Ġmess ing", + "ÏĦ αι", + "Ġbrush es", + "Ġb isc", + "ĠAr beits", + "ĠT ax", + "Ġse le", + "Ġflag s", + "ou pe", + "Ġanticip ated", + "ãĥ ij", + "ĠN ad", + "Ġpou red", + "Ġm l", + "Ġll ama", + "Ġvisual ize", + "Ġlisten ers", + "ÙĦ Ùĥ", + "al ten", + "Mich ael", + "Ġcos ì", + "Õ¡ Õ", + "op us", + "Ġíķ´ì £¼", + "Ġh ike", + "ĠAtt orney", + "ĠHill ary", + "ud ed", + "Ġíķĺ ì§Ģë§Į", + "Ġdo ve", + "Ġstorm s", + "ак Ñģ", + "Ġdoct rine", + "Ġhe x", + "ik s", + "no ÅĽÄĩ", + "Ġscript s", + "Ġδ εν", + "ĠÑįÑĤи Ñħ", + "ĠÐ Ĩ", + "ab er", + "ĠV as", + "Ġcent imeters", + "×ŀ ×Ķ", + "ни б", + "Ġrid ers", + "ĠT rib", + "åĮ ħ", + "Ġtak że", + "Ġn oun", + "Ġic ons", + "Ġsole ly", + "mind ed", + "Ġdisp on", + "ĠSw itzerland", + "Ġcl usters", + "Ġqu eda", + "ail ing", + "Ġman ga", + "Ġ6 8", + "Ħ Ī", + "Ġt et", + "g ins", + "ha us", + "ç© º", + "å· ¥", + "ĠO P", + "ot ed", + "Ġnouve au", + "AL LY", + "ÙĪ د", + "ò n", + "Ġmort ality", + "ĠGit Hub", + "d rop", + "Ġdis gu", + "Ġrec om", + "Ġloc als", + "Ġhome made", + "amb a", + "Ġpron unciation", + "Ġal phabet", + "ан ÑĮ", + "ow any", + "ir as", + "id ency", + "OM E", + "ĠÑĢаÑģ Ñģ", + "ar ak", + "v iamente", + "Ġnon profit", + "ĠYouT uber", + "Ġp arenth", + "ĠB oo", + "v at", + "ĠSt ir", + "Ġpre cip", + "Ġan ts", + "Ġall y", + "ĠMa ori", + "ĠëĮĢ íķľ", + "åı¯ æĺ¯", + "og ene", + "ĠLab our", + "aret te", + "Ġrecy cling", + "ens a", + "Ġpurs uit", + "Ġs ak", + "ĠÐĹд еÑģÑĮ", + "Ġtoler ance", + "Ġsa at", + "Ġclick ed", + "âĻ ¥", + "Ġface book", + "ĠInt o", + "Ġincent ives", + "기 ëĬĶ", + "ĠD ennis", + "ĠW ik", + "ges ch", + "à¹ĢภĽ", + "ĠÏĢ α", + "ĠWh oo", + "Ġround ed", + "Ġdo pe", + "Ġcapt uring", + "ĠWar ri", + "Ġcivil ian", + "Ġchar ming", + "Ġes as", + "Ġsust ained", + "Ġle aning", + "Ġabund ance", + "ÃŃ lia", + "алÑĮ нÑĭй", + "Ġph ải", + "ac ja", + "Ġê°Ļ ìķĦ", + "act iv", + "า ย", + "Ġ9 7", + "Ġм ой", + "c ro", + "ĠJack ie", + "itt ees", + "br acht", + "ul ent", + "Ġìł ľë", + "Ġplug in", + "v antage", + "part y", + "Ġsu as", + "Ġan te", + "Ñĥ л", + "ÐĿ ÐIJ", + "æĤ ¨", + "ĠÏĥ Ïħ", + "Ġmet h", + "Ġenthus iasm", + "ÑıÑĤ ÑģÑı", + "íĻ Ķë", + "Ġsynth etic", + "Ġseason ing", + "ĠL ost", + "on omy", + "ĠSp ark", + "Ġb ure", + "Ġass ured", + "Ġimag in", + "Ġcar ro", + "S ha", + "Äħ t", + "нÑĥ ÑĤÑĮ", + "át ica", + "T Y", + "Ġk ern", + "ĠBrazil ian", + "à °", + "Ġsusp ended", + "ĠCar ib", + "Ġbiz im", + "ĠOl iver", + "ãģ ¶", + "T om", + "Ġпл ан", + "Ġn ope", + "omet hing", + "Ġbe iden", + "ÑĨ ен", + "Ġflu ct", + "Ġμ οÏħ", + "Ġf athers", + "ĠBl ake", + "Ġup ward", + "ĠD ash", + "ĠL il", + "ĠìĪ ĺëıĦ", + "Ġrevel ation", + "Ġelev ated", + "ĠJi ang", + "LE D", + "ĠThom pson", + "Ġмог ÑĥÑĤ", + "ÑģÑĤ ÑĢÑĥ", + "if iers", + "Ġcome back", + "Ġbuy ers", + "ê² °", + "ĠS ales", + "иÑĩ е", + "c iones", + "Ġwh istle", + "Ġd ull", + "LE X", + "Ġíķĺ ê²łìĬµëĭĪëĭ¤", + "Ġcrimin als", + "Ġdes cent", + "ipp le", + "mas ı", + "Ġfool ish", + "ĠдÑĥм аÑİ", + "t ar", + "Ġman go", + "Ġchore ography", + "M att", + "Ġterr itor", + "Ġac aba", + "ĠEin stein", + "ĠI BM", + "ĠMet al", + "ĠCry stal", + "Ġr ah", + "Ġf oul", + "ĠIsland s", + "Ġint act", + "ĠR ail", + ". :", + "Ġac á", + "ĠпÑĢ оп", + "еÑĢ е", + "ĠWr ite", + "he he", + "ĠF O", + "ĠÏĥ ÏĦη", + "Ġdo in", + "h eld", + "Ġappropri ately", + "Ġdeliber ately", + "Ġarch ive", + "Ġgive away", + "ãģĵ ãģĵ", + "Ġfin ale", + "л аÑģ", + "ен о", + "Æ¡ n", + "æ£ Ĵ", + "og o", + "çī ©", + "ĠAud ience", + "ãħ ł", + "Ġsub ur", + "Ġhead ache", + "ан нÑı", + "ĠW itch", + "ĠSwed ish", + "ĠB I", + "Ġer ase", + "Ġk hi", + "Ġcomment ary", + "ĠS ultan", + "íĥ Ŀ", + "ĠLe ban", + "Ġë³´ì ĭ", + "ĠP am", + "pe kt", + "mon th", + "Ġground ed", + "ê ¾", + "ĠÅŁek ilde", + "2 50", + "ĠS CH", + "ios o", + "Ġin aug", + "he imer", + "Ġreflect ing", + "ĠR uth", + "ĠO il", + "Ġtrou ver", + "u ep", + ".. ]", + "Ġìŀ Īë", + "Ġol ha", + "Ġreason ably", + "Ġgl itch", + "U B", + "ĠGr an", + "Ġad alah", + "Ġl ent", + "ر ا", + "Ġtr action", + "Ġadjust ing", + "´ ¤", + "ниб ÑĥдÑĮ", + "Ġд оп", + "Ġstretch ed", + "Ġor t", + "Ġcos ine", + "vi ol", + "Ġì ħ", + "c ir", + "Ġbast ard", + "ä¸ ĩ", + "ĠÑħ од", + "Ġqu ier", + "Ġpress ures", + "ĠAn h", + "å¹ ¾", + "Ġell es", + "Ġд ÑĢÑĥз", + "ĠможеÑĤ е", + "Ġch á»", + "ĠM é", + "ö k", + "ầ u", + "ìł Ī", + "z in", + "Ġca ution", + "ib an", + "Ġjud ging", + "ÑĥÑİ ÑĤ", + "Ġb aj", + "ĠС ейÑĩаÑģ", + "ĠPo or", + "ĠNaz i", + "Ġup beat", + "y ang", + "Ġweek ends", + "ĠEss entially", + "Ġol uyor", + "Ġspat ial", + "ack er", + "Ġsell er", + "Ġ×IJ ×ķת", + "ij ׾", + "Ġv ivid", + "ĠB ond", + "ê ¶Į", + "is kt", + "ãĤ µ", + "Ġgo at", + "dri ver", + "Ġm ug", + "ict ional", + "Ġall t", + "ĠIn iti", + "ĠR and", + "Ġfinish es", + "Ġê° Ī", + "Ġvit am", + "Ġteen agers", + "ĠMor ris", + "ì¤ Ħ", + "ĠO ri", + "i ya", + "Ġmy ös", + "St ep", + "ĠK re", + "è¾ ¦", + "Ġdin osaur", + "Ġëª ĩ", + "aff e", + "ĠëIJ ©ëĭĪëĭ¤", + "Ġz eg", + "åĪ ĩ", + "ĠManh attan", + "Ġsu jet", + "ue lle", + "st off", + "Ġd ür", + "Ġsub mar", + "es es", + "Ġa quele", + "Ġn ou", + "ĠFa ith", + "t z", + "ĠÑĤ омÑĥ", + "ace ut", + "li ers", + "Ġband width", + "Æ°á» Ŀ", + "Ġrespect ive", + "ĠA ve", + "Ġspread she", + "ĠS ent", + "ic amente", + "Ġinf ra", + "Ġlearn ers", + "Ġà® ī", + "ai ah", + "ren al", + "Ġmust ard", + "Ġhab t", + "ç ĥ", + "ĠQu é", + "Ġanaly zing", + "æ¯ ı", + "Ġso lic", + "Ġ×Ķ ×ķ×IJ", + "Ġcaus a", + "Ġwel comed", + "ĠS uccess", + "Ġfac ile", + "ĠÐŁÐ¾ÑĤ омÑĥ", + "sche in", + "Ġf etch", + "Ġstr at", + "ĠÑģÑĤо иÑĤ", + "ìĹIJìĦľ ëĬĶ", + "ĠÑģп оÑģоб", + "m am", + "Ġser ÃŃa", + "nam ents", + "wr iter", + "Ġconsult ing", + "íĺ Ģ", + "ĠBer keley", + "e u", + "as ive", + "U U", + "ĠAnal yt", + "Ġsubm ission", + "Ġmagnific ent", + "en za", + "Ġe con", + "Ġprof iles", + "Ġinc ar", + "A b", + "ĠN un", + "Ġh ic", + "scream ing", + "Ġresil ient", + "åĪ ©", + "gr und", + "Ġconc ur", + "Ġbere its", + "L D", + "Ġnur t", + "ì ī", + "Ġfe ast", + "Ġenc uent", + "ĠMich el", + "Ġsup rem", + "\" ]", + "Ġfeed s", + "ĠKoll egen", + "iss er", + "ĠF eng", + "ĠW en", + "m un", + "Ġten ÃŃa", + "ĠW rest", + "Ġìĺ¤ëĬĺ ìĿĢ", + "Ġst ead", + "Ġrest oration", + "Ġdon ated", + "Ġdel s", + "Ġc ensus", + "Ġdesper ately", + "worth y", + "H E", + "ĠSp a", + "ĠBry an", + "Ġh j", + "ĠR aw", + "ìķĦ ë", + "ĠCam era", + "Ġz ien", + "Ġst yl", + "ĠT W", + "ĠChe ese", + "bor ne", + "Ġob l", + "ĠAl ready", + "Ġunst able", + "Ġfl ames", + "p ost", + "H a", + "rom agn", + "ĠìĹ Ħë§Ī", + "d est", + "Ġkole j", + "Ġtempor arily", + "Ġdeterm ining", + "ĠGl ass", + "ÑĢ он", + "ol an", + "Ġdom inated", + "åĮ ĸ", + "__ __", + "ĠÙĩ ذا", + "ĠD ana", + "Ġdin heiro", + "a qu", + "ë ¯¼", + "ĠÃł s", + "ĠJo ey", + "ĠGr iff", + "Ġatt ain", + "Ġtrans itions", + "ĠLiter ally", + "ен д", + "ĠHa ven", + "Ġgrab bing", + "Ġcryst als", + "ĠFour th", + "Ġcand les", + "ĠÑģлÑĥÑĩ а", + "ric o", + "Ġ5 000", + "et to", + "Ġund o", + "Ġk to", + "Ġdi vert", + "Ġch ir", + "Ġper sec", + "Ġh iking", + "Ġannounce ments", + "çĶ ±", + "з Ñĭ", + "Ġa uc", + "Ġsystem ic", + "ĠR M", + "Ïĥ α", + "ĠÐĶ ж", + "Ġy ar", + "ĠW ard", + "Ġpiss ed", + "Ġcar n", + "Ġautonom ous", + "ãħİ ãħİ", + "so ver", + "æ²Ĵ éĮ¯", + "å¾Ī 好", + "Ġref lex", + "Ġgard ens", + "Ġd ated", + "ì ±", + "ami ÄĻ", + "Ġcontinu ity", + "Ġcitizens hip", + "Ġsch wer", + "Ġz ak", + "t able", + "ĠÑģ Ñĩ", + "è§ ģ", + "ĠÏĥ ε", + "Ġgener ates", + "구ë Ĥĺ", + "ö h", + "ó m", + "al am", + "ĠJUD Y", + "ĠB ug", + "Ġãģ ¦", + "Ġdr ones", + "Ġá gua", + "ac aks", + "æ ļ", + "ĠÐļ он", + "× ĸ×Ķ", + "Ġstri ve", + "ĠAl tern", + "Ġne arest", + "Ġpro yect", + "ter a", + "ĠASH LEY", + "Ġwor m", + "Ġre play", + "Ġt ara", + "ĠInd ians", + "ãĤ °", + "ica id", + "ĠìĪ ľ", + "Ġappe aling", + "ĠW es", + "Ġment ions", + "Ġдел е", + "Ġk w", + "Ġfrag ile", + "is z", + "k ów", + "h ang", + "col or", + "Ġpresident e", + "8 7", + "е ÑĦ", + "çĪ ¸", + "Ġдоб ав", + "ĠN elson", + "á fic", + "ĠMIC HAEL", + "Ġmechan ic", + "Ġmet res", + "Ġo czywiÅĽcie", + "ĠC ind", + "Ġog sÃ¥", + "Ġlands ca", + "AC E", + "Ġhead lines", + "Ġcat alyst", + "ĠC atch", + "ink les", + "Ġp ills", + "ord o", + "Ġimmig rant", + "Ġexam ination", + "Ġacc idents", + "zÄħ d", + "Ġqui ere", + "Ġne lla", + "Ġ6 7", + "Ġpass a", + "Ġsuper fic", + "ist or", + "Ġno v", + "ëĭ µ", + "Ġmand ate", + "is ons", + "ĠVirt ual", + "Ġsel ber", + "Ġcounsel ing", + "ĠN BA", + "Ġse pt", + "Ġbelie ver", + "Ġmar vel", + "ĠInte gr", + "Ġм Ñĸ", + "Ġor ph", + "Ġback ward", + "ĠGen eration", + "ĠP ict", + "ĠÑĤо ÑĤ", + "Ġtap i", + "pro chen", + "Ġhall way", + "ht e", + "ĠÛģ ÛĴ", + "ĠZ um", + "èĢģ 師", + "ach ment", + "iqu er", + "fol g", + "ĠEd die", + "ĠK il", + "Ġwell ness", + "st ock", + "è¼ ĥ", + "Ġka ç", + "Ġterror ism", + "Ġpo inter", + "O f", + "her ic", + "ĠUlt imately", + "Ġmes es", + "ĠTr ade", + "Ġp int", + "Ġtu ition", + "Ġdisag re", + "Ġê²Į ìŀĦ", + "Ġmanus cript", + "Ġro omm", + "Ġoutput s", + "е ÑĨи", + "Ġr ies", + "Ġsal ud", + "otz dem", + "Ġmass es", + "Ġby ÅĤa", + "Ġclear ing", + "Ġdisc ourse", + "ats on", + "Ġfold ed", + "ĠJ ar", + "ÙĦ Ùī", + "9 00", + "ĠÑĥ Ñģп", + "Ġprophe cy", + "Ġinterf ere", + "иÑħ од", + "๠Į", + "Ġth ri", + "Ġ×ŀ× ©", + "Ġlaz ım", + "Ġ199 2", + "Ġfut uro", + "Ġlock ing", + "Ġembar go", + "ĠNe ither", + "iv amente", + "ĠmÃ¥ ste", + "Ġm ik", + "Ġcollect or", + "еко ÑĤоÑĢ", + "ĠG and", + "Ġsent ir", + "ĠM ight", + "å¡ Ķ", + "Ġgan zen", + "U C", + "Ġrel ating", + "S D", + "Ġmos quito", + "G R", + "Ġho llow", + "âĺ ħ", + "ĠWalk er", + "Ġaffili ate", + "Ġduplic ate", + "н ем", + "Ġgra pe", + "ĠOrgan ization", + "Ġsy nt", + "J oe", + "Ġg eg", + "Ġreve aling", + "ĠEth an", + "out er", + "Ġy ay", + "é« Ķ", + "л аÑĢ", + "Ġreported ly", + "Ġihr er", + "Ġrecogn ise", + "Ġbum per", + "ĠR andy", + "ĠVen us", + "t les", + "Ġappet ite", + "Ġgluc ose", + "Ġch odzi", + "ĠFurther more", + "t ir", + "Ġcont a", + "Ġint uition", + "Ġalt itude", + "Ġch unks", + "ĠJosh ua", + "ıģ ım", + "ry lic", + "le ans", + "ĠíĶ ¼ë", + "L L", + "Q ue", + "Ġg or", + "Ġзна ÑĩиÑĤ", + "Ġpo ems", + "Ġexc el", + "Ġexpl ored", + "Ġpop ul", + "Ġinclus o", + "st ä", + "ĠG avin", + "all ing", + "ĠÏĦο ν", + "é ©", + "ar beit", + "ĠG as", + "Ġgl orious", + "rie ben", + "Ġsp am", + "Ġindo or", + "Ġthr ust", + "ĠA ld", + "ĠPri or", + "Ġon board", + "ãģł ãģķãģĦ", + "o ca", + "AS H", + "£ ł", + "ĠChrist ine", + "Ġdra wer", + "Ġno on", + "Ġìŀ ĺë", + "Ġperman ently", + "æ· ±", + "ĠнапÑĢ имеÑĢ", + "Ġpodcast s", + "era peut", + "pr it", + "Ġstain less", + "ĠÚ© ÛĴ", + "Ġfamil ia", + "ĠÑĢаз ÑĢ", + "un to", + "ĠÑģÑĤ ол", + "Ġh ä", + "ĠH ai", + "ĠP B", + "iz on", + "Ġkon nte", + "Ġbüy ük", + "Ġutil izar", + "Ú Ĩ", + "Ġaqu esta", + "Ġmix er", + "ud ent", + "лек Ñģ", + "ÅĤ u", + "ĠÑģиÑģÑĤ ем", + "Ġн оÑĢм", + "Ġfat al", + "Ġconsider ations", + "Ġvalid ation", + "Ġo li", + "Ġk ardeÅŁ", + "ĠGL ORIA", + "Ġp all", + "еÑģÑĤ е", + "Ġrect ang", + "Ġmed ieval", + "allah i", + "ast i", + "ĠSy rian", + "Ġshe ar", + "Ġdeb ug", + "ĠM ai", + "Ġknock ing", + "ĠLe x", + "ard an", + "ro v", + "Ġmem orial", + "æ° £", + "ook y", + "Ġstuff ed", + "Ġpass é", + "Ġw ig", + "Ĥ ł", + "Ġpróxim a", + "Ġ199 1", + "Ġм еждÑĥ", + "Ġnuest ros", + "ĠBe ast", + "Ġsm o", + "atch ed", + "olog ia", + "Ġм од", + "Ġge e", + "Ġconcept ual", + "Ġà ´", + "Ġdecre ases", + "Ġquer ies", + "олÑĮ ÑĪ", + "ĠA part", + "Ġex empl", + "å± ±", + "Ġfl ed", + "ĠO FF", + "gg ak", + "Ġbe ad", + "h ir", + "l ies", + "ĠClear ly", + "ı lar", + "Ġch ess", + "Ġwhich ever", + "Ġ9 6", + "Ạ±", + "Ġrespect s", + "Ġм оÑĢ", + "Ġorgan ism", + "Ġgrand pa", + "ĠV ie", + "è·Ł ä½ł", + "Ġflo oding", + "Ġupgrad ed", + "Ñij ÑĢ", + "Ġcheek s", + "Ġcon quer", + "Ġstub born", + "Ġpuzz les", + "Ġau ction", + "Ġre lying", + "ĠPRO F", + "ĠEs per", + "ĠÐľ У", + "Ġhy pe", + "Ġposs ibil", + "Ġimp rison", + "ĠEr n", + "ìĹĪ ìĬµëĭĪëĭ¤", + "Ġenv ie", + "Ġresur rection", + "ä¸į è¡Į", + "Ġs per", + "ĠVenez uela", + "s om", + "Ġìŀł ê¹", + "Ġnouve lle", + "Ġclos es", + "Ġ19 40", + "Ġqu a", + "ĠJ ared", + "ĠP ir", + "Ġind e", + "Ġscr ub", + "uk u", + "Ġrequ iring", + "Ġв ами", + "Ġconsider able", + "åIJ Ľ", + "il ia", + "Ġin ne", + "Ġmein em", + "Ġhard ship", + "Ġtra ps", + "ro c", + "ĠìĦ ¤ë", + "Ġresearch ing", + "ĠMarg aret", + "Ġpen ny", + "Ġbı rak", + "Ñij л", + "Ġw ool", + "Ġr het", + "Ġflat ten", + "ç ĩ", + "à¹Ģภ£", + "Ġp ied", + "ĠCh ap", + "Ġunder m", + "Ġf ret", + "Ġcrash ed", + "ĠFra uen", + "Ø° Ùĩ", + "iv an", + "Ġliter ary", + "late go", + "Ġsp äter", + "Ġsimilar ities", + "â Ĩ", + "ĠCor on", + "ĠC reek", + "Ġboss es", + "Ġaccompan ied", + "Ġdeb ates", + "Ġassemb led", + "Ġà ģ", + "ĠV ai", + "Ġtr act", + "Ġsimple ment", + "ĠAr in", + "Ġvulner ability", + "Ġhorm one", + "I EL", + "OO K", + "Ġrel ay", + "ĠAnd rea", + "r il", + "Ġnecess ity", + "aceut ical", + "Ñİ Ñī", + "ous ing", + "nah men", + "Ġfoot print", + "m ap", + "ĠT ier", + "ann ya", + "int end", + "åĸ ®", + "å ¢", + "Ġdecor ate", + "Ġzomb ies", + "ĠHy d", + "ĠSu z", + "Ġcampus es", + "ĠE mb", + "Ġthr ottle", + "Ġad min", + "Ġop ortun", + "Ġmir rors", + "Ġident ities", + "ĠCl in", + "Ġë¹ Ħë", + "á¹ £", + "ĠO tt", + "Ġbl ues", + "Ġimpress ions", + "- ,", + "Ġv ague", + "a fe", + "Ġinfer ior", + "eral d", + "Ġmedic ines", + "Ġpre gunta", + "os ely", + "Ġt élé", + "ĠMon th", + "ĠLe aders", + "ĠEgypt ian", + "Ġr ation", + "k ers", + "he its", + "Ġre cht", + "P lay", + "Ġe g", + "Ġpoll s", + "ĠWOO DR", + "Ġsl ots", + "j am", + "B oth", + "ĠR at", + "ÑĢ аж", + "ĠBr ight", + "ä¸Ģ å®ļ", + "á»ij i", + "ur ious", + "Ġsing ers", + "Ġlo gin", + "Ġt êm", + "l ation", + "ĠM um", + "Æ°á»Ŀ ng", + "ĠEd itor", + "åIJ ij", + "Ġinnov ations", + "h ave", + "ĠS ek", + "Ġwe aker", + "ĠG ob", + "A fter", + "´ì §Ģ", + "Ġ문 ìłľ", + "ãĥ¼ ãĥ¼", + "Ġdisad vantage", + "ç¢ º", + "Ġg aze", + "ĠM ack", + "Ïģ ί", + "ĠK iss", + "ĠH olo", + "ĠBir th", + "iz i", + "b ab", + "ä¿ Ŀ", + "ìĭľ ê³ł", + "д еÑĢж", + "Ġsqu at", + "кÑĥ Ñģ", + "un i", + "ĠComm e", + "ĠWOODR UFF", + "ĠChampions hip", + "Ġwel che", + "ĠY outh", + "z em", + "Ġod pow", + "Ġpersist ent", + "r ut", + "ìĶ ©", + "íĸ ¥", + "la ir", + "ik u", + "Ġvend or", + "Ġch úng", + "Ġfinan ci", + "Ġover ly", + "â u", + "Ġgl uten", + "Ġ18 00", + "Ġdiv isions", + "Ġciud ad", + "Ġob ed", + "Ġwar um", + "Ġe her", + "Ġel im", + "ĠÐĴ о", + "Ġpeu vent", + "ĠW anna", + "Ġattend ance", + "Ġassess ments", + "ĠB og", + "Ġimag ery", + "Ġcollect ively", + "Ġinform al", + "ĠSch we", + "Ġde utlich", + "ĠCh el", + "ĠP E", + "ow ed", + "Ġb anner", + "Ġshel ves", + "ĠRet urn", + "æĭ ¿", + "LAUGH S", + "Ġcongrat ulate", + "ĠNor way", + "Ġd well", + "ĠCarib bean", + "Ġnorm s", + "ĠAn imal", + "ĠValent ine", + "Ġext ending", + "ĠV ou", + "or r", + "ĠCh eng", + " ¡", + "ĠдоÑĢ ог", + "Ġve g", + "Ġh Ã¥", + "ĠX in", + "Ġì¹ ´ë", + "em et", + "Ġhyp oth", + "Ġinteress ante", + "ric es", + "I Z", + "ĠUS D", + "Ġrun ner", + "ĠB ag", + "Ġê ½", + "Ġcomeç ar", + "Ġpig s", + "Ġweakness es", + "P h", + "ĠVi ol", + "ä¸į çĶ¨", + "Ġdra gging", + "ĠAqu ÃŃ", + "ĠCS S", + "Ġmill imeters", + "Ġest ás", + "Ġac ute", + "Ġde jar", + "i ÄŁ", + "ob ra", + "L ove", + "Ġsil k", + "** **", + "Ġjo ins", + "Ġpro l", + "Ġê°IJìĤ¬ íķ©ëĭĪëĭ¤", + "æĶ ¯", + "ØŃ Ø¯", + "agh etti", + "än ner", + "Ġstr ang", + "Ġdoub led", + "Ġdescri ptions", + "Ġst ellen", + "Ġpart i", + "ç« ĭ", + "² Ħë", + "Ġö ÄŁ", + "ig hing", + "Ġang ular", + "Ġnat uur", + "ĠSh el", + "Æ° Æ¡", + "Ġr ays", + "Ġse per", + "st art", + "v ised", + "Ġrush ed", + "Ġinternation ally", + "Ġnive l", + "Ġbox ing", + "fall en", + "á»ij c", + "Ġse inen", + "plic ity", + "Ġcarb oh", + "ĠTra vis", + "us o", + "ĠPh ase", + "Ġactiv ation", + "Ġop io", + "· ¨", + "Ġdecre ased", + "C ar", + "Ġbund le", + "Ġexp end", + "orm al", + "Ġadjac ent", + "Ġme e", + "ĠоÑĢ г", + "Ġtrans cript", + "ĠLang uage", + "G S", + "è§ ī", + "Ġse ul", + "Ãł nh", + "Ġn ya", + "ning s", + "Ġìĭ ľë", + "ĠëĶ°ë Ŀ¼", + "ĠA gr", + "ÃŃ d", + "çķ Ļ", + "Ġab y", + "ĠNe o", + "ıyor uz", + "ĠThink ing", + "a ime", + "Ġv ite", + "Ġtrav és", + "Ġ×ij× ¢", + "Ġм ед", + "O ur", + "ho ot", + "Ġl iner", + "ĠP izza", + "Ġhy g", + "fl ies", + "ĠContin ue", + "Ġdent al", + "ĠT ib", + "Ġreg ulate", + "lie ÃŁ", + "AL K", + "ĠTa e", + "ê¸ ¸", + "ĠBre xit", + "ĠG ut", + "Ġoccup ation", + "Ġz robi", + "â m", + "Ġwh isk", + "ä¸ĸ çķĮ", + "Ġkans ke", + "om on", + "ro be", + "Ġwar fare", + "Ġth á»ĥ", + "Ġjak i", + "Ġstro kes", + "Ġpe as", + "ĠDam it", + "H AN", + "Ġinter ference", + "Ġмин ÑĥÑĤ", + "N ER", + "out ing", + "Ġtext ures", + "Ł ī", + "ow i", + "Ġíķ Ļ", + "Ġd ens", + "Ġprotagon ist", + "än n", + "Ġgod dess", + "Ġwoll te", + "ij o", + "ĠWo che", + "ĠV PN", + "st ory", + "Ġkind erg", + "Ġfun nel", + "Ġdist ress", + "ноÑģÑĤÑĮ Ñİ", + "Ġno isy", + "ĠпÑĢод олж", + "Ġdar an", + "Ġenzy me", + "л ож", + "Ġm ute", + "Ġd war", + "Ġا س", + "Ġkom pl", + "Ġmer it", + "Ġf osse", + "ĠDr ink", + "Ġfor a", + "Ġw ohl", + "Ġbree ze", + "Ġsan it", + "Ġdr in", + "ĠìĿ´ê±° ëĬĶ", + "Ġ6 2", + "Ġì° ¨ë", + "aby tes", + "Ġde eds", + "ĠÐ ¹", + "i ème", + "igg ling", + "Ġ\" '", + "ĠÑĩа ÑģÑĤÑĮ", + "ĠAns wer", + "Ġev angel", + "Ġ10 80", + "ĠVis it", + "ic ient", + "Ġreli ability", + "Ñİ ÑģÑĮ", + "ĠEar lier", + "Ġf id", + "çŃī ä¸Ģä¸ĭ", + "Ġslee ves", + "iy orsun", + "Ġb ib", + "ĠAcc ount", + "Ñı ли", + "cipl inary", + "z as", + "Ġб еÑĢ", + "Ġneck lace", + "Ġbl ender", + "ĠPhill ips", + "et i", + "ĠJup iter", + "Ġprov oc", + "ĠYe ars", + "ent re", + "ac io", + "Ġk ü", + "Ġanten na", + "Ġnovel s", + "Ġf art", + "ĠS ugar", + "ĠJud y", + "Ġcollaps ed", + "ç °", + "rit is", + "Ġìĥģ íĻ©", + "ÐĹ Ð«", + "ĠVer f", + "rane an", + "ere um", + "ĠTar get", + "Ġ8 8", + "ĠÐĺ з", + "ide o", + "Ġreg ression", + "ì¶ ľ", + "Ġmów i", + "Ġstud ios", + "i ens", + "ip h", + "Ġfr ying", + "Ġfasc inated", + "ĠW ah", + "b ucks", + "m aya", + "ĠSat urn", + "ĠM ommy", + "Ġrating s", + "Ġaut umn", + "Æ°Æ¡ ng", + "Ġlos er", + "Ġcent ro", + "érie ur", + "ĠF old", + "Ġsuper visor", + "ĠNo bel", + "Ġunder est", + "ob ia", + "Ġв ÑģÑı", + "Ġver w", + "Ġfu els", + "Ġartif acts", + "Ġë¶ Ļ", + "ĠAut om", + "çļĦ æĺ¯", + "Û Ķ", + "×ķ× ¡", + "Ġih nen", + "Ġ5 9", + "ound ing", + "еÑĢ Ñĭ", + "in ars", + "ch ant", + "Ġadd icted", + "Ġexplos ive", + "Ġdisp ers", + "â ĸĪ", + "ax is", + "AR Y", + "Ġl um", + "ĠÑĥ Ñģл", + "ĠØ Į", + "Ġru pees", + "ĠPe arl", + "c amp", + "t v", + "oy a", + "Ġconclud es", + "Ġcoll ision", + "Ġbuy er", + "Ġplay ground", + "Ġspr ings", + "Ġfemin ine", + "ĠR as", + "Ġincar cer", + "íĹ ĺ", + "Ġdial ect", + "Ġclos ure", + "Ġchat ting", + "Ġb abe", + "Ġspot light", + "Ġnot ation", + "è· ¯", + "St ar", + "i ão", + "Ġt ête", + "Ġt ide", + "Ġjun to", + "Ġsen ator", + "Ð ¥", + "Ġexcus es", + "Ġbl ink", + "Ġadm ission", + "ĠL ily", + "Ñĭ ми", + "Ġam igo", + "Ġl ust", + "ëĭ ¬", + "Ġam ino", + "äºĭ æĥħ", + "Ġconsult ant", + "ĠElect ric", + "Ġëħ¸ë ŀĺ", + "uj ah", + "Ġshoot er", + "icht en", + "ĠUkrain ian", + "Ġaim s", + "ĠEnter tain", + "Ġmir acles", + "èŃ °", + "Ġze igen", + "Ġl am", + "Ġres s", + "ĠJ ill", + "yl an", + "Ġro ok", + "Ġh aya", + "Ġpass port", + "ad ata", + "Ġju icy", + "con f", + "л ей", + "ĠS z", + "Ġinter cept", + "ãģĤãĤĬãģĮãģ¨ãģĨ ãģĶãģĸ", + "ĠTe ams", + "Ġmak en", + "ir rel", + "ĠLI KE", + "áºŃ y", + "êµ °", + "Ġshort age", + "Ġparad igm", + "Ġpap el", + "Ġast ero", + "ãģ¾ ãģŁ", + "Ġsoll en", + "ĠMic key", + "ĠOr leans", + "Ġchol esterol", + "Ġgo ose", + "ÑĨи Ñİ", + "ãģĤ ãĤĭ", + "ĠF L", + "Ġгол ов", + "Ġtrib ute", + "ĠG am", + "Ġé videmment", + "Ñı Ñħ", + "å® ŀ", + "çĶ °", + "Ġin appropri", + "uh an", + "Ġorganiz ational", + "ail ed", + "Ġend ure", + "Ġ7 6", + "Ġshot gun", + "Ġliv re", + "Ġsu ited", + "Ġwarm th", + "ĠS IM", + "Ġenv ision", + "Ġde grad", + "î ne", + "La ughing", + "ĠWho ever", + "ĠBuddh ism", + "Ġspr inkle", + "ceÄŁ iz", + "Ġru ins", + "Ġst arch", + "ĠHer z", + "Ġinjust ice", + "Ġhum idity", + "ожал Ñĥй", + "ĠOb ject", + "ĠI gn", + "ĠEx am", + "ig ers", + "Ġth ou", + "ĠSo y", + "iv as", + "Ġpol es", + "m ath", + "Ġв ним", + "ING ING", + "ed ral", + "Ġexpl or", + "Ġroast ed", + "Ġcraw l", + "Ġco ff", + "Ġan om", + "Ġw ij", + "Ġimpro ves", + "Ġtreat y", + "Ġdiscover ing", + "Ġstat ute", + "Ġmerc ado", + "ĠÑģ ил", + "Ġint el", + "ĠChance llor", + "ĠMed icaid", + "ug i", + "Ġver bal", + "Ġd ön", + "Ġscript ure", + "Ġit eration", + "ek s", + "ĠOx ford", + "Ġw äh", + "ĠV ad", + "ĠA K", + "ĠìķĦ ìĿ´ë", + "Ġi ets", + "Ġneed les", + "Ùĥ Ùħ", + "Ġpas ado", + "Ġalbum s", + "Ġye a", + "et zen", + "Ħë ıĦ", + "Ġdeterm ines", + "Ġthe e", + "ĠPlay ing", + "är t", + "Ġ× ¦", + "c led", + "Ġdown ward", + "al one", + "Ġsol u", + "Ġpart ition", + "Ġw z", + "d d", + "Ġpesso al", + "å ª½", + "Ġfact ories", + "Ġble ibt", + "ม า", + "als a", + "ĠNF L", + "Ġfu era", + "Ġres erved", + "ĠE arn", + "Ġhel t", + "Ġshort cut", + "Ġconvin cing", + "sp ace", + "Ġen force", + "Ġc ores", + "Ġe fter", + "Ġrecess ion", + "x ico", + "Ġprop osition", + "ar ians", + "rop ol", + "Ġëª °ë", + "ĠÎ ľ", + "ĠìļĶ ì¦ĺ", + "Ġactiv ist", + "Ġconv iction", + "Ġz ab", + "Ġcancel ed", + "ÑĤо Ñĩно", + "ĠÎ ®", + "éĢĻ樣 åŃIJ", + "n ite", + "Ġfund ra", + "buz zer", + "ел о", + "ic ations", + "Ġz ona", + "Ġte ens", + "Ġmethod ology", + "Ġì¤ij ìļĶ", + "th an", + "ĠU l", + "ĠG rey", + "Ġh og", + "IN K", + "ĠS ung", + "ĠC laud", + "ĠCN N", + "Ġdel ivers", + "al in", + "ĠAd obe", + "ot he", + "ĠDes wegen", + "ภ³", + "Ġwer de", + "Ġgre ase", + "Ġup grades", + "ĠFin land", + "ac cept", + "Ġinter rog", + "be e", + "Ġãģ «", + "Ġpre de", + "ĠN ep", + "ĠCam bridge", + "Ġgraph s", + "Ġha unted", + "Ñģ ем", + "æ §", + "åħ ĭ", + "S ome", + "ĠM all", + "Ġrehears al", + "ĠUr ban", + "ĠL ag", + "Ġn im", + "ê° ķ", + "Ġposition ed", + "Ġavo ided", + "EM A", + "Ġlleg ar", + "Ġráp ido", + "Ġgou vern", + "Ġh ing", + "Ġdeal er", + "Ġreform s", + "Ġfat ty", + "к ол", + "ĠA ce", + "Ġne p", + "Ġì² Ń", + "Ġcomput ation", + "ĠSt ream", + "bour ne", + "t ur", + "P or", + "Ġsleep y", + "Ġbang et", + "ãģĤ ãģ®", + "Ġwe ighs", + "Ġble iben", + "ĠG ren", + "Ġun ions", + "Ġêµ IJ", + "Ġap render", + "uit ar", + "ĠJ est", + "um ing", + "ĠPlay er", + "ĠExt rem", + "Ġinteg er", + "аÑĩ е", + "Ġconcert s", + "×ķ× Ľ", + "Ġtro chÄĻ", + "ĠRe pe", + "éĩį è¦ģ", + "๠Ĥ", + "ż en", + "Ġsound ing", + "Ġan onymous", + "Ġex ca", + "ĠIran ian", + "Ġener getic", + "Ġw ives", + "ĠÑĨ веÑĤ", + "Ġa is", + "ãģĭ ãģª", + "Ġsud ah", + "Ġunder wear", + "Ġcrunch y", + "ĠP ain", + "Ġger çek", + "red ict", + "Ġm isma", + "Ñĸ ÑĤ", + "Ġsurv iving", + "ÎŃ ÏĤ", + "Ġparticip ant", + "ĠH essen", + "ári as", + "Ġsub way", + "ist ä", + "Ġcor al", + "Ġmar ijuana", + "ĠMem orial", + "ÑĪ ий", + "ri z", + "Ġsatell ites", + "Ġle ase", + "ĠCam eron", + "um ph", + "Ġclass mates", + "äh än", + "ÑģÑĤв е", + "Ġh ue", + "ĵ¤ ìĿĦ", + "Ġproport ional", + "Ġn oss", + "Ġl aps", + "r Ã¥", + "Ġbit coin", + "ÐĹЫ ÐļÐIJ", + "Ġì¶ ©", + "ĠÙĦ ÙĦ", + "ĠM ort", + "ĠEs p", + "arn os", + "ĠÑģказ ал", + "Ġä nd", + "åħ Ħ", + "×Ļ ×Ļ×Ŀ", + "ĠGe b", + "ge hen", + "I naudible", + "bor ough", + "ÑĦ ÑĦ", + "Ġfellow ship", + "ĠP aper", + "Ġcur ved", + "ĠGE OR", + "Ġcalcul ator", + "ĠCat al", + "ĠvÃł o", + "Ġby pass", + "л еÑĤ", + "à ³", + "tr ans", + "ren cies", + "ì ¡Į", + "ig ent", + "Ġtast ed", + "Ġo ceans", + "u ft", + "erv ice", + "ĠÐľÐ£ ÐĹЫÐļÐIJ", + "ĠClass ic", + "Ġrespect ively", + "~ )", + "î tre", + "ĠN ash", + "Ġz it", + "ĠìĽ ĥ", + "ĠëĨ Ĵ", + "qu ote", + "ĠUn s", + "Ġt ac", + "Ġpro ves", + "ĠPort land", + "b ly", + "Ġ ere", + "ì¶ Ķ", + "Ġépo ca", + "ĠÑĤÑĭ ÑģÑıÑĩ", + "7 6", + "Ġhad e", + "ĠF ro", + "ĠpolÃŃt ica", + "t ag", + "Ġíķ Ń", + "Ġsch ö", + "are tt", + "Ġprov isions", + "Ġmot ors", + "Ġimag ing", + "Ġdo k", + "ul ously", + "Ġme ille", + "çİ° åľ¨", + "ë IJ", + "ĠIS O", + "ĠST EM", + "ĠBow l", + "Ġto wers", + "ĠE e", + "ĠPerform ance", + "Ġlo in", + "cuss ion", + "Ġcoast al", + "ial e", + "com pass", + "Ġspell s", + "Ġdisappoint ing", + "Ġë²Ī 째", + "E ER", + "Ġvers atile", + "as ury", + "Ġen fin", + "Ġdown side", + "Ġgu iding", + "ĠاÙĦ ÙĤ", + "Ġnin ety", + "char ged", + "ĠF ans", + "Ġphilosoph ical", + "Ġg arn", + "ĠmÃ¥ nga", + "Ġwilling ness", + "Ġport ions", + "ab en", + "Ġ ï", + " ¿", + "ra ul", + "Ġspr int", + "if en", + "ıy la", + "Ġк Ñĥп", + "ãģı ãģłãģķãģĦ", + "Ġens uite", + "ĠCap itol", + "Ġ6 3", + "ĠговоÑĢ иÑĤ", + "Ġappoint ments", + "æī ¾", + "omi ast", + "Ġcare g", + "Ġpubl isher", + "Ġher aus", + "Ġε ί", + "ĠV S", + "ãģĿ ãģĹãģ¦", + "ä¸Ń åħ±", + "Ġsacrific es", + "th ird", + "Ġhuman itarian", + "ĠëĤ ´ì", + "im on", + "Ġine qu", + "Ġz ob", + "Ġcomfort ably", + "ĠD inge", + "Ġcancell ed", + "ĠPS AKI", + "ĠRob inson", + "Ġfin s", + ") ?", + "ĠHist or", + "ĠÑĩеловек а", + "Ġt bsp", + "te xt", + "k im", + "Ġupd ating", + "Ġgel d", + "f eld", + "ı ¼", + "Ġm ä", + "Ġcaf é", + "Ö Ģ", + "ĠS ri", + "ĠReg ion", + "ĠH ahaha", + "Ġfin ances", + "ĠاÙĦØ ´", + "Ġb unk", + "ru k", + "ha ft", + "Ġlater al", + "Ġext ensions", + "ĠìķĦ ìĿ´", + "Ġdefin ite", + "ĠZ hao", + "ĠLu is", + "st y", + "Ġcas os", + "ĠK lim", + "Ġ199 3", + "Ġreal ization", + "Ġhistor ian", + "Ġcrack ed", + "ëĤ ´", + "Ġsyst ème", + "ĠC IA", + "ĠÑĤ во", + "osp heric", + "Ġfle e", + "Ġr ất", + "ĠRegard less", + "Ġrel uct", + "Ġtim ely", + "ĠJul ian", + "G M", + "é Ĵ", + "ad ura", + "é£ Ł", + "Ġdress es", + "çģ £", + "ĠëĶ Ķ", + "Ġnom inated", + "Ġadvoc ates", + "ym ph", + "Ġrecord ings", + "Ġdev iation", + "Ġpriorit ize", + "Ġspir al", + "ĠYOU R", + "Ġtransp ose", + "amp oo", + "ĠìĽIJë ŀĺ", + "ĠV ision", + "Ġpol ite", + "Ġha mb", + "ĠPat ient", + "æ¯Ķ è¼ĥ", + "íģ ¬ë", + "Ġs ia", + "Ġê³ ³", + "Ġž e", + "è§ Ģ", + "Ġsuper market", + "ë ¹", + "ĠS ierra", + "Ġgr illed", + "ĠUp on", + "Ġabs ent", + "Ġme c", + "ĠAp ollo", + "Ġp unk", + "ĠPa ÅĦst", + "ĠÑģв ой", + "Ġê±° 기", + "G irl", + "Ġskin ny", + "ĠPrem ier", + "Ġterrit ories", + "Ġli ability", + "Ġj erk", + "r atic", + "Ġdan cers", + "ĠÑĥ ÑĢов", + "Ġê´ Ģë", + "on ly", + "ĠSt u", + "Ġske leton", + "ĠëŃ IJë", + "Ġзак он", + "ı kt", + "ĠMI KE", + "Ġl ö", + "m ie", + "Ġre iter", + "ãģĵãĤĮ ãģ¯", + "ĠKoll eg", + "ĠAd ams", + "lich er", + "Ġçoc uk", + "Ñı г", + "Ġbl ush", + "Ġsun shine", + "Ġe z", + "ĠDev il", + "Ġê¸ ¸", + "Ġãģ Ĭ", + "ad d", + "Ġlic ensed", + "Ġv inyl", + "ĠC zech", + "im ag", + "Ġcrack ing", + "Ġì º", + "Ġud ah", + "Ġs ommes", + "Ġìĸ¼ êµ", + "wa Äĩ", + "Ġf res", + "åij ½", + "ĠWal mart", + "ĠТ епеÑĢÑĮ", + "at isf", + "C I", + "l ang", + "Ġdiff usion", + "çĶ ·", + "Ġsom os", + "ĠM akes", + "æĪij æĥ³", + "ĠRick y", + "Ġmuch a", + "íķ ¨", + "Ġhorse power", + "as ia", + "Ġfib ers", + "Ġ erm", + "Ñģ кие", + "Ġjest e", + "Ġfire fight", + "Ġcu isine", + "Ġbesond ers", + "d ig", + "Ġì¢ ħ", + "ĠÑĥ ж", + "Ġtr acing", + "Ġcertain s", + "ĠApp ly", + "Ñĭв аÑĤÑĮ", + "ç Į", + "Ġbr u", + "ĠY ES", + "ĠB ai", + "ĠD it", + "ĠB is", + "Ġun le", + "ÑģÑĤа ÑĤоÑĩно", + "ĠAw ak", + ".. \"", + "Ġ12 5", + "Ġroot ed", + "Ġcaut ious", + "con st", + "Ġorchest ra", + "çľ ¼", + "Ġвн ÑĥÑĤ", + "Ġquel qu", + "ĠоÑĤ веÑĤ", + "ĠMet hod", + "ì¹ ľ", + "Ġμ αÏĤ", + "l ü", + "ĠìķĦ ê¹Į", + "Ġn aming", + "C har", + "ĠS icher", + "Ġprivile ged", + "ĠF ly", + "Ġãģ ĭ", + "áºŃ t", + "Ġadv ances", + "ĠZel da", + "Ġand ra", + "Ġgr inding", + "ĠEd ition", + "p f", + "Ġwarri ors", + "Ġh edge", + "Ġuns eren", + "ĠÑģÑİ Ð´Ð°", + "el iness", + "Ġpersonal ities", + "Ġf ö", + "' M", + "ĠÑĤо Ñĩно", + "Ġsh ipped", + "Ġmete or", + "Ġsurround ings", + "ĠF ill", + "u esta", + "ĠPerson al", + "ĠAll e", + "OR T", + "ä¹ ħ", + "ĠS che", + "V I", + "Ġcompar able", + "dam n", + "Ġd itch", + "Y AN", + "ism us", + "Ġpick up", + "Ġd ak", + "ĠE P", + "b est", + "ĠS ue", + "äll t", + "Ġpop corn", + "Ġfold ing", + "h ome", + "ив аеÑĤ", + "å·² ç¶ĵ", + "Ġan not", + "ch uck", + "Ġfier ce", + "Ġdam aging", + "Ġfl op", + "Ġpas ar", + "Ġre ef", + "ĠÑģво ей", + "Ġz oo", + "o vers", + "j ets", + "Ġpr ès", + "ĠSil icon", + "te ok", + "ĠS eth", + "at amente", + "Ġtransm itted", + "Ġrepl icate", + "Ġsl im", + "ĠC ream", + "æĦŁ ãģĺ", + "Ġside walk", + "ìĪ ĺë", + "Ġжиз нÑĮ", + "ĠMon ica", + "ä¾Ĩ äºĨ", + "Ġcop ied", + "ĠTer ra", + "ist ent", + "ç³ »", + "Ġо но", + "Ġwh ale", + "ĠW ITH", + "л ÑĥÑĪ", + "å½± çīĩ", + "ĠE en", + "ĠÑģво и", + "Ġord in", + "Ġpl ural", + "Ġsp okes", + "Ġdisp ute", + "Ġsens ible", + "Ġpre aching", + "Ġktó rzy", + "pt ed", + "av ier", + "Ġpist ol", + "ĠTap i", + "Ġ ÅĤ", + "ff ff", + "Ġac rylic", + "Ġignor ance", + "ĠZ iel", + "r ans", + "Ġweld ing", + "m id", + "æĪij ä¸į", + "Ġзан им", + "Ġlan es", + "Ġmin es", + "Ġmom s", + "×ķ× Ĺ", + "ĠCham ber", + "t ier", + "Ġmod est", + "ĠìĹ¬ê¸° ìĦľ", + "Ġun as", + "Ġw rench", + "hand ed", + "Ġsatur ated", + "ĠF ang", + "ĠCommission er", + "ठ°", + "Ġ× ĸ", + "ĠLouis iana", + "ĠM ask", + "Ġcub es", + "ìĶ ¨", + "Ġvidé os", + "ĠnÃ¥ gon", + "Ġr ider", + "Ġì¶ ľ", + "Ġs ón", + "ĠLat ino", + "b ank", + "íķ´ì £¼", + "ĠB rend", + "Ġsexual ity", + "... ,", + "Ġforget ting", + "Ġ ÛĮ", + "ĠAven gers", + "ĠBon jour", + "cess or", + "кÑĢа ÑĹ", + "c ence", + "Ġge ograph", + "cul o", + "о ÑģÑĤÑĮ", + "Ġswe ating", + "íĥ Ģ", + "Ġsymm etry", + "ts Ã¥", + "Ġj an", + "ĠFer r", + "é¦ ĸ", + "Ġamb assador", + "ziÄĻ k", + "Ġmus un", + "ĠÑĥ ÑĤ", + "ĠL G", + "iss ent", + "comm un", + "Ġcour s", + "Ġdevelop s", + "Ġbron ze", + "Ġsubst ances", + "dri ven", + "주 ìĦ¸ìļĶ", + "Ġa os", + "åĦ Ħ", + "ĠPROF ESS", + "h alf", + "Ġsort ed", + "ĠB omb", + "л аг", + "ĠMalays ia", + "ĠChrist ina", + "Ġteam mate", + "èģ ŀ", + "F T", + "Ġk ı", + "heart ed", + "+ +", + "ogen ic", + "Ġbell s", + "ĠOu ais", + "Ġspecial ists", + "б Ñĭ", + "dep th", + "lass es", + "g ies", + "ĠCo ffee", + "Ġmark ing", + "Ġfo ll", + "ul i", + "Ġad hesive", + "ĠB ot", + "ĠP unkt", + "e ye", + "ĠB ub", + "el ong", + "åĪ ¶", + "ĠпÑĢ ик", + "Ġdon or", + "8 4", + "Ġen for", + "Ġcatch es", + "Ġbr icks", + "Ġkn itting", + "ĠKnow ing", + "ok s", + "H Y", + "r ide", + "ĠFant asy", + "im an", + "Ġp se", + "Ġìĺ ¨", + "Ġв д", + "Ġrest ra", + "Ġevalu ated", + "ÑĢ ев", + "Ġfortun ately", + "Ġche gar", + "ر ب", + "Ġdom ains", + "ib i", + "ar ry", + "Ġshut ter", + "Ġfic ou", + "M ike", + "Ġinc lu", + "Ġdon ors", + "Ġa pl", + "ĠL ower", + "Ġimport ed", + "Ġacad emy", + "Ġfin als", + "Ġdisappe ars", + "ÙĬ ا", + "Ġadministr ator", + "j s", + "Ġcut ter", + "Ġr anging", + "ör per", + "Ġconstra int", + "ĠT able", + "ĠSh an", + "v ic", + "ĠF ix", + "ĠSw ift", + "oun ces", + "ĠWar um", + "Ġlett uce", + "app elle", + "Ġsh ave", + "Ġb ás", + "Ġ7 7", + "ĠO oo", + "a o", + "ĠMc M", + "ĠD rew", + "Ġl ump", + "Ġl ashes", + "schein lich", + "R ep", + "in is", + "ĠC ette", + "Ġcompos ite", + "emet ery", + "Ġsort e", + "ĠFin ancial", + "он е", + "ron es", + "ĠV oy", + "Ġt éc", + "ł ¹", + "ĠNin ja", + "ĠCor in", + "ен нÑı", + "ìĿ´ìĹ Ī", + "Ġn ich", + "Ġdetect ive", + "âĢ¦ \"", + "Ïĥ ε", + "Ŀ¼ë ıĦ", + "Ġë³ Ģ", + "Ġë¸ Ķë", + "Ġpro pe", + "ĠW right", + "Ġ×Ķ× ª", + "ĠSh i", + "Ġãģ Ł", + "Ġinvestig ations", + "éĤĦ æĺ¯", + "ĠPower Point", + "ĠCh u", + "Ġìĺ ¤í", + "ĠìĻĦ ìłĦ", + "ĠFra gen", + "un ning", + "Ġpour rait", + "Ġtext book", + "м Ñĭ", + "Ġf ahren", + "Ġ ÑĤоÑĢ", + "Ġl akes", + "ünd e", + "I nt", + "ĠMet ro", + "Ġmans ion", + "Ġа б", + "ĠZh ou", + "Ġcorrid or", + "Ġesc ol", + "Ġindic ating", + "ia ÅĤa", + "Ġm ommy", + "Ġarch ives", + "Ġfound ers", + "eng ine", + "ĠDie u", + "Ġsick ness", + "Ġë³´ ëĭĪê¹Į", + "Ġar b", + "Ġn ed", + "ĠCh op", + "Ġco vid", + "Ġsl am", + "Ġpublic ations", + "D C", + "Ġsp ends", + "æ ¾", + "Ġrefuge e", + "Ġd ile", + "Ġ×IJ× ĸ", + "ific ar", + "ĠS ach", + "G u", + "Ġre load", + "?? ??", + "Ġje ÅĽli", + "ĠÑģ оÑģÑĤо", + "Ġsim plicity", + "Ġbull ying", + "Ġм ол", + "Ġreal idad", + "Ġuncle ar", + "app a", + "le vant", + "ĠIS IS", + "ĠW atson", + "Ġde in", + "ĠMic ro", + "íķ ľë", + "ü g", + "Ġdev am", + "Ġtwe eted", + "å° İ", + "Ġunderstand able", + "at an", + "Ġvers a", + "Ġpre ca", + "Ġv á»ģ", + "ĠCop y", + "ĠOr acle", + "Ġmindful ness", + "Ġdisc ret", + "ern en", + "ĠP le", + "H ave", + "Ġisol ate", + "Ġde u", + "Ġsevent y", + "ĠH ills", + "Ġarc ade", + "ĠÑģп еÑĨи", + "Ġsigu iente", + "ĠB ÃľNDNIS", + "lig a", + "ĠвÑģÑĤÑĢ еÑĩ", + "ô m", + "Ġtwe ets", + "Ġsch auen", + "Ġcrit ique", + "ĠðŁİ µ", + "Ġst att", + "ĠÑģам ое", + "ân cia", + "Ġsuper natural", + "Ġplug ged", + "F l", + "yn ı", + "ĠTamb ién", + "Ġencourage ment", + "ĠSer ver", + "ëĤ ľ", + "up a", + "Ġast on", + "Ġhe ars", + "ÑĢа Ñħ", + "Ġsch e", + "Ġr ats", + "Ġrec uper", + "Ġun ten", + "ĠFight ing", + "Ġacadem ics", + "ç¤ º", + "ĠS ü", + "Ñģ киÑħ", + "Ġpa ired", + "Ģ ìĿĦ", + "Ġá rea", + "Ġsweet ness", + "åı Ĭ", + "Ġde fer", + "Ġmuit as", + "ĠAud io", + "Ġlock er", + "ÙĬ د", + "ĠÑģÑĤ ав", + "Ġbu ena", + "AN S", + "Ġdetect or", + "av o", + "be k", + "Ġα ν", + "íİ ¸", + "Ġdra gged", + "Ġдолж ен", + "à ĸ", + "ر Ø©", + "ìĿ´ì §Ģ", + "Ġcell e", + "ck ing", + "ĠاÙĦØ ¬", + "ĠCan vas", + "Ġespa ñ", + "Ġgl imp", + "Ġspread s", + "ong o", + "ĠM ason", + "ĠIn g", + "Ġê°Ģ ëĬ¥", + "ÏĦ ικ", + "Ġsec ular", + "Ġb ater", + "Ġinqu iry", + "Ġenerg ies", + "Ġmanufact ured", + "Ġveget arian", + "Ġpine apple", + "ÑıÑĤ а", + "Ġpractition ers", + "2 000", + "Ġíķ´ì ļĶ", + "ĠìĹ¬ëŁ¬ë ¶Ħëĵ¤", + "Ġë¶ Īë", + "ĠJeff erson", + "ĠJo an", + "Ġtr am", + "å® ¹", + "ch mal", + "ĠH ait", + "á¹ ĩ", + "Ġun real", + "Ġsymbol ic", + "Ġste alth", + "Ġspl ash", + "ĠEntertain ment", + "Ġmetall ic", + "?\" .", + "è¶ Ĭ", + "ar ound", + "Ġdesp air", + "ĠNev ada", + "ĠFin ance", + "Ġk rie", + "ĠL ux", + "ĠSm ash", + "ke eping", + "Ġз аг", + "Ġnarc iss", + "Ġdz isiaj", + "Ġtoler ate", + "o ard", + "Ġlink ing", + "ĠEconom ic", + "Ġì ¼", + "Ġmor ph", + "ĠN ak", + "ĠB aker", + "at on", + "r ings", + "ĠP eng", + "ĠAir port", + "ãģĭ ãģ£ãģŁ", + "íķĺ ëĭ¤", + "§ ģ", + "pr ints", + "Ġhad i", + "Ġemp ir", + "ĠL ives", + "ann ers", + "Ġн им", + "ĠPROFESS OR", + "Ġpositive ly", + "ant om", + "Ġbad ge", + "ke lt", + "Ġinter fer", + "Ġfulf illing", + "Ġvisual ization", + "éĹľ ä¿Ĥ", + "ĠPr ice", + "� �", + "Ġscen ery", + "Ġpr one", + "Ġw izard", + "Ġb anyak", + "ver b", + "s ky", + "Ġwish ed", + "Ġrail way", + "Ġü zer", + "Ġalgu ien", + "ĠA W", + "Ġкол иÑĩе", + "Ġreact ing", + "ĠB uch", + "ภ¶", + "Ġan th", + "Ġsi h", + "Ġh ust", + "ĠSc reen", + "il ant", + "ah o", + "Ġfragr ance", + "Ġelev ation", + "ĠMed iter", + "Ġë ¿", + "Ġé qu", + "Ġwra ps", + "Ġin ert", + "Ġrecre ate", + "л аÑĤ", + "Ġbo leh", + "Ġharass ment", + "unk y", + "Ġglimp se", + "reg ierung", + "Ġfut ur", + "Ġreposit ory", + "Ġeng ra", + "Ġtraff icking", + "ass is", + "ĠTre k", + "Ġë² Į", + "Ġë§ Īë", + "ĠK ab", + "ani u", + "g ive", + "Ġdin osaurs", + "Ġfe ather", + "Ġatt itudes", + "Ġpl um", + "ĠR S", + "ĠAn fang", + "ill ery", + "ĠìĬ ¤", + "M Y", + "Ġtrze ba", + "Ġsk ies", + "ĠA j", + "ur able", + "C U", + "ĠSh ane", + "Ġdepart ure", + "ĠT ON", + "iet en", + "r ats", + "æ° Ĺ", + "is u", + "Ġb ord", + "Ġinteresting ly", + "çĻ »", + "oug hing", + "Ġr ushing", + "Ġvol atility", + "Ġp yt", + "Ġform ats", + "Ġз аÑĤ", + "Ġê¼ Ń", + "Ġwhat not", + "Ġcomp ort", + "s w", + "ore an", + "ĠRel ax", + "Ġcl an", + "ĠA H", + "Ġpe w", + "Ġdiction ary", + "T ake", + "sh irts", + "ĠH ugh", + "ĠعÙĦ ÙĬ", + "ĠP ic", + "Ġenroll ed", + "Ġjed nak", + "Ġoffer ings", + "Ġcor az", + "L ife", + "Ġ !!!", + "Ġcl er", + "ĠVide os", + "ĠRod rig", + "ĠId ent", + "ĠP os", + "ĠSt age", + "ĠR ace", + "Ġen act", + "ãģĦ ãģ¾ãģĹãģŁ", + "ĠG y", + "ĠHis pan", + "Ġdef ence", + "ĠCamp bell", + "m atic", + "Ġrele v", + "Ġpe ach", + "Ħ¸ ìļĶ", + "Ġparad ise", + "Ġcere mon", + "Ġannoy ed", + "æĮ ĩ", + "la x", + "Ġexplo it", + "Ġcla use", + "ek er", + "ĠBlo om", + "n ant", + "ate urs", + "Ġhe ights", + "E ven", + "Ñģ он", + "Ġoutra ge", + "ĠVietnam ese", + "ãģ¯ ãģ¯", + "T R", + "Ġe er", + "Ġcann on", + "ĠCom b", + "IJë §Į", + "è» Ĭ", + "Ġê²ĥ ëıĦ", + "Ġaccomplish ments", + "ĠAnalyt ics", + "Ġshap ing", + "re iben", + "Ġb achelor", + "Ġfing ert", + "ack ed", + "Ġpyram id", + "ĠStew art", + "á st", + "Ġsurviv or", + "Ġdu ct", + "Ġdeal ers", + "æ´ »", + "ع Ùħ", + "ли н", + "Ġed e", + "×ķ× ¢", + "ĠÙĥ اÙĨ", + "ĠÏĦ ι", + "Ġcho oses", + "ĠO wn", + "го ÑĤов", + "h ire", + "алÑĮ нÑĭе", + "ĠÐĽ Ñİ", + "Ġо ÑģÑĤав", + "te ch", + "Ġdro it", + "Ġsubject ive", + "en es", + "Ġdiv is", + "ave z", + "Ġmaneu ver", + "à¹Ħ à¸Ķ", + "ade ce", + "ĠEn s", + "ac ial", + "ĠProt ection", + "ĸ ´", + "Ġform ally", + "Ġwy d", + "ingu ém", + "Ġz iem", + "Ġrecru iting", + "×Ļ× ļ", + "n em", + "Ġforb idden", + "ĠB apt", + "×IJ× ł×Ļ", + "Ġsubs et", + "ĠMag az", + "n ement", + "Ġaqu ela", + "rag on", + "Ġcomm ittees", + "Ġéta ient", + "ud i", + "ĠDa wn", + "Ġb ore", + "Ġcompos er", + "ĠwiÄĻ cej", + "ang a", + "Ġdis like", + "ĠD ays", + "åŁ º", + "Ġpar al", + "Ġm ientras", + "Ġheaven s", + "ãģ Ĵ", + "he id", + "Ġtrad ers", + "on ce", + "Ġmasc ara", + "ĠÏĢ Ïģο", + "Ġwhis per", + "ĠMus k", + "éĽ Ĩ", + "ĠFamil ie", + "All ah", + "ĠOl ivia", + "ĠPr os", + "Ġol ika", + "il im", + "Ġrép ond", + "ĠP eters", + "Ġ å¾Ī", + "Ġbit es", + "Ġv ic", + "ĠN Y", + "em ption", + "Ġ4 50", + "Ġvisual s", + "Ġlie u", + "ück en", + "ĠSte el", + "ĠG P", + "w ait", + "Ġnotice able", + "uch a", + "Ġreh abil", + "Ġreject ion", + "ĠÑģлед ÑĥÑİÑī", + "Ġsl ider", + "Ġregard ed", + "Ġgrav it", + "ĠRes erve", + "c ount", + "Ġbre eding", + "Ġlon ge", + "ale b", + "Ġkn ight", + "Ġв ой", + "Ġprés ent", + "Ĥĺ ìļĶ", + "ĠSpec ifically", + "Ġpos es", + "Ġve ure", + "ok ay", + "em as", + "Ġ ãģ§ãģĻ", + "Ġma jÄħ", + "Ġweb inars", + "Ġcann abis", + "Ġdam als", + "ĠNorth west", + "Ġp ada", + "Ġcrowd s", + "Ġfut ures", + "Ġä n", + "Ġciv ilians", + "ĠS achen", + "æ į", + "Ġtr aces", + "Ġ먹 ê³ł", + "Q U", + "é¡ĺ ãģĦ", + "ĠI F", + "an ın", + "ìĤ ´", + "Ġb iblical", + "ĠV ed", + "Ġst oring", + "ÑĢав лÑı", + "æĩī 該", + "Ġn ast", + "Ġd ö", + "ÑĢ оп", + "el ia", + "Ġside ways", + "ĠUnder stand", + "ĠQ ur", + "Ġper pend", + "ĠMill ionen", + "Ġwater melon", + "ĠDiv ine", + "ult ur", + "ab ord", + "Ġsuccess es", + "Ġhom bre", + "Ġcar p", + "Ġsus cept", + "ung kin", + "Ġk ij", + "ul us", + "Ø§Ø ¬", + "Ġnot ch", + "Ġpolynom ial", + "å¹ ²", + "å ©", + "Ġún ico", + "Ġteles cope", + "Ġpolit ique", + "k iem", + "ĠÎŃ Î½Î±", + "Ġaggreg ate", + "ĠGe off", + "Ġtr il", + "ĠG RA", + "Ġsubscri ber", + "im et", + "Ġдол лаÑĢ", + "op ing", + "Ġth erapeut", + "ĠCan cer", + "Ġpar ade", + "Ġir rig", + "âĻª âĻª", + "Ġclear er", + "Ġb og", + "ĠM aur", + "า à¸ĩ", + "ĠShang hai", + "acht e", + "ĠK ol", + "el ujah", + "Ġha v", + "ĠCr ime", + "se k", + "Ġë ¡ľ", + "ien na", + "ĠG or", + "è Ľ", + "ĠпоÑĤ ÑĢ", + "Ġкаж еÑĤÑģÑı", + "ĠL ift", + "ĠS ort", + "ĠP sal", + "Ġp ing", + "ĵ Ŀ", + "ph is", + "ĠF UCK", + "ĠS yn", + "Ġbam boo", + "¬ ìĺģ", + "c uts", + "Ġm mm", + "Ġfunktion iert", + "Ġ _", + "ÃŃ cio", + "St op", + "Ġimag inary", + "Ġnot amment", + "ĠIniti ative", + "ãĥ ¥", + "ĠK urt", + "Ġlo osen", + "Ġbus car", + "çģ «", + "Ġz elf", + "Ġpro ps", + "åĽ ī", + "Ġmoet en", + "Ġmill i", + "Ġhall s", + "ĠM atch", + "Ġbrack ets", + "ĠC ou", + "æ¦ Ĥ", + "ĠÐľ аÑĢ", + "IS A", + "Ġcig arette", + "Ġcompet itions", + "ĠM IN", + "Ġbeh ö", + "vo or", + "Ġ ust", + "ĠZ i", + "ĠO cc", + "ul ates", + "Ġball oons", + "Ġpr onto", + "ĠM iy", + "ĠF ile", + "Ġкл аÑģÑģ", + "нÑĥ л", + "Ġcere al", + "Ġincre ment", + "Ġref ined", + "åı¦ å¤ĸ", + "pr ising", + "ĠR F", + "Ġrespect ful", + "Ġlo ot", + "ask et", + "Ġdeix a", + "ing le", + "Ġfuncion a", + "ĠRe vel", + "Ġso ber", + "Ġperform s", + "ĠG entle", + "ãĤ ¨", + "Ġrecip ient", + "ĠHa use", + "Ġë ĥ", + "F rom", + "Ġmin isters", + "Ġpar adox", + "å°±æĺ¯ èªª", + "Ġtast ing", + "Ġ×Ķ× Ĺ", + "Ġre use", + "ĠL ane", + "ĠÑģов еÑĢÑĪ", + "Ġremem bers", + "Ġfemin ist", + "Ġcommit ments", + "Ġproject ed", + "Ġg az", + "iyor uz", + "Ġoblig ations", + "R o", + "z ar", + "Ġch w", + "ĠJ AM", + "ĠbÄĻd Äħ", + "asp berry", + "Ġм еÑģÑĤо", + "ë² ķ", + "Ġreg ulated", + "Ġw icht", + "ĠTre vor", + "Ġsecond ly", + "ĠIh re", + "els h", + "Ġrep orters", + "ÑĤоÑĢ а", + "oy o", + "G I", + "Ġinter connect", + "é IJĺ", + "OS H", + "æŃ ²", + "Ġbr ass", + "Ġign oring", + "ä»Ĭ æĹ¥", + "in fect", + "Ġpro jekt", + "ore t", + "ÏĦα ν", + "ĠÑĤ ип", + "Ġmut ta", + "Ġunbox ing", + "Ħ °", + "å¡ Ĭ", + "Ġadv ised", + "ĠDen ver", + "Ġsevere ly", + "ĠM hm", + "Ġfl ipped", + "Ġp ien", + "Ġkomm un", + "ĠF RE", + "Ġà®ĩ à®°", + "aint ed", + "Ġkn ives", + "Ġhab l", + "Ġgew orden", + "arett es", + "C S", + "Ġмал енÑĮ", + "Ġgal ax", + "Ġnin ete", + "ê±°ë Ĥĺ", + "Ġs is", + "Ġadvis ory", + "Ġdr illing", + "ĠWould n", + "ün f", + "gest ellt", + "ĠHel en", + "Ġ×ŀ× IJ", + "ap olis", + "Ġrze czy", + "Ġter ra", + "Ġhe p", + "Ġalg ún", + "ik k", + "Ġastron om", + "ĠStar bucks", + "k Äħ", + "Ġpat rol", + "Ġì½ Ķ", + "Ġg on", + "Ġ ãĢIJ", + "Ġson st", + "Ġencoun ters", + "Ġret rou", + "Ġshark s", + "Ġd or", + "ĠR ever", + "Ġev apor", + "Ġreserv oir", + "Ġalleg ed", + "ul er", + "Ġver m", + "Ġcommer ce", + "Ġf itted", + "ge m", + "Ġtact ical", + "Ġl ith", + "éīĦ å¡Ķ", + "h ad", + "è® Ĭ", + "Ġcarboh yd", + "Ġlength s", + "ι ο", + "Ġdem ographic", + "R ob", + "ĠS kin", + "cc oli", + "Ġsimpl ified", + "Ġread ily", + "ĠC um", + "ades h", + "ĠD Ã¥", + "us st", + "ig ne", + "et on", + "Ġmen or", + "q i", + "OO M", + "à¸Ń à¸Ļ", + "Ġpsych iat", + "Ġeight y", + "Ġм илли", + "ĠT ob", + "ed o", + "ç¶ ²", + "ĠÄij ến", + "Ġcirc uits", + "ĠLAU GH", + "ic ism", + "em or", + "Ġreg ener", + "eg ree", + "Ġbure auc", + "ĠAl ber", + "ä¹ĭ å¾Į", + "ĠW or", + "å¤ «", + "Ġres in", + "Ġby ÅĤy", + "ĠI G", + "à¯į ,", + "Ġ7 8", + "Ġwe eds", + "ĠMy th", + "9 3", + "æ ¿", + "ĠëĤĺ ìĻĶ", + "é v", + "á ½", + "ö ren", + "ç ar", + "ĠP AUL", + "Ġdisad vant", + "Ġposition ing", + "Ġcock tail", + "Ġagre es", + "n n", + "ĠS ally", + "M s", + "Ġinher ent", + "Ġmonet ary", + "Ġnat ur", + "ĠN h", + "ĠImp ort", + "Ġle ben", + "Ġw i", + "uss y", + "Ġob es", + "Ġwand ering", + "Ġìĭ łë", + "Äħ da", + "etch up", + "Ġdispos al", + "ĠJ A", + "ĠC er", + "z illa", + "Ġvir gin", + "ĠSl ide", + "and el", + "Ġrighteous ness", + "ĠÎ £", + "Ġide ia", + "ä½ł 好", + "иÑĢов аÑĤÑĮ", + "ר ×IJ", + "Com ment", + "Ġpre lim", + "ĠV ale", + "Ġì§Ģë Ĥľ", + "ĠV anc", + "OM AN", + "Ġп Ñĸд", + "Ġy um", + "st re", + "ce m", + "Ġpo cz", + "Ġfrag ment", + "ĠÑģлÑĥÑĩа е", + "Ġunder go", + "ĠH ank", + "ce ks", + "ĠF PS", + "Ġoc ur", + "Ġdeter ior", + "æ³ ¨", + "Ġempres as", + "Pa ul", + "Ġ) ))", + "ĠвÑĢем ени", + "Ġsc old", + "×Ļ× ¢", + "Ġsuspect ed", + "Ġaccess ing", + "Ġsubst it", + "Ġhistor ians", + "ä» »", + "Ġдел о", + "Ġsoci ed", + "r one", + "Ġre den", + "Ġext ends", + "epher d", + "Ġbal con", + "ä¸į èµ·", + "ĠSol o", + "Ġpolit ician", + "олÑĮ но", + "Ġirgend w", + "Ġtraum atic", + "Ġrapp er", + "ĠRO BERT", + "Re ally", + "æģ ¯", + "Ġline up", + "AS E", + "Ġcontract or", + "ĠCorpor ation", + "g or", + "ĠTod o", + "ÑģÑĤÑĢ ой", + "F BE", + "Ġnews letter", + "Ġko ÅĦ", + "alt ies", + "ĠпÑĢ иÑĩ", + "ĠHe avy", + "Ġsw ords", + "Ġmanip ulation", + "Ġfun k", + "Ġv Ã¥r", + "ĠTal iban", + "Ġë° ¥", + "Ġac ne", + "ür ü", + "Ġdes wegen", + "ĠD ust", + "Ġsil ic", + "Ġhook s", + "Ġbl ij", + "Ġpet its", + "Ġfil me", + "ĠBere ich", + "ĠSa id", + "Ġimp osed", + "Ġdi ary", + "Ġго ÑĢ", + "ĠG ates", + "Ġal ta", + "å¸ Į", + "Ġch cia", + "ple asant", + "Ġë° Ŀ", + "Ġmoż emy", + "ĠAust ria", + "Ġbro ker", + "Ġsuck ed", + "èĢ ĥ", + "Ġcomp artment", + "Ġcl one", + "Ġ×Ķ× ¢", + "ĠDan ke", + "Ġnoch mal", + "ез д", + "Ġad renal", + "Ġkle inen", + "ãģ¾ ãģĹãĤĩãģĨ", + "Ġsubsequ ently", + "Ġdecent ral", + "Ġgen etics", + "Ġê´ ij", + "Ġmon itors", + "ĠApp lic", + "ĠRep orter", + "w ert", + "Ġwie m", + "ĠMove ment", + "Ġinterview ing", + "Ġhair s", + "Ġpu ò", + "ĠChel sea", + "Ġco her", + "Ġc ot", + "Ġz as", + "Ġpatch es", + "Ġl ah", + "Ñĥн к", + "ĠRe agan", + "ĠMar co", + "c ity", + "Ġdef ender", + "Ġdecor ation", + "ij i", + "Ġl itter", + "Ð ¨", + "Ġj ego", + "RE W", + "ĠP ik", + "ĠHe e", + "ĠI v", + "Ġи де", + "ĠThe ater", + "ĠÑĩаÑģ ÑĤо", + "Ġswe ater", + "Ġhighlight ing", + "Ġa insi", + "Ġdipl omatic", + "ĠNever theless", + "å ³", + "AS ON", + "Ġpúblic o", + "Ġf erm", + "reat ed", + "c od", + "Ġë¬ ¼ë", + "Ġm ister", + "ĠVanc ouver", + "Ġrecogn izes", + "ec d", + "Ġcomplic ations", + "en cial", + "ãģĹ ãģı", + "Ġê°Ģ ì§Ģ", + "ĠUlt imate", + "Ġva ig", + "ĠM erry", + "×ķ× Ĵ", + "ĠMar cus", + "ç¸ ½", + "ow ego", + "Ġm ente", + "S m", + "Ġa ja", + "ĠTa o", + "Ġjud icial", + "Ġentrepreneurs hip", + "Ġнем ного", + "Ġp is", + "Ġer g", + "Ġch rist", + "ĠC urt", + "ĠÑĢаÑģ п", + "λ ε", + "ens ch", + "ÃŃ re", + "Ġfo cal", + "ĠDiam ond", + "av ÃŃa", + "Ġh anno", + "ĠSqu ad", + "Ġassoci ations", + "ĠCreat ive", + "Ġmess enger", + "Ġbe gging", + "Ġdec imal", + "Ġd Ä±ÅŁ", + "Ġmet adata", + "sel s", + "ĠÄ° ÅŁ", + "ữ a", + "Ġdiffic ile", + "d ı", + "Ġs laughter", + "ĠVer g", + "Ġ×Ĵ ×Ŀ", + "ç° ¡", + "æĮ ī", + "ĠTe a", + "ass es", + "O k", + "Ġsynth es", + "ot iation", + "Ġpain ter", + "Ġel bows", + "Ġarchitect ural", + "ĠÑĢ ад", + "Ġgl or", + "im age", + "amp a", + "cul iar", + "ł ¨", + "Ġte ve", + "ĠSt elle", + "ĠB am", + "Ġì´ Ī", + "as is", + "ip edia", + "ĠG I", + "ĠAct ive", + "çĦ¶ åIJİ", + "az i", + "ãĤĮ ãģ¦", + "ĠL ucky", + "íķ ©", + "ĠпÑĢ иÑħод", + "Ġrun way", + "Ġauthent ication", + "Ġpos ible", + "Ġsupp lements", + "Ġsurg ical", + "G en", + "Ġfeas ible", + "D O", + "Ġout look", + "Ġinter vals", + "Ġan ecd", + "Ãł ng", + "Ġstra ps", + "ĠSh u", + "ud d", + "iss enschaft", + "Ġport e", + "Ġcomm itting", + "Ġall ey", + "Ġco venant", + "ĠPed ro", + "less ness", + "ĠSol id", + "ĠM olly", + "Ġн екоÑĤоÑĢ", + "Ġcooper ate", + "åĮ Ĺ", + "oll en", + "Ġtun a", + "Ġkinderg arten", + "ĠS iz", + "Ġduż o", + "ĠM BA", + "ĠGEOR GE", + "ĠF isher", + "å¿ ĺ", + "ĠCa esar", + "ĠкÑĢаÑģ ив", + "ĠDel hi", + "zy m", + "Ġexpl icar", + "ê°Ģ ì§Ģ", + "un s", + "gr ow", + "ĠпÑĢ иÑģ", + "Ġ8 6", + "Ġst ating", + "Ġmass a", + "ch ter", + "Ġì»¬ë Ł¬", + "Ġdep uty", + "S M", + "n oc", + "Ġge ography", + "ĠEnter prise", + "ĠC ant", + "ö z", + "Ġun pack", + "ĠíĻ Ķë", + "Ġsearch es", + "Ġpres idency", + "Ġtri vial", + "Ġp ige", + "ou bt", + "ãĤ ļ", + "ì¼ ĢìĿ´", + "Ġbudget s", + "Ġu b", + "Ġp ne", + "ĠY ale", + "ĠÅŁ öyle", + "reg ular", + "Ġimper fect", + "AR A", + "Ġfam ÃŃlia", + "ur m", + "ĠAdvent ure", + "ãĥ Ĭ", + "c is", + "em ark", + "Ġne go", + "Ġinappropri ate", + "ĠпÑĢи з", + "ĠÑĢ ол", + "Ġdream ed", + "B ry", + "Ġshut tle", + "Ġpill ars", + "Ġb ik", + "in um", + "ĠÑĥ Ñģ", + "ĠNe br", + "Ġperpend icular", + "Ġbook ed", + "ber y", + "Ġv ikt", + "be ar", + "es us", + "Ġвозм ожно", + "¨ ¹", + "Ġpresum ably", + "ĠMem phis", + "Ġambul ance", + "×ķ× ŀר", + "Ġthumbna il", + "Ġmod ification", + "éĩ ı", + "Ġinterpret ed", + "Ġprom o", + "Ġκ ά", + "Ġε ÏĢ", + "Ġacoust ic", + "ĠD B", + "åĵ İ", + "Ġnon etheless", + "ou le", + "Ġpe qu", + "Ġkn ob", + "ãĤ £", + "ĠëıĮ ìķĦ", + "Ġpurch ases", + "ĠÃĩ ünkü", + "Ġdivid ing", + "per form", + "ract ion", + "health y", + "ĠTit le", + "Ġu k", + "Ġcer ca", + "Ġargu ably", + "Ġf ale", + "ë³ µ", + "Ġgam ers", + "Ġutil izing", + "Ġoff ended", + "Ġt ava", + "al ı", + "Ġmed ian", + "Ġinfect ious", + "ĠAn nie", + "Ġsmart phones", + "Ġpar ole", + "åĸ Ŀ", + "ĠEp ic", + "z za", + "Ġun ified", + "Ġê·¸ë ķĮ", + "Ġcur tain", + "ĠÄ ĥ", + "Ġsex ually", + "Ġuns erem", + "ĠCon vention", + "Ġalleg edly", + "Y a", + "ĠH oo", + "en ment", + "æĢ ª", + "íĽ Ħ", + "Ġgig antic", + "Ġnot ing", + "Ġre bo", + "ĠJ ama", + "ĠAl z", + "Ġborrow ed", + "ì¹ ¨", + "Ġper ipher", + "оÑĤ а", + "ĠG B", + "ĠGe ar", + "Ġeconom ically", + "Ġtele fon", + "Ġqu eremos", + "ĠдалÑĮ ÑĪе", + "Ġr as", + "ĠTe ach", + "ic ios", + "at os", + "Ġpl edge", + "b au", + "ĠHim self", + "L ink", + "Ġesper o", + "Ġchrom os", + "ĠP ER", + "Ġer le", + "Ġpod ium", + "ç os", + "Ġnie u", + "Ġf en", + "ĠGO D", + "ĠCh ocolate", + "wer k", + "Ġt ừ", + "Ġsupp ress", + "λ η", + "Ġ24 0", + "Ġsit ä", + "Ġhonest y", + "ĠB io", + "ĠB ard", + "ĠобÑī ем", + "Ġм Ñĥз", + "Ġmar ble", + "ĠÑĨ енÑĤ", + "Ġproc ure", + "Ġrot or", + "ber n", + "Ġtu h", + "Ġhead set", + "at em", + "Ġwarrant y", + "à® ´", + "Ġfil ing", + "ι ά", + "Ġcomp rendre", + "Ġimp ulse", + "Ġsal v", + "wr itten", + "Ġinstit ute", + "K im", + "ĠLGBT Q", + "fic iente", + "H is", + "ĠαÏħÏĦ ÏĮ", + "Ġteen age", + "or us", + "ĠÑĢаз б", + "S ee", + "ĠCons erv", + "á»ģ n", + "ful ness", + "Ġstraw berries", + "ĠAb u", + "и он", + "Ġo lla", + "NO ISE", + "ĠEm ploy", + "Ġwip ed", + "ur ger", + "Ġmod ifications", + "Ġíķĺ ì§Ģ", + "Ġfoot steps", + "Ġhon ors", + "Ġad ul", + "Ġfl ipping", + "ĠH U", + "Z Y", + "Ġintegr ating", + "ب ر", + "ull a", + "Ġnatuur lijk", + "ĠíĹ Ī", + "ĠEth ereum", + "ÙĬ ÙĦ", + "w ed", + "Ġpe aks", + "ĠK es", + "Ġblo om", + "Ġcr ashing", + "Ġ9 11", + "ĠоÑĤ лиÑĩ", + "Ġcontro llers", + "ĠD od", + "Ġвм еÑģÑĤе", + "Ġsort ir", + "å¥ ĩ", + "ĠStra ight", + "ĠGrac ias", + "Ġgro ove", + "Ġto gg", + "Ġìĭ¶ ìĿĢ", + "é ro", + "Ġout ward", + "ĠW A", + "ĠRock y", + "Ġsc am", + "Ġhay at", + "ig nty", + "â Ħ", + "pl ings", + "Ġantibiot ics", + "Ġ ä¸Ģ", + "Ġnever theless", + "j ang", + "com merce", + "Ġspo iler", + "Ġglo ve", + "Ġch atter", + "ĠB Y", + "~ ?", + "Ġíĺ ¸", + "Ġdem ol", + "we chsel", + "im ir", + "Ġra id", + "еÑĢ Ñħ", + "ìŀIJ 기", + "en f", + "Ġcomment ed", + "Ġoptim ized", + "Ġconv icted", + "Ġb ats", + "ĠS B", + "ĠA ur", + "ĠT ong", + "Ġimplic it", + "ĠJan et", + "Ġre ag", + "ãģ ²", + "ĠAdv anced", + "Ġimp ose", + "ש ×Ķ", + "Ġschem es", + "oug her", + "ab olic", + "Ġê±° ì£ł", + "Ġslow ing", + "Ġwt edy", + "Ġdest ructive", + "Ġоп ÑĢед", + "Ġland mark", + "Ġëı Ī", + "ĠWalk ing", + "Ạ¹", + "Ġt ijd", + "ĠK N", + "ĠQu ant", + "ìĺ ¤ë", + "Ġк ÑĢÑĥ", + "Ġper der", + "Ġno ve", + "änd e", + "Ġãģ Ĺ", + "b ia", + "Ġcust ody", + "Ġb iod", + "æĿ± 西", + "Ġdirect ing", + "... âĢĭ", + "Ġre loc", + "Ġdemand e", + "ãĤĵ ãģł", + "Ġo ÄŁlum", + "Ġод на", + "ĠMil k", + "åı ·", + "ĠK ra", + "ĠH onda", + "Ġp ue", + "Ġele kt", + "Ġbegin ners", + "Ġspe ar", + "ÃŃ nh", + "ĠLu ft", + "Ġn ig", + "ĠSchool s", + "Ġfor ums", + "ĠQ in", + "pp o", + "Ġz ag", + "ĠÐ ®", + "Ġtooth p", + "ĠSt yle", + "ì´ Ī", + "Ġpun ct", + "Ġrep s", + "ĠA ly", + "Ġamend ments", + "Ġö z", + "Ġdig its", + "ur ai", + "Ġcha otic", + "ĠMas ters", + "e on", + "ĠC ash", + "ĠC uz", + "Ġbede utet", + "Ġscan ning", + "Ġж д", + "н еÑĤ", + "Ġcertain ty", + "j ek", + "Ġdi jo", + "ĠCl imate", + "Ġr inse", + "Ġk rij", + "vel and", + "Ġsound track", + "ĠSa fe", + "ĠNo va", + "9 4", + "Ġa the", + "ĠVer b", + "ol er", + "ìĿ´ì £ł", + "Ġv in", + "Ġrespir atory", + "ĠStud y", + "ĠC AM", + "Ġav ocado", + "ĠZ hen", + "Ġlat ency", + "Ġfe athers", + "Ġcont ar", + "Ġв еÑī", + "Ġf ark", + "Ġbl ended", + "Ġexpl oded", + "ĠX X", + "ĠBen im", + "Ġalgu ém", + "isto ire", + "Ġconfident ial", + "Ġm ast", + "Ġì ¿", + "ge h", + "Ġdis respect", + "ĠSystem s", + "Æ° a", + "E d", + "Ġw ys", + "Ġex otic", + "Ġgl owing", + "ù ng", + "oun ge", + "è Ħ", + "ани з", + "Ġpal av", + "ĠSw ord", + "Ġg im", + "ĠC row", + "Ġpot ent", + "b ish", + "Ġab used", + "ĠJ ed", + "Ġg ambling", + "ĠS pect", + "Ġinvestig ators", + "æĻ ļ", + "Ġr att", + "Ġdo b", + "ĠD ES", + "h og", + "ĠоÑĤк ÑĢÑĭ", + "íĮ ħ", + "ĠденÑĮ ги", + "Ġíĺ ¹", + "Ġë¨ ¸ë¦¬", + "Ġsat uration", + "Ġinher ited", + "ĠInnov ation", + "ìĹ Īëįĺ", + "Ġtang ible", + "Ġdep ri", + "h ed", + "Ġпом ог", + "Ġslic ed", + "ॠį", + "Ġth ế", + "Å ¥", + "6 8", + "Ġcor ona", + "Ġgift ed", + "Ġso ir", + "Ġhum ility", + "ĠìĿ´ 걸", + "Ġflaw s", + "ĠпÑĢ акÑĤи", + "Ġk ald", + "wa ż", + "y w", + "ãĤĵ ãģ§ãģĻ", + "ir teen", + "Ġcroch ets", + "¦¬ ê°Ģ", + "ĠìłĦ ìĹIJ", + "Ġdes e", + "æ¥ Ń", + "Ġм аг", + "Ġdz iaÅĤ", + "Ġl ég", + "ch anging", + "Ġlle v", + "ÅĦ sk", + "çĶ »", + "Ġ198 4", + "orn s", + "ĠW elsh", + "Ġpharm aceutical", + "Ġpump ing", + "ĠSh aw", + "p unk", + "Ġva ult", + "Ġkin etic", + "Ġhur ricane", + "ĠInc luding", + "ứ c", + "ĠGrand pa", + "ans hip", + "é¦Ļ 港", + "ĠвÑĭ Ñħод", + "н ож", + "ľ ł", + "ut ta", + "Ġê²ģ ëĭĪëĭ¤", + "Ġb az", + "Ġпо ÑĪ", + "Ġpe culiar", + "zy Äĩ", + "ĠEll ie", + "Ġlearn s", + "ĠKr ishna", + "Ġconse cut", + "Ġemp ath", + "ĠD in", + "Ġtrad ed", + "ĠBor is", + "ugg age", + "oll a", + "Ġназ в", + "Ġetern ity", + "Ġв п", + "è mes", + "Ġgra pp", + "b é", + "ĠпÑĢед ÑģÑĤав", + "ĠF C", + "į ëĭĪëĭ¤", + "e ven", + "ĠNebr aska", + "ortun e", + "Ġk arena", + "ĠAg ent", + "Ġst ing", + "ĠP I", + "Ġmunicip al", + "power ed", + "Ġconse gue", + "ĠMan chester", + "Ġrain y", + "Ġbl i", + "Ġk ost", + "Ġhal ten", + "ĠAh hh", + "ins ula", + "er ting", + "ĠاÙĦ Ùģ", + "Ġrel acion", + "Ġk omen", + "Ġd ome", + "Ġpri ests", + "ĠInt rodu", + "rop he", + "sh ore", + "vel t", + "clip se", + "ĠÑĢ ÑĥÑģ", + "×Ļ× ¡", + "Ġsab emos", + "ĠHoll and", + "og i", + "ank i", + "ĠM ats", + "Ġsm oked", + "ull ie", + "Ġeuro pe", + "ĠдейÑģÑĤв иÑĤелÑĮно", + "Ġbard ziej", + "Ġtransform ing", + "ĠE z", + "op ath", + "Ġìĸ¸ ëĭĪ", + "ĠÑģÑĤ ан", + "ằ ng", + "ั à¹ī", + "ĠO uch", + "Ġclear ance", + "ust ain", + "Ġsolid arity", + "Ġpro ving", + "ĠÐĺ н", + "ĠÑģ ÑĬ", + "Ġpro long", + "ад но", + "Ġs os", + "ĠDe al", + "Ġ17 0", + "m ons", + "Ġз ем", + "Ġlo gged", + "Ġlif elong", + "Ġsens ory", + "Ġbe hold", + "ĠF AR", + "èt ement", + "ĠFed eration", + "Ġdod ge", + "ĠSh ir", + "Ġdrag ons", + "ĠAr ctic", + "Äħ ż", + "Å į", + " º", + "Ġden ke", + "Ġpodr ÃŃa", + "co le", + "ÑĥлÑĮÑĤ аÑĤ", + "Ġsystem atic", + "ам а", + "ch os", + "Ġclin ics", + "ĠB S", + "Ġtal es", + "us ions", + "Ġí Ī¬", + "Ġpres ervation", + "Ġl ore", + "ĠProt est", + "á» Ľ", + "å¸ Ĥ", + "Ġacknowled ged", + "ĠIs aiah", + "ĠëķĮ ëĬĶ", + "Ġ× ĺ", + "Ġcompet itor", + "Ġadv ancing", + "z ip", + "Ġtent h", + "ĠLa ure", + "Ġh ints", + "Ġexerc ising", + "ŀ ľë", + "ĠIntell igence", + "u ated", + "OU T", + "op ed", + "Ġaut onomy", + "Ġbrand ing", + "ĠMediter ranean", + "Ñĸ к", + "Ġscrew driver", + "Ġsu pre", + "Ġst ap", + "Ġjurisd iction", + "ĠSetting s", + "Ġfore front", + "ĠF emale", + "com fort", + "Ġmultiplic ation", + "ĠMur ray", + "Ġbo b", + "ĠT as", + "Ġt ahu", + "Ġon un", + "et ter", + "Ġproph ets", + "l ag", + "Ġreven ues", + "Ġpr á", + "Ġupload ing", + "Ġmach inery", + "asc al", + "ĠEst á", + "ĠG oth", + "ĠB ald", + "ĠS aw", + "Ġstri pes", + "ìł ij", + "Ġpow in", + "æĹ¥ æľ¬", + "Ġhost ile", + "Ġdar um", + "Ġprevent ed", + "ожалÑĥй ÑģÑĤа", + "Ġalgun as", + "Ġhop eless", + "Ġz naj", + "Ġread ings", + "Ġcra ving", + "t at", + "ĠP ig", + "Ġli ar", + "çĪ ±", + "Ġmulti player", + "Ġd ale", + "ĠCour se", + "íģ ¼", + "ĠK ita", + "Ġcustom s", + "Ġrespond s", + "end ra", + "è¦ ĸ", + "Ġmet ro", + "Ñģ ол", + "Ġmitig ate", + "Ġopp ression", + "Ġ æĪijåĢij", + "qu inho", + "Ġam mo", + "Ġen fer", + "Ġp ony", + "Ġ ounces", + "° Ķ", + "ĠìĪĺ ê°Ģ", + "Ġdich o", + "ĠDe b", + "Ġwond ers", + "ĠRo ose", + "Ġpri zes", + "ĠA LEX", + "Ġthank fully", + "Ġtiss ues", + "ĠÑĢав но", + "ĠL una", + "intell igible", + "ĠìĻ ¸", + "ê° ij", + "ĠHe at", + "ĠÑģ ид", + "ĠQu i", + "Ġ ions", + "Ġaccommod ation", + "ä¾ ¿", + "ĠK art", + "ien st", + "Ġt arde", + "Ġso aked", + "ĠCase y", + "Ġì´ Ŀ", + "ĠÑĢ Ñĥб", + "Ġdifferent i", + "Ġleft over", + "Ġexch anges", + "sec ond", + "Ġfirst ly", + "Ġbuild er", + "ri en", + "Ġd w", + "Ġboun cing", + "? <", + "olog ÃŃa", + "we alth", + "Ġmed itate", + "ĵ¤ ìĿĺ", + "ĠC raft", + "è§ī å¾Ĺ", + "æĻ ®", + "ri v", + "ĠAgain st", + "Ġcer amic", + "esp ère", + "Ġcompet ent", + "ĠHop kins", + "Ġkil os", + "Ġgra vel", + "Ġpist on", + "Ġfriends hips", + "Ġesc re", + "Ġvo z", + "ĠGes ellschaft", + "Ġunter stüt", + "Ġmu j", + "Ġwarning s", + "p os", + "ĠProfess ional", + "w szy", + "od le", + "b ands", + "Ġteam work", + "stell ung", + "Ġd x", + "åį Ĭ", + "Ġatt orneys", + "Ġweit ere", + "ãħĭãħĭ ãħĭ", + "ĠOrig inal", + "×Ļ× Ĺ", + "Ġbroadcast ing", + "ĠпеÑĢв Ñĭй", + "uch i", + "Ġhe ure", + "Ġgra bs", + "ĠW OR", + "ĠPla id", + "M in", + "Ġp az", + "ĠP uis", + "um u", + "it ates", + "Ġco ats", + "Ġbu en", + "Ġhe ir", + "Ġpne um", + "ש ר", + "ens er", + "ĠJUD GE", + "Ġbl onde", + "á¹ Ľ", + "Ġg ak", + "Ġs ık", + "Ġquot ed", + "Ġequip o", + "Ġw ishing", + "ÃŃ cia", + "Ġver bs", + "çµ Ħ", + "ĠCanad ians", + "Ġgover ning", + "ĠEv ans", + "E uro", + "Ġgen res", + "Ġunters chied", + "ĠBeck y", + "³¼ ê²ĮìļĶ", + "Ġe inge", + "ĠRa ise", + "ol and", + "ĠStr ateg", + "Ġer es", + "ĠVeter ans", + "Ġbreak out", + "Ġsant é", + "Ġad el", + "Ġinvestig ated", + "Ġpe ur", + "Ġag ile", + "Ġrail road", + "ans ka", + "Ġе й", + "Ġexp os", + "ator ies", + "ĠCont ent", + "Ġtruth s", + "ĠTra il", + "Ġgu a", + "Ġp ores", + "Ġwrit ings", + "ĠU hr", + "ĠThat s", + "Ġic ing", + "O C", + "ĠProdu ction", + "Ġcar ne", + "IS S", + "Ġn inguém", + "n on", + "Ġv icious", + "×ķ× Ķ", + "Ġrecon nect", + "Ġcent res", + "ĠK em", + "Ġcre ase", + "ĠìĿ´ë ¯¸", + "айÑĤ еÑģÑĮ", + "Ġб оÑĢ", + "ĠHay ır", + "ĠÑģ Ñĥд", + "Ġún ica", + "owa ÅĤ", + "Ġad her", + "h ua", + "Z Z", + "Ġprecis o", + "Ġcurrent s", + "Ġseason ed", + "ĠIo T", + "ĠB ishop", + "è¨ Ī", + "st ed", + "ĠBern ard", + "ì¤ ĺ", + "æ² »", + "ĠGl enn", + "Ġktóry m", + "ื à¹Ī", + "Ġast rolog", + "ĠK ot", + "å¤ ľ", + "Ġparf ois", + "Ġfor wards", + "ĠW iÄĻ", + "ĠÎ ĺ", + "Ġn ano", + "è» į", + "s ub", + "ĠBr ill", + "Ġgr it", + "Ġc ited", + "g ado", + "Ġmel ts", + "Ġfor cé", + "âĸĪ âĸĪ", + "Ġb ajo", + "Ġdiscret ion", + "° °", + "at ivity", + "Ġsitu ated", + "ãĥ« ãĤ¯", + "Ñīе е", + "åľ° æĸ¹", + "ĠпÑĢин ÑĨип", + "am az", + "Ġaqu arium", + "Ġdissol ve", + "ĠGod s", + "S uper", + "Ġam id", + "z k", + "Ġ ãģĦ", + "éł IJ", + "amp f", + "Ġhel a", + "' !", + "Ġdevelopment al", + "ĠD ise", + "ĠÑĢабоÑĤ аеÑĤ", + "Ġsnaps hot", + "好 好", + "Õ ¸", + "ĠY ue", + "ĠH ulk", + "ĠDo om", + "ĠFel ix", + "Ġré f", + "M ale", + "ç· Ĭ", + "ph ants", + "EN S", + "ĠMe chan", + "ĠG olf", + "åĨį è¦ĭ", + "Ġgener osity", + "ät ze", + "Ġunlock ed", + "Ġ ãĤĴ", + "íĥ ģ", + "ocaly pse", + "Al right", + "Ġê° ľë", + "Ġ×IJ× ij׾", + "ĠKeep ing", + "Ġcollabor ating", + "ch ief", + "ĠFern ando", + "Ġchef s", + "ĠíĶ¼ë ¶Ģ", + "Ġsk ipped", + "Ġperson n", + "Ġax e", + "che z", + "Ġextract ion", + "ĠA V", + "ĠGib bs", + "Ġí ľ", + "Ġs ı", + "I AM", + "V iew", + "ĠGR ANT", + "Ġëª ¸", + "Ġver ification", + "Ġdep icted", + "ĠMo z", + "ou x", + "Ġt ul", + "Ġsc anner", + "Ġcomed ian", + "ĠVol ks", + "ĠJE FF", + "è¨Ĥ éĸ±", + "§ Ħ", + "Ġdistract ion", + "r á", + "ĠIN TER", + "Ġsin cer", + "Ġ×ŀ× ª", + "Ġש ׳", + "Ġconstruct ive", + "ar f", + "ĠëĪ Ħë", + "Ġe co", + "r amos", + "Ġrenew ed", + "in ement", + "ĠU b", + "ĠPe pper", + "ì§Ģ ê°Ģ", + "ĠDar win", + "Ġmerch and", + "Ġv árias", + "è ce", + "N G", + "ĠìľĦ íķ´ìĦľ", + "Ġак ÑĤив", + "ĠUn ters", + "ع ÙĦ", + "Ġint ric", + "omm a", + "ie ving", + "ĠCarol ine", + "åĵ ģ", + "ĠPR ES", + "Ġperform er", + "Ġaut our", + "ãģ¾ãģĽ ãĤĵ", + "Ġutter ly", + "Ġsynth esis", + "Ġles bian", + "Ġretrie ve", + "Ġmane ira", + "Ġimp air", + "Ġment oring", + "ĠSoul s", + "ĠGo Pro", + "ÑĢ аÑĤÑĮ", + "Ġc ose", + "ĠSS D", + "I RE", + "Ġup front", + "ĠA un", + "Ġgam er", + "Ġl itt", + "Ġag gression", + "ĠLike wise", + "ĠBet ty", + "ĠD art", + "ĠD LC", + "ish ment", + "ìŀ¥ ìĿĦ", + "Ġ 对", + "ç» ı", + "c ream", + "ĠBaby lon", + "Ġn ug", + "br ar", + "Ġa ynı", + "am ily", + "b ike", + "ahah aha", + "lo yd", + "Ġmir a", + "Ġper me", + "ĠG aming", + "Ġfirm ware", + "M a", + "Ġassist ed", + "at ics", + "Ġìķŀ ìľ¼ë¡ľ", + "ĠM ental", + "niej s", + "ĠI z", + "ow Äħ", + "Ġt ougher", + "Ġde ed", + "èĭ ¦", + "Ġsty lish", + "ĠTool s", + "ĠH amp", + "Ġsun screen", + "Ġartic ulate", + "i ye", + "и ÑĦ", + "ĠSp read", + "ĠHA VE", + "Ġsw irl", + "Ġspons oring", + "ä» ĭ", + "iov ascular", + "mes i", + "Ġrelax ation", + "ĠÑģво иÑħ", + "Ġmar gins", + "Ġsa ÄŁ", + "ĠPr ide", + "ĠÏĦοÏħ ÏĤ", + "и ÑĨи", + "en ci", + "Do es", + "Ġcor pse", + "Ġend urance", + "Ġí ŀĺ", + "ì¹ ´", + "Ġhair cut", + "Ġinterrupt ed", + "Ġwind y", + "ĠC aleb", + "Ïģ Ïĩ", + "ĠPour quoi", + "Ġhol istic", + "uc lear", + "ĠWho le", + "å£ «", + "A ct", + "Ġgall on", + "c ade", + "ĠReg ional", + "ro ads", + "ĠSch ne", + "á ng", + "Ġиз мен", + "ãĤĪ ãģŃ", + "Ġmen us", + "Ġspl itting", + "Ġpr iced", + "ĠÎ ĵ", + "Ġus ername", + "ĠÐŀ Ñĩ", + "Ġcomp ressed", + "y in", + "Ġguard ian", + "Ġgo of", + "Ġcheck list", + "Ġinter change", + "Ġexped ition", + "Ġex tern", + "Ġinfra red", + "eng o", + "Ġden ying", + "Ġpack ets", + "on ent", + "B B", + "ĠInc re", + "Ġsin i", + "ÃŁ er", + "è g", + "ma al", + "gen eration", + "Ġminor ities", + "Ġlle var", + "Ġnom ination", + "Ġcons id", + "Ġ×ľ× ¢", + "m uÅŁ", + "ĠEs c", + "Ġnumer ator", + "Ġka ik", + "Ġktóry ch", + "ies en", + "Ġv ê", + "ĠUS S", + "ĠPri vate", + "Ġод но", + "Ġal ém", + "ÃŃt ulo", + "Ġlim b", + "Ġforg iven", + "Ġdiscl osure", + "ÏĦ ί", + "Ġning ún", + "Ġtherapeut ic", + "Ġnegoti ating", + "ĠN ike", + "ense ful", + "Ġin cap", + "Ġflag ship", + "t own", + "â Ī", + "ĠÏĢ ολ", + "Ġwol ves", + "Ġviol ations", + "ĠAr nold", + "Ġinterven e", + "Ġhe ater", + "Ġrecurs os", + "Ġma id", + "ê² ¼", + "Ġдав айÑĤе", + "ĠCe lebr", + "Ġca pe", + "ĠSt y", + "ain en", + "s ite", + "b ij", + "Ġп олÑĮз", + "Ġfr amed", + "Ġpublish ers", + "ĠÑĩ ÑĥÑĤÑĮ", + "Ġtempt ation", + "Ġcert eza", + "Ġex empt", + "ìĬ ¹", + "se lling", + "ĠT ask", + "ho on", + "ĠC oc", + "ĠPark s", + "Ġrepet ition", + "ĠÑĤ Ñĥда", + "Ġens l", + "ĠdeÄŁ iÅŁ", + "ĠOr lando", + "ĠMain ten", + "æŃ ¢", + "oc ument", + "ĠH C", + "Ġscoot er", + "Ġнап иÑģ", + "Ġtight er", + "Ġte ase", + "Ġremo ves", + "Ġkij ken", + "ĠÑģÑĥ ÑīеÑģÑĤв", + "Ġth é", + "ĠвÑĭ глÑıд", + "Ġrel ieve", + "Ġmit ä", + "Ġstation ary", + "ö ff", + "p able", + "Ġar ter", + "Ġdé f", + "r ative", + "Ġcon ect", + "Ġsad dle", + "ĠD iane", + "Ġcomm emor", + "fend im", + "S ÃŃ", + "Ġíģ ´ë", + "Ġman ge", + "at te", + "Ġarrog ant", + "Ġrobot ic", + "Ġgi Ãł", + "æĺ¯ çļĦ", + "Ġneighbour hood", + "iss on", + "Ġдв иж", + "ĠR I", + "ĠNorm an", + "b rand", + "am ation", + "Ġraz or", + "Ġmur ders", + "ĠÑĤ Ñĥ", + "Ġwszystk im", + "Ġut ilities", + "Ġmicros cop", + "ê ¿", + "Ġda qui", + "oll ar", + "ĠÐĶав айÑĤе", + "Ġann ée", + "Ġkilomet res", + "Ġhom osexual", + "Ġarchitect s", + "ãģ¡ ãģ¯", + "Ġni ye", + "L ER", + "Ġmicro phones", + "ĠSt unden", + "Ġconsecut ive", + "iend a", + "v änd", + "D ER", + "Ġlif ts", + "ĠMe at", + "Ġsave z", + "íĸ Īëįĺ", + "M en", + "Ġdism ant", + "ê±°ë ¥¼", + "Ġins ulation", + "Ġsc all", + "Ġsp ooky", + "Ġpar c", + "Ġball et", + "ĠWhats App", + "Ġfr anc", + "Ġdeliber ate", + "Ġíħ Į", + "Ġm ars", + "ĠZ ur", + "P r", + "dis ciplinary", + "Ġobs ession", + "м е", + "Ġmarch ing", + "ĠEmer gency", + "ig uous", + "Ġs zy", + "ĠL ands", + "Ġboard ing", + "ĠпоÑĩ ÑĤи", + "Ġenv y", + "Ġcompassion ate", + "Ġmer ci", + "Ġdes irable", + "d ale", + "Ġcan ım", + "ĠAnt ar", + "tem ps", + "Ġconfig ured", + "ĠComp ared", + "ne h", + "ic ating", + "Ġnic kel", + "ÙĪ ÙĤ", + "Ùĥ ÙĪÙĨ", + "op es", + "Ġform ulas", + "ĠÐķ ÑģÑĤÑĮ", + "Ġpo bl", + "ĠP J", + "ĠL ud", + "ä»Ĭ åĽŀ", + "ĠBr id", + "ĠH og", + "ĠBr is", + "J en", + "Ġshad ing", + "ĠY as", + "Ġdistur bed", + "Ġrecomm ending", + "Ġc é", + "ĠH OW", + "ìĹĪ ìĸ´", + "Ġrevers ed", + "ĠInteresting ly", + "iox id", + "åħ Ń", + "Ġìĺ¤ ì¼ĢìĿ´", + "ế u", + "x x", + "Ġou ais", + "ĠYouT ubers", + "ĠR osa", + "ĠH aupt", + "j adi", + "Ġvlog s", + "Ġcult ura", + "ĠLeaders hip", + "ĠH ep", + "Ġill um", + "´ë ıĻ", + "Ġcustom ized", + "Ġmar ca", + "Ġqu atro", + "Ġн аг", + "ĠSpace X", + "ĠE igen", + "ast ing", + "ĠolduÄŁ u", + "Ġfor ts", + "ãģ ī", + "r iment", + "ien cia", + "Ġten ir", + "ro ffen", + "Ġ197 9", + "Ġc ie", + "ĠëIJĺ ê³ł", + "Ġes cri", + "ÏĮ ÏĤ", + "íı ¬", + "uz zy", + "C ong", + "ìĿ¸ ìĿ´", + "G reat", + "s il", + "é ch", + "ãģ¨ ãģĭ", + "Ġmult ic", + "ĠDis k", + "² ķ", + "Ġfaz la", + "Ġle vant", + "Ġab ajo", + "ur ry", + "st ru", + "Ġ먹 ëĬĶ", + "Ġaccess ory", + "Ġдв иг", + "ĠR id", + "20 19", + "Ġdown stream", + "æķ ¸", + "Ġk az", + "ut an", + "Ġchar coal", + "Ġa fect", + "w u", + "Ġcontext s", + "Ġfe ared", + "ĠìĦ ¤", + "Ġhist ories", + "Ġf as", + "ens ible", + "Ġcoco a", + "ill ar", + "ge ons", + "Ġspiritual ity", + "ĠP ew", + "Ġpharm acy", + "Ġpass ions", + "Ġb os", + "Ġall á", + "Ġthri ving", + "ĠRe act", + "Ġoccup y", + "Ġwithdraw al", + "Ġallow ance", + "ĠFra ktion", + "Ġbud dies", + "Ġid le", + "Ġdissol ved", + "Ġpreval ent", + "Ġmil itar", + "Ġsens ing", + "Ġpo jaw", + "Ġanc ora", + "Ġabund ant", + "Ġha irst", + "ãģĤ ãĤĮ", + "Ġtw ee", + "Ġnäch ste", + "ĠMöglich keit", + "Ġho o", + "uff icient", + "Ġfant ast", + "Ġed ible", + "Ġëĸ¨ ìĸ´ì", + "ìĽ ĥ", + "Ġve in", + "uc ci", + "Ġdevot ion", + "Ġconce aler", + "in come", + "Ġrecy cled", + "ĠìĬ¤í ĥĢ", + "Ġpont os", + "Ġdess us", + "Ġvé rit", + "Ġreflect ions", + "ĠA A", + "Ġtake away", + "b are", + "ĠCont act", + "e il", + "ĠHe ar", + "Ġmir ac", + "ĠGer ilim", + "ĠÑģам Ñĭй", + "Ġv ivo", + "Ġkilogram s", + "ĠCr im", + "û t", + "7 8", + "Ġsincere ly", + "ra z", + "Ġë³ µ", + "Ġarri v", + "Ġconcept ion", + "ĠPers ian", + "Ġsj äl", + "Ġst arring", + "ĠìķĦë ¬´", + "ĠFore ver", + "е ÑģÑĤÑĮ", + "Ġve il", + "Ġsubt it", + "od ka", + "ĠоÑĤно ÑĪ", + "Ġcook s", + "ен Ñı", + "K ay", + "Ġni ños", + "ĠPh one", + "Ġstitch ing", + "Ġfinger print", + "é¢ ĺ", + "λ ά", + "Ġded icate", + "ĠL ob", + "Ġblack s", + "ĠB le", + "b out", + "ĠÄij ang", + "Ġe ks", + "Ġsqu ash", + "ĠK ü", + "od i", + "Ġn Æ°á»Ľc", + "Ġvoy age", + "Ġplay ful", + "ĠØ¥ ÙĦÙī", + "an ic", + "Ġcondem n", + "ĠB öyle", + "ĠPol ize", + "ãĤ¿ ãĥ¼", + "Ġay uda", + "Ġp am", + "à¹Ħ à¸Ľ", + "ĠK athy", + "ед ин", + "нов а", + "Ġbr ig", + "eg er", + "Ġe agle", + "Ġvis ions", + "ĠíķŃ ìĥģ", + "Ġsh itty", + "Ġh ott", + "ĠBr itt", + "ut ors", + "ENT E", + "æĽ ²", + "Ġph on", + "ĠB ing", + "Ġпод деÑĢж", + "spr ing", + "æĸ ¯", + "et ten", + "Ġpil gr", + "Ġed iyor", + "енÑĤ Ñĭ", + "ag gio", + "Ġj ul", + "Ġcomp rend", + "te il", + "ĠØ ²", + "Ġperform ers", + "Ġinf amous", + "ĠM K", + "ç ª", + "æ³ ģ", + "ot le", + "e ff", + "ĠH ash", + "Ġcow ard", + "ĠB RA", + "ĠD D", + "Ġcom ida", + "Ġpl ata", + "Ġfl ap", + "ĠMe hr", + "rib ution", + "ĠY emen", + "Ġmyster ies", + "ĠÄ° yi", + "Ġst ell", + "Ġeyel iner", + "Ġdel es", + "Ġnail ed", + "Ġillness es", + "Ġst acks", + "Ġtrabaj ar", + "fl ower", + "ci u", + "Ġcr ude", + "Ġsubstant ially", + "Ġhome m", + "Ġnep hew", + "Ġstamp s", + "Ġcar bs", + "ÑĮ ÑĤе", + "mo oth", + "Ġtun nels", + "ac ie", + "æ³ ¢", + "ĠSe ñ", + "ĠH era", + "ĠìķĦëĭĪ ìĹIJìļĶ", + "ĠWy oming", + "ĠHD MI", + "ĠL is", + "u ción", + "Ġste er", + "о Ñİ", + "иÑĤ а", + "N T", + "Ġìĸ¼êµ ´", + "Ġpal ms", + "Ġne on", + "ов аниÑı", + "Ġfilter ing", + "Ġjou er", + "ĠH ö", + "Ġне Ñģ", + "ê²ł ìĸ´ìļĶ", + "Ġ8 1", + "Ġstory line", + "Ġprz ep", + "Ġthank ing", + "ĠBo eing", + "Ġsoft ly", + "j em", + "алÑĮ нÑĭÑħ", + "Ġflash light", + "Ġп Ñĥ", + "ĠW OMAN", + "ắ c", + "ÃŃ ch", + "Ġlux urious", + "Ġw ün", + "Ġimpact ful", + "Ġcons on", + "re u", + "ir ring", + "if ter", + "Ġconstitu ents", + "èIJ ½", + "Ġ9 4", + "ĠT ou", + "g om", + "ĠìĥĿê°ģ ìĿĦ", + "Ġstere otypes", + "Ġmoż li", + "åĪĨ 享", + "Ĥ ¨", + "Ġpencil s", + "ĠÑģл ож", + "Ġih rem", + "ĠBes ch", + "ĠK oh", + "ĠEnt scheid", + "Ġle k", + "Ġför s", + "Ġtotal mente", + "Ġlive ly", + "Ġent ropy", + "Ġdisc ern", + "ĠÐĹ Ð½Ð°", + "Ġdo v", + "Ġmyth ology", + "è¨ĺ å¾Ĺ", + "apan ese", + "Ġapprox imate", + "аÑĤ ив", + "if iable", + "ĠSe o", + "åĢ Ĵ", + "´ìĭ¬ íŀĪ", + "Ġìĺ ·", + "Ġtempor al", + "Ġi T", + "Ġest at", + "к им", + "Ġspr ink", + "Ġgr und", + "Ġinfant ry", + "Ġsch affen", + "ç´ Ħ", + "Ġan k", + "ri ages", + "ĠYe on", + "ĠMor oc", + "Ġinv asive", + "ģ Ķ", + "Ġparent ing", + "ĠR is", + "ib ile", + "Ġmod s", + "å½ ¢", + "ĠпÑĢов еÑĢ", + "ĠTh ing", + "ĠWhere ver", + "Ġacknowled ging", + "Ġpa wn", + "um mer", + "or b", + "6 9", + "Ġretr ouve", + "Ġrel ies", + "ĠHigh way", + "Ġa we", + "ãģ§ãģĻ ãģĭ", + "ita ire", + "Ġapplic ant", + "Ġais le", + "w orm", + "Ġpay load", + "Ġcar re", + "ĠB ach", + "æł ¼", + "Ġì¹ľ 구ë", + "ни е", + "Ġit ÃŃs", + "onna ise", + "s ol", + "èı ¯", + "alg ia", + "Ġrock ing", + "Ġbest en", + "rit es", + "^ ^", + "ин ой", + "Ġba ixo", + "Ġ기 ìĸµ", + "оÑĤ ÑĢи", + "s im", + "Ġinc arn", + "ëĭ¤ ìĿĮ", + "Ġl ick", + "s ided", + "Ġ7 1", + "f order", + "Ġreson ance", + "Ġte gen", + "Ġmet aph", + "ows er", + "Ġ×IJ× ł×Ĺ׳×ķ", + "? ãĢį", + "Ġsp ielen", + "Ġvoll ey", + "ĶìĿ´íģ¬ ìĹħ", + "lo oked", + "Ġsent enced", + "Ġmultip lying", + "Ġide als", + "Ġwahr scheinlich", + "Ġdepos its", + "bil ir", + "Ġeff et", + "ill on", + "Īë §Į", + "Ġtestim on", + "Ġz awsze", + "ĠпÑĢоÑĨ еÑģÑģ", + "ĠL av", + "ä¸į éĮ¯", + "Ġtrava iller", + "Ġla isse", + "ĠMount ains", + "ĠÑĢ об", + "Ġexam ined", + "it us", + "W as", + "л Ñĭ", + "Ġattrib uted", + "ĠìĬ ¹", + "ĠBar on", + "Ġg ep", + "Ġatt ent", + "ĠColl ection", + "Ġthe at", + "ĠC ai", + "Ġwell s", + "Ġhuman o", + "çĹ ħ", + "ĠH ast", + "ĠÑħоÑĤ Ñı", + "cz as", + "Ġperm its", + "Ġle gg", + "Ġe po", + "ĠF en", + "Ġth i", + "ĠF oi", + "Ġé lect", + "Ġ8 3", + "Ġover th", + "Ġ è¬Ŀè¬Ŀ", + "Ġten ant", + "è² ·", + "N ext", + "Ġpra ised", + "sec urity", + "ĠImp act", + "为 ä»Ģä¹Ī", + "Ġv ouch", + "Ġneg ó", + "Ġun ve", + "Ġcritic ize", + "ĠKen ya", + "Ġtact ic", + "Ġlo gr", + "Ġpo is", + "Ġpap a", + "spe aks", + "ðŁ ij", + "isp ers", + "Ġsur plus", + "Ġcold er", + "åį Ĺ", + "åIJ ¬", + "pl ets", + "ĠV ienna", + "ĠLe ad", + "Ġaer ial", + "ĠT ah", + "енÑĤ ов", + "ĠGree ks", + "C am", + "Ġmá xim", + "Ġk uin", + "ch io", + "Ġdemonst rates", + "an os", + "ĠC ert", + "ĠÑį н", + "Ġblog s", + "ĠìĦľ ìļ¸", + "Ġbe ams", + "ик ов", + "Ġprompt ed", + "Ġfright ening", + "ĠPors che", + "ãģĪ ãģ¦", + "lar ını", + "Ġch illing", + "is phere", + "Ġfl ashing", + "ĠK ard", + "b read", + "Ġex h", + "Ġty cker", + "Ġec ological", + "ĠMa e", + "Ġ×ŀ×IJ ×ķ×ĵ", + "ĠëĤ ĺëıĦ", + "л он", + "ys s", + "Ġper gunt", + "Ġpri x", + "izz ard", + "Ġcan cers", + "Ġ9 1", + "s usp", + "ĠIt em", + "ÅŁ a", + "Ġp est", + "Ġtak Äħ", + "Ġl ymph", + "ĠPat ri", + "f ill", + "Ġrec onna", + "Ġoptim ism", + "Ġmim ic", + "Ġì² ľ", + "ĠMad ame", + "oc y", + "l ining", + "åijĬ 訴", + "erm e", + "Ġfold ers", + "Ġcz ÅĤ", + "uch ar", + "Ġcur so", + "Ġbre ach", + "ни ÑĤÑĮ", + "Ġp amiÄĻ", + "Ġel ig", + "Ġaut op", + "F low", + "Ġprogram med", + "ĠPro cess", + "Ġfig ur", + "ĠS F", + "ĠE les", + "Ġprogram mes", + "Ġdiz zy", + "ìĭľ ê°Ħ", + "Ġли бо", + "Ġsn iff", + "ĠSeb astian", + "ĠH ye", + "Ġ4 000", + "Ġperm ite", + "æ¢ Ŀ", + "Ġза Ñī", + "Ġgu it", + "ĠD ais", + "Ġaccord ance", + "Ġmod ular", + "ogene ous", + "æĭ į", + "Ġpou quinho", + "Ġart illery", + "Ġlub ric", + "Ġvol can", + "ĠN H", + "ðŁ ¤", + "Ġde an", + "R h", + "Ġminist re", + "åĿ IJ", + "ĠIn v", + "ĠBul gar", + "ĠD aten", + "è İ", + "I m", + "Ġorigin ated", + "ĠN ixon", + "inte gr", + "Ġlack s", + "ĠN acht", + "ìĸ´ë Ĥĺ", + "cam era", + "Ġrad ish", + "ki ye", + "Ġang es", + "Ġpré f", + "j uk", + "ĠBe e", + "ĠB U", + "ĠвоÑģ п", + "ĠB T", + "ê mes", + "ĠSt ück", + "ĠIn k", + "æĪĸ èĢħ", + "ĠSerge ant", + "ĠMult ip", + "Ġhiç bir", + "ĠС ам", + "ĠD é", + "ol ph", + "ìĸ ¸", + "Ġimp at", + "ĠìķĬ ê³ł", + "ĠÑĤак ого", + "ĠнавеÑĢ ное", + "Ġunpredict able", + "Ġm end", + "ĠìĹĨ ìĸ´ìļĶ", + "Ġjakie ÅĽ", + "Ġann i", + "Ġdon né", + "ĠK irsty", + "Ġrectang ular", + "Ġempez ar", + "ĠEx change", + "ê° Ķ", + "Ġé conom", + "ãģĵ ãĤĵ", + "el in", + "re ibt", + "Ġ×Ķ× ¤", + "Ġc emetery", + "Ġespañ ol", + "ol in", + "лÑİ Ð´", + "Ġgr âce", + "all en", + "ĠPh ilos", + "ĠEr st", + "Ġìĥ Ī", + "ĠV id", + "G ive", + "O H", + "μ ο", + "ĠP are", + "Ġmetabol ism", + "Ġma ple", + "Ġax le", + "ĠD y", + "Ġkomm e", + "Ïİ Î½", + "Ġgreat ness", + "Ġver ified", + "Ġsp é", + "ĠFahren heit", + "ĠB ren", + "ĠConf eder", + "Ġhist oire", + "Ġelimin ating", + "ĠAd ding", + "ĠAb i", + "æĿ İ", + "Ġhospital ity", + "t im", + "Ġbon ito", + "Ġpart es", + "ĠдÑĢÑĥг иÑħ", + "ĠSh ay", + "ĠS ed", + "Ġreg rets", + "Ñı ми", + "Ġten ants", + "éĢ Ł", + "ĠP TS", + "Ġdev i", + "ĠL ate", + "ue z", + "Ġsö yl", + "ãĤ »", + "Ġìŀ¬ë °Į", + "Ġtogg le", + "Ġmas king", + "алÑĮ ного", + "Ġpers ön", + "Ġamer ican", + "f ik", + "ĠR GB", + "ens on", + "ĠK A", + "ww ww", + "ĠÑĢ ег", + "met ics", + "Ġeduc ator", + "ãĤ· ãĥ«ãĤ¯", + "p ark", + "елÑĮ зÑı", + "ar us", + "ÑĢ еÑĤ", + "Ġfe ito", + "Ġcho ir", + "Ġlar go", + "Ġe ens", + "Ġwat ts", + "ĠSing le", + "Ġsuscept ible", + "ic er", + "Ġв клÑİÑĩ", + "Ġp us", + "íĻ ĺ", + "E ng", + "Ġfant as", + "Ġspecific ation", + "Ġconfront ed", + "ĠColumb us", + "ив еÑĤ", + "ar ım", + "Ġcaffe ine", + "mun ition", + "Ġmig rants", + "l ide", + "it ations", + "ĠG eme", + "Ạ«", + "Ġpl anner", + "Ġstim ulate", + "Ġapro xim", + "ce u", + "ĠN om", + "Ġv og", + "ĠÑĢ аÑģÑĤ", + "Ġense ñ", + "Ġsell ers", + "Ġgut en", + "z d", + "C al", + "Ġdescri pt", + "Ġrecon ciliation", + "z inho", + "á¹ĩ a", + "ãģĺãĤĥ ãģĤ", + "acy j", + "ĠCO L", + "s aw", + "ĠíĻķ ìĿ¸", + "Ġvar it", + "Ġpartner ing", + "Ġdet ention", + "Ġbomb ing", + "c lapping", + "ien cies", + "ond u", + "AM E", + "Ġê°Ļ ìĬµëĭĪëĭ¤", + "c ÃŃa", + "ĠпоÑģ ÑĤо", + "ĠAS MR", + "Ġhome page", + "Ġsi è", + "an tha", + "ĠP oll", + "Ġ igen", + "cy ch", + "Ġê°ij ìŀIJ기", + "Ġconsider ably", + "ä»ĸ çļĦ", + "ĠAr ist", + "Ġwith stand", + "Ġqual itative", + "ĠK raft", + "ĠÑį лекÑĤ", + "ĠBe ad", + "екÑĤ ив", + "Ġcr ushing", + "ì³ IJ", + "Ġnav y", + "ÙĪ Úº", + "s ho", + "Ġo ak", + "ipp ers", + "Ġso ils", + "Ġpig ment", + "Ġev itar", + "ãĥ ĩ", + "Ġf use", + "ĠD ale", + ": \"", + "Ġcompl ètement", + "Ġke l", + "๠Ĩ", + "Ġqu atre", + "ĠU M", + "Ġë§ IJë", + "æł ¹", + "ÃŃ r", + "Ġle isure", + "ĠH ousing", + "Ġfold s", + "est ion", + "AR S", + "Ġm ash", + "urp ose", + "Ġaccum ulated", + "ĠSt uff", + "èª ŀ", + "Ġtap es", + "ĠÑģ илÑĮно", + "ĠLO VE", + "Ġ198 2", + "Ġsc ars", + "Ġcapital ist", + "ĠN ed", + "Ġsoft en", + "Ġnot ably", + "Ġforcé ment", + "ĠRa um", + "Ġнеоб Ñħод", + "Ġtrad emark", + "Ġfert ig", + "Ġ? !", + "æĹ ł", + "Ġreinfor ced", + "Ġre charge", + "ĠPut ting", + "Ġvill ains", + "Ġhand ic", + "Ġadvertis ement", + "ت ÙĬ", + "ĠÑģ Ñĥм", + "ĠR iley", + "×ķ× ij×", + "äº ¬", + "O s", + "Ø§Ø ²", + "B oy", + "Ġsqu ish", + "ock et", + "Ġtest ify", + "æ¼ Ķ", + "Ġ×ľ× ŀ×", + "Ġм аÑģÑģ", + "man uel", + "ĠArk ansas", + "if fe", + "Ġanalyst s", + "ĠDe af", + "Ġj ó", + "Ġgrocer ies", + "ĠWhe el", + "ĠÑĢ иÑģ", + "Ġc òn", + "ĠC ob", + "Ġpris ons", + "è ve", + "ĠCab inet", + "Ġpos ed", + "Ġguer re", + "ĠL loyd", + "Ġcl erk", + "Ġcr ises", + "ĠSh o", + "ĠO re", + "ĠFoot ball", + "ĠAd vis", + "ĠZh eng", + "è į", + "ĠAM Y", + "Ġun for", + "Ġmon aster", + "Ġcomp ile", + "Ġimm ortal", + "at able", + "Ġpar ano", + "Ġt iver", + "ĠStep h", + "ĠFu ÃŁ", + "Ġdisc ontin", + "Ġr ipe", + "Ġhack ing", + "Ġs iendo", + "Ġsegu ro", + "alt res", + "Ġand eres", + "Ġë ¦¬ë", + "Ġexp orts", + "æŃ ¥", + "Ġtab ii", + "Ġ기 ëĭ¤ë", + "Ġbother ing", + "Ġpick le", + "ĠBRI AN", + "Ġalt ar", + "ĠпÑĢи б", + "Ġtransfer ring", + "ĠV ors", + "ĠÙĩ ÙĪ", + "ĠZ a", + "ĠFr ances", + "Ġbrow se", + "em it", + "Ġche wing", + "ĠFred dy", + "Ġedit ors", + "ä lle", + "Ġí ĮĢ", + "ĠS que", + "ĠC ultural", + "aw k", + "ĠS ache", + "ĠCar bon", + "ắ t", + "F L", + "ĠN GO", + "pe ÅĤ", + "ĠS ou", + "Ġh vor", + "un intelligible", + "Ġë² ķ", + "Ġ °", + "i in", + "Ġ×¢ ×Ŀ", + "Ġder rière", + "Ġczy m", + "ĠAp ost", + "Ġregard er", + "Ġag rade", + "ĠC andy", + "Ġma re", + "Ġintrodu ces", + "bird s", + "Ġuniqu ely", + "Ġm uk", + "Ġcook er", + "Ġcrew s", + "Ġje ito", + "ER T", + "¶ Ħë", + "n isse", + "Ġe f", + "Ġcart e", + "ĠY ak", + "ĠP AT", + "и но", + "bok ki", + "Ġm ates", + "Ġdist int", + "Ġì½Ķë¡ľ ëĤĺ", + "Ġy ıl", + "Ġκ άν", + "Ġconfigur ations", + "eng a", + "re cht", + "H appy", + "ãĤĦ ãģ£ãģ¦", + "in vest", + "Ġreconst ruct", + "ĠÑįÑĤ омÑĥ", + "Ġmos que", + "ra um", + "Ġvoy ez", + "ĠN BC", + "ĠìŀIJ ìĭł", + "Ġstur dy", + "Ġк ап", + "Ġans ch", + "al id", + "Ġmas ih", + "ĠR EP", + "Ġì½ Ķë", + "Ġded uct", + "Ġsal ir", + "w urf", + "il ot", + "ĠM utter", + "old s", + "ĠF EMA", + "ĠB ib", + "Ġneighb oring", + "Ġbl iss", + "Ġíĺ ¼", + "ли ÑģÑĮ", + "ĠÑĤÑĢ еб", + "Ġ å°±æĺ¯", + "Ġgren ade", + "Ġe gal", + "Ġfin ely", + "Ġpet als", + "Ġke er", + "Ġch yba", + "Ġsk ipping", + "Ġth irteen", + "Ġgrav y", + "ĠS AT", + "6 1", + "Ġн ог", + "Ġmin s", + "IT E", + "Ġso zial", + "íķĺë ©´ìĦľ", + "rukt ur", + "Ġвозм ож", + "Ġоп ÑıÑĤÑĮ", + "Ġar th", + "ĠCub an", + "Ġtre asures", + "Ġfertil izer", + "Ġawak ening", + "Ġë°± ìĭł", + "Ġr all", + "Ġdep ict", + "ĠP ablo", + "Ġninete en", + "Ġw att", + "Ġentire ty", + "K S", + "ĠWood s", + "S ch", + "ĠÚ© ÙĪ", + "ĠD ry", + "ãģ ŀ", + "u ve", + "Ġreconst ruction", + "Ġanat omy", + "Īë ¥¼", + "Ġb aba", + "Ġlisten er", + "Ġshar pen", + "ĠPer u", + "ĠвÑĭ з", + "Ġrecre ation", + "Ġiniti ate", + "Ġcal or", + "ĠN aj", + "ge e", + "ĠFe els", + "ĠSnap chat", + "ĠT et", + "ĠN est", + "ĠD af", + "ĠFin ish", + "ĠÑĤак им", + "ú c", + "iz ens", + "Ġsp ins", + "Ġemb ry", + "Ġpass ages", + "Ġc ient", + "Ġjust ification", + "ä»ĸ 說", + "Ġolm az", + "Ġflood ed", + "Ġemo ji", + "Ġembr acing", + "Ġdisc ard", + "ĠBas ic", + "ag og", + "ĠìľĦ íķ´", + "Ġas ylum", + "er in", + "Ġf im", + "Ġnin ja", + "Ġautom ate", + "Ġaller gic", + "ÿÿ ÿÿ", + "am am", + "Ġм аÑĢ", + "ĠO i", + "ä us", + "Ġin duct", + "ĠB EN", + "Ġz ÅĤ", + "Ġkaż dy", + "ĠAM P", + "n ÄĽ", + "S ure", + "Ġqu il", + "Ġespe c", + "ro k", + "BS CRI", + "Ġlie be", + "p us", + "ach sen", + "Ġcr icket", + "ëĬ IJ", + "ĠFr ame", + "ekk ür", + "ar b", + "Ġp ÅĻ", + "иÑģ Ñģ", + "Ġzeg gen", + "Ġdou bles", + "ĠD re", + "t est", + "ins p", + "bo ys", + "Ġm ão", + "ĠVer se", + "Ġmus cular", + "ĠMA LE", + "Ġd ulu", + "Ġoccas ional", + "L o", + "conom ic", + "Ġv ak", + "Ġrem edy", + "å¤ ł", + "ĠâĻªâĻª âĻª", + "ve m", + "Ġön em", + "ĠkarÅŁ ı", + "ĠSh arp", + "h ur", + "Ġë°© ë²ķ", + "Ġgrand son", + "Ġakt iv", + "ĠTh rones", + "ĠìķĪ ìĹIJ", + "Ġto ts", + "Ġsub d", + "ĠPa ula", + "Ġgra ves", + "ĠB rent", + "Ġник ÑĤо", + "Ġsö z", + "Ġcre c", + "ĠVlad imir", + "çĸ «", + "Ġп ой", + "Ġ\" -", + "Ġp sy", + "at ri", + "id an", + "Ġa ún", + "Ġstandard ized", + "ì¹ ĺë", + "Ġк ÑĢов", + "ĠZh u", + "s omething", + "Ġ7 50", + "Ġmuj eres", + "Ġa it", + "éĹ ´", + "ag u", + "Ġcorrect ed", + "ik ka", + "el ed", + "ĠCare er", + "ow ym", + "Ġroomm ate", + "Ġdescend ants", + "ĠNapole on", + "ĠÐĶ о", + "íĸĪ ìĸ´ìļĶ", + "Ġbun un", + "ĠMich a", + "ç· ļ", + "Ġdesc ob", + "P I", + "Ġpalab ra", + "Ġtrack ed", + "Ġdepend ence", + "ĠBar ack", + "åģ ĩ", + "Ġfert ility", + "ĠSouth west", + "Ġincom plete", + "Ġcomun ic", + "Ġcomp ris", + "ĠRest aur", + "Ġac ron", + "κ α", + "Ġapprent ices", + "Ġmus st", + "ĠA br", + "Ġpent ru", + "ĠCons ort", + "ĠAve c", + "Ġdum plings", + "L R", + "Ġwszystk ie", + "Ġsw amp", + "н ев", + "ugg le", + "Ġwater color", + "Ġprot on", + "ĠEspa ña", + "ock ing", + "ов ал", + "Ġtak im", + "V ery", + "Ġdement ia", + "ĠÅŁey i", + "J ac", + "ĠMac Book", + "ĠL iv", + "ffic ients", + "ĠH unt", + "Ġover lay", + "æĦŁ 覺", + "ĠSky pe", + "p unkt", + "Ġconf ined", + "ĠAd rian", + "ر Ùĥ", + "ĠJe ep", + "Ġenqu anto", + "Ġan est", + "оÑĤ веÑĤ", + "Ġм енÑĮ", + "Ġirrig ation", + "á»ij n", + "Ġeight een", + "ĠP on", + "Ġresc ued", + "Ġ198 3", + "r ü", + "ja e", + "ĠJe ong", + "Ġamazing ly", + "ĠF DP", + "Ġback stage", + "c ue", + "ĠÏĥÏĦη ν", + "ĠاÙĦØ µ", + "Ġlivest ock", + "ĠW arner", + "Ġmaj ors", + "ãĥģ ãĥ£", + "Ġcooper ative", + "ĠBr ady", + "ra ined", + "rie b", + "Ġ×ij× ŀ×", + "Ġдов олÑĮно", + "ĠF E", + "Ġle aked", + "ĠMerc ury", + "Ġpersu ade", + "Ġtransform er", + "ĠNor weg", + "ĠìĹ¬ë Ł¬", + "Ġzrobi Äĩ", + "Ġcard iovascular", + "ĠCr ash", + "Ġg ossip", + "а ÑģÑĤÑĮ", + "Ġì ª½", + "Ġsw ept", + "ĠH orn", + "ĠAt é", + "Ġbu kan", + "ĠK aw", + "K Y", + "ĠSt ories", + "G ary", + "Ġgard ening", + "ĠQuick ly", + "ĠFal con", + "Ġov at", + "c ı", + "ĠCom plet", + "ĠD ate", + "ĠпÑĢ им", + "Ġlä uft", + "ĠAud rey", + "ĠW ent", + "Ġpel ÃŃcul", + "Ġcar riage", + "Ġun acceptable", + "ny mi", + "ĠÑģл ÑĭÑĪ", + "Ġter re", + "uell ement", + "EE EE", + "Ġpharm ac", + "h ões", + "Ġz ich", + "Ġmig rate", + "ĠF ry", + "ñ ana", + "ĠM uito", + "EO VER", + "Ġfort ress", + "ĠCom pan", + "ĠJ SON", + "ord nung", + "Ġw arto", + "Ġun gef", + "ìħĶ ìĦľ", + "ĠÑĢ ок", + "Ġpad dle", + "J ared", + "Ġsubm itting", + "Ġl atch", + "Ġf ug", + "Ġк оÑģ", + "ĠE f", + "Ġlaunch es", + "Ġf t", + "ote chn", + "Ġtrave lled", + "ا Ùģ", + "éģ ķ", + "Ġpro ch", + "Ġded im", + "8 3", + "Ġreb ound", + "ĠL U", + "p ath", + "ĠÑģп ÑĢав", + "Ġö l", + "ĠíĤ ¤", + "Ġpriv at", + "Ġtr actor", + "ĠAtt ention", + "S er", + "Ġcos es", + "á ria", + "p al", + "ĠìĿ Ģ", + "Ġsuccess or", + "Ġconnect ors", + "ĠÑĥÑģÑĤ анов", + "Ġgen ocide", + "Ġsufficient ly", + "ĠA ixò", + "Ġstabil ize", + "Ġcon gest", + "Ġcar ving", + "Ġz ost", + "ĠбÑĭ ÑģÑĤÑĢо", + "Ġshort est", + "Ġli vel", + "Ġ8 9", + "éģ Ĭ", + "Ġer k", + "Ġport raits", + "ॠĢ", + "è ĺ", + "bo at", + "ll ah", + "AN C", + "Ġempir ical", + "ĠE cho", + "ĠNeder land", + "è¿Ļ ä¹Ī", + "N et", + "Ġcuid ado", + "ĠR oma", + "Ġc alf", + "Ġgi ants", + "ĠExpl orer", + "ĠColl ect", + "al ition", + "ĠDest iny", + "Ġaus ge", + "ĠE du", + "ĠC lo", + "Ġear rings", + "ĠTr ack", + "ĠR OS", + "ĠBe lle", + "çĻ ¾", + "Ġpu eda", + "Ġday time", + "Ġsupp lier", + "ĠS V", + "ĠEx hale", + "Ġgal era", + "c ourse", + "Ġcent imeter", + "ĠB ast", + "m ud", + "Ġsang at", + "ĠPhys ical", + "Ġpriv ately", + "Ġtr ata", + "lyn n", + "ill i", + "Ġë© ĶìĿ´íģ¬ìĹħ", + "Ġcryst all", + "Ġpod s", + "ả n", + "in ator", + "ĠRec ords", + "å® ĺ", + "ÄŁim iz", + "isse ment", + "h are", + "h adow", + "ĠD K", + "ĠìķĮ ê³ł", + "Ġw yn", + "Ġrequest ing", + "ĠD onna", + "ĠìĹ ´ìĭ¬íŀĪ", + "ine a", + "Ġex ert", + "ĠDun can", + "Ġв еÑĩ", + "ĠH ah", + "ठĤ", + "ĠL if", + "ĠF inding", + "ĠNo v", + "Ġзн ак", + "Ġо ÑĦ", + "ĠQu è", + "Ġquarter back", + "ĠÑĦ ак", + "Ġbipart isan", + "ÄŁ in", + "Ġné cess", + "Ġrefer endum", + "Ġcomp iler", + "Ġprob abil", + "ед и", + "Ġtrad er", + "æĺ ĵ", + "ĠR um", + "ge me", + "Ġd io", + "ĠbÄĻdzie my", + "ĠÏĢ ά", + "ê¾ ¸", + "×ķ× ĺ", + "Ġठķ", + "Ġбл аг", + "Ġscal p", + "ĠPa use", + "Ġcapt ion", + "Ġend anger", + "Ġen lar", + "Ġrot ten", + "ãĥĥ ãĥĪ", + "Ġw ah", + "èĤ ī", + "Ġd zi", + "ĠInst all", + "A y", + "Ġcre ar", + "енÑĤ а", + "Ġwe ighing", + "Ġbutter flies", + "ĠG ast", + "äº ķ", + "h orn", + "war z", + "IC EOVER", + "Ġнай ÑĤи", + "Ġcoe fficients", + "ç°¡ åĸ®", + "ĠSp encer", + "ĠH igher", + "Ġcow ork", + "å¨ ĺ", + "ĠкоÑĤоÑĢ ое", + "Ġmon it", + "Ġdys function", + "ĠÑģÑĤ анов", + "Ġtour naments", + "Ġoy ster", + "B N", + "Ġtr ud", + "sl ow", + "ĠPen ny", + "ĠOd ys", + "æ r", + "Ġf ou", + "Ġenjoy ment", + "аÑĤ Ñĭ", + "Ġwygl Äħda", + "алÑĮ наÑı", + "ĠProt ect", + "Ġmo y", + "Ġcl aw", + "Ġsusp icion", + "Ġsacrific ed", + "Ġgost o", + "B ig", + "Ġaggress ively", + "Ġvor ne", + "ãĥ ł", + "Ġbl amed", + "ĠSe hr", + "פ ר", + "c ito", + "Ġse als", + "Ġmu jer", + "ĠWe ird", + "Ġfore ns", + "Ġcontrib utes", + "est ra", + "Ġp og", + "L OL", + "Ġhacer lo", + "о ÑĤÑĮ", + "f iction", + "7 9", + "λ ο", + "大 æ¦Ĥ", + "å£ °", + "ĠÑĤ об", + "ĠG S", + "ĠCl ara", + "ite z", + "Ġadvoc ating", + "ĠíĶ Ħë", + "s ung", + "Ġvert ices", + "Ġnavig ating", + "Ġeurop é", + "çļ Ĩ", + "Ġslow ed", + "Ġfore ground", + "ĠIndust rial", + "Ġad ore", + "ìĭ Ń", + "Ġcré er", + "æŀ Ĺ", + "chn itt", + "Ġun aware", + "Ġcur ly", + "ent ar", + "Ġl er", + "Ġprohib ited", + "ĠHero es", + "ĠRe ed", + "u ca", + "Ġsm ok", + "Ġkun na", + "zeit ig", + "im men", + "ĠL un", + "Ġаб ÑģолÑİÑĤ", + "Ġdeg li", + "Ġvill agers", + "Ġpres et", + "z ept", + "ud s", + "Ġem it", + "ä½ł è¦ģ", + "Ġë ī", + "ëĬĶ ì§Ģ", + "нак о", + "Ġos ób", + "Ġ196 9", + "ĠÐIJ ÑĢ", + "Ġman chmal", + "ĠBro ck", + "Ġmant ra", + "ĠW IL", + "b ach", + "in ä", + "el as", + "kel n", + "Ġdisci ple", + "Ġqual c", + "Ġde hyd", + "ìĿ´ë Ŀ¼ëĬĶ", + "A f", + "ìĦ± ìĿ´", + "R yan", + "Ġpupp et", + "ĠдÑĢÑĥг ие", + "Ġr ud", + "Ġp ending", + "P lus", + "ĠìķĬ ìĿĦ", + "Ġb á»ĭ", + "ĠSe ga", + "ç e", + "Ġprogram mer", + "b li", + "Ġun l", + "Ġensl aved", + "Ġsoci été", + "Äģ h", + "Ġinherit ance", + "ĠBang l", + "erm aid", + "Ġpractition er", + "ĠSt alin", + "ĠUs er", + "ci ble", + "Ġcard iac", + "ĠKore ans", + "Ġdump ed", + "Ġ×Ķ ×Ļ×Ķ", + "á is", + "Ġhydraul ic", + "oubt edly", + "ĠP it", + "Ġpic nic", + "Ġbehö ver", + "ĠÑģм ог", + "Ġbra king", + "é» ij", + "ut ar", + "ĠìĦ ¸ë", + "ub l", + "Ġü z", + "Ġmaj esty", + "Ġb ers", + "ut able", + "Ġhot ter", + "çħ §", + "ÛĮ ÙĨ", + "Ġbi ases", + "Ġsubject ed", + "Ġnaught y", + "Ġcir cus", + "ãģĹ ãģĭ", + "ĠIm medi", + "ĠSte fan", + "ĠTri ple", + "en k", + "Ġw it", + "Ġrecy cle", + "em ie", + "d ated", + "Ġun load", + "Ġpop ula", + "ch in", + "Ġyield s", + "Ġeng lish", + "ĠBon nie", + "Ġsp iders", + "à ģ", + "Ġer osion", + "éĥ¨ åĪĨ", + "ĠN ICK", + "иÑı Ñħ", + "Ġimp art", + "Ġк ни", + "Ġres olutions", + "Ġlith ium", + "Ġconver gence", + "ĠT ara", + "Ġдв е", + "th s", + "ĠCind y", + "æĪij è¦ģ", + "å¹ «", + "ĠD IE", + "Ġass urance", + "Ġоп иÑģ", + "Ġbu ckets", + "Ġc ues", + "ĠQu iet", + "Ġsimilar ity", + "Ġfound ational", + "ĠMin ist", + "æ» ¿", + "Ġp ian", + "Ġcent r", + "Ġnum b", + "Ġmon ks", + "uj ourd", + "en zie", + "Ġskate board", + "Ġd latego", + "ĠÑģ оÑĤ", + "ĠA E", + "Ġmaster piece", + "ĠSol omon", + "ĠRed dit", + "Ġr iot", + "ab l", + "ĠJ azz", + "Ġelectromagn etic", + "Ġinsec ure", + "ĠComp et", + "ger ies", + "об од", + "ł ×ķ", + "ðŁ Ĵ", + "Ġsen ators", + "ĠBris bane", + "ĠAl b", + "utter ing", + "ĠAll ow", + "z ero", + "Ġp ai", + "ĠÐIJ лекÑģ", + "ĠDis play", + "ĠBl ade", + "ĠApp s", + "Ġp ä", + "Ġд еÑģÑı", + "Ġque lla", + "ĠGa o", + "ен нÑĭÑħ", + "Ġspoil ers", + "Ġgall ons", + "ĠÙĦ ÙĬ", + "ĠZ ion", + "æľī ä¸Ģ", + "on ie", + "rag t", + "ĠCh and", + "Ġë³ ij", + "Ġbl unt", + "Ġus u", + "ĠK ad", + "ra kt", + "Ġcin ematic", + "Ġam munition", + "re ne", + "Ġfour teen", + "ĠC arn", + "c rit", + "Ġten ure", + "v u", + "Ġprincipal mente", + "Ġalle en", + "éĢĻ ä¸Ģ", + "Ġkompl ett", + "Ġdü ny", + "J ames", + "Ġrecept or", + "Ġones elf", + "g uru", + "Ġmerch ant", + "l iness", + "Ġover looked", + "Ġharmon ic", + "éķ ¿", + "ies o", + "×ķ× ŀ", + "col m", + "ĠпÑĢо екÑĤ", + "ĠAd a", + "ا س", + "T im", + "Ġrecur ring", + "Ġproceed s", + "ĠPart icularly", + "ĠDown load", + "et rical", + "Ġmat rices", + "Ġproyect o", + "anc ies", + "ĠUh m", + "Ġc aves", + "Ġìĸ´ë ł¤", + "ĠLe af", + "Ġоб ÑĭÑĩ", + "ĠìĿ´ì ľł", + "Euro pe", + "Ġt Äħ", + "Ġpul s", + "Ġtak iego", + "ÐĿ е", + "G U", + "Ġfor s", + "Ïģ γ", + "Ġfot os", + "Ġ) )", + "Ġë© ¤ë", + "Ġaqu ilo", + "ĠK urd", + "ï¸ ı", + "pt ic", + "ĠD ort", + "Ġmis ery", + "aus o", + "åĬ Ł", + "chuck ling", + "ĠR idge", + "ĠíĸĪ ìĬµëĭĪëĭ¤", + "Ġ* **", + "å® ¢", + "ĠHmm m", + "Ġge ographic", + "Ġany s", + "Ġtal vez", + "Ġske let", + "Ġsign atures", + "Ġlit ers", + "IJë ©´", + "ĠÑģво его", + "Ġski ing", + "ĠÐľ оÑģ", + "Ġadop ting", + "Ġha ft", + "Ġsymm etric", + "ĠL iqu", + "Ġthy roid", + "Ġmis in", + "lud e", + "Ġh ull", + "ĠX D", + "ĠG ust", + "ze ich", + "Ġvibr ations", + "Ġes emp", + "ĠвÑģ Ñİ", + "ĠQu em", + "Ġü brig", + "ĠS ke", + "ĠLyn ch", + "room s", + "art et", + "f est", + "Ġfr üher", + "Ġl ure", + "ä¸į好 æĦıæĢĿ", + "ĠìķĮ ìķĦ", + "ĠW IN", + "ĠR YAN", + "ĠкоÑĤоÑĢ ÑĥÑİ", + "ĠK ash", + "Ġ×Ķ× ŀ", + "Ġsaf eg", + "ĠHall elujah", + "Ġдв ÑĥÑħ", + "Ġstap le", + "Ġsed iment", + "ĠAct s", + "Ġbl aming", + "Ġmain land", + "Ġsport ing", + "Ġdecor ations", + "Ġexecut ing", + "Ġpar an", + "ĠDoll ar", + "Ġproject ions", + "Ġcommission ed", + "Ġb our", + "ö m", + "Ġste amed", + "ĠëŃ ĺ", + "Ġpet rol", + "Ġcel ular", + "å¸ ¶", + "ĠHung ary", + "Ġrent ed", + "Ġв аÑĢи", + "bb ie", + "Ġsé cur", + "ü ll", + "Ġsw ings", + "bet ween", + "Ġи ÑĤ", + "est ro", + "Ġnie mand", + "ĠìĤ ¼", + "ĠP ardon", + "ess es", + "ĠM ID", + "Ġcentral ized", + "ĠAl ien", + "cul os", + "Ġcr ise", + "裡 éĿ¢", + "Ġcl asse", + "beit et", + "i ÄŁi", + "Ġwh ales", + "Ġper imeter", + "Ġty ing", + "Ġstr ony", + "Ġlike wise", + "ĠP unch", + "D a", + "ĠBapt ist", + "Ġsort ing", + "Ġ iv", + "Ġíķ ©", + "Ġre hab", + "Ġet a", + "ri ver", + "Ġsa i", + "ãģĦãģŁ ãģł", + "od us", + "ãģĬé¡ĺãģĦ ãģĹãģ¾ãģĻ", + "Ġess ayer", + "Ġtur tles", + "ĠHaz rat", + "Ġfab rics", + "Ġcav ity", + "Ġpon ieważ", + "Ġschle cht", + "Ġs alsa", + "ÅŁ ekkür", + "Ġse ating", + "Ġeconom ists", + "Ġman g", + "Ġsegu inte", + "Ġr ang", + "Ġrat ios", + "Ġconst ell", + "Ġlong temps", + "u ating", + "Ġspo iled", + "Ġrecip ients", + "Ġsn iper", + "ä¹ĭ åīį", + "ìĬµ ëĭĪê¹Į", + "Ġw p", + "ĠLIN KE", + "Ġfl are", + "ĠAd ri", + "ñ as", + "Ġback l", + "mä ÃŁ", + "ĠB end", + "Ġworkload s", + "ĠÑģ Ñĥп", + "Ġ197 5", + "им ÑģÑı", + "ан е", + "Ġм он", + "Ġaspir ations", + "ĠA er", + "ĠговоÑĢ иÑĤÑĮ", + "ĠQ ian", + "å¦ Ī", + "Ġcomprom ised", + "Ġyol k", + "ла ÑģÑĤ", + "Ġhe men", + "ro ve", + "d ens", + "Ġком менÑĤ", + "Ġ- --", + "Ġflu ores", + "но Ñģ", + "ĠLiver pool", + "ĠÑģоб ой", + "ĠZ we", + "Ġl umin", + "ĠO G", + "á ¸", + "hol m", + "pro fits", + "S N", + "Ġproport ions", + "Ġm ica", + "ĠB oh", + "ĠAt las", + "Ġuns ure", + "Ġtour ing", + "Ġn ied", + "Ġt ÄĻ", + "Ġimper ative", + "Ġdem ek", + "ĠSher iff", + "r ance", + "Ġhom eland", + "ĠH ail", + "ĠG anz", + "y mm", + "M on", + "åĨ ·", + "v ida", + "Ġdesar roll", + "æĬ Ģ", + "Ġintrig uing", + "ĠH ugo", + "Ġ ãĤĤ", + "é ¬", + "а ÑĨ", + "ĠWiÄĻ c", + "att ed", + "ĠìķĦëĭĪ ê³ł", + "ĠV ari", + "á d", + "Ġsur real", + "Ġdispar ities", + "Ġm ó", + "ull en", + "ĠìŀĪ ëĭ¤ê³ł", + "Ġп ожалÑĥйÑģÑĤа", + "Ġma ins", + "Ġe ject", + "Ġmeth ane", + "Ġmarginal ized", + "Ġchill i", + "r ès", + "Ġy em", + "ä½ł æĺ¯", + "ĠCh un", + "Ġdeb ts", + "Ġdownload ing", + "ĠAth ens", + "is ierung", + "ry n", + "Ġte kn", + "ĠQu indi", + "éľ Ģ", + "Ġtara f", + "Ġh é", + "Ġconscious ly", + "Ġfix es", + "uck le", + "may ın", + "Ġfre i", + "Ġsp a", + "Ġì§Ħ íĸī", + "ĠاÙĦØ °", + "ĠÑĥ к", + "let t", + "Ġolm uÅŁ", + "Ġche esy", + "า à¸ģ", + "na ire", + "Ġw iden", + "Ġli en", + "Ġesca ping", + "igg s", + "ĠBl ick", + "c Äħ", + "ĠìĦ ľë", + "Ġ×Ķ× ¡", + "Ġв пеÑĢ", + "oph one", + "ie ll", + "ĠSU BSCRI", + "Ġl ions", + "Ġê·¸ ê²ĥ", + "Ġinsp ires", + "Ġguarante es", + "Ġcome ça", + "ĠGrow ing", + "Ġneg lig", + "ĠFrank f", + "Ġge geben", + "ĠÄij ầu", + "Ġend lich", + "Ġì į¨", + "ĠT T", + "ĠL ith", + "ÏĢ α", + "aster n", + "ĠA zer", + "Ġlun ar", + "h ic", + "Ġна ÑĢод", + "Ġnen hum", + "è· ij", + "ĠSalv ador", + "ĠPro gress", + "Ġprivile ges", + "ĠëıĻ ìķĪ", + "Ġant agon", + "ĠImp f", + "Ġdesc ub", + "ĠLe i", + "ĠìĥĪë ¡ľ", + "Ñĩ е", + "Ġdó lares", + "ĠMeg han", + "ĠW ire", + "to o", + "ay ing", + "us c", + "Ġt ud", + "Ġappe als", + "ed uc", + "Ġp ane", + "Ġj i", + "Ġde cks", + "ĠAl ter", + "Ġ å°±", + "ìĦ ¤", + "åĪĨ éIJĺ", + "Ġproduct ions", + "ĠWILL IAM", + "Ġimpl ied", + "Ġfulfill ment", + "ĠA ah", + "Ġsa ja", + "x us", + "ĠÎļ αι", + "Ãł s", + "uc ch", + "ок о", + "ĠDisc ord", + "ĠS Y", + "j sk", + "ĠWall ace", + "un ction", + "Dan iel", + "Ġk öt", + "ij ah", + "Ġmarch e", + "Ġdis gr", + "Ġm ungkin", + "Ġal ma", + "³ µ", + "Ġextensive ly", + "ĠFl oren", + "ĠAll ison", + "ãĤ ±", + "ÙĬ Ùħ", + "Ġju ven", + "ĠRena issance", + "Ġfundra ising", + "ĠCha os", + "Ġpar aly", + "Ġnarr ator", + "Ġecosystem s", + "A sh", + "Ġmitig ation", + "ĠA ujourd", + "ĠIde e", + "! ,", + "Ġ ½", + "Ġland lord", + "Ġdefect s", + "Ġac re", + "uls ive", + "Ġalg ae", + "pe k", + "Ġem ba", + "ĠR oc", + "éĽ ¢", + "ks om", + "ä che", + "Ġle uk", + "Ġlever aging", + "Ġê·¸ëłĩ ì§Ģ", + "ĠPal m", + "Ġä ven", + "Ġl is", + "ĠIn sp", + "ĠR ita", + "ĠAb b", + "ith m", + "Ġsuper vision", + "Ġrevis it", + "Ġpi ÄĻ", + "Ġeu h", + "Ġf ades", + "Ġmot to", + "åį ¡", + "ез ж", + "ĠSh im", + "Ġrelev ance", + "Ġo o", + "Ġo stat", + "n ica", + "Ġcho ix", + "ĠFac ulty", + "Ġì¤ij ìĹIJ", + "ĠAb ove", + "Ġнеб олÑĮÑĪ", + "Ġsequ encing", + "Ġnutri ent", + "Ġconqu ered", + "Ġdigest ive", + "Ġback drop", + "ĠL ori", + "ail able", + "G ame", + "Ġneglect ed", + "om orph", + "ill ah", + "Ġkn e", + "Ġsi itä", + "Ġworks pace", + "ĠVen ice", + "ĠK ne", + "Ñī о", + "ħ Ģ", + "ĠH ass", + "Ġv ita", + "Ŀ¼ë ©´", + "Ġlay s", + "ên cias", + "é rica", + "ĠL l", + "æ± Ĥ", + "ĠCo ca", + "ĠWH Y", + "èĪ ŀ", + "Ġrout ing", + "Ġperm issions", + "Ġd ings", + "pre nd", + "pro gram", + "Ġcro cod", + "br al", + "AAAA AAAA", + "ag it", + "ĠN ä", + "Ġgek ommen", + "at ten", + "Ġrefer enced", + "Ġpair ing", + "ĠPart ner", + "ĠCoron avirus", + "Ñĸ Ñģ", + "è½ ī", + "Ġ×Ķ× ĵ", + "Ġespec ÃŃfic", + "ars i", + "qu elle", + "Ġspont aneous", + "çĨ ±", + "Ġê²ĥ ìĿĦ", + "ĠÐŁÐ¾Ñģ ле", + "ĠاÙĦ د", + "ĠSh out", + "Ġн ал", + "Ġdisgu ise", + "ĠJ ord", + "Ġwe e", + "Ġmiej sc", + "Ġser um", + "Ġplais ir", + "Ġcred ible", + "Ġb Ã¥", + "ĠA J", + "ma res", + "Ġrod s", + "Ġer an", + "ãģ¾ ãģĤ", + "Ġp ää", + "ĠU A", + "ĠUn known", + "ĠÙĦ Ùħ", + "ĠRab bi", + "Ġla at", + "Ġhairst yle", + "ĠØ º", + "éģ ĭ", + "Ġc ach", + "ĠWr iting", + "оÑĩ ки", + "ab ad", + "Ġstraight en", + "-- \"", + "w ife", + "Ġhott est", + "Ġpun ya", + "ĠF ashion", + "gr iff", + "ĠQ R", + "ot ch", + "ĠÐľ ожеÑĤ", + "Cl oud", + "ĠStri ke", + "ĠHe in", + "Ġ 羣çļĦ", + "Ġle i", + "ĠFl ow", + "weg s", + "Ġha br", + "åīĽ åīĽ", + "nah me", + "Ì ģ", + "Ġple asing", + "op ping", + "Ġ구ë ıħ", + "Ġdr an", + "Ġbang s", + "Ġ7 9", + "Ġsk et", + "Ġcav al", + "ĠMac ron", + "Ġweight ed", + "Ġm uted", + "Ġnuest ras", + "EE P", + "Ġmath ematic", + "ĠM RI", + "ag us", + "Ġtherap ies", + "θ ε", + "Ġun pl", + "Ġcomm encer", + "f ull", + "Ġtow els", + "Ġpr ue", + "Ġlic enses", + "׼ ×ķ׾", + "ĠÐŁ оÑĩемÑĥ", + "Ġpoint less", + "B ye", + "Ġelig ibility", + "Ġscra pe", + "Ġab usive", + "ĠM ant", + "Ġje unes", + "t al", + "ĠPrin cip", + "ĠOrth odox", + "Ġmel od", + "ĠмаÑĤ еÑĢи", + "Ġprosecut or", + "Ġopio id", + "ĠÑĥ веÑĢ", + "ĠBe en", + "Ġìłij ì¢ħ", + "Ġd ynasty", + "Ġajud a", + "Ġent reg", + "Ġweigh ed", + "Ġe ure", + "ĠB em", + "Ġab normal", + "8 2", + "ĠJ R", + "ĠA kt", + "ĠB ri", + "ú t", + "Ġst agn", + "! *", + "Ġwe gen", + "Ġle aking", + "ĠW ords", + "ĠM au", + "Ġv ue", + "ĠL iam", + "ани ем", + "Ġclin icians", + "ĠP ump", + "Ġför st", + "? ...", + "Ġautom otive", + "ĠOw en", + "zus agen", + "ĠH undred", + "Ġdecentral ized", + "Ġbul bs", + "Ġ×ľ× Ľ", + "Ġprovin ces", + "ĠMil an", + "8 1", + "k as", + "Ġëĵ £", + "Ġfor ça", + "Ġright ly", + "å³ ¶", + "r Äħ", + "Ġven ues", + "Ġw ai", + "Ġpred icting", + "ĠWi Fi", + "Ġê¶ģ ê¸Ī", + "ر ÙĪ", + "Ġ×Ķ× ĸ", + "cent ury", + "Ġgrad ual", + "ĠProblem e", + "ĠìĹ ħ", + "Ġcop ing", + "ĠBr us", + "Ġpean uts", + "irts chaft", + "Ġз ал", + "ĠT roy", + "Ġsper m", + "ĠM itar", + "ĠTür kiye", + "g rand", + "¦ Ń", + "Ġ×ŀ× ¡", + "Ġp ans", + "ĠKnow ledge", + "ber ly", + "ĠÐķ го", + "Ġdan ced", + "ĠFr ost", + "ĠB urg", + "Ġbit ing", + "ìłķ ìĿĦ", + "me al", + "Ġhero ic", + "Ġmother board", + "ĠL icht", + "ãģ£ ãģ", + "ll an", + "ай н", + "ĠÑĢ Ñıд", + "Ġ à¹Ģà¸", + "on en", + "ir ie", + "Ar t", + "r ang", + "ν η", + "Ġnew born", + "Ġam is", + "Ġا ÙĪر", + "Ġsoph om", + "ĠCare ful", + "Ġprospect s", + "ens en", + "Ġthr ill", + "ĠVi á»ĩt", + "A dam", + "r ition", + "ent ric", + "ud en", + "Ġcertific ates", + "Ġas hes", + "èª ¿", + "play ing", + "Ġs adece", + "Ġo st", + "Ġairpl anes", + "ÑĢ ок", + "on er", + "Ġmagnes ium", + "Ġgod damn", + "Ġ197 2", + "ĠSch ule", + "Ġtem at", + "Ġpart out", + "௠Ĥ", + "Ġin ve", + "ĠScient ists", + "ĠHud son", + "win ning", + "ceks in", + "Ġcongress ional", + "or u", + "Ġro pes", + "в ед", + "Ġmad re", + "Ġf erry", + "ĠCoh en", + "ĠP red", + "Ġvag y", + "Ġб еÑģп", + "Ġmult im", + "Ġdrain age", + "Ġsim ulator", + "g iggles", + "ĠSt adium", + "об Ñī", + "Ġnot ices", + "Ġcraw ling", + "Ġgr oupe", + "åı ¸", + "Ġkto ÅĽ", + "ĠY oga", + "Ġmed ida", + "ĠÑħ ваÑĤ", + "ĠL ite", + "Ġr av", + "or ama", + "Ġdisc ord", + "ĠDI RE", + "Ġte h", + "ĠN urs", + "ç² ī", + "Ġpitch ed", + "Ġbark ing", + "ĠC oke", + "wi ad", + "Ġpop ulated", + "éĻ ¤", + "pe lled", + "Ġб ог", + "Ġpe wno", + "ĠC ube", + "Ġrecru ited", + "éĢĻ 種", + "ĠC ara", + "ıģ ını", + "im ated", + "ĠÑĪ кол", + "ic ional", + "ĠпÑĢо ÑĦ", + "Ġcontam ination", + "Ġúlt imos", + "Ġfear ful", + "Ġele phants", + "us i", + "ĠiT unes", + "ĠSw ami", + "ê ¼", + "ĠìĦ¤ë ªħ", + "ĠRich ards", + "Ġmagn ets", + "ĠRicht ung", + "ĠLeg ion", + "èı ľ", + "Ġk itty", + "Ġkiss ed", + "Ġwater ing", + "Ġcon o", + "ĠPalest ine", + "id ir", + "Ġma ze", + "Ġflu ids", + "ĠProdu cer", + "ĠKr sna", + "好 åķ¦", + "la f", + "Ġ×IJ ×ķ", + "Ġm iesz", + "ĠX ing", + "oint ed", + "se in", + "ĠF uk", + "ĠDep ression", + "ĠD uty", + "ĠPan ther", + "Ġsu nd", + "Ġref ere", + "Ġexc lusion", + "Ġnav al", + "ĠWin ston", + "Ġsl ogan", + "Ġhypoth etical", + "Ġelev ate", + "ë ł¹", + "Ġcabe ça", + "ĠGes und", + "m eter", + "ĠìķĦëĭĪë ©´", + "Ġcloud y", + "âĢ¦ ?", + "ĠSch ritt", + "ĠJ S", + "ì į", + "ĠSpr ings", + "ĠB atter", + "· °", + "Ġtail or", + "ĠPTS D", + "ĠG ent", + "Ġba ÄŁ", + "Ġspat ula", + "Ġcr ay", + "ĠLeg isl", + "Ġs ú", + "Ġle ve", + "า ม", + "Ġer ad", + "Ġdon g", + "Ġd erm", + "ĠBank s", + "ich o", + "åħĪ çĶŁ", + "ĠFr anz", + "ra vel", + "éģ Ķ", + "ол о", + "Ġfl ute", + "ĠE k", + "Ġjoy ful", + "Ġch ased", + "ĠLar ge", + "O ver", + "Ġentrepreneur ial", + "Ġcons iders", + "Ñĥ ем", + "op a", + "Ġdorm ir", + "ĠElement ary", + "Ġprzy pad", + "ÑĥÑģ ка", + "ĠоÑĩ еÑĢ", + "ug ene", + "Ġten ido", + "Ġlug ares", + "ë ¥", + "ĠÑĩ аÑģÑĤ", + "Ġsa o", + "Ġbra id", + "ĠV ere", + "ĠRe ich", + "ĠP oss", + "Ġin an", + "w and", + "re f", + "Ġmont rer", + "Ġ198 1", + "çķ ª", + "as ında", + "Ġch rome", + "ĠTr inity", + "Ġexplo itation", + "ĠS ense", + "ĠC MS", + "ĠNo ble", + "ĠìĦł íĥĿ", + "Ġswe lling", + "elect ronic", + "] ?", + "Ġbr ushing", + "Ġliquid ity", + "ĠH ook", + "ĠCon nor", + "ĠAl um", + "Ġgu cken", + "su ite", + "Ġwie le", + "Ġbarrel s", + "ĠReg el", + "ĠM ent", + "ĠT rip", + "ĠBr ush", + "ĠE rik", + "ur ate", + "ÉĻ r", + "ĠC yr", + "ou ble", + "ĠBe cca", + "Ġpass words", + "Å ±", + "bor g", + "Ġv endo", + "ĠCla us", + "ĠF az", + "ind est", + "Ġdece ased", + "Ġcompar isons", + "ĠL CD", + "ĠP ork", + "Ġevent ual", + "Ġpat reon", + "Ġin ability", + "Ġext inction", + "Ġì¢ĭìķĦ íķĺëĬĶ", + "ĠÑģ оÑģ", + "aj u", + "Ġ×ij× IJ×", + "Ġso fort", + "Ġdest ined", + "ĠR in", + "Ġmouth s", + "ĠNat ürlich", + "Ġpres erving", + "Ġlim p", + "é» ¨", + "oc used", + "ин г", + "Ġexp osing", + "ĠÎ ¾", + "ë į", + "la ugh", + "Ġhis s", + "ãģł ãģĭãĤī", + "Ġind ie", + "Ġdet al", + "ÑĢав ÑģÑĤв", + "Ġtr ên", + "æķ °", + "Ġog ni", + "Ġsimple mente", + "Ġ197 8", + "Ġgo o", + "Ġ196 7", + "Ġgen ug", + "h ö", + "Ġhist ó", + "å® Ł", + "Ġlob ster", + "c endo", + "Ġte il", + "Ġalle vi", + "00 00", + "OL D", + "Ġpes os", + "Ġbon uses", + "Ġam i", + "Ġrev ival", + "ĠHor se", + "Ġs ack", + "T alk", + "Ġmul her", + "ĠпоÑģÑĤо Ñıн", + "ĠH ood", + "H uh", + "Ġë¶ ģ", + "Ġhy ung", + "ĠMe eting", + "Ġimport a", + "Ġì°¾ ìķĦ", + "ĠV ern", + "Ġstri pped", + "Ġref uses", + "Ġqual ifications", + "op l", + "Ģë ıĦ", + "ix ÃŃ", + "Ġdi ab", + "it ime", + "fl ows", + "Ġin ac", + "ĠG ong", + "Ġmeaning less", + "Ġcourage ous", + "Ġmicro bi", + "az y", + "h ist", + "Ġvolunte ering", + "V IE", + "Ġviol ated", + "Ġsymp athy", + "ĠEd it", + "好 åĥı", + "elect ric", + "produ ct", + "Ġpand emia", + "Ġgeomet ric", + "ĠCon vers", + "g re", + "Ġgl ut", + "ist ed", + "ĠاÙĦ Ùĥ", + "ĠCh ain", + "ĠPres ent", + "ĠY in", + "ĠÑģ ог", + "ĠV log", + "Ġìĸ´ë ¨¸", + "Ġdon n", + "Ġh itch", + "uck ing", + "ãģĬ ãģĦ", + "w ald", + "ris k", + "Ġhar i", + "ĠK ens", + "ĠId ol", + "Ġвним ание", + "Ġtod d", + "Ġsm ashed", + "Ġinv ari", + "Ġкон ÑĤÑĢ", + "Ġaut istic", + "ìŀ¥ ëĭĺ", + "R es", + "д Ñĭ", + "ch au", + "Ġsel v", + "Ġhät ten", + "ठ¿", + "Ġexpect s", + "Ïģ η", + "Ġaç ık", + "ĠHT TP", + "le ÅŁ", + "Ġswe eping", + "ĠBet a", + "Ġcounterpart s", + "ab ile", + "ĠSim s", + "C s", + "Ġrep ar", + "s qu", + "Ġprovin cial", + "Ġshare holders", + "Ġrun ter", + "Ġged acht", + "ĠTe en", + "Ġgrand s", + "çĶ ¢", + "ag les", + "Ġrock y", + "ven s", + "Ġr ivals", + "un al", + "Ġreact s", + "ë ©", + "Ġmerc ury", + "ĠLu igi", + "Ġо г", + "ĠJ UST", + "Ġl od", + "Ġcort ex", + "w ig", + "Ġl akh", + "ì¤ij ìĹIJ", + "ĠV ic", + "ĠM und", + "Ġma pped", + "ĠD ell", + "ĠD ruck", + "Ġlif es", + "алÑĮ ное", + "ivid ual", + "ad ım", + "Ġat rav", + "ĠFl ug", + "ĠKle in", + "ê±° ìķ¼", + "ห à¸Ļ", + "Ġapp li", + "ா ?", + "ü yorum", + "ĠинÑĤеÑĢеÑģ но", + "Ġdis infect", + "> -", + "Ġchamp agne", + "Ġk la", + "op ers", + "Tr ans", + "ĠDes ert", + "Ġcultiv ate", + "ĠFuck ing", + "idel ity", + "ĠÑĤ ан", + "Ġinc ub", + "Ġtem u", + "Ġlearn er", + "found er", + "ĠSy l", + "ãĤ Ģ", + "Ġf ato", + "z ier", + "ĠìĹĨ ìĿ´", + "ĠìĪ ¨", + "Ġpsych o", + "ĠÑĤел еÑĦ", + "Ġregard e", + "Ġrepresent ations", + "Ġlit igation", + "Ġsp ann", + "ult s", + "b ior", + "è¦ĭ ãģ¦", + "ä¸į å¤ļ", + "ĠSur vey", + "ĠLED s", + "Ġtr ä", + "Ġl ên", + "Ġant ioxid", + "еÑĢ ом", + "Ġindu ction", + "Ġfool ed", + "ät zlich", + "ĠговоÑĢ ÑıÑĤ", + "ĠF act", + "umb ai", + "Ġw iggle", + "NO UN", + "Ġdévelop p", + "ĠCl aro", + "Ġì ¸", + "ë ¬", + "ãģªãĤĵ ãģł", + "Ġaccum ulate", + "Ġmaint ains", + "ë Ħ", + "ĠFight er", + "íĨ ł", + "Ġmat in", + "Ġcoup on", + "Ġst unt", + "Ġdeb uted", + "å¾ħ ãģ£ãģ¦", + "Ġpra g", + "ив аем", + "7 3", + "Ġexp res", + "Ġìĺ¤ë ¹ł", + "ĠпеÑĢ Ñģон", + "Ġcalcul us", + "Ġab rupt", + "ĠInspect or", + "our t", + "æĸ Ļ", + "ź niej", + "int ense", + "B a", + "Ġl ounge", + "Ġast hma", + "ĠHi ç", + "ª »", + "Ġeditor ial", + "Ġse ize", + "Ġk ır", + "Ġm ouve", + "Ġtier ra", + "Ġtestoster one", + "Ġr h", + "ĠKing ston", + "EL LE", + "ĠRepresent ative", + "Ġ197 4", + "Ġi ba", + "T s", + "Ġsort a", + "Ġ( ?)", + "Ġت ÙĪ", + "ĠëĤ´ë ł¤", + "Ġbek ommt", + "Ġspirit ually", + "Ġdist orted", + "M ad", + "Ġre im", + "á nh", + "ĠOtt oman", + "ĠRel ig", + "ĠEl s", + "Ġret ained", + "ĠLa ughs", + "æĢ »", + "ĠS AS", + "ĠколиÑĩе ÑģÑĤво", + "×ķת ר", + "Ġinnov ate", + "Ġk ork", + "ĠÑĢаÑģÑģк азÑĭв", + "ond ere", + "iv i", + "ay e", + "ount y", + "ĠполÑĥÑĩ аеÑĤÑģÑı", + "Ġbun s", + "åħ «", + "Ġyüz den", + "Ġsur geries", + "Ø£ ÙĨ", + "Ġbankrupt cy", + "w elt", + "Ġsi amo", + "Ġdark est", + "ĠH ann", + "gg a", + "Ġform as", + "ĠD j", + "n amed", + "Ġshield s", + "ue ller", + "ĠF ew", + "Ġl ace", + "Ġfur ious", + "ĠY U", + "Ġsociet al", + "Ġjudge ment", + "ĠD os", + "Ġj ab", + "law s", + "Ġrein vent", + "ĠK atherine", + "ĠCh oi", + "ad ows", + "Ġr ans", + "od en", + "ĠMid west", + "n ın", + "Ġdep ort", + "ĠD ip", + "ç´ ħ", + "Ġaten ción", + "ĠCourt ney", + "ivid ad", + "ĠÚ© Ûģ", + "Ġeffic acy", + "ĠBrook s", + "Ġrefer ral", + "Ġкон ÑĨ", + "Ġmal icious", + "Ġk ir", + "ĠGod dess", + "Ġfun ky", + "Ġinter im", + "ĠK örper", + "Ġìĸ¼ë §", + "k ur", + "Ġк ли", + "Ġtruc s", + "ges etz", + "Ġz ug", + "ĠGl ück", + "ĠMin ute", + "Ġprest igious", + "Ġnie z", + "Ġconcent rations", + "ла ÑģÑĤи", + "ĠS is", + "ĠVit amin", + "ko v", + "ĠP BS", + "Ġне е", + "Ġretail ers", + "Ġcon ventions", + "ĠSam antha", + "Ġproud ly", + "J ordan", + "ĠJ ASON", + "at k", + "Ġtr iste", + "Ġst är", + "Ġreiter ate", + "Ġpos terior", + "Ġ197 3", + "ĠP ine", + "ĠJul iet", + "Ġped ir", + "k il", + "Ġover lapping", + "Ġexclud e", + "Ġecon óm", + "Ġaccept s", + "ĠS ter", + "æ± º", + "Ġìļ ´ëıĻ", + "est ab", + "Ġt ug", + "ar g", + "Ġliv ro", + "Ø§Ø µ", + "Ġse ams", + "Ġbur aya", + "Ġe llo", + "ĠT M", + "ĠP aw", + "ĠInd ex", + "Ex c", + "Ġinspir ational", + "Ġd unk", + "è° ģ", + "ak ter", + "Ġcondition er", + "ĠSal ut", + "ÅĤ ec", + "Ġìī ½", + "ĠÑĥз на", + "ĠRome o", + "f ruit", + "ĠY O", + "Ġchá» ī", + "б Ñĥ", + "b ons", + "Ġreprodu ctive", + "Ġor ada", + "Ġíļ ¨", + "Ġtent ar", + "Ġma ñana", + "ãĤ ¬", + "Ġsol vent", + "Jess ica", + "ĠLeg al", + "Ġtu a", + "Ġs ic", + "ĠE Q", + "au kee", + "ìĭľ ëĭ¤", + "ĠÅŀ u", + "Ġad here", + "ĠT ul", + "Ġà® Ĩ", + "Ġtext books", + "ĠFif th", + "Ġexper i", + "Ġch ic", + "Ġhe ap", + "in ely", + "at ra", + "T wo", + "Ġhele maal", + "Ġf ren", + "æİ ¨", + "Ġbis her", + "Ø§Ø ´", + "ĠìĦł ìĥĿ", + "ĠT ages", + "Ġs á»±", + "Ġbull ied", + "Ø ¤", + "Ġbenef ited", + "ĠPre viously", + "ĠÑį ÑĦÑĦ", + "Ù į", + "Ġsen ate", + "ĠM orm", + "ij ke", + "ĠF lu", + "Ġincorpor ating", + "j ack", + "Ġп иÑĤ", + "Ġimp ly", + "Ġha cks", + "ĠR ICH", + "Ġк ваÑĢ", + "ĠпÑĢек ÑĢаÑģ", + "Ġdepend ency", + "Ġìļ ©", + "Ġì± ħ", + "Ġwäh rend", + "Ġsu lla", + "ĠPitts burgh", + "Ġesemp io", + "¼ë ¡ľ", + "pr ot", + "ĠR osen", + "ĠIndepend ence", + "Ġpars ley", + "ie gen", + "Ġha w", + "Ġaqu ell", + "ĠC AP", + "ĠÑĢабоÑĤ аÑĤÑĮ", + "ĠCl iff", + "ion ar", + "Ġsec uring", + "æĪijåĢij çļĦ", + "ν ε", + "Ġutil is", + "Ġcou le", + "ĠP ing", + "Ġtre k", + "Ġf ak", + "Ġenorm e", + "Ġìĭ «", + "è® ©", + "Ġdoub ling", + "ĠнÑĢав иÑĤÑģÑı", + "Ġh ed", + "ho ven", + "ĠStand ing", + "Ġm ÃŃn", + "ĠJ imin", + "Ġmon arch", + "Ġco ke", + "Ġm r", + "Ġcl ic", + "à į", + "Ġimpe achment", + "Ġdur ability", + "Ġvar ios", + "Ġcommercial s", + "Ġgreet ings", + "ĠR i", + "ĠApp reci", + "ìŀĪ ëĬĶ", + "Ġrés ult", + "ér t", + "Ġsal ute", + "Ġpoder ia", + "Ġsun rise", + "ve ck", + "Ġreluct ant", + "Ġcommission er", + "å¿ µ", + "â te", + "ĠKen ny", + "ĠSir i", + "ãĥĥ ãĥĹ", + "ĠëĬ ĺ", + "ĠE E", + "Ġun ch", + "к он", + "ĠاÙĦØ ¥", + "Ġbel ts", + "Ġhas s", + "Ġмо Ñı", + "Ġdispl aced", + "Ġab ra", + "ÎŃ Î»", + "Ġscratch es", + "Ġcom et", + "Ġauthor ization", + "ĠL LC", + "Ġprodu k", + "Ġrehabil itation", + "å ŀ", + "Ñĸ Ñĩ", + "ud ing", + "ol it", + "Ġ10 5", + "Ġexp ands", + "Ġalt ri", + "ĠKom ment", + "Ġan f", + "P l", + "ĠM ana", + "f ed", + "Ġb ri", + "Ġor a", + "G s", + "ĠG ur", + "uck land", + "Ġjun ction", + "Ġiron ic", + "ĠFe ed", + "Ġpra kt", + "ĠHam mer", + "Įë ıĦ", + "ĠTr acy", + "çµ ±", + "ĠAs ide", + "н его", + "ĠиÑģполÑĮз оваÑĤÑĮ", + "Ġz aj", + "Ġequ itable", + "Ġcur b", + "Ġãģĵ ãĤĮ", + "Ġderiv atives", + "Ġpupp ies", + "ĠKenn eth", + "ĠCom pl", + "ig ram", + "ĠGar cia", + ") \"", + "ĠHar bor", + "est ial", + "Ġ ä¾Ĩ", + "Ġ ers", + "æ ¹", + "Ġunw anted", + "Ġbel ang", + "аР³Ð¾", + "em b", + "d os", + "ĠìĻ ľë", + "ĠBud get", + "Ġbatt ling", + "ØŃ Øª", + "k ok", + "наÑĩ ала", + "Ġpl ag", + "Ġcant idad", + "Ġgrup os", + "Ġplug ins", + "ler ini", + "Ġиме еÑĤ", + "Ġso zusagen", + "ol ics", + "Ġpue blo", + "Ġrem inis", + "r än", + "ĠMor rison", + "Ġl inha", + "Ġbreath s", + "ĠT aste", + "Ġenf rent", + "ĠDo cker", + "Ġд ен", + "Ġethnic ity", + "Ġw ob", + "Ġsuff ers", + "Ġtransition ing", + "ĠR ange", + "ÄĻd zy", + "Ġк аÑĤ", + "Ġsy ner", + "Ġdon ut", + "Ġprob abilities", + "ĠO mar", + "Wh ich", + "u ish", + "is in", + "Ġdem os", + "ĠìłĢ 기", + "Ġëĺij ê°Ļ", + "Ġед ин", + "Ġc erve", + "Ġj oka", + "I AN", + "Ġkilomet er", + "Ġhorizont ally", + "ĠBh ag", + "Ġ- >", + "ĠMon itor", + "Ġknowledge able", + "Ġf av", + "Ġpin ned", + "Ġe Bay", + "ick er", + "Ġìŀłê¹ IJë§Į", + "ĠXia omi", + "Ġcap it", + "Ġn p", + "Ġ196 5", + "ho e", + "Ġn ok", + "ĠS age", + "Ġн елÑĮзÑı", + "ĠT ow", + "g am", + "Ġdic en", + "ĠSUBSCRI BE", + "Ġrebo ot", + "Ġp aj", + "Ġë³´ìĹ ¬ë", + "Ġth icken", + "ĠRe ality", + "id än", + "N a", + "Ġê²ĥ ìĿĢ", + "!! )", + "Ġrout ines", + "Ġод ного", + "Ġex ting", + "Ġì¦ Ŀ", + "Ġsulf ur", + "Ġcar ve", + "Ġastero id", + "ĠWarri or", + "Ġphotograph ers", + "Ġpe ll", + "Ġcros sover", + "æĪij çŁ¥éģĵ", + "Ġhace mos", + "ĠNe j", + "Ġsett ling", + "Ġir m", + "ĠBook s", + "ient ôt", + "Ġesp acio", + "ĠSchol ars", + "Ġdo omed", + "ĠIR S", + "w ohl", + "Ġseg ue", + "ĠëĪĦ ê°Ģ", + "Ġpr atic", + "B T", + "ĠConsider ing", + "ĠBuff alo", + "Ġtrain ings", + "Ġge bru", + "ĠG leich", + "Ġpir ates", + "Ġen velop", + "Ġre open", + "im at", + "Ġte e", + "Ġsu ed", + "fe h", + "Ġ×Ķ× §", + "Ġdi ets", + "Ġjunt os", + "ast o", + "Ġmisunder stood", + "Ġru im", + "Ġclass ify", + "ĠпÑĢод Ñĥк", + "Ġin se", + "Ġillust rated", + "Ġcorros ion", + "Ġacc red", + "ĠAunt ie", + "ĠпÑĢив еÑĤ", + "ĠLI VE", + "Ġre k", + "Ġrece ipt", + "åĪ° åºķ", + "ĠBar bie", + "ĠSn ake", + "t urn", + "Je ff", + "ãģĬ ãģĬ", + "ķ Ħ", + "VO ICEOVER", + "co ll", + "Ġrun ners", + "ìł ľë", + "os os", + "mo on", + "Ġkey note", + "ĠInst it", + "S PEAK", + "Ġplug s", + "Ġcur v", + "ĠY uri", + "ĠTh eres", + "ĠP s", + "Ġμ ÏĢο", + "Ġconver ter", + "Ġref ine", + "Ġbad ass", + "Ġο ι", + "Ġreg en", + "az zi", + "ÙĬ Ùģ", + "Ġse ized", + "Ġiç er", + "ile e", + "Ġup stream", + "Ġbud s", + "Ġp im", + "Ġíķĺë £¨", + "Ġall uded", + "Ġthem ed", + "Ġconsist ing", + "Ġb ons", + "un uz", + "ĠпÑĢов од", + "ĠLove ly", + "ॠĭ", + "Ġpar ach", + "ĠSta ats", + "éļ Ĭ", + "Ġselect ive", + "Ġf ase", + "ĠGeor get", + "Ġcoc aine", + "Ġreprodu ction", + "ĠL ara", + "ĠL D", + "Ġg h", + "J on", + "Ġl Ã¥", + "Ġëij IJë", + "Ġtyp ed", + "ĠB ana", + "ë ĵľë", + "Ġsav ory", + "ĠZ omb", + "stand en", + "Ġpedest rian", + "Ġdifférent s", + "Ġìĭ ¸", + "èī ¯", + "Ġcompl ained", + "ç¦ ı", + "ĠÐļ ÑĤо", + "Ġ×ľ× ¤", + "ali ÅĽmy", + "Ġmort ar", + "Ġverd ict", + "Ġsu ficiente", + "ĠMill ion", + "mitt el", + "in als", + "ĠاÙĦØ ®", + "аÑİ ÑģÑĮ", + "Ġmi ÄĻdzy", + "ĠO le", + "Ġin vert", + "czy Äĩ", + "озм ожно", + "star ter", + "Ġaud itor", + "ĠSc out", + "ch ien", + "ĠSver ige", + "uff led", + "Ġze hn", + "ĠA uckland", + "Ġarg ent", + "Ġ197 6", + "ĠHo e", + "Ġboth ers", + "Ġsocial ist", + "Ġpl iers", + "Ġemer gen", + "ĠX P", + "еÑĢ ов", + "M ore", + "ĠLe vi", + "ĠAnd ers", + "ibil idad", + "ĠP arents", + "Ġindu ced", + "ìĸ´ì ¤", + "Ġbal ances", + "ĠвÑĭ ÑĪ", + "Ġsubmar ine", + "St art", + "Ġdri es", + "Ġvol ver", + "Ġtick ing", + "c ott", + "Ġf aj", + "pr és", + "ĠS abb", + "Ġза Ñĩ", + "Ġпок Ñĥп", + "Ġbapt ized", + "ĠBrill iant", + "ĠÐij ог", + "Ġm ots", + "b its", + "Ġlatt ice", + "æĪij è·Łä½ł", + "Ġcor iander", + "Ġresid ency", + "yn c", + "Ġpier wszy", + "ĠKn ock", + "ĠZ ap", + "ĠÐķ в", + "ê² ¬", + "å°ı å¿ĥ", + "Ġune ven", + "ĠJ as", + "od or", + "ç¿ Ĵ", + "7 4", + "ĠS ite", + "Ġacontece u", + "ym pt", + "Ġtril ogy", + "Ġlan tern", + "ĠZ ucker", + "v ari", + "we lling", + "ĠPot ato", + "gom ery", + "Ġreact ed", + "ĠChr on", + "Ġj ede", + "be eld", + "Ġtw ent", + "Ġl act", + "æ¨ Ĥ", + "Ġré se", + "Ġrel ent", + "Ġfurn ace", + "Ġwid get", + "Ġearthqu akes", + "ĠAd just", + "il it", + "ĠØ£ ÙĪ", + "Ġhear ings", + "Ġdefend ant", + "irs iniz", + "Ġbas k", + "c ja", + "ľ ¨", + "Ġrif les", + "Ġinst al", + "ĠFor give", + "p ical", + "ĠÐŀÑĩ енÑĮ", + "Ġpet ites", + "Ġh p", + "Ġren owned", + "ĠIn n", + "Ġ주 ìĦ¸ìļĶ", + "Ġemphas ized", + "éĹ® é¢ĺ", + "ĠìŀĪ ì£ł", + "Ġê²ĥ ìľ¼ë¡ľ", + "ãĤ Ĩ", + "Å ĵ", + "g ili", + "D ave", + "Ġexha usting", + "ÅĤ ug", + "Ġsch ema", + "μ ά", + "cy cl", + "Ġaut ant", + "Ġpar cel", + "Ġmater ia", + "ĠB erry", + "ĠÑģ ами", + "Ġextract ed", + "ĠSay ing", + "ism atic", + "Ġпоп ÑĢоб", + "Ġneur on", + "g raph", + "ľë ©´", + "Ġencl osure", + "ĠJoh ann", + "Ġafter math", + "ÑĤ об", + "Ġu ży", + "Ġs amp", + "3 60", + "ĠMe i", + "Ġt aco", + "Ġrecept ors", + "Ġpunch es", + "ĠHo je", + "ĠÙĩ ÙĨا", + "=\" #", + "ĠAng ular", + "Ġmus ique", + "Ġro l", + "Ġà ±", + "ster reich", + "Ġcl am", + "ĠTre asury", + "chem ical", + "Ġap ar", + "Ġapp end", + "Ġforb id", + "ĠHamb urg", + "ак ов", + "Ġê¸ Ī", + "ild a", + "Ġprepar ations", + "Ġmog Äħ", + "Ġcam ino", + "E ric", + "ĠBl ind", + "èĪ ĩ", + "å¹´ çļĦ", + "ĠDis covery", + "ì¸ ł", + "çĪ ¶", + "Ġinterpre ter", + "Ġb red", + "ĠPsal m", + "Ġdef ended", + "ìī ¬", + "ĠEr fahr", + "ĠPe ach", + "Ġmo ons", + "ĠO st", + "Ġspé cial", + "Ġarri ver", + "ĠW is", + "u ci", + "Ġrobot ics", + "I VE", + "Ġsie ge", + "ar la", + "Ġsepar ates", + "ĠT C", + "íı °", + "quis ite", + "Ġparenth eses", + "ик е", + "ç« Ļ", + "Ġtr ous", + "å» º", + "ĠÑģ илÑĮ", + "Ġbe ers", + "Ġпл аÑĤ", + "ãģĻãģĶ ãģĦ", + "Ġso la", + "Ġd ès", + "ming ham", + "ik te", + "Ġo ops", + "Ġtw itch", + "å° ĩ", + "Ï Ī", + "ĠShould n", + "uv re", + "Ġle er", + "cript ions", + "Ġeyes hadow", + "ĠGu o", + "ĠPow ell", + "Ġsup uesto", + "Ġan a", + "r als", + "ĠMont real", + "Ġsurf ing", + "ĠÐŁÐµÑĢ в", + "×ŀ ×ķ", + "Ġmillise conds", + "Ġsubur bs", + "Ġplanet a", + "ÑĥÑĪ ка", + "hr lich", + "ĠH Y", + "Ġس ÛĴ", + "ĠM M", + "ĠE ff", + "åı¯ æĦĽ", + "ĠH S", + "ans on", + "Ġì§ģ ìłij", + "Ġsu o", + "Ġdeploy ing", + "Ġk unt", + "ter ing", + "Ġere ct", + "ìŀ¥ ìĿ´", + "ĠìĿĮ ìĭĿ", + "Ġspec imen", + "! ...", + "æĪij 說", + "Ġlig ne", + "Ġk onst", + "ade qu", + "Ġìĥģ íĥľ", + "Ġaccess ed", + "ĠP ole", + "k ill", + "Ġë² Ħë", + "Ġauthentic ity", + "Ġapp elle", + "ull e", + "Ġrev ision", + "Ġgo ats", + "г ли", + "Ġp au", + "ĠR anger", + "ĠIm ag", + "aut hor", + "Ġe ve", + "ĠMess enger", + "Ġn ay", + "Ġwh oles", + "ät te", + "Ġon wards", + "ĠDep ois", + "Ġíijľ íĺĦ", + "ĠSAR S", + "Ġwszystk ich", + "Ġdest ru", + "umb ing", + "Ġcompat ibility", + "Ġmis information", + "od ore", + "ĠF avor", + "ek o", + "ı Į", + "w aukee", + "ĠTe aching", + "ĠK O", + "Ġbet ting", + "Ġquest s", + "Ġviv re", + "ĠмÑĥз Ñĭ", + "Ġs aga", + "Ġswe ll", + "Ġge he", + "æĢİ麼 樣", + "ĠоÑĢг аниз", + "Ġg ide", + "ĠG ross", + "Ġdale j", + "Ġcl aws", + "á»Ļ c", + "Ġprejud ice", + "Ġins ign", + "i hood", + "Ġpl ed", + "Ġdó nde", + "ĠPolit ical", + "Ġprem ises", + "und ert", + "ع ت", + "on nen", + "Ġespa ço", + "Ġf é", + "ĠHarr ison", + "ĠC ensus", + "Ġcard io", + "Ġdi y", + "Ġmil ieu", + "Ġjourn ée", + "ĠRe lease", + "N IE", + "ĠM uk", + "id ée", + "á»į i", + "Ġiç inde", + "ŀ Ļ", + "Ġreson ate", + "Ġm oles", + "ĠF lying", + "ĠGl oria", + "ĠPast or", + "ĠAre na", + "好 ä¸į好", + "N ON", + "ол ов", + "Ġall ÃŃ", + "om at", + "ìĸ´ë ıĦ", + "Ġcaracter ÃŃst", + "Ġdecl ining", + "Ñĸ Ñı", + "an co", + "ĠIn form", + "Ġbarg ain", + "Ġbus hes", + "ĠNat urally", + "Ġre chts", + "ĠT ensor", + "ĠPat ricia", + "Ġprincip io", + "ĠM umbai", + "Ġwom b", + "Ġnost ra", + "Ġdile mma", + "Ġirgendw ann", + "Ġ196 4", + "Ġenerg ÃŃa", + "Ġна ÑĢ", + "Ġseg regation", + "ĠA thlet", + "Ġ» ,", + "Ġy eni", + "ĠSe it", + "Ġven om", + "Ġdak ika", + "Ġëı Įë", + "ĠÃī l", + "Ġf us", + "ĠM og", + "¦½ ëĭĪëĭ¤", + "Ġrem ar", + "ĠTed dy", + "Ġbreast s", + "ic ans", + "æĶ¶ çľĭ", + "k ap", + "Ġh Æ¡n", + "ĠJ P", + "ãĥ³ ãĤ¿", + "Ġresur rect", + "ĠìĿ ¸ë", + "her ical", + "Ġfot ograf", + "ĠJos é", + "Ġlivel ihood", + "Ġbib li", + "ter i", + "Ġvor stellen", + "ĠA AA", + "Ġassess ing", + "Y A", + "Ġspl end", + "Ġexca v", + "Ġbapt ism", + "y ll", + "w ow", + "M ac", + "Ġpl astics", + "teok bokki", + "Ġintéress ant", + "Ġcommand ed", + "Ġfamous ly", + "ĠÐĺ ли", + "ĠMan uel", + "Ġsouth west", + "Ġde formation", + "ÃŃcul o", + "ĠнаÑħод иÑĤÑģÑı", + "ĠP atter", + "d egree", + "ĠczÄĻ sto", + "\" -", + "Ġìħ ĭ", + "Ġman ger", + "ĠTrust ee", + "Ģë ¦¬", + "Ġpunt os", + "iv able", + "Ġvol atile", + "ĠëĬ IJ", + "Ġinst ability", + "Ġc iel", + "ci Äħ", + "Ġpur ity", + "но ÑģÑĤ", + "S il", + "ed ar", + "åĻ ¨", + "NOUN CER", + "Ġspe lled", + "G ER", + "Ġsanct uary", + "Ġacceler ating", + "Ġsc out", + "ĠпÑĢ ев", + "f ahren", + "ãģĵ ãģ¡ãĤī", + "ĠëĤĺìĺ ¨", + "Ġpocz Äħt", + "ĠMe u", + "ka ar", + "³´ ê³ł", + "ak ra", + "D own", + "ĠÃĦ r", + "ĠEl ite", + "Ġall ons", + "Ġmay onnaise", + "ĠS ustain", + "prising ly", + "Ġsuper vis", + "Ġê·¸ëłĩ ì£ł", + "Ġunemploy ed", + "Ġfresh ly", + "Ġ×ŀ× ¢", + "ĠD h", + "Ġtack ling", + "Ġo gr", + "Ġì´ Īë", + "ãĤĪ ãĤį", + "Ġlo ft", + "ar ah", + "ĠA irl", + "ĠD ir", + "ĠÐľ ожно", + "Ġbook ing", + "ĠC RA", + "Ġhtt ps", + "Ġcho ke", + "Ġg own", + "Ġno ite", + "Ġz ac", + "ist ol", + "Ġsec re", + "Ġresemb les", + "Ġcu ad", + "ìĤ¬ ê°Ģ", + "sh ow", + "Ġbl anc", + "Ġag u", + "ĠPr int", + "ast ed", + "ĠWe ather", + "i pl", + "Ġobsc ure", + "Ġcont e", + "ough s", + ") ;", + "ĠD ame", + "ä¸Ģ 缴", + "Ġclar ification", + "Ġintim acy", + "Ġup hold", + "ĠMir ror", + "Ġw agon", + "x ide", + "Ġcl og", + "app er", + "ĠImmedi ately", + "ú de", + "Ġtouch down", + "Ġro oft", + "аÑĪ а", + "Ġç ıkt", + "Ġla isser", + "ĠUn real", + "ens itive", + "Ġ12 3", + "Ġpl aster", + "Ġduck s", + "Ġet me", + "Ġb ishop", + "bre vi", + "Ġb ic", + "ä¸ĭ åİ»", + "Ġrun time", + "Ġamb itions", + "м аÑĤ", + "ĠWe in", + "ĠMar i", + "ĠíĬ ¸ë", + "Ġresol ver", + "Ġng Ãły", + "ĠR ise", + "ãĤĪãģĨ ãģ«", + "ĠCr us", + "Ġmerchand ise", + "Ġel i", + "Ġstate wide", + "Ġow l", + "éģ ł", + "æĶ ¹", + "Ġtwist ing", + "Ġcontam inated", + "ĠCom merce", + "hy thm", + "Ġà Ī", + "Ġìĭ ¤ë", + "Ġmus ste", + "u ir", + "Ġsum s", + "ĠSome where", + "ãĥ İ", + "Ġk ami", + "Ġa ired", + "ĠAND REW", + "Ġê º", + "Ġv iendo", + "Ġantib ody", + "Ġabsol ument", + "Ġprotest ers", + "ĠQué bec", + "st adt", + "Sha un", + "Ġcham bers", + "ĠWe ar", + "ĠEffect s", + "Ġhaz ards", + "Ġne i", + "Ġcoraz ón", + "Ġá ¼", + "ĠS G", + "Ķ ©", + "ĠìĹŃ ìĭľ", + "Ġcom fy", + "ĠC ody", + "Ġpens ando", + "Ġg anska", + "ĠAc ross", + "öll ig", + "aby te", + "Ġwed ge", + "Ġkal ian", + "Ġsig ue", + "end es", + "ĠGro ÃŁ", + "Ġutil iser", + "Ġfl own", + "ани Ñİ", + "Ġle var", + "rest rial", + "Ġillust rations", + "Ġas lında", + "BLE EP", + "Ġдо ÑģÑĤ", + "Ġtur ret", + "Ġsuit case", + "ziÄĻ ki", + "Ġsket ches", + "Ġac red", + "ĠRe i", + "Ġt sun", + "ĠS ag", + "Ġthird s", + "ĠKIR BY", + "ra i", + "Ġhuman os", + "Ġrecomm ends", + "Ġextraordin arily", + "Ġcommence ment", + "K N", + "ope z", + "Ġ×ij× ©", + "Ġlet hal", + "ĠEst amos", + "Ġinspect or", + "ĠSe ok", + "e un", + "Ġoff shore", + "Ġget tin", + "ye ars", + "ĠSil ence", + "ĠNat ur", + "up un", + "Ġtr zy", + "Ġno get", + "Ġhamb urger", + "ĠPra ise", + "é nd", + "Ġ197 1", + "yl ie", + "k rit", + "ĠìĥĿê°ģ ìĿ´", + "çļ ®", + "Ġmoment os", + "Ġest é", + "Ġdisse min", + "Ġgig s", + "Ġdes af", + "Ġav is", + "ĠZ oo", + "ĠìķĬ ìĿĢ", + "h äng", + "åı ¥", + "h ake", + "ĠB ism", + "Ġre think", + "ĠMal colm", + "Ġident ifies", + "l ower", + "ix el", + "Ġtv Ã¥", + "k ed", + "ier z", + "Ġö ffentlich", + "Ġproc laim", + "so on", + "l ol", + "Ġlo i", + "Ġb itten", + "ro llo", + "Ġser mon", + "Ġes qu", + "Ġjack ets", + "Ġgr áfic", + "Ġпок азÑĭв", + "Ġcabe za", + "ch odzi", + "Ġpel vis", + "Ġnost algia", + "Ġbre w", + "Ġshort cuts", + "ĠAd emás", + "Ġsuperfic ial", + "åħ© åĢĭ", + "Ġbo ca", + "ĠæĪij æĺ¯", + "iment os", + "åĽł 为", + "Ġspr outs", + "é£ Ľ", + "ĠJon as", + "ĠFloren ce", + "st atic", + "da ughter", + "* )", + "ÅĤ by", + "f ashion", + "ĠG inger", + "Ġë§ ¤ë", + "Ġhust le", + "ut os", + "ĠÑĤ Ñıж", + "ĠL ös", + "ש ×Ļ×Ŀ", + "any ch", + "tu ber", + "Ġtid y", + "Ġfront al", + "Ġwhis key", + "Ġhum id", + "ĠÎ Ł", + "Ġr idge", + "Ġmar in", + "Ġb ientôt", + "ĠCarr ie", + "ch w", + "Ġtah un", + "ĠEr geb", + "F R", + "Ġìłķ ë¶Ģ", + "ĠSold ier", + "Ġenlight enment", + "Ġexam ining", + "ĠNot re", + "Ġer am", + "ĠSun ny", + "Ġlay ered", + "ĠD azu", + "r ades", + "好 åIJĥ", + "ĠнаÑĪ ей", + "Ġtim ber", + "Ġman ners", + "ĠBir mingham", + "Ġmini ature", + "omet ers", + "Ġfill er", + "ĠR ip", + "ĠK omb", + "own er", + "ì ¿", + "id ian", + "Ġdem ás", + "ĠÙĪ ت", + "Ġpreca utions", + "Ġgovern o", + "z elf", + "ĠCom plete", + "å¸ ĥ", + "ĠPh antom", + "ãģ¾ ãģļ", + "Ġн ез", + "ĠкаÑĢ ÑĤ", + "ĠAnt wort", + "ĠPf izer", + "ĠFran co", + "Ġw ÅĤ", + "Ġfr ig", + "es per", + "Ġk ale", + "Ġfilm maker", + "Ġk urt", + "Ġinv alid", + "å± Ģ", + "are lla", + "Äĥ ng", + "ram ento", + "Ġnutr itional", + "Ġdict ators", + "Ġaf in", + "Ġf uzzy", + "ĠG ina", + "ó t", + "ĠExtrem adura", + "Ġdemonst rations", + "ĠMont gomery", + "íķ´ì Ħ¤", + "ĠGand hi", + "ãĥ Ŀ", + "ç½ ®", + "Ġreun ion", + "Ġjaki ÅĽ", + "ĠZ ug", + "OU GH", + "l ifting", + "Ġ à²", + "á¹Ľ á¹£", + "e b", + "ĠW OW", + "ĠSh iva", + "omet ry", + "Ġwild ly", + "Ġt ended", + "Ġmeg ap", + "ì² ĺ", + "Ġna use", + "Ġg erek", + "ãĥ ĭ", + "ĠMar cel", + "Ġn este", + "Ø® ر", + "Ġfe h", + "åĨ ħ", + "susp enseful", + "ĠWrest le", + "ĠPalestin ians", + "ĠG ORD", + "iy et", + "ĠÑĢ ади", + "Ġvers uchen", + "Ġtrans istor", + "ĠÐŁÑĢ оÑģÑĤо", + "Ġпон ÑĢав", + "Ġrhy me", + "ĠVerm ont", + "pl atz", + "è® °", + "ĠÄ°ÅŁ te", + "ĠH ag", + "ĠÐĺ м", + "ĠÑĢаÑģÑģк аз", + "Ġmet ros", + "ĠInfin ity", + "w olf", + "ib al", + "ft ig", + "Ġ ÚĨ", + "Ġíĺ¹ ìĭľ", + "Ġo ggi", + "Ġdisp osit", + "ĠпÑĢ ил", + "ĠвÑĭ пол", + "Ġth ôi", + "ĠK ENN", + "Ġhand ing", + "act us", + "Ġtac os", + "Ġformer ly", + "ĠCorinth ians", + "ãģ« ãģ¯", + "ÑĨÑĸ ÑĹ", + "Ġpad re", + "Ġcongreg ation", + "æ ij", + "fer t", + "Ġsub ir", + "ais er", + "qu a", + "ara oh", + "ĠCur ry", + "ĠìķĬ ëĬĶ", + "ел Ñİ", + "Ġf uss", + "Ġbo oty", + "Ġl ows", + "Ġh ommes", + "ĠM H", + "ĠDisney land", + "w ent", + "Ġresid ue", + "Ġbe eping", + "è¼ ķ", + "ät ta", + "Ġm ould", + "ĠPro jekt", + "st alk", + "Ġartif act", + "ĠAnt rag", + "ĠAM D", + "ĠCry pt", + "Ġë© Ķ", + "ĠFel ipe", + "ĠCO B", + "el u", + "Ġself ies", + "ĠS anti", + "ch utz", + "ĠУ кÑĢаÑĹ", + "ges amt", + "Ġflo ck", + "j az", + "pl ain", + "Ġwr inkles", + "Ġre ais", + "Ġpal jon", + "Ġempower ment", + "Ġattend ees", + "pp a", + "Ġn eden", + "он Ñĭ", + "Ġtime frame", + "ĠCher ry", + "Ġid ée", + "Ġg ag", + "Ġdon key", + "Ġô ng", + "ĠH are", + "éļ Ľ", + "ĠK ara", + "Ġacom pan", + "pl aces", + "im ientos", + "ĠH amm", + "б и", + "ub en", + "ili yor", + "Ġth irst", + "Ġk ry", + "ĠGeorget own", + "׳ ×Ķ", + "Ġor ch", + "Ġheart beat", + "Ġtransform ations", + "est ones", + "ĠK H", + "Ġcart oons", + "Ġan ci", + "Ġworth less", + "Ġtail ored", + "p u", + "Americ ans", + "Ġp iles", + "ĠMon key", + "Ġbas in", + "ĠTem per", + "ĠP aint", + "Ġpunch ing", + "Ġba ik", + "ĠOak land", + "v re", + "ÅŁ allah", + "yd d", + "Ġcas ually", + "od u", + "Ġc oded", + "ĠNorweg ian", + "ĠV ince", + "Ġprem ature", + "ĠProm ise", + "ек ÑģÑĤ", + "Ġdevast ated", + "ĠPrem ium", + "ĠPar am", + "ĠÃĸ yle", + "um uz", + "P O", + "r ators", + "Ġlamp s", + "Ġterritor ial", + "Ġback bone", + "list ed", + "D Y", + "ĠاÙĦ ر", + "Ġpurs ued", + "ĠComm ons", + "Ġê³ ¡", + "lo cks", + "ed or", + "Ġconce ived", + "g ere", + "Ġdisappe aring", + "ĠS ull", + "ĠìĹ °ë", + "Ġho ffe", + "Ġdet ox", + "íĶ Į", + "Ġret ir", + "ĠëģĿ ëĤ", + "Ġper gunta", + "ĠB OY", + "ç² ¾", + "Ġp enn", + "æĿ¥ äºĨ", + "h és", + "h on", + "Ġcatastroph ic", + "Ġa ust", + "Ġtor so", + "Ġìĸ´ ëĬIJ", + "ĠìĤ¬ëŀĮë ĵ¤ìĿ´", + "Ġmarvel ous", + "ĠHar ley", + "ach ine", + "Ġti ế", + "itt o", + "ĠI ÃŃm", + "yl on", + "Ġshut down", + ".' '", + "Ġap ologies", + "ĠCommun ication", + "ĠговоÑĢ Ñİ", + "ãģĤ ãĥ¼", + "âĦ ¢", + "ÃŃ veis", + "ac un", + "Ġret aining", + "Ġcontrad iction", + "ĠAD AM", + "C OM", + "Bry an", + "ĠM onsieur", + "Ġadap ting", + "Ш ÐIJ", + "ĠSc r", + "änd ert", + "Ġpl aus", + "ä»Ĭ天 çļĦ", + "Ġon set", + "Ġassist ants", + "Ġval ves", + "Ġsc atter", + "ĠR ust", + "aw ia", + "Ġread iness", + "Ġp ais", + "Ġb ible", + "Ġamb iente", + "Ġа меÑĢик", + "Ġunc ond", + "Ġk alk", + "åĬ ¨", + "Ġmo c", + "un n", + "Ġact u", + "Ġhum ming", + "iss imo", + "ĠPat rol", + "g ow", + "ãĥ ¤", + "ĠTHE Y", + "ĠBod en", + "ĠB ie", + "Ġre el", + "ĠÑĥÑģл ов", + "Ġende avor", + "ĠPer iod", + "ustom ed", + "m als", + "al on", + "B ox", + "ĠÏĥ αÏĤ", + "Ġom dat", + "Ġal tre", + "ĠHe h", + "k ad", + "Ġprotect or", + "Ġdomin ance", + "odynam ic", + "Ġcommunic ated", + "k ö", + "Ġprede cessor", + "ĠL uk", + "ĠFl ower", + "Ġãģ ©", + "po que", + "ÑĤи ÑĢов", + "Ġret rospect", + "Ġdecis ive", + "Ġexem pel", + "{ \\", + "ĠR ück", + "r ite", + "ĠZe us", + "Ġcal orie", + "Ġattract ions", + "ĠH inter", + "Ġuh m", + "ĠíĮ IJ", + "Ġrul ers", + "Ġdiscour aged", + "Ġaconte cer", + "Ġacc ents", + "ĠOpt im", + "ĠAl g", + "k ids", + "20 21", + "ĠLind say", + "Ġfilm makers", + "pr owad", + "Ġter ug", + "ëĭ ´", + "ĠSom mer", + "20 18", + "Ġborrow ing", + "ĠTrans fer", + "н оп", + "ari as", + "Ġhead phone", + "ì¼ ľ", + "Ġtransl ating", + "Ġauf ge", + "ப à®Ł", + "we is", + "av ant", + "pa id", + "b aby", + "Ġtough est", + "Ġrepe ats", + "ĠTer esa", + "L ord", + "Ġacab ar", + "ĠR ide", + "d ir", + "Ġl eng", + "Ġd wa", + "Ġhead aches", + "Ġn ữa", + "ĠнаÑģ ÑĤоÑıÑī", + "Ġbo ils", + "Ġlong ing", + "ri as", + "ó rio", + "ĠParad ise", + "ĠSeñ or", + "erd em", + "Ġrein st", + "Ġsal aries", + "Ġinsec urity", + "ÅĤo ÅĽci", + "ĠабÑģолÑİÑĤ но", + "ink en", + "ĠEd dy", + "ud os", + "Ġd ummy", + "Ðļ ак", + "s ix", + "Ġin box", + "Ạ©", + "Pe ople", + "á»ĵ ng", + "Ġorganiz ers", + "f ind", + "Ġü l", + "ĠCO M", + "ż a", + "we ile", + "Comment ary", + "íĬ¸ë ¥¼", + "ĠMitt el", + "k us", + "èĽ ĭ", + "ठ¨", + "ir al", + "Ġgar ment", + "ικ ά", + "Ġst ool", + "pay ers", + "Ġsh immer", + "ĠO llie", + "ĠJe żeli", + "è¿ĺ æľī", + "Ġ197 7", + "Ġje ux", + "Ġext inct", + "ĠTransport ation", + "ĠM aker", + "Ġj ohn", + "Ġrich est", + "Ġtraum at", + "Ġli egen", + "´ë ¥¼", + "è¿Ļ éĩĮ", + "Ġun rest", + "ĠSt raw", + "æĭľ æĭľ", + "Ġcom a", + "ĠKr isten", + "ĠÐļон еÑĩно", + "ĠBry ce", + "ĠÑıк Ñĸ", + "Ġpearl s", + "Ġпоним аÑİ", + "Ġadd itions", + "Ġas ympt", + "ĠменÑĮ ÑĪе", + "Ġsc ans", + "Ch ild", + "ĠH ide", + "к ÑĥÑİ", + "et as", + "Ġd ank", + "Ġple as", + "Ġess ays", + "Ġj ets", + "åħ Ĵ", + "Ġв ед", + "Ġposit ives", + "ho f", + "- )", + "zz o", + "Ġstar ters", + "Ġsm iled", + "Ġ194 4", + "qu iera", + "Ġro k", + "Ġpu esto", + "N ico", + "Ġsim ulations", + "Ġ à¶", + "Ġintrig ued", + "ĠOver watch", + "åĸ Ĥ", + "s igh", + "b ai", + "Ġë§IJ ê³ł", + "id é", + "Ġcra bs", + "áºŃ p", + "ĠIraq i", + "ìĿ´ë ¥¼", + "ÑĤ Ñı", + "ĠSoph ia", + "ĠDN S", + "Ġönem li", + "ĠLu o", + "Ŀ ¤", + "ĠCoun sel", + "l igen", + "анÑĮ ÑĪе", + "Ġtrump et", + "Ġd apat", + "ĠJ M", + "ĠEVER Y", + "Ġå°į ä¸įå°į", + "å¤ ¢", + "ĠL ayer", + "Ġc ô", + "н ал", + "ĠJ oo", + "ĠH ack", + "Ġs unt", + "ĠLeon ard", + "ĠFire base", + "äng er", + "Ġexpl oding", + "v oy", + "Ġì¦ IJ", + "ĠÑģ еÑĢÑĮ", + "Ġsever ity", + "Ġbest imm", + "çµIJ æŀľ", + "Ġt iring", + "Ġprocure ment", + "Ġdiplom acy", + "Ġdecor ative", + "ĠÙĬ ا", + "Ġpenet ration", + "Õ «", + "Ġout right", + "EN E", + "ĠUn i", + "od les", + "Ġz eros", + "Ġdelight ful", + "j m", + "Ġdo po", + "没 äºĭ", + "Ġposit ivity", + "ĠVIS TA", + "ĠRes ource", + "íĥ Ģë", + "ÑĪ ие", + "C arl", + "Ġpip ing", + "Ġchop ping", + "ĠGan ze", + "ü ss", + "ĠA o", + "Ġsh attered", + "ĠDet ective", + "Ġund oubtedly", + "Ġhall uc", + "Ġen ch", + "Ñĭ Ñĩно", + "ÑĥлÑı ÑĢ", + "is esti", + "Ġped als", + "Ġdur um", + "¤í Ķ", + "la imer", + "Ġprop re", + "C u", + "Ġtransl ator", + "Ġca ÅĤ", + "Ġê·¸ 걸", + "Ġca ÅĤy", + "U A", + "Ġrev ised", + "Ġпод об", + "ĠArt icle", + "ĠHait i", + "Ġà ĵ", + "ĠC trl", + "Ġroz m", + "la it", + "Ġletz te", + "is pering", + "dis play", + "Ġalumin ium", + "Ġpalab ras", + "Ġconoc er", + "Ġz itten", + "Ġdir ig", + "åıª æľī", + "Ġbrain storm", + "Ġw ifi", + "ĠPart icip", + "Ġview point", + "ĠQu an", + "Ġhier arch", + "W elcome", + "å¯ ¾", + "Ġoff en", + "ĠRe covery", + "gan o", + "W ould", + "Ġrep ro", + "Ġper ceptions", + "Ġdem asi", + "ĠBangl adesh", + "ĠIncred ible", + "Ġlet zt", + "Ġbehav ing", + "Ġaston ishing", + "Ġâ Ĩ", + "ĠëĤ¨ ìŀIJ", + "èµ° äºĨ", + "ãĥ Ķ", + "ĠGORD ON", + "C AR", + "? !\"", + "ĠP rest", + "Ġë§ŀ ìķĦìļĶ", + "Ġt and", + "Ġl ash", + "ç Ĭ", + "ific ant", + "Ġint oler", + "Ġг еÑĢо", + "Ġte u", + "as o", + "ĠÑģов еÑĤ", + "Ġtravel ers", + "ĠSy nd", + "ĠвеÑĢ Ñģ", + "F onda", + "ad ı", + "Ġtrans cription", + "Ġtit anium", + "Ġtw ists", + "Ġgear box", + "ens ation", + "f at", + "C oll", + "ĠCommon wealth", + "z on", + "ĠPolize i", + "ĠAPP LAUSE", + "f ry", + "ĠJud a", + "este em", + "Ġso ck", + "ĠJug end", + "Ġк ÑģÑĤаÑĤи", + "ĠD ro", + "Ġproch aine", + "ãĥ¼ ãĥ«", + "Ġli ksom", + "ĠEner gie", + "ĠMar ina", + "Ġ2 30", + "Ġê°Ģ ìĦľ", + "ump ing", + "Ġl one", + "ç´ ļ", + "Ġfont s", + "Ġbusiness man", + "Ġp ly", + "Ġdo e", + "gr id", + "ĠMil waukee", + "ĠE den", + "! \".", + "ĠÛĮ Ûģ", + "og ens", + "Ġteas er", + "Ġqui én", + "Ġincent iv", + "go vern", + "Ġchild care", + "Ġsneak ers", + "Ġimprison ed", + " ®", + "иÑĤ еÑģÑĮ", + "an bul", + "Ġreg ain", + "Ġtranqu il", + "Red ner", + "éĽ ¨", + "IF A", + "Ġide ological", + "Ġmayor ÃŃa", + "Ġb ureau", + "et erm", + "ĠD ID", + "ìĬ ·", + "Ġw aving", + "Ġbe b", + "Ġá r", + "Ġк в", + "Ġenv oy", + "an ut", + "ик Ñĥ", + "ĠEnviron ment", + "ĠAss ass", + "ãĤĵ ãģ§", + "ĠB read", + "ĠТ ÑĥÑĤ", + "Ġstair case", + "ĠDise ase", + "Ġauc un", + "Ġëĭ Ī", + "Ġconfront ation", + "Ġ194 1", + "Ġiron y", + "Ġwor sh", + "ãĤĮ ãĤĭ", + "Ġf ick", + "ĠNa omi", + "Ġback side", + "ie ux", + "K ap", + "Ġved ere", + "Ġlength y", + "Ġbreak er", + "ĠRoll e", + "Ġpred ator", + "Ġnoss os", + "Ġadvert ise", + "è³ ĩ", + "ÑĢод е", + "Redner wechsel", + "re ten", + "Ġcollect ors", + "ıģ ımız", + "Ġtr ig", + "Ġax es", + "in ters", + "Ġpen alties", + "ĠOs man", + "ĠJen na", + "Ġfl akes", + "Ġtrain ers", + "Ġstun ned", + "ĠSc roll", + "ĠP ip", + "Ġна ÑģÑĤ", + "Ġnh Ãł", + "ĠSm ack", + "ẫ n", + "rat os", + "ĠÑĢабоÑĤ Ñĭ", + "Ġu cz", + "ĠLem on", + "ĠS ind", + "Ġpsych ic", + "ĠAb g", + "Ġmamm als", + "Ġimmers ive", + "Ġb ots", + "Ġverschied ene", + "Ġg eral", + "Ġfoll ower", + "Ġ ä»ĸ", + "Ġsegur idad", + "Ġimmers ed", + "fe ito", + "c ross", + "Ġö ld", + "íĥ Ħ", + "Ġãģĵ ãģ®", + "Ġ×Ķ ×Ļ×IJ", + "ĠJ ian", + "Ġbili yor", + "are a", + "Ġk af", + "Ġgod t", + "缸 ä¿¡", + "Ġë°© ìĨ¡", + "Ġdet riment", + "æ¥ ļ", + "Ñĸ л", + "ĠÄij âu", + "Ġchlor ide", + "ø re", + "le i", + "Ġmont e", + "Ġdifférent es", + "à¯ģ .", + "Ġcareg ivers", + "Ġin adequ", + "Ġfare well", + "ĠÑĤип а", + "ont ec", + "ĠE ph", + "HH H", + "ĠTod os", + "ĠС ШÐIJ", + "Ġtro v", + "Ġl ige", + "Ġc ông", + "ĠC iv", + "Ġcap az", + "ĠV allahi", + "Ġquest e", + "Ġrepl ica", + "س ب", + "z na", + "ĠÑģл Ñĥж", + "ĠP T", + "w ave", + "ien i", + "Ġrel ied", + "de velop", + "Ġdem e", + "ĠA man", + "Ġ[ ...]", + "Ġcompl iments", + "u ais", + "ĠíĮ ¨", + "Ġsmell ing", + "Ġdad urch", + "ÙĪ ت", + "Ġor anges", + "Ġл ай", + "Ġstabil ization", + "åĢ į", + "ãĤĮ ãģŁ", + "æ¥ ½", + "Ġappl iances", + "Ġh m", + "ĥ IJë©´", + "odynam ics", + "Ġc iÄĻ", + "ĠC ott", + "M ON", + "ĠM ang", + "æĶ¯ æĮģ", + "Ġall erdings", + "ικ ή", + "sh ots", + "Ġt s", + "ĠG ör", + "ĠCH AR", + "Ġ: (", + "Ġwr ath", + "Ġf ique", + "Ġfüh ren", + "Ġtest ament", + "Ġ^ ^", + "á¹Ľá¹£ á¹ĩa", + "AL D", + "Ġtext o", + "ĠDog s", + "Ġs ib", + "Ġpath etic", + "ock s", + "Ġrad ically", + "ĠM ORE", + "ĠJAM ES", + "Ġing l", + "ĠTechn ical", + "Ġpor ch", + "ĠU T", + "ĠобÑıз аÑĤелÑĮно", + "Ġrenew al", + "Ġaesthet ics", + "ik um", + "Ġbe verage", + "der n", + "Ġpredict ive", + "Ġch uy", + "ĠRegard ing", + "ĠFor ward", + "ĠÙĪ ÙĦ", + "Ġcontext ual", + "Ġdwar f", + "Ġpre he", + "Ġgovern ed", + "ħ Ħ", + "Ġtrabal har", + "Ġnegó cio", + "ĠболÑĮÑĪ ой", + "еÑĩ аÑĤ", + "Ġд ÑĥÑħ", + "Ġflood s", + "Ġbow ling", + "ĠO B", + "ĠH är", + "Ġgrad ing", + "주 ëĬĶ", + "Ġg ars", + "d ling", + "Ġr ak", + "ë Ī", + "c reat", + "ĠÑī е", + "Ġneighb ours", + "f ood", + "Qu ery", + "Ġhero in", + "ice ps", + "ĠK inda", + "N ET", + "Ġmar i", + "Ġim itate", + "Ġach ter", + "Ġsettle ments", + "ra re", + "cc iones", + "Ġë ĵľ", + "Ġf ik", + "it ung", + "Ġм акÑģим", + "Ġel f", + "Ġd alla", + "ĠPol sce", + "ĠP ul", + "Ч ÑĤо", + "ĠMor gen", + "ØŃ Ùħ", + "Ġsuprem acy", + "Ġk ys", + "ĠHur ricane", + "ĠG TA", + "ĠFe h", + "Ġfinal mente", + "m und", + "ĠK rie", + "é poque", + "ĠT ucker", + "IT T", + "Ġl ur", + "Ġdi pping", + "ä v", + "Ġeer ste", + "ĠFl int", + "bild ung", + "ู à¹ī", + "Ġto im", + "Ġpr acy", + "Ġtransform s", + "Ġspeed ing", + "Ġpresent er", + "Ġfellow s", + "f illed", + "ie za", + "Ġadv ising", + "ĠInter view", + "и гÑĢ", + "we hr", + "ĠD ante", + "pt ure", + "Īë¬ ¸", + "¯ ¸ë", + "IJ IJ", + "ĠCoun ter", + "Ġcr ist", + "Ġì§ ľ", + "Ġje une", + "ĠÑģÑĤ ÑĢаÑĪ", + "Ġmie Äĩ", + "Ġtut or", + "Ġmas ala", + "Ġpowder ed", + "Ġn au", + "ĠFreder ick", + "Ġbill ing", + "ĠE isen", + "Ġд обÑĢ", + "Ġm est", + "æ ½", + "Ġsn ipp", + "Ġmon o", + "ĠA lo", + "ĠMer cy", + "éri ence", + "Ġcasual ties", + "ĠAN NOUNCER", + "ä» İ", + "Ġto car", + "Ġbacter ial", + "H o", + "Ġstre ak", + "ĠJ ENN", + "Ġpl ast", + "Ñģ лед", + "Ġre app", + "Ġpay check", + "Ġmin ers", + "hab t", + "ĠJ ap", + "н ÑĥÑĤ", + "Ġred emption", + "Ġqu ir", + "hn lich", + "Ġaccum ulation", + "Ġsh ove", + "Ġadrenal ine", + "M ake", + "ĠH ern", + "oss ing", + "ĠV il", + "ub by", + "her tz", + "bre aks", + "Ġsp ur", + "ĠD aha", + "US TIN", + "Ġcontinu er", + "ĠSa ul", + "ãģ® ãģ¯", + "Ġíı Ń", + "ĠëIJĺë ©´", + "Ġë§IJìĶ Ģ", + "Ġо ж", + "Ġsuspect s", + "Ġla quelle", + "ĠMuch as", + "Ġv öllig", + "ul en", + "Ġimp res", + "Ġlo bb", + "ene e", + "Ġн аж", + "T a", + "Ġréal ité", + "ĠRe x", + "Ġharvest ing", + "Ġest r", + "æ ¶", + "osp ace", + "OS S", + "Ġdisturb ance", + "ass ic", + "ĠIs ab", + "Ġdéc ouv", + "ĠHamp shire", + "Ġor nament", + "Ġlu ôn", + "ĠU W", + "Ġj Äħ", + "éĤ£ ä¹Ī", + "Ġrespect o", + "Ġcomun idad", + "Ġcom igo", + "ag na", + "Ġintrins ic", + "ĠAlum ni", + "Ġses leri", + "Ġestim ation", + "âĢĶ âĢĶ", + "Ġprodu it", + "ãĢĤ ãĢį", + "Ġв ÑĢ", + "Ġwh irl", + "Ġac ces", + "ç u", + "Ġvari ability", + "Ġv odka", + "its u", + "Ġinternship s", + "Ġalloc ate", + "R R", + "íĽ Ī", + "Ġinstruction al", + "t ant", + "Ġà®ħ த", + "Ġinv ites", + "Ġha k", + "Ġsca res", + "Ġe clipse", + "п ов", + "к олÑĮ", + "ativ as", + "Ġstab bed", + "ĠD OM", + "ä¸į åĪ°", + "ro ots", + "ĠPict ure", + "íĺ ¼", + "ĠC HA", + "ie c", + "ı ı", + "han ol", + "Ġmisunder stand", + "R ay", + "Ġroad map", + "ocument ed", + "iz ione", + "ĠOl ive", + "r ift", + "Ġ×Ķ× ł", + "æ¯ į", + "l est", + "; ;", + "ĠE A", + "éľĢ è¦ģ", + "од Ñĥ", + "Ġhob bies", + "Ġbur ial", + "ãģ« ãģ¡ãģ¯", + "Ð ¤", + "le ge", + "ĠH J", + "Ġobject ion", + "Ġãģ Ń", + "ct ory", + "Ġincre mental", + "Ġgym n", + "Ġepid emi", + "Ñģ Ñĭл", + "à ij", + "Ġadvance ment", + "Ġpar ch", + "New s", + "Ġa yr", + "л ам", + "Ġ×ľ× ©", + "Ġdipl oma", + "ãģ¡ãĤĥ ãĤĵ", + "Ġrob bed", + "On ly", + "Ġinc ur", + "Ġch anting", + "Ġíķ´ë ıĦ", + "Ġrich es", + "ĠCar men", + "Ġnost ro", + "λ ÎŃ", + "ĠPow der", + "à¹Ģภ«", + "ĠìŀĪ ìľ¼ë©´", + "Ġgerçek ten", + "ĠPik achu", + "ем он", + "OL L", + "Ġplanet ary", + "Ġsl ows", + "Ġclock wise", + "al ion", + "Ġì Į", + "Ġver n", + "Ġh omme", + "Ġend point", + "Ġinnoc ence", + "Ġelement os", + "Ġsophom ore", + "Ġnot ions", + "ĠCould n", + "p ur", + "Ġz at", + "Ġobs ess", + "Ġmotiv o", + "ĠK ub", + "ĠDr ug", + "A nt", + "ĠPlay ers", + "ĠHum ans", + "Ġme lee", + "ĠWild life", + "ĠV P", + "Ġvolcan ic", + "Ġcom in", + "ĠGu ang", + "ĠÏĦι ÏĤ", + "ĠоÑģоб енно", + "ĠS ize", + "L isten", + "ĠA aa", + "app ro", + "Ġbar bar", + "ĠPark inson", + "нÑı ÑĤÑĮ", + "å į°", + "Ġunderest imate", + "Ġsubst itution", + "Ġcosm etic", + "ä¸ĭ 次", + "Ġwill en", + "Ġbe ide", + "ann i", + "Ġcondition ed", + "ĠDe bbie", + "Ġis to", + "ĠEd wards", + "ìĽĮ ìļĶ", + "ĠÑĤ ов", + "Ġab brevi", + "ĠM ün", + "ĠPr inc", + "ĠLi ang", + "Ġst ink", + "Ġradio active", + "ãģĨ ãĤı", + "Ġac ontec", + "Ġun con", + "ĠTur bo", + "ãģ IJ", + "Ġkiss es", + "æĺ¯ ä»Ģ麼", + "еÑĤ ÑĢов", + "Ġfront ier", + "ĠSp y", + "ĠBel arus", + "ĠC BS", + "á» Ĺ", + "am oto", + "íķľë į°", + "ĠÑģÑĤ ÑĢо", + "ĠEn fin", + "Ġbread th", + "éĺ ²", + "ĠCa fe", + "ĠDaf ür", + "ĠB our", + "ar as", + "Ġbl ueprint", + "an ı", + "Ġconst ants", + "Ġattack er", + "ĠForm ula", + "za Äĩ", + "Ġs owie", + "Ġeyebr ow", + "ob ook", + "Ġset zen", + "第 ä¸ī", + "ons ider", + "aw ning", + "Ġsöyle ye", + "Ġinv aded", + "Ġpronoun s", + "Ġdob ry", + "S i", + "ĠÐ¥ оÑĤ", + "Ġvolley ball", + "Ġl ament", + "is ches", + "ar me", + "ap i", + "ĠW iki", + "ли ÑĪ", + "Ġkas ih", + "Ġp ess", + "ĠÑĦ оÑĤ", + "ĠS ul", + "å¾ ·", + "Ġpse udo", + "Ġmem o", + "ĠìĹ° ìĬµ", + "ĠдоллаÑĢ ов", + "ĠпеÑĢ ем", + "ĠRe ach", + "mir al", + "alt ed", + "Ġstat ut", + "read ing", + "Ġsöy led", + "ĠLind sey", + "ĠAh mad", + "ë ¶Ģë", + "ĠС егоднÑı", + "Ġprzy got", + "Ġhy ster", + "U RE", + "ĠNe igh", + "Rep orter", + "ĠB unu", + "ĠTreat y", + "ĠR ank", + "ĠF ame", + "in ished", + "Ġge ared", + "Ġcomp ose", + "od ia", + "ĠL on", + "Ġjeste ÅĽmy", + "ĠDIRE CTOR", + "Ġel kaar", + "ĠV iel", + "×IJ× ©", + "ynth ia", + "ä¸ ¦", + "Ġm ère", + "ĠTom ato", + "Ġex atamente", + "ni ÄĻ", + "ĠFre i", + "ĠD if", + "Ġopen ings", + "Ġgraph ical", + "ĠÑĥд об", + "ĠвÑģ п", + "ĠWeek ly", + "ев а", + "Ġhang s", + "Ġuns afe", + "Ġem blem", + "ĠKolleg innen", + "al ay", + "Ġk si", + "Ġh ides", + "Ġol may", + "Ġent ste", + "Ġarth ritis", + "ÃŁ erdem", + "Ġbin nen", + "Ġlist ens", + "ĠH ess", + "åĨį ä¾Ĩ", + "ĠLou ise", + "ld en", + "ен Ñģ", + "ĠVers ion", + "ĠAgric ulture", + "ìĬ¤ë ¥¼", + "м ан", + "ë Ħ¤ìļĶ", + "Ġw ines", + "ĠIN F", + "r ul", + "ĠJ K", + "ıyor lar", + "sh ield", + "reat h", + "Ġter us", + "ĠL um", + "Ġanticip ation", + "Ġacc ustomed", + "ĠM ina", + "Ġw ield", + "io è", + "mer a", + "Ġcount down", + "Ġcl ing", + "Ġcomm end", + "Ġfakt iskt", + "Ġdef enses", + "Ġcock pit", + "Ġком анд", + "Ġdish was", + "ĠThan os", + "Ġkid neys", + "Ġse he", + "Ġmicro bes", + "Ġc uff", + "ĠвÑĭÑģ ок", + "ĠSp icy", + "çŃī çŃī", + "வ à®°", + "cul us", + "or c", + "ç¾ ħ", + "ix es", + "ĠC redit", + "Ġr aj", + "Ġbring t", + "ĠN iss", + "Ġgr im", + "ĠS OL", + "Ġten im", + "ĠSud an", + "ĠSp art", + "Ġpromot es", + "ĠN ossa", + "ĠÑģоÑģÑĤо Ñıни", + "Ġì° ©", + "Ġunc ont", + "ĠLiber al", + "ĠТ олÑĮко", + "ĠV iele", + "Ġktóre j", + "Ġ* ***", + "M ax", + "ĠЧ ÑĤобÑĭ", + "3 50", + "Ġíĺ¼ ìŀIJ", + "Ġë¶Ħë ĵ¤ìĿ´", + "Ġwar p", + "Ġteng a", + "Ġsympath etic", + "Ġbiz i", + "ĠZ ack", + "ied o", + "Ġëī ´ì", + "p iel", + "ĠÑĤ ол", + "Ġsc aled", + "ĠPET ER", + "ĠCO MM", + "ĠC ame", + "Ġcatast rophe", + "Ġsweat y", + "ig ration", + "Ġstuff ing", + "ĠÏĢολ Ïį", + "ĠDri ver", + "zy st", + "T ech", + "Ġassess ed", + "ĠSur face", + "ır ım", + "s ur", + "ler weile", + "Ġд ог", + "Ġshut ting", + "Ġfr actions", + "ĠÑģ ол", + "every one", + "Ġer n", + "ĠÐĿ ов", + "Ġdefend ers", + "Ġvers ucht", + "ãĥ³ãĥ Ģ", + "Ġpol ity", + "ĠÐŁ он", + "ver ständ", + "Ġbrows ers", + "Ġtransform ative", + "Ġdict ate", + "ĠLE GO", + "Ġning una", + "ê´ ij", + "Ġp izz", + "ĠHar old", + "ĠL opez", + "Ú¾ ÛĮ", + "an ız", + "atch et", + "ÙĬ ت", + "Ġl ernen", + "Ġê·Ģ ìŬ", + "Ġhous ed", + "Ġclean se", + "ĠW AT", + "lar ation", + "Ġby tes", + "Ġtuck ed", + "Ġfault s", + "д о", + "F X", + "Ġìĸ¼ë§ ĪëĤĺ", + "Ġde form", + "Ġcontract ing", + "ĠTIM E", + "ir se", + "Ġne ben", + "Ġc erc", + "ĠArm strong", + "Ġtest er", + "Ġparf ait", + "Ġjealous y", + "Ġtox ins", + "Ġdis bel", + "ÑĥÑĢ Ñĭ", + "imp ression", + "Ġprost ate", + "Ġfire wall", + "Ġclass ics", + "еÑĩ ÑĮ", + "Ġsocial ism", + "Ġgrac ious", + "ĠÑģ нова", + "Ġд нÑı", + "Ġburn er", + "ĠMin or", + "Ġìļ°ë ¦¬ë", + "Ġjed es", + "Ġcontinu um", + "Ġh ots", + "Ġoccur rence", + "Ġadminister ed", + "Ġзам еÑĤ", + "Ġhes itation", + "Ġdr ills", + "er ca", + "ĠвÑĤоÑĢ ой", + "Ġstead ily", + "Ġinsan lar", + "Ġi han", + "í ij", + "Ġhel per", + "ĠSen in", + "åģ ľ", + "ов ание", + "ĠER IC", + "b la", + "ĠAcad emic", + "Ġhuman ities", + "bl ack", + "ump y", + "ort ex", + "Ġìł Īë", + "ĠØ¥ ÙĨ", + "Ġdiscl ose", + "ĠEl ijah", + "Ġλ ÎŃ", + "ĠQu er", + "ب ÙĦ", + "ãĤ ¡", + "T ell", + "ar le", + "Ñĸ ÑĢ", + "Ġaug mented", + "Ġë¹Ħ ìĬ·", + "Ġand roid", + "ठ¤", + "ar ma", + "Ġs zer", + "ge ord", + "Ġge ek", + "Ġye ux", + "Ġp ong", + "ĠãģĿ ãģĨ", + "Ġtort ured", + "ĠB ath", + "z ig", + "ason able", + "Ġn ets", + "Ġbar u", + "ĠFl at", + "ĠV ater", + "ĠTer ror", + "ĠA vo", + "Ġceremon ies", + "ro e", + "Ùģ س", + "O ps", + "Ġhy vin", + "Ġap resent", + "ol or", + "ĠигÑĢ Ñĭ", + "ort on", + "Ġê·¸ëŀ ¬", + "Ġlook in", + "ĠT Y", + "ĠM int", + "Ad d", + "Ġm ite", + "ĠSm oke", + "Ġnot a", + "Ġm oss", + "ĠAb end", + "Ġì» ¨", + "Ġexagger ated", + "f ires", + "Ġred ist", + "ff iti", + "Ġopen ness", + "ê°IJ ìĿ´", + "ende u", + "ен ной", + "W atch", + "Ġav atar", + "ĠP ey", + "ur un", + "Ġsen za", + "Ġì§Ģ ìĹŃ", + "ĠNat omiast", + "Ġemer gence", + "ray s", + "Ġcraft ed", + "g ary", + "ãģł ãģij", + "ü ng", + "- \"", + "Ġhack ed", + "Ġstr ay", + "en cie", + "em o", + "Ġcom en", + "ĠK ız", + "ĠJ asmine", + "ĠH indi", + "man as", + "Ġinfin itely", + "em on", + "ìĿ¸ëį° ìļĶ", + "j ak", + "Ġro aring", + "éri que", + "s weise", + "ĠRo lex", + "åł± å°İ", + "ĠStu art", + "bn b", + "Ġdiagn ose", + "Ġcoher ent", + "ĠM J", + "æºĸ åĤĻ", + "Ġp ike", + "l av", + "Ġorchest ral", + "а ÑģÑĤи", + "Ġterm inar", + "Ġgather ings", + "Ġcompl iant", + "Ġupgrad ing", + "Ġregul ator", + "Ġlan ç", + "éĢ £", + "Ġmerch ants", + "ta wa", + "Ġmonit ored", + "Ġrend re", + "ä¸ ¤", + "Ġunter wegs", + "ang uard", + "g ard", + "ĠBel ow", + "du ino", + "ĠЦ е", + "Ġimped ance", + "ìľ ¡", + "ä» ½", + "Ġakt uell", + "ĠV atic", + "åŃ ©", + "Ġste wards", + "Ġbright est", + "Ġk enn", + "Ġk au", + "ĠMat rix", + "ĠB ark", + "ĠðŁ ij", + "Ġt aper", + "Ġcas ino", + "ר ×Ķ", + "ys ical", + "Ġbuild ers", + "ĠczÅĤ owie", + "ĠNep al", + "Ġ! \"", + "Ġterm e", + "Ġin nych", + "Ġmath s", + "Ġdraft ed", + "ĠB alk", + "Ġhesit ant", + "Ġvolt ar", + "Ġrev ive", + "ĠÑĦилÑĮ ма", + "Ġassass in", + "ĠS olutions", + "Ġdu el", + "Ġbear ings", + "à¸Ħ ะ", + "Ġrook ie", + "ik at", + "Ġbisc uits", + "Ġc ords", + "Ñĥв аÑĤи", + "AR IN", + "Ġprogress ing", + "ĠG ir", + "Ġpenet rate", + "ĠSt orage", + "e ight", + "ĠÑĤ ÑĢÑĥ", + "Ġdon ÃŃt", + "Ġsiz in", + "Ġout dated", + "ĠнаÑĪ и", + "Ġaff ir", + "Ġspo ons", + "Ġon i", + "Ġfl ank", + "ĠG ol", + "h ã", + "Ġp éri", + "Ġhonor able", + "ĠBreat he", + "sc enes", + "Ġob viamente", + "ик Ñģ", + "Ġש ×ŀ×", + "Ġsmooth ie", + "ŀ Īë", + "Ġd ime", + "ĠíĸĪ ìĸ´ìļĶ", + "Ġapp el", + "ĠCath olics", + "Ġsing les", + "Ġlat en", + "Ġç ünkü", + "ĠV ader", + "æı Ľ", + "Ġvard ı", + "ĠIst anbul", + "gr é", + "ĠEl sa", + "ë l", + "Ġinve ce", + "Ġcr ane", + "Ġo be", + "ĠSh ark", + "Ġsm ack", + "Ġrest oring", + ". \\", + "Ġë¹ łë", + "Ġf aded", + "um bers", + "S inging", + "Ġdep ressing", + "th est", + "ĠW ahr", + "Ġmult itude", + "ÑĢавÑģÑĤв ÑĥйÑĤе", + "rij k", + "ek a", + "Ġcomplet es", + "ĠWell s", + "Ġro y", + "ĠPr ay", + "ĠKal au", + "iz in", + "iaÅĤ em", + "Ġlo com", + "ĠNash ville", + "ĠPent agon", + "ë ¯¸", + "ĠNE W", + "Äħ Äĩ", + "ÃŃ ss", + "Ġmarry ing", + "Ġfe ud", + "íĻ ķ", + "æĢ ¥", + ") !", + "ĠOper ations", + "Ñĥ ÑĶ", + "Ġmo je", + "Ġinstruct ed", + "ĠëĪĦ 구", + "Ġ×Ķ× Ĵ", + "ĠпомоÑī ÑĮÑİ", + "Ġsab ia", + "ìķĺ ìĸ´ìļĶ", + "pl ane", + "p ri", + "Ġпол ноÑģÑĤÑĮÑİ", + "ĠK itty", + "Ġpróp rio", + "ed ere", + "Ġinteres ante", + "Ġд е", + "Ġcond ensed", + "Ġav ent", + "T OR", + "Ġgre asy", + "AR K", + "ort a", + "A J", + "Ġdis reg", + "Ġcorrect ions", + "Ġst ero", + "Ġinfluen za", + "Ġdess es", + "Ġball ots", + "Ġme get", + "Ġma fia", + "Ġb öl", + "n ost", + "ĠÑģÑĤ аÑĤÑĮ", + "Ġrespond er", + "Ġhint en", + "g rav", + "à¸Ń ะ", + "yn chron", + "Ġvi ens", + "Ġsam o", + "Ġd t", + "pan nt", + "ĠÅĽwi at", + "Ġзап иÑģ", + "Ġmer ged", + "Ġke p", + "Ġmis leading", + "Ġdig amos", + "Ġam mon", + "è¾ Ľ", + "ch et", + "Ġê°Ģ ìł¸", + "Ġun i", + "ĠëIJĺ ëĬĶëį°", + "Ġнап ÑĢав", + "ĠкоÑĤоÑĢ ого", + "Ġanim ate", + "×ķ× IJ×", + "еÑĢ в", + "Ġmin ced", + "Ġka um", + "ãģĤ ãģģ", + "ÏĢ ε", + "л ег", + "exist ing", + "Ġplata form", + "ĠK RIS", + "ìĽ ł", + "ĠFamil ien", + "ĠLib ya", + "Ġbiod iversity", + "Ġidi ots", + "ird i", + "Ġszy b", + "ĠRoll ing", + "ü cht", + "ĠÑĥд ив", + "Ñģ Ñĥд", + "Ġreal izar", + "Ġcan ned", + "ĠÑĢ ан", + "Ġmet abolic", + "ĠBe ef", + "Ġkil ka", + "лÑİ Ñģ", + "Ġreg istry", + "моÑĤÑĢ иÑĤе", + "Ġviel ä", + "Ġod c", + "Ġcondem ned", + "æ© ĭ", + "f al", + "ĠD il", + "wo ÅĽci", + "A w", + "Ġstatist ically", + "Ġso gen", + "ĠB ETH", + "Ġsh aving", + "å¹ ¸", + "oc al", + "ĠFun ny", + "Ġpeace fully", + "Ġaddict ive", + "ĠIns ert", + "la uf", + "Ġexperien cia", + "é¦ĸ åħĪ", + "иÑĤ елÑı", + "ÃŃ gen", + "ág ina", + "Ġabdom en", + "íķľ ëĭ¤", + "ic us", + "im ana", + "ì į¨", + "arch ing", + "Ġkonk ret", + "ìķ ĺë", + "ек а", + "ou fl", + "ive l", + "Ġn ude", + "èt res", + "Ġm onsieur", + "Ġcl ash", + "Ġtherap ists", + "Ġcub ed", + "Ġretrou ver", + "Ġwave form", + "Ġpot em", + "ĠForm er", + "is ión", + "åº ľ", + "Ġ×IJ× Ŀ", + "und os", + "ĠMein ung", + "ص ÙĦ", + "ĠJ ude", + "Ġn Ã¥r", + "ĠLeon ardo", + "ĠCr isto", + "ĠG OT", + "ÑģÑĤÑĢÑĥ к", + "L AN", + "Ġg Ã¥ng", + "Ġdé b", + "ĠFrankf urt", + "Ġcra ppy", + "Ġli l", + "ann ée", + "ĠмеÑģÑĤ е", + "RE T", + "ĠN er", + "ĠCO STA", + "Ġjed em", + "Ġcurt ains", + "Ġiter ations", + "Ġun av", + "Ġpla que", + "or um", + "ĠÎ ¶", + "Ġnúmer os", + "Ġdes ap", + "² ½", + "Ġcomp iled", + "Ġref le", + "Ġrank ings", + "Ġrep aired", + "ĠÐĿап ÑĢ", + "Ġdownload s", + "Ġarm our", + "Ġ×Ļ ×ķתר", + "Ġlonge vity", + "ĠTON ER", + "ĠкомменÑĤ аÑĢ", + "Ġcz ego", + "Ġnot ify", + "Ġairport s", + "Ġend uring", + "let te", + "Ġapp arat", + "Ġhab il", + "á»ĩ c", + "n ad", + "IC O", + "ĠBra h", + "Ġseg ún", + "Ġgovern ors", + "k aha", + "ĠSchl uss", + "Ġodpow ied", + "ir ting", + "Ġrem pl", + "ĠAb original", + "ident ally", + "Ġenhan cing", + "lic ting", + "ĠHawai ian", + "Ġstri ving", + "ĠN iet", + "Ġzn aczy", + "Ġobed ience", + "ĠnÃ¥ got", + "Ġexp ired", + "Ġ19 18", + "pres ented", + "Ġpr owad", + "ĠTer r", + "ĠPrinc eton", + "Ġmor gen", + "Ġattract ing", + "ĠS igma", + "ign er", + "ĠRe chts", + "ĠP eki", + "Ġmet hy", + "Ġha mm", + "Ġdire ito", + "Ġdeleg ation", + "ив аÑİÑĤ", + "Ġg in", + "You ng", + "Ġdepend encies", + "ĠBrad ley", + "bud s", + "Ġf is", + "Ġpyt anie", + "Ġinterconnect ed", + "Ġemba ixo", + "ĠS as", + "Ġr uh", + "ĠS icht", + "S ur", + "Ġsuper b", + "ĠSabb ath", + "ĠD anger", + "k ol", + "Ġh ou", + "s upp", + "ĠN acional", + "Ġsuccess ion", + "Ġv á", + "ĠMaÃŁ nahmen", + "ĠJess ie", + "ĠId aho", + "fore st", + "ħ ĺ", + "Ġ×ŀ× ĵ", + "ĠØ£ ÙĬ", + "Ġsweet heart", + "Ġneat ly", + "ĠEv angel", + "ê³ ¡", + "ĠSu ite", + "úblic a", + "ĠÑĥ ли", + "ĠAnn ouncer", + "l igh", + "Ġsens ations", + "Ġshel ters", + "Ġh art", + "Ġsqueez ing", + "ĠR ivers", + "ĠCook ing", + "ì± ħ", + "person al", + "Ġman os", + "ÑijÑĤ ÑģÑı", + "w ij", + "Ġgo gg", + "ĠMill i", + "ĠF P", + "ün st", + "ĠL S", + "Ġspray ing", + "Ġf aux", + "Ġaut ograph", + "olog ic", + "Ġtor ment", + "Ġencry pted", + "á» ħ", + "Ġest re", + "ç¹ ¼", + "à ±", + "Ġst umbled", + "Ġa ider", + "Ġsab en", + "x ter", + "ĠC ities", + "ĠTür k", + "ëĭ ¥", + "ch ine", + "Ġto pping", + "Ġpoison ed", + "ĠRoman ia", + "×ĵ ×Ļ", + "Ģë ¡ľ", + "ĠпоÑĢ Ñıд", + "Ġchir ping", + "ĠìĻ Ħë", + "×ij× ¢", + "Ġcu anto", + "Ġdon ating", + "ĠReg ent", + "ĠBer uf", + "Ġdistract ing", + "Ġstam ina", + "ĠDar ren", + "Ġì¶ ķ", + "l ists", + "d al", + "ch uss", + "Ġeconom ist", + "ãģĪ ãĥ¼", + "org t", + "Ġist iyorum", + "è¿ Ľ", + "ĠSur prise", + "ĠHa o", + "Ġìµľ ê³ł", + "ĠG W", + "ĠIn ner", + "Ġqu ieren", + "Ġmind ed", + "Ġsupercom puter", + "Ġdiagram s", + "íĬ ľë", + "ê²ł ìĸ´", + "ĠобÑĬ ÑıÑģ", + "Ġestab an", + "Ġdestro ys", + "ĠBre aking", + "Ġkar Ä±ÅŁ", + "Ġrebuild ing", + "ľë ĮĢ", + "ли во", + "ĠSau ce", + "ĠF usion", + "×ķ× ŀ×", + "ĠQu inn", + "Ġga uche", + "ĠÙĪ Ø£", + "Ġ È", + "ç ĵľ", + "Ġtechn o", + "Ġdisp atch", + "ĠaÅŁ k", + "Ġein zel", + "ĠG mail", + "ç ŀ", + "Ġê°ľ ìĿ¸", + "ĠÑģем ÑĮ", + "Ġjour neys", + "Ġi ht", + "Ġfib re", + "Ġdram as", + "ouch ed", + "Ġren ame", + "Ġоп еÑĢ", + "Ġpo o", + "ĠD ru", + "ĠиÑĤ ог", + "Ġz ast", + "Ġco z", + "Ġz ucch", + "Ġobt aining", + "Ġcomm ute", + "Ġsub mer", + "ĠV ish", + "ĠR abb", + "og g", + "Ġh ut", + "íĸĪ ìĸ´", + "æ¯Ķ å¦Ĥ", + "ere mi", + "Ġμ α", + "Ġdisk ut", + "Ġб Ñĥк", + "Ġimp aired", + "d epend", + "ĠÙĪ ا", + "ĠÑĢ Ñĥк", + "Ġб аÑĢ", + "Ġoxid ation", + "Ġsitu ação", + "ÉĻ n", + "u ção", + "Ġsag te", + "ĠS ER", + "ĠC ake", + "Ġtur meric", + "ĠK ak", + "b ung", + "ĠK á¹Ľá¹£á¹ĩa", + "Ġpoison ing", + "Ġsl ipping", + "ĠS ays", + "å°± åı¯ä»¥", + "ò ng", + "çŁ ³", + " «", + "ĠClaud ia", + "ĠChar acter", + "ни ÑĨ", + "co at", + "Ġprogress ed", + "ĠFer gus", + "Ġìĺ¤ ëĬ", + "Ġo at", + "ord able", + "ĠLe y", + "ĠHera us", + "Ġresult ados", + "ĠKay la", + "Ġr iff", + "Ġcheg ou", + "Ġx i", + "Ġsp acious", + "Ġrecogn ised", + "Ġe ch", + "ĠT ie", + "Ġlaunch er", + "J im", + "Ġsupp ression", + "ĠImp ossible", + "Ġguit ars", + "ĠFour ier", + "иÑĩеÑģ кий", + "ĠTh erap", + "ĠK af", + "cent ered", + "ĠÑģо оÑĤвеÑĤ", + "Ġk lim", + "Ġcarbohyd rates", + "ign ant", + "ĠAst ron", + "Ġem ple", + "Ġdr astic", + "ĠмиÑĢ е", + "в ин", + "u w", + "Ġpret tier", + "Ġdon uts", + "ĠAth ena", + "Ġdiss ert", + "Ġpl ante", + "Ġur anium", + "ìĿ Įë", + "ar é", + "Ġrze cz", + "Ġdisplay ing", + "æĪ ²", + "Ġsar c", + "r ão", + "Ġtamp oco", + "Ġphilosoph ers", + "ĠRe cht", + "æĵ ļ", + "Ġcoment arios", + "y se", + "Ġìľ ¤", + "Ġm ise", + "ĠG in", + "Ġн ом", + "ĠFR OM", + "l iner", + "at if", + "Ġspo ÅĤec", + "x a", + "ĠÑĤ ÑĢÑĥд", + "Ġw ag", + "기 ìĹIJ", + "ĠM G", + "Ġoff spring", + "ĠUnder standing", + "åıª æĺ¯", + "OR A", + "Ġwh irring", + "Ġsur rend", + "Ġpok er", + "Ġmon uments", + "ĠâĻ ©", + "Ġorgan ised", + "ĠSo zial", + "ĠF actory", + "Ñħ а", + "Ġrese mble", + "з д", + "Ġexplos ions", + "Ġpay roll", + "Ġom n", + "ĠJ orge", + "ι Ïĥ", + "Ġfract ure", + "Ġpersec ution", + "Ġdem ais", + "E CH", + ", )", + "Ġcri ar", + "ĠJ OSH", + "Ġdem ographics", + "Ġ16 00", + "Ġcur rencies", + "ĠT ips", + "Ġ éĢĻåĢĭ", + "ĠRe fer", + "ĠDan cing", + "Ġincons istent", + "Ġde h", + "Ġimm ens", + "Ġme ist", + "Ġimpat ient", + "Ġbehav es", + "æĿ ¾", + "ĠëĤ´ì ļ©", + "Ġback story", + "Ġagree ing", + "ĠÅ ģ", + "ih in", + "Ġtemper atura", + "ĠBack ground", + "Ġnut zen", + "Ġëħ ¹", + "ĠM änner", + "Ġcollabor ations", + "ĠK os", + "éģİ åİ»", + "Ġnight mares", + "ë ĵ±", + "ĠQueens land", + "Ġassoci ates", + "ĠK ok", + "Ġfact orial", + "ĠHy ung", + "Ġê·¸ ëĭ¤ìĿĮ", + "Ġfil ho", + "Ġel ét", + "Ġíĸī ë³µ", + "° ±", + "Ġgef unden", + "Ġsemic ondu", + "Ġcounsel ors", + "ĠU pper", + "ĠA ub", + "ick ers", + "V er", + "Ġnorth west", + "ĠMainten ant", + "ĠL akes", + "аÑı в", + "int é", + "ì° ½", + "Ġг аз", + "Ġgi orn", + "Ġdigit ally", + "ĠCirc uit", + "ì¼ Ģ", + "ãĤĬ ãģ¾ãģĹãģŁ", + "Ġcheer ful", + "ĠPet erson", + "ĠDan ish", + "ativ os", + "Ġli ken", + "Ġhar bor", + "али ÑģÑĤ", + "x e", + "Ġcur ls", + "ĠR hod", + "E nd", + "ĠE T", + "Ġacqu aint", + "ĠKel vin", + "Ġtr if", + "ĠA way", + "ìŀIJ ëĬĶ", + "v s", + "Ġp ágina", + "Ġin let", + "ĠSant os", + "Ġìļ° ìĻĢ", + "Ġyap ıyorsun", + "th eme", + "Ġsou ff", + "Ġinject ed", + "Ġpó źniej", + "iver so", + "amp ed", + "Ġda her", + "Ġd agger", + "ĠлÑİб им", + "Ġt ummy", + "Ġenlight ened", + "c ents", + "ĠD ah", + "Ġcu est", + "ä¾Ĩ 說", + "IL Y", + "Ġ×ij ר", + "Ġbang ing", + "ĠEm il", + "ĠC ler", + "ĠB order", + "иж Ñĥ", + "Ġpresent ers", + "ĠST UD", + "co ins", + "ĠíĻ į", + "Ġper ks", + "Ġpar ap", + "Ġcertain es", + "ĠL ore", + "ö st", + "ĠMAR TIN", + "Ġb ios", + "Ġwhere by", + "ver ts", + "ĠMir anda", + "Ġst ip", + "æ¾ ¤", + "and ez", + "׼ ׾", + "uj in", + "Ġê ¾", + "Ġaller gies", + "pl ate", + "Ġyap ıl", + "Ġundert ake", + "ĠëĤĺ ê°Ģ", + "P art", + "Ġkız ım", + "h guru", + "ãģĤ ãģ¨", + "ĠJohn s", + "Ġeyel ashes", + "Ġdra ined", + "Ġst Ã¥r", + "ãģĤãĤĬ ãģ¾ãģĻ", + "ĠJ ade", + "Ġcal end", + "fil m", + "Ġmes a", + "Ġlud zie", + "Ġattract s", + "Ġju ices", + "Ġк ил", + "Ġnieu we", + "Ġmen cion", + "Ġign ition", + "Ġbl adder", + "anda ag", + "ĠExt ension", + "íĤ ¨", + "fe ed", + "ĠÙĪ Ùĩ", + "Ġsp un", + "Ġt ät", + "оÑĢ оÑĤ", + "ty ard", + "ron ics", + "ĠH uge", + "Ñĥж д", + "st ring", + "Ġun just", + "Ġpra wn", + "Ġfrost ing", + "Ġdisappear ance", + "ios a", + "Ġcard i", + "ĠPri est", + "Ġcient ÃŃfic", + "åĵª 裡", + "ĠÐĴ аÑģ", + "Ġë¶Ģ íĥģ", + "Ġth ieves", + "Ġphys ique", + "ĠE ugene", + "Ġбли з", + "Ġmon opoly", + "Ġbi ography", + "Ġho ÅŁ", + "Ġt ö", + "m ac", + "Ġshock s", + "ìĦ ¸ë", + "h it", + "Ġsn ug", + "Ġinc l", + "Ġded ic", + "Ġult ras", + "Ġизв еÑģÑĤ", + "Ġutil ization", + "ĠÑģовеÑĢÑĪ енно", + "Ġserv i", + "st ag", + "1 80", + "Ġse wer", + "ĠCh oice", + "Ġdis charged", + "ĠJ D", + "ол еÑĤ", + "ĠкваÑĢ ÑĤи", + "Ġteles cop", + "ĠJe ÅĽli", + "ĠN ana", + "c ale", + "ĠÑĤ он", + "mm m", + "äºĨ åIJ§", + "Ġge habt", + "ëĤ ł", + "æĬ ķ", + "à¸Ļ à¸Ļ", + "Ġet her", + "Ġz en", + "Ġresearch ed", + "ĠCzy li", + "å®Į åħ¨", + "work ers", + "Ġê²½ ì°°", + "Ġsher iff", + "all o", + "Ġtip os", + "Ġprosec ution", + "Ġfrog s", + "Ġf alt", + "j d", + "ĠíĮ Ķ", + "Ġfilter ed", + "ĠO ft", + "Ġì į", + "Ġdis fr", + "ĠMust ang", + "Ġwo ah", + "ĠRE ALLY", + "Ġмог ли", + "Ġentr ada", + "Ġиг ÑĢа", + "Ġmix es", + "ĠавÑĤом об", + "Ð Ļ", + "Ġsh in", + "Ġparan ormal", + "Ġsome place", + "Ġdish on", + "eta an", + "Ġfu erte", + "Ù ¹", + "Ġdo om", + "ìĪ ľ", + "Ġexist ential", + "Ġbu ld", + "ĠSD K", + "ĠпÑĢав да", + "Ġturn over", + "ĠìĹ¬ê¸° ìĹIJ", + "Ġठ¹", + "Ġmodel ed", + "Ġbug ün", + "Ġexperiment ation", + "Ġmorning s", + "Ġmed o", + "Ste vie", + "Ġplay able", + "Ġairl ines", + "g ments", + "Ġê¸°ë ¶Ħ", + "ĠT omb", + "ĠMV P", + "AUDI ENCE", + "Ġcheck out", + "Ġpas st", + "Ġbe ispiel", + "ĠLink s", + "he avy", + "Ġquestion able", + "Ġìĵ °ë", + "Ġs ill", + "Ġmanip ulated", + "ĠL oren", + "Ġìľ ¼", + "Ġver ge", + "á k", + "I ES", + "Ġsab ot", + "ĠCustom er", + "ale ży", + "Ġnom inee", + "ĠG ad", + "Ġnouve lles", + "ĠS PE", + "ist ling", + "Ġo val", + "обÑĢ аж", + "if ty", + "éĩ İ", + "Ġbez el", + "y et", + "Ġfre ight", + "ĠHan ım", + "r ÃŃa", + "Ġz oning", + "Ġind em", + "ĠB ü", + "Ġfemin ism", + "Ġvo ix", + "Ġof icial", + "Ġdi yorum", + "» IJ", + "Ġar ose", + "Ġpar ar", + "ìĿ¸ ì§Ģ", + "ĠMart ine", + "ĠL ect", + "Ġrest er", + "Ġdrown ing", + "u ya", + "c ida", + "ĠAri el", + "Ġ0 2", + "Ġ×Ķ ×Ķ", + "ç´ ł", + "ĠW ert", + "Т Ñĭ", + "Ġwid ow", + "Ġparch ment", + "Ġcott age", + "ĠX L", + "ĠSl ack", + "ĠN ES", + "Ġro be", + "Ġg imm", + "Ġcam inho", + "ĠHar per", + "Ġcit rus", + "Ġfirefight ers", + "Ġdop amine", + "el ets", + "Ġdemocr at", + "ìł ľë¡ľ", + "Ġplay back", + "o j", + "ĠпÑĢ ок", + "ĠSull ivan", + "se mble", + "ĠW orth", + "ĠMust afa", + "า ร", + "Ġmet s", + "éĸ Ģ", + "л оÑģÑĮ", + "Ġinert ia", + "Ġuniform s", + "è¶ ³", + "é rio", + "×ķר ×Ķ", + "é nt", + "Ġà® Ĵ", + "ĠÑģам ÑĭÑħ", + "Ġvou lais", + "ĠZ immer", + "ê² łë", + "Ġн оÑģ", + "en cias", + "Ġrel ación", + "Ġê± ¸ë", + "Ġfact ion", + "Ġg osp", + "пол ож", + "n ap", + "h ak", + "Ġproceed ings", + "ĠìĨ Ķ", + "ìķĦ ëĭĪ", + "ĠìŀIJ 기", + "Ġwer d", + "Ġso f", + "Ġsch lim", + "Ġfl avored", + "Ġquad ratic", + "ĠBo ot", + "Ġpublic ity", + "ĠCar o", + "Ġ ?\"", + "ни ÑĨа", + "man ia", + "ĠS UR", + "ĠB UR", + "l ance", + "ét ica", + "Ġzob aczy", + "Ġtri o", + "s ama", + "Ġta ÅŁ", + "Ġas ymm", + "ress er", + "Ġت ع", + "Ġп еÑģ", + "Ġbeginning s", + "lad ım", + "ĠбÑĭ ÑģÑĤÑĢ", + "Ġmo o", + "ĠGene va", + "Ġ åľ¨", + "er us", + "bor ah", + "Ġref using", + "b ull", + "ĠWait ing", + "ĠInd ividual", + "Ġan onym", + "im ens", + "Ġmed idas", + "Ġfragr ant", + "Ġdirect ement", + "ĠìķĦ ë§Ī", + "ur ia", + "Ġsp herical", + "Ġab ge", + "ĠVictor ian", + "Ġspect acle", + "ĠRodrig uez", + "Ġoc up", + "ĠN är", + "mark s", + "ng ulo", + "ĠLu ci", + "Ġshout ed", + "Ġregul ators", + "ÄŁ ini", + "Ġdis ent", + "ĠÑĢÑĭ н", + "ëĤ ¨", + "ĠìĤ ´ë", + "Ġprobl èmes", + "ĠF inger", + "asse mble", + "Ġpe ar", + "Ġdro ite", + "ĠEvery where", + "t am", + "оÑĤ ив", + "в ой", + "ordin ate", + "ĠL ak", + "Ġm Ỽi", + "ĠTele vision", + "Ġexpon entially", + "av as", + "Ġble v", + "ĠM T", + "ä¿ º", + "Con nell", + "ĠêµŃ 민", + "ĠÑģво им", + "Ġach a", + "ĠD ynasty", + "J in", + "Ġto re", + "Ġfl or", + "Ġмног ие", + "æ²Ĵ äºĭ", + "ow an", + "b ah", + "Ġì£ Ħ", + "ĠC ela", + "Ġìµľ ê·¼", + "Ġpermett re", + "Ġab ras", + "Ġverste hen", + "Ġesc ort", + "ĠThe m", + "är ke", + "por ter", + "Ġkah kaha", + "Ġhe ct", + "Ġda u", + "w ah", + "ol ve", + "ĠAg es", + "s chaft", + "ĠSt ell", + "ne lle", + "ĠEn suite", + "ĠÐĴÑģ ем", + "Ġcr éd", + "ĠP P", + "l ords", + "gr unting", + "Ġcontract ion", + "G ot", + "Ġacqu iring", + "Ġso pr", + "Ġpoison ous", + "R NA", + "Ġan ar", + "ĠH of", + "' )", + "Ġremark ably", + "Ġintern acional", + "ü cke", + "in qu", + "Ġdu y", + "Ġbeast s", + "ĠL AN", + "Ġpreced ent", + "ĠRP M", + "åij ¨", + "Ġsel on", + "Ġmort e", + "Ġcomeç ou", + "Ñı ла", + "Ġinterpre ting", + "ĠBur ke", + "ÑĤ ÑĢа", + "ĠìĿ´ë Ł¬", + "Ġpess im", + "ĠN ok", + "íĮ Ŀ", + "F emale", + "Ġìĭ ¤í", + "Ļ Ģ", + "Ġstim ulation", + "Ġsl ick", + "Ġê°Ģ ëĬĶ", + "Ġк аз", + "ĠH BO", + "Ġpap ier", + "Ġkön nten", + "Ñĥб ли", + "ĠConst ant", + "SPEAK ING", + "Ġktó rÄħ", + "Ġcos metics", + "ĠT rend", + "Ġrob bery", + "Ġt itt", + "Ġgj ort", + "Ġdiet ary", + "ł Į", + "ĠKir by", + "ĠпÑĢимеÑĢ но", + "Ġqual ification", + "Ġìķ ī", + "Ġcabin ets", + "Ġhtt p", + "ĠEric a", + "ç¾ ©", + "Ġdisadvant ages", + "Ġch attering", + "y z", + "fe it", + "Ġgu ild", + "ĠE TF", + "ĠDrag ons", + "ĠH ERE", + "vent h", + "ÙĦ اÙħ", + "Ġmarch é", + "D am", + "Ġphot on", + "Ġest able", + "M ag", + "Ġol har", + "Ġcou pling", + "ĠHil fe", + "ĠW izard", + "Ġм ало", + "hel p", + "ĠlÃŃ nea", + "Ġì «", + "Ġstand alone", + "Ġmor ale", + "Ġzwe ite", + "ãĤĪãĤį ãģĹãģı", + "ähr t", + "Ġd otted", + "Ġdri pping", + "ĠFl ag", + "éĿ Ĵ", + "ro cket", + "rate gy", + "ir im", + "Ġíķĺë ©´ìĦľ", + "Ġsogen an", + "ĠUn o", + "ĠSch utz", + "Ġest ilo", + "ĠS ubs", + "ĠDais y", + "ÐĿ еÑĤ", + "' ...", + "Ġplat inum", + "Ġb irl", + "ĠSo vi", + "Ġviol ate", + "Ñĥ еÑĤÑģÑı", + "r ill", + "Ġtra z", + "Ġsn ip", + "Ġcum pl", + "à¸Ń à¸ģ", + "Ġc uk", + "éħ Ĵ", + "ĠParl ament", + "Ġhyper t", + "Ġpul p", + "Ġtong ues", + "at to", + "Ġbus ca", + "ih n", + "ER O", + "ĠÙĬ ع", + "Ġvari as", + "ĠMar ian", + "Ġbound ed", + "Ġpitch ing", + "Ġdefic iency", + "ĠBless ed", + "ĠEx erc", + "uch s", + "ĠnhÆ° ng", + "æľ¬ å½ĵ", + "Ġrap ed", + "h ales", + "Ġmal a", + "p ic", + "Ġ40 1", + "ÅĽ niej", + "ar ina", + "ëĵ¤ ìĿĦ", + "ott i", + "Ġдол го", + "Ġtrack er", + "ĠShel by", + "Ġvan ished", + "Ġbak ery", + "Kap ı", + "J esus", + "ĠK R", + "J O", + "ħ ¸", + "Ġdisc s", + "ìĦ ¯", + "ì§Ģ ë", + "×Ļ× ¦", + "em ary", + "K endra", + "Ġy ük", + "ück t", + "Ġv az", + "Ġk up", + "akt u", + "ĠÑģп аÑģибо", + "Ġa ik", + "Ġnurs ery", + "Ġendanger ed", + "êm ement", + "emat ics", + "Ġrespond ers", + "ĠRepresent atives", + "Ġsculpt ures", + "ig keiten", + "Ġde pl", + "Ġinterpret ations", + "Ġdead lines", + "Ġ194 2", + "à Ĺ", + "Ġsug ars", + "em u", + "l ively", + "Ġrecre ational", + "Ġdist ort", + "Ġunders core", + "Ġun quote", + "Ġsaf est", + "Ġsw ollen", + "Ġanalys es", + "Ġcommen cé", + "å¦ ¹", + "and in", + "ĠÐ¥ оÑĢоÑĪо", + "Ġdi arr", + "ãģ¾ ãģģ", + "zi est", + "Ġtooth brush", + "éł» éģĵ", + "u ations", + "Ġc ade", + "Ġbackl ash", + "h ind", + "Ġris que", + "z ess", + "ĠìĿ´ìķ¼ 기", + "Ġesper ar", + "Ġtransl ations", + "ion ed", + "gro ans", + "Ġп ÑĥÑĤ", + "Ġgen etically", + "éĢ ł", + "Ġhapp iest", + "Ġwer k", + "ato on", + "Ġmus i", + "Ġfun ção", + "Ġìŀħ ëĭĪëĭ¤", + "ĠÑĢ ай", + "Ġbe vor", + "BL ANK", + "Ġrepent ance", + "P ut", + "Ġpotrze b", + "Ġsal a", + "Ġcamp a", + "W ER", + "Ġdec ÃŃa", + "Ġsécur ité", + "ĠAppreci ate", + "Ñĩ и", + "ĠR andom", + "ë³ Ħ", + "k ah", + "Ġmö j", + "Ġsä ger", + "Ġ×Ļ ׼×ķ׾", + "Ġ19 0", + "xt ures", + "E u", + "Ġg ä", + "Ġ×ij× ª", + "ĠC roat", + "ap o", + "P LE", + "Ġpersist ence", + "åĬ ©", + "Ġbl ends", + "Ġtre ffen", + "ĠSanti ago", + "yd ia", + "al do", + "ĠTensor Flow", + "ĠD ual", + "ãĥ ľ", + "Ġch iff", + "ìĹ ´", + "Ġcontract ed", + "Ġseg reg", + "ĠFair y", + "Ġwis ely", + "Ġvulner abilities", + "Ġhand held", + "Ġgad gets", + "Ġbo ÅŁ", + "ĠPop ular", + "Ġcurv ature", + "ë ¬¸", + "ĠMAR Y", + "ìĿ´ì Ĭ", + "Ġform ulation", + "Ġcel ery", + "Ġblur ry", + "ĠT S", + "ale z", + "Ġw s", + "Ġprogram m", + "ĠSt ack", + "ĠJ IM", + "ов али", + "ı ll", + "Ġp ère", + "ĠKan ye", + "ĠDel aware", + "Ġãģ ł", + "Ġda unting", + "Ġб еÑģ", + "ĠSt upid", + "b ig", + "ffic ial", + "Ġprecip itation", + "Ġpl ung", + "ụ c", + "bur se", + "Ġdar le", + "Ġcri pp", + "Ġpione er", + "Ġdis put", + "Ġse an", + "ãģĵ ãĤĵãģª", + "Ġresist or", + "Ġalle in", + "ipp les", + "are l", + "Ġend ors", + "z ust", + "ĠÑĢеб ÑıÑĤа", + "ed ed", + "Ġì¹´ë ©Ķë", + "Ġlle va", + "Ġken nt", + "Ġб ал", + "ĠDoc ument", + "ĠKn ights", + "Ġbuck le", + "Ġìī ¬", + "Ġal k", + "ĠEvery day", + "atter s", + "Ġtoil ets", + "Ġj ugar", + "ĠìŀĪ ì§Ģ", + "Ġgen auso", + "ĠLandes regierung", + "ãģ£ãģ ±", + "ij e", + "Ġtrail ers", + "ĠT igers", + "Ġg itti", + "Ġforg iving", + "Ġconcur rent", + "ĠV u", + "ĠíĬ¹ íŀĪ", + "ĠBR OWN", + "ound ed", + "\" ;", + "Ġtre mb", + "Ġt iet", + "ĠÑĢеж им", + "Ġnuts hell", + "ел иÑĩ", + "Ġlos ers", + "ric ting", + "Ġrede em", + "def ined", + "N ice", + "Ġbroad band", + "K O", + "Ġte asing", + "Ġpart isan", + "ı ma", + "Ġìŀ¬ë ¯¸", + "ĠJour ney", + "Ġslop es", + "un ing", + "gr unts", + "Ġt äll", + "Ġuncover ed", + "Ġmy ÅĽlÄĻ", + "ĠEst her", + "äº İ", + "ĠHealth y", + "Ġë° ij", + "r ée", + "Ġpolar ization", + "Ġfl av", + "Ġcambi ar", + "Ġy r", + "ĠR anch", + "Ġspl its", + "Ġtrou vé", + "åľĭ 家", + "Ġrecord er", + "Ġdé part", + "ÙĪ ب", + "ĠK ry", + "Ġinteress ant", + "Ġeder im", + "ÅĽ wiad", + "il ateral", + "w right", + "Ġpour ra", + "ê ter", + "Ġcam el", + "á ŀ", + "Ġrapid ement", + "Ġme j", + "Ġstiff ness", + "AD AS", + "Ġdiff ers", + "Ġal ot", + "ĠS ig", + "ÑıÑĤ елÑĮ", + "Ġabstract ion", + "åľ ĺ", + "Ġke iner", + "gr upp", + "ĠSher lock", + "íĺ Ķ", + "Ġc ite", + "Ġover flow", + "Ġt ại", + "ú car", + "b ula", + "Ġconjun to", + "ĠC I", + "Ġmoder ator", + "Ġindirect ly", + "Ġalle ine", + "â Ĥ", + "ÑĪ иб", + "Ġб аб", + "Ġdan ach", + "Ġ19 39", + "Ġpr omet", + "Ġdest inations", + "ĠIll ust", + "ικ ÏĮ", + "Ġsab es", + "Ġhe h", + "ĠGesetz ent", + "ĠM iz", + "ен ко", + "ĠM ys", + "Ð ¬", + "ĠJuda ism", + "Ġmust ache", + "Ġst immt", + "ĠG aza", + "Ġvol te", + "Ġnu o", + "Ġm ón", + "ĠCom put", + "ู à¹Ī", + "ĠR adi", + "Ġexception ally", + "Ġassum es", + "éĸĭ å¿ĥ", + "ãģĪ ãģ°", + "in form", + "Ġshr ine", + "æĵ Ĭ", + "Ġimplic ation", + "ĠF itz", + "æ²Ĵ éĹľä¿Ĥ", + "! .", + "Ġl t", + "Ġall oy", + "Ġeth ic", + "Ġmonaster y", + "ìĭľ ì£ł", + "ica ção", + "Ġcoordin ating", + "ĠM oto", + "Ġover look", + "Ġcho is", + "Ġantibiot ic", + "ĠMin ne", + "ĠB J", + "ĠA pa", + "or ian", + "Ġsp illed", + "J am", + "Ġhus bands", + "Ġcre ations", + "Ġa ñ", + "üs sel", + "ĠìĿ´ì ļ©", + "Ġanaly se", + "r ose", + "Ġpunch ed", + "Ġpres que", + "Ġastron omy", + "Ġschwier ig", + "ĠEb ola", + "Ġc is", + "Ġac et", + "ĠF X", + "end re", + "ĠìĿĮ ìķħ", + "Ġweb page", + "Ġfre aked", + "Ġlat te", + "Ġì¿ ł", + "Ġë¨ ¸ë", + "N ever", + "G ra", + "íĻĶë ¥¼", + "ey ed", + "Ġë°ľë Ŀ¼", + "Ġesper a", + "Ġapare ce", + "ra ção", + "Ġdisrupt ive", + "ĠJo int", + "ur ous", + "re as", + "Ġquer ÃŃa", + "Ġdistrib utions", + "Ġexpon ent", + "ì¹ ĺ를", + "Ġd l", + "z hou", + "ĠHe aring", + "å·® ä¸įå¤ļ", + "ĠC raw", + "Ġflo ats", + "oun ced", + "L ab", + "W orld", + "Ġbur dens", + "Ġauthor itarian", + "ĠB olt", + "Ġод нÑĥ", + "Ġpige on", + "Ġdistract ions", + "ĠHeraus forder", + "Ġz est", + "es c", + "Ġsh akes", + "at as", + "ĠÙħ Ø´", + "hol es", + "Ġthink ers", + "al ta", + "Ġar che", + "ĠS uk", + "an ha", + "Ġtempt ing", + "Ġyou tuber", + "Ġv ì", + "Ġdz iaÅĤa", + "ĠVatic an", + "P ark", + "Ġsup ers", + "ĠNik ki", + "ëĬ IJë", + "or ang", + "ram ient", + "é ¬¼", + "Ġê°ĸ ê³ł", + "Ġdessert s", + "Ġav ere", + "ĠGreg ory", + "Ġëĵ¤ìĸ´ì ĺ", + "Ġcost ing", + "ĠClin ic", + "Ġreb els", + "ĠM ob", + "Ġbun lar", + "ĠYour s", + "ert ime", + "Ġret ali", + "m ara", + "at us", + "all es", + "Ġд ÑĢ", + "Ġд иÑģ", + "Ġdiscount s", + "ĠGU Y", + "Ġкак ое", + "ĠExper iment", + "re ment", + "ĠXi ang", + "Ġb ate", + "W E", + "Ġspecial ize", + "Ġde ity", + "ĠL oki", + "m ag", + "ĠN it", + "W est", + "Ġmater nal", + "Ġqu is", + "åŁº æľ¬", + "bro ken", + "Ġlas ers", + "Ġha kk", + "ĠAng els", + "Ġmaster y", + "ant is", + "T iffany", + "ee e", + "ç ij", + "ore m", + "Ġin acc", + "Ġjurisd ictions", + "ĠKard ash", + "æľ º", + "I l", + "ĠS inn", + "åĭķ çĶ»", + "Ġathlet ics", + "c ÄĻ", + "Ġlo osely", + "Ġdiet a", + "A g", + "Ġ? ?", + "ĠëĮĢ íijľ", + "Ġsuper v", + "Ġnut rit", + "Ġdr ifting", + "ĠìĦłìĥĿ ëĭĺ", + "Ġпон Ñıл", + "ĠVict ory", + "ÙĦ Ø©", + "×ķ׳ ×Ķ", + "Ġп иÑĪ", + "Ġsh aved", + "Ġmes ure", + "ond en", + "Ùĥ ر", + "Ġex ile", + "ĠDes de", + "ĠP interest", + "Ġattach ments", + "Ġh ombres", + "Ġfin es", + "ĠìĦ¸ ìĥģ", + "Ġsleep s", + "ĠT aco", + "ĠI RA", + "ri os", + "Ġo ll", + "et es", + "Ġun ut", + "fashion ed", + "Ġtre ball", + "ĠNear ly", + "ĠÑĢе алÑĮно", + "Ġch il", + "éĢ ±", + "ÄŁ a", + "ĠM EL", + "ros cop", + "ĠC G", + "Ġv enge", + "Ġdishwas her", + "al gic", + "Ġmod ifier", + "Ġemb assy", + "t imer", + "em ics", + "Ġintric ate", + "Ġev et", + "ĠëĮĢë °ķ", + "Ġis ot", + "Ġна ÑĥÑĩ", + "ĠQu iz", + "res o", + "δ Ïİ", + "Ġye lled", + "Ġfed er", + "ELL ER", + "Ġexceed ed", + "on as", + "ic ano", + "Ġжив оÑĤ", + "ĠMa o", + "ĠKaz uto", + "Ġ ãħĭãħĭãħĭãħĭ", + "Ġfront line", + "ĠHung arian", + "Ġüber all", + "aw at", + "Ġgri ps", + "i ções", + "arn ya", + "ĠÍ ¡", + "Ġse id", + "Ġan ak", + "Ġacab ou", + "íķ ij", + "Ġnot orious", + "ĠGod zilla", + "Ġover coming", + "ĠP end", + "Ġol abilir", + "ül me", + "Ġer halten", + "ãĤī ãģĦ", + "ê· ¹", + "ĠM eter", + "Ġsta an", + "O l", + "Ġch ats", + "ĠBu enos", + "ÃŃ ve", + "alu able", + "Ġstrateg ically", + "Ġcompr ised", + "ĠпеÑĢÑģон аж", + "Ġw ann", + "ĠC en", + "н иÑĤе", + "Ł ģ", + "ĠÑĤоб ой", + "i ad", + "ĠkardeÅŁ im", + "ĠCongress man", + "ream ing", + "h omme", + "Ġcommun aut", + "Ġalcohol ic", + "Ġpick led", + "Ġac ord", + "p osition", + "eg ól", + "Ġtrou bling", + "ĠMarch eg", + "Ġzum indest", + "Ġseam lessly", + "Ġol un", + "ĠTV s", + "ĠпÑĢакÑĤи ÑĩеÑģки", + "Ġback end", + "ãģĵãĤĵ ãģ«ãģ¡ãģ¯", + "id able", + "Ġgad get", + "Ġfa ço", + "ĠMarcheg iani", + "Ġë° ¤", + "Ġaccident al", + "ĠL P", + "Ġeld est", + "ĠAd miral", + "Ġn Äĥm", + "le ver", + "Ġpast el", + "Ġfond o", + "Con nie", + "Ġter cer", + "Ġp act", + "ĠMont e", + "Ġme ats", + "ĠS MS", + "ĠAustral ians", + "ç ¼", + "Rh ett", + "Ġexact ement", + "Ġë¹ ¼", + "ĠM OD", + "ç ¡", + "ĠR apt", + "ĠNo ch", + "Ġab ort", + "ĠNav al", + "ĠFu ji", + "IN TER", + "Ġнов Ñĭй", + "Ġmiej sce", + "ĠIC U", + "ĠGrad uate", + "ĠGl en", + "ard i", + "ĠÈ ĺ", + "Ġsold er", + "Ġprofess ions", + "Ġorth og", + "om n", + "int rodu", + "ĠDen ise", + "ìŀIJë ¥¼", + "Ġcorrespond ence", + "AM A", + "Ġinf lict", + "Ġf and", + "ĠG ü", + "ĠÑĩ еÑĤ", + "Ġtr aced", + "Ġpat ents", + "Ġamb ush", + "Ġlot ta", + "ff er", + "ĠW agner", + "Ġimp erson", + "Ġextr êmement", + "ÙĤ ت", + "cond uct", + "A tt", + "ĠM ueller", + "ĠAl icia", + "Ġcy c", + "Ġha cker", + "Ġt ys", + "Ġha il", + "Ġз аÑıв", + "Ġpas so", + "Ġì¶ Ķê°Ģ", + "ĠÎ Ī", + "Ġpack aged", + "ĠC ynthia", + "he et", + "ä¸Ń åĽ½", + "ĠNiss an", + "ĠQuest o", + "é ¨", + "d id", + "Ġμ ια", + "ĠEll is", + "ĠAnal ysis", + "ce mos", + "Ġas eg", + "ĠMy ster", + "ĠCa o", + "Ġtu v", + "ĠIndust ry", + "주 ê³ł", + "ot al", + "Ġpeque ño", + "br as", + "Ġcompreh end", + "ĠSim pson", + "ÑģÑĤв ие", + "ocr acy", + "иÑĩеÑģ ки", + "ĠM ush", + "ĠLaur ie", + "Ġtriang ular", + "ĠPres ents", + "ĠK unden", + "ç´ ¹", + "æŃ ¦", + "ĠIs s", + "ĠDe ck", + "á»ĥ n", + "ĠDark ness", + "Ġinflamm atory", + "eremi ah", + "Ġwar med", + "vey ard", + "ĠMem ory", + "et ty", + "Ġtax payers", + "ภĵ", + "Ø ¡", + "Ġpract ise", + "ëĭ ¬ë", + "Ġdr illed", + "m Ã¼ÅŁ", + "log o", + "ĠF ach", + "¤ë ¡ľ", + "Ġübrig ens", + "Ġkon nten", + "Ġnormal mente", + "Ġarg ues", + "iling ual", + "°ë ¥¼", + "eg al", + "Ġtrava ill", + "ov y", + "а ÑĤо", + "Ġr uth", + "ĠL ights", + "Ġconsist ed", + "×ijר ×Ļ×Ŀ", + "Ġstere otype", + "Ġpay er", + "ĠRe e", + "ĠAir bnb", + "Ġdr owned", + "ĠZ oe", + "Ġcan opy", + "Ġbar r", + "Ġн оÑĩ", + "Ġpag an", + "Ġj ars", + "Ġr ê", + "er ver", + "æĪ ¿", + "ie ben", + "Ġes pect", + "ĠF i", + "Ġunw illing", + "Ġtechn ician", + "ặ t", + "m ember", + "ĠCan al", + "س Ùħ", + "Ġlie ber", + "Ġin ference", + "Ġhon oring", + "åij µ", + "ĠCamp aign", + "Ġline age", + "ĠSt ress", + "Ġvict ories", + "Ġde ja", + "× £", + "ê tes", + "bl ick", + "Ġмен ее", + "oth s", + "ĠCou ple", + "J ason", + "ĠNic olas", + "ек Ñģ", + "l ib", + "Ġher ramient", + "Ġ×IJ ×ķ×ŀר", + "Ġвид им", + "mill imeter", + "Ġsil houette", + "Ġdrive way", + "Ġcher ish", + "ãħł ãħł", + "Ġrans om", + "Ġinter disciplinary", + "ĠPort al", + "Ġtra g", + "th ood", + "Ġted ious", + "Ġgloss y", + "Ġpré par", + "ĠC ay", + "ĠT ook", + "ĠBott om", + "Ġz ig", + "å «", + "åį ±", + "re presented", + "à¹Ģล ย", + "Ġdesar rollo", + "ìĦ ľë", + "Ġvis cos", + "Ġmill igram", + "ĠG und", + "Ġfer ment", + "d rum", + "Ġdraw ers", + "La ugh", + "Ġpel os", + "Ġpave ment", + "Ġmem oir", + "av ait", + "Ġ20 50", + "¤ë ¥¼", + "Ġraz ón", + "Ġflour ish", + "Ġst ern", + "ä¸ Ī", + "ĠCh ung", + "Ġser pent", + "ĠGentle men", + "羣çļĦ å¾Ī", + "k ook", + "Ġl ut", + "import e", + "p arent", + "Ġw sz", + "Ġsc ree", + "ĠMitar beiter", + "å· ´", + "m ut", + "Ġìĸĺ 기를", + "Ġsem ble", + "ĠO W", + "Ġinvestig ator", + "ĠCher yl", + "ĠG erald", + "Ġpr ere", + "Ġcomp ares", + "ny t", + "Ġdiferen ça", + "? -", + "Ġqu á", + "ר ×Ļ", + "S en", + "Ġhe ps", + "Ġgrat uit", + "Ġcons ort", + "ĠST OP", + "ĠProtest ant", + "Ġelectro de", + "â Ĺ", + "Ġsecure ly", + "иÑĩеÑģ кой", + "Ġt ää", + "Ġreg isters", + "ĠHeaven ly", + "og ly", + "iss ä", + "ĠPhys ics", + "ĠMer kel", + "Ġré v", + "éĻ ¢", + "Ġer ased", + "ĠSac ramento", + "Ġcoff in", + "Ġex acer", + "Ġl anz", + "Ġpo ets", + "ul if", + "Ġì¹ ĺë", + "ĠN erd", + "ĠN CT", + "ĠH our", + "neh mer", + "ŀ ĺëıĦ", + "ĠPrin ci", + "S w", + "m ies", + "ar med", + "ĠBeat les", + "Ġpropag ation", + "Ġexch anged", + "Ġcum ulative", + "Ġì§ij ìĹIJ", + "Ġdefe ating", + "æĬ ±", + "b els", + "Ġw es", + "ĠOdys sey", + "ä½ł æĥ³", + "av ior", + "ĠìľĦ ìĹIJ", + "Ġbr it", + "Ġhij o", + "D AY", + "ĠاÙĦت ÙĬ", + "ĠС еÑĢг", + "Ñĥ ка", + "eds iÄĻ", + "Ġimp os", + "Ġell as", + "Ġfire arms", + "ĠN R", + "Ġ×ij× IJ", + "ĠÐŁ ока", + "aw i", + "ĠìĦ± ê³µ", + "Ġpup ils", + "ĠT ack", + "Ġfr ase", + "ĠSh ip", + "Ġst ad", + "ä¸ ľ", + "ĠGreat er", + "un un", + "imm ung", + "gr own", + "ĠN XT", + "ĠAmeric as", + "f ox", + "Ġmant en", + "éłIJ åĤĻ", + "ĠÑģ ок", + "Ġr ikt", + "lect ric", + "de ep", + "Ġзна еÑĪÑĮ", + "Ġben ut", + "ĠInf rast", + "ĠEm ir", + "ĠоÑĤп ÑĢав", + "ĠKim chi", + "ĠFinn ish", + "´ìł ģ", + "ina ire", + "Ġo ike", + "æ¸ħ æ¥ļ", + "Ġhost age", + "ĠBut ton", + "ÙĤ ÙĬ", + "ek ing", + "ĠKaz akh", + "Ġcomfort ing", + "Ġso g", + "Ġgreet ed", + "g uitar", + "p ayer", + "Ġrel ational", + "Ġconstru ir", + "çī¹ åĪ¥", + "op ian", + "ĠVol ume", + "iet h", + "ÑģÑĤв ом", + "ur rection", + "li ÅĽmy", + "Ġhem isphere", + "ĠBe an", + "IG N", + "Ġköt ü", + "ĠFall out", + "Ġbr ace", + "ç¹¼ çºĮ", + "ÏĢ ά", + "ĠH AS", + "Ġg é", + "Ġcharacter ize", + "ặ c", + "ĠMil ky", + "Ġtum ors", + "Ġn uit", + "ĠG az", + "ĠìŀĪ ëĭ¤ëĬĶ", + "Ġг аÑĢ", + "ess ment", + "ĠA be", + "Ġë½ ij", + "ĠEins atz", + "J IN", + "j ä", + "C ry", + "ĠProm ised", + "ĠÑģеÑĢ д", + "ok us", + "Ġscal able", + "ĠпоÑģмоÑĤÑĢ еÑĤÑĮ", + "ück lich", + "Ġreal ism", + "Ġmay o", + "Ġjuven ile", + "Ġhead lights", + "Ġgör Ã¼ÅŁ", + "ĠRe form", + "Ġhal ves", + "cz ne", + "Ġbreak up", + "że j", + "Ġr ätt", + "D ay", + "ĠìĿ¼ë ³¸", + "Ġmu erte", + "Ġtun es", + "ĠSm ile", + "rec ord", + "Ġrecher che", + "atisf ied", + "Ġpo zi", + "Ġcelebr ations", + "ise xual", + "ĠRO B", + "third s", + "ĠF ortune", + "ĠÑĤ ой", + "Ġbrand ed", + "lo o", + "Ġd ud", + "Ġrandom ized", + "Ġcomb in", + "ä¸Ģ äºĽ", + "ier an", + "c zenia", + "į ãĥ«", + "Ġcur ator", + "Ġar tery", + "ĠÑĥ ÑĪ", + "ĠÑĩ иÑĤ", + "Ġsubsid ies", + "Ġbloss om", + "ĠTw ilight", + "Ġhy vä", + "ĠPom pe", + "ĠC isco", + "ĠÐŁÑĢ о", + "Ġbir i", + "Ġg ern", + "Ġre built", + "Ġw cze", + "Ġbenefic i", + "Ġdrum mer", + "Ġsol ids", + "Ġdi yorsun", + "ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ ãģĦãģ¾ãģĹãģŁ", + "l ated", + "Ġmud dy", + "Ġh olog", + "Ġcl aps", + "ĠR ings", + "ĠO key", + "ĠBra ve", + "Ġvalu ation", + "Ġmig rant", + "Ġinter mitt", + "Ġeig ene", + "ili ary", + "ãĥ¼ ãĥĪ", + "mark t", + "k r", + "ĠR ib", + "á»Ļ i", + "Ġaccus ations", + "Ġa rab", + "w ash", + "ĠBard zo", + "Ġu gh", + "est ers", + "oph ren", + "Ġaliment os", + "ĠU z", + "Ö Ĥ", + "Ġ6 50", + "ĠпÑĢи еÑħ", + "F I", + "Ġsamp ai", + "Ġparl é", + "hes ion", + "Ġs ır", + "Ġapparat us", + "Ġcor related", + "ĠPrincip al", + "Ġcor r", + "ĠOffic ial", + "иÑĩеÑģ кие", + "Ġtermin als", + "Sh ould", + "Ġvac un", + "Ġst ellt", + "Ġmo oi", + "etz ung", + "Ġк ÑĢа", + "Ġda i", + "Ġп ож", + "Te am", + "ĠP PE", + "ĠÐŀ Ñģ", + "ĠLe ah", + "ĠI vy", + "y st", + "Ġuh hh", + "Ġnight time", + "Ġtrend y", + "Ġsec urities", + "Ġcontin ents", + "Ġfirst hand", + "ĠVer on", + "ĠëĤ ®", + "Ġbrows ing", + "ĠC ada", + "t ro", + "Ġtr amp", + "re ib", + "Ġerst mal", + "irl er", + "Ġps ic", + "Ġget ir", + "ĠN P", + "Ġdzie ci", + "об ÑĢаз", + "Ġmagic ian", + "Ġscrut iny", + "Ġsl ab", + "ĠO T", + "ist y", + "ir ies", + "ore st", + "Ġtask ed", + "Ġmor ally", + "ìķ¼ ì§Ģ", + "ust ered", + "Ġfool s", + "Ġir respons", + "Ġein f", + "Ġvi á»ĩc", + "Ġsc or", + "Ġpill ows", + "ĠG egen", + "Ġtut te", + "Ġquarter ly", + "Ġdid nt", + "ĠG ym", + "ĠE ther", + "ĠØ «", + "лиÑĪ ком", + "Ġsign aling", + "ĠN ode", + "ĠDonc s", + "Ġy ah", + "ĠKan al", + "Ġf ading", + "et in", + "Ġinfluen cers", + "Ġmed als", + "Ġengine ered", + "Ġfer mented", + "ê²ł ì§Ģë§Į", + "ĠBeet hoven", + "×ŀ× ©", + "inent al", + "ĠìķĮë ł¤", + "üt fen", + "al nya", + "Ġo vere", + "Ġden kt", + "ак ÑĤеÑĢ", + "Ġâ ĺ", + "Ġneces it", + "Ġgener ators", + "gr ass", + "Ġпод Ñĥм", + "lie ÃŁen", + "B ar", + "ľë ıĻ", + "ĠдеÑĤ ей", + "Ġsuck ing", + "Ġsten cil", + "Ġprim o", + "ĠBreat h", + "st rom", + "Ġimmens ely", + "Ġapp reh", + "ìłķ ìĿ´", + "P op", + "Ġj ong", + "ĠGi ul", + "ĠAD HD", + "Ġhö ren", + "Ġe lo", + "iv ent", + "Ġr us", + "Ġoutrage ous", + "Ġmaster ed", + "Ġì» ¤", + "ÙĪ Ùģ", + "ip es", + "ĠRud y", + "Jac ob", + "Ġbull ish", + "Ġt apped", + "Ġfa ud", + "iz ophren", + "ĠÑģо Ñħ", + "ĠDar ling", + "Ġ196 3", + "ĠPre vention", + "² Ķ", + "Ġabdom inal", + "st ones", + "Ġav aient", + "á»ķ i", + "m ake", + "Ġs are", + "ĠInst ant", + "к ам", + "Ġkeep er", + "Ġblank ets", + "ãģ§ ãģĹãĤĩãģĨ", + "Ġswe ats", + "ĠMinne apolis", + "åħ¨ éĥ¨", + "Ġgen ommen", + "Ġfast en", + "ĠBrus sels", + "åij ¼", + "Ġcaf eter", + "Ġabsor bing", + "Ġha go", + "ĠEl mo", + "Ġgust o", + "ĠY ap", + "M úsica", + "Ġt ert", + "Ġband a", + "Ġm ily", + "Ġthere after", + "ĠStock holm", + "ĠC arson", + "Ġcalib ration", + "ava ÅŁ", + "ans a", + "ik ke", + "Ġfore see", + "Ġqual che", + "Ġdest e", + "æ ¤", + "ün üz", + "Ġfor ge", + "D is", + "est en", + "Ġδ ια", + "Ġenca ps", + "ĠGes pr", + "Ġcher cher", + "ick ets", + "ÑĤоÑĢ Ñĭ", + "C r", + "ĠТак же", + "Ġrabb its", + "ĠD ot", + "he iten", + "Ġcaus al", + "ĠF oster", + "ajÄħ c", + "Ġbere it", + "Ġayud ar", + "é« Ļ", + "ãģ ³", + "s ong", + "com b", + "Ġfr inge", + "Ġcyber security", + "Ġëľ ¨", + "Ġk ier", + "Ġbesch äft", + "Ġкон ÑĨе", + "Ġfacil it", + "ĠNam en", + "Ġbil ateral", + "t x", + "ĠW issenschaft", + "Ġnu ances", + "Ġr ipping", + "Ġf y", + "ĠSicher heit", + "ĠGh ana", + "ol on", + "Ġto pped", + "ĠMoroc co", + "Ġrad ial", + "ĠL EE", + "ĠAndre as", + "ed d", + "ĠìĹ ´ë", + "ĠAirl ines", + "ãģĵ ãĤį", + "Ġval ores", + "ê· ľ", + "H y", + "Ġзад аÑĩ", + "ĠKend all", + "ĠÑħ аÑĢ", + "ĠV amp", + "Ġpy thon", + "Ġmanage able", + "ĠG ente", + "o ise", + "ici ary", + "Ġimp oss", + "ĠBun ny", + "iest a", + "And rew", + "Ġser t", + "ĠC ec", + "zz arella", + "Ġautom obile", + "ĠT iere", + "all ows", + "åĨ Ĩ", + "Ġë° Ģ", + "ĠSc orp", + "ĠJ elly", + "ag ara", + "ĠSt retch", + "Ġrede f", + "Ġexacer b", + "ĠS HA", + "é f", + "ors a", + "Ġflaw ed", + "ĠNo el", + "?! ?", + "Ġpro cent", + "Ġmen stru", + "ĠпÑĢо Ñĩ", + "Ġinf ants", + "ðŁİ µ", + "pa use", + "ĠR acing", + "Ġ194 8", + "Ġsuper intendent", + "id ores", + "id y", + "bra him", + "Ġunl ucky", + "Ġper k", + "an ci", + "Ġë§Įë Ĥĺ", + "ĠÐľÐ¾Ñģ кв", + "Ġfin ans", + "Ġdiferen cia", + "łĪ ìĿ´", + "éħ į", + "OR Y", + "ĠT ac", + "ÛĮ ا", + "Ġdes em", + "Ġваж но", + "ĠJ U", + "ĠìŀĪ ìŀĸìķĦìļĶ", + "ĠÎ Ŀ", + "Ġinform ations", + "ĠH EL", + "h st", + "Ġпог овоÑĢ", + "Ġvo iture", + "Ġre us", + "änd ig", + "ĠпоÑħ ож", + "j ing", + "Ġd ru", + "alt ra", + "Ġprodu its", + "Ġk ite", + "Ġeye ball", + "ĠB elt", + "ĠRestaur ant", + "Ġg amb", + "Ġpor ridge", + "it ters", + "Ġconver ts", + "Ġyard ım", + "Ġmáxim o", + "w irtschaft", + "Ġíķĺë Ĥĺë", + "Ġì¤ Ģ", + "Ġice berg", + "Ġvor bei", + "Ġ25 6", + "ocr atic", + "Ġreck less", + "on ner", + "Ġm ús", + "Ġlog ically", + "ĠPr ison", + "ĠNet z", + "Ġvac ant", + "Ġn immt", + "ĠH ARR", + "Ġз ов", + "ĠDe e", + "ring e", + "ni est", + "ĠR ules", + "ìĬ¤ë Ł½", + "cuss ions", + "Ġfl oral", + "Ġconstra ined", + "Ġdifferent iation", + "ĠQue bec", + "ĠÛģ ÛĮÚº", + "Ġpúblic a", + "it el", + "Ġaccommod ations", + "ĠGr ü", + "í ľ", + "Ġpick les", + "иÑĩеÑģ киÑħ", + "Ġcomm issions", + "ĠBa ek", + "Ġçoc uÄŁ", + "ĠMed ium", + "Ġperiod ically", + "Ġwonder fully", + "Ġstaff ing", + "ìĽ IJë", + "ri re", + "f le", + "ĠMc L", + "ĠÑĤ еп", + "ĠпеÑĢ ек", + "н олог", + "Ġíģ¬ ê²Į", + "çĻ¼ çı¾", + "Ġprosper ous", + "ĠSpirit ual", + "ĠCh ick", + "DI A", + "ĠÐŁÑĢ ивеÑĤ", + "Ġper ÃŃ", + "ÑĮ ÑİÑĤ", + "Ġconsult ants", + "ĠEar l", + "ä»Ĭ å¹´", + "Ġru ining", + "оÑĢ е", + "Ġpens er", + "Ġtak iej", + "Ġstrength ened", + "ĠLiqu id", + "он еÑĨ", + "ав аÑĤÑĮ", + "Ġcam er", + "Ġdisagre ement", + "Ġbat hing", + "ĠY osh", + "a al", + "pre chen", + "RIS ADAS", + "Ġsuper star", + "æģ Ń", + "лÑı ÑĤÑĮ", + "Ġn ib", + "ĠTh erm", + "ĠDAN IEL", + "Ġp aw", + "Ġliqu ids", + "Ġcapac it", + "ark en", + "Ġvag ina", + "Ġm ashed", + "Ġemer ges", + "ys cy", + "Ġun related", + "ĠGu ild", + "Ġin verted", + "it ives", + "T ra", + "Ġbe gr", + "Ġal te", + "ì§ ķ", + "ãĤģ ãģ¦", + "ĠÑĢазÑĢ абоÑĤ", + "f inder", + "Ġдал ее", + "Ġблаг одаÑĢ", + "walk er", + "Ġcr ater", + "ass adors", + "ren ces", + "ins ki", + "ĠK IM", + "ĠEll iot", + "20 17", + "ĠS r", + "ink a", + "ano v", + "Ġìŀĺë ª»", + "Ġpropriet ary", + "display style", + "ĠÑģ им", + "Ġиз б", + "ĠPan el", + "Ġinstinct s", + "ĠCommun ications", + "éº »", + "mid t", + "Ġë§Įëĵ¤ ìĸ´", + "ĠÑģл ова", + "ĠGil bert", + "缮 åīį", + "Т ак", + "voor beeld", + "е ÑİÑģÑĮ", + "ary n", + "que z", + "Ġd art", + "Ñĸ ÑĪ", + "ĠH ut", + "S al", + "Ġs outheast", + "Ġpestic ides", + "Ġhelicop ters", + "Ġend ured", + "i ada", + "Ġbre wing", + "ìĹ ¬ë", + "ĠÑģв обод", + "ĠS aints", + "ĠFr ançais", + "ĠEconom ics", + "Ġdis loc", + "oph obia", + "C amer", + "Ġnegoti ated", + "ĠÑģÑĤ али", + "ìĬ¤í ģ", + "og ie", + "Ġtsun ami", + "Ġpeel ed", + "Ġmotiv ations", + "è¨ Ń", + "ost at", + "fl an", + "ĠD AC", + "Ġk av", + "' RE", + "ĠPe arson", + "b be", + "c zenie", + "Ġaten ção", + "íĨµ ëł¹", + "ãģ£ ãģ¡", + "ĠÑĥд аÑĢ", + "Ġintrodu ctory", + "ĠI ci", + "ë ĮĢë", + "ak at", + "Ġt rench", + "Ġproceed ed", + "ĠCo in", + "Ġdere cho", + "ĠRed e", + "æ¯ Ľ", + "ан нÑĭй", + "Ġincarcer ated", + "ĠRich mond", + "R ock", + "ĠP av", + "ĠKar ma", + "ug es", + "Ġconte ú", + "ë ¹Ħ", + "Ġê·¸ë §Į", + "ĠG one", + "Ġwsp óÅĤ", + "ĠRah men", + "un ken", + "Ġì¤ijìļĶ íķľ", + "Ġi b", + "Ġatt aching", + "H ay", + "Ġsu ka", + "ìį ¹", + "Ġpivot al", + "ĠRes pect", + "ÃŃ da", + "I B", + "ĠVer antwort", + "w iet", + "Ġforens ic", + "ÑĢи ÑģÑĤ", + "ĠпÑĢинÑĨип е", + "Ġmark ings", + "Ġk ettle", + "ĠOper a", + "ĠDo ctors", + "Ġshred ded", + "Ġrec uer", + "Ġvig il", + "ĠF ail", + "Ġentre v", + "Ġд ÑĥÑĪ", + "Ġout breaks", + "èµ° åIJ§", + "ĠÏĢ ο", + "Ġro gue", + "ang led", + "Ġyear ly", + "ĠCre ed", + "Ġw am", + "Ġlot us", + "ê³ ¼ë", + "ãĢģ ãĢģ", + "ĠSp it", + "ĠIt u", + "Ġstra ins", + "Ġstamp ed", + "Ġpl aint", + "Ġpot ion", + "Ġconsolid ation", + "è© ķ", + "оÑĩ кÑĥ", + "Ġvlog ging", + "Ġsl ate", + "ĠAu ft", + "ĠInc or", + "ừ ng", + "§ IJ", + "en h", + "Ġhe iÃŁ", + "Ġdom est", + "ĠSt rom", + "åį ³", + "ak is", + "Ġfra gen", + "Ġfin er", + "ĠS ug", + "Ġup hill", + "Ġé én", + "âĢ¦ )", + "ĠÑģ оп", + "ĠCore y", + "Ġsie bie", + "Ġm use", + "Ġclo ves", + "Ġp ous", + "ĠFin anz", + "ĠR oute", + "am at", + "Ġmut ually", + "ĠвнÑĥÑĤ ÑĢи", + "ĠSel ena", + "ë Ķ", + "ĠGa ussian", + "ë ¶ĢíĦ°", + "Ġ×ij× Ľ", + "Ġej erc", + "å¾ ®", + "ke a", + "ĠG erry", + "ĠS ic", + "大 çļĦ", + "Ġ196 6", + "ies e", + "Ġfoss ils", + "Ġest ad", + "ĠK ane", + "ci Äĩ", + "Ġìľł íĬľë", + "Ġп ам", + "ĠCru ise", + "int érieur", + "Ġbe kannt", + "ĠP ode", + "Ġdem ander", + "R em", + "Ġinv ade", + "Ġdecor ating", + "rop ic", + "Ġcow boy", + "ĠPh oto", + "opol it", + "Ġì»¬ë Ł¬ë", + "Ġre ap", + "Ġhand writing", + "à¹Ħ ร", + "Ġë ļ", + "Ġب عد", + "ĠM t", + "Ù Ģ", + "Ġspaces hip", + "Ġnational ism", + "Ġcouncil s", + "ĠGriff in", + "ĠAh med", + "Ġcl ich", + "ĠO L", + "w l", + "ĠPil ot", + "å® ®", + "Ġacron ym", + "Ġg els", + "Ġelectro ly", + "è ĵ", + "Ġм ной", + "Ġepis od", + "ĠDies es", + "ĠAT P", + "Ġed iyorum", + "Ġexpress es", + "Ġexhib its", + "C omm", + "Ġк ÑĢÑĥп", + "Ġmat ar", + "Ġ20 25", + "ĠArt em", + "vas ive", + "r Ãł", + "Ġbe ÅŁ", + "é» ĥ", + "Ġliz ard", + "Ġfill e", + "Ġì§ Ī문", + "Ġмо Ñī", + "Ġt ür", + "Ġcul prit", + "Ġwo ven", + "ĠAN Y", + "n im", + "Ġt ay", + "Ġprom in", + "Ġacom pa", + "Ġid é", + "Ġbo iler", + "ĠThe men", + "Ġaven ue", + "ĠM ud", + "Ġнов Ñĭе", + "Ġwitness ing", + "Ġl ance", + "ĠCH AN", + "ĠBe ver", + "ت Ùħ", + "Ġchem otherapy", + "K ing", + "ĠbÄĻd ÄĻ", + "Ġat ual", + "Ġt ive", + "Ġtalk in", + "Ġqued ar", + "ie ÃŁ", + "ed el", + "Ġìĸ´ì łľ", + "Ġjog ar", + "Ġö r", + "Ġundert aking", + "ĠStre ngth", + "Ġmil hões", + "ĠW ine", + "ĠM olt", + "è® ²", + "ãģij ãĤĮ", + "Ġunderm ine", + "ĠArch ives", + "v ana", + "mer cial", + "M C", + "Ġcast e", + "п ÑĢ", + "Ġlegisl ators", + "ul ators", + "ên io", + "Ġëį °ë", + "ĠÑħоÑĤ иÑĤе", + "Ġн ек", + "Ġs urn", + "Ġcons ci", + "ĠP OW", + "Ġcul inary", + "ĠK AT", + "ĠFol ks", + "Ñĭв аем", + "Ġв ок", + "ãģij ãĤĭ", + "s ervice", + "pt s", + "Ġпоб ед", + "æĺ¯ åķĬ", + "Ġt ents", + "Ġn ord", + "ST E", + "Ġrepublic an", + "Ġwy k", + "Ġmin ions", + "èĻ ķ", + "Ġmem ang", + "j est", + "Ġcompar ative", + "Ġty le", + "car bon", + "bed ingt", + "ks en", + "Ġneg ativity", + "Ġsjäl v", + "Ġd ú", + "æīĢ æľī", + "Ġrec alled", + "c ra", + "ĠT ada", + "ĠÑĢÑĥ ки", + "ĠопÑĢед ел", + "Ġproc rast", + "Ġjog os", + "ĠO o", + "ĠHe arts", + "Ġé ch", + "Ġksi Äħż", + "Ġco arse", + "ĠT ube", + "ĠG reens", + "Ġé n", + "Ġdumb bell", + "ĠÑĤ и", + "Ġquer er", + "ا ØŃ", + "Ïĥ ει", + "ĠпÑĢав илÑĮно", + "Ġп ап", + "Ġcomp ra", + "Ġt ér", + "ĠAnt es", + "Ġoptim um", + "Ġbisc uit", + "κ ι", + "acz ego", + "Ġìĭľê°Ħ ìĿ´", + "ĠMar ines", + "ver o", + "Ġvacc inations", + "Ġpet ty", + "rit ers", + "Ġа л", + "count ry", + "Ġcoun ters", + "Ġattend ant", + "ĠH ui", + "ãģ¨ãģĦãģĨãģĵãģ¨ ãģ§", + "ck a", + "ÑģÑĤвен нÑĭй", + "gu y", + "Ġtrick ed", + "ĠR ED", + "Ġthr illing", + "ÏĢο ι", + "Ġpig gy", + "Ġan unci", + "OR TER", + "ĠVal ue", + "Ġr ond", + "ĠA DA", + "Ġpos er", + "h ores", + "ĠR oland", + "ĵ ¯", + "Ġno ir", + "Ġש ×IJ×", + "ë° ľ", + "iem and", + "ĠпоÑĤ еÑĢ", + "ê³ ³", + "Ġê± ±", + "Ġformat ting", + "ĠL ed", + "è§Ģ çľ¾", + "Ġkill ers", + "ĠÄij ấy", + "Ġha ar", + "ag ain", + "! > [", + "min ster", + "Ġв ли", + "Ġident ifier", + "ĠLamb da", + "Ġtr os", + "Ġflaw less", + "Ġdetriment al", + "Ġbun ları", + "W ar", + "Ġreg ião", + "羣çļĦ æĺ¯", + "ĠB ike", + "cess ors", + "Ġc ùng", + "ĠR N", + "Ġê½ ĥ", + "Ġküç ük", + "ĠBegin ning", + "íĺ ¸ë", + "Ġge we", + "Ġden ote", + "ĠAlber to", + "Ġprob iot", + "Ġo de", + "Ġmol ar", + "Ġburst ing", + "ass umed", + "Ġfoot prints", + "ved a", + "Ġstero ids", + "Ġfl aming", + "ĠE ller", + "Ġerk ennen", + "ät zen", + "Ġlife cycle", + "ĠD OU", + "ĠK arena", + "ĠGuer ra", + "è¿ĺ æĺ¯", + "Ġsin ister", + "Ġpod éis", + "Ġpar ab", + "Ġok o", + "Ġmat éri", + "Ġcar ic", + "son aro", + "Ġpratic amente", + "ÑĥÑģ а", + "Ġcomun que", + "Ġvig ilant", + "Ġreg imes", + "ĠShoot ing", + "Ġra ids", + "ĠN ora", + "ĠW ieder", + "m ens", + "ĠÑģ од", + "Ġê²½ìļ° ìĹIJëĬĶ", + "Ġв Ñħод", + "Ġaut obi", + "ĠS chn", + "ĠRob bie", + "ĠF itness", + "Ġкон ÑĦ", + "Ġpeng uin", + "моÑĤÑĢ Ñı", + "Ġми ним", + "play s", + "Ġdeleg ates", + "M er", + "Ġsist em", + "ĠMicha els", + "m ale", + "ا ع", + "Ġcá ch", + "ĠH ä", + "Ġ×Ļ ×ķ×ĵ×¢", + "Ġsuper power", + "Ġstr on", + "Ġro ver", + "Ġdé pend", + "éĻ ³", + "Ġret iring", + "Ġvamp ires", + "Ġmer de", + "ĠCh anging", + "Ġt ame", + "Ġspokes person", + "Ġc ay", + "Ġfl irting", + "ĠGr ö", + "Ġw är", + "Ġwy b", + "Ġcoe ur", + "ạ nh", + "ĠìĻĢ ìĦľ", + "Ġconna is", + "ĠHundred s", + "ĠBe a", + "Ġα ÏĢ", + "pr uch", + "Ġsocied ade", + "ĠWh ilst", + "ĠK ait", + "esp ace", + "Ġch ia", + "ĠEr m", + "Ġë°Ķ ê¿", + "Ġf ences", + "ĠM ortal", + "ê² ģ", + "Ġг ÑĢаÑĦ", + "ĠHom eland", + "ĠJ UN", + "is st", + "Ġpar lar", + "Ġsport y", + "é o", + "Ġdeep en", + "ĠBeh avior", + "éĢ ı", + "åĵĪåĵĪ åĵĪ", + "Ġer rand", + "Ġrot ary", + "ĠWell ington", + "W ind", + "Ġmes ela", + "ả ng", + "iend e", + "Ġex cell", + "ĠGen ius", + "ĠEdu ardo", + "æľī 人", + "ĠÅŁ unu", + "ĠÄ° stanbul", + "Ġprod uto", + "Ġ ãħİãħİ", + "O FF", + "Ġwoll t", + "çĪ Ĩ", + "Ġëī´ì Ĭ¤", + "Ġl ass", + "Ġher tz", + "Ġar omatic", + "Ġзв он", + "Ġaut oc", + "ĠL ust", + "Ġ11 2", + "ĠÎ Ĺ", + "Ġreview ers", + "Ġrecept ive", + "å°į äºĨ", + "â nd", + "og lo", + "ĠìķĦëĭ Ļ", + "Ġn go", + "Ñĸ ÑĤи", + "Ã¥ t", + "con o", + "Ġtek rar", + "Ġ주 ê³ł", + "Ġgel miÅŁ", + "Ġbed time", + "ĠAr gh", + "AD A", + "ĠгоÑĢод а", + "ĠÄ ĩ", + "Ġall iances", + "g iggling", + "Ġyer de", + "Ġsp ies", + "Ġg utes", + "ç i", + "Ġallt id", + "ĠL ah", + "ŀ IJë", + "Ġdo kÅĤad", + "ÙĪ ÙĬ", + "Ġtoxic ity", + "Ġcancell ation", + "Ġ195 8", + "d ro", + "Ġìŀij ìĿĢ", + "ĠMotor ola", + "Ġmult in", + "Ġenthusi asts", + "ĠM ighty", + "ĠCoc onut", + ": ãĢĮ", + "ĠPict ures", + "Ġsang re", + "Ġbl inking", + "ol esome", + "ĠìĬ¤íĥĢ ìĿ¼", + "F P", + "Ġboom ing", + "ĠдеÑģÑı ÑĤ", + "Ġr atchet", + "Ġtim elines", + "len ess", + "Ġc ages", + "ĠGood night", + "omet imes", + "Ġc unning", + "ĠR isk", + "ul ed", + "d ade", + "Ġpr ata", + "Ġgust arÃŃa", + "am us", + "ĠJin ping", + "Ġest rut", + "Ġdescob rir", + "ĠM Äģ", + "ĠAll an", + "Ġ åĪĨ", + "Ġ×ľ× §", + "Ġpres erv", + "ĠStraw berry", + "Ä ı", + "L u", + "Ġk ro", + "ĠRep orts", + "ìħĶ ìķ¼", + "Ġval t", + "Ġpouv ait", + "Ġapp ar", + "ĠB one", + "Ġprefer ably", + "ĠRep ública", + "å°± åĪ°", + "Ġher zlich", + "Ġchim ney", + "Ġç ev", + "Ġvis as", + "Ġver r", + "Ġcultiv ation", + "ĠArmen ia", + "Ġвд ÑĢÑĥг", + "Ġcock ro", + "retch ed", + "art z", + "ĠлÑİд Ñıм", + "ĠpolÃŃt icas", + "ĠP anz", + "ĠA KA", + "ĠëĪ Į룬", + "Ġer ro", + "Ġcam per", + "Ġ10 2", + "ठ¸", + "d one", + "Ġho ard", + "ĠÐŁÐ¾ÑĤ ом", + "je ong", + "Ġdest a", + "p ak", + "Ġin im", + "Ġgrow ers", + "ĠMess age", + "Ġele ctor", + "eng age", + "ĠFor bes", + "ĠCincinn ati", + "Ġdiffé rence", + "d f", + "Ġsp ar", + "Ġawait s", + "ĠUSS R", + "ĠR ising", + "ĠHo ÅŁ", + "Ġfoot ing", + "Ġcond iciones", + "ÑĤоÑĢ ов", + "Ġclin ician", + "ĠDisk uss", + "å£ ĵ", + "ר ×Ĵ", + "× ¥", + "ite it", + "g ren", + "Ġchar isma", + "Ġle uke", + "Ġirrit ating", + "Ġcir ca", + "ĠRhod es", + "Ġp ior", + "Ġhandic ap", + "roy able", + "Ġv ull", + "O G", + "Ġin ÃŃcio", + "ier i", + "Ġspl ashing", + "Ġdem ise", + "Ġassist ir", + "Ñĩ ÑĤо", + "Ġcover t", + "ĠG ud", + "ภī", + "kl är", + "ĠìŀIJ 꾸", + "Ġver ändert", + "ĠR EM", + "ĠCon ven", + "at ge", + "Ġpierws ze", + "Ġcler gy", + "ling ton", + "l iv", + "V PN", + "ĠÑģ ожал", + "ĠH ate", + "ãģ¨ ãģĵãĤį", + "ÏĨ ο", + "ĠResp ons", + "оз д", + "Ġet mek", + "Ġchem in", + "Ùħ Ø©", + "Ġê°Ģ 족", + "T re", + "Ġum as", + "ĠBur ton", + "Ġpatri arch", + "ĠSmithson ian", + "¥ ĺ", + "M oon", + "A ir", + "Ġmed ios", + "Ġer aser", + "Ġwoll ten", + "Ġpare il", + "ĠBill ie", + "æĬ ½", + "еÑĢÑĤ в", + "Ġparl ament", + "Ġag ony", + "ĠQU E", + "sequ ently", + "An other", + "ĠWh ew", + "ĠAnn ual", + "Ġse ben", + "ìĥģ ìĿĦ", + "val ues", + "ŀľë §Į", + "Ġsin on", + "ere al", + "ĠEn light", + "ĠChem istry", + "ĠCatal unya", + "Ġdoct r", + "ant on", + "Ġst uk", + "ĠPl ate", + "ĠKardash ian", + "Ġfil os", + "ĠW et", + "Ġпоп ÑĭÑĤ", + "Ġunknown s", + "ĠSch on", + "ĠBald win", + "Ġtelescop es", + "ĠG ucci", + "ox ide", + "ĠConserv ative", + "ìĦ± ìĿĦ", + "Ġhina us", + "P ower", + "Ġê±´ ê°ķ", + "Ġprev ail", + "orm an", + "m achine", + "Ġ194 6", + "Ġun bel", + "Ġsch aut", + "Ġp iel", + "e enth", + "Ġobject ively", + "Ġch akra", + "aud io", + "Ġch icos", + "ĠV ault", + "å° Ī", + "Ġmedic inal", + "ĠT ail", + "Wh ile", + "Ġas phalt", + "Ġfro ze", + "ĠE K", + "unch ing", + "n osis", + "20 15", + "ĠG ri", + "Ġodd ly", + "ĠM är", + "ĠA eg", + "c olo", + "P ar", + "Ġëĵ¤ ìĸ´ë", + "Ġv inden", + "ĠO VER", + "Ġ iced", + "Ġsc orp", + "Ġha c", + "qual ified", + "ĠÑĥвид еÑĤÑĮ", + "erm o", + "H EN", + "Ġso i", + "Ġmulti ples", + "Ġlay outs", + "Ġblind ness", + "ĠB owser", + "Ġпод ÑĤ", + "Ġà İ", + "vention al", + "Ġm ata", + "mad ı", + "Ġge ez", + "Ġcad ence", + "Ġważ ne", + "ĠChrist ie", + "ven ge", + "C all", + "Ġturn around", + "Ġblo b", + "ĠЯ к", + "ĠVoice over", + "Ġper il", + "ĠJa ime", + "ĠH OY", + "l ane", + "Ġse bel", + "ĠDu o", + "ĠHistor ical", + "Ġd ni", + "Ġg ema", + "y k", + "Ġsab em", + "ắ ng", + "Ġv ars", + "ĠRon nie", + "ĠRon aldo", + "ĠPer què", + "ns inn", + "h air", + "Ġrelent less", + "Ġl yn", + "Ġtravel er", + "æĢİ麼 äºĨ", + "n ine", + "Ġant im", + "Ġì¼ Ģ", + "Ġsnow ball", + "ĠÑħаÑĢ акÑĤеÑĢ", + "Ġintern s", + "Ġconstitu ency", + "ĠÐĿ ам", + "׾ ׾", + "V EL", + "Ġvikt igt", + "Ġap oyo", + "ÙĦ ب", + "Ġj ard", + "Ġheight ened", + "ÑĢо ÑģÑĤ", + "ĠSM ITH", + "Ġдел а", + "Ġrepair ing", + "Ġr igt", + "ĠShe ikh", + "ĠBrit ney", + "Ġevery time", + "Ġadvent urous", + "oc key", + "er nt", + "Ġat aque", + "ĠAltern atively", + "e ffect", + "Ġpalav ras", + "ĠElli ott", + "Ġréuss i", + "Ġhypert ension", + "ĠMan ual", + "Ġproph etic", + "Ġhand c", + "ÑĮ е", + "Ġref rain", + "ĠSqu id", + "ìŀ ¡", + "Ġком ан", + "äll en", + "Ġlleg ó", + "Ġbas h", + "ion y", + "ĠÑģк лад", + "Ġк аб", + "Ġcare less", + "ĠP ool", + "Ġtr ás", + "Ġfil s", + "ĠSch r", + "Ġsp rawd", + "ĠMon aten", + "Ġunfor gettable", + "ĠCott on", + "Ġinconven ient", + "ĠR X", + "or is", + "Ġhum bled", + "ת ×Ĺ", + "ĠØ¢ Ù¾", + "Ġincre ÃŃ", + "ĠKomment are", + "èĪ Ĵ", + "r ación", + "Ġv antage", + "ĠSe al", + "ĠìĿ´ 거를", + "Ġjou e", + "ãģĿãģĨ ãģ§ãģĻãģŃ", + "Ġìĺ¤ë ŀĺ", + "ĠиÑģп ÑĭÑĤ", + "ob en", + "Ġgr ate", + "Ġcontro le", + "ĠPer cy", + "ÅĤ ada", + "Ġsimult aneous", + "Ġprot oty", + "ĠgroÃŁ er", + "Ġbew usst", + "iniz i", + "Ġpass ieren", + "ĠHapp iness", + "åī ĩ", + "sh i", + "ge ht", + "Ġstation ed", + "ĠErgeb nis", + "Ġdirect amente", + "Ġsurv ives", + "Ġperson es", + "BER G", + "Ġvom iting", + "Ġconhe cer", + "Ġad jour", + "ĠCiv ic", + "pe i", + "bur st", + "Ġëĭ¤ ëĭĪ", + "é ı", + "Ġsl ed", + "Ġplataform a", + "ĠS ect", + "ĠDe fin", + "çĻ» éĮ²", + "én om", + "chn et", + "Ġprofit ability", + "Ġerre icht", + "á»ı i", + "c ation", + "Ġì§Ģ ê¸", + "Ġperd re", + "Ġfel ony", + "Ġ195 7", + "æĪij å¾Ī", + "Ġunsuccess ful", + "Ġnag yon", + "Ġelastic ity", + "Ġfac ade", + "Ġearth ly", + "ĠамеÑĢик ан", + "Ġcon n", + "c la", + "D u", + "Ġpolit iques", + "Ġhal o", + "iant es", + "Ġмо ей", + "ãĥ³ ãĥī", + "ton es", + "el ier", + "è® ļ", + "ht aking", + "Ġwicht ige", + "Ġan no", + "ĠL ok", + "ill ions", + "Ġv iver", + "Ġsol chen", + "Ġsu f", + "ĠSal z", + "ĠN vidia", + "z uge", + "ĠSp ike", + "V ideo", + "Ġtw or", + "ĠA la", + "èij ī", + "Ġh anya", + "ĠAd m", + "ìĿ µ", + "ĠPatient en", + "ĠOn ion", + "ĠKo be", + "ĠSc ene", + "ĠR ash", + "æ¨ Ļ", + "ÑĢа ÑģÑĤ", + "ist ani", + "Gen eral", + "le ye", + "imb ap", + "Ġconce aled", + "ĠFr idays", + "ĠW ool", + "Ġнов ÑĭÑħ", + "Ø´ ر", + "Ġê²° ê³¼", + "Ġjed och", + "´ìĭ ľ", + "ĵ¤ ëıĦ", + "Ġìŀ¥ ëĤľ", + "uk t", + "L ou", + "Ġ먹 ìĸ´", + "ĠEx pect", + "Ġдом ой", + "Ġirrespons ible", + "Ġac erca", + "ĠZ ust", + "ר ×ĺ", + "U I", + "Ġyout ubers", + "ĠPos itive", + "Ġsoci oe", + "Ġsn atch", + "èĥ Į", + "Ġrefresh ed", + "Ġnom inations", + "ĠP att", + "Ġobsol ete", + "Ġdem iÅŁ", + "åı ¤", + "orm uÅŁ", + "ĠìĨĶì§ģ íŀĪ", + "Ġf la", + "Ġcra ziest", + "ĠZ ie", + "ĠT ú", + "z ep", + "ic em", + "Ġë©ĭ ìŀĪ", + "Ġcyn ical", + "ãģĿ ãĤĵãģª", + "Ġt resp", + "Ġcra z", + "Õ¥ Õ", + "Ġne lle", + "Ġm ph", + "ĠN ered", + "ĠK ob", + "ĠE ck", + "¨¸ ëĭĪ", + "J an", + "ĠТ огда", + "Ġde ci", + "ĠV og", + "Ġbubb ling", + "éĢ Ģ", + "ú a", + "Ġproduct os", + "iber al", + "Ġrepl icated", + "ĠImp rove", + "ill ary", + "C ha", + "Ġré du", + "ĥIJ íķĺë©´", + "Ġcon not", + "ĠK rit", + "ĠдÑĥÑħ ов", + "Ġtread mill", + "ĠP W", + "Ġзов ÑĥÑĤ", + "Ġcl ams", + "Ġdra fting", + "Ġ195 6", + "un ta", + "Ġexpend itures", + "ĠHoo ver", + "W OO", + "ÑĪе е", + "Ġded uction", + "mon ary", + "Ġreci b", + "Ġpo vo", + "Ġëį Ķë", + "ĠP AL", + "ĠBl ow", + "Ġwy p", + "Ġdest ac", + "de al", + "Gra eme", + "Ġnécess aire", + "Ġdamn ed", + "Ġ19 38", + "Ġìĭ¤ ìłľë¡ľ", + "Ġtro op", + "Ġinsight ful", + "ĠT J", + "ĠоÑģ в", + "Ġf idelity", + "ĠSk ip", + "ĠMay o", + "ë§ Ŀ", + "app e", + "Ġbl as", + "ĠW Y", + "ĠG N", + "ct ar", + "S u", + "Ġcu ent", + "he ws", + "Ġcorps es", + "A bs", + "Ġwaste water", + "Ġc iek", + "ĠOn u", + "Ġexplos ives", + "Ġar ma", + "ĠSTEP HAN", + "polit ik", + "ĠOs aka", + "ta ÅĤ", + "Ġyap ıyor", + "Ġiz quier", + "Ġbele za", + "ĠWy att", + "åIJ ¸", + "Ġsu k", + "Ġspec jal", + "Ġdan ke", + "wh istle", + "ĠfÃŃs ica", + "ĠHar riet", + "ĠìķĦ íĮĮ", + "Ġwill kommen", + "ip ing", + "ĠÑģмоÑĤÑĢ иÑĤе", + "Ġмож еÑĪÑĮ", + "Ġinacc urate", + "Ġarrog ance", + "ĠRem o", + "γ ά", + "ass ed", + "Ġdeliver ies", + "Ġst inky", + "ĠпеÑĢ еж", + "j ay", + "Ġtrans itional", + "Ġr ere", + "ĠNGO s", + "ĠAT M", + "Ø® ت", + "i ology", + "Ġв лад", + "Ġsch me", + "ĠSh ine", + "ìķ ¡", + "p ants", + "Ġser ge", + "Ġsen hor", + "Ġab duct", + "ĠBry ant", + "V ES", + "Ġawak ened", + "ĠL az", + "rop olis", + "ĠLa o", + "è¾Ľ èĭ¦", + "Ġvill a", + "Ġsumm ers", + "Ġent hal", + "Ġ194 9", + "V ia", + "Ġìĸ´ì ¨", + "Ġtend on", + "Ġviol et", + "Ġintellect ually", + "Ġboun ced", + "ara us", + "Ġ19 19", + "Ġvra ag", + "Ġsp el", + "ĠSch war", + "Sc ott", + "ĠInd o", + "Ġë§ Ŀ", + "Ġcanon ical", + "ĠI KE", + "Ġthat ÃŃs", + "Ġme llan", + "æ¯ Ĵ", + "ig mat", + "C ould", + "... ?)", + "Ġfo arte", + "ĠKum ar", + "rend o", + "Ġél é", + "à ´", + "val uation", + "c ases", + "Ġintuit ively", + "h ong", + "ett ed", + "Ġsou ven", + "Ġmor b", + "Ġc ors", + "ĠN V", + "ĠHas an", + "æĥħ åĨµ", + "ie ved", + "Ġì§Ģê¸Ī ìĿĢ", + "Ġdum pling", + "Ġcontr ôle", + "Ġambigu ity", + "æ©Ł æľĥ", + "Ġco g", + "ĠScript ures", + "Ġc ai", + "Ġbe ver", + "大家 éĥ½", + "Ġhu is", + "Ġa ime", + "Ġerkl ären", + "ĠL M", + "ĠF ey", + "éļ ¾", + "à®± த", + "Ġsuper vised", + "Ġje we", + "s pl", + "ĠÑĨенÑĤ ÑĢ", + "Ġcoll isions", + "ÙĦ Ùģ", + "ĠHog warts", + "ĠDur ham", + "×ķ× £", + "Ġphosph ate", + "Ġoverse e", + "Ġinspect ions", + "Ġbr inc", + "ĠZ ak", + "Ġpay off", + "Ġch aud", + "ĠHung er", + "ã os", + "v ir", + "Ġf iance", + "Ġb oug", + "l ived", + "c ry", + "åĽŀ ä¾Ĩ", + "Ġjoint ly", + "Ġgirl friends", + "ĠNe xus", + "¦¬ ê²łìĬµëĭĪëĭ¤", + "ĠK wang", + "åĵĪ åĽī", + "å§ ij", + "ÅĤ ÄĻ", + "ĠN eden", + "ie ce", + "Ġins erting", + "æŁ ĵ", + "ĠM ummy", + "ĠGlo be", + "Ġle e", + "Ġg erman", + "Ġcre ams", + "ach o", + "Ġch Æ°a", + "ĠGal ile", + "Ġfür s", + "Ġest iver", + "c idos", + "Christ ian", + "Ġlors qu", + "Ġcut est", + "v ale", + "ĠкÑĢ еп", + "Ġw ary", + "Ġslic ing", + "Ġesper ando", + "ĠV ander", + "ĠDe ixa", + "Ġ195 4", + "Ġmów iÄħ", + "Ñĸ ÑĶ", + "Ġtool ing", + "Ġrest or", + "Ġpos ición", + "Ġintent ar", + "ĠAp ache", + "OU L", + "ĠÙĪ ب", + "Ġmat ière", + "ãĥ¼ ãĤĵ", + "Ġl inen", + "Ġestrat ég", + "ĠMut ta", + "é¡ ¯", + "è¡Į äºĨ", + "Ġpart ing", + "Ġminim izing", + "Ġapp rendre", + "æľ Ŀ", + "Ġан глий", + "ĠDo o", + "ĠFire fox", + "c ómo", + "Ġge opolit", + "Ġmak an", + "Ġmog elijk", + "ĠÏĢε Ïģι", + "Ġcá» ©", + "Ġinstall er", + "Ġdib uj", + "ĠHe ath", + "lo op", + "ĠBro ken", + "HY UN", + "sh elf", + "Ġf izer", + "Ġenh ances", + "ä¾ĭ ãģĪãģ°", + "Ġдо ÑģÑĤи", + "ĠP UB", + "ĠKolleg in", + "Ġatt ained", + "Ä ¾", + "Ġmist ress", + "ĠOft entimes", + "×ŀ ×Ļ×Ŀ", + "Ġbe we", + "ĠS ora", + "ra uen", + "ba um", + "Ġroll ers", + "Ġm ering", + "ĠP AC", + "Ġн Ñĸ", + "ĠRép ublique", + "ĠÑĤ ÑĢав", + "ĠV anguard", + "uc iones", + "Ġ무ë ĮĢ", + "Ġg our", + "¯ ¤", + "ĠÏ ī", + "Ġsa una", + "Ġpe ine", + "ĠVal erie", + "ĠS ikh", + "fend imiz", + "ber o", + "ĠÑĩ и", + "Ġdo ÅĽwiad", + "ĠE uros", + "Ġcomment aires", + "Ġtwe aks", + "ĠF aster", + "ĠÑĢаÑģ к", + "Ġprogress ively", + "ĠE uch", + "bor o", + "ĠIng red", + "C ap", + "Ġun check", + "Ġìĺ¤ë ¥¸", + "Ġw re", + "ĠF T", + "ör ung", + "Ġmemor ized", + "ĠD inner", + "ĠP hew", + "ou bl", + "Ġput a", + "Ġadm its", + "ез де", + "op od", + "Ġpand a", + "Ġhing es", + "ci pe", + "Ġtrans act", + "Ġpod ia", + "Ġp ics", + "Ġcriter ion", + "ĠOrchest ra", + "ĠBl og", + "Ġsolem n", + "ĠPix ar", + "Th ree", + "Ġв низ", + "ĠVol unte", + "ĠSav age", + "ĠPV C", + "ĠC af", + "Ġwy kon", + "Ġgrad ers", + "Ġcr ouch", + "Ġcl iche", + "Ġsoy beans", + "ĠM UR", + "ĠGonz alez", + "ĠM imi", + "ĠBol sonaro", + "Ġdi aphrag", + "Ġbil ang", + "ëIJĺ ëĬĶ", + "éĤ£ æĪijåĢij", + "Ġregul ating", + "M c", + "J udge", + "Ġн ож", + "Ġjak Äħ", + "ites se", + "ĠW ij", + "Ġl ata", + "gro aning", + "POS ING", + "Ġ×IJ×ķת ×ķ", + "Ġha ga", + "Ġground ing", + "Ġviol ently", + "Ġt ills", + "Ġeng ag", + "ĠHo llow", + "Ġпоп ÑĥлÑıÑĢ", + "Ġw prowad", + "Ġrepl aces", + "Ġfluores cent", + "urg ical", + "igg ly", + "ĠTrad itional", + "t te", + "ĠÙĦ Ùĩ", + "Ġphosph orus", + "Ġapr on", + "ĠWat ers", + "ĠK ultur", + "ав ай", + "Ġol ives", + "Ġ×Ķ×IJ× ľ", + "Ġteil weise", + "Ġsen cill", + "Ġprend s", + "Ġnarr ower", + "Ġj ätte", + "ĠInformation en", + "ìĥģ ìĿ´", + "Ġstar ve", + "Ġfr ick", + "ĠBe weg", + "ठ²", + "Ġdolph in", + "ĠLAUGH TER", + "ĠINTER VIE", + "åĶ ī", + "Ġyan lÄ±ÅŁ", + "Ġtor pedo", + "Ġshort ages", + "ìĿ´ë ĵľ", + "ıld ı", + "Ġp aws", + "Ġo zone", + "Ġcultiv ated", + "ĠF ot", + "Ġnot or", + "н оз", + "Ġко ÑĪ", + "Ġtouch screen", + "ĠAll y", + "æľĢ è¿ij", + "Ġ맼ìŀĪ ìĸ´ìļĶ", + "ĠС еÑĢ", + "Ġв полне", + "Ġpap rika", + "ĠDust in", + "Ġefect o", + "Ġop ini", + "Ġmu ut", + "Ġhá»į c", + "Ġinter ject", + "ÄĻ t", + "Ġbut ts", + "ure z", + "ĠP ike", + "ĠH ok", + "ĠGu inea", + "ĠCath edral", + "Ġ14 00", + "C ra", + "+ ,", + "ë§ Ľ", + "³´ë ıĦë¡Ŀ", + "aby rin", + "Ġvide og", + "Ġо ÑĢÑĥж", + "Ġu ž", + "Ġbus cando", + "ĠAss istance", + "éĻ ½", + "Ġmel hores", + "ì¡ ´", + "Ġëģ ¼", + "ĠR J", + "Ġت Ùħ", + "Ġo min", + "Ġmotor cycles", + "ĠS app", + "Ġsupply ing", + "ĠAl gun", + "Ġaer ospace", + "×¢ ׾", + "oc cup", + "le ist", + "Ġê±° ëĬĶ", + "Ġcomplet a", + "b res", + "! (", + "ĠÐŁÑĢ ед", + "Ġdisadvant aged", + "ĠAtt end", + "ĠJud ah", + "á»ĭ ch", + "yl ene", + "act ly", + "Ġset ups", + "Ġammon ia", + "ĠSchwe iz", + "ĠSh ame", + "Ġband e", + "ĠF uel", + "Ġtroubles ome", + "Ġnum ero", + "ĠM OM", + "ĠпÑĢед лаг", + "ment ioned", + "ĠболÑĮÑĪ ое", + "ĠVikt or", + "ĠSty les", + "Ġcruc ified", + "ructure d", + "en viron", + "Ġmor als", + "Ġmed itating", + "Ġax ial", + "is ance", + "ĠAb st", + "G reen", + "Ġê± ´ì", + "Ġquad rant", + "Ġper gi", + "Ġcamer aman", + "ĠSe qu", + "Ġpa used", + "ĠLa ughing", + "ê· Ģ", + "? ..", + "ĠÅ» e", + "Ġpermit ir", + "Ġdetect ors", + "ĠH UD", + "av al", + "ĠìĹ¬ê¸° ê¹Įì§Ģ", + "Ġh ubs", + "Ġbest immt", + "ĠбÑĥдеÑĤ е", + "INTER POSING", + "Ġten gan", + "Ġcra ve", + "ĠBundes regierung", + "ĠBlo ody", + "Ġus ability", + "ĠE as", + "ĠÄijá»Ļ ng", + "Ġ195 5", + "Ġkrie gen", + "Ġhabit ual", + "Ġessential s", + "rim inal", + "Ġroomm ates", + "éĤ£ å°±", + "ĠпеÑĢе Ñħод", + "Ġng hi", + "Ġmen ing", + "ĠSym phony", + "ĠH ug", + "ag gi", + "Ġw ied", + "Ġmit ad", + "ãģ£ãģ¦ ãģĦãģĨ", + "te enth", + "ida Äĩ", + "S ave", + "Ġrob iÄĩ", + "Ġboun ces", + "° ĸìĹIJ", + "st ars", + "Ġprag matic", + "Ġcogn ition", + "Ġwra pper", + "Ġw arten", + "ad h", + "Ġpens a", + "ĠHert z", + "Ġn ÄĽ", + "ĠRe id", + "ĠPC s", + "ĠMo le", + "Ġ.. ...", + "Ġpre cio", + "ĠChampions hips", + "ê°Ģë Ŀ½", + "Ġv ér", + "Ġcorrid ors", + "ĠElect ronic", + "S l", + "Ġа ле", + "Ġoverth row", + "Ġk abul", + "ĠR ES", + "ĠCyber punk", + "ог од", + "ĠÐĿ ав", + "Ġw an", + "Ġmanifest ations", + "Ġcual es", + "ĠW ise", + "ĠLös ung", + "Ġex fol", + "Ġearn s", + "ÑĥÑģÑĤ иÑĤÑĮ", + "Ġsa pp", + "ĠBra un", + "ĠBRAND ON", + "ì¹ Ļ", + "Ġs ano", + "ĠF EL", + "Ñĭв айÑĤеÑģÑĮ", + "ожд ениÑı", + "Ġse wn", + "F un", + "Ġrecipro cal", + "Ġexpans ive", + "ĠTra ffic", + "Ġktóre go", + "ĠÙĪ س", + "æĺ ¥", + "Ġë¹ ¨", + "pro ve", + "ig are", + "Ġlo h", + "Ø§Ø ¶", + "H ope", + "Ġdevote es", + "ĠG om", + "Ġste als", + "ĠU ms", + "ĠTw ice", + "ãĤ ²", + "iy im", + "Ġrhythm ic", + "ĠV orte", + "Ġpref ix", + "om ination", + "Ġdat o", + "Ġcust ard", + "ĠVO ICE", + "å· ŀ", + "Ġmen y", + "ist ors", + "Ġíĺ ij", + "ĠìĤ´ì ķĦ", + "Ġíĥ Ħ", + "Ġk ort", + "Ġab a", + "ĠV era", + "ep y", + "Ġì¹´ë©Ķë Ŀ¼", + "Ġsubmer ged", + "ĠC lock", + "Ġthumbna ils", + "Ġbo ast", + "ĠF are", + "!! ]", + "ĠÅĽ m", + "Ġkaik ki", + "ĠTechn ologies", + "ìĻ ¸", + "ãĥ Ĵ", + "иÑĤ ай", + "å°ı æĻĤ", + "Ġа ÑĤ", + "Ġkn obs", + "Ġre icht", + "ượ ng", + "gl io", + "Ġ맼 ìĿ´", + "ê°IJ ìĿĦ", + "Ġjot ka", + "ĠHand y", + "ĠHab en", + "n ous", + "Ġin land", + "Ġam azon", + "ho oting", + "S L", + "Ġle isten", + "~ \"", + "Ġprov oke", + "ĠTw ist", + "Ġ×ij× Ĺ", + "Ġdepart ed", + "ê° ľë¥¼", + "Ġk onse", + "ĠCar wyn", + "íķĺ ìĭł", + "ident al", + "ES CO", + "Ġt teokbokki", + "Ġdiz endo", + "ç· ´", + "ınd aki", + "imas u", + "af ar", + "Ġland fill", + "Ġcorrect ing", + "Ġcle ars", + "ĠNum mer", + "H AM", + "Ġcart ridges", + "ĠDies el", + "p aced", + "Ġobl iv", + "Ġmoy ens", + "ĠSin ne", + "ĠPre is", + "il iz", + "ĠÑģм ож", + "Ġbroad en", + "ä»ĸ æĺ¯", + "x es", + "Ġcarbohyd rate", + "íĺ ¹", + "se ok", + "Ġecho es", + "Ġc ess", + "ë° Ķ", + "Ġб изнеÑģ", + "Ġllam ado", + "Ġess ent", + "ĠìĿ¼ë °ĺ", + "ĠA ires", + "ph en", + "Ġze bra", + "Ġsymbol ism", + "On ce", + "Ġr acks", + "ĠKaf ka", + "ĠÑģеÑĢÑĮ ез", + "Ġsin n", + "p icious", + "ka a", + "Ġmotherf ucker", + "Ġapprentices hip", + "Ġr pm", + "Ġtax ation", + "Ġfur ry", + "ĠSac red", + "ĠÑĢаз м", + "por a", + "eng es", + "ĠíĹ Īë", + "ĠÑģ ин", + "Ġsanit izer", + "Ġcr inge", + "ĠS ca", + "оÑĩ но", + "Ġof ere", + "Ġmel odies", + "ĠVel vet", + "ĠIhr er", + "ĠHy brid", + "ĠG iov", + "Ġirgend was", + "Ġdep ende", + "ĠUs ers", + "Ġh ump", + "dri ving", + "Ġs f", + "Ġruth less", + "à¹ĢภĦ", + "Ġlem ons", + "Ġfö ret", + "ĠO j", + "Ġм ама", + "Ġinter personal", + "Ġge v", + "Ġab norm", + "иÑģ л", + "Ġин д", + "Ġkont roll", + "Ġreg res", + "Ġled ge", + "Ġerzäh lt", + "ĠT act", + "Ġarri vé", + "Ġsubstant ive", + "Ġspoon ful", + "zw ischen", + "oooo o", + "Ġconten ido", + "Ġbes l", + "á»ĥ m", + "k ten", + "Jam ie", + "Ġsand y", + "ä¸į åIJĮ", + "â ĭ", + "Ġp ase", + "Ġdet te", + "ĠBelg ian", + "ê° ľë", + "ula res", + "r ud", + "ig or", + "ĠíĮ ¬ë", + "Ġremed ies", + "Ġblast ing", + "ĠS ich", + "Ġож ид", + "Ġmon str", + "Ġmanif old", + "Ġglaub en", + "ĠE ST", + "Ġstream line", + "Ġlobb ying", + "ĠGoth ic", + "to ire", + ".. '", + "Ġdém ocr", + "Ġнаб лÑİд", + "Ġwsp ól", + "ĠczÄĻ ÅĽÄĩ", + "ä¸ĭ éĿ¢", + "is és", + "g angen", + "Ġbez pie", + "rem lin", + "ê° Ŀ", + "St ill", + "Ġres ides", + "Ġgele cek", + "Ġtélé phone", + "Ġpe wn", + "Ġle opard", + "Ġcompliment ary", + "Ġc rib", + "ĠAnim als", + "Ġge il", + "ess el", + "Ġgard er", + "Ġcatch y", + "æ¨ ¹", + "ĠE ts", + "ĠCom mercial", + "ĠD ENNIS", + "ĠCoordin ator", + "ĠAb igail", + "ffff ff", + "ấ p", + "Ġpeque ña", + "Ġinject ions", + "ce kt", + "Ġphilanthrop y", + "Ġp uck", + "Ġcelebr ates", + "ĠD unk", + "ĠD latego", + "ãģ¾ ãģł", + "δ ή", + "grad uate", + "ĠM obil", + "t ill", + "ac am", + "Ġyol ks", + "Ġtang led", + "Ġman iac", + "Ġoblig ed", + "ĠLa ink", + "Ġver der", + "ĠDam on", + "Ġmut ant", + "Ġhop ping", + "Ġre ins", + "Ġinver ter", + "Ġcont empt", + "׳ ס", + "le arning", + "M iss", + "ĠÐĵ оÑģ", + "ĠMe yer", + "ê»ĺ ìĦľ", + "é£ İ", + "×ķ׳ ×Ļ×Ŀ", + "ask ing", + "Ġtrim ming", + "Ġtre asury", + "Ġs ente", + "A ust", + "ĠUnterstüt zung", + "ĠCom edy", + "ĠAn akin", + "é ¹", + "ÑĢÑĥ ÑĤ", + "ĠH ari", + "ograph ers", + "Ġoat meal", + "ĠB ots", + "ä¸į äºĨ", + "Ġп алÑĮ", + "Ġacknowledge ment", + "x ic", + "Ġê´Ģ ìĭ¬", + "gas ping", + "Ġãģ ķ", + "Ġterr ace", + "Ġor naments", + "ĠM ER", + "comm ittee", + "ĠìĹĨ ìĬµëĭĪëĭ¤", + "Ġr ij", + "é ³", + "צ ×Ŀ", + "le me", + "Ġlibert ies", + "Ġfell as", + "ĠCop per", + "ben ch", + "ĠIde a", + "á»į n", + "ÑĪ а", + "Ġvers ión", + "ÏĦο Ïį", + "ĠÐľ и", + "ĠпÑĢил ож", + "Ġbox er", + "ĠT anner", + "ĠM oy", + "ì¹ĺ ëĬĶ", + "T hr", + "Ġtin ham", + "Ġpol ishing", + "Ġconsequ ently", + "Ġamen ities", + "ĠK I", + "ĠGRE EN", + "ĠFrank ie", + "н иÑĤ", + "itt el", + "Ñģ кое", + "urs ed", + "Ġup bringing", + "Ġth ứ", + "ĠìĭĿ ìľ¼ë¡ľ", + "Ġwh im", + "Ġchin ese", + "conf idence", + "ĠJ eder", + "ãģª ãģ®ãģ§", + "aj cie", + "ĠT ous", + "ĠPow ers", + "ừ a", + "other mal", + "ĠвÑĭ ÑĪе", + "r ale", + "Ø§Ø ®", + "Ġì§Ģ ìĽIJ", + "Ġép isode", + "Ġsul ph", + "Ġenc ara", + "k raft", + "alar ı", + "ĠCom es", + "Ġdiv ul", + "ĠRud olph", + "ĠM use", + "Ġut ens", + "ĠìŀIJ 주", + "Ġp ana", + "ĠVeget a", + "ĠPH P", + "ĠN SA", + "ent in", + "ĠCarne gie", + "ا ÙĬ", + "iÄĻ cy", + "H arry", + "Ġf ır", + "С п", + "Ġglad ly", + "Ġaver aging", + "íķĺ ê²łìĬµëĭĪëĭ¤", + "лÑı ÑİÑĤÑģÑı", + "ĠÐľ енÑı", + "Ġquot ation", + "ri res", + "itch ens", + "ay ed", + "Ġun att", + "ĠP erez", + "ĠоÑĤ меÑĤ", + "Ġtact ile", + "ĠEu h", + "is ini", + "b uh", + "Ġhat ır", + "ĠìŀĪ ìľ¼", + "Ġpolicy makers", + "³´ì Ħ¸ìļĶ", + "ac ı", + "Ġκ ι", + "Ġregister ing", + "re to", + "ĠSpr inkle", + "ĠGram my", + "ax ter", + "Ġб и", + "Ġsit ter", + "Ġpred ic", + "Ġthin ly", + "Ġstr um", + "Ġag grav", + "Ġa ha", + "ر ج", + "m ellow", + "Ġconst ante", + "ĠL aut", + "ist on", + "Ġtransition ed", + "ĠCamb odia", + "ãģĦ ãģįãģ¾ãģĻ", + "è·Ł 大家", + "art ed", + "Ġmis f", + "ĠPunk te", + "Įë ĵł", + "Ġtremb ling", + "Ġges pannt", + "ĠعÙĦÙĬ Ùĩ", + "Ġникак иÑħ", + "Ġë¶Ģë ĵľë", + "ĠÑĢазв иÑĤ", + "Ġit chy", + "Ġc iento", + "Ġpl ains", + "Ġk ittens", + "Ġback log", + "ĠPres iding", + "pt a", + "Ġha voc", + "ĠDarr in", + "ĠÐĽÑİ Ð±", + "Ġsegreg ated", + "Ġg hetto", + "Ġerle bt", + "Ġdrug iej", + "ĠSi xt", + "åı ĥ", + "ร ะ", + "uen cia", + "Ġíķĺ 기", + "ĠëĨ į", + "Ġrob i", + "Ġpione ers", + "Ġmilli ards", + "ĠWitch er", + "Ġ무ìĹ ĩ", + "or ro", + "m ass", + "Ġdiver gence", + "ĠRiver a", + "ĠNo odles", + "Ġend roit", + "ĠK osten", + "ĠдÑĢÑĥг а", + "ĠmÃŃn imo", + "ĠKazakh stan", + "ت Ùĩ", + "Ġвоз дÑĥ", + "Ġgesch rieben", + "ĠN il", + "Ñģ ки", + "ĠFr üh", + "Ġbever ages", + "æº IJ", + "ĠG on", + "æĺ ¨", + "Ar in", + "ĠInt ro", + "ocaly ptic", + "Ġexhaust ion", + "ĠStat us", + "ĠBatter y", + "és z", + "£ ¼ë", + "air y", + "Ġë³´ìŬë ĵľë", + "Ġdispar ity", + "Ù Į", + "ĠTuc son", + "Ġbright ly", + "pro blem", + "Ġbiom ass", + "éĻ į", + "§ ī", + "Ġhur dle", + "Ġwavelength s", + "Ġ< <", + "Ġteam ed", + "FF FF", + "ĠS lim", + "om ial", + "Ġunve iled", + "ĠVere in", + "ÙĤ Ø·", + "est ry", + "Ġcl ás", + "Ġch eddar", + "Ġaccus ing", + "ĠScient ific", + "ĠбÑĥд е", + "ĠCyr us", + "ε ÏĦε", + "Ĩĵ ê³ł", + "Ġë³ Ħ", + "Ġcur d", + "Ġrefer rals", + "sh ift", + "åį ķ", + "nik ów", + "Ġm ier", + "Ġconf ronting", + "ê²ĥ ëıĦ", + "aw l", + "Ġtry in", + "Ġê·¸ëŀĺ ìļĶ", + "Ġch iar", + "Ġìĺ¤ëĬ ĺëıĦ", + "æĶ¿ æ²»", + "es que", + "Ġmism os", + "ĠSh ak", + "Ġsoci aux", + "Ġpi ÅŁ", + "ĠkiÅŁ i", + "Ġcy an", + "h ay", + "be w", + "b od", + "ĠÎ ¹", + "ĠMain ly", + "Ñİ ÑĤÑĮ", + "hab itude", + "ĠÑģп окой", + "è·Ł æĪij", + "Ġpre con", + "ĠM andy", + "ðŁ¤ £", + "ill os", + "Ġgr upp", + "Ġcr umble", + "Ġconstru ctor", + "erv ices", + "Ġlight house", + "ĠCon cept", + "ан ÑĤи", + "alt ro", + "h ope", + "ĠAll eg", + "ìĸ´ë ¥¼", + "pie ces", + "oun ter", + "Ġíķĺ ëĭĪê¹Į", + "ĠìĿ¸ íĦ°ë", + "Ġvérit able", + "Ġthread ed", + "bl ind", + "Ĥĺë Ŀ¼", + "Ġtr ays", + "ĠEd ison", + "ĠÃĸ z", + "ĠSte vie", + "Ġl ender", + "Ġbrig ade", + "Ġdeuts che", + "m uffled", + "b art", + "Ġinsan ity", + "Ġsav vy", + "Ġsens ational", + "Ġdere chos", + "ĠM X", + "ĠпÑĢ еп", + "Ġthreat ens", + "Ġrealt Ãł", + "Ġindic ative", + "Ġch ops", + "Ġbenef iting", + "ĠVern on", + "ĠSt rand", + "n un", + "qu ently", + "10 1", + "Ġe el", + "ìĪ Ļ", + "r ints", + "ĠÙħ س", + "Ġب د", + "Ġпо ÑģÑĤÑĢо", + "Ġyap mÄ±ÅŁ", + "Ġol ması", + "Ġi edereen", + "ol é", + "ke f", + "Ġë°ľ ìĥĿ", + "Ġr ained", + "Ġalm ighty", + "ĠвÑĭ д", + "ĠC PR", + "F re", + "Ġinhab ited", + "Ġarb ets", + "Ġa kin", + "а ÑģÑĤв", + "v ania", + "Ġhäuf ig", + "ĠMat te", + "s orry", + "Jen ny", + "ĠгÑĢ ад", + "Ġwh it", + "Ġbro kers", + "å¯ Ł", + "Ġh ine", + "ast en", + "Ġг ÑĢÑĥ", + "M B", + "ĠP RI", + "S ab", + "Ġwrest ler", + "Ġfacil itating", + "Ġeh kä", + "ĠC red", + "Ġ12 7", + "Ġnot hin", + "Ġmand ated", + "å¯ Į", + "ÑĥÑĤ ÑģÑĤв", + "F rank", + "Ġwor s", + "Ġdzie ÅĦ", + "ĠUnder ground", + "Ġznaj du", + "ĠB ä", + "ĠPrin zip", + "аÑĤ елей", + "Ġveter inar", + "Ġsplend id", + "Ġroz p", + "Ġpsych opath", + "ig on", + "Ġh ops", + "Ġc ần", + "ĠX ian", + "Ġtro isième", + "Ġproduct o", + "ĠdeÄŁ er", + "ĠContin uing", + "ив ал", + "c ık", + "Ġmoistur izer", + "Wh ite", + "Ġsi is", + "ĠEver est", + "ien ced", + "Ġcả m", + "ĠJ apon", + "´ìł Ħ", + "Ġten ÃŃan", + "Ġenc anta", + "M m", + "Ġdrop down", + "ĠI ya", + "³´ë ©´", + "Ġword ing", + "ĠSque eze", + "ĠMap le", + "Ġclar ified", + "ĠMun icip", + "ĠRou ge", + "ĠNick i", + "ĠGo o", + "v olt", + "t ek", + "fect ure", + "f red", + "ar rive", + "ãĥ¼ ãģĦ", + "te z", + "E p", + "Ġob ras", + "ĠV ID", + "ĠR iv", + "ĠMod i", + "i be", + "Ġacontec endo", + "Ġim itation", + "Ġcamoufl age", + "Ġspan ning", + "ĠSEC RET", + "ĠOre o", + "ìĨĮë ¦¬", + "Ġh unch", + "Ġca ÅĤe", + "Ġspont aneously", + "ĠPer d", + "Ġet ap", + "ĠHo le", + "ĠDis ability", + "Ġafter life", + "æģ ©", + "Ġtest ified", + "Ġpres up", + "Ġpet roleum", + "Ġcontr ario", + "ĠAss essment", + "ÄŁ lu", + "Ġp ests", + "Ġdil ig", + "ĠвÑģÑĤÑĢ еÑĤ", + "Ġcons équ", + "Ġcann ons", + "Ġcan oe", + "ĠM ile", + "Ġcit oy", + "Ġbe gged", + "ĠMin nie", + "ÅĤy ch", + "Ġprinci pe", + "ÏĢÏĮ ν", + "m niej", + "Ġw ert", + "Ġëĭ¤ë ĵ¤", + "an se", + "Ġunc les", + "Ġprovoc ative", + "Ġinter sections", + "Ġdemocr ats", + "ĠJul ius", + "ин ки", + "yg usal", + "Ġ׾ ×ķ", + "Ġgj orde", + "Ġg asket", + "ĠB ock", + "ĠÄ° n", + "b reat", + "ĠEqu ity", + "ard ı", + "Ġкан але", + "Ġд ней", + "Ġt Ỽi", + "Ġfi xture", + "Ġab uses", + "Ġv aya", + "Ġou vert", + "Ġmultic ultural", + "Ġcontext o", + "ĠSes ame", + "Ġdé pl", + "Ġcons omm", + "ĠPart e", + "Ġp em", + "ĠCon an", + "Ġб ÑĸлÑĮ", + "Ġpersu aded", + "Ġdra ins", + "M oo", + "F ORE", + "Ġб аÑĤ", + "Ġf od", + "ĠProduct s", + "ì§Ħ ì§ľ", + "Ġ\" [", + "ĠW ick", + "ĠNar uto", + "н али", + "ry w", + "Ġl odge", + "Ġin h", + "Ġvont ade", + "Ġdi j", + "ĠJes ús", + "Look ing", + "Ġfore arm", + "ĠIntegr ation", + "ĠHARR IS", + "Ġtool bar", + "le ader", + "Ġsel dom", + "Ġб ÑĢоÑģ", + "ĠK ook", + "он д", + "Ġmon opol", + "Ġmill et", + "Ġl ira", + "ĠAs ians", + "Ġ18 90", + "ci ÄŁim", + "Ġed en", + "ĠIKE A", + "ĠNeigh bor", + "ĠKazu ya", + "ü d", + "Ġpsych edel", + "Ġenvision ed", + "åĿ Ĺ", + "Ġï· »", + "Ġw under", + "ĠBulgar ia", + "B rid", + "Ġmar row", + "Ġdep iction", + "ĠT in", + "ĠPhar ise", + "Ġeinz ige", + "Ġblind ly", + "ãģĽ ãģ¦", + "Ġdef ens", + "D ire", + "Ġvibr ating", + "Ġtroll s", + "Ġdisrespect ful", + "Ġw od", + "Ġstimul i", + "Ġcreep ing", + "Ġcla irement", + "Ġsc ariest", + "Ġdécouv rir", + "Ġ10 4", + "ĠвеÑĢ Ñħ", + "ĠÅĤ at", + "Ġróż ne", + "Ġbar ley", + "ĠRe pl", + "ĠT we", + "k ke", + "ĠãģĿ ãĤĮ", + "ĠRed mi", + "ĠMet roid", + "Ġή ÏĦαν", + "Che ck", + "ĠS EN", + "Ġ ido", + "ÑĤоÑĢ ии", + "ó p", + "UN KNOWN", + "Ġänd ern", + "ĠJu ice", + "ĠGes icht", + "å°± æľĥ", + "ĠнаÑģÑĤ олÑĮко", + "íĥ ķ", + " Ń", + "ex hales", + "Ġì´ ī", + "Ġj sem", + "ÏĢ ÏīÏĤ", + "Ġit t", + "ëªħ ìĿ´", + "Ġrem ix", + "Ġbloss oms", + "ĠR enee", + "is ations", + "ìĬ¤í Ħ°", + "Ġë³´ ìĿ´ëĬĶ", + "uest as", + "op edia", + "ĠA im", + "ìĿ´ì¦ Ī", + "sc ene", + "Ġleak age", + "uck t", + "S ad", + "A sk", + "Ġsusp ense", + "Ġimp ost", + "ĠStrateg ic", + "ĠIt ÃŃs", + "âĢ Į", + "Ġkey boards", + "Ġam using", + "og r", + "id erman", + "ŀ ĸ", + "Ġв ижÑĥ", + "Ġd ips", + "Ġapolog ized", + "ĠST AR", + "Ġesc uela", + "ĠC hing", + "н ениÑı", + "Ġë¶Ģë¶Ħ ìĿ´", + "ĠFle et", + "Ġs amb", + "Ġentsprech end", + "Ġelectrod es", + "ĠFrei heit", + "æĪij ä¸įçŁ¥éģĵ", + "ĠSh rim", + "iÃŁ e", + "Ġselect ions", + "Ġfor di", + "Ġd oss", + "Ñı Ñĩ", + "Ġdiscrimin ate", + "ĠAu ÃŁerdem", + "Ġdesenvol v", + "ĠIntern al", + "ĠBened ict", + "å¯ Ĩ", + "ĠSh iv", + "M issy", + "Ġоб наÑĢÑĥж", + "Ġна ÑģÑĤÑĢо", + "Ġcontrol ar", + "ĠL ia", + "Ġopio ids", + "ant u", + "Ġcup board", + "æģ IJ", + "г е", + "acht s", + "Ġcur ated", + "Ġx em", + "Ġwe ary", + "Ġbre thren", + "Ġbudget ing", + "Ġpour tant", + "éļ »", + "ais ia", + "ĠоÑĤв еÑĩ", + "ĠG IS", + "μ αι", + "Ġש×Ķ ×ķ×IJ", + "Ġsa ud", + "Ġl Ỽ", + "Ðķ Т", + "ub ine", + "ĠнÑĥж ен", + "Ġkidna pping", + "Ġbr at", + "ĠTer re", + "ĠMon et", + "Ġë§Ī ìĬ¤íģ", + "Ġflash y", + "ĠIS BN", + "Ġfreel ance", + "i age", + "Ġjun ge", + "ì¶ ©", + "cer al", + "ĠÑĤоÑĩ ки", + "Ġform ulate", + "ĠF ER", + "ĠDart mouth", + "ìľ¼ë ©´ìĦľ", + "å¢ ĥ", + "ow iÄħ", + "ĠëĶĶ ìŀIJ", + "Ġreg iment", + "Ġmetabol ismo", + "ĠP arr", + "Ġ충 ë¶Ħ", + "Ġsan ity", + "ĠL al", + "ĠG ö", + "ĠG la", + "Ġprot o", + "Ġmicroscop ic", + "Ġk ang", + "ĠSc alia", + "Ġp ug", + "ĠSc ore", + "ĠSav annah", + "Ġgard e", + "ĠN OR", + "å°į åIJ§", + "Ġsche int", + "Ġp óÅĤ", + "Ġcor ri", + "Ġbr ute", + "Ġ ÅĤad", + "ä»ĸ 们", + "Ġsucceed ing", + "Ġbicy cles", + "N on", + "Ġseek ers", + "Ġuncond itional", + "Ġrhy mes", + "ĠGar age", + "Ġinv oice", + "Ġcan vi", + "ne ck", + "Ġcustom izable", + "irit ual", + "Que en", + "íķĺ ìĭľëĬĶ", + "Ġpower less", + "Ġcs ak", + "ä¸į ä¼ļ", + "is oft", + "Ġìłķ íĻķ", + "Ġnh ân", + "ĠM AND", + "ĠH af", + "Ġrevol ves", + "ä¹Ł åı¯ä»¥", + "ov an", + "ar oo", + "ĠGr ind", + "éĽ ª", + "Ġindispens able", + "Ġconsult ed", + "ĠClin ical", + "A cc", + "Ġol hos", + "Ġmon ter", + "ĠH ana", + "et ah", + "Ġva an", + "Ġt igers", + "Ġcau cus", + "ðŁĺ Ĥ", + "³´ì ŀIJ", + "pow ers", + "ium s", + "ĠíĨ łë", + "Ġtrad icional", + "Ġreson ated", + "Ġìĭł 기", + "th em", + "Ro bert", + "Ġelement o", + "Ġant id", + "Ġоб Ñģ", + "Ġnat ives", + "Ġlo ca", + "ow ment", + "ĠT ight", + "Ġ æĢĿ", + "Ġmel an", + "ĠN ue", + "am is", + "Ġsor gen", + "as ına", + "H ome", + "ĠPUB G", + "Ġaw fully", + "ĠSh ore", + "ĠPer ché", + "ĠL au", + "ĠCind erella", + "ĠCh est", + "Ġsem antic", + "Ġdesert ed", + "ĠMom o", + "ĠHern andez", + "gen es", + "ĠAd ult", + "иÑĩеÑģ кого", + "osh ima", + "ĠcaracterÃŃst icas", + "ĠK L", + "´ìŀ ¥", + "oc ar", + "Ġfeh lt", + "Ġd ruk", + "ĠPop py", + "EN GLISH", + "ĠVerg leich", + "B rien", + "Ġrec omp", + "ĠÑģ д", + "Ġmer ger", + "Ġmarket ers", + "Ġhoney moon", + "Ġpen so", + "Ġbell i", + "еÑĤ Ñĥ", + "Ġbank er", + "Cam era", + "ĠSt all", + "ĠSt amp", + "ĠB ite", + "еж де", + "Ġs ür", + "Ġgü ç", + "ĠPas sover", + "ĠBug ün", + "ĠÑģожал ениÑİ", + "Ġн из", + "Ġman ure", + "Ġglac ier", + "è« ĩ", + "RA Y", + "ter ror", + "Ġsal ads", + "Ġhur ricanes", + "ĠDesign er", + "ator io", + "Ġfact ual", + "ĠTam my", + "Ġзв ÑĥÑĩ", + "Ġintrodu ctions", + "Ġhouse keeping", + "Ġh anger", + "ëĭ ĺë", + "ak te", + "ĠCol a", + "' ]", + "ĠG ender", + "оÑĢ он", + "ip se", + "ic ias", + "Ġsuccess ive", + "Ġpolit ic", + "Ġhö her", + "ĠQ iao", + "ĠG imme", + "Ġл ож", + "Ġse b", + "ĠWe iter", + "ĠSak ura", + "ĠB oulder", + "ĠAm érica", + "peÅĤ nie", + "Ġtecn ologÃŃa", + "ish ops", + "f ur", + "Ġmoon light", + "Ġdispers ed", + "Ġre z", + "ен ное", + "алÑĮ нÑĥÑİ", + "ĠTw elve", + "ĠH OR", + "ìĭ¤í ŀĪ", + "il age", + "Ġshad ed", + "Ġres umes", + "ĠPe anut", + "ĠM ILL", + "ap ons", + "ĠU FC", + "ĠSo le", + "Ġjoy stick", + "ĠOliv ier", + "war ming", + "Ġsyll abus", + "Ġоб Ñīе", + "Ġhi á»ĩn", + "Ġfest a", + "Ġcr adle", + "ĠZ ac", + "Ġremem brance", + "Ġê°Ļ ìķĦìĦľ", + "ĠpiÄĻ k", + "Ġco exist", + "ĠV II", + "Ġá reas", + "Ġu waż", + "Ġobser vers", + "Ġmännisk or", + "co on", + "ĠD AM", + "Ġnas zym", + "Ġall igator", + "ĠFree ze", + "ĠEst ate", + "ĠÑĤÑĢ ади", + "Ġunder cover", + "Ġn ies", + "ĠFeh ler", + "pl in", + "ĠK abul", + "il ate", + "Ġê³ł ìĸij", + "Ġm op", + "ìĦ ¼", + "Ġand erer", + "ĠK ELL", + "ок и", + "Ġж еÑģÑĤ", + "Ġgra zing", + "Ġda ÃŃ", + "Ġcapital ize", + "Ġa pex", + "Ġnurt uring", + "Ġcort ar", + "Ġcontr ac", + "ımız ı", + "Ġtand em", + "éĥ½ æľī", + "ge ment", + "ĠÑģиÑģÑĤем а", + "Ġman que", + "ia jÄħ", + "W OR", + "Ġا ب", + "Ġcart s", + "AN O", + "Ġë°Ľ ê³ł", + "ĠC ena", + "ĠBi ology", + "id ar", + "Ġa ż", + "er ne", + "an u", + "Ġthank ed", + "Ġsubmar ines", + "Ġman ic", + "Ġм оз", + "ä¼ Ĭ", + "inst ant", + "ess ential", + "Ġsam urai", + "Ġpast i", + "Ġal an", + "Ġbro ch", + "Ġb aker", + "ĠGu ill", + "¨ ¼", + "Ġwithd rawn", + "ëĭ Ŀ", + "Per fect", + "qu ency", + "Ġstream lined", + "Ġ13 00", + "´ë ıĦ", + "Ġëĸ łë", + "Ġãģ¯ ãģĦ", + "Ġh vad", + "ä¸Ģå®ļ è¦ģ", + "Ġverb ally", + "ĠK ons", + "Ġì¡° ìĭ¬", + "Ġdie z", + "æİ° æİ°", + "Ġchuck ling", + "ĠM ih", + "Ġrall ies", + "Ġman ter", + "Ġearn est", + "s uper", + "Ġge ce", + "ĠR end", + "ĠGer ade", + "jen igen", + "ĠV all", + "Ġìŀ ĪëĤĺ", + "ĠÑģказ ала", + "Ġtrabal h", + "ĠнаÑĪ ем", + "Ġм еÑħ", + "ik it", + "Ġnoun s", + "Ġneurolog ical", + "Ġmotiv ational", + "ĠMcM ahon", + "ĠFin ished", + "Ġë³´ ìĿ´", + "ĠField s", + "Ġadoles cents", + "ĠT isch", + "ĠNe ben", + "ĠFl owers", + "ĠEner g", + "Ġdire t", + "ĠTh i", + "ĠP icas", + "æĥ ľ", + "æĢİä¹Ī æł·", + "Ġav ete", + "ĠF ors", + "ĠChap el", + "N ão", + "E t", + "ĠÑģод еÑĢж", + "ren o", + "Ġs ven", + "Ġdost ÄĻp", + "ne e", + "ĠSnap dragon", + "ĠID s", + "ìķĺ ëĬĶëį°", + "ר ×ļ", + "Ġsun flower", + "Ġperpet ual", + "ç³ ĸ", + "Ġkn ights", + "Ġg ird", + "ĠTo ld", + "Ġvolcano es", + "Ġadvers ary", + "ĠEconom y", + "Ġextra pol", + "Ġbl uetooth", + "Ġzoom ing", + "Ġsk ys", + "Ġgen ial", + "ÃŃcul os", + "amb re", + "Ġм еÑĢ", + "Ġteen y", + "Ġstress ing", + "ìķ Į", + "ON Y", + "Ġtransluc ent", + "Ġround ing", + "Ġgr ues", + "×Ļ׳ ×Ķ", + "ap rès", + "Ġprue ba", + "Ġpoly gon", + "Ġblue berry", + "ĠProgram m", + "Ġtren ches", + "Ġse bagai", + "Ġpal ate", + "Ġla ude", + "Ġbehav ed", + "Ġlongitud inal", + "ĠMod ule", + "Ġadm ir", + "λ ι", + "G reg", + "Ġwy st", + "Ġpropag ate", + "Ġmold s", + "ĠT ub", + "ĠL oud", + "ust o", + "Ġun stoppable", + "Ġreinfor cing", + "éĿŀ常 çļĦ", + "ĠпÑĢоблем а", + "Ġpot encial", + "Ġhe mp", + "ìŀ Ķ", + "ठ¯", + "Ġopt ic", + "Ġerfolg reich", + "Ñģ Ñĭ", + "олÑĮ ÑĪе", + "ur st", + "ĠPo is", + "Ġrespond ents", + "Ġneh me", + "ĠEx ternal", + "ol ate", + "H yun", + "Ġquart z", + "Ġmathematic ian", + "Ġbás icamente", + "Ġa il", + "ìł ľë¥¼", + "att utto", + "Ġno oit", + "Ġaff lict", + "ĠOl ga", + "èŃ ·", + "Ġна ÑĤ", + "Ġd ites", + "Ġreal idade", + "Ġk än", + "Ġuniqu eness", + "Ġpad res", + "Ġsubs idi", + "Ġpige ons", + "β α", + "st ad", + "Ġder en", + "ĠС лед", + "d oo", + "ĠопиÑģ ании", + "Ġam ber", + "Ġgoose bumps", + "ĠfrÃ¥ gor", + "ĠV ital", + "ĠIsrael ites", + "w asser", + "Is n", + "Ġcomm its", + "ĠSTE VEN", + "ĠBev ölker", + "uit ive", + "Ġleg en", + "Ġbr uk", + "иÑĢов ан", + "yn en", + "hel m", + "Ġgener ational", + "ĠL ändern", + "οι ÏĢÏĮν", + "uz u", + "Ġcall er", + "он ÑĮ", + "üm ü", + "Ġbes ar", + "Ġpl ats", + "Ġmig rated", + "Ġj ap", + "ĠW AR", + "Ġdis sect", + "ĠZus ch", + "ĠZe iten", + "ĠL ions", + "ĠD F", + "â Ķ", + "ки в", + "Ġpedest rians", + "ĠMar ilyn", + "d ock", + "Ġy ht", + "Ġre incarn", + "ĠSon o", + "ĠGrow th", + "ÑĥÑģ ов", + "Ġdun geons", + "Ġbag us", + "k ich", + "ĠÑĥ кÑĢаÑĹ", + "éĨ «", + "ĠK eller", + "chem istry", + "J apanese", + "Ġwill st", + "Ġdecomp osition", + "ĠÑģÑĤ ен", + "Ġrev ived", + "íķĻ êµIJ", + "ĠÅ ĵ", + "ä½ IJ", + "ìĭ ¸", + "ipp y", + "Ġhour ly", + "j än", + "ĠWork shop", + "Ŀ¼ ìĦľ", + "Ġcu arto", + "Ġpat rim", + "ĠB urch", + "ĠìŀĪ 기", + "Ġhe pat", + "Ġh Ãłng", + "ĠëĮĢ íķ´", + "ĠваÑĪ и", + "Ġre work", + "Ġpar se", + "Ġçıkt ı", + "ĠS ax", + "ĠMong o", + "ĠAa ah", + "ram ble", + "D J", + "Ġstabil ized", + "ĠSpe ech", + "Book s", + "Ġhur dles", + "ĠW O", + "ĠLamb org", + "Ġ19 33", + "Ġvor bere", + "Ġclin ically", + "Ġbreat htaking", + "ĠGate way", + "пеÑĢв ÑĭÑħ", + "ut ers", + "Ġë¹ µ", + "Ġyet er", + "Ġpull ey", + "Ġmuff in", + "ĠPre fer", + "ĠP ence", + "Ġinform ação", + "ìĬ¤í Ĭ¸ë", + "ãĤ¸ ãĥ£", + "ĠTur tle", + "ĠReg ina", + "ĠLo ad", + "do es", + "pan ze", + "¸ Ķ", + "Ġmin a", + "ĠLatin os", + "amm ers", + "ĠT ort", + "ĠBey once", + "имо ÑģÑĤи", + "ĠвопÑĢоÑģ Ñĭ", + "Ġbul un", + "èĢĮ å·²", + "ine k", + "bere ich", + "Ġpast ure", + "ĠO A", + "ĠM elt", + "ĠEt t", + "ĠD Y", + "Ġob wohl", + "Ġle agues", + "ÑĤ еÑģÑĮ", + "Ġк ÑĥÑģ", + "Ġv ors", + "Ġto pp", + "ograph ical", + "as st", + "Ġl indo", + "Ġë°Ŀ íĺĶ", + "Ġré fl", + "Ġclim bs", + "Ġv arsa", + "Ġmethy l", + "ĠKar ere", + "Æ°á» Ł", + "R ad", + "Ġprepared ness", + "он Ñĩ", + "ĠO D", + "ĠC GI", + "Ġठ®", + "Ġspeech less", + "Ġlas ci", + "Ġbol ag", + "ĠÑħоÑĩ еÑĤÑģÑı", + "Ġgr ieving", + "ĠJohann es", + "ĠCar roll", + "ad aki", + "Ī ¬ë", + "ĠsÅĤ u", + "Ġinner halb", + "Ġgymn astics", + "п ÑĢи", + "if iques", + "Ġkar ate", + "Ġdom u", + "ãģĿãĤĮ ãģ§", + "OTH ER", + "Ġdemand é", + "Ġbook let", + "ĠKy oto", + "Ġw oh", + "ĠMar ÃŃa", + "viol ent", + "J E", + "Ġl óg", + "Ġbrut ally", + "c ot", + "ĠÙħ ÛĮ", + "ĠWars z", + "å® Ī", + "w ol", + "Ġmik ä", + "ĠPron ounce", + "ĠBrend an", + "Ġr oup", + "Ġital iano", + "å¦Ĥ æѤ", + "Ġкомп ÑĮÑİÑĤ", + "Ġur ging", + "ed es", + "Ġcarbon o", + "ĠRichards on", + "ĠÐĿ аÑĩ", + "ĠTra iner", + "ĠCrime a", + "Ġdi apers", + "Ġco vet", + "ĠMah ar", + "ĠH utch", + "ĠAus w", + "ber ty", + "Ġind ifferent", + "кÑĢ еÑĤ", + "uld ade", + "Ġhar ms", + "¢ ÙĨ", + "les ia", + "Ġg io", + "ĠMist ress", + "ĠK nox", + "ĠFRE E", + "Ġë £¨ë", + "ĠнаÑĪ а", + "Ġinvinci ble", + "Ġma iden", + "ĠJ eez", + "Ġbre ve", + "po le", + "Ġcritic isms", + "ĠRus ia", + "ठ®", + "ph in", + "ĠComp are", + "ĠB ON", + "Ġsne aking", + "ĠR ails", + "ĠG eral", + "Ġ195 3", + "H ola", + "Ġоп ÑĭÑĤ", + "Ġrain forest", + "Ġbel um", + "ĠOb i", + "ĠIS S", + "ãĤĮ ãģªãģĦ", + "ĠС в", + "Ġbl ond", + "Ġwz gl", + "Ġpowiedz iaÅĤ", + "Ġch oking", + "ĠSong s", + "ĠBir az", + "Ġyell s", + "Ġstyl ist", + "ÏĮ ÏĦε", + "Ġsch reiben", + "ĠJ aw", + "ĠEle ven", + "ĠR if", + "/ .", + "Ġìĺ¤ë ŀľë§Į", + "Ġtreat ies", + "uff ed", + "ĠâĪ Ĵ", + "Ġroof s", + "à¹Ģภª", + "Ġë »", + "Ġspark le", + "ĠK iev", + "ĠAr gu", + "ere cht", + "ĠÐĿад о", + "ĠF IL", + "Ġmol ta", + "ĠDe vi", + "Ġcam pe", + "Ġbene vol", + "ĠT ough", + "Ġmo im", + "Ġevac uate", + "Ġer rado", + "å© Ĩ", + "ÑĢÑĥ го", + "Ġíİ ĺ", + "ĠÎĵ ια", + "Ġweak en", + "Ġillum inated", + "Ġsig lo", + "ĠV acc", + "и ей", + "al is", + "ĠÑĥ ÑģÑĤÑĢой", + "Ġdon a", + "ÅĤ os", + "ü man", + "Ġprodu cción", + "Ġcl ot", + "ĠM ango", + "Ġune asy", + "Ġsh uts", + "ĠExam ples", + "ve ll", + "e be", + "Ġprompt ly", + "ĠT eles", + "ĠпÑĢоÑĪ л", + "Ġpu erta", + "Ġüber zeug", + "Ġco ch", + "so cial", + "ĠB enson", + "ĠM eth", + "ĠEx ped", + "Ġsupplement al", + "Ġconce ive", + "Ġ×ĺ ×ķ×ij", + "Ġcapt ivity", + "ıĻ ìķĪ", + "ĠÑħ Ñĥд", + "form ing", + "Ġupload s", + "Ġturbul ence", + "j oint", + "Ġsatisf actory", + "ĠAn ime", + "Ġwash es", + "Ġliber als", + "ĠSun shine", + "ĠRE AL", + "ub lik", + "b inary", + "T ony", + "Ġpolar ized", + "Ġenrich ed", + "t aking", + "ĠëģĿ ëĤĺ", + "Ġple asures", + "Ġex termin", + "in ese", + "at l", + "v är", + "аÑĢ Ñĭ", + "Ġmy ÅĽ", + "n arrator", + "Ġод ном", + "Ġnaj wiÄĻ", + "Ġmobil ize", + "Ġmill or", + "Ġat a", + "æ· ·", + "ĠpolÃŃt ico", + "Ġple ad", + "Ġpain ters", + "ĠS ow", + "о ÑĦ", + "ĠìĺĽ ëĤł", + "ĠÑĩ ÑĤоб", + "Ġs abor", + "ĠUnd ert", + "ĠJER RY", + "Å¡ ÃŃ", + "Ġë° ĸìĹIJ", + "Ġpréc éd", + "Ġannot ation", + "ĠI naudible", + "Ġtext ured", + "Ġfisher man", + "v ordan", + "icher ung", + "Ġìłģ ìĿ´", + "Ġge zeigt", + "Ġmand ates", + "Ġbe ak", + "ĠTW O", + "ĠAk bar", + "il ian", + "Ġtiế p", + "Ġsuperior ity", + "ink u", + "Ġl ys", + "ĠF CC", + "ĠC PA", + "ust ering", + "nic os", + "an ja", + "Ġch ills", + "ĠC age", + "Ġse aling", + "Ġsa ç", + "Ġded ans", + "ĠAl ger", + "Ġspe zie", + "Ġcol oss", + "ıy ı", + "clock wise", + "Ġexact amente", + "Ġ iemand", + "am ı", + "Ġmand ar", + "ra j", + "f aced", + "ag ua", + "Ġê¹ Ķë", + "Ġins besondere", + "Ġdri zzle", + "Ġdimin ish", + "ĠY oda", + "A I", + "Ġbil miyorum", + "ĠM MA", + "ateg ory", + "ĠпеÑĢ еп", + "Ġparticip ar", + "Ġnormal ized", + "Ġcomplex ities", + "æ´ ²", + "æİ §", + "аÑĢ ов", + "m ist", + "ich a", + "Gr oup", + "Ġresil iency", + "Ġnog le", + "ĠCN C", + "pr ü", + "Ġphysic ists", + "н ок", + "L I", + "Ġstuff s", + "Ġsist emas", + "Ġinterfer ing", + "ĠMar vin", + "ér cito", + "ĠìĹĨ ê³ł", + "Ġson ic", + "Ġequ iv", + "Ġab ord", + "ĠRam en", + "Ġ0 9", + "med im", + "at iques", + "Ġдел аÑİÑĤ", + "Ġunanim ously", + "Ġsk irts", + "ĠíĬ¹ ë³Ħ", + "ĠP rix", + "k ami", + "Ġfr uition", + "Ġbirthday s", + "ик ом", + "Ġinaug ural", + "Ġcorrel ate", + "ĠT ory", + "ĠëĤĺ ìģ", + "Ġde w", + "ĠPre cis", + "ih i", + "Ġë¬¸ìłľ ê°Ģ", + "Ġc iting", + "ĠL ana", + "ĠK ag", + "Ġplay through", + "ĠProt ocol", + "fr ist", + "hov ah", + "Ġmerc iful", + "Ġb ilingual", + "ĠG uitar", + "r h", + "Ġglam orous", + "ĠVik ings", + "ĠOoo oh", + "íķĺ ëĬĶëį°", + "ĠUg anda", + "Ġcollaps es", + "ent ry", + "Ġantioxid ants", + "ëĤ ĺë", + "ÑĪ аÑı", + "Ġtri via", + "Ġgä ller", + "Ġfun gi", + "Ġmil ks", + "Ġd icht", + "μ η", + "po ke", + "ĠвÑĭп ÑĥÑģк", + "Ġfeed er", + "ĠAl cohol", + "h ower", + "Ġdes erving", + "ĠRe bel", + "ios is", + "Ġ10 3", + "Ġhand out", + "Ġen m", + "Ġland lords", + "Ġge ology", + "r ils", + "Ġco bra", + "ĠV old", + "ĠP anch", + "ĠGRE G", + "Ġpr oss", + "Ġbrac elets", + "ĠV ega", + "Ġroz um", + "æ¬ ¾", + "аз д", + "ĠLy nd", + "ĠHon ors", + "Ġsurrend ered", + "Ġlibr arians", + "12 5", + "ĠÑģ иг", + "Ġuniform ly", + "ĠE agles", + "ìķ Ļ", + "иÑĤ ан", + "and id", + "ĠìłĪë ĮĢ", + "ĠØ ¶", + "Ġarrest s", + "ĠCS V", + "ĠAzerbai jan", + "ort ic", + "ĠD X", + "ĠAdvent ures", + "Ġab us", + "ĠF au", + "Ġschlim m", + "Ġratt ling", + "Ġconsum es", + "ĠTol kien", + "Ġresurrect ed", + "ĠX Y", + "íĬ¸ ê°Ģ", + "ĠвÑĭ ÑģÑĤÑĥп", + "ĠAng ie", + "żen ia", + "M ic", + "ĠShe ila", + "acht et", + "Ġover st", + "Ġl â", + "Ġine ffective", + "æĿ ¡", + "æĢİä¹Ī äºĨ", + "å¿ Ļ", + "Ġwicht iger", + "Ġv ino", + "Ġp um", + "Ġang led", + "ĠP ione", + "ĠM ỹ", + "ãģĿãĤĮ ãģ¯", + "wo ÅĽÄĩ", + "d raw", + "ั à¹Ī", + "mark ets", + "Ġcaf es", + "ĠC em", + "â Ŀ¤", + "ĠS uit", + "M K", + "Ġemphas izes", + "Ġtort illa", + "Ġmejor ar", + "ĠSur viv", + "cast ing", + "Ġeduc ación", + "ĠG um", + "u ely", + "ĠìĹ¬ê¸° ëĬĶ", + "Ġstretch y", + "en ça", + "Ġwith hold", + "Ġex iting", + "Ġenthal py", + "ĠTrans it", + "ıl mÄ±ÅŁ", + "al ies", + "Ġsal var", + "Ġlean ed", + "ĠgroÃŁ es", + "Ġf itt", + "ак и", + "S arah", + "Ġhost el", + "Ġfinger na", + "Ġnadzie jÄĻ", + "w ives", + "R ec", + "Ġsp ool", + "аÑĤ ов", + "ĠEn emy", + "Ġf ury", + "Ġdet ta", + "ĠF ay", + "éļ ¨", + "Ñı ÑİÑĤ", + "Ġaproxim adamente", + "Ġsil os", + "Ġmag ist", + "Ġc ree", + "ĠKr ank", + "ĠD OWN", + "Ġstart led", + "Ġre born", + "ĠUm welt", + "ĠSuz anne", + "ни ÑĨÑĭ", + "out ez", + "ĠJ AC", + "y ards", + "rad as", + "ra u", + "ip ts", + "h ail", + "Ġparagraph s", + "Ġme glio", + "Ġisol ating", + "Ġace ite", + "ĠH arsh", + "Ġcy st", + "ĠBlock chain", + "ĠÑħоÑĢоÑĪ ий", + "Ġvirt uous", + "Ġinvestig ación", + "Ġdev oir", + "Ġmast urb", + "ĠS ale", + "ÙĬر Ø©", + "ĠÎ §", + "ĠStra ÃŁen", + "Ġdi kk", + "Ġa fore", + "ĠJung kook", + "Ġcho ciaż", + "ĠDebat te", + "Ġweird ly", + "Ġvia je", + "reg ist", + "H elp", + "Ġkind eren", + "Ġform ulated", + "Ġenf im", + "ĠTow ards", + "ко ÑĹ", + "iver ing", + "ĠдеÑĤ и", + "char ger", + "Ġpur l", + "Ġacadem ically", + "ĠNur se", + "Ġdel eting", + "ay o", + "Ġref usal", + "Ġdepict s", + "ĠDr acula", + "Ġtoast ed", + "ĠZomb ie", + "ĠSuper ior", + "ĠB old", + "Ġquizz es", + "Ġg le", + "4 50", + "Ġcome ço", + "yn n", + "Ġver st", + "ĠO laf", + "Ġpom oc", + "ĠS ask", + "ë ĺ", + "ĠT CP", + "ĠProper ty", + "íķĺ ì£ł", + "à¸ľ ม", + "bo om", + "ar os", + "ĠÑĢоÑģÑģ ий", + "ĠбÑĭв аеÑĤ", + "åĩº åİ»", + "ĠìĿ´ìķ¼ 기를", + "Ġcomb ien", + "v acc", + "Ġeben falls", + "par a", + "Ġз м", + "Ġdesper ation", + "ord re", + "Ġש׾ ×Ļ", + "Ġgener ously", + "ĠÐŀ к", + "Ġorb iting", + "> ", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50258": { + "content": "<|startoftranscript|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50259": { + "content": "<|en|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50260": { + "content": "<|zh|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50261": { + "content": "<|de|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50262": { + "content": "<|es|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50263": { + "content": "<|ru|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50264": { + "content": "<|ko|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50265": { + "content": "<|fr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50266": { + "content": "<|ja|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50267": { + "content": "<|pt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50268": { + "content": "<|tr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50269": { + "content": "<|pl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50270": { + "content": "<|ca|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50271": { + "content": "<|nl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50272": { + "content": "<|ar|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50273": { + "content": "<|sv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50274": { + "content": "<|it|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50275": { + "content": "<|id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50276": { + "content": "<|hi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50277": { + "content": "<|fi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50278": { + "content": "<|vi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50279": { + "content": "<|he|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50280": { + "content": "<|uk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50281": { + "content": "<|el|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50282": { + "content": "<|ms|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50283": { + "content": "<|cs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50284": { + "content": "<|ro|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50285": { + "content": "<|da|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50286": { + "content": "<|hu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50287": { + "content": "<|ta|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50288": { + "content": "<|no|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50289": { + "content": "<|th|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50290": { + "content": "<|ur|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50291": { + "content": "<|hr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50292": { + "content": "<|bg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50293": { + "content": "<|lt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50294": { + "content": "<|la|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50295": { + "content": "<|mi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50296": { + "content": "<|ml|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50297": { + "content": "<|cy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50298": { + "content": "<|sk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50299": { + "content": "<|te|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50300": { + "content": "<|fa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50301": { + "content": "<|lv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50302": { + "content": "<|bn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50303": { + "content": "<|sr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50304": { + "content": "<|az|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50305": { + "content": "<|sl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50306": { + "content": "<|kn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50307": { + "content": "<|et|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50308": { + "content": "<|mk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50309": { + "content": "<|br|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50310": { + "content": "<|eu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50311": { + "content": "<|is|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50312": { + "content": "<|hy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50313": { + "content": "<|ne|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50314": { + "content": "<|mn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50315": { + "content": "<|bs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50316": { + "content": "<|kk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50317": { + "content": "<|sq|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50318": { + "content": "<|sw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50319": { + "content": "<|gl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50320": { + "content": "<|mr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50321": { + "content": "<|pa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50322": { + "content": "<|si|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50323": { + "content": "<|km|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50324": { + "content": "<|sn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50325": { + "content": "<|yo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50326": { + "content": "<|so|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50327": { + "content": "<|af|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50328": { + "content": "<|oc|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50329": { + "content": "<|ka|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50330": { + "content": "<|be|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50331": { + "content": "<|tg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50332": { + "content": "<|sd|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50333": { + "content": "<|gu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50334": { + "content": "<|am|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50335": { + "content": "<|yi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50336": { + "content": "<|lo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50337": { + "content": "<|uz|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50338": { + "content": "<|fo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50339": { + "content": "<|ht|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50340": { + "content": "<|ps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50341": { + "content": "<|tk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50342": { + "content": "<|nn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50343": { + "content": "<|mt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50344": { + "content": "<|sa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50345": { + "content": "<|lb|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50346": { + "content": "<|my|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50347": { + "content": "<|bo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50348": { + "content": "<|tl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50349": { + "content": "<|mg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50350": { + "content": "<|as|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50351": { + "content": "<|tt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50352": { + "content": "<|haw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50353": { + "content": "<|ln|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50354": { + "content": "<|ha|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50355": { + "content": "<|ba|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50356": { + "content": "<|jw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50357": { + "content": "<|su|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50358": { + "content": "<|yue|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50359": { + "content": "<|translate|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50360": { + "content": "<|transcribe|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50361": { + "content": "<|startoflm|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50362": { + "content": "<|startofprev|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50363": { + "content": "<|nospeech|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50364": { + "content": "<|notimestamps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50365": { + "content": "<|0.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50366": { + "content": "<|0.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50367": { + "content": "<|0.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50368": { + "content": "<|0.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50369": { + "content": "<|0.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50370": { + "content": "<|0.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50371": { + "content": "<|0.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50372": { + "content": "<|0.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50373": { + "content": "<|0.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50374": { + "content": "<|0.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50375": { + "content": "<|0.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50376": { + "content": "<|0.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50377": { + "content": "<|0.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50378": { + "content": "<|0.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50379": { + "content": "<|0.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50380": { + "content": "<|0.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50381": { + "content": "<|0.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50382": { + "content": "<|0.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50383": { + "content": "<|0.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50384": { + "content": "<|0.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50385": { + "content": "<|0.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50386": { + "content": "<|0.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50387": { + "content": "<|0.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50388": { + "content": "<|0.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50389": { + "content": "<|0.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50390": { + "content": "<|0.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50391": { + "content": "<|0.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50392": { + "content": "<|0.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50393": { + "content": "<|0.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50394": { + "content": "<|0.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50395": { + "content": "<|0.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50396": { + "content": "<|0.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50397": { + "content": "<|0.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50398": { + "content": "<|0.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50399": { + "content": "<|0.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50400": { + "content": "<|0.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50401": { + "content": "<|0.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50402": { + "content": "<|0.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50403": { + "content": "<|0.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50404": { + "content": "<|0.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50405": { + "content": "<|0.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50406": { + "content": "<|0.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50407": { + "content": "<|0.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50408": { + "content": "<|0.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50409": { + "content": "<|0.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50410": { + "content": "<|0.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50411": { + "content": "<|0.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50412": { + "content": "<|0.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50413": { + "content": "<|0.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50414": { + "content": "<|0.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50415": { + "content": "<|1.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50416": { + "content": "<|1.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50417": { + "content": "<|1.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50418": { + "content": "<|1.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50419": { + "content": "<|1.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50420": { + "content": "<|1.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50421": { + "content": "<|1.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50422": { + "content": "<|1.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50423": { + "content": "<|1.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50424": { + "content": "<|1.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50425": { + "content": "<|1.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50426": { + "content": "<|1.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50427": { + "content": "<|1.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50428": { + "content": "<|1.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50429": { + "content": "<|1.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50430": { + "content": "<|1.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50431": { + "content": "<|1.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50432": { + "content": "<|1.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50433": { + "content": "<|1.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50434": { + "content": "<|1.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50435": { + "content": "<|1.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50436": { + "content": "<|1.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50437": { + "content": "<|1.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50438": { + "content": "<|1.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50439": { + "content": "<|1.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50440": { + "content": "<|1.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50441": { + "content": "<|1.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50442": { + "content": "<|1.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50443": { + "content": "<|1.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50444": { + "content": "<|1.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50445": { + "content": "<|1.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50446": { + "content": "<|1.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50447": { + "content": "<|1.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50448": { + "content": "<|1.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50449": { + "content": "<|1.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50450": { + "content": "<|1.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50451": { + "content": "<|1.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50452": { + "content": "<|1.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50453": { + "content": "<|1.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50454": { + "content": "<|1.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50455": { + "content": "<|1.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50456": { + "content": "<|1.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50457": { + "content": "<|1.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50458": { + "content": "<|1.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50459": { + "content": "<|1.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50460": { + "content": "<|1.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50461": { + "content": "<|1.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50462": { + "content": "<|1.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50463": { + "content": "<|1.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50464": { + "content": "<|1.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50465": { + "content": "<|2.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50466": { + "content": "<|2.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50467": { + "content": "<|2.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50468": { + "content": "<|2.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50469": { + "content": "<|2.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50470": { + "content": "<|2.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50471": { + "content": "<|2.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50472": { + "content": "<|2.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50473": { + "content": "<|2.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50474": { + "content": "<|2.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50475": { + "content": "<|2.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50476": { + "content": "<|2.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50477": { + "content": "<|2.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50478": { + "content": "<|2.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50479": { + "content": "<|2.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50480": { + "content": "<|2.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50481": { + "content": "<|2.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50482": { + "content": "<|2.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50483": { + "content": "<|2.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50484": { + "content": "<|2.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50485": { + "content": "<|2.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50486": { + "content": "<|2.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50487": { + "content": "<|2.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50488": { + "content": "<|2.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50489": { + "content": "<|2.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50490": { + "content": "<|2.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50491": { + "content": "<|2.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50492": { + "content": "<|2.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50493": { + "content": "<|2.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50494": { + "content": "<|2.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50495": { + "content": "<|2.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50496": { + "content": "<|2.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50497": { + "content": "<|2.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50498": { + "content": "<|2.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50499": { + "content": "<|2.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50500": { + "content": "<|2.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50501": { + "content": "<|2.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50502": { + "content": "<|2.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50503": { + "content": "<|2.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50504": { + "content": "<|2.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50505": { + "content": "<|2.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50506": { + "content": "<|2.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50507": { + "content": "<|2.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50508": { + "content": "<|2.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50509": { + "content": "<|2.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50510": { + "content": "<|2.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50511": { + "content": "<|2.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50512": { + "content": "<|2.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50513": { + "content": "<|2.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50514": { + "content": "<|2.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50515": { + "content": "<|3.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50516": { + "content": "<|3.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50517": { + "content": "<|3.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50518": { + "content": "<|3.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50519": { + "content": "<|3.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50520": { + "content": "<|3.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50521": { + "content": "<|3.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50522": { + "content": "<|3.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50523": { + "content": "<|3.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50524": { + "content": "<|3.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50525": { + "content": "<|3.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50526": { + "content": "<|3.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50527": { + "content": "<|3.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50528": { + "content": "<|3.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50529": { + "content": "<|3.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50530": { + "content": "<|3.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50531": { + "content": "<|3.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50532": { + "content": "<|3.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50533": { + "content": "<|3.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50534": { + "content": "<|3.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50535": { + "content": "<|3.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50536": { + "content": "<|3.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50537": { + "content": "<|3.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50538": { + "content": "<|3.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50539": { + "content": "<|3.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50540": { + "content": "<|3.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50541": { + "content": "<|3.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50542": { + "content": "<|3.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50543": { + "content": "<|3.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50544": { + "content": "<|3.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50545": { + "content": "<|3.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50546": { + "content": "<|3.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50547": { + "content": "<|3.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50548": { + "content": "<|3.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50549": { + "content": "<|3.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50550": { + "content": "<|3.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50551": { + "content": "<|3.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50552": { + "content": "<|3.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50553": { + "content": "<|3.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50554": { + "content": "<|3.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50555": { + "content": "<|3.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50556": { + "content": "<|3.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50557": { + "content": "<|3.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50558": { + "content": "<|3.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50559": { + "content": "<|3.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50560": { + "content": "<|3.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50561": { + "content": "<|3.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50562": { + "content": "<|3.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50563": { + "content": "<|3.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50564": { + "content": "<|3.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50565": { + "content": "<|4.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50566": { + "content": "<|4.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50567": { + "content": "<|4.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50568": { + "content": "<|4.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50569": { + "content": "<|4.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50570": { + "content": "<|4.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50571": { + "content": "<|4.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50572": { + "content": "<|4.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50573": { + "content": "<|4.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50574": { + "content": "<|4.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50575": { + "content": "<|4.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50576": { + "content": "<|4.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50577": { + "content": "<|4.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50578": { + "content": "<|4.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50579": { + "content": "<|4.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50580": { + "content": "<|4.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50581": { + "content": "<|4.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50582": { + "content": "<|4.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50583": { + "content": "<|4.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50584": { + "content": "<|4.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50585": { + "content": "<|4.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50586": { + "content": "<|4.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50587": { + "content": "<|4.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50588": { + "content": "<|4.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50589": { + "content": "<|4.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50590": { + "content": "<|4.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50591": { + "content": "<|4.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50592": { + "content": "<|4.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50593": { + "content": "<|4.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50594": { + "content": "<|4.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50595": { + "content": "<|4.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50596": { + "content": "<|4.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50597": { + "content": "<|4.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50598": { + "content": "<|4.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50599": { + "content": "<|4.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50600": { + "content": "<|4.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50601": { + "content": "<|4.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50602": { + "content": "<|4.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50603": { + "content": "<|4.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50604": { + "content": "<|4.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50605": { + "content": "<|4.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50606": { + "content": "<|4.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50607": { + "content": "<|4.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50608": { + "content": "<|4.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50609": { + "content": "<|4.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50610": { + "content": "<|4.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50611": { + "content": "<|4.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50612": { + "content": "<|4.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50613": { + "content": "<|4.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50614": { + "content": "<|4.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50615": { + "content": "<|5.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50616": { + "content": "<|5.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50617": { + "content": "<|5.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50618": { + "content": "<|5.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50619": { + "content": "<|5.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50620": { + "content": "<|5.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50621": { + "content": "<|5.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50622": { + "content": "<|5.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50623": { + "content": "<|5.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50624": { + "content": "<|5.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50625": { + "content": "<|5.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50626": { + "content": "<|5.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50627": { + "content": "<|5.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50628": { + "content": "<|5.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50629": { + "content": "<|5.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50630": { + "content": "<|5.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50631": { + "content": "<|5.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50632": { + "content": "<|5.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50633": { + "content": "<|5.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50634": { + "content": "<|5.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50635": { + "content": "<|5.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50636": { + "content": "<|5.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50637": { + "content": "<|5.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50638": { + "content": "<|5.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50639": { + "content": "<|5.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50640": { + "content": "<|5.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50641": { + "content": "<|5.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50642": { + "content": "<|5.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50643": { + "content": "<|5.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50644": { + "content": "<|5.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50645": { + "content": "<|5.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50646": { + "content": "<|5.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50647": { + "content": "<|5.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50648": { + "content": "<|5.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50649": { + "content": "<|5.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50650": { + "content": "<|5.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50651": { + "content": "<|5.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50652": { + "content": "<|5.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50653": { + "content": "<|5.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50654": { + "content": "<|5.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50655": { + "content": "<|5.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50656": { + "content": "<|5.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50657": { + "content": "<|5.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50658": { + "content": "<|5.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50659": { + "content": "<|5.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50660": { + "content": "<|5.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50661": { + "content": "<|5.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50662": { + "content": "<|5.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50663": { + "content": "<|5.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50664": { + "content": "<|5.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50665": { + "content": "<|6.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50666": { + "content": "<|6.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50667": { + "content": "<|6.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50668": { + "content": "<|6.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50669": { + "content": "<|6.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50670": { + "content": "<|6.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50671": { + "content": "<|6.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50672": { + "content": "<|6.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50673": { + "content": "<|6.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50674": { + "content": "<|6.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50675": { + "content": "<|6.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50676": { + "content": "<|6.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50677": { + "content": "<|6.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50678": { + "content": "<|6.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50679": { + "content": "<|6.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50680": { + "content": "<|6.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50681": { + "content": "<|6.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50682": { + "content": "<|6.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50683": { + "content": "<|6.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50684": { + "content": "<|6.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50685": { + "content": "<|6.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50686": { + "content": "<|6.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50687": { + "content": "<|6.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50688": { + "content": "<|6.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50689": { + "content": "<|6.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50690": { + "content": "<|6.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50691": { + "content": "<|6.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50692": { + "content": "<|6.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50693": { + "content": "<|6.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50694": { + "content": "<|6.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50695": { + "content": "<|6.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50696": { + "content": "<|6.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50697": { + "content": "<|6.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50698": { + "content": "<|6.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50699": { + "content": "<|6.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50700": { + "content": "<|6.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50701": { + "content": "<|6.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50702": { + "content": "<|6.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50703": { + "content": "<|6.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50704": { + "content": "<|6.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50705": { + "content": "<|6.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50706": { + "content": "<|6.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50707": { + "content": "<|6.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50708": { + "content": "<|6.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50709": { + "content": "<|6.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50710": { + "content": "<|6.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50711": { + "content": "<|6.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50712": { + "content": "<|6.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50713": { + "content": "<|6.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50714": { + "content": "<|6.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50715": { + "content": "<|7.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50716": { + "content": "<|7.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50717": { + "content": "<|7.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50718": { + "content": "<|7.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50719": { + "content": "<|7.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50720": { + "content": "<|7.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50721": { + "content": "<|7.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50722": { + "content": "<|7.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50723": { + "content": "<|7.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50724": { + "content": "<|7.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50725": { + "content": "<|7.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50726": { + "content": "<|7.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50727": { + "content": "<|7.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50728": { + "content": "<|7.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50729": { + "content": "<|7.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50730": { + "content": "<|7.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50731": { + "content": "<|7.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50732": { + "content": "<|7.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50733": { + "content": "<|7.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50734": { + "content": "<|7.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50735": { + "content": "<|7.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50736": { + "content": "<|7.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50737": { + "content": "<|7.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50738": { + "content": "<|7.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50739": { + "content": "<|7.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50740": { + "content": "<|7.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50741": { + "content": "<|7.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50742": { + "content": "<|7.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50743": { + "content": "<|7.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50744": { + "content": "<|7.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50745": { + "content": "<|7.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50746": { + "content": "<|7.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50747": { + "content": "<|7.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50748": { + "content": "<|7.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50749": { + "content": "<|7.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50750": { + "content": "<|7.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50751": { + "content": "<|7.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50752": { + "content": "<|7.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50753": { + "content": "<|7.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50754": { + "content": "<|7.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50755": { + "content": "<|7.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50756": { + "content": "<|7.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50757": { + "content": "<|7.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50758": { + "content": "<|7.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50759": { + "content": "<|7.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50760": { + "content": "<|7.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50761": { + "content": "<|7.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50762": { + "content": "<|7.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50763": { + "content": "<|7.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50764": { + "content": "<|7.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50765": { + "content": "<|8.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50766": { + "content": "<|8.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50767": { + "content": "<|8.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50768": { + "content": "<|8.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50769": { + "content": "<|8.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50770": { + "content": "<|8.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50771": { + "content": "<|8.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50772": { + "content": "<|8.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50773": { + "content": "<|8.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50774": { + "content": "<|8.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50775": { + "content": "<|8.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50776": { + "content": "<|8.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50777": { + "content": "<|8.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50778": { + "content": "<|8.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50779": { + "content": "<|8.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50780": { + "content": "<|8.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50781": { + "content": "<|8.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50782": { + "content": "<|8.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50783": { + "content": "<|8.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50784": { + "content": "<|8.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50785": { + "content": "<|8.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50786": { + "content": "<|8.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50787": { + "content": "<|8.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50788": { + "content": "<|8.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50789": { + "content": "<|8.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50790": { + "content": "<|8.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50791": { + "content": "<|8.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50792": { + "content": "<|8.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50793": { + "content": "<|8.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50794": { + "content": "<|8.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50795": { + "content": "<|8.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50796": { + "content": "<|8.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50797": { + "content": "<|8.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50798": { + "content": "<|8.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50799": { + "content": "<|8.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50800": { + "content": "<|8.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50801": { + "content": "<|8.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50802": { + "content": "<|8.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50803": { + "content": "<|8.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50804": { + "content": "<|8.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50805": { + "content": "<|8.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50806": { + "content": "<|8.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50807": { + "content": "<|8.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50808": { + "content": "<|8.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50809": { + "content": "<|8.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50810": { + "content": "<|8.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50811": { + "content": "<|8.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50812": { + "content": "<|8.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50813": { + "content": "<|8.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50814": { + "content": "<|8.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50815": { + "content": "<|9.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50816": { + "content": "<|9.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50817": { + "content": "<|9.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50818": { + "content": "<|9.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50819": { + "content": "<|9.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50820": { + "content": "<|9.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50821": { + "content": "<|9.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50822": { + "content": "<|9.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50823": { + "content": "<|9.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50824": { + "content": "<|9.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50825": { + "content": "<|9.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50826": { + "content": "<|9.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50827": { + "content": "<|9.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50828": { + "content": "<|9.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50829": { + "content": "<|9.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50830": { + "content": "<|9.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50831": { + "content": "<|9.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50832": { + "content": "<|9.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50833": { + "content": "<|9.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50834": { + "content": "<|9.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50835": { + "content": "<|9.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50836": { + "content": "<|9.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50837": { + "content": "<|9.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50838": { + "content": "<|9.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50839": { + "content": "<|9.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50840": { + "content": "<|9.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50841": { + "content": "<|9.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50842": { + "content": "<|9.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50843": { + "content": "<|9.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50844": { + "content": "<|9.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50845": { + "content": "<|9.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50846": { + "content": "<|9.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50847": { + "content": "<|9.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50848": { + "content": "<|9.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50849": { + "content": "<|9.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50850": { + "content": "<|9.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50851": { + "content": "<|9.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50852": { + "content": "<|9.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50853": { + "content": "<|9.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50854": { + "content": "<|9.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50855": { + "content": "<|9.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50856": { + "content": "<|9.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50857": { + "content": "<|9.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50858": { + "content": "<|9.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50859": { + "content": "<|9.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50860": { + "content": "<|9.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50861": { + "content": "<|9.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50862": { + "content": "<|9.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50863": { + "content": "<|9.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50864": { + "content": "<|9.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50865": { + "content": "<|10.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50866": { + "content": "<|10.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50867": { + "content": "<|10.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50868": { + "content": "<|10.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50869": { + "content": "<|10.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50870": { + "content": "<|10.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50871": { + "content": "<|10.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50872": { + "content": "<|10.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50873": { + "content": "<|10.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50874": { + "content": "<|10.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50875": { + "content": "<|10.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50876": { + "content": "<|10.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50877": { + "content": "<|10.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50878": { + "content": "<|10.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50879": { + "content": "<|10.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50880": { + "content": "<|10.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50881": { + "content": "<|10.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50882": { + "content": "<|10.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50883": { + "content": "<|10.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50884": { + "content": "<|10.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50885": { + "content": "<|10.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50886": { + "content": "<|10.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50887": { + "content": "<|10.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50888": { + "content": "<|10.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50889": { + "content": "<|10.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50890": { + "content": "<|10.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50891": { + "content": "<|10.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50892": { + "content": "<|10.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50893": { + "content": "<|10.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50894": { + "content": "<|10.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50895": { + "content": "<|10.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50896": { + "content": "<|10.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50897": { + "content": "<|10.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50898": { + "content": "<|10.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50899": { + "content": "<|10.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50900": { + "content": "<|10.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50901": { + "content": "<|10.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50902": { + "content": "<|10.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50903": { + "content": "<|10.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50904": { + "content": "<|10.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50905": { + "content": "<|10.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50906": { + "content": "<|10.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50907": { + "content": "<|10.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50908": { + "content": "<|10.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50909": { + "content": "<|10.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50910": { + "content": "<|10.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50911": { + "content": "<|10.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50912": { + "content": "<|10.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50913": { + "content": "<|10.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50914": { + "content": "<|10.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50915": { + "content": "<|11.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50916": { + "content": "<|11.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50917": { + "content": "<|11.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50918": { + "content": "<|11.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50919": { + "content": "<|11.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50920": { + "content": "<|11.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50921": { + "content": "<|11.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50922": { + "content": "<|11.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50923": { + "content": "<|11.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50924": { + "content": "<|11.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50925": { + "content": "<|11.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50926": { + "content": "<|11.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50927": { + "content": "<|11.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50928": { + "content": "<|11.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50929": { + "content": "<|11.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50930": { + "content": "<|11.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50931": { + "content": "<|11.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50932": { + "content": "<|11.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50933": { + "content": "<|11.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50934": { + "content": "<|11.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50935": { + "content": "<|11.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50936": { + "content": "<|11.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50937": { + "content": "<|11.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50938": { + "content": "<|11.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50939": { + "content": "<|11.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50940": { + "content": "<|11.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50941": { + "content": "<|11.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50942": { + "content": "<|11.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50943": { + "content": "<|11.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50944": { + "content": "<|11.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50945": { + "content": "<|11.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50946": { + "content": "<|11.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50947": { + "content": "<|11.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50948": { + "content": "<|11.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50949": { + "content": "<|11.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50950": { + "content": "<|11.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50951": { + "content": "<|11.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50952": { + "content": "<|11.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50953": { + "content": "<|11.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50954": { + "content": "<|11.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50955": { + "content": "<|11.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50956": { + "content": "<|11.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50957": { + "content": "<|11.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50958": { + "content": "<|11.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50959": { + "content": "<|11.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50960": { + "content": "<|11.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50961": { + "content": "<|11.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50962": { + "content": "<|11.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50963": { + "content": "<|11.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50964": { + "content": "<|11.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50965": { + "content": "<|12.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50966": { + "content": "<|12.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50967": { + "content": "<|12.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50968": { + "content": "<|12.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50969": { + "content": "<|12.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50970": { + "content": "<|12.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50971": { + "content": "<|12.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50972": { + "content": "<|12.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50973": { + "content": "<|12.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50974": { + "content": "<|12.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50975": { + "content": "<|12.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50976": { + "content": "<|12.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50977": { + "content": "<|12.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50978": { + "content": "<|12.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50979": { + "content": "<|12.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50980": { + "content": "<|12.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50981": { + "content": "<|12.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50982": { + "content": "<|12.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50983": { + "content": "<|12.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50984": { + "content": "<|12.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50985": { + "content": "<|12.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50986": { + "content": "<|12.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50987": { + "content": "<|12.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50988": { + "content": "<|12.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50989": { + "content": "<|12.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50990": { + "content": "<|12.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50991": { + "content": "<|12.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50992": { + "content": "<|12.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50993": { + "content": "<|12.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50994": { + "content": "<|12.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50995": { + "content": "<|12.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50996": { + "content": "<|12.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50997": { + "content": "<|12.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50998": { + "content": "<|12.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50999": { + "content": "<|12.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51000": { + "content": "<|12.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51001": { + "content": "<|12.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51002": { + "content": "<|12.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51003": { + "content": "<|12.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51004": { + "content": "<|12.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51005": { + "content": "<|12.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51006": { + "content": "<|12.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51007": { + "content": "<|12.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51008": { + "content": "<|12.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51009": { + "content": "<|12.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51010": { + "content": "<|12.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51011": { + "content": "<|12.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51012": { + "content": "<|12.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51013": { + "content": "<|12.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51014": { + "content": "<|12.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51015": { + "content": "<|13.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51016": { + "content": "<|13.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51017": { + "content": "<|13.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51018": { + "content": "<|13.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51019": { + "content": "<|13.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51020": { + "content": "<|13.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51021": { + "content": "<|13.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51022": { + "content": "<|13.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51023": { + "content": "<|13.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51024": { + "content": "<|13.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51025": { + "content": "<|13.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51026": { + "content": "<|13.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51027": { + "content": "<|13.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51028": { + "content": "<|13.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51029": { + "content": "<|13.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51030": { + "content": "<|13.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51031": { + "content": "<|13.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51032": { + "content": "<|13.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51033": { + "content": "<|13.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51034": { + "content": "<|13.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51035": { + "content": "<|13.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51036": { + "content": "<|13.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51037": { + "content": "<|13.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51038": { + "content": "<|13.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51039": { + "content": "<|13.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51040": { + "content": "<|13.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51041": { + "content": "<|13.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51042": { + "content": "<|13.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51043": { + "content": "<|13.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51044": { + "content": "<|13.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51045": { + "content": "<|13.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51046": { + "content": "<|13.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51047": { + "content": "<|13.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51048": { + "content": "<|13.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51049": { + "content": "<|13.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51050": { + "content": "<|13.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51051": { + "content": "<|13.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51052": { + "content": "<|13.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51053": { + "content": "<|13.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51054": { + "content": "<|13.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51055": { + "content": "<|13.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51056": { + "content": "<|13.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51057": { + "content": "<|13.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51058": { + "content": "<|13.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51059": { + "content": "<|13.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51060": { + "content": "<|13.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51061": { + "content": "<|13.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51062": { + "content": "<|13.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51063": { + "content": "<|13.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51064": { + "content": "<|13.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51065": { + "content": "<|14.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51066": { + "content": "<|14.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51067": { + "content": "<|14.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51068": { + "content": "<|14.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51069": { + "content": "<|14.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51070": { + "content": "<|14.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51071": { + "content": "<|14.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51072": { + "content": "<|14.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51073": { + "content": "<|14.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51074": { + "content": "<|14.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51075": { + "content": "<|14.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51076": { + "content": "<|14.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51077": { + "content": "<|14.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51078": { + "content": "<|14.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51079": { + "content": "<|14.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51080": { + "content": "<|14.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51081": { + "content": "<|14.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51082": { + "content": "<|14.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51083": { + "content": "<|14.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51084": { + "content": "<|14.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51085": { + "content": "<|14.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51086": { + "content": "<|14.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51087": { + "content": "<|14.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51088": { + "content": "<|14.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51089": { + "content": "<|14.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51090": { + "content": "<|14.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51091": { + "content": "<|14.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51092": { + "content": "<|14.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51093": { + "content": "<|14.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51094": { + "content": "<|14.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51095": { + "content": "<|14.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51096": { + "content": "<|14.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51097": { + "content": "<|14.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51098": { + "content": "<|14.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51099": { + "content": "<|14.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51100": { + "content": "<|14.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51101": { + "content": "<|14.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51102": { + "content": "<|14.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51103": { + "content": "<|14.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51104": { + "content": "<|14.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51105": { + "content": "<|14.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51106": { + "content": "<|14.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51107": { + "content": "<|14.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51108": { + "content": "<|14.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51109": { + "content": "<|14.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51110": { + "content": "<|14.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51111": { + "content": "<|14.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51112": { + "content": "<|14.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51113": { + "content": "<|14.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51114": { + "content": "<|14.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51115": { + "content": "<|15.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51116": { + "content": "<|15.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51117": { + "content": "<|15.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51118": { + "content": "<|15.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51119": { + "content": "<|15.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51120": { + "content": "<|15.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51121": { + "content": "<|15.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51122": { + "content": "<|15.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51123": { + "content": "<|15.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51124": { + "content": "<|15.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51125": { + "content": "<|15.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51126": { + "content": "<|15.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51127": { + "content": "<|15.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51128": { + "content": "<|15.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51129": { + "content": "<|15.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51130": { + "content": "<|15.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51131": { + "content": "<|15.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51132": { + "content": "<|15.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51133": { + "content": "<|15.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51134": { + "content": "<|15.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51135": { + "content": "<|15.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51136": { + "content": "<|15.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51137": { + "content": "<|15.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51138": { + "content": "<|15.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51139": { + "content": "<|15.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51140": { + "content": "<|15.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51141": { + "content": "<|15.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51142": { + "content": "<|15.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51143": { + "content": "<|15.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51144": { + "content": "<|15.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51145": { + "content": "<|15.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51146": { + "content": "<|15.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51147": { + "content": "<|15.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51148": { + "content": "<|15.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51149": { + "content": "<|15.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51150": { + "content": "<|15.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51151": { + "content": "<|15.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51152": { + "content": "<|15.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51153": { + "content": "<|15.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51154": { + "content": "<|15.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51155": { + "content": "<|15.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51156": { + "content": "<|15.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51157": { + "content": "<|15.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51158": { + "content": "<|15.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51159": { + "content": "<|15.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51160": { + "content": "<|15.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51161": { + "content": "<|15.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51162": { + "content": "<|15.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51163": { + "content": "<|15.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51164": { + "content": "<|15.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51165": { + "content": "<|16.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51166": { + "content": "<|16.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51167": { + "content": "<|16.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51168": { + "content": "<|16.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51169": { + "content": "<|16.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51170": { + "content": "<|16.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51171": { + "content": "<|16.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51172": { + "content": "<|16.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51173": { + "content": "<|16.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51174": { + "content": "<|16.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51175": { + "content": "<|16.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51176": { + "content": "<|16.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51177": { + "content": "<|16.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51178": { + "content": "<|16.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51179": { + "content": "<|16.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51180": { + "content": "<|16.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51181": { + "content": "<|16.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51182": { + "content": "<|16.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51183": { + "content": "<|16.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51184": { + "content": "<|16.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51185": { + "content": "<|16.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51186": { + "content": "<|16.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51187": { + "content": "<|16.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51188": { + "content": "<|16.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51189": { + "content": "<|16.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51190": { + "content": "<|16.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51191": { + "content": "<|16.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51192": { + "content": "<|16.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51193": { + "content": "<|16.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51194": { + "content": "<|16.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51195": { + "content": "<|16.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51196": { + "content": "<|16.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51197": { + "content": "<|16.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51198": { + "content": "<|16.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51199": { + "content": "<|16.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51200": { + "content": "<|16.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51201": { + "content": "<|16.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51202": { + "content": "<|16.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51203": { + "content": "<|16.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51204": { + "content": "<|16.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51205": { + "content": "<|16.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51206": { + "content": "<|16.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51207": { + "content": "<|16.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51208": { + "content": "<|16.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51209": { + "content": "<|16.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51210": { + "content": "<|16.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51211": { + "content": "<|16.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51212": { + "content": "<|16.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51213": { + "content": "<|16.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51214": { + "content": "<|16.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51215": { + "content": "<|17.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51216": { + "content": "<|17.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51217": { + "content": "<|17.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51218": { + "content": "<|17.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51219": { + "content": "<|17.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51220": { + "content": "<|17.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51221": { + "content": "<|17.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51222": { + "content": "<|17.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51223": { + "content": "<|17.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51224": { + "content": "<|17.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51225": { + "content": "<|17.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51226": { + "content": "<|17.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51227": { + "content": "<|17.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51228": { + "content": "<|17.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51229": { + "content": "<|17.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51230": { + "content": "<|17.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51231": { + "content": "<|17.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51232": { + "content": "<|17.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51233": { + "content": "<|17.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51234": { + "content": "<|17.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51235": { + "content": "<|17.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51236": { + "content": "<|17.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51237": { + "content": "<|17.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51238": { + "content": "<|17.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51239": { + "content": "<|17.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51240": { + "content": "<|17.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51241": { + "content": "<|17.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51242": { + "content": "<|17.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51243": { + "content": "<|17.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51244": { + "content": "<|17.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51245": { + "content": "<|17.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51246": { + "content": "<|17.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51247": { + "content": "<|17.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51248": { + "content": "<|17.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51249": { + "content": "<|17.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51250": { + "content": "<|17.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51251": { + "content": "<|17.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51252": { + "content": "<|17.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51253": { + "content": "<|17.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51254": { + "content": "<|17.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51255": { + "content": "<|17.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51256": { + "content": "<|17.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51257": { + "content": "<|17.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51258": { + "content": "<|17.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51259": { + "content": "<|17.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51260": { + "content": "<|17.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51261": { + "content": "<|17.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51262": { + "content": "<|17.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51263": { + "content": "<|17.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51264": { + "content": "<|17.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51265": { + "content": "<|18.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51266": { + "content": "<|18.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51267": { + "content": "<|18.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51268": { + "content": "<|18.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51269": { + "content": "<|18.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51270": { + "content": "<|18.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51271": { + "content": "<|18.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51272": { + "content": "<|18.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51273": { + "content": "<|18.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51274": { + "content": "<|18.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51275": { + "content": "<|18.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51276": { + "content": "<|18.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51277": { + "content": "<|18.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51278": { + "content": "<|18.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51279": { + "content": "<|18.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51280": { + "content": "<|18.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51281": { + "content": "<|18.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51282": { + "content": "<|18.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51283": { + "content": "<|18.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51284": { + "content": "<|18.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51285": { + "content": "<|18.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51286": { + "content": "<|18.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51287": { + "content": "<|18.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51288": { + "content": "<|18.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51289": { + "content": "<|18.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51290": { + "content": "<|18.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51291": { + "content": "<|18.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51292": { + "content": "<|18.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51293": { + "content": "<|18.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51294": { + "content": "<|18.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51295": { + "content": "<|18.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51296": { + "content": "<|18.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51297": { + "content": "<|18.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51298": { + "content": "<|18.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51299": { + "content": "<|18.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51300": { + "content": "<|18.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51301": { + "content": "<|18.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51302": { + "content": "<|18.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51303": { + "content": "<|18.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51304": { + "content": "<|18.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51305": { + "content": "<|18.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51306": { + "content": "<|18.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51307": { + "content": "<|18.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51308": { + "content": "<|18.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51309": { + "content": "<|18.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51310": { + "content": "<|18.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51311": { + "content": "<|18.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51312": { + "content": "<|18.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51313": { + "content": "<|18.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51314": { + "content": "<|18.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51315": { + "content": "<|19.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51316": { + "content": "<|19.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51317": { + "content": "<|19.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51318": { + "content": "<|19.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51319": { + "content": "<|19.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51320": { + "content": "<|19.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51321": { + "content": "<|19.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51322": { + "content": "<|19.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51323": { + "content": "<|19.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51324": { + "content": "<|19.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51325": { + "content": "<|19.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51326": { + "content": "<|19.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51327": { + "content": "<|19.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51328": { + "content": "<|19.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51329": { + "content": "<|19.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51330": { + "content": "<|19.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51331": { + "content": "<|19.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51332": { + "content": "<|19.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51333": { + "content": "<|19.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51334": { + "content": "<|19.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51335": { + "content": "<|19.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51336": { + "content": "<|19.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51337": { + "content": "<|19.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51338": { + "content": "<|19.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51339": { + "content": "<|19.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51340": { + "content": "<|19.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51341": { + "content": "<|19.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51342": { + "content": "<|19.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51343": { + "content": "<|19.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51344": { + "content": "<|19.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51345": { + "content": "<|19.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51346": { + "content": "<|19.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51347": { + "content": "<|19.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51348": { + "content": "<|19.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51349": { + "content": "<|19.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51350": { + "content": "<|19.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51351": { + "content": "<|19.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51352": { + "content": "<|19.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51353": { + "content": "<|19.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51354": { + "content": "<|19.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51355": { + "content": "<|19.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51356": { + "content": "<|19.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51357": { + "content": "<|19.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51358": { + "content": "<|19.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51359": { + "content": "<|19.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51360": { + "content": "<|19.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51361": { + "content": "<|19.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51362": { + "content": "<|19.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51363": { + "content": "<|19.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51364": { + "content": "<|19.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51365": { + "content": "<|20.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51366": { + "content": "<|20.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51367": { + "content": "<|20.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51368": { + "content": "<|20.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51369": { + "content": "<|20.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51370": { + "content": "<|20.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51371": { + "content": "<|20.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51372": { + "content": "<|20.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51373": { + "content": "<|20.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51374": { + "content": "<|20.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51375": { + "content": "<|20.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51376": { + "content": "<|20.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51377": { + "content": "<|20.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51378": { + "content": "<|20.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51379": { + "content": "<|20.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51380": { + "content": "<|20.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51381": { + "content": "<|20.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51382": { + "content": "<|20.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51383": { + "content": "<|20.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51384": { + "content": "<|20.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51385": { + "content": "<|20.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51386": { + "content": "<|20.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51387": { + "content": "<|20.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51388": { + "content": "<|20.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51389": { + "content": "<|20.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51390": { + "content": "<|20.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51391": { + "content": "<|20.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51392": { + "content": "<|20.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51393": { + "content": "<|20.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51394": { + "content": "<|20.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51395": { + "content": "<|20.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51396": { + "content": "<|20.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51397": { + "content": "<|20.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51398": { + "content": "<|20.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51399": { + "content": "<|20.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51400": { + "content": "<|20.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51401": { + "content": "<|20.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51402": { + "content": "<|20.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51403": { + "content": "<|20.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51404": { + "content": "<|20.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51405": { + "content": "<|20.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51406": { + "content": "<|20.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51407": { + "content": "<|20.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51408": { + "content": "<|20.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51409": { + "content": "<|20.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51410": { + "content": "<|20.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51411": { + "content": "<|20.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51412": { + "content": "<|20.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51413": { + "content": "<|20.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51414": { + "content": "<|20.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51415": { + "content": "<|21.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51416": { + "content": "<|21.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51417": { + "content": "<|21.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51418": { + "content": "<|21.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51419": { + "content": "<|21.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51420": { + "content": "<|21.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51421": { + "content": "<|21.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51422": { + "content": "<|21.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51423": { + "content": "<|21.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51424": { + "content": "<|21.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51425": { + "content": "<|21.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51426": { + "content": "<|21.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51427": { + "content": "<|21.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51428": { + "content": "<|21.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51429": { + "content": "<|21.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51430": { + "content": "<|21.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51431": { + "content": "<|21.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51432": { + "content": "<|21.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51433": { + "content": "<|21.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51434": { + "content": "<|21.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51435": { + "content": "<|21.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51436": { + "content": "<|21.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51437": { + "content": "<|21.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51438": { + "content": "<|21.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51439": { + "content": "<|21.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51440": { + "content": "<|21.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51441": { + "content": "<|21.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51442": { + "content": "<|21.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51443": { + "content": "<|21.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51444": { + "content": "<|21.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51445": { + "content": "<|21.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51446": { + "content": "<|21.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51447": { + "content": "<|21.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51448": { + "content": "<|21.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51449": { + "content": "<|21.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51450": { + "content": "<|21.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51451": { + "content": "<|21.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51452": { + "content": "<|21.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51453": { + "content": "<|21.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51454": { + "content": "<|21.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51455": { + "content": "<|21.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51456": { + "content": "<|21.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51457": { + "content": "<|21.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51458": { + "content": "<|21.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51459": { + "content": "<|21.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51460": { + "content": "<|21.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51461": { + "content": "<|21.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51462": { + "content": "<|21.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51463": { + "content": "<|21.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51464": { + "content": "<|21.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51465": { + "content": "<|22.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51466": { + "content": "<|22.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51467": { + "content": "<|22.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51468": { + "content": "<|22.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51469": { + "content": "<|22.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51470": { + "content": "<|22.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51471": { + "content": "<|22.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51472": { + "content": "<|22.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51473": { + "content": "<|22.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51474": { + "content": "<|22.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51475": { + "content": "<|22.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51476": { + "content": "<|22.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51477": { + "content": "<|22.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51478": { + "content": "<|22.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51479": { + "content": "<|22.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51480": { + "content": "<|22.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51481": { + "content": "<|22.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51482": { + "content": "<|22.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51483": { + "content": "<|22.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51484": { + "content": "<|22.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51485": { + "content": "<|22.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51486": { + "content": "<|22.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51487": { + "content": "<|22.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51488": { + "content": "<|22.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51489": { + "content": "<|22.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51490": { + "content": "<|22.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51491": { + "content": "<|22.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51492": { + "content": "<|22.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51493": { + "content": "<|22.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51494": { + "content": "<|22.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51495": { + "content": "<|22.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51496": { + "content": "<|22.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51497": { + "content": "<|22.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51498": { + "content": "<|22.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51499": { + "content": "<|22.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51500": { + "content": "<|22.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51501": { + "content": "<|22.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51502": { + "content": "<|22.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51503": { + "content": "<|22.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51504": { + "content": "<|22.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51505": { + "content": "<|22.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51506": { + "content": "<|22.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51507": { + "content": "<|22.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51508": { + "content": "<|22.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51509": { + "content": "<|22.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51510": { + "content": "<|22.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51511": { + "content": "<|22.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51512": { + "content": "<|22.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51513": { + "content": "<|22.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51514": { + "content": "<|22.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51515": { + "content": "<|23.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51516": { + "content": "<|23.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51517": { + "content": "<|23.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51518": { + "content": "<|23.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51519": { + "content": "<|23.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51520": { + "content": "<|23.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51521": { + "content": "<|23.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51522": { + "content": "<|23.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51523": { + "content": "<|23.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51524": { + "content": "<|23.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51525": { + "content": "<|23.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51526": { + "content": "<|23.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51527": { + "content": "<|23.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51528": { + "content": "<|23.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51529": { + "content": "<|23.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51530": { + "content": "<|23.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51531": { + "content": "<|23.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51532": { + "content": "<|23.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51533": { + "content": "<|23.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51534": { + "content": "<|23.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51535": { + "content": "<|23.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51536": { + "content": "<|23.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51537": { + "content": "<|23.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51538": { + "content": "<|23.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51539": { + "content": "<|23.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51540": { + "content": "<|23.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51541": { + "content": "<|23.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51542": { + "content": "<|23.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51543": { + "content": "<|23.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51544": { + "content": "<|23.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51545": { + "content": "<|23.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51546": { + "content": "<|23.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51547": { + "content": "<|23.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51548": { + "content": "<|23.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51549": { + "content": "<|23.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51550": { + "content": "<|23.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51551": { + "content": "<|23.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51552": { + "content": "<|23.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51553": { + "content": "<|23.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51554": { + "content": "<|23.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51555": { + "content": "<|23.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51556": { + "content": "<|23.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51557": { + "content": "<|23.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51558": { + "content": "<|23.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51559": { + "content": "<|23.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51560": { + "content": "<|23.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51561": { + "content": "<|23.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51562": { + "content": "<|23.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51563": { + "content": "<|23.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51564": { + "content": "<|23.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51565": { + "content": "<|24.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51566": { + "content": "<|24.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51567": { + "content": "<|24.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51568": { + "content": "<|24.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51569": { + "content": "<|24.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51570": { + "content": "<|24.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51571": { + "content": "<|24.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51572": { + "content": "<|24.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51573": { + "content": "<|24.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51574": { + "content": "<|24.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51575": { + "content": "<|24.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51576": { + "content": "<|24.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51577": { + "content": "<|24.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51578": { + "content": "<|24.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51579": { + "content": "<|24.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51580": { + "content": "<|24.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51581": { + "content": "<|24.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51582": { + "content": "<|24.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51583": { + "content": "<|24.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51584": { + "content": "<|24.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51585": { + "content": "<|24.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51586": { + "content": "<|24.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51587": { + "content": "<|24.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51588": { + "content": "<|24.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51589": { + "content": "<|24.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51590": { + "content": "<|24.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51591": { + "content": "<|24.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51592": { + "content": "<|24.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51593": { + "content": "<|24.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51594": { + "content": "<|24.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51595": { + "content": "<|24.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51596": { + "content": "<|24.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51597": { + "content": "<|24.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51598": { + "content": "<|24.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51599": { + "content": "<|24.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51600": { + "content": "<|24.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51601": { + "content": "<|24.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51602": { + "content": "<|24.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51603": { + "content": "<|24.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51604": { + "content": "<|24.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51605": { + "content": "<|24.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51606": { + "content": "<|24.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51607": { + "content": "<|24.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51608": { + "content": "<|24.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51609": { + "content": "<|24.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51610": { + "content": "<|24.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51611": { + "content": "<|24.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51612": { + "content": "<|24.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51613": { + "content": "<|24.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51614": { + "content": "<|24.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51615": { + "content": "<|25.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51616": { + "content": "<|25.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51617": { + "content": "<|25.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51618": { + "content": "<|25.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51619": { + "content": "<|25.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51620": { + "content": "<|25.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51621": { + "content": "<|25.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51622": { + "content": "<|25.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51623": { + "content": "<|25.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51624": { + "content": "<|25.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51625": { + "content": "<|25.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51626": { + "content": "<|25.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51627": { + "content": "<|25.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51628": { + "content": "<|25.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51629": { + "content": "<|25.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51630": { + "content": "<|25.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51631": { + "content": "<|25.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51632": { + "content": "<|25.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51633": { + "content": "<|25.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51634": { + "content": "<|25.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51635": { + "content": "<|25.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51636": { + "content": "<|25.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51637": { + "content": "<|25.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51638": { + "content": "<|25.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51639": { + "content": "<|25.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51640": { + "content": "<|25.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51641": { + "content": "<|25.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51642": { + "content": "<|25.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51643": { + "content": "<|25.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51644": { + "content": "<|25.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51645": { + "content": "<|25.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51646": { + "content": "<|25.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51647": { + "content": "<|25.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51648": { + "content": "<|25.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51649": { + "content": "<|25.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51650": { + "content": "<|25.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51651": { + "content": "<|25.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51652": { + "content": "<|25.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51653": { + "content": "<|25.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51654": { + "content": "<|25.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51655": { + "content": "<|25.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51656": { + "content": "<|25.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51657": { + "content": "<|25.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51658": { + "content": "<|25.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51659": { + "content": "<|25.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51660": { + "content": "<|25.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51661": { + "content": "<|25.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51662": { + "content": "<|25.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51663": { + "content": "<|25.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51664": { + "content": "<|25.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51665": { + "content": "<|26.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51666": { + "content": "<|26.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51667": { + "content": "<|26.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51668": { + "content": "<|26.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51669": { + "content": "<|26.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51670": { + "content": "<|26.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51671": { + "content": "<|26.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51672": { + "content": "<|26.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51673": { + "content": "<|26.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51674": { + "content": "<|26.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51675": { + "content": "<|26.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51676": { + "content": "<|26.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51677": { + "content": "<|26.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51678": { + "content": "<|26.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51679": { + "content": "<|26.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51680": { + "content": "<|26.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51681": { + "content": "<|26.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51682": { + "content": "<|26.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51683": { + "content": "<|26.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51684": { + "content": "<|26.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51685": { + "content": "<|26.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51686": { + "content": "<|26.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51687": { + "content": "<|26.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51688": { + "content": "<|26.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51689": { + "content": "<|26.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51690": { + "content": "<|26.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51691": { + "content": "<|26.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51692": { + "content": "<|26.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51693": { + "content": "<|26.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51694": { + "content": "<|26.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51695": { + "content": "<|26.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51696": { + "content": "<|26.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51697": { + "content": "<|26.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51698": { + "content": "<|26.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51699": { + "content": "<|26.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51700": { + "content": "<|26.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51701": { + "content": "<|26.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51702": { + "content": "<|26.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51703": { + "content": "<|26.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51704": { + "content": "<|26.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51705": { + "content": "<|26.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51706": { + "content": "<|26.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51707": { + "content": "<|26.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51708": { + "content": "<|26.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51709": { + "content": "<|26.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51710": { + "content": "<|26.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51711": { + "content": "<|26.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51712": { + "content": "<|26.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51713": { + "content": "<|26.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51714": { + "content": "<|26.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51715": { + "content": "<|27.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51716": { + "content": "<|27.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51717": { + "content": "<|27.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51718": { + "content": "<|27.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51719": { + "content": "<|27.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51720": { + "content": "<|27.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51721": { + "content": "<|27.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51722": { + "content": "<|27.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51723": { + "content": "<|27.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51724": { + "content": "<|27.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51725": { + "content": "<|27.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51726": { + "content": "<|27.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51727": { + "content": "<|27.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51728": { + "content": "<|27.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51729": { + "content": "<|27.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51730": { + "content": "<|27.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51731": { + "content": "<|27.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51732": { + "content": "<|27.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51733": { + "content": "<|27.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51734": { + "content": "<|27.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51735": { + "content": "<|27.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51736": { + "content": "<|27.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51737": { + "content": "<|27.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51738": { + "content": "<|27.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51739": { + "content": "<|27.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51740": { + "content": "<|27.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51741": { + "content": "<|27.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51742": { + "content": "<|27.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51743": { + "content": "<|27.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51744": { + "content": "<|27.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51745": { + "content": "<|27.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51746": { + "content": "<|27.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51747": { + "content": "<|27.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51748": { + "content": "<|27.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51749": { + "content": "<|27.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51750": { + "content": "<|27.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51751": { + "content": "<|27.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51752": { + "content": "<|27.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51753": { + "content": "<|27.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51754": { + "content": "<|27.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51755": { + "content": "<|27.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51756": { + "content": "<|27.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51757": { + "content": "<|27.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51758": { + "content": "<|27.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51759": { + "content": "<|27.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51760": { + "content": "<|27.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51761": { + "content": "<|27.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51762": { + "content": "<|27.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51763": { + "content": "<|27.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51764": { + "content": "<|27.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51765": { + "content": "<|28.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51766": { + "content": "<|28.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51767": { + "content": "<|28.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51768": { + "content": "<|28.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51769": { + "content": "<|28.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51770": { + "content": "<|28.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51771": { + "content": "<|28.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51772": { + "content": "<|28.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51773": { + "content": "<|28.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51774": { + "content": "<|28.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51775": { + "content": "<|28.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51776": { + "content": "<|28.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51777": { + "content": "<|28.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51778": { + "content": "<|28.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51779": { + "content": "<|28.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51780": { + "content": "<|28.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51781": { + "content": "<|28.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51782": { + "content": "<|28.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51783": { + "content": "<|28.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51784": { + "content": "<|28.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51785": { + "content": "<|28.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51786": { + "content": "<|28.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51787": { + "content": "<|28.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51788": { + "content": "<|28.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51789": { + "content": "<|28.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51790": { + "content": "<|28.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51791": { + "content": "<|28.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51792": { + "content": "<|28.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51793": { + "content": "<|28.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51794": { + "content": "<|28.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51795": { + "content": "<|28.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51796": { + "content": "<|28.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51797": { + "content": "<|28.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51798": { + "content": "<|28.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51799": { + "content": "<|28.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51800": { + "content": "<|28.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51801": { + "content": "<|28.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51802": { + "content": "<|28.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51803": { + "content": "<|28.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51804": { + "content": "<|28.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51805": { + "content": "<|28.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51806": { + "content": "<|28.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51807": { + "content": "<|28.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51808": { + "content": "<|28.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51809": { + "content": "<|28.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51810": { + "content": "<|28.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51811": { + "content": "<|28.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51812": { + "content": "<|28.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51813": { + "content": "<|28.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51814": { + "content": "<|28.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51815": { + "content": "<|29.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51816": { + "content": "<|29.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51817": { + "content": "<|29.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51818": { + "content": "<|29.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51819": { + "content": "<|29.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51820": { + "content": "<|29.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51821": { + "content": "<|29.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51822": { + "content": "<|29.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51823": { + "content": "<|29.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51824": { + "content": "<|29.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51825": { + "content": "<|29.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51826": { + "content": "<|29.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51827": { + "content": "<|29.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51828": { + "content": "<|29.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51829": { + "content": "<|29.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51830": { + "content": "<|29.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51831": { + "content": "<|29.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51832": { + "content": "<|29.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51833": { + "content": "<|29.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51834": { + "content": "<|29.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51835": { + "content": "<|29.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51836": { + "content": "<|29.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51837": { + "content": "<|29.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51838": { + "content": "<|29.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51839": { + "content": "<|29.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51840": { + "content": "<|29.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51841": { + "content": "<|29.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51842": { + "content": "<|29.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51843": { + "content": "<|29.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51844": { + "content": "<|29.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51845": { + "content": "<|29.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51846": { + "content": "<|29.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51847": { + "content": "<|29.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51848": { + "content": "<|29.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51849": { + "content": "<|29.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51850": { + "content": "<|29.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51851": { + "content": "<|29.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51852": { + "content": "<|29.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51853": { + "content": "<|29.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51854": { + "content": "<|29.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51855": { + "content": "<|29.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51856": { + "content": "<|29.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51857": { + "content": "<|29.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51858": { + "content": "<|29.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51859": { + "content": "<|29.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51860": { + "content": "<|29.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51861": { + "content": "<|29.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51862": { + "content": "<|29.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51863": { + "content": "<|29.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51864": { + "content": "<|29.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51865": { + "content": "<|30.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "additional_special_tokens": [ + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|yue|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nospeech|>", + "<|notimestamps|>" + ], + "bos_token": "<|endoftext|>", + "clean_up_tokenization_spaces": true, + "eos_token": "<|endoftext|>", + "errors": "replace", + "model_max_length": 1000000000000000019884624838656, + "pad_token": "<|endoftext|>", + "processor_class": "WhisperProcessor", + "tokenizer_class": "WhisperTokenizer", + "trust_remote_code": false, + "unk_token": "<|endoftext|>", + "use_fast": true +} diff --git a/train.log b/train.log new file mode 100644 index 0000000000000000000000000000000000000000..a103073fd532a4939b9f64bf04a52265f4d0d253 --- /dev/null +++ b/train.log @@ -0,0 +1,2940 @@ +[W socket.cpp:464] [c10d] The server socket cannot be initialized on [::]:29500 (errno: 97 - Address family not supported by protocol). +[W socket.cpp:697] [c10d] The client socket cannot be initialized to connect to [::ffff:127.0.0.1]:29500 (errno: 97 - Address family not supported by protocol). +[W socket.cpp:697] [c10d] The client socket cannot be initialized to connect to [::ffff:127.0.0.1]:29500 (errno: 97 - Address family not supported by protocol). +[W socket.cpp:697] [c10d] The client socket cannot be initialized to connect to [::ffff:127.0.0.1]:29500 (errno: 97 - Address family not supported by protocol). +wandb: Currently logged in as: salomon-kisters. Use `wandb login --relogin` to force relogin +wandb: WARNING Path ./wandb/wandb/ wasn't writable, using system temp directory. +wandb: WARNING Path ./wandb/wandb/ wasn't writable, using system temp directory +wandb: Tracking run with wandb version 0.17.1 +wandb: Run data is saved locally in /tmp/wandb/run-20240617_155355-q96nvxpq +wandb: Run `wandb offline` to turn off syncing. +wandb: Syncing run kind-shape-106 +wandb: ⭐️ View project at https://wandb.ai/salomon-kisters/distil-whisper +wandb: 🚀 View run at https://wandb.ai/salomon-kisters/distil-whisper/runs/q96nvxpq +06/17/2024 15:53:59 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False +06/17/2024 15:53:59 - INFO - __main__ - Training/evaluation parameters DistillationTrainingArguments( +_n_gpu=1, +accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}, +adafactor=False, +adam_beta1=0.9, +adam_beta2=0.999, +adam_epsilon=1e-08, +auto_find_batch_size=False, +batch_eval_metrics=False, +bf16=False, +bf16_full_eval=False, +data_seed=None, +dataloader_drop_last=False, +dataloader_num_workers=10, +dataloader_persistent_workers=False, +dataloader_pin_memory=True, +dataloader_prefetch_factor=None, +ddp_backend=None, +ddp_broadcast_buffers=None, +ddp_bucket_cap_mb=None, +ddp_find_unused_parameters=None, +ddp_timeout=7200, +debug=[], +deepspeed=None, +disable_tqdm=False, +dispatch_batches=None, +do_eval=True, +do_predict=False, +do_train=True, +dtype=bfloat16, +eval_accumulation_steps=None, +eval_delay=0, +eval_do_concat_batches=True, +eval_steps=5000.0, +eval_strategy=no, +evaluation_strategy=None, +fp16=False, +fp16_backend=auto, +fp16_full_eval=False, +fp16_opt_level=O1, +freeze_decoder=False, +freeze_embed_positions=False, +freeze_encoder=True, +fsdp=[], +fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, +fsdp_min_num_params=0, +fsdp_transformer_layer_cls_to_wrap=None, +full_determinism=False, +generation_config=None, +generation_max_length=None, +generation_num_beams=None, +gradient_accumulation_steps=1, +gradient_checkpointing=True, +gradient_checkpointing_kwargs=None, +greater_is_better=None, +group_by_length=False, +half_precision_backend=auto, +hub_always_push=False, +hub_model_id=None, +hub_private_repo=False, +hub_strategy=every_save, +hub_token=, +ignore_data_skip=False, +include_inputs_for_metrics=False, +include_num_input_tokens_seen=False, +include_tokens_per_second=False, +jit_mode_eval=False, +kl_weight=1.0, +label_names=None, +label_smoothing_factor=0.0, +learning_rate=0.0001, +length_column_name=length, +load_best_model_at_end=False, +local_rank=0, +log_level=passive, +log_level_replica=warning, +log_on_each_node=True, +logging_dir=./runs/Jun17_15-53-54_6296a7809286, +logging_first_step=False, +logging_nan_inf_filter=True, +logging_steps=25, +logging_strategy=steps, +lr_scheduler_kwargs={}, +lr_scheduler_type=linear, +max_grad_norm=1.0, +max_steps=100000, +metric_for_best_model=None, +mp_parameters=, +neftune_noise_alpha=None, +no_cuda=False, +num_train_epochs=3.0, +optim=adamw_torch, +optim_args=None, +optim_target_modules=None, +output_dir=./, +overwrite_output_dir=True, +past_index=-1, +per_device_eval_batch_size=8, +per_device_train_batch_size=8, +predict_with_generate=True, +prediction_loss_only=False, +push_to_hub=True, +push_to_hub_model_id=None, +push_to_hub_organization=None, +push_to_hub_token=, +ray_scope=last, +remove_unused_columns=True, +report_to=['wandb'], +restore_callback_states_from_checkpoint=False, +resume_from_checkpoint=None, +run_name=./, +save_on_each_node=False, +save_only_model=False, +save_safetensors=True, +save_steps=5000, +save_strategy=steps, +save_total_limit=5, +seed=42, +skip_memory_metrics=True, +sortish_sampler=False, +split_batches=None, +temperature=2.0, +tf32=None, +torch_compile=False, +torch_compile_backend=None, +torch_compile_mode=None, +torchdynamo=None, +tpu_metrics_debug=False, +tpu_num_cores=None, +use_cpu=False, +use_ipex=False, +use_legacy_prediction_loop=False, +use_mps_device=False, +warmup_ratio=0.0, +warmup_steps=500, +weight_decay=0.0, +) + Combining datasets...: 0%| | 0/1 [00:00": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 + }, + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50364, + "pad_token_id": 50257, + "prev_sot_token_id": 50362, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50359, + 50360, + 50361, + 50362, + 50363 + ], + "task_to_id": { + "transcribe": 50360, + "translate": 50359 + } +} + +loading weights file ./distil-large-v3-init/model.safetensors +Generate config GenerationConfig { + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "max_length": 448, + "pad_token_id": 50256 +} + +All model checkpoint weights were used when initializing WhisperForConditionalGeneration. + +All the weights of WhisperForConditionalGeneration were initialized from the model checkpoint at ./distil-large-v3-init. +If your task is similar to the task the model of the checkpoint was trained on, you can already use WhisperForConditionalGeneration for predictions without further training. +loading configuration file ./distil-large-v3-init/generation_config.json +Generate config GenerationConfig { + "alignment_heads": [ + [ + 7, + 0 + ], + [ + 10, + 17 + ], + [ + 12, + 18 + ], + [ + 13, + 12 + ], + [ + 16, + 1 + ], + [ + 17, + 14 + ], + [ + 19, + 11 + ], + [ + 21, + 4 + ], + [ + 24, + 1 + ], + [ + 25, + 6 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|yue|>": 50358, + "<|zh|>": 50260 + }, + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50364, + "pad_token_id": 50257, + "prev_sot_token_id": 50362, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50359, + 50360, + 50361, + 50362, + 50363 + ], + "task_to_id": { + "transcribe": 50360, + "translate": 50359 + } +} + +06/17/2024 15:54:22 - INFO - __main__ - Number of trainable parameters: 1.194e+08 +Feature extractor saved in ./preprocessor_config.json +tokenizer config file saved in ./tokenizer_config.json +Special tokens file saved in ./special_tokens_map.json +Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41. +Non-default generation parameters: {'max_length': 448, 'begin_suppress_tokens': [220, 50257]} +Configuration saved in ./config.json +Configuration saved in ./generation_config.json +loading configuration file ./preprocessor_config.json +Feature extractor WhisperFeatureExtractor { + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 128, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} + +loading file vocab.json +loading file tokenizer.json +loading file merges.txt +loading file normalizer.json +loading file added_tokens.json +loading file special_tokens_map.json +loading file tokenizer_config.json +Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. +Processor WhisperProcessor: +- feature_extractor: WhisperFeatureExtractor { + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 128, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} + +- tokenizer: WhisperTokenizer(name_or_path='./', vocab_size=50257, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<|endoftext|>', 'eos_token': '<|endoftext|>', 'unk_token': '<|endoftext|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|startoftranscript|>', '<|en|>', '<|zh|>', '<|de|>', '<|es|>', '<|ru|>', '<|ko|>', '<|fr|>', '<|ja|>', '<|pt|>', '<|tr|>', '<|pl|>', '<|ca|>', '<|nl|>', '<|ar|>', '<|sv|>', '<|it|>', '<|id|>', '<|hi|>', '<|fi|>', '<|vi|>', '<|he|>', '<|uk|>', '<|el|>', '<|ms|>', '<|cs|>', '<|ro|>', '<|da|>', '<|hu|>', '<|ta|>', '<|no|>', '<|th|>', '<|ur|>', '<|hr|>', '<|bg|>', '<|lt|>', '<|la|>', '<|mi|>', '<|ml|>', '<|cy|>', '<|sk|>', '<|te|>', '<|fa|>', '<|lv|>', '<|bn|>', '<|sr|>', '<|az|>', '<|sl|>', '<|kn|>', '<|et|>', '<|mk|>', '<|br|>', '<|eu|>', '<|is|>', '<|hy|>', '<|ne|>', '<|mn|>', '<|bs|>', '<|kk|>', '<|sq|>', '<|sw|>', '<|gl|>', '<|mr|>', '<|pa|>', '<|si|>', '<|km|>', '<|sn|>', '<|yo|>', '<|so|>', '<|af|>', '<|oc|>', '<|ka|>', '<|be|>', '<|tg|>', '<|sd|>', '<|gu|>', '<|am|>', '<|yi|>', '<|lo|>', '<|uz|>', '<|fo|>', '<|ht|>', '<|ps|>', '<|tk|>', '<|nn|>', '<|mt|>', '<|sa|>', '<|lb|>', '<|my|>', '<|bo|>', '<|tl|>', '<|mg|>', '<|as|>', '<|tt|>', '<|haw|>', '<|ln|>', '<|ha|>', '<|ba|>', '<|jw|>', '<|su|>', '<|yue|>', '<|translate|>', '<|transcribe|>', '<|startoflm|>', '<|startofprev|>', '<|nospeech|>', '<|notimestamps|>']}, clean_up_tokenization_spaces=True), added_tokens_decoder={ + 50257: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50258: AddedToken("<|startoftranscript|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50259: AddedToken("<|en|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50260: AddedToken("<|zh|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50261: AddedToken("<|de|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50262: AddedToken("<|es|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50263: AddedToken("<|ru|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50264: AddedToken("<|ko|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50265: AddedToken("<|fr|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50266: AddedToken("<|ja|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50267: AddedToken("<|pt|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50268: AddedToken("<|tr|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50269: AddedToken("<|pl|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50270: AddedToken("<|ca|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50271: AddedToken("<|nl|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50272: AddedToken("<|ar|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50273: AddedToken("<|sv|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50274: AddedToken("<|it|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50275: AddedToken("<|id|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50276: AddedToken("<|hi|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50277: AddedToken("<|fi|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50278: AddedToken("<|vi|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50279: AddedToken("<|he|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50280: AddedToken("<|uk|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50281: AddedToken("<|el|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50282: AddedToken("<|ms|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50283: AddedToken("<|cs|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50284: AddedToken("<|ro|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50285: AddedToken("<|da|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50286: AddedToken("<|hu|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50287: AddedToken("<|ta|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50288: AddedToken("<|no|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50289: AddedToken("<|th|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50290: AddedToken("<|ur|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50291: AddedToken("<|hr|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50292: AddedToken("<|bg|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50293: AddedToken("<|lt|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50294: AddedToken("<|la|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50295: AddedToken("<|mi|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50296: AddedToken("<|ml|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50297: AddedToken("<|cy|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50298: AddedToken("<|sk|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50299: AddedToken("<|te|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50300: AddedToken("<|fa|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50301: AddedToken("<|lv|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50302: AddedToken("<|bn|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50303: AddedToken("<|sr|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50304: AddedToken("<|az|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50305: AddedToken("<|sl|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50306: AddedToken("<|kn|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50307: AddedToken("<|et|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50308: AddedToken("<|mk|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50309: AddedToken("<|br|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50310: AddedToken("<|eu|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50311: AddedToken("<|is|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50312: AddedToken("<|hy|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50313: AddedToken("<|ne|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50314: AddedToken("<|mn|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50315: AddedToken("<|bs|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50316: AddedToken("<|kk|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50317: AddedToken("<|sq|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50318: AddedToken("<|sw|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50319: AddedToken("<|gl|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50320: AddedToken("<|mr|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50321: AddedToken("<|pa|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50322: AddedToken("<|si|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50323: AddedToken("<|km|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50324: AddedToken("<|sn|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50325: AddedToken("<|yo|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50326: AddedToken("<|so|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50327: AddedToken("<|af|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50328: AddedToken("<|oc|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50329: AddedToken("<|ka|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50330: AddedToken("<|be|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50331: AddedToken("<|tg|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50332: AddedToken("<|sd|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50333: AddedToken("<|gu|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50334: AddedToken("<|am|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50335: AddedToken("<|yi|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50336: AddedToken("<|lo|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50337: AddedToken("<|uz|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50338: AddedToken("<|fo|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50339: AddedToken("<|ht|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50340: AddedToken("<|ps|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50341: AddedToken("<|tk|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50342: AddedToken("<|nn|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50343: AddedToken("<|mt|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50344: AddedToken("<|sa|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50345: AddedToken("<|lb|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50346: AddedToken("<|my|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50347: AddedToken("<|bo|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50348: AddedToken("<|tl|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50349: AddedToken("<|mg|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50350: AddedToken("<|as|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50351: AddedToken("<|tt|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50352: AddedToken("<|haw|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50353: AddedToken("<|ln|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50354: AddedToken("<|ha|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50355: AddedToken("<|ba|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50356: AddedToken("<|jw|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50357: AddedToken("<|su|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50358: AddedToken("<|yue|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50359: AddedToken("<|translate|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50360: AddedToken("<|transcribe|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50361: AddedToken("<|startoflm|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50362: AddedToken("<|startofprev|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50363: AddedToken("<|nospeech|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50364: AddedToken("<|notimestamps|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), + 50365: AddedToken("<|0.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50366: AddedToken("<|0.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50367: AddedToken("<|0.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50368: AddedToken("<|0.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50369: AddedToken("<|0.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50370: AddedToken("<|0.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50371: AddedToken("<|0.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50372: AddedToken("<|0.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50373: AddedToken("<|0.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50374: AddedToken("<|0.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50375: AddedToken("<|0.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50376: AddedToken("<|0.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50377: AddedToken("<|0.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50378: AddedToken("<|0.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50379: AddedToken("<|0.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50380: AddedToken("<|0.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50381: AddedToken("<|0.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50382: AddedToken("<|0.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50383: AddedToken("<|0.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50384: AddedToken("<|0.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50385: AddedToken("<|0.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50386: AddedToken("<|0.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50387: AddedToken("<|0.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50388: AddedToken("<|0.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50389: AddedToken("<|0.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50390: AddedToken("<|0.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50391: AddedToken("<|0.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50392: AddedToken("<|0.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50393: AddedToken("<|0.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50394: AddedToken("<|0.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50395: AddedToken("<|0.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50396: AddedToken("<|0.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50397: AddedToken("<|0.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50398: AddedToken("<|0.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50399: AddedToken("<|0.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50400: AddedToken("<|0.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50401: AddedToken("<|0.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50402: AddedToken("<|0.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50403: AddedToken("<|0.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50404: AddedToken("<|0.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50405: AddedToken("<|0.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50406: AddedToken("<|0.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50407: AddedToken("<|0.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50408: AddedToken("<|0.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50409: AddedToken("<|0.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50410: AddedToken("<|0.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50411: AddedToken("<|0.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50412: AddedToken("<|0.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50413: AddedToken("<|0.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50414: AddedToken("<|0.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50415: AddedToken("<|1.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50416: AddedToken("<|1.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50417: AddedToken("<|1.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50418: AddedToken("<|1.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50419: AddedToken("<|1.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50420: AddedToken("<|1.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50421: AddedToken("<|1.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50422: AddedToken("<|1.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50423: AddedToken("<|1.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50424: AddedToken("<|1.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50425: AddedToken("<|1.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50426: AddedToken("<|1.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50427: AddedToken("<|1.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50428: AddedToken("<|1.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50429: AddedToken("<|1.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50430: AddedToken("<|1.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50431: AddedToken("<|1.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50432: AddedToken("<|1.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50433: AddedToken("<|1.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50434: AddedToken("<|1.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50435: AddedToken("<|1.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50436: AddedToken("<|1.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50437: AddedToken("<|1.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50438: AddedToken("<|1.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50439: AddedToken("<|1.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50440: AddedToken("<|1.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50441: AddedToken("<|1.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50442: AddedToken("<|1.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50443: AddedToken("<|1.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50444: AddedToken("<|1.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50445: AddedToken("<|1.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50446: AddedToken("<|1.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50447: AddedToken("<|1.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50448: AddedToken("<|1.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50449: AddedToken("<|1.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50450: AddedToken("<|1.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50451: AddedToken("<|1.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50452: AddedToken("<|1.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50453: AddedToken("<|1.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50454: AddedToken("<|1.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50455: AddedToken("<|1.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50456: AddedToken("<|1.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50457: AddedToken("<|1.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50458: AddedToken("<|1.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50459: AddedToken("<|1.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50460: AddedToken("<|1.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50461: AddedToken("<|1.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50462: AddedToken("<|1.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50463: AddedToken("<|1.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50464: AddedToken("<|1.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50465: AddedToken("<|2.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50466: AddedToken("<|2.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50467: AddedToken("<|2.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50468: AddedToken("<|2.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50469: AddedToken("<|2.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50470: AddedToken("<|2.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50471: AddedToken("<|2.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50472: AddedToken("<|2.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50473: AddedToken("<|2.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50474: AddedToken("<|2.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50475: AddedToken("<|2.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50476: AddedToken("<|2.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50477: AddedToken("<|2.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50478: AddedToken("<|2.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50479: AddedToken("<|2.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50480: AddedToken("<|2.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50481: AddedToken("<|2.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50482: AddedToken("<|2.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50483: AddedToken("<|2.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50484: AddedToken("<|2.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50485: AddedToken("<|2.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50486: AddedToken("<|2.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50487: AddedToken("<|2.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50488: AddedToken("<|2.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50489: AddedToken("<|2.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50490: AddedToken("<|2.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50491: AddedToken("<|2.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50492: AddedToken("<|2.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50493: AddedToken("<|2.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50494: AddedToken("<|2.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50495: AddedToken("<|2.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50496: AddedToken("<|2.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50497: AddedToken("<|2.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50498: AddedToken("<|2.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50499: AddedToken("<|2.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50500: AddedToken("<|2.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50501: AddedToken("<|2.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50502: AddedToken("<|2.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50503: AddedToken("<|2.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50504: AddedToken("<|2.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50505: AddedToken("<|2.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50506: AddedToken("<|2.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50507: AddedToken("<|2.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50508: AddedToken("<|2.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50509: AddedToken("<|2.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50510: AddedToken("<|2.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50511: AddedToken("<|2.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50512: AddedToken("<|2.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50513: AddedToken("<|2.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50514: AddedToken("<|2.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50515: AddedToken("<|3.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50516: AddedToken("<|3.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50517: AddedToken("<|3.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50518: AddedToken("<|3.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50519: AddedToken("<|3.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50520: AddedToken("<|3.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50521: AddedToken("<|3.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50522: AddedToken("<|3.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50523: AddedToken("<|3.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50524: AddedToken("<|3.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50525: AddedToken("<|3.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50526: AddedToken("<|3.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50527: AddedToken("<|3.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50528: AddedToken("<|3.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50529: AddedToken("<|3.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50530: AddedToken("<|3.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50531: AddedToken("<|3.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50532: AddedToken("<|3.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50533: AddedToken("<|3.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50534: AddedToken("<|3.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50535: AddedToken("<|3.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50536: AddedToken("<|3.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50537: AddedToken("<|3.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50538: AddedToken("<|3.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50539: AddedToken("<|3.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50540: AddedToken("<|3.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50541: AddedToken("<|3.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50542: AddedToken("<|3.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50543: AddedToken("<|3.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50544: AddedToken("<|3.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50545: AddedToken("<|3.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50546: AddedToken("<|3.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50547: AddedToken("<|3.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50548: AddedToken("<|3.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50549: AddedToken("<|3.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50550: AddedToken("<|3.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50551: AddedToken("<|3.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50552: AddedToken("<|3.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50553: AddedToken("<|3.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50554: AddedToken("<|3.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50555: AddedToken("<|3.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50556: AddedToken("<|3.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50557: AddedToken("<|3.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50558: AddedToken("<|3.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50559: AddedToken("<|3.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50560: AddedToken("<|3.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50561: AddedToken("<|3.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50562: AddedToken("<|3.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50563: AddedToken("<|3.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50564: AddedToken("<|3.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50565: AddedToken("<|4.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50566: AddedToken("<|4.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50567: AddedToken("<|4.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50568: AddedToken("<|4.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50569: AddedToken("<|4.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50570: AddedToken("<|4.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50571: AddedToken("<|4.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50572: AddedToken("<|4.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50573: AddedToken("<|4.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50574: AddedToken("<|4.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50575: AddedToken("<|4.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50576: AddedToken("<|4.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50577: AddedToken("<|4.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50578: AddedToken("<|4.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50579: AddedToken("<|4.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50580: AddedToken("<|4.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50581: AddedToken("<|4.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50582: AddedToken("<|4.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50583: AddedToken("<|4.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50584: AddedToken("<|4.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50585: AddedToken("<|4.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50586: AddedToken("<|4.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50587: AddedToken("<|4.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50588: AddedToken("<|4.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50589: AddedToken("<|4.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50590: AddedToken("<|4.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50591: AddedToken("<|4.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50592: AddedToken("<|4.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50593: AddedToken("<|4.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50594: AddedToken("<|4.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50595: AddedToken("<|4.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50596: AddedToken("<|4.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50597: AddedToken("<|4.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50598: AddedToken("<|4.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50599: AddedToken("<|4.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50600: AddedToken("<|4.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50601: AddedToken("<|4.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50602: AddedToken("<|4.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50603: AddedToken("<|4.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50604: AddedToken("<|4.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50605: AddedToken("<|4.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50606: AddedToken("<|4.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50607: AddedToken("<|4.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50608: AddedToken("<|4.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50609: AddedToken("<|4.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50610: AddedToken("<|4.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50611: AddedToken("<|4.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50612: AddedToken("<|4.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50613: AddedToken("<|4.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50614: AddedToken("<|4.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50615: AddedToken("<|5.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50616: AddedToken("<|5.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50617: AddedToken("<|5.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50618: AddedToken("<|5.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50619: AddedToken("<|5.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50620: AddedToken("<|5.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50621: AddedToken("<|5.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50622: AddedToken("<|5.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50623: AddedToken("<|5.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50624: AddedToken("<|5.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50625: AddedToken("<|5.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50626: AddedToken("<|5.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50627: AddedToken("<|5.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50628: AddedToken("<|5.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50629: AddedToken("<|5.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50630: AddedToken("<|5.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50631: AddedToken("<|5.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50632: AddedToken("<|5.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50633: AddedToken("<|5.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50634: AddedToken("<|5.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50635: AddedToken("<|5.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50636: AddedToken("<|5.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50637: AddedToken("<|5.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50638: AddedToken("<|5.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50639: AddedToken("<|5.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50640: AddedToken("<|5.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50641: AddedToken("<|5.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50642: AddedToken("<|5.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50643: AddedToken("<|5.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50644: AddedToken("<|5.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50645: AddedToken("<|5.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50646: AddedToken("<|5.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50647: AddedToken("<|5.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50648: AddedToken("<|5.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50649: AddedToken("<|5.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50650: AddedToken("<|5.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50651: AddedToken("<|5.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50652: AddedToken("<|5.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50653: AddedToken("<|5.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50654: AddedToken("<|5.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50655: AddedToken("<|5.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50656: AddedToken("<|5.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50657: AddedToken("<|5.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50658: AddedToken("<|5.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50659: AddedToken("<|5.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50660: AddedToken("<|5.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50661: AddedToken("<|5.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50662: AddedToken("<|5.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50663: AddedToken("<|5.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50664: AddedToken("<|5.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50665: AddedToken("<|6.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50666: AddedToken("<|6.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50667: AddedToken("<|6.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50668: AddedToken("<|6.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50669: AddedToken("<|6.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50670: AddedToken("<|6.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50671: AddedToken("<|6.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50672: AddedToken("<|6.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50673: AddedToken("<|6.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50674: AddedToken("<|6.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50675: AddedToken("<|6.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50676: AddedToken("<|6.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50677: AddedToken("<|6.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50678: AddedToken("<|6.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50679: AddedToken("<|6.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50680: AddedToken("<|6.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50681: AddedToken("<|6.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50682: AddedToken("<|6.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50683: AddedToken("<|6.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50684: AddedToken("<|6.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50685: AddedToken("<|6.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50686: AddedToken("<|6.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50687: AddedToken("<|6.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50688: AddedToken("<|6.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50689: AddedToken("<|6.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50690: AddedToken("<|6.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50691: AddedToken("<|6.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50692: AddedToken("<|6.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50693: AddedToken("<|6.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50694: AddedToken("<|6.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50695: AddedToken("<|6.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50696: AddedToken("<|6.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50697: AddedToken("<|6.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50698: AddedToken("<|6.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50699: AddedToken("<|6.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50700: AddedToken("<|6.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50701: AddedToken("<|6.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50702: AddedToken("<|6.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50703: AddedToken("<|6.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50704: AddedToken("<|6.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50705: AddedToken("<|6.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50706: AddedToken("<|6.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50707: AddedToken("<|6.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50708: AddedToken("<|6.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50709: AddedToken("<|6.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50710: AddedToken("<|6.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50711: AddedToken("<|6.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50712: AddedToken("<|6.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50713: AddedToken("<|6.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50714: AddedToken("<|6.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50715: AddedToken("<|7.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50716: AddedToken("<|7.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50717: AddedToken("<|7.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50718: AddedToken("<|7.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50719: AddedToken("<|7.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50720: AddedToken("<|7.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50721: AddedToken("<|7.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50722: AddedToken("<|7.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50723: AddedToken("<|7.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50724: AddedToken("<|7.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50725: AddedToken("<|7.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50726: AddedToken("<|7.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50727: AddedToken("<|7.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50728: AddedToken("<|7.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50729: AddedToken("<|7.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50730: AddedToken("<|7.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50731: AddedToken("<|7.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50732: AddedToken("<|7.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50733: AddedToken("<|7.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50734: AddedToken("<|7.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50735: AddedToken("<|7.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50736: AddedToken("<|7.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50737: AddedToken("<|7.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50738: AddedToken("<|7.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50739: AddedToken("<|7.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50740: AddedToken("<|7.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50741: AddedToken("<|7.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50742: AddedToken("<|7.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50743: AddedToken("<|7.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50744: AddedToken("<|7.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50745: AddedToken("<|7.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50746: AddedToken("<|7.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50747: AddedToken("<|7.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50748: AddedToken("<|7.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50749: AddedToken("<|7.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50750: AddedToken("<|7.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50751: AddedToken("<|7.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50752: AddedToken("<|7.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50753: AddedToken("<|7.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50754: AddedToken("<|7.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50755: AddedToken("<|7.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50756: AddedToken("<|7.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50757: AddedToken("<|7.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50758: AddedToken("<|7.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50759: AddedToken("<|7.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50760: AddedToken("<|7.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50761: AddedToken("<|7.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50762: AddedToken("<|7.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50763: AddedToken("<|7.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50764: AddedToken("<|7.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50765: AddedToken("<|8.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50766: AddedToken("<|8.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50767: AddedToken("<|8.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50768: AddedToken("<|8.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50769: AddedToken("<|8.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50770: AddedToken("<|8.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50771: AddedToken("<|8.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50772: AddedToken("<|8.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50773: AddedToken("<|8.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50774: AddedToken("<|8.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50775: AddedToken("<|8.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50776: AddedToken("<|8.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50777: AddedToken("<|8.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50778: AddedToken("<|8.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50779: AddedToken("<|8.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50780: AddedToken("<|8.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50781: AddedToken("<|8.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50782: AddedToken("<|8.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50783: AddedToken("<|8.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50784: AddedToken("<|8.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50785: AddedToken("<|8.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50786: AddedToken("<|8.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50787: AddedToken("<|8.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50788: AddedToken("<|8.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50789: AddedToken("<|8.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50790: AddedToken("<|8.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50791: AddedToken("<|8.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50792: AddedToken("<|8.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50793: AddedToken("<|8.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50794: AddedToken("<|8.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50795: AddedToken("<|8.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50796: AddedToken("<|8.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50797: AddedToken("<|8.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50798: AddedToken("<|8.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50799: AddedToken("<|8.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50800: AddedToken("<|8.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50801: AddedToken("<|8.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50802: AddedToken("<|8.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50803: AddedToken("<|8.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50804: AddedToken("<|8.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50805: AddedToken("<|8.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50806: AddedToken("<|8.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50807: AddedToken("<|8.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50808: AddedToken("<|8.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50809: AddedToken("<|8.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50810: AddedToken("<|8.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50811: AddedToken("<|8.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50812: AddedToken("<|8.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50813: AddedToken("<|8.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50814: AddedToken("<|8.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50815: AddedToken("<|9.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50816: AddedToken("<|9.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50817: AddedToken("<|9.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50818: AddedToken("<|9.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50819: AddedToken("<|9.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50820: AddedToken("<|9.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50821: AddedToken("<|9.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50822: AddedToken("<|9.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50823: AddedToken("<|9.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50824: AddedToken("<|9.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50825: AddedToken("<|9.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50826: AddedToken("<|9.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50827: AddedToken("<|9.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50828: AddedToken("<|9.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50829: AddedToken("<|9.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50830: AddedToken("<|9.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50831: AddedToken("<|9.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50832: AddedToken("<|9.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50833: AddedToken("<|9.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50834: AddedToken("<|9.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50835: AddedToken("<|9.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50836: AddedToken("<|9.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50837: AddedToken("<|9.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50838: AddedToken("<|9.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50839: AddedToken("<|9.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50840: AddedToken("<|9.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50841: AddedToken("<|9.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50842: AddedToken("<|9.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50843: AddedToken("<|9.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50844: AddedToken("<|9.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50845: AddedToken("<|9.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50846: AddedToken("<|9.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50847: AddedToken("<|9.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50848: AddedToken("<|9.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50849: AddedToken("<|9.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50850: AddedToken("<|9.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50851: AddedToken("<|9.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50852: AddedToken("<|9.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50853: AddedToken("<|9.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50854: AddedToken("<|9.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50855: AddedToken("<|9.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50856: AddedToken("<|9.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50857: AddedToken("<|9.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50858: AddedToken("<|9.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50859: AddedToken("<|9.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50860: AddedToken("<|9.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50861: AddedToken("<|9.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50862: AddedToken("<|9.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50863: AddedToken("<|9.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50864: AddedToken("<|9.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50865: AddedToken("<|10.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50866: AddedToken("<|10.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50867: AddedToken("<|10.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50868: AddedToken("<|10.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50869: AddedToken("<|10.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50870: AddedToken("<|10.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50871: AddedToken("<|10.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50872: AddedToken("<|10.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50873: AddedToken("<|10.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50874: AddedToken("<|10.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50875: AddedToken("<|10.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50876: AddedToken("<|10.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50877: AddedToken("<|10.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50878: AddedToken("<|10.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50879: AddedToken("<|10.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50880: AddedToken("<|10.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50881: AddedToken("<|10.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50882: AddedToken("<|10.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50883: AddedToken("<|10.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50884: AddedToken("<|10.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50885: AddedToken("<|10.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50886: AddedToken("<|10.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50887: AddedToken("<|10.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50888: AddedToken("<|10.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50889: AddedToken("<|10.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50890: AddedToken("<|10.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50891: AddedToken("<|10.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50892: AddedToken("<|10.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50893: AddedToken("<|10.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50894: AddedToken("<|10.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50895: AddedToken("<|10.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50896: AddedToken("<|10.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50897: AddedToken("<|10.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50898: AddedToken("<|10.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50899: AddedToken("<|10.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50900: AddedToken("<|10.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50901: AddedToken("<|10.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50902: AddedToken("<|10.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50903: AddedToken("<|10.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50904: AddedToken("<|10.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50905: AddedToken("<|10.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50906: AddedToken("<|10.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50907: AddedToken("<|10.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50908: AddedToken("<|10.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50909: AddedToken("<|10.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50910: AddedToken("<|10.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50911: AddedToken("<|10.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50912: AddedToken("<|10.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50913: AddedToken("<|10.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50914: AddedToken("<|10.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50915: AddedToken("<|11.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50916: AddedToken("<|11.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50917: AddedToken("<|11.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50918: AddedToken("<|11.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50919: AddedToken("<|11.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50920: AddedToken("<|11.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50921: AddedToken("<|11.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50922: AddedToken("<|11.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50923: AddedToken("<|11.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50924: AddedToken("<|11.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50925: AddedToken("<|11.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50926: AddedToken("<|11.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50927: AddedToken("<|11.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50928: AddedToken("<|11.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50929: AddedToken("<|11.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50930: AddedToken("<|11.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50931: AddedToken("<|11.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50932: AddedToken("<|11.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50933: AddedToken("<|11.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50934: AddedToken("<|11.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50935: AddedToken("<|11.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50936: AddedToken("<|11.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50937: AddedToken("<|11.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50938: AddedToken("<|11.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50939: AddedToken("<|11.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50940: AddedToken("<|11.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50941: AddedToken("<|11.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50942: AddedToken("<|11.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50943: AddedToken("<|11.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50944: AddedToken("<|11.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50945: AddedToken("<|11.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50946: AddedToken("<|11.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50947: AddedToken("<|11.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50948: AddedToken("<|11.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50949: AddedToken("<|11.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50950: AddedToken("<|11.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50951: AddedToken("<|11.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50952: AddedToken("<|11.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50953: AddedToken("<|11.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50954: AddedToken("<|11.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50955: AddedToken("<|11.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50956: AddedToken("<|11.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50957: AddedToken("<|11.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50958: AddedToken("<|11.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50959: AddedToken("<|11.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50960: AddedToken("<|11.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50961: AddedToken("<|11.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50962: AddedToken("<|11.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50963: AddedToken("<|11.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50964: AddedToken("<|11.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50965: AddedToken("<|12.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50966: AddedToken("<|12.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50967: AddedToken("<|12.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50968: AddedToken("<|12.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50969: AddedToken("<|12.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50970: AddedToken("<|12.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50971: AddedToken("<|12.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50972: AddedToken("<|12.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50973: AddedToken("<|12.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50974: AddedToken("<|12.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50975: AddedToken("<|12.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50976: AddedToken("<|12.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50977: AddedToken("<|12.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50978: AddedToken("<|12.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50979: AddedToken("<|12.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50980: AddedToken("<|12.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50981: AddedToken("<|12.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50982: AddedToken("<|12.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50983: AddedToken("<|12.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50984: AddedToken("<|12.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50985: AddedToken("<|12.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50986: AddedToken("<|12.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50987: AddedToken("<|12.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50988: AddedToken("<|12.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50989: AddedToken("<|12.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50990: AddedToken("<|12.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50991: AddedToken("<|12.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50992: AddedToken("<|12.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50993: AddedToken("<|12.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50994: AddedToken("<|12.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50995: AddedToken("<|12.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50996: AddedToken("<|12.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50997: AddedToken("<|12.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50998: AddedToken("<|12.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 50999: AddedToken("<|12.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51000: AddedToken("<|12.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51001: AddedToken("<|12.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51002: AddedToken("<|12.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51003: AddedToken("<|12.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51004: AddedToken("<|12.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51005: AddedToken("<|12.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51006: AddedToken("<|12.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51007: AddedToken("<|12.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51008: AddedToken("<|12.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51009: AddedToken("<|12.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51010: AddedToken("<|12.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51011: AddedToken("<|12.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51012: AddedToken("<|12.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51013: AddedToken("<|12.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51014: AddedToken("<|12.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51015: AddedToken("<|13.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51016: AddedToken("<|13.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51017: AddedToken("<|13.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51018: AddedToken("<|13.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51019: AddedToken("<|13.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51020: AddedToken("<|13.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51021: AddedToken("<|13.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51022: AddedToken("<|13.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51023: AddedToken("<|13.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51024: AddedToken("<|13.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51025: AddedToken("<|13.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51026: AddedToken("<|13.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51027: AddedToken("<|13.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51028: AddedToken("<|13.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51029: AddedToken("<|13.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51030: AddedToken("<|13.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51031: AddedToken("<|13.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51032: AddedToken("<|13.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51033: AddedToken("<|13.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51034: AddedToken("<|13.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51035: AddedToken("<|13.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51036: AddedToken("<|13.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51037: AddedToken("<|13.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51038: AddedToken("<|13.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51039: AddedToken("<|13.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51040: AddedToken("<|13.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51041: AddedToken("<|13.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51042: AddedToken("<|13.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51043: AddedToken("<|13.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51044: AddedToken("<|13.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51045: AddedToken("<|13.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51046: AddedToken("<|13.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51047: AddedToken("<|13.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51048: AddedToken("<|13.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51049: AddedToken("<|13.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51050: AddedToken("<|13.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51051: AddedToken("<|13.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51052: AddedToken("<|13.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51053: AddedToken("<|13.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51054: AddedToken("<|13.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51055: AddedToken("<|13.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51056: AddedToken("<|13.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51057: AddedToken("<|13.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51058: AddedToken("<|13.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51059: AddedToken("<|13.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51060: AddedToken("<|13.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51061: AddedToken("<|13.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51062: AddedToken("<|13.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51063: AddedToken("<|13.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51064: AddedToken("<|13.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51065: AddedToken("<|14.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51066: AddedToken("<|14.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51067: AddedToken("<|14.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51068: AddedToken("<|14.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51069: AddedToken("<|14.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51070: AddedToken("<|14.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51071: AddedToken("<|14.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51072: AddedToken("<|14.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51073: AddedToken("<|14.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51074: AddedToken("<|14.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51075: AddedToken("<|14.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51076: AddedToken("<|14.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51077: AddedToken("<|14.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51078: AddedToken("<|14.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51079: AddedToken("<|14.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51080: AddedToken("<|14.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51081: AddedToken("<|14.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51082: AddedToken("<|14.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51083: AddedToken("<|14.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51084: AddedToken("<|14.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51085: AddedToken("<|14.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51086: AddedToken("<|14.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51087: AddedToken("<|14.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51088: AddedToken("<|14.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51089: AddedToken("<|14.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51090: AddedToken("<|14.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51091: AddedToken("<|14.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51092: AddedToken("<|14.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51093: AddedToken("<|14.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51094: AddedToken("<|14.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51095: AddedToken("<|14.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51096: AddedToken("<|14.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51097: AddedToken("<|14.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51098: AddedToken("<|14.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51099: AddedToken("<|14.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51100: AddedToken("<|14.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51101: AddedToken("<|14.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51102: AddedToken("<|14.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51103: AddedToken("<|14.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51104: AddedToken("<|14.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51105: AddedToken("<|14.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51106: AddedToken("<|14.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51107: AddedToken("<|14.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51108: AddedToken("<|14.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51109: AddedToken("<|14.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51110: AddedToken("<|14.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51111: AddedToken("<|14.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51112: AddedToken("<|14.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51113: AddedToken("<|14.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51114: AddedToken("<|14.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51115: AddedToken("<|15.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51116: AddedToken("<|15.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51117: AddedToken("<|15.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51118: AddedToken("<|15.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51119: AddedToken("<|15.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51120: AddedToken("<|15.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51121: AddedToken("<|15.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51122: AddedToken("<|15.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51123: AddedToken("<|15.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51124: AddedToken("<|15.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51125: AddedToken("<|15.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51126: AddedToken("<|15.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51127: AddedToken("<|15.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51128: AddedToken("<|15.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51129: AddedToken("<|15.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51130: AddedToken("<|15.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51131: AddedToken("<|15.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51132: AddedToken("<|15.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51133: AddedToken("<|15.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51134: AddedToken("<|15.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51135: AddedToken("<|15.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51136: AddedToken("<|15.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51137: AddedToken("<|15.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51138: AddedToken("<|15.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51139: AddedToken("<|15.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51140: AddedToken("<|15.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51141: AddedToken("<|15.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51142: AddedToken("<|15.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51143: AddedToken("<|15.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51144: AddedToken("<|15.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51145: AddedToken("<|15.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51146: AddedToken("<|15.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51147: AddedToken("<|15.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51148: AddedToken("<|15.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51149: AddedToken("<|15.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51150: AddedToken("<|15.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51151: AddedToken("<|15.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51152: AddedToken("<|15.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51153: AddedToken("<|15.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51154: AddedToken("<|15.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51155: AddedToken("<|15.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51156: AddedToken("<|15.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51157: AddedToken("<|15.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51158: AddedToken("<|15.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51159: AddedToken("<|15.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51160: AddedToken("<|15.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51161: AddedToken("<|15.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51162: AddedToken("<|15.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51163: AddedToken("<|15.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51164: AddedToken("<|15.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51165: AddedToken("<|16.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51166: AddedToken("<|16.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51167: AddedToken("<|16.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51168: AddedToken("<|16.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51169: AddedToken("<|16.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51170: AddedToken("<|16.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51171: AddedToken("<|16.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51172: AddedToken("<|16.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51173: AddedToken("<|16.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51174: AddedToken("<|16.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51175: AddedToken("<|16.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51176: AddedToken("<|16.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51177: AddedToken("<|16.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51178: AddedToken("<|16.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51179: AddedToken("<|16.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51180: AddedToken("<|16.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51181: AddedToken("<|16.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51182: AddedToken("<|16.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51183: AddedToken("<|16.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51184: AddedToken("<|16.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51185: AddedToken("<|16.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51186: AddedToken("<|16.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51187: AddedToken("<|16.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51188: AddedToken("<|16.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51189: AddedToken("<|16.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51190: AddedToken("<|16.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51191: AddedToken("<|16.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51192: AddedToken("<|16.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51193: AddedToken("<|16.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51194: AddedToken("<|16.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51195: AddedToken("<|16.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51196: AddedToken("<|16.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51197: AddedToken("<|16.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51198: AddedToken("<|16.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51199: AddedToken("<|16.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51200: AddedToken("<|16.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51201: AddedToken("<|16.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51202: AddedToken("<|16.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51203: AddedToken("<|16.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51204: AddedToken("<|16.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51205: AddedToken("<|16.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51206: AddedToken("<|16.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51207: AddedToken("<|16.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51208: AddedToken("<|16.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51209: AddedToken("<|16.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51210: AddedToken("<|16.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51211: AddedToken("<|16.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51212: AddedToken("<|16.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51213: AddedToken("<|16.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51214: AddedToken("<|16.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51215: AddedToken("<|17.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51216: AddedToken("<|17.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51217: AddedToken("<|17.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51218: AddedToken("<|17.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51219: AddedToken("<|17.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51220: AddedToken("<|17.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51221: AddedToken("<|17.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51222: AddedToken("<|17.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51223: AddedToken("<|17.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51224: AddedToken("<|17.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51225: AddedToken("<|17.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51226: AddedToken("<|17.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51227: AddedToken("<|17.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51228: AddedToken("<|17.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51229: AddedToken("<|17.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51230: AddedToken("<|17.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51231: AddedToken("<|17.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51232: AddedToken("<|17.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51233: AddedToken("<|17.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51234: AddedToken("<|17.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51235: AddedToken("<|17.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51236: AddedToken("<|17.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51237: AddedToken("<|17.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51238: AddedToken("<|17.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51239: AddedToken("<|17.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51240: AddedToken("<|17.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51241: AddedToken("<|17.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51242: AddedToken("<|17.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51243: AddedToken("<|17.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51244: AddedToken("<|17.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51245: AddedToken("<|17.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51246: AddedToken("<|17.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51247: AddedToken("<|17.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51248: AddedToken("<|17.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51249: AddedToken("<|17.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51250: AddedToken("<|17.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51251: AddedToken("<|17.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51252: AddedToken("<|17.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51253: AddedToken("<|17.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51254: AddedToken("<|17.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51255: AddedToken("<|17.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51256: AddedToken("<|17.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51257: AddedToken("<|17.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51258: AddedToken("<|17.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51259: AddedToken("<|17.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51260: AddedToken("<|17.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51261: AddedToken("<|17.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51262: AddedToken("<|17.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51263: AddedToken("<|17.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51264: AddedToken("<|17.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51265: AddedToken("<|18.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51266: AddedToken("<|18.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51267: AddedToken("<|18.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51268: AddedToken("<|18.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51269: AddedToken("<|18.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51270: AddedToken("<|18.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51271: AddedToken("<|18.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51272: AddedToken("<|18.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51273: AddedToken("<|18.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51274: AddedToken("<|18.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51275: AddedToken("<|18.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51276: AddedToken("<|18.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51277: AddedToken("<|18.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51278: AddedToken("<|18.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51279: AddedToken("<|18.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51280: AddedToken("<|18.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51281: AddedToken("<|18.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51282: AddedToken("<|18.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51283: AddedToken("<|18.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51284: AddedToken("<|18.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51285: AddedToken("<|18.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51286: AddedToken("<|18.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51287: AddedToken("<|18.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51288: AddedToken("<|18.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51289: AddedToken("<|18.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51290: AddedToken("<|18.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51291: AddedToken("<|18.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51292: AddedToken("<|18.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51293: AddedToken("<|18.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51294: AddedToken("<|18.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51295: AddedToken("<|18.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51296: AddedToken("<|18.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51297: AddedToken("<|18.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51298: AddedToken("<|18.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51299: AddedToken("<|18.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51300: AddedToken("<|18.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51301: AddedToken("<|18.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51302: AddedToken("<|18.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51303: AddedToken("<|18.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51304: AddedToken("<|18.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51305: AddedToken("<|18.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51306: AddedToken("<|18.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51307: AddedToken("<|18.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51308: AddedToken("<|18.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51309: AddedToken("<|18.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51310: AddedToken("<|18.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51311: AddedToken("<|18.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51312: AddedToken("<|18.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51313: AddedToken("<|18.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51314: AddedToken("<|18.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51315: AddedToken("<|19.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51316: AddedToken("<|19.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51317: AddedToken("<|19.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51318: AddedToken("<|19.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51319: AddedToken("<|19.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51320: AddedToken("<|19.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51321: AddedToken("<|19.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51322: AddedToken("<|19.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51323: AddedToken("<|19.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51324: AddedToken("<|19.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51325: AddedToken("<|19.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51326: AddedToken("<|19.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51327: AddedToken("<|19.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51328: AddedToken("<|19.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51329: AddedToken("<|19.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51330: AddedToken("<|19.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51331: AddedToken("<|19.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51332: AddedToken("<|19.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51333: AddedToken("<|19.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51334: AddedToken("<|19.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51335: AddedToken("<|19.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51336: AddedToken("<|19.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51337: AddedToken("<|19.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51338: AddedToken("<|19.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51339: AddedToken("<|19.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51340: AddedToken("<|19.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51341: AddedToken("<|19.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51342: AddedToken("<|19.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51343: AddedToken("<|19.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51344: AddedToken("<|19.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51345: AddedToken("<|19.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51346: AddedToken("<|19.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51347: AddedToken("<|19.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51348: AddedToken("<|19.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51349: AddedToken("<|19.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51350: AddedToken("<|19.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51351: AddedToken("<|19.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51352: AddedToken("<|19.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51353: AddedToken("<|19.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51354: AddedToken("<|19.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51355: AddedToken("<|19.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51356: AddedToken("<|19.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51357: AddedToken("<|19.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51358: AddedToken("<|19.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51359: AddedToken("<|19.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51360: AddedToken("<|19.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51361: AddedToken("<|19.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51362: AddedToken("<|19.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51363: AddedToken("<|19.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51364: AddedToken("<|19.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51365: AddedToken("<|20.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51366: AddedToken("<|20.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51367: AddedToken("<|20.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51368: AddedToken("<|20.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51369: AddedToken("<|20.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51370: AddedToken("<|20.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51371: AddedToken("<|20.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51372: AddedToken("<|20.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51373: AddedToken("<|20.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51374: AddedToken("<|20.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51375: AddedToken("<|20.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51376: AddedToken("<|20.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51377: AddedToken("<|20.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51378: AddedToken("<|20.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51379: AddedToken("<|20.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51380: AddedToken("<|20.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51381: AddedToken("<|20.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51382: AddedToken("<|20.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51383: AddedToken("<|20.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51384: AddedToken("<|20.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51385: AddedToken("<|20.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51386: AddedToken("<|20.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51387: AddedToken("<|20.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51388: AddedToken("<|20.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51389: AddedToken("<|20.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51390: AddedToken("<|20.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51391: AddedToken("<|20.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51392: AddedToken("<|20.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51393: AddedToken("<|20.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51394: AddedToken("<|20.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51395: AddedToken("<|20.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51396: AddedToken("<|20.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51397: AddedToken("<|20.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51398: AddedToken("<|20.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51399: AddedToken("<|20.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51400: AddedToken("<|20.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51401: AddedToken("<|20.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51402: AddedToken("<|20.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51403: AddedToken("<|20.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51404: AddedToken("<|20.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51405: AddedToken("<|20.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51406: AddedToken("<|20.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51407: AddedToken("<|20.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51408: AddedToken("<|20.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51409: AddedToken("<|20.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51410: AddedToken("<|20.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51411: AddedToken("<|20.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51412: AddedToken("<|20.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51413: AddedToken("<|20.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51414: AddedToken("<|20.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51415: AddedToken("<|21.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51416: AddedToken("<|21.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51417: AddedToken("<|21.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51418: AddedToken("<|21.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51419: AddedToken("<|21.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51420: AddedToken("<|21.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51421: AddedToken("<|21.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51422: AddedToken("<|21.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51423: AddedToken("<|21.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51424: AddedToken("<|21.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51425: AddedToken("<|21.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51426: AddedToken("<|21.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51427: AddedToken("<|21.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51428: AddedToken("<|21.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51429: AddedToken("<|21.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51430: AddedToken("<|21.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51431: AddedToken("<|21.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51432: AddedToken("<|21.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51433: AddedToken("<|21.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51434: AddedToken("<|21.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51435: AddedToken("<|21.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51436: AddedToken("<|21.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51437: AddedToken("<|21.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51438: AddedToken("<|21.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51439: AddedToken("<|21.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51440: AddedToken("<|21.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51441: AddedToken("<|21.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51442: AddedToken("<|21.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51443: AddedToken("<|21.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51444: AddedToken("<|21.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51445: AddedToken("<|21.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51446: AddedToken("<|21.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51447: AddedToken("<|21.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51448: AddedToken("<|21.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51449: AddedToken("<|21.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51450: AddedToken("<|21.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51451: AddedToken("<|21.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51452: AddedToken("<|21.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51453: AddedToken("<|21.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51454: AddedToken("<|21.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51455: AddedToken("<|21.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51456: AddedToken("<|21.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51457: AddedToken("<|21.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51458: AddedToken("<|21.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51459: AddedToken("<|21.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51460: AddedToken("<|21.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51461: AddedToken("<|21.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51462: AddedToken("<|21.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51463: AddedToken("<|21.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51464: AddedToken("<|21.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51465: AddedToken("<|22.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51466: AddedToken("<|22.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51467: AddedToken("<|22.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51468: AddedToken("<|22.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51469: AddedToken("<|22.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51470: AddedToken("<|22.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51471: AddedToken("<|22.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51472: AddedToken("<|22.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51473: AddedToken("<|22.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51474: AddedToken("<|22.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51475: AddedToken("<|22.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51476: AddedToken("<|22.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51477: AddedToken("<|22.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51478: AddedToken("<|22.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51479: AddedToken("<|22.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51480: AddedToken("<|22.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51481: AddedToken("<|22.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51482: AddedToken("<|22.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51483: AddedToken("<|22.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51484: AddedToken("<|22.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51485: AddedToken("<|22.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51486: AddedToken("<|22.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51487: AddedToken("<|22.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51488: AddedToken("<|22.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51489: AddedToken("<|22.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51490: AddedToken("<|22.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51491: AddedToken("<|22.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51492: AddedToken("<|22.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51493: AddedToken("<|22.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51494: AddedToken("<|22.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51495: AddedToken("<|22.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51496: AddedToken("<|22.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51497: AddedToken("<|22.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51498: AddedToken("<|22.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51499: AddedToken("<|22.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51500: AddedToken("<|22.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51501: AddedToken("<|22.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51502: AddedToken("<|22.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51503: AddedToken("<|22.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51504: AddedToken("<|22.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51505: AddedToken("<|22.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51506: AddedToken("<|22.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51507: AddedToken("<|22.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51508: AddedToken("<|22.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51509: AddedToken("<|22.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51510: AddedToken("<|22.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51511: AddedToken("<|22.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51512: AddedToken("<|22.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51513: AddedToken("<|22.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51514: AddedToken("<|22.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51515: AddedToken("<|23.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51516: AddedToken("<|23.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51517: AddedToken("<|23.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51518: AddedToken("<|23.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51519: AddedToken("<|23.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51520: AddedToken("<|23.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51521: AddedToken("<|23.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51522: AddedToken("<|23.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51523: AddedToken("<|23.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51524: AddedToken("<|23.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51525: AddedToken("<|23.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51526: AddedToken("<|23.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51527: AddedToken("<|23.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51528: AddedToken("<|23.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51529: AddedToken("<|23.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51530: AddedToken("<|23.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51531: AddedToken("<|23.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51532: AddedToken("<|23.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51533: AddedToken("<|23.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51534: AddedToken("<|23.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51535: AddedToken("<|23.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51536: AddedToken("<|23.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51537: AddedToken("<|23.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51538: AddedToken("<|23.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51539: AddedToken("<|23.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51540: AddedToken("<|23.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51541: AddedToken("<|23.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51542: AddedToken("<|23.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51543: AddedToken("<|23.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51544: AddedToken("<|23.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51545: AddedToken("<|23.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51546: AddedToken("<|23.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51547: AddedToken("<|23.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51548: AddedToken("<|23.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51549: AddedToken("<|23.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51550: AddedToken("<|23.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51551: AddedToken("<|23.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51552: AddedToken("<|23.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51553: AddedToken("<|23.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51554: AddedToken("<|23.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51555: AddedToken("<|23.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51556: AddedToken("<|23.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51557: AddedToken("<|23.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51558: AddedToken("<|23.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51559: AddedToken("<|23.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51560: AddedToken("<|23.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51561: AddedToken("<|23.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51562: AddedToken("<|23.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51563: AddedToken("<|23.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51564: AddedToken("<|23.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51565: AddedToken("<|24.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51566: AddedToken("<|24.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51567: AddedToken("<|24.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51568: AddedToken("<|24.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51569: AddedToken("<|24.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51570: AddedToken("<|24.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51571: AddedToken("<|24.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51572: AddedToken("<|24.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51573: AddedToken("<|24.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51574: AddedToken("<|24.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51575: AddedToken("<|24.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51576: AddedToken("<|24.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51577: AddedToken("<|24.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51578: AddedToken("<|24.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51579: AddedToken("<|24.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51580: AddedToken("<|24.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51581: AddedToken("<|24.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51582: AddedToken("<|24.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51583: AddedToken("<|24.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51584: AddedToken("<|24.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51585: AddedToken("<|24.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51586: AddedToken("<|24.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51587: AddedToken("<|24.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51588: AddedToken("<|24.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51589: AddedToken("<|24.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51590: AddedToken("<|24.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51591: AddedToken("<|24.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51592: AddedToken("<|24.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51593: AddedToken("<|24.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51594: AddedToken("<|24.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51595: AddedToken("<|24.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51596: AddedToken("<|24.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51597: AddedToken("<|24.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51598: AddedToken("<|24.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51599: AddedToken("<|24.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51600: AddedToken("<|24.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51601: AddedToken("<|24.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51602: AddedToken("<|24.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51603: AddedToken("<|24.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51604: AddedToken("<|24.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51605: AddedToken("<|24.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51606: AddedToken("<|24.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51607: AddedToken("<|24.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51608: AddedToken("<|24.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51609: AddedToken("<|24.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51610: AddedToken("<|24.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51611: AddedToken("<|24.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51612: AddedToken("<|24.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51613: AddedToken("<|24.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51614: AddedToken("<|24.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51615: AddedToken("<|25.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51616: AddedToken("<|25.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51617: AddedToken("<|25.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51618: AddedToken("<|25.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51619: AddedToken("<|25.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51620: AddedToken("<|25.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51621: AddedToken("<|25.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51622: AddedToken("<|25.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51623: AddedToken("<|25.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51624: AddedToken("<|25.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51625: AddedToken("<|25.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51626: AddedToken("<|25.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51627: AddedToken("<|25.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51628: AddedToken("<|25.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51629: AddedToken("<|25.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51630: AddedToken("<|25.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51631: AddedToken("<|25.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51632: AddedToken("<|25.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51633: AddedToken("<|25.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51634: AddedToken("<|25.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51635: AddedToken("<|25.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51636: AddedToken("<|25.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51637: AddedToken("<|25.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51638: AddedToken("<|25.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51639: AddedToken("<|25.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51640: AddedToken("<|25.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51641: AddedToken("<|25.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51642: AddedToken("<|25.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51643: AddedToken("<|25.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51644: AddedToken("<|25.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51645: AddedToken("<|25.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51646: AddedToken("<|25.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51647: AddedToken("<|25.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51648: AddedToken("<|25.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51649: AddedToken("<|25.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51650: AddedToken("<|25.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51651: AddedToken("<|25.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51652: AddedToken("<|25.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51653: AddedToken("<|25.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51654: AddedToken("<|25.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51655: AddedToken("<|25.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51656: AddedToken("<|25.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51657: AddedToken("<|25.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51658: AddedToken("<|25.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51659: AddedToken("<|25.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51660: AddedToken("<|25.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51661: AddedToken("<|25.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51662: AddedToken("<|25.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51663: AddedToken("<|25.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51664: AddedToken("<|25.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51665: AddedToken("<|26.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51666: AddedToken("<|26.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51667: AddedToken("<|26.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51668: AddedToken("<|26.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51669: AddedToken("<|26.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51670: AddedToken("<|26.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51671: AddedToken("<|26.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51672: AddedToken("<|26.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51673: AddedToken("<|26.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51674: AddedToken("<|26.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51675: AddedToken("<|26.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51676: AddedToken("<|26.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51677: AddedToken("<|26.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51678: AddedToken("<|26.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51679: AddedToken("<|26.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51680: AddedToken("<|26.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51681: AddedToken("<|26.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51682: AddedToken("<|26.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51683: AddedToken("<|26.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51684: AddedToken("<|26.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51685: AddedToken("<|26.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51686: AddedToken("<|26.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51687: AddedToken("<|26.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51688: AddedToken("<|26.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51689: AddedToken("<|26.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51690: AddedToken("<|26.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51691: AddedToken("<|26.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51692: AddedToken("<|26.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51693: AddedToken("<|26.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51694: AddedToken("<|26.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51695: AddedToken("<|26.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51696: AddedToken("<|26.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51697: AddedToken("<|26.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51698: AddedToken("<|26.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51699: AddedToken("<|26.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51700: AddedToken("<|26.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51701: AddedToken("<|26.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51702: AddedToken("<|26.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51703: AddedToken("<|26.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51704: AddedToken("<|26.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51705: AddedToken("<|26.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51706: AddedToken("<|26.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51707: AddedToken("<|26.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51708: AddedToken("<|26.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51709: AddedToken("<|26.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51710: AddedToken("<|26.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51711: AddedToken("<|26.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51712: AddedToken("<|26.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51713: AddedToken("<|26.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51714: AddedToken("<|26.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51715: AddedToken("<|27.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51716: AddedToken("<|27.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51717: AddedToken("<|27.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51718: AddedToken("<|27.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51719: AddedToken("<|27.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51720: AddedToken("<|27.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51721: AddedToken("<|27.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51722: AddedToken("<|27.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51723: AddedToken("<|27.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51724: AddedToken("<|27.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51725: AddedToken("<|27.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51726: AddedToken("<|27.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51727: AddedToken("<|27.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51728: AddedToken("<|27.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51729: AddedToken("<|27.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51730: AddedToken("<|27.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51731: AddedToken("<|27.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51732: AddedToken("<|27.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51733: AddedToken("<|27.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51734: AddedToken("<|27.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51735: AddedToken("<|27.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51736: AddedToken("<|27.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51737: AddedToken("<|27.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51738: AddedToken("<|27.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51739: AddedToken("<|27.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51740: AddedToken("<|27.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51741: AddedToken("<|27.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51742: AddedToken("<|27.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51743: AddedToken("<|27.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51744: AddedToken("<|27.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51745: AddedToken("<|27.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51746: AddedToken("<|27.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51747: AddedToken("<|27.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51748: AddedToken("<|27.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51749: AddedToken("<|27.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51750: AddedToken("<|27.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51751: AddedToken("<|27.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51752: AddedToken("<|27.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51753: AddedToken("<|27.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51754: AddedToken("<|27.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51755: AddedToken("<|27.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51756: AddedToken("<|27.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51757: AddedToken("<|27.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51758: AddedToken("<|27.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51759: AddedToken("<|27.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51760: AddedToken("<|27.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51761: AddedToken("<|27.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51762: AddedToken("<|27.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51763: AddedToken("<|27.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51764: AddedToken("<|27.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51765: AddedToken("<|28.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51766: AddedToken("<|28.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51767: AddedToken("<|28.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51768: AddedToken("<|28.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51769: AddedToken("<|28.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51770: AddedToken("<|28.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51771: AddedToken("<|28.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51772: AddedToken("<|28.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51773: AddedToken("<|28.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51774: AddedToken("<|28.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51775: AddedToken("<|28.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51776: AddedToken("<|28.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51777: AddedToken("<|28.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51778: AddedToken("<|28.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51779: AddedToken("<|28.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51780: AddedToken("<|28.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51781: AddedToken("<|28.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51782: AddedToken("<|28.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51783: AddedToken("<|28.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51784: AddedToken("<|28.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51785: AddedToken("<|28.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51786: AddedToken("<|28.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51787: AddedToken("<|28.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51788: AddedToken("<|28.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51789: AddedToken("<|28.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51790: AddedToken("<|28.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51791: AddedToken("<|28.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51792: AddedToken("<|28.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51793: AddedToken("<|28.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51794: AddedToken("<|28.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51795: AddedToken("<|28.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51796: AddedToken("<|28.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51797: AddedToken("<|28.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51798: AddedToken("<|28.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51799: AddedToken("<|28.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51800: AddedToken("<|28.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51801: AddedToken("<|28.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51802: AddedToken("<|28.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51803: AddedToken("<|28.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51804: AddedToken("<|28.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51805: AddedToken("<|28.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51806: AddedToken("<|28.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51807: AddedToken("<|28.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51808: AddedToken("<|28.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51809: AddedToken("<|28.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51810: AddedToken("<|28.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51811: AddedToken("<|28.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51812: AddedToken("<|28.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51813: AddedToken("<|28.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51814: AddedToken("<|28.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51815: AddedToken("<|29.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51816: AddedToken("<|29.02|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51817: AddedToken("<|29.04|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51818: AddedToken("<|29.06|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51819: AddedToken("<|29.08|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51820: AddedToken("<|29.10|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51821: AddedToken("<|29.12|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51822: AddedToken("<|29.14|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51823: AddedToken("<|29.16|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51824: AddedToken("<|29.18|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51825: AddedToken("<|29.20|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51826: AddedToken("<|29.22|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51827: AddedToken("<|29.24|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51828: AddedToken("<|29.26|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51829: AddedToken("<|29.28|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51830: AddedToken("<|29.30|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51831: AddedToken("<|29.32|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51832: AddedToken("<|29.34|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51833: AddedToken("<|29.36|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51834: AddedToken("<|29.38|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51835: AddedToken("<|29.40|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51836: AddedToken("<|29.42|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51837: AddedToken("<|29.44|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51838: AddedToken("<|29.46|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51839: AddedToken("<|29.48|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51840: AddedToken("<|29.50|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51841: AddedToken("<|29.52|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51842: AddedToken("<|29.54|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51843: AddedToken("<|29.56|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51844: AddedToken("<|29.58|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51845: AddedToken("<|29.60|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51846: AddedToken("<|29.62|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51847: AddedToken("<|29.64|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51848: AddedToken("<|29.66|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51849: AddedToken("<|29.68|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51850: AddedToken("<|29.70|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51851: AddedToken("<|29.72|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51852: AddedToken("<|29.74|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51853: AddedToken("<|29.76|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51854: AddedToken("<|29.78|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51855: AddedToken("<|29.80|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51856: AddedToken("<|29.82|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51857: AddedToken("<|29.84|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51858: AddedToken("<|29.86|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51859: AddedToken("<|29.88|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51860: AddedToken("<|29.90|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51861: AddedToken("<|29.92|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51862: AddedToken("<|29.94|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51863: AddedToken("<|29.96|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51864: AddedToken("<|29.98|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), + 51865: AddedToken("<|30.00|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), +} + +{ + "processor_class": "WhisperProcessor" +} + +06/17/2024 15:54:23 - INFO - __main__ - max_steps is given, it will override any value given in num_train_epochs +06/17/2024 15:54:26 - INFO - __main__ - ***** Running training ***** +06/17/2024 15:54:26 - INFO - __main__ - Num examples = 1600000 +06/17/2024 15:54:26 - INFO - __main__ - Num epochs = 6 +06/17/2024 15:54:26 - INFO - __main__ - Instantaneous batch size per device = 8 +06/17/2024 15:54:26 - INFO - __main__ - Gradient accumulation steps = 1 +06/17/2024 15:54:26 - INFO - __main__ - Total train batch size (w. parallel & distributed) = 16 +06/17/2024 15:54:26 - INFO - __main__ - Total optimization steps = 100000 + Train steps ... : 0%| | 0/100000 [00:00= 1.5 and < 2.0 but detected 2.3 + [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible +/opt/conda/lib/python3.10/site-packages/huggingface_hub/hf_api.py:3664: UserWarning: Warnings while validating metadata in README.md: +- empty or missing yaml metadata in repo card + warnings.warn(f"Warnings while validating metadata in README.md:\n{message}") + + 0%| | 0/8 [00:00":29,"?":30,"@":31,"A":32,"B":33,"C":34,"D":35,"E":36,"F":37,"G":38,"H":39,"I":40,"J":41,"K":42,"L":43,"M":44,"N":45,"O":46,"P":47,"Q":48,"R":49,"S":50,"T":51,"U":52,"V":53,"W":54,"X":55,"Y":56,"Z":57,"[":58,"\\":59,"]":60,"^":61,"_":62,"`":63,"a":64,"b":65,"c":66,"d":67,"e":68,"f":69,"g":70,"h":71,"i":72,"j":73,"k":74,"l":75,"m":76,"n":77,"o":78,"p":79,"q":80,"r":81,"s":82,"t":83,"u":84,"v":85,"w":86,"x":87,"y":88,"z":89,"{":90,"|":91,"}":92,"~":93,"¡":94,"¢":95,"£":96,"¤":97,"¥":98,"¦":99,"§":100,"¨":101,"©":102,"ª":103,"«":104,"¬":105,"®":106,"¯":107,"°":108,"±":109,"²":110,"³":111,"´":112,"µ":113,"¶":114,"·":115,"¸":116,"¹":117,"º":118,"»":119,"¼":120,"½":121,"¾":122,"¿":123,"À":124,"Á":125,"Â":126,"Ã":127,"Ä":128,"Å":129,"Æ":130,"Ç":131,"È":132,"É":133,"Ê":134,"Ë":135,"Ì":136,"Í":137,"Î":138,"Ï":139,"Ð":140,"Ñ":141,"Ò":142,"Ó":143,"Ô":144,"Õ":145,"Ö":146,"×":147,"Ø":148,"Ù":149,"Ú":150,"Û":151,"Ü":152,"Ý":153,"Þ":154,"ß":155,"à":156,"á":157,"â":158,"ã":159,"ä":160,"å":161,"æ":162,"ç":163,"è":164,"é":165,"ê":166,"ë":167,"ì":168,"í":169,"î":170,"ï":171,"ð":172,"ñ":173,"ò":174,"ó":175,"ô":176,"õ":177,"ö":178,"÷":179,"ø":180,"ù":181,"ú":182,"û":183,"ü":184,"ý":185,"þ":186,"ÿ":187,"Ā":188,"ā":189,"Ă":190,"ă":191,"Ą":192,"ą":193,"Ć":194,"ć":195,"Ĉ":196,"ĉ":197,"Ċ":198,"ċ":199,"Č":200,"č":201,"Ď":202,"ď":203,"Đ":204,"đ":205,"Ē":206,"ē":207,"Ĕ":208,"ĕ":209,"Ė":210,"ė":211,"Ę":212,"ę":213,"Ě":214,"ě":215,"Ĝ":216,"ĝ":217,"Ğ":218,"ğ":219,"Ġ":220,"ġ":221,"Ģ":222,"ģ":223,"Ĥ":224,"ĥ":225,"Ħ":226,"ħ":227,"Ĩ":228,"ĩ":229,"Ī":230,"ī":231,"Ĭ":232,"ĭ":233,"Į":234,"į":235,"İ":236,"ı":237,"IJ":238,"ij":239,"Ĵ":240,"ĵ":241,"Ķ":242,"ķ":243,"ĸ":244,"Ĺ":245,"ĺ":246,"Ļ":247,"ļ":248,"Ľ":249,"ľ":250,"Ŀ":251,"ŀ":252,"Ł":253,"ł":254,"Ń":255,"Ġt":256,"Ġa":257,"Ġth":258,"in":259,"er":260,"Ġw":261,"Ġs":262,"ou":263,"Ġthe":264,"re":265,"on":266,"at":267,"en":268,"Ġc":269,"it":270,"is":271,"Ġb":272,"nd":273,"Ġd":274,"Ġm":275,"Ġh":276,"Ġo":277,"ing":278,"es":279,"Ġp":280,"Ġto":281,"an":282,"Ġf":283,"or":284,"ll":285,"ĠI":286,"Ġl":287,"Ġy":288,"ar":289,"Ġg":290,"Ġyou":291,"ed":292,"Ġand":293,"Ġin":294,"Ġof":295,"as":296,"Ġn":297,"om":298,"ic":299,"Ġthat":300,"us":301,"et":302,"ve":303,"al":304,"ow":305,"le":306,"Ġis":307,"Ġe":308,"Ġit":309,"ot":310,"'s":311,"Ġbe":312,"ion":313,"ĠT":314,"Ġwh":315,"ĠA":316,"ent":317,"ĠS":318,"Ġre":319,"ay":320,"Ġwe":321,"Ġon":322,"ere":323,"Ġha":324,"ut":325,"ac":326,"id":327,"ig":328,"os":329,"ke":330,"ver":331,"im":332,"ĠÐ":333,"ĠTh":334,"am":335,"all":336,"Ġfor":337,"el":338,"ch":339,"ro":340,"Ġthis":341,"Ġst":342,"ĠW":343,"Ġu":344,"ad":345,"out":346,"ir":347,"ld":348,"ct":349,"Ġk":350,"if":351,"Ġgo":352,"..":353,"о":354,"ith":355,"ly":356,"ht":357,"qu":358,"Ġ-":359,"Ġdo":360,"Ġj":361,"Ġhave":362,"ĠB":363,"Ġan":364,"Ġwith":365,"Ġare":366,"Ġr":367,"Ġde":368,"Ġse":369,"Ġso":370,"Ġv":371,"st":372,"ill":373,"ur":374,"Ġli":375,"ĠM":376,"est":377,"od":378,"ally":379,"'t":380,"ust":381,"Ġas":382,"ĠC":383,"ce":384,"Ġme":385,"а":386,"е":387,"il":388,"ĠH":389,"Ġwas":390,"ter":391,"th":392,"Ġcan":393,"ant":394,"Ġcom":395,"our":396,"ight":397,"ĠY":398,"ation":399,"ĠAnd":400,"ol":401,"Ġsh":402,"ÑĤ":403,"op":404,"se":405,"Ġnot":406,"ĠSo":407,"Ġne":408,"un":409,"Ġab":410,"Ġlike":411,"Ġat":412,"ĠD":413,"ie":414,"Ġhe":415,"Ġcon":416,"Ġch":417,"ore":418,"Ġal":419,"Ġor":420,"Ġqu":421,"ĠO":422,"ome":423,"ra":424,"ul":425,"ĠN":426,"pp":427,"Ġyour":428,"ould":429,"ĠP":430,"Ġfr":431,"ge":432,"ers":433,"'re":434,"и":435,"Ġthey":436,"Ġwhat":437,"use":438,"Ġall":439,"ĠThe":440,"ĠL":441,"ess":442,"em":443,"Ġkn":444,"Ġjust":445,"art":446,"Ġpro":447,"very":448,"um":449,"Ġlo":450,"Ġì":451,"Ġmy":452,"ok":453,"Ġex":454,"ab":455,"Ġthere":456,"Ġbut":457,"Ġknow":458,"Ġsu":459,"ĠG":460,"Ñģ":461,"ĠE":462,"Ġma":463,"оÐ":464,"Ġen":465,"Ġabout":466,"ĠIt":467,"ist":468,"Ġwor":469,"ri":470,"ind":471,"Ġone":472,"ate":473,"and":474,"ink":475,"Ġle":476,"ort":477,"'m":478,"ĠF":479,"ich":480,"ÑĢ":481,"ide":482,"Ġget":483,"Ġout":484,"...":485,"Ġwill":486,"ãģ":487,"ive":488,"н":489,"Ġfrom":490,"ain":491,"ĠWe":492,"Ġup":493,"pe":494,"res":495,"ca":496,"ĠR":497,"Ġif":498,"Ġpl":499,"Ġdon":500,"ack":501,"Ġ1":502,"Ġ\"":503,"Ġtr":504,"Ġus":505,"ĠWh":506,"ity":507,"ĠJ":508,"ĠYou":509,"Ġhere":510,"her":511,"Ġsome":512,"oug":513,"ak":514,"ard":515,"Ġgoing":516,"Ġun":517,"ment":518,"Ġthink":519,"Ġpe":520,"end":521,"Ġ(":522,"cause":523,"Ġtim":524,"ast":525,"é":526,"Ġour":527,"Ġwant":528,"ame":529,"ies":530,"Ġë":531,"ud":532,"ine":533,"Ġreally":534,"Ġte":535,"Ġsee":536,"ci":537,"Ġby":538,"so":539,"ure":540,"ose":541,"Ġ[":542,"are":543,"Ġmore":544,"ah":545,"one":546,"ck":547,"ople":548,"аÐ":549,"Ġthen":550,"Ġthing":551,"Ġthem":552,"ven":553,"ound":554,"ost":555,"ong":556,"ect":557,"Ġright":558,"ag":559,"Ġint":560,"Ġpeople":561,"Ġwhen":562,"ous":563,"pl":564,"Ġtime":565,"Ġim":566,"Ġwho":567,"Ġ2":568,"ap":569,"Ġbecause":570,"hing":571,"Ġno":572,"ice":573,"Ġlook":574,"Ġhas":575,"Ġwould":576,"Ġhow":577,"act":578,"Ġfe":579,"nt":580,"ough":581,"Ġpr":582,"ĠBut":583,"Ġsay":584,"Ñĥ":585,"Ġnow":586,"Ġman":587,"Ġvery":588,"Ġwork":589,"iz":590,"ĠK":591,"iv":592,"itt":593,"Ġar":594,"ep":595,"Ġcl":596,"Ġwhich":597,"Ġco":598,"ans":599,"'ve":600,"Ġsa":601,"ff":602,"'ll":603,"Ġany":604,"Ġact":605,"Ġye":606,"ber":607,"ach":608,"age":609,"per":610,"Ġalso":611,"fer":612,"Ġthese":613,"Ġad":614,"еÐ":615,"ther":616,"ace":617,"ick":618,"ake":619,"reat":620,"ire":621,"ue":622,"Ġag":623,"ĠU":624,"uch":625,"ions":626,"ry":627,"00":628,"na":629,"Ġdid":630,"Ġque":631,"Ġhad":632,"Ġevery":633,"ĠHe":634,"Ġla":635,"Ġway":636,"Ġsp":637,"ble":638,"ĠThis":639,"ass":640,"Ġtheir":641,"ite":642,"Ġneed":643,"Ġpart":644,"Ġwere":645,"Ġback":646,"ip":647,"own":648,"omet":649,"be":650,"ase":651,"Ġmake":652,"irst":653,"ia":654,"ence":655,"ang":656,"ank":657,"Ġgot":658,"Ġpre":659,"Ġcont":660,"Ġother":661,"pt":662,"ĠThat":663,"og":664,"Ġgood":665,"Ġinto":666,"alk":667,"Ġbeen":668,"Ġam":669,"Ġover":670,"ually":671,"Ġâ":672,"ìĿ":673,"Ġund":674,"he":675,"way":676,"Ġgr":677,"ÑĮ":678,"Ġdif":679,"Ġper":680,"Ñı":681,"ĠIn":682,"Ġtw":683,"ond":684,"ars":685,"int":686,"orm":687,"Ġlot":688,"Ġwhere":689,"ĠÃ":690,"ĠV":691,"Ġsomet":692,"л":693,"ens":694,"Ġgu":695,"Ġac":696,"ug":697,"Ñĭ":698,"ı":699,"Ġfirst":700,"ree":701,"Ġhis":702,"ittle":703,"Ġimp":704,"Ġmo":705,"av":706,"Ġlittle":707,"ĠWhat":708,"Ġmuch":709,"Ġz":710,"Ġê":711,"able":712,"Ġп":713,"Ġpo":714,"Ġcomp":715,"ne":716,"Ġdis":717,"Ġlet":718,"ance":719,"Ġher":720,"Ġthings":721,"Ġstart":722,"ult":723,"Ġapp":724,"Ġres":725,"Ġfo":726,"Ġcould":727,"Ġinter":728,"Ġthose":729,"Ġdes":730,"Ġwell":731,"Ġtwo":732,"Ġkind":733,"xt":734,"ress":735,"ely":736,"ä":737,"Ġbr":738,"Ġthr":739,"Ġв":740,"Ġi":741,"ish":742,"Ġdiffer":743,"Ġro":744,"ĠSt":745,"Ġsomething":746,"Ġtake":747,"Ġbo":748,"ys":749,"Ġshe":750,"Ġtalk":751,"lo":752,"Ñĩ":753,"Ġeven":754,"к":755,"ãĢ":756,"Ġн":757,"Ġbu":758,"ĠIf":759,"Ġdown":760,"ĠCh":761,"ade":762,"ations":763,"Ġuse":764,"ord":765,"Ġoff":766,"Ġactually":767,"Ġspe":768,"du":769,"ated":770,"ater":771,"oss":772,"ning":773,"ü":774,"Ġdoes":775,"ĠÑģ":776,"Ġnew":777,"Ġbet":778,"vel":779,"cess":780,"ple":781,"Ġhapp":782,"ting":783,"onna":784,"Ġes":785,"Ġday":786,"Ġonly":787,"ign":788,"kay":789,"sel":790,"ents":791,"ount":792,"ild":793,"ile":794,"Ġsc":795,"Ġhim":796,"Ġagain":797,"ving":798,"Ġgonna":799,"Ġcomm":800,"Ġhel":801,"other":802,"Ġke":803,"ical":804,"Ġ3":805,"Ġel":806,"Ġthrough":807,"Ġcome":808,"ark":809,"day":810,"ier":811,"ó":812,"Ġthan":813,"ĠThey":814,"Ġmay":815,"Ġser":816,"íķ":817,"Ġcall":818,"Ġdifferent":819,"Ġshould":820,"ĠThere":821,"ary":822,"ĠNow":823,"ãĤ":824,"thing":825,"we":826,"ory":827,"fter":828,"Ġput":829,"ors":830,"ial":831,"ëĭ":832,"Ġunder":833,"Ġinc":834,"ĠYe":835,"ub":836,"form":837,"Ġvide":838,"à¸":839,"vers":840,"Ġfeel":841,"á":842,"ody":843,"ft":844,"fore":845,"Ġem":846,"get":847,"Ġsaid":848,"ition":849,"Ġrec":850,"ious":851,"atch":852,"Ġtry":853,"Ġhelp":854,"Ġshow":855,"д":856,"Ġbit":857,"ull":858,"в":859,"ÑĤо":860,"gr":861,"Ġplay":862,"ife":863,"ail":864,"ĠYeah":865,"Ġquest":866,"Ġmany":867,"Ġpers":868,"Ġgreat":869,"ÃŃ":870,"Ġest":871,"ng":872,"ĠâĻ":873,"ty":874,"la":875,"ĠOh":876,"Ġ×":877,"à®":878,"ĠBe":879,"ady":880,"Ġmost":881,"ction":882,"ĠNo":883,"Ġdoing":884,"Ġbeing":885,"Ġtoo":886,"ces":887,"Ġbl":888,".\"":889,"Ġrem":890,"iss":891,"ons":892,">>":893,"ru":894,"wn":895,"ont":896,"ib":897,"ell":898,"Ġsm":899,"oth":900,"ual":901,"Ġ>>":902,"Ġph":903,"les":904,"oc":905,"ful":906,"Ġsec":907,"ise":908,"Ġadd":909,"igh":910,"ert":911,"Ġsame":912,"âĢ":913,"Ġmean":914,"Ġfind":915,"ek":916,"Ġend":917,"--":918,"м":919,"Ġstill":920,"az":921,"Ġ'":922,"Ġmin":923,"Ġyears":924,"urn":925,"Ġaround":926,"self":927,"Ġwr":928,"bs":929,"ought":930,"ĠâĻª":931,"Ġfl":932,"ange":933,"Ġafter":934,"Ġpoint":935,"mer":936,"ved":937,"Ġlong":938,"oy":939,"ä¸":940,"Ġcr":941,"ways":942,"Ġsy":943,"Ġtra":944,"Ġ20":945,"ave":946,"Ġche":947,"Ġent":948,"Ġbefore":949,"ph":950,"Ġatt":951,"ian":952,"ily":953,"Ġperson":954,"Ġbig":955,"Ġsch":956,"Ġreal":957,"Ġnext":958,"Ġlove":959,"Ġvideo":960,"ĠLet":961,"Ġfin":962,"Ġmak":963,"ible":964,"Ġtoday":965,"erm":966,"ĠAl":967,"ower":968,"ann":969,"ix":970,"Ġpar":971,"Ġstud":972,"ö":973,"Ġimport":974,"te":975,"Ġgive":976,"ves":977,"Ġdie":978,"Ġdec":979,"Ġtell":980,"Ġк":981,"ÑģÑĤ":982,"Ġwhy":983,"ically":984,"ict":985,"red":986,"Ġbas":987,"Ġsure":988,"Ġbel":989,"ating":990,"Ġtak":991,"Ġset":992,"Ġlife":993,"Ġdidn":994,"ا":995,"ob":996,"und":997,"ath":998,"Ġop":999,"Ġо":1000,"ait":1001,"Ġworld":1002,"Ġsupp":1003,"io":1004,"Ġcour":1005,"Ġи":1006,"ward":1007,"ен":1008,"Ġalways":1009,"up":1010,"Ġhand":1011,"ĠHow":1012,"cial":1013,"Ġcons":1014,"ĠÑ":1015,"Ġind":1016,"Ġ4":1017,"ĠAs":1018,"Ġfun":1019,"ject":1020,"Ġimportant":1021,"Ġsur":1022,"ew":1023,"ates":1024,"Ġ5":1025,"Ġdi":1026,"Ġmade":1027,"Ġins":1028,"Ġask":1029,"Ġet":1030,"Ġnum":1031,"Ġcar":1032,"ĠOkay":1033,"Ġsim":1034,"ik":1035,"Ġlast":1036,"ĠGo":1037,"Ġmus":1038,"Ġrel":1039,"ular":1040,"´ì":1041,"ĠWell":1042,"pect":1043,"ĠThank":1044,"Ġthree":1045,"ã":1046,"ãĥ":1047,"Ġinv":1048,"Ġgen":1049,"lic":1050,"Ġhappen":1051,"ëĬ":1052,"ien":1053,"ever":1054,"ов":1055,"Ġstr":1056,"ĠAll":1057,"Ġinst":1058,"ĠâĢ":1059,"Ġdef":1060,"Ġsl":1061,"Ġmight":1062,"ung":1063,"Ġyear":1064,"Ġown":1065,"Ġkeep":1066,"body":1067,"der":1068,"ĠÑĤ":1069,"Ġд":1070,"Ġanother":1071,"Ġmod":1072,"Ġev":1073,"Ġguys":1074,"Ġable":1075,"ão":1076,"que":1077,"ident":1078,"ĠYes":1079,"Ġits":1080,"Ġplace":1081,"Ġprodu":1082,"arn":1083,"Ġм":1084,"Ġrep":1085,"Ġexper":1086,"Ġfam":1087,"ities":1088,"ific":1089,"Ġhigh":1090,"ied":1091,"ool":1092,"iew":1093,"еÑĤ":1094,"ren":1095,"Ġdone":1096,"Ġ...":1097,"ëĬĶ":1098,"stem":1099,"ĠSe":1100,"Ġbetter":1101,"come":1102,"Ġdel":1103,"Ġty":1104,"Ġum":1105,"Ġho":1106,"ĠAn":1107,"Ġmon":1108,"ings":1109,"Ġsk":1110,"Ġob":1111,"com":1112,"blem":1113,"ope":1114,"stand":1115,"'d":1116,"ments":1117,"Ġele":1118,"ĠIs":1119,"Ġda":1120,"Ġreg":1121,"lease":1122,"ike":1123,"als":1124,"ize":1125,"ê°":1126,"Ġcare":1127,"Ġnever":1128,"ìĿ´":1129,"ese":1130,"Ġmet":1131,"olog":1132,"ĠWhen":1133,"uck":1134,"еÑĢ":1135,"Ġé":1136,"Ġdat":1137,"ç":1138,"Ġexam":1139,"ility":1140,"Ġdet":1141,"cri":1142,"Ġused":1143,"ĠDo":1144,"Ġtrans":1145,"eg":1146,"ten":1147,"Ñİ":1148,"cus":1149,"Ġsecond":1150,"Ġbest":1151,"Ġhard":1152,"Ġide":1153,"Ġproblem":1154,"ê³":1155,"ĠUn":1156,"Ñħ":1157,"ĠÎ":1158,"Ġwatch":1159,"ĠSh":1160,"atter":1161,"Ġpret":1162,"Ġder":1163,"Ġcourse":1164,"ÅŁ":1165,"ative":1166,"ics":1167,"Ġquestion":1168,"ute":1169,"ìĹ":1170,"ĠFor":1171,"ather":1172,"Ġcol":1173,"iend":1174,"Ġí":1175,"ĠZ":1176,"Ġdoesn":1177,"arch":1178,"Ġinterest":1179,"Ġpol":1180,"Ġcor":1181,"ience":1182,"Ġpres":1183,"Ġeach":1184,"Ġsystem":1185,"Ġfact":1186,"iel":1187,"ably":1188,"Ġer":1189,"Ġrun":1190,"ĠìĿ":1191,"Ġtop":1192,"ner":1193,"Ġthought":1194,"Ġeas":1195,"ient":1196,"Ġcre":1197,"ÑĪ":1198,"Ġcommun":1199,"ye":1200,"ready":1201,"llow":1202,"Ġeverything":1203,"omm":1204,"Ġmed":1205,"ļĶ":1206,"Ġcount":1207,"its":1208,"Ġcompl":1209,"hip":1210,"ÙĦ":1211,"ook":1212,"Ġtoget":1213,"Ġtogether":1214,"amp":1215,"Ġgame":1216,"Ġalready":1217,"ал":1218,"Ġcalled":1219,"ale":1220,"ÅĤ":1221,"ĠMy":1222,"Ġunderstand":1223,"Ġdr":1224,"Ġmom":1225,"ited":1226,"ол":1227,"Ġusing":1228,"zy":1229,"Ġnumber":1230,"ãĢģ":1231,"ced":1232,"Ġcle":1233,"но":1234,"ëĭ¤":1235,"ince":1236,"Ġlooking":1237,"Ġpretty":1238,"Ġprob":1239,"ĠShe":1240,"Ġve":1241,"Ġgetting":1242,"Ġweek":1243,"Ġeff":1244,"uff":1245,"air":1246,"ues":1247,"ern":1248,"ĠQ":1249,"oup":1250,"ention":1251,"Ġside":1252,"ом":1253,"Ġform":1254,"Ġbus":1255,"Ġass":1256,"Ġed":1257,"ason":1258,"ween":1259,"âĢ¦":1260,"Ġturn":1261,"Ġcur":1262,"Ġcoll":1263,"Ġdire":1264,"ĠGod":1265,"Ġ10":1266,"Ġequ":1267,"Ġб":1268,"Ġopen":1269,"Ġsuch":1270,"ird":1271,"ак":1272,"Ġear":1273,"ÄĻ":1274,"gan":1275,"Ġpartic":1276,"Ġfriend":1277,"Ġexp":1278,"Ġext":1279,"Ġhome":1280,"Ġwater":1281,"ĠOn":1282,"ÑĤÑĮ":1283,"ork":1284,"ĠпÑĢ":1285,"Ġmove":1286,"ness":1287,"ense":1288,"ho":1289,"Ġchar":1290,"co":1291,"ins":1292,"Ġboth":1293,"Ġ19":1294,"Ġgra":1295,"Ġbetween":1296,"á»":1297,"Ġìķ":1298,"ash":1299,"ĠRe":1300,"ai":1301,"alth":1302,"ures":1303,"ember":1304,"Ġav":1305,"Ġver":1306,"ê":1307,"oney":1308,"Ġthank":1309,"Ġmaybe":1310,"uc":1311,"ime":1312,"ê³ł":1313,"Ġaway":1314,"Ġname":1315,"ouse":1316,"Ġacc":1317,"Ġmusic":1318,"Ġchange":1319,"Ġpass":1320,"ger":1321,"Ġbuild":1322,"Ġval":1323,"iness":1324,"any":1325,"Ġfew":1326,"´ë":1327,"ta":1328,"Ġlist":1329,"Ã¥":1330,"Ġold":1331,"Ġìŀ":1332,"Ġsort":1333,"Ġmem":1334,"Ġca":1335,"cept":1336,"Ġgener":1337,"Ġyeah":1338,"Ġwhile":1339,"Ġanything":1340,"ric":1341,"gram":1342,"Ġein":1343,"cy":1344,"uring":1345,"ĠDe":1346,"Ġpower":1347,"Ġcoming":1348,"Ġword":1349,"Ġ--":1350,"Ġbelie":1351,"Ġfound":1352,"to":1353,"п":1354,"Ġmeans":1355,"Ġinform":1356,"ĠØ":1357,"ĠÑĩ":1358,"Ġsmall":1359,"000":1360,"Ġcame":1361,"Ġíķ":1362,"wh":1363,"Ġworking":1364,"Ġexample":1365,"Ġpos":1366,"Ġdep":1367,"ê²":1368,"äº":1369,"ote":1370,"Ġdem":1371,"ì§":1372,"ts":1373,"Ġvar":1374,"aut":1375,"Ġtri":1376,"chn":1377,"Ġhead":1378,"Ġwhole":1379,"×Ļ":1380,"ze":1381,"Ġtrying":1382,"Ġtem":1383,"Ġcou":1384,"ets":1385,"Ġ6":1386,"Ġfil":1387,"velop":1388,"Ġcase":1389,"à¯":1390,"Ġprobably":1391,"Ġokay":1392,"Ġplan":1393,"Ġsit":1394,"Ġschool":1395,"ĠThen":1396,"¸ë":1397,"me":1398,"Ġprocess":1399,"Ġfar":1400,"Ġread":1401,"Ġposs":1402,"Ġbre":1403,"Ġsol":1404,"icht":1405,"Ġsupport":1406,"ĠTo":1407,"ertain":1408,"Ġstarted":1409,"Ġcap":1410,"Ġleft":1411,"Ġdata":1412,"Ġtimes":1413,"ел":1414,"Ġwanted":1415,"ан":1416,"Ġtalking":1417,"Ġist":1418,"Ġhaving":1419,"ump":1420,"Ġcontin":1421,"Ġsub":1422,"Ġз":1423,"pr":1424,"ëĭĪ":1425,"ina":1426,"ż":1427,"Ġcreat":1428,"ode":1429,"×ķ":1430,"æĺ":1431,"!!":1432,"Ġterm":1433,"ism":1434,"од":1435,"ĠBecause":1436,"Ġwent":1437,"ider":1438,"Ġprov":1439,"Ġchild":1440,"Ġden":1441,"Ġlight":1442,"br":1443,"³Ð¾":1444,"oh":1445,"Ġbook":1446,"ĠÙ":1447,"ution":1448,"ĠJust":1449,"ene":1450,"Ġfour":1451,"Ġvis":1452,"ê°Ģ":1453,"Ġhope":1454,"Ġmaking":1455,"ĠLe":1456,"ìķ":1457,"Ġopp":1458,"au":1459,"Ġmoney":1460,"Ġprogram":1461,"è":1462,"Ġstand":1463,"IN":1464,"Ġsign":1465,"Ġlearn":1466,"Ãł":1467,"ĠDon":1468,"Ġteam":1469,"Ġна":1470,"lud":1471,"Ġrest":1472,"ices":1473,"æľ":1474,"ĠÑĢ":1475,"Ġaut":1476,"Ġlead":1477,"ational":1478,"de":1479,"gy":1480,"Ġnice":1481,"Ġdas":1482,"Ġdist":1483,"Ġhum":1484,"ĠOne":1485,"æĪ":1486,"Ġcomes":1487,"Ġjo":1488,"Ġcent":1489,"Ġexpl":1490,"Ġmark":1491,"reen":1492,"led":1493,"gin":1494,"ìļĶ":1495,"Ġlevel":1496,"Ġconf":1497,"ush":1498,"Ġdevelop":1499,"Ġtest":1500,"eng":1501,"vious":1502,"ature":1503,"ем":1504,"ret":1505,"Ġje":1506,"Ġstuff":1507,"Ġclass":1508,"ows":1509,"Ġê·":1510,"Ġsi":1511,"Ġles":1512,"rop":1513,"çļ":1514,"Ġpor":1515,"Ġwar":1516,"ìĹIJ":1517,"Ġeveryone":1518,"Ġge":1519,"Ġcheck":1520,"ott":1521,"Ġsing":1522,"Ġart":1523,"Ġfollow":1524,"Ġ201":1525,"ĠFr":1526,"ais":1527,"ìĸ":1528,"α":1529,"å°":1530,"ĠÃł":1531,"imes":1532,"Ġret":1533,"Ġchang":1534,"Ġpub":1535,"Ġinf":1536,"Ġtechn":1537,"ada":1538,"ives":1539,"Ġbeh":1540,"æĺ¯":1541,"Ġlooks":1542,"ãĢĤ":1543,"з":1544,"ĠWhy":1545,"çļĦ":1546,"Ġenough":1547,"Ġbra":1548,"itch":1549,"ä»":1550,"Ġadv":1551,"б":1552,"Ġwithout":1553,"wer":1554,"meric":1555,"den":1556,"Ġcomplet":1557,"Ġidea":1558,"ters":1559,"ock":1560,"Ġdefin":1561,"Ġever":1562,"Ġgl":1563,"Ġonce":1564,"Ġbring":1565,"Ġsaying":1566,"Ġans":1567,"Ġhear":1568,"nect":1569,"Ġless":1570,"go":1571,"ream":1572,"ado":1573,"ìŀ":1574,"Ġmind":1575,"ente":1576,"Ġfull":1577,"Ġbad":1578,"Ġwom":1579,"Ġsomeone":1580,"Ġdu":1581,"Ġwon":1582,"Ġcontro":1583,"ortun":1584,"Ġhealth":1585,"Ġcho":1586,"ĠAr":1587,"Ġconc":1588,"Ġinformation":1589,"Ġstop":1590,"att":1591,"ately":1592,"ä½":1593,"Ġgroup":1594,"ĠÑĥ":1595,"Ġquite":1596,"Ġresp":1597,"ER":1598,"ught":1599,"ê¸":1600,"man":1601,"ized":1602,"ĠBr":1603,"Ġremember":1604,"Ġfamily":1605,"Ġbusiness":1606,"aw":1607,"Ġspec":1608,"Ġau":1609,"ĠOr":1610,"Äħ":1611,"Ġseen":1612,"Ġlar":1613,"Ġ7":1614,"gg":1615,"bers":1616,"Ġdra":1617,"Ġmonth":1618,"Ġsays":1619,"Ġiss":1620,"Ġlive":1621,"Ġline":1622,"Ġmoment":1623,"Ġexc":1624,"els":1625,"Ġsound":1626,"Ġcool":1627,"Ġloc":1628,"Ġcertain":1629,"Ġdri":1630,"оÑĤ":1631,"ames":1632,"Ġmust":1633,"ny":1634,"иÑĤ":1635,"Ġkid":1636,"Ġinclud":1637,"ìĿĦ":1638,"ator":1639,"ÄŁ":1640,"ha":1641,"ared":1642,"Ġseem":1643,"й":1644,"ìĦ":1645,"Ġelse":1646,"Ġìł":1647,"irl":1648,"Ġ8":1649,"Ġvo":1650,"Ġquestions":1651,"ines":1652,"ee":1653,"æĪij":1654,"ür":1655,"ĠAmeric":1656,"Ġstory":1657,"Ġserv":1658,"vern":1659,"ages":1660,"land":1661,"ĠâĢĵ":1662,"era":1663,"ĠCan":1664,"Ġpop":1665,"ether":1666,"Ġna":1667,"Ġorder":1668,"Ġmakes":1669,"Ġsince":1670,"con":1671,"ctor":1672,"Ġthough":1673,"Ġproduct":1674,"ли":1675,"Ġleg":1676,"Ġmeet":1677,"alf":1678,"ÑģÑı":1679,"unch":1680,"iter":1681,"ove":1682,"×ķ×":1683,"iet":1684,"ам":1685,"ital":1686,"Ġsuper":1687,"ling":1688,"Ġpay":1689,"Ġpara":1690,"Ġjob":1691,"ĠHere":1692,"Ġsw":1693,"ks":1694,"ption":1695,"ma":1696,"Ġbelieve":1697,"¬ë":1698,"Ġwait":1699,"ой":1700,"Ġunt":1701,"Ġquick":1702,"hr":1703,"ĠÑį":1704,"ĠPro":1705,"Ġmen":1706,"à¹":1707,"Ġdays":1708,"Ġgoes":1709,"Ġspeak":1710,"ĠAt":1711,"ement":1712,"Ġmiss":1713,"Ġaw":1714,"Ġdesign":1715,"Ġproject":1716,"оÑĢ":1717,"ij":1718,"ants":1719,"ats":1720,"ĠChr":1721,"Ġ9":1722,"Ġcut":1723,"Ġrequ":1724,"Ġне":1725,"ĠNot":1726,"aster":1727,"Ġmill":1728,"Ġparticular":1729,"Ġpie":1730,"Ġstudents":1731,"Ġfive":1732,"oun":1733,"ĠNe":1734,"Ġgi":1735,"Ġpas":1736,"Ġfree":1737,"ĠSp":1738,"lich":1739,"Ġprof":1740,"Ġeng":1741,"Ġprot":1742,"ĠLike":1743,"osed":1744,"Ġconnect":1745,"app":1746,"Ġë§":1747,"iting":1748,"Ġblo":1749,"Ġlos":1750,"ists":1751,"Ġexperience":1752,"rent":1753,"Ġstay":1754,"Ġfood":1755,"ton":1756,"ruct":1757,"Ġhist":1758,"view":1759,"ining":1760,"most":1761,"ivers":1762,"bo":1763,"ãģĦ":1764,"ĠTr":1765,"gen":1766,"Ġplease":1767,"Ġcommunity":1768,"Ġce":1769,"AN":1770,"no":1771,"Ġbody":1772,"Ġhour":1773,"Ġvers":1774,"áº":1775,"cer":1776,"Ġê°":1777,"Ġreason":1778,"ĠRight":1779,"Ġlater":1780,"ÏĦ":1781,"Ġhouse":1782,"ĠX":1783,"он":1784,"Ġstate":1785,"fic":1786,"å¤":1787,"ÅĽ":1788,"ield":1789,"Ġpri":1790,"Ġpast":1791,"Ġwalk":1792,"ology":1793,"ering":1794,"anna":1795,"Ġter":1796,"Ġhold":1797,"Ġorgan":1798,"ben":1799,"ο":1800,"ón":1801,"Ġeffect":1802,"Ġyourself":1803,"Ġplus":1804,"aj":1805,"ando":1806,"ural":1807,"Ġroom":1808,"lect":1809,"ê²Į":1810,"?\"":1811,"side":1812,"Ġbecome":1813,"ÑĨ":1814,"ĠÂ":1815,"ood":1816,"Ġconst":1817,"Ġnight":1818,"utes":1819,"ж":1820,"Ġbreak":1821,"Ġpain":1822,"Ġstep":1823,"ired":1824,"Ġnothing":1825,"Ġuntil":1826,"Ñĸ":1827,"ав":1828,"ÙĬ":1829,"Ġduring":1830,"ì§Ģ":1831,"less":1832,"oll":1833,"нÑĭ":1834,"ι":1835,"fect":1836,"iver":1837,"ıĦ":1838,"ither":1839,"ying":1840,"Ġbegin":1841,"×Ļ×":1842,"ivid":1843,"Ġç":1844,"Ġsal":1845,"Ġta":1846,"Ġpot":1847,"Ġ$":1848,"Ġmar":1849,"Ġclear":1850,"Ġface":1851,"Ġgrow":1852,"Ġ*":1853,"Ġinside":1854,"Ġfriends":1855,"Ġleave":1856,"enn":1857,"Ġeasy":1858,"Ġarea":1859,"ality":1860,"oud":1861,"Ġeat":1862,"ÙĨ":1863,"Ġpur":1864,"orn":1865,"Ġsaw":1866,"Ġanswer":1867,"Ġfront":1868,"Ġbeaut":1869,"¼ë":1870,"Ġmatter":1871,"Ġson":1872,"ĠNew":1873,"Ġresult":1874,"ides":1875,"che":1876,"Ġfut":1877,"ps":1878,"Ġfocus":1879,"Ġinteresting":1880,"å¥":1881,"Ġap":1882,"\".":1883,"Ġcreate":1884,"оÑģ":1885,"Ġpress":1886,"ross":1887,"Ġpick":1888,"line":1889,"Ġtook":1890,"ĠMay":1891,"row":1892,"Ġich":1893,"ĺë":1894,"Ġref":1895,"Ġmor":1896,"ract":1897,"arent":1898,"AR":1899,"Ġexact":1900,"Ġspace":1901,"work":1902,"ни":1903,"Ġbir":1904,"Ġdev":1905,"г":1906,"Ġtold":1907,"Ġpublic":1908,"cially":1909,"Ġview":1910,"ĠHey":1911,"med":1912,"llo":1913,"cc":1914,"Ġfac":1915,"Ġcouple":1916,"Ġheart":1917,"ler":1918,"Ġready":1919,"Ġalmost":1920,"aring":1921,"Ġhalf":1922,"ĠMe":1923,"avor":1924,"ique":1925,"Ġcharac":1926,"Ġpract":1927,"ON":1928,"ane":1929,"Ġil":1930,"на":1931,"Ġvi":1932,"lish":1933,"head":1934,"Ġleast":1935,"Ġbasically":1936,"ased":1937,"right":1938,"Ġyet":1939,"Ġtaking":1940,"Ġcountry":1941,"Ġwin":1942,"Ġisn":1943,"Ġpossible":1944,"Ġcam":1945,"Ġincre":1946,"Ġpat":1947,"Ġwanna":1948,"Ġconsider":1949,"Ġabs":1950,"Ġwithin":1951,"Ġhuman":1952,"Ġthinking":1953,"Ġoh":1954,"¡ľ":1955,"Ġqui":1956,"ases":1957,"Ġ0":1958,"itely":1959,"ä¸į":1960,"Ġkill":1961,"Ġmil":1962,"Ġinvest":1963,"ister":1964,"Ġsuc":1965,"ional":1966,"elf":1967,"Ġwhether":1968,"Ġcontrol":1969,"Ġagainst":1970,"ots":1971,"ëĭĪëĭ¤":1972,"ior":1973,"Ġpresent":1974,"Ġا":1975,"Ġwatching":1976,"ube":1977,"erv":1978,"Ġnicht":1979,"Ġgovern":1980,"ĠThese":1981,"Ġ:":1982,"uit":1983,"ugh":1984,"Ġworks":1985,"oo":1986,"Ġwir":1987,"Ġair":1988,"ĠTe":1989,"аз":1990,"ision":1991,"where":1992,"Ġtot":1993,"joy":1994,"ìĭ":1995,"Ġvol":1996,"Ġе":1997,"Ġclose":1998,"ĠAd":1999,"Ñī":2000,"ined":2001,"Ġuna":2002,"Ġê·¸ë":2003,"°ë":2004,"orry":2005,"Ġbro":2006,"Ġfilm":2007,"ift":2008,"20":2009,"Ġtype":2010,"Ġhappened":2011,"ĠAm":2012,"Ġgirl":2013,"ĠAre":2014,"wards":2015,"Ġpour":2016,"Ġcolor":2017,"elt":2018,"аÑģ":2019,"Ġsense":2020,"lex":2021,"ĠWith":2022,"uss":2023,"rib":2024,"Ġrese":2025,"Ġnorm":2026,"Ġfuture":2027,"Ġdeal":2028,"ending":2029,"ey":2030,"Ġx":2031,"ero":2032,"ĠCl":2033,"uk":2034,"Ġwhatever":2035,"selves":2036,"Ġyoung":2037,"ìĬ":2038,"ĠMar":2039,"ĠChrist":2040,"Ġguess":2041,"Ġperform":2042,"Ġener":2043,"ron":2044,"Ġhit":2045,"Ġwond":2046,"Ġdirect":2047,"ĠEvery":2048,"Ġoften":2049,"Ġfa":2050,"Ġalong":2051,"Ġclick":2052,"ĠLook":2053,"Ġsitu":2054,"Ġhappy":2055,"ead":2056,"Ġago":2057,"Ġenc":2058,"Ġmyself":2059,"Ġcover":2060,"об":2061,"Ġmid":2062,"Ġcost":2063,"Ġten":2064,"ĠSch":2065,"Ġexpect":2066,"Ġwasn":2067,"Ġstrong":2068,"iful":2069,"Ġopportun":2070,"inal":2071,"yle":2072,"Ġshare":2073,"Ġtrue":2074,"Ġappro":2075,"Ġchall":2076,"Ġminutes":2077,"Ġchann":2078,"ĠëĤ":2079,"ε":2080,"li":2081,"Ġmess":2082,"ories":2083,"pecially":2084,"Ġwrong":2085,"Ġyes":2086,"ĠìĹ":2087,"iron":2088,"Ġallow":2089,"Ġsubs":2090,"Ġfore":2091,"Ġfight":2092,"Ġsocial":2093,"Ġcra":2094,"ana":2095,"Ġaff":2096,"Ġess":2097,"Ġways":2098,"Ġshort":2099,"Ġfall":2100,"Ġlaw":2101,"ĠWho":2102,"Ġenjoy":2103,"Ġcal":2104,"Ġaccess":2105,"fe":2106,"Ġnon":2107,"Ġacross":2108,"ery":2109,"viously":2110,"ĠEx":2111,"ided":2112,"Ġlink":2113,"ĠPr":2114,"Ġterms":2115,"aces":2116,"Ġland":2117,"azing":2118,"Ġ15":2119,"Ġmult":2120,"Ġspecial":2121,"åĢ":2122,"iving":2123,"ìĿĢ":2124,"Ġtyp":2125,"Ġste":2126,"ĠÄ":2127,"Ġforward":2128,"åı":2129,"Ġfre":2130,"好":2131,"Ġresearch":2132,"à¯į":2133,"аÑĤ":2134,"Ġmain":2135,"Ġrecord":2136,"Ġhu":2137,"Ġdefinitely":2138,"Ġeither":2139,"Ġlisten":2140,"Ġkey":2141,"Ġmarket":2142,"ĠÑĩÑĤо":2143,"ization":2144,"Ġvideos":2145,"Ġguy":2146,"Ġfig":2147,"Ġstra":2148,"ĠPl":2149,"ully":2150,"amos":2151,"Ġmention":2152,"Ġsong":2153,"Ġintern":2154,"ral":2155,"urs":2156,"Ġhon":2157,"Ġvalue":2158,"Ġbar":2159,"cle":2160,"ож":2161,"Äĩ":2162,"ľë":2163,"Ġzu":2164,"им":2165,"ä½ł":2166,"Ġsingle":2167,"Ġauch":2168,"cuss":2169,"Ġgets":2170,"Ġsometimes":2171,"å¾":2172,"amb":2173,"mm":2174,"cing":2175,"Ġperfect":2176,"ĠBl":2177,"outh":2178,"ìł":2179,"Ġsci":2180,"par":2181,"Ġred":2182,"Ġpost":2183,"Ġmot":2184,"Ġelect":2185,"ĠEu":2186,"itive":2187,"ĠSome":2188,"Ġdescri":2189,"Ġcurrent":2190,"és":2191,"Ġtre":2192,"ĠEn":2193,"Ġmit":2194,"EN":2195,"Īë":2196,"ium":2197,"Ġheard":2198,"Ġsimple":2199,"lar":2200,"Ġeverybody":2201,"ilar":2202,"Ġneeds":2203,"Ġdiffic":2204,"ĠGood":2205,"ument":2206,"cent":2207,"Ġoper":2208,"аÑĤÑĮ":2209,"ety":2210,"Ġblack":2211,"Ġgiven":2212,"ones":2213,"Ġwel":2214,"éĢ":2215,"ĠìķĦ":2216,"Ġ30":2217,"AT":2218,"Ġstat":2219,"ouch":2220,"ĠMr":2221,"аÑĢ":2222,"Ġsho":2223,"Ġcond":2224,"×Ķ":2225,"my":2226,"Ġchildren":2227,"Ġeu":2228,"ед":2229,"ìķĦ":2230,"tern":2231,"Ġuh":2232,"Ġhar":2233,"Ġprom":2234,"Ġpull":2235,"rew":2236,"Ġcompany":2237,"Ġbeautiful":2238,"ustom":2239,"íķĺ":2240,"ки":2241,"Ġstre":2242,"Ġamazing":2243,"ries":2244,"Ġsuccess":2245,"Ġmach":2246,"not":2247,"Ġdiscuss":2248,"Ġnat":2249,"¦¬":2250,"Ġune":2251,"Ġdifficult":2252,"Ġris":2253,"ν":2254,"Ġcamp":2255,"Ġbuy":2256,"ä¸Ģ":2257,"Ġmag":2258,"po":2259,"ĠYour":2260,"Ġbehind":2261,"ica":2262,"ın":2263,"ĠOK":2264,"Ġlang":2265,"Ġwomen":2266,"Ġenv":2267,"Ġrece":2268,"Ġchannel":2269,"ially":2270,"ule":2271,"Ġ12":2272,"thers":2273,"Ġbott":2274,"Ġreport":2275,"ently":2276,"fully":2277,"The":2278,"Ġsent":2279,"Ġevent":2280,"Ġenergy":2281,"lt":2282,"Ġwords":2283,"arr":2284,"dle":2285,"Ġahead":2286,"ards":2287,"ر":2288,"äºĨ":2289,"Ġtool":2290,"conom":2291,"еÑģ":2292,"Ġexactly":2293,"Ġfavor":2294,"Ġlow":2295,"Ġproper":2296,"ĠìŀĪ":2297,"Ġ!":2298,"Ġrelations":2299,"Ġmas":2300,"Ġkids":2301,"Ġentire":2302,"ude":2303,"Ùħ":2304,"ĠWhere":2305,"Ġones":2306,"Ġcity":2307,"olut":2308,"Ġsix":2309,"ability":2310,"ör":2311,"ili":2312,"ĠEs":2313,"Ġhappens":2314,"ains":2315,"Ġmodel":2316,"Ġpict":2317,"Ġespecially":2318,"Ġ100":2319,"kt":2320,"Ġsoon":2321,"by":2322,"rodu":2323,"Ġann":2324,"Ġsubscri":2325,"ĠQu":2326,"Ġavail":2327,"iment":2328,"Ġvoc":2329,"ka":2330,"Ġ200":2331,"aper":2332,"ĠInd":2333,"Ġì§":2334,"hor":2335,"į°":2336,"jor":2337,"ил":2338,"Ġsqu":2339,"AU":2340,"arning":2341,"Ġг":2342,"IS":2343,"Ġл":2344,"ей":2345,"yes":2346,"åħ":2347,"ĠÐĴ":2348,"Ġorig":2349,"ого":2350,"Ġasked":2351,"ilt":2352,"ог":2353,"Ġcontinue":2354,"Ġìĺ":2355,"ram":2356,"Ġothers":2357,"ES":2358,"ohn":2359,"Ġlay":2360,"Ġbased":2361,"Ġpu":2362,"Ġappe":2363,"Ġlim":2364,"Ġprop":2365,"Ģë":2366,"min":2367,"Ġhot":2368,"ĠLa":2369,"Ġfast":2370,"Ġprotect":2371,"Ġamount":2372,"Ġaqu":2373,"Ġfund":2374,"Ġcustom":2375,"Ġcult":2376,"Ġhands":2377,"Ġhaven":2378,"Ġaud":2379,"Ġoutside":2380,"ĠAfter":2381,"aps":2382,"Ġanim":2383,"ploy":2384,"Ġhat":2385,"ĠFirst":2386,"Ġtreat":2387,"Ġep":2388,"Ġmater":2389,"Ġbuilding":2390,"Ġë°":2391,"åIJ":2392,"ìĦľ":2393,"za":2394,"ughter":2395,"ĠPe":2396,"ney":2397,"eter":2398,"atic":2399,"Ġeduc":2400,"기":2401,"Ġmov":2402,"ĵ¤":2403,"ama":2404,"ration":2405,"Ġsn":2406,"ÙĪ":2407,"Ġsum":2408,"Ġphot":2409,"ĠÐĿ":2410,"Ġ.":2411,"æľī":2412,"Ġfinish":2413,"itting":2414,"å®":2415,"Ġlarge":2416,"Ġìĸ":2417,"Ġwhite":2418,"ara":2419,"Ġmais":2420,"ĠHi":2421,"Ġdam":2422,"ĠاÙĦ":2423,"Ġbox":2424,"ĠHello":2425,"Ġsle":2426,"Ġopt":2427,"ried":2428,"¥¼":2429,"Ġactiv":2430,"Ġnão":2431,"ĠCom":2432,"Ġplaying":2433,"Th":2434,"Ġavailable":2435,"Ġport":2436,"åĪ":2437,"ĠAh":2438,"Ġlas":2439,"Ġearly":2440,"Ġwonder":2441,"±°":2442,"Ġ18":2443,"cul":2444,"Ġfunction":2445,"Ġmorning":2446,"lle":2447,"ients":2448,"ux":2449,"Ġcir":2450,"itions":2451,"Ġdeep":2452,"Ġpolit":2453,"yor":2454,"mp":2455,"aking":2456,"Įë":2457,"ĠMan":2458,"Ġmillion":2459,"Ġ/":2460,"Ġindivid":2461,"Ġpan":2462,"Ġgovernment":2463,"Ġwrite":2464,"ĠTod":2465,"ament":2466,"ĠÏ":2467,"Ġwind":2468,"ĠEng":2469,"chen":2470,"Wh":2471,"ìľ":2472,"Ġident":2473,"ãģ§":2474,"vent":2475,"urch":2476,"Ġhy":2477,"Ġya":2478,"Ġtrad":2479,"Ġrelationship":2480,"ú":2481,"Ġdou":2482,"OR":2483,"Ġswe":2484,"Ġneg":2485,"ination":2486,"Ġtext":2487,"ipp":2488,"Ġfine":2489,"ás":2490,"ĠDr":2491,"ĠCome":2492,"Ġmonths":2493,",\"":2494,"ени":2495,"Ġhours":2496,"Ġpod":2497,"irt":2498,"Ġinvol":2499,"Ġcollect":2500,"Ġauf":2501,"Ġpa":2502,"Ġhistory":2503,"mb":2504,"ify":2505,"Ġ?":2506,"Ġbelow":2507,"asure":2508,"aby":2509,"Ġlangu":2510,"Ġant":2511,"Ġcomb":2512,"ato":2513,"Ġexist":2514,"Ġëĭ":2515,"Ġtakes":2516,"Ġcharacter":2517,"aff":2518,"Ġfield":2519,"Ġeconom":2520,"ief":2521,"Ġpiece":2522,"åľ":2523,"Ġreach":2524,"Ġê²":2525,"ony":2526,"Ġmaterial":2527,"Ġdig":2528,"Ġphys":2529,"Ġimpro":2530,"Ġsimilar":2531,"IC":2532,"Ġnet":2533,"yn":2534,"Ġposition":2535,"ÃŁ":2536,"Ġbene":2537,"read":2538,"Ġlearning":2539,"ume":2540,"Ġclean":2541,"ÑĤоÑĢ":2542,"Ġcook":2543,"Ġseems":2544,"Ġol":2545,"ĠUS":2546,"ĠJes":2547,"Ġà®":2548,"ential":2549,"iversity":2550,"acy":2551,"ĠÑı":2552,"olutely":2553,"rect":2554,"ĠPlease":2555,"Ġrepres":2556,"Ġtouch":2557,"men":2558,"Ġа":2559,"ión":2560,"ĠThanks":2561,"Ġang":2562,"Ġmajor":2563,"Ġitself":2564,"ills":2565,"\",":2566,"ians":2567,"Ġscreen":2568,"Ġhor":2569,"Ġknown":2570,"Ġenviron":2571,"Ġfinal":2572,"Ġfigure":2573,"ĠTw":2574,"Ġeyes":2575,"Ġimag":2576,"Ġseeing":2577,"Ġhair":2578,"rem":2579,"Ġapplic":2580,"ends":2581,"put":2582,"Ġnews":2583,"Ġcompletely":2584,"ughs":2585,"Ġknew":2586,"ified":2587,"ĠJe":2588,"ĠDid":2589,"Ġsituation":2590,"Ġflo":2591,"ms":2592,"Ġphone":2593,"Ġball":2594,"do":2595,"Ġparent":2596,"Ġsorry":2597,"ury":2598,"ин":2599,"ips":2600,"ад":2601,"Ġinstead":2602,"Ġhuge":2603,"Ġtu":2604,"Ġãģ":2605,"ĠGr":2606,"Ġdetail":2607,"ĠÐŁ":2608,"Ġindividual":2609,"Ġfire":2610,"Ġclos":2611,"Ġwer":2612,"une":2613,"Ġrunning":2614,"Ġconvers":2615,"Ġrecomm":2616,"Ġcomo":2617,"Ġsomebody":2618,"ĠJohn":2619,"ĠìĿ´":2620,"ĠOur":2621,"ples":2622,"ĠPh":2623,"Ġanal":2624,"Ġ50":2625,"Ġoffer":2626,"Ġ<":2627,"itional":2628,"gest":2629,"Ġvous":2630,"let":2631,"icy":2632,"Ġfeeling":2633,"LE":2634,"ros":2635,"Ġthird":2636,"ок":2637,"Ġseries":2638,"ĠAny":2639,"ised":2640,"old":2641,"Ġdraw":2642,"Ġservice":2643,"Ġcannot":2644,"bal":2645,"ãģĨ":2646,"Ġliving":2647,"ım":2648,"Ġdifference":2649,"Ġopportunity":2650,"Ġnear":2651,"orth":2652,"ken":2653,"Ġlocal":2654,"ت":2655,"ĠCon":2656,"Ġobject":2657,"Ġdass":2658,"ãģĻ":2659,"IJ×":2660,"Ġquickly":2661,"raph":2662,"Ġissues":2663,"éĢĻ":2664,"ĠAmerican":2665,"Ġprep":2666,"ences":2667,"Ġprofess":2668,"lling":2669,"of":2670,"Ġfoot":2671,"bre":2672,"Ġusually":2673,"Ġgeneral":2674,"da":2675,"ances":2676,"Ġdest":2677,"Ġocc":2678,"Ġmembers":2679,"Ġdans":2680,"Ġequal":2681,"zt":2682,"Ġbecom":2683,"Ġmoving":2684,"Ġspecific":2685,"ÃŃa":2686,"Ġfur":2687,"Ġnecess":2688,"Ġcommon":2689,"Ġattack":2690,"ĠÑįÑĤо":2691,"ĠToday":2692,"Ġuns":2693,"ĠGu":2694,"iod":2695,"Ġaccount":2696,"Ġgrand":2697,"Ġself":2698,"ĠEl":2699,"Ġtast":2700,"Ġcontent":2701,"Ġcu":2702,"Ħë":2703,"ĠMaybe":2704,"ĠJesus":2705,"ores":2706,"port":2707,"©´":2708,"Ġgives":2709,"Ġnormal":2710,"ÑĢÑĥ":2711,"Ġimpact":2712,"är":2713,"Ġdies":2714,"Ġlab":2715,"sh":2716,"ios":2717,"ĠPres":2718,"ĠUnd":2719,"ĠOf":2720,"Ġfinally":2721,"Ġdoll":2722,"Ġvocê":2723,"ply":2724,"ĠAg":2725,"Ġtaken":2726,"Ġground":2727,"fort":2728,"Ġgave":2729,"ĠInst":2730,"Ġlost":2731,"Ġworked":2732,"Ġliter":2733,"Ġissue":2734,"Ġindust":2735,"Ġreturn":2736,"Ġhappening":2737,"Ġwants":2738,"ив":2739,"Ġproblems":2740,"ĠCar":2741,"Ŀ¼":2742,"ĠAlso":2743,"Ġsize":2744,"Ġobviously":2745,"ĠSu":2746,"ĠSc":2747,"Ġrecommend":2748,"ources":2749,"astic":2750,"....":2751,"Ġmi":2752,"lier":2753,"ĠEven":2754,"cia":2755,"Ġhur":2756,"va":2757,"Ġmass":2758,"Ġwouldn":2759,"unt":2760,"cks":2761,"Ġfelt":2762,"osp":2763,"light":2764,"олÑĮ":2765,"nie":2766,"Ġbottom":2767,"ĠбÑĭ":2768,"ored":2769,"ison":2770,"Ġgrad":2771,"Ġuma":2772,"Ġva":2773,"ĠìĤ":2774,"ression":2775,"ulation":2776,"ID":2777,"idence":2778,"Ġbur":2779,"Ġgone":2780,"lu":2781,"ìĸ´ì":2782,"Ġredu":2783,"Ġja":2784,"ìĿĺ":2785,"ita":2786,"Ġsoft":2787,"Ġça":2788,"ico":2789,"eral":2790,"ñ":2791,"af":2792,"Ġpoints":2793,"gu":2794,"Ġdé":2795,"apt":2796,"ax":2797,"ĠAlright":2798,"Ġcamera":2799,"Ġach":2800,"Ġпо":2801,"Ġsever":2802,"50":2803,"Ġsie":2804,"Ïģ":2805,"Ġmal":2806,"Ġcomput":2807,"Ġmiddle":2808,"Ġcouldn":2809,"ming":2810,"Ġìĭ":2811,"ĠHis":2812,"Ġgames":2813,"Ġintrodu":2814,"Ġcell":2815,"por":2816,"Ġsleep":2817,"Ġë³":2818,"iding":2819,"Ġou":2820,"Ġdeg":2821,"Ġdrink":2822,"Ġenvironment":2823,"ĠUnited":2824,"Ġtalked":2825,"Ġchoose":2826,"Ġjour":2827,"ege":2828,"ĠMin":2829,"Ġinte":2830,"Ġrather":2831,"Ġoffic":2832,"ка":2833,"aching":2834,"Ġmentioned":2835,"Ġfill":2836,"Ġtrack":2837,"Ġnie":2838,"Ġut":2839,"ĠвÑĭ":2840,"ibility":2841,"Ġvac":2842,"Ġrad":2843,"Ġpack":2844,"Ġsend":2845,"ĠDas":2846,"ĠAb":2847,"Ġengine":2848,"ãģĹ":2849,"Ġcompet":2850,"ô":2851,"ĠвÑģ":2852,"Ġdoor":2853,"Ġlonger":2854,"å°į":2855,"Ġlanguage":2856,"Ġextra":2857,"play":2858,"Ġwebs":2859,"umb":2860,"room":2861,"çľ":2862,"Ġbeginning":2863,"Ġrefer":2864,"AM":2865,"nen":2866,"igher":2867,"face":2868,"erc":2869,"Ġforget":2870,"Ġcomment":2871,"ек":2872,"лÑı":2873,"ror":2874,"że":2875,"ĠGe":2876,"Ġdark":2877,"Ġanyone":2878,"ante":2879,"ges":2880,"ìĬµ":2881,"Ñij":2882,"bed":2883,"je":2884,"ructure":2885,"Ġprim":2886,"ida":2887,"è¦":2888,"ãģ¾":2889,"Ġmix":2890,"Ġstarting":2891,"ĠìĿ´ë":2892,"Ġprovide":2893,"action":2894,"Ġmother":2895,"Ġperiod":2896,"Ġstick":2897,"ĠYouT":2898,"Ġtechnology":2899,"ê¹":2900,"Ġbed":2901,"Ġgiving":2902,"Ġexplain":2903,"zen":2904,"imate":2905,"Ġrepresent":2906,"load":2907,"ĠHowever":2908,"Ġlives":2909,"uth":2910,"irit":2911,"ogn":2912,"Ġlik":2913,"Ġrespons":2914,"Ġpriv":2915,"Ġtom":2916,"ção":2917,"iam":2918,"Ġexcited":2919,"Ġcard":2920,"ground":2921,"Ġ×Ķ":2922,"Ġsens":2923,"Ġteach":2924,"ido":2925,"hod":2926,"Ġepis":2927,"Ġwelcome":2928,"Ġwall":2929,"ä¹":2930,"Ġchance":2931,"hen":2932,"ĠС":2933,"ĠÄij":2934,"Ġsimply":2935,"ĠÑĤак":2936,"ring":2937,"ja":2938,"book":2939,"Ġseveral":2940,"ste":2941,"Ġcreated":2942,"ĠоÑĤ":2943,"Ġpush":2944,"==":2945,"Ġhigher":2946,"uf":2947,"ource":2948,"oke":2949,"Ġonline":2950,"Ġrele":2951,"Ġton":2952,"ensive":2953,"Ġfavorite":2954,"Ñĥд":2955,"Ġlooked":2956,"Ġvon":2957,"âĢĶ":2958,"Ġfür":2959,"Ġbutton":2960,"Ġbill":2961,"Ġchanges":2962,"!\"":2963,"Ġslow":2964,"ables":2965,"Ġdeath":2966,"ands":2967,"ateg":2968,"Ġthemselves":2969,"ãģ£":2970,"Ġcop":2971,"ãģ®":2972,"Ġpersonal":2973,"ughing":2974,"Ġ11":2975,"gar":2976,"ades":2977,"Ġneeded":2978,"Ġstudy":2979,"aged":2980,"ÑģÑĤв":2981,"ino":2982,"Ġdisc":2983,"ki":2984,"Ġaddress":2985,"ר":2986,"itten":2987,"esome":2988,"Ġж":2989,"¤ë":2990,"ura":2991,"Ġmu":2992,"Ġcontinu":2993,"for":2994,"Ġmatch":2995,"ãģ¦":2996,"Ġstraight":2997,"IJë":2998,"ners":2999,"Ġdog":3000,"Ġdeb":3001,"ĠCO":3002,"Ġos":3003,"ged":3004,"came":3005,"Ġcorrect":3006,"ette":3007,"ĠSee":3008,"Ġincluding":3009,"ĠEuro":3010,"ester":3011,"Ġjump":3012,"ĠWhich":3013,"Ġкак":3014,"son":3015,"ya":3016,"ING":3017,"Ġeine":3018,"osh":3019,"ency":3020,"Ġmedia":3021,"Ġsubscribe":3022,"éĤ":3023,"Ġprin":3024,"Ġhab":3025,"ĠPer":3026,"ĠWas":3027,"Ġpage":3028,"itor":3029,"Ġtowards":3030,"Ġtried":3031,"enge":3032,"artment":3033,"Ġvari":3034,"Ġpaper":3035,"Ġpicture":3036,"Ġversion":3037,"Ġbrought":3038,"ware":3039,"ĠStates":3040,"Ġsich":3041,"ledge":3042,"Ġpercent":3043,"Ġgod":3044,"ec":3045,"ĠComm":3046,"Ġdecided":3047,"Ġselect":3048,"íķľ":3049,").":3050,"urity":3051,"Ġfurther":3052,"Ġcomments":3053,"lement":3054,"Ġdream":3055,"Ġcenter":3056,"mi":3057,"Ġcas":3058,"Ġwoman":3059,"Ġroad":3060,"Ġfail":3061,"Ġbecame":3062,"lus":3063,"ilities":3064,"ãģ¯":3065,"ĠCo":3066,"Ġmanage":3067,"Ġrecogn":3068,"Ġaction":3069,"Ġbenef":3070,"Ġearlier":3071,"׾":3072,"Ġspeed":3073,"Ġment":3074,"Ġsoci":3075,"Ġshoot":3076,"ui":3077,"Ġä":3078,"Ġapply":3079,"vo":3080,"xim":3081,"Ġcause":3082,"Ġsurpr":3083,"Ġhaben":3084,"DI":3085,"Ġfather":3086,"ĠNext":3087,"ĠYouTube":3088,"Ġcode":3089,"Ġrole":3090,"gress":3091,"Ġgreen":3092,"ett":3093,"Ġbuilt":3094,"Ġflow":3095,"Ġbase":3096,"Ġtraining":3097,"Ġround":3098,"ĠWill":3099,"Ġpath":3100,"ĠRo":3101,"Ġinterested":3102,"ìĸ´":3103,"Ġrespect":3104,"Ġchanged":3105,"ission":3106,"Ġstudent":3107,"ograph":3108,"Ġapproach":3109,"Ġshows":3110,"å°±":3111,"Ġtar":3112,"Ġcrit":3113,"Ġglo":3114,"ìĬµëĭĪëĭ¤":3115,"Ġdead":3116,"ĠPresident":3117,"Ġthous":3118,"Ġbal":3119,"ster":3120,"ex":3121,"Ġabsolutely":3122,"Ġmic":3123,"Ġpractice":3124,"Ġquality":3125,"Ġlower":3126,"ogle":3127,"Ġsepar":3128,"ball":3129,"medi":3130,"Ġreview":3131,"ĠApp":3132,"Ġok":3133,"âĢĭ":3134,"Ġexperien":3135,"Ġconcern":3136,"entially":3137,"more":3138,"ĠJo":3139,"apan":3140,"ĠIch":3141,"istic":3142,"Ġfair":3143,"Ġwebsite":3144,"ires":3145,"ĠBy":3146,"Ġtravel":3147,"Ġrisk":3148,"Ġmir":3149,"Ġboard":3150,"Ġsen":3151,"Ġparents":3152,"ĠWow":3153,"Ġfeed":3154,"Ġsave":3155,"Ġserious":3156,"Ġinit":3157,"EL":3158,"undred":3159,"AS":3160,"Ġvan":3161,"orrow":3162,"Ġworth":3163,"Ġsearch":3164,"Ġ16":3165,"Ġparts":3166,"ÑģÑĤÑĮ":3167,"Ġcompan":3168,"Ġmovie":3169,"Ġmethod":3170,"Ġill":3171,"Ġwish":3172,"dy":3173,"Ġitem":3174,"Ġminus":3175,"anger":3176,"Ġvoice":3177,"Ġskin":3178,"Ġareas":3179,"Ġeight":3180,"Ġobs":3181,"Ġ,":3182,"ай":3183,"Ġoil":3184,"Ġcy":3185,"Ġbaby":3186,"sy":3187,"Ġemploy":3188,"ĠKe":3189,"Ġplaces":3190,"Ġfix":3191,"Ġestá":3192,"ãģ¨":3193,"ived":3194,"Ġlots":3195,"Ġseason":3196,"unk":3197,"alt":3198,"Ġtable":3199,"ĠТ":3200,"â":3201,"Ġattention":3202,"ãģª":3203,"ĠHer":3204,"Ġage":3205,"Ġpra":3206,"back":3207,"cil":3208,"Ġnetwork":3209,"rit":3210,"Ġdoc":3211,"Ġaren":3212,"igen":3213,"ĠëĦ":3214,"د":3215,"ender":3216,"Ġtotal":3217,"Ġprice":3218,"Ġcrazy":3219,"ìļ":3220,"iqu":3221,"though":3222,"You":3223,"Ùĩ":3224,"ãĤĵ":3225,"Ïħ":3226,"Ġsat":3227,"Ġbi":3228,"ĠDie":3229,"Ġsha":3230,"Ġthanks":3231,"uh":3232,"Ġstage":3233,"аж":3234,"ĠFl":3235,"Ġleav":3236,"Ġboy":3237,"Ġaf":3238,"ön":3239,"ĠGet":3240,"Ġaccept":3241,"Ġenter":3242,"Ġtur":3243,"ĠsiÄĻ":3244,"Ġhonest":3245,"ãĢĮ":3246,"Ġsam":3247,"Ġrepl":3248,"ging":3249,"Ġdevelopment":3250,"ĠAct":3251,"ora":3252,"ãĢį":3253,"ä¾":3254,"Ġknows":3255,"Ġimage":3256,"ĠLord":3257,"иÑĤÑĮ":3258,"Ġweeks":3259,"Ġsex":3260,"Ķë":3261,"Ġhundred":3262,"Ġsounds":3263,"Ġlearned":3264,"Ġbud":3265,"ĠÑģÑĤ":3266,"Ġincred":3267,"âĻ":3268,"Ġnos":3269,"Ġdrop":3270,"Ġben":3271,"ĠÐĺ":3272,"Ġsafe":3273,"ata":3274,"Ġfuck":3275,"soci":3276,"Ġdan":3277,"Ġcross":3278,"10":3279,"mo":3280,"vert":3281,"Ġ17":3282,"zie":3283,"åķ":3284,"Ġdom":3285,"ĠBo":3286,"Ġsetting":3287,"Ġinvolved":3288,"arily":3289,"Ġsind":3290,"Ġsus":3291,"Ġworry":3292,"eth":3293,"ê¹Į":3294,"Ġsun":3295,"Ġhier":3296,"Ġcertainly":3297,"oul":3298,"orts":3299,"ĠEr":3300,"ĠUm":3301,"Ġcaus":3302,"Ġnatural":3303,"Ġü":3304,"Ġcry":3305,"ĠSec":3306,"Ġsom":3307,"æ²":3308,"Ġeducation":3309,"аеÑĤ":3310,"Ġmultip":3311,"Ġalone":3312,"Ġeye":3313,"Ġrate":3314,"ĠEurope":3315,"è¿":3316,"mon":3317,"Ġfit":3318,"izing":3319,"pped":3320,"Ġpressure":3321,"the":3322,"иÑģ":3323,"ites":3324,"ĠAf":3325,"reci":3326,"attle":3327,"Ġservices":3328,"ĠGoogle":3329,"éģ":3330,"Ġcases":3331,"Ġdrive":3332,"Ġchalleng":3333,"uz":3334,"ĠMo":3335,"ìľ¼ë":3336,"val":3337,"åĢĭ":3338,"Ġfol":3339,"Ġì¢":3340,"ffic":3341,"Ġra":3342,"Ġsin":3343,"Ġblue":3344,"Ġaffect":3345,"Ġmis":3346,"Ġshot":3347,"Ġоб":3348,"asing":3349,"Ġsignific":3350,"ĠChe":3351,"Ġê³":3352,"Ġpositive":3353,"ì£":3354,"Ġwie":3355,"Ġ40":3356,"ording":3357,"ĠFrom":3358,"êµ":3359,"Ġbrand":3360,"Ġtrust":3361,"Ġple":3362,"Ġcommunic":3363,"Ġweight":3364,"Ġasking":3365,"Ġtax":3366,"ĠJapan":3367,"ãģŁ":3368,"Ġíķĺ":3369,"ops":3370,"ÏĤ":3371,"Ġputting":3372,"Ġroll":3373,"ĠAmerica":3374,"reg":3375,"ŀ×":3376,"atures":3377,"ension":3378,"ĠSomet":3379,"Ġoriginal":3380,"ping":3381,"ĠÅŁ":3382,"Ġproducts":3383,"ãĥ¼":3384,"Ġcontact":3385,"olution":3386,"Ġgoal":3387,"Ġpow":3388,"Ġperformance":3389,"Ġblood":3390,"ators":3391,"ĠMich":3392,"Ġtemper":3393,"ĠDan":3394,"Ġsugg":3395,"ÑĤи":3396,"Ġimm":3397,"Ġoffice":3398,"Ġarri":3399,"Ġcomfort":3400,"ĠÐĶ":3401,"Ġsuggest":3402,"Ġplat":3403,"Ĥĺ":3404,"19":3405,"Ġom":3406,"Ġseven":3407,"ĠCent":3408,"ille":3409,"Ġconcept":3410,"Ġbag":3411,"ün":3412,"ively":3413,"Ġdiv":3414,"mos":3415,"æī":3416,"Ġfeels":3417,"Ġir":3418,"akes":3419,"ley":3420,"Ġparticip":3421,"ĠÐļ":3422,"fl":3423,"just":3424,"Ġsil":3425,"ĠPa":3426,"AL":3427,"Ġgotta":3428,"Ġfan":3429,"Ġchallenge":3430,"Ġcompanies":3431,"ĠPeople":3432,"":12331,"Ġheroes":12332,"ĠBoston":12333,"Ġdependent":12334,"Ġmotivation":12335,"flix":12336,"Ġseam":12337,"кие":12338,"Ġdrain":12339,"oded":12340,"Ġguilty":12341,"ĠJenn":12342,"ingen":12343,"Ġgranted":12344,"ĠKelly":12345,"ĠSav":12346,"ĠUncle":12347,"ĠHonestly":12348,"ELI":12349,"Ġnavigate":12350,"Ġblessed":12351,"core":12352,"Ġearning":12353,"Ġsignals":12354,"Ġdisk":12355,"ials":12356,"Ġages":12357,"æħ":12358,"Ġparticle":12359,"ĠÑĩеÑĢ":12360,"Ġcann":12361,"Ġtier":12362,"Ġstatements":12363,"ê³łìļĶ":12364,"ĠëķĮ문ìĹIJ":12365,"ĠCho":12366,"Ġpolar":12367,"anç":12368,"ĠKenn":12369,"ĠNi":12370,"ĠFight":12371,"organ":12372,"éķ":12373,"ĠCha":12374,"ĠSÃŃ":12375,"ãĥª":12376,"Ġslic":12377,"Ġcertific":12378,"Ġtemplate":12379,"ĠFederal":12380,"Ġconsideration":12381,"Ġexplo":12382,"ĠMain":12383,"ĠNE":12384,"Ġalongside":12385,"Ġdressed":12386,"ĠPoint":12387,"Ġenvironments":12388,"Ġpróxim":12389,"Ġdaar":12390,"Ġprompt":12391,"Ġpursue":12392,"Ġentertainment":12393,"Ġthroat":12394,"Ġproblema":12395,"Ġmart":12396,"ì¼":12397,"Ġprovider":12398,"ØĮ":12399,"Ġ×Ĺ":12400,"inte":12401,"making":12402,"Ġstroke":12403,"Ġtissue":12404,"Un":12405,"Ġprecious":12406,"ĠArts":12407,"inking":12408,"ĠÐŀн":12409,"ĠиÑģ":12410,"nah":12411,"ĠÐķÑģли":12412,"Ġcorners":12413,"Ġtricky":12414,"inch":12415,"lijk":12416,"Ġpressing":12417,"level":12418,"ANG":12419,"Ġradiation":12420,"ìĦł":12421,"Ġconfront":12422,"Ġvet":12423,"Ġrepresentative":12424,"Ġpropag":12425,"Ġcrap":12426,"ĠDec":12427,"Ġramp":12428,"епеÑĢÑĮ":12429,"ués":12430,"essen":12431,"cription":12432,"Ġbills":12433,"ĠMatthew":12434,"Ġanime":12435,"ất":12436,"Ġlowest":12437,"has":12438,"screen":12439,"ograp":12440,"ало":12441,"inton":12442,"ĠJah":12443,"èĢħ":12444,"itÃł":12445,"Ġkay":12446,"Ġrotation":12447,"ĠWere":12448,"abei":12449,"Ġtrials":12450,"Ġlever":12451,"ighty":12452,"Ġspoon":12453,"Ġhunt":12454,"cling":12455,"Ġdism":12456,"ĠболÑĮÑĪ":12457,"Ġassault":12458,"Ġíĺķ":12459,"Ġweekly":12460,"Ġmismo":12461,"Ġgenetic":12462,"ulpt":12463,"ĠStudent":12464,"Ġrealistic":12465,"Ġauthentic":12466,"æīĵ":12467,"asta":12468,"Ġarrested":12469,"Ġguidelines":12470,"Ġ׾×IJ":12471,"Ġдав":12472,"ĠComing":12473,"für":12474,"Ġrequests":12475,"ĥIJ":12476,"Ġanalyze":12477,"Ġinteress":12478,"Ġhalt":12479,"ĠOper":12480,"onom":12481,"Ġduck":12482,"Ġwithd":12483,"ser":12484,"ĠÏĮ":12485,"ĠHistory":12486,"Ġyoutube":12487,"ãĤį":12488,"Ġsaber":12489,"walk":12490,"font":12491,"Ġoverview":12492,"39":12493,"üy":12494,"etti":12495,"Ġfrozen":12496,"Ġflesh":12497,"ÄŁi":12498,"ĠPM":12499,"ĠìĻĢ":12500,"é¢":12501,"ÑĨии":12502,"Ġ기ë":12503,"íģ¬":12504,"Ġprose":12505,"oooo":12506,"rates":12507,"WS":12508,"Ġautomatic":12509,"Ġcollecting":12510,"Åij":12511,"Ġneighbors":12512,"».":12513,"ĠExpl":12514,"Ġcircul":12515,"cover":12516,"weg":12517,"Ġsticks":12518,"Ġeller":12519,"Ġwww":12520,"Ġdorm":12521,"ĠExper":12522,"Ġstatistics":12523,"Ġemails":12524,"Ġgrave":12525,"imiz":12526,"HS":12527,"Ġuit":12528,",'":12529,"Ġlaser":12530,"èī":12531,"ĠÑĤем":12532,"ÑĭÑĪ":12533,"ÑīÑij":12534,"Ġgenau":12535,"Ġtienen":12536,"Ġmeditation":12537,"ĠOrgan":12538,"Ġestimate":12539,"Ġ무ì":12540,"lets":12541,"ĠnÃły":12542,"Ġmindset":12543,"Ġreson":12544,"Ġmés":12545,"Ġnumerous":12546,"Ġvielleicht":12547,"ĠThird":12548,"uous":12549,"ĠDead":12550,"анд":12551,"HN":12552,"Ġracing":12553,"Ġagents":12554,"ĠUt":12555,"Ġtear":12556,"ĠHP":12557,"Ġchemistry":12558,"Ġsurvival":12559,"æĸ°":12560,"Ġconvinced":12561,"Ġ;":12562,"Ġregulations":12563,"ĠES":12564,"åĴĮ":12565,"300":12566,"Ġense":12567,"Ġìµ":12568,"Ġdict":12569,"GA":12570,"ĠahÃŃ":12571,"åĭķ":12572,"Ġtej":12573,"ĠоÑģÑĤ":12574,"ĠElect":12575,"Ġintellectual":12576,"Ġbias":12577,"Ġburden":12578,"çĤ¹":12579,"Ġìĸ´ëĸ»":12580,"Ġcheer":12581,"Ġsoph":12582,"Ġportfolio":12583,"uba":12584,"Ġestos":12585,"TV":12586,"For":12587,"Ġash":12588,"Ġkommer":12589,"Ġcollective":12590,"Ġwrest":12591,"ĠJetzt":12592,"ĠWat":12593,"reich":12594,"Ġprimer":12595,"active":12596,"Ġmie":12597,"icked":12598,"Ġhunting":12599,"Ġtestim":12600,"Ġcompassion":12601,"Ġر":12602,"Ġbrut":12603,"Ġsalad":12604,"обÑīе":12605,"Ġsolving":12606,"Ġfloating":12607,"ç·":12608,"Ġattractive":12609,"ÙĪÙĦ":12610,"Ġperd":12611,"iffer":12612,"Ġsculpt":12613,"hhh":12614,"ĠWeek":12615,"Ġenthus":12616,"Ġnad":12617,"Ġmerch":12618,"ĠíĻķ":12619,"Ġmile":12620,"好äºĨ":12621,"Ġθ":12622,"ĠëĤĺë":12623,"éĩį":12624,"38":12625,"Ġchains":12626,"ĠAlmost":12627,"Ġtickets":12628,"rin":12629,"ĠCC":12630,"Ġdistributed":12631,"abetes":12632,"Ġtemperatures":12633,"Ġgained":12634,"Ġflexibility":12635,"Ġscreaming":12636,"Ġabroad":12637,"uno":12638,"Ġentrepreneurs":12639,"ĠNetwork":12640,"ĠCanadian":12641,"Ġprev":12642,"Ġsö":12643,"ĠÑĤебÑı":12644,"ĠPoke":12645,"ĠPod":12646,"ĠTurkey":12647,"çı¾åľ¨":12648,"Ġabstract":12649,"Ġsnake":12650,"ĠAmy":12651,"ĠëĬIJëĤĮ":12652,"Ġbrave":12653,"ĠìŀĪìĸ´ìļĶ":12654,"ĠKal":12655,"Ġ2007":12656,"ário":12657,"Ġmarked":12658,"gines":12659,"Ġalloc":12660,"ONG":12661,"Ġscientist":12662,"Ġesca":12663,"Ġracism":12664,"×ij×":12665,"ĠSams":12666,"ĠPenn":12667,"Ġloads":12668,"Ġந":12669,"über":12670,"Me":12671,"ixò":12672,"Ġperò":12673,"anne":12674,"Ġexpressed":12675,"меÑĢ":12676,"Ġmoet":12677,"Ġreturning":12678,"nia":12679,"Ġexpon":12680,"Pro":12681,"Ġloyal":12682,"ML":12683,"Ġlamp":12684,"Ġshy":12685,"Ġcomposition":12686,"ĠLy":12687,"Ġmagnetic":12688,"Ġpremier":12689,"Ġmeasured":12690,"Ġsummary":12691,"Ġattacked":12692,"Ġfinishing":12693,"ÐĹ":12694,"ç¥":12695,"Ġsits":12696,"Ġhydrogen":12697,"Ġmai":12698,"ĠDeutsch":12699,"ası":12700,"Ġobtain":12701,"vie":12702,"Ġsoit":12703,"Ġë°Ķ":12704,"Ġlane":12705,"Ġconsegu":12706,"во":12707,"Ġease":12708,"akin":12709,"ĠFa":12710,"Ġuntuk":12711,"Ġburst":12712,"Ġcum":12713,"alım":12714,"úblic":12715,"idi":12716,"ĠRoyal":12717,"ĠKon":12718,"Ġcommonly":12719,"Ġremoving":12720,"Ġjur":12721,"ilib":12722,"Ġanch":12723,"íĸī":12724,"ượ":12725,"ĠÐľÑĭ":12726,"ĠAnth":12727,"ĠSÃ¥":12728,"Ġinterrupt":12729,"Ġstere":12730,"ĠOS":12731,"onym":12732,"tery":12733,"ĠMaria":12734,"ê²ĥ":12735,"Ġexploring":12736,"Ġtransparent":12737,"Ġfate":12738,"ĠJung":12739,"Ġgrup":12740,"Ġdarker":12741,"ĠDoug":12742,"Ġmane":12743,"æĶ¾":12744,"ại":12745,"dri":12746,"look":12747,"ĠDesign":12748,"Ġtutaj":12749,"Ġhorizontal":12750,"reon":12751,"orte":12752,"ĠCorrect":12753,"ĠSteven":12754,"Ġvine":12755,"02":12756,"iÄĩ":12757,"Ġsiempre":12758,"ĠKey":12759,"åĥı":12760,"ĠGames":12761,"Ġnaar":12762,"Ġshocked":12763,"elve":12764,"ĠRose":12765,"ìĭ¬":12766,"Ġstopping":12767,"ohl":12768,"ĠMix":12769,"Ġsuffered":12770,"Ġsigma":12771,"Ġweakness":12772,"ĠOw":12773,"ีà¹Ī":12774,"IF":12775,"Ġà®ħ":12776,"aded":12777,"ĠNetflix":12778,"anes":12779,"Ġremained":12780,"iry":12781,"Ġrip":12782,"ellt":12783,"Ġsilent":12784,"Ġproven":12785,"Ġtoxic":12786,"Ġalumin":12787,"Ġmultipl":12788,"aland":12789,"Ġ34":12790,"06":12791,"ĠBru":12792,"Ġìłķë§IJ":12793,"Just":12794,"boy":12795,"Ġshoe":12796,"Ġcreature":12797,"Ġheaded":12798,"ĠоÑĤк":12799,"æ±":12800,"Ġessence":12801,"Ġremarkable":12802,"Ġnúmer":12803,"Ġdrew":12804,"Ġpuzzle":12805,"ĠLibrary":12806,"ĠFu":12807,"ashes":12808,"kk":12809,"ĠIst":12810,"¦°":12811,"ĠBry":12812,"Ġceremony":12813,"Ġà®İ":12814,"Ġcri":12815,"equ":12816,"ãĤ¢":12817,"Ġprize":12818,"Ġdimensions":12819,"ogram":12820,"Ġleather":12821,"Ġpopulations":12822,"uum":12823,"Ġvegan":12824,"Ñıд":12825,"Ġcómo":12826,"åĦ":12827,"Ġstrip":12828,"å£":12829,"Ġvacation":12830,"ħķ":12831,"Ġmeals":12832,"ilipp":12833,"Ġents":12834,"aram":12835,"richt":12836,"Ġgrain":12837,"ĠSpain":12838,"Ġcheek":12839,"ĠAff":12840,"ION":12841,"ĠBring":12842,"Ġ38":12843,"ielen":12844,"ulu":12845,"ĠболÑĮÑĪе":12846,"Ġannouncement":12847,"ĠÑĤÑĥÑĤ":12848,"ĠProphet":12849,"ardo":12850,"37":12851,"Ġwoke":12852,"Ġtranslation":12853,"ĠNOT":12854,"ĠCL":12855,"ĠdÃ¼ÅŁ":12856,"ÑĨÑĸ":12857,"acer":12858,"ĠLoc":12859,"Ġperception":12860,"NO":12861,"Ġdiesen":12862,"Look":12863,"heart":12864,"aved":12865,"Ġboundary":12866,"Ġflows":12867,"Ñijм":12868,"Ġarguments":12869,"Ġelections":12870,"ıs":12871,"Ġheck":12872,"Ġsuitable":12873,"Ġfiber":12874,"ĠStra":12875,"xy":12876,"ĠHum":12877,"Ġmonthly":12878,"uper":12879,"Ġgolf":12880,"Ġlately":12881,"ĠGard":12882,"ĠRen":12883,"ĠAst":12884,"ĠFant":12885,"аÑģÑģ":12886,"Ġobser":12887,"ë¡ľ":12888,"Ġeasiest":12889,"įĶë":12890,"Ġwebsites":12891,"pol":12892,"Ġcocon":12893,"Ġà®ĩ":12894,"ĠVeg":12895,"Ġwalks":12896,"Ġintro":12897,"Ġdirected":12898,"ĠAnna":12899,"Ġëĵ¤ìĸ´":12900,"ĠEastern":12901,"ĠSaint":12902,"ĠBow":12903,"Ġroast":12904,"ĠURL":12905,"Ġjeden":12906,"uras":12907,"aja":12908,"Ġsemi":12909,"Ġrapidly":12910,"Ġtargets":12911,"ĠControl":12912,"Ġbah":12913,"Ġreflection":12914,"Ġcreativity":12915,"holders":12916,"Ġìĺ¬ë":12917,"Ġamongst":12918,"Ġfeeding":12919,"ÑįÑĤомÑĥ":12920,"Ġвиде":12921,"Ġë§Įëĵ¤":12922,"ĠSmart":12923,"Ġreliable":12924,"Ġvezes":12925,"Ġר":12926,"chuckles":12927,"azione":12928,"ĠWilliams":12929,"Ġaç":12930,"Ġslee":12931,"еÑī":12932,"Ġtimeline":12933,"Ġthorough":12934,"á»į":12935,"ĠOt":12936,"ạn":12937,"Ġimagination":12938,"Ġmechanics":12939,"rist":12940,"Ġclaimed":12941,"ÏĦη":12942,"ête":12943,"ĠHurry":12944,"ĠiPad":12945,"Ġconstru":12946,"ĠCla":12947,"ĠAls":12948,"ä¼ļ":12949,"utz":12950,"Ġcultures":12951,"Ġìĸ´ëĸ»ê²Į":12952,"Ġbelongs":12953,"Ġyer":12954,"ĠDoesn":12955,"Ġgeomet":12956,"Ġbid":12957,"Ġfoam":12958,"Ġhob":12959,"ĠBritain":12960,"Ġsubstance":12961,"Ġanniversary":12962,"ĠëĦĪ":12963,"Ġnoted":12964,"Ġgovernor":12965,"Ġstocks":12966,"31":12967,"Ġdiye":12968,"ìĬ¤ë":12969,"Ġreb":12970,"zel":12971,"Ġmultiply":12972,"Ġoperator":12973,"Ħ¤ìļĶ":12974,"Ġwaters":12975,"Ġdär":12976,"Ġunser":12977,"ĠElizabeth":12978,"é«ĺ":12979,"Ġincreasingly":12980,"ĠGro":12981,"Ġengines":12982,"irs":12983,"Ø«":12984,"Ġtreasure":12985,"PC":12986,"inction":12987,"iri":12988,"Ġaccum":12989,"Ġvariation":12990,"Ġpom":12991,"Ġtitles":12992,"ĠFest":12993,"ós":12994,"Ġelder":12995,"nym":12996,"run":12997,"Ñıв":12998,"Ġinnovative":12999,"Ġnombre":13000,"Ġcoinc":13001,"Ġfranch":13002,"Ġentonces":13003,"Ġnichts":13004,"Ġexclusive":13005,"ĠCheers":13006,"ĠBi":13007,"uje":13008,"æŃ¡":13009,"Ġpok":13010,"ĠPrem":13011,"Ġrocket":13012,"ELIPE":13013,"Ġhospitals":13014,"rium":13015,"Ġjuste":13016,"Ġhammer":13017,"Ġquantum":13018,"Ġresponses":13019,"lly":13020,"endi":13021,"Ġactively":13022,"Ġfridge":13023,"iate":13024,"long":13025,"Ġquem":13026,"Ġdeaths":13027,"Ġsuperior":13028,"cken":13029,"ìĿ´ìĹIJ":13030,"ktop":13031,"Ġgathered":13032,"£¨":13033,"Ġdazu":13034,"Ġrecipes":13035,"Ġbuzz":13036,"cen":13037,"Ġanytime":13038,"onsense":13039,"Ġcircles":13040,"Ġsolved":13041,"Ġìĭł":13042,"Ġcoronavirus":13043,"ĠLuke":13044,"Ġbubb":13045,"Ġcontempor":13046,"rzy":13047,"ĠJane":13048,"Ġдом":13049,"Ġscrews":13050,"Ġhybrid":13051,"Ġcasual":13052,"Ġselbst":13053,"being":13054,"ĠÄIJ":13055,"ĠColumb":13056,"ĠÑħоÑĩ":13057,"Ġbucket":13058,"Ġevaluate":13059,"Ġidol":13060,"Ġreputation":13061,"ĠìĨĮë":13062,"ÙĪر":13063,"Ġhecho":13064,"Ġpoem":13065,"Ġsubjects":13066,"plant":13067,"ĠBeh":13068,"ĠSpeaking":13069,"Ġbatteries":13070,"Ġfollowers":13071,"öl":13072,"Ġgently":13073,"Ġsixt":13074,"Ġparameter":13075,"Ġikke":13076,"ĠTour":13077,"ĠDJ":13078,"otte":13079,"ĠJahren":13080,"Ġpreparation":13081,"ĠдÑĥм":13082,"Ġ800":13083,"cop":13084,"iking":13085,"Ġ문":13086,"ĠнÑĥ":13087,"ĠлеÑĤ":13088,"åIJĮ":13089,"ĠIde":13090,"Ġì¡°ê¸Ī":13091,"Ġlaughter":13092,"Ġmolecules":13093,"ĠRest":13094,"Ġobserved":13095,"dzie":13096,"Ġadvertising":13097,"erto":13098,"Ġmoins":13099,"ĠMIT":13100,"Ġexcit":13101,"Ġtum":13102,"Ġtyl":13103,"Ġinvested":13104,"Ġpharm":13105,"Ġunexpected":13106,"Ġphi":13107,"otype":13108,"weise":13109,"Ġgeç":13110,"jourd":13111,"Ġhorses":13112,"nÄħ":13113,"=\"":13114,"ĠSM":13115,"Ġfib":13116,"Ġclips":13117,"çķ¶":13118,"å¦Ĥæŀľ":13119,"Ġregime":13120,"Ġrotate":13121,"rou":13122,"nik":13123,"Ġarmor":13124,"ðŁĺ":13125,"еÑĢа":13126,"度":13127,"ĠOch":13128,"Ġrichtig":13129,"üzel":13130,"aneously":13131,"mek":13132,"éĮ¯":13133,"ĠXiao":13134,"Ġexisted":13135,"worth":13136,"ãģ£ãģ¨":13137,"Ġnaught":13138,"ĠheiÃŁt":13139,"ĠBal":13140,"Ġresid":13141,"ivot":13142,"omatic":13143,"Ġhired":13144,"Ġgradually":13145,"Ġonions":13146,"Ġcompat":13147,"Ġintim":13148,"Ġjew":13149,"Ġcontribution":13150,"ĠIre":13151,"acji":13152,"Ġslice":13153,"Ġimmun":13154,"ĠRus":13155,"Ġgrows":13156,"ĠSimilarly":13157,"Ġhardest":13158,"Ġstruck":13159,"Ġmeasurement":13160,"...]":13161,"they":13162,"ĠìłĢë":13163,"Ġsneak":13164,"Ġapplies":13165,"Ġнем":13166,"æĵ":13167,"×ijר":13168,"ĠЧÑĤо":13169,"Ġoutro":13170,"Ġinnocent":13171,"Ġmog":13172,"ĠSamsung":13173,"Ġmercy":13174,"Ġhandling":13175,"Ġintervention":13176,"idays":13177,"got":13178,"Ġcurric":13179,"Ġboundaries":13180,"Ġconfusing":13181,"Ŀ¼ëĬĶ":13182,"æĩ":13183,"Ġstitches":13184,"ÃŃvel":13185,"Ġtunnel":13186,"itä":13187,"Ġgost":13188,"imy":13189,"Ġczas":13190,"Ġmé":13191,"Ġcatal":13192,"ĠSimon":13193,"ĠLIAM":13194,"mic":13195,"ĠФ":13196,"Ġeyel":13197,"isas":13198,"ĠCPU":13199,"ĠDou":13200,"Ġnäch":13201,"Ġinfinity":13202,"Ġrif":13203,"ĠPeace":13204,"ĠCu":13205,"Ġminimal":13206,"Ġlistened":13207,"Ġpole":13208,"halb":13209,"Ġloaded":13210,"Ġsteady":13211,"ĠBesides":13212,"êm":13213,"Ġlap":13214,"Ġcoop":13215,"Ġfriendship":13216,"world":13217,"Ġgeh":13218,"Ġtylko":13219,"ĠLaura":13220,"Ġsurrounded":13221,"ĠEvent":13222,"Ġchap":13223,"ĠWonder":13224,"break":13225,"Ġdrove":13226,"Ġbroader":13227,"Ġchi":13228,"Fi":13229,"Ġgehen":13230,"Ġwestern":13231,"Ġintelligent":13232,"Ġpersist":13233,"Ġfounded":13234,"ãģĵãģ¨":13235,"Ġhistoric":13236,"ĠfrÃ¥":13237,"cksÃ¥":13238,"Ġhandy":13239,"Ġsymp":13240,"Ġrows":13241,"Ġnutri":13242,"bur":13243,"ĠLeon":13244,"Ġsistema":13245,"Ġextensive":13246,"ĠÑĥв":13247,"íı":13248,"Ġnights":13249,"Ġcác":13250,"Ġcounting":13251,"ĠMust":13252,"allow":13253,"еÑģÑģ":13254,"Mom":13255,"Ġнадо":13256,"Ġbarrel":13257,"ãĥŀ":13258,"ARD":13259,"Ġinstallation":13260,"Ġinsect":13261,"Ġëħ¸ë":13262,"ujÄħ":13263,"ĠÄiji":13264,"Ġpacked":13265,"Ġfiction":13266,"Now":13267,"ĠYay":13268,"Ġpert":13269,"rons":13270,"unde":13271,"aches":13272,"Ġstyles":13273,"Ġaprès":13274,"oku":13275,"ĠVice":13276,"ınız":13277,"comm":13278,"Ġassigned":13279,"Ġinteractions":13280,"Ġacab":13281,"FELIPE":13282,"Ġrescue":13283,"Ġindustries":13284,"ĠAndy":13285,"Ġpraise":13286,"Ġflame":13287,"Ġsnack":13288,"íĤ":13289,"çģ":13290,"Ġswo":13291,"render":13292,"Ġboards":13293,"ĠÑĤом":13294,"enne":13295,"Ġpasta":13296,"Ġdevil":13297,"ĠFel":13298,"Ġhatte":13299,"Ġcolleg":13300,"eh":13301,"ì»":13302,"ãģĵãģ®":13303,"Ġproductive":13304,"forward":13305,"ип":13306,"Ġsmartphone":13307,"Ġinvis":13308,"Ġbum":13309,"Ġwhoa":13310,"ìŀĦ":13311,"ĠocksÃ¥":13312,"ĠLang":13313,"ĠSyria":13314,"Ġsesi":13315,"ία":13316,"Ġapproval":13317,"48":13318,"Ġодин":13319,"Ġëĸ":13320,"ĠHarr":13321,"ĠAdminist":13322,"Ġפ":13323,"ĠDean":13324,"fi":13325,"Ġcitizen":13326,"Ġshark":13327,"05":13328,"Ġboil":13329,"Ġindicate":13330,"å¡":13331,"Are":13332,"Ġlayout":13333,"Ġrefr":13334,"ĠPacific":13335,"AAAA":13336,"ĠAustralian":13337,"gression":13338,"Voice":13339,"алÑģÑı":13340,"Ġshelter":13341,"To":13342,"aupt":13343,"Ġevaluation":13344,"apor":13345,"Ġcurrency":13346,"Ġмного":13347,"igos":13348,"ãģ°":13349,"Ġoct":13350,"Ġroyal":13351,"è³":13352,"asil":13353,"ĠChildren":13354,"Ġrien":13355,"Ġëĵľë":13356,"Ġbarrier":13357,"Ġejemplo":13358,"Ġek":13359,"ND":13360,"esp":13361,"ена":13362,"Ġpic":13363,"Ġkiller":13364,"Ġintegrate":13365,"Ġfewer":13366,"Ġdisabilities":13367,"Ġ....":13368,"Ġtriangle":13369,"Ġfees":13370,"Ġwidely":13371,"emi":13372,"Ġoverwhelming":13373,"Ġzomb":13374,"Ġbere":13375,"Ġhood":13376,"ĠAye":13377,"ĠHarvard":13378,"ev":13379,"ĠÏĦοÏħ":13380,"Ġcups":13381,"ĠAuch":13382,"zona":13383,"Ġ1990":13384,"ĠweiÃŁ":13385,"Ġcrunch":13386,"æ¥":13387,"Ġзав":13388,"Ġmeasuring":13389,"Ġstations":13390,"ĠStephen":13391,"Ġshortly":13392,"Ġsigning":13393,"Ġcomedy":13394,"omo":13395,"Ġsuggestions":13396,"Ġsignature":13397,"ĠпÑĢив":13398,"Ġdisorder":13399,"aska":13400,"Ġworlds":13401,"Ġprecisely":13402,"norm":13403,"rav":13404,"ĠCivil":13405,"Inter":13406,"ĠCertain":13407,"Ġinjured":13408,"Ġsuggests":13409,"ĠGolden":13410,"Ġcyber":13411,"ĠØ´":13412,"Ġtemporary":13413,"Ġcooper":13414,"Ġvoted":13415,"Ġought":13416,"ấy":13417,"xual":13418,"Ġpanels":13419,"Ġ95":13420,"Ġhandsome":13421,"ĠпÑĢов":13422,"Ġpermit":13423,"Ġkein":13424,"Ġbadly":13425,"Ġnotifications":13426,"iza":13427,"ĠNotice":13428,"Ġinclusive":13429,"Ġanswering":13430,"ĠíĹ":13431,"uld":13432,"íħĮ":13433,"Ġnowadays":13434,"Ġ37":13435,"Ġbolt":13436,"Ġstatic":13437,"ĠHop":13438,"Ġavant":13439,"ajo":13440,"Ġ맼ìŀĪ":13441,"Ġfifty":13442,"ĠFinal":13443,"Ġscores":13444,"ĠTap":13445,"Ġcyl":13446,"Ġconvince":13447,"Ġanyways":13448,"oda":13449,"Ġìķ¼":13450,"Ġserves":13451,"ĠÑĤакой":13452,"ĠZoom":13453,"Ġsavings":13454,"ulo":13455,"Ġsouthern":13456,"viewer":13457,"Ġhoje":13458,"Ġseja":13459,"Ġrepresenting":13460,"Īëįĺ":13461,"lik":13462,"ĠSomebody":13463,"Ġbeast":13464,"Ġsticking":13465,"Ġinsist":13466,"Ġtalented":13467,"Ġexplaining":13468,"Ġattorney":13469,"éĥ¨":13470,"Ġstairs":13471,"ĠDog":13472,"íĭ":13473,"Ġcig":13474,"Ġshaped":13475,"Ġsons":13476,"Ïģι":13477,"utt":13478,"ĠìĶ":13479,"Ġparad":13480,"ìĿ¸ëį°":13481,"Ġhorn":13482,"ĠJour":13483,"anno":13484,"Ġworldwide":13485,"åĬĽ":13486,"Ġparticipation":13487,"¦Ħ":13488,"Ġmów":13489,"Ġburned":13490,"Ġwriters":13491,"allah":13492,"ĠFund":13493,"Ġclever":13494,"ĠLeute":13495,"bin":13496,"Ġbeating":13497,"foot":13498,"ĠìĽIJ":13499,"ĠStudio":13500,"Ġvag":13501,"bey":13502,"rze":13503,"Ġopposition":13504,"Ġжиз":13505,"who":13506,"Ġê±´":13507,"Ġtrace":13508,"ĠденÑĮ":13509,"Ġepid":13510,"Ġgesch":13511,"ĠNar":13512,"ĠBE":13513,"Ñĥй":13514,"ĠSign":13515,"edly":13516,"Ġclay":13517,"Ġinstantly":13518,"Ġgathering":13519,"ĠGalaxy":13520,"Ġbored":13521,"ĠBuddh":13522,"cé":13523,"Ġmam":13524,"Ġslope":13525,"Ġëĭ¤ìĿĮ":13526,"Ġschön":13527,"Ġpir":13528,"gef":13529,"amer":13530,"Ġhö":13531,"Ġcolleague":13532,"Ġpresents":13533,"adium":13534,"Ġவ":13535,"Ġfalar":13536,"beep":13537,"Ġdried":13538,"isms":13539,"Ġrope":13540,"Ġworkshop":13541,"Ġestud":13542,"Ġbands":13543,"Ġthemes":13544,"åħ¬":13545,"ÙĬر":13546,"åIJİ":13547,"Ġreminder":13548,"ÑĤÑĥ":13549,"ĠBh":13550,"Ġcoconut":13551,"ĠÑģÑĤо":13552,"ĠChannel":13553,"Ġimmigration":13554,"äs":13555,".....":13556,"主":13557,"çĻ½":13558,"stop":13559,"ĠкаÑĢ":13560,"Ġcoins":13561,"ĠÑĩаÑģ":13562,"Ġdestruction":13563,"lined":13564,"Ġbarriers":13565,"antine":13566,"Ġprinted":13567,"Ġcongratulations":13568,"ĠHeart":13569,"Ġinqu":13570,"tha":13571,"Ġhardly":13572,"ĠAven":13573,"Ġtinha":13574,"ĠSony":13575,"ĠNF":13576,"Ġgraduates":13577,"Ġsqueeze":13578,"eremy":13579,"ÏĦι":13580,"Ġepic":13581,"ĠJu":13582,"Ġolm":13583,"ĠLaughter":13584,"Ġbeliefs":13585,"ĠCru":13586,"ĠTrue":13587,"ĠSoul":13588,"oween":13589,"Ġromantic":13590,"Ġзв":13591,"Ġanos":13592,"ĠYup":13593,"éĺ¿":13594,"dim":13595,"Ġinfer":13596,"Ġзам":13597,"Ġsoc":13598,"uka":13599,"Ġprecise":13600,"Ġdropping":13601,"Ġclue":13602,"Ġerrors":13603,"charge":13604,"ĠPu":13605,"ometer":13606,"Ġlambda":13607,"acional":13608,"ĠDong":13609,"Ġchamber":13610,"Ġthankful":13611,"ĠNu":13612,"ĠHawai":13613,"Ġinfo":13614,"Ġactivate":13615,"ĠQual":13616,"Ġqued":13617,"ÑĥлÑĮ":13618,"Ġcloth":13619,"åĸľ":13620,"Ġwichtig":13621,"55":13622,"Ġotra":13623,"ographer":13624,"Ġcurios":13625,"Ġ1980":13626,"Ġempres":13627,"dess":13628,"eur":13629,"Ġcluster":13630,"arter":13631,"obile":13632,"ĠYan":13633,"ĠAdv":13634,"Ġdiscipline":13635,"ĠìłķëıĦ":13636,"ĠPlace":13637,"ĠSelect":13638,"TE":13639,"ĠбÑĭла":13640,"Ġwhis":13641,"Ġbay":13642,"ĠDor":13643,"encing":13644,"Ġrepet":13645,"Ġficar":13646,"pad":13647,"Ġfog":13648,"uyor":13649,"Ġsnap":13650,"ibt":13651,"Ġsobie":13652,"Ġappointment":13653,"ĠRy":13654,"Ġceiling":13655,"ourse":13656,"Ġwrites":13657,"ĠAfghanistan":13658,"Ġmos":13659,"aze":13660,"Ġpenal":13661,"Ġcrystal":13662,"ICE":13663,"ê°IJ":13664,"éŁ":13665,"ĠTesla":13666,"Ġtheories":13667,"Ġappeal":13668,"Ġnewspaper":13669,"Ġcookies":13670,"æ©":13671,"ĠاÙĦÙĦ":13672,"Ġmaj":13673,"ĠGetting":13674,"kommen":13675,"ĠHeaven":13676,"ells":13677,"Ġdivine":13678,"Ä«":13679,"Ġakt":13680,"Ġhopes":13681,"ĠChen":13682,"wegen":13683,"***":13684,"ĠFrage":13685,"Ġни":13686,"ู":13687,"minister":13688,"nesota":13689,"which":13690,"Ġexplicit":13691,"Ġverdad":13692,"Ġgraduated":13693,"ĠPhilipp":13694,"QL":13695,"ĠMI":13696,"Ġdevot":13697,"Ġcure":13698,"Ġclosest":13699,"ĠÃĦ":13700,"Ġsexy":13701,"ãģĽ":13702,"ĠDeath":13703,"oko":13704,"ugu":13705,"ĠAnne":13706,"itarian":13707,"esa":13708,"егод":13709,"ĠDur":13710,"Ġ000":13711,"zeit":13712,"Ġtournament":13713,"Ġmelhor":13714,"ส":13715,"Ġindu":13716,"Ġflaw":13717,"Ġwars":13718,"ĠMind":13719,"ĠIron":13720,"ÑĤак":13721,"ĠVR":13722,"Ġsiz":13723,"ĠSouthern":13724,"Ġê·¸ëŁ¬ë":13725,"Ġawak":13726,"Ġìķŀ":13727,"Ġcube":13728,"believable":13729,"ifall":13730,"dis":13731,"Ġabandoned":13732,"mind":13733,"Ġparl":13734,"Ġclassical":13735,"èĭ":13736,"á»Ļt":13737,"ĠAuto":13738,"ĠBor":13739,"ç©":13740,"400":13741,"ĠSociety":13742,"Ġsubtle":13743,"Ġmissions":13744,"Ġremembered":13745,"ĠEither":13746,"Ġdafür":13747,"ORD":13748,"Ġintensity":13749,"ESIN":13750,"ĠCup":13751,"Ġrarely":13752,"Ġtoys":13753,"ĠCharlie":13754,"ợ":13755,"Ġglaube":13756,"Ġrounds":13757,"TIN":13758,"Ġcapability":13759,"Ġderivative":13760,"Ġreferring":13761,"ĠdÃ¥":13762,"ĠTALI":13763,"Ġcotton":13764,"Ġconfer":13765,"Ġcolumns":13766,"Ġliberal":13767,"Ġnunca":13768,"Ġμε":13769,"Ġindo":13770,"iben":13771,"ĠBeispiel":13772,"Ġê·¸ëłĩ":13773,"ĠÑĥÑĩ":13774,"Ġhoy":13775,"Ġfry":13776,"ĠScottish":13777,"èĬ":13778,"Ġciv":13779,"Ġconservative":13780,"Ġairpl":13781,"Ġsar":13782,"rus":13783,"Ġinvestments":13784,"Ġinfinite":13785,"Ġà®ķ":13786,"ĠTALIESIN":13787,"ĠGary":13788,"uell":13789,"Ġак":13790,"ĠCir":13791,"Ġritual":13792,"Ġ>>>":13793,"Ġtempt":13794,"ĠTech":13795,"ĠPokemon":13796,"Ġimprovements":13797,"Ġspare":13798,"Ġtranslate":13799,"Ġsonra":13800,"ĠFilm":13801,"wort":13802,"Ġми":13803,"Ġperiods":13804,"Ġjealous":13805,"ãģĦãģĦ":13806,"Ġtir":13807,"MI":13808,"Ġconducted":13809,"ĠìķĪëħķ":13810,"09":13811,"ĠPolit":13812,"ĠWhereas":13813,"Ġmoisture":13814,"Ġsins":13815,"Ġkap":13816,"ĠÑįк":13817,"Ġbenim":13818,"Ġeliminate":13819,"Ġathletes":13820,"ĠManager":13821,"Ġfeatured":13822,"apore":13823,"äºĽ":13824,"Ġë°ľ":13825,"Ġperf":13826,"ĠThus":13827,"Ġdebut":13828,"обÑĢ":13829,"Ġseñ":13830,"Ġmysterious":13831,"words":13832,"Ķê°Ģ":13833,"Ġchecks":13834,"Ġvolunteer":13835,"Ġwashing":13836,"ĠMarvel":13837,"ĠAB":13838,"issors":13839,"!'":13840,"ĠFull":13841,"yeon":13842,"Ġweigh":13843,"ĠJOHN":13844,"Ġvos":13845,"Ġprocedures":13846,"Ġaddressed":13847,"ĠBerlin":13848,"puter":13849,"ĠBan":13850,"Ġmedication":13851,"Ġdrone":13852,"ĠÑĥб":13853,"ĠJean":13854,"Ġcaps":13855,"Ġdisappointed":13856,"Ġwore":13857,"ĠêµŃ":13858,"Ġorganize":13859,"ĠHalloween":13860,"Ġfantasy":13861,"yard":13862,"Ġnosotros":13863,"Ġjumped":13864,"Ġphotography":13865,"ĠName":13866,"rec":13867,"AB":13868,"Ġblessing":13869,"ĠShut":13870,"Ġbitter":13871,"pop":13872,"ãģĿãĤĮ":13873,"Ġdei":13874,"Ġfulfill":13875,"çIJĨ":13876,"Ġdengan":13877,"Ġbelo":13878,"ĠMeanwhile":13879,"Ġdepois":13880,"Ġdiabetes":13881,"Ġbund":13882,"ĠZealand":13883,"Ġdigest":13884,"Ġtires":13885,"Ġdod":13886,"agne":13887,"ết":13888,"Ġpeel":13889,"Ġзаб":13890,"Ġnodes":13891,"Ġtrends":13892,"ĠSwitch":13893,"ĠAward":13894,"ĠOrig":13895,"ĠHal":13896,"Ġestas":13897,"Ġ360":13898,"Ġsimult":13899,"Ġcomic":13900,"ĠmÃł":13901,"Ġbalanced":13902,"ĠPrincess":13903,"Ġkilometers":13904,"ứ":13905,"Ġpartir":13906,"ì¤ij":13907,"soft":13908,"ĠView":13909,"Ġbiological":13910,"inst":13911,"44":13912,"Ġmanera":13913,"Ġcomprehensive":13914,"ĠSab":13915,"Ġcrimes":13916,"yers":13917,"ĠCompany":13918,"ĠPhot":13919,"Ġpouco":13920,"iac":13921,"Ġbeim":13922,"inate":13923,"Ġsubsequ":13924,"ĠMayor":13925,"Ġcenturies":13926,"ères":13927,"ìŀĸìķĦìļĶ":13928,"Ġê·¸ëŁ¼":13929,"ĠFrau":13930,"ĠOH":13931,"ĠëģĿ":13932,"ĠNah":13933,"ĠSeries":13934,"Ġovernight":13935,"íĴĪ":13936,"ĠâĢ¢":13937,"Ġtrave":13938,"attered":13939,"Ġwarri":13940,"ĠGrund":13941,"ĠIndones":13942,"Ġscra":13943,"oby":13944,"ĠBrook":13945,"Ġcurs":13946,"Ġë¸":13947,"Ġexplains":13948,"ramatic":13949,"Ġparticipating":13950,"Ġminut":13951,"Ġcontracts":13952,"Ġgegen":13953,"Ġdisappeared":13954,"ĠSN":13955,"Ġrobust":13956,"aph":13957,"Ġshrim":13958,"Ġdevast":13959,"cope":13960,"Ġmeets":13961,"Ġpeaceful":13962,"mate":13963,"Ġweld":13964,"Ġת":13965,"don":13966,"ÑĥÑĤÑĮ":13967,"Ġregistered":13968,"ĠNik":13969,"jin":13970,"Ġcav":13971,"Ġecht":13972,"iox":13973,"Ġflowing":13974,"ноÑģÑĤи":13975,"Ġtoe":13976,"Ġentity":13977,"ова":13978,"fits":13979,"ĠPatrick":13980,"ÑĤÑĢ":13981,"Ġleverage":13982,"Ġcorrel":13983,"iah":13984,"Ġstrings":13985,"istinct":13986,"Ġgue":13987,"archy":13988,"Ġtengo":13989,"ımız":13990,"Ġorbit":13991,"为":13992,"ĠеÑīÑij":13993,"cake":13994,"Ġ׾×Ķ":13995,"ĠMinnesota":13996,"Ġbrake":13997,"owie":13998,"Ġcraw":13999,"기를":14000,"Ġprogramme":14001,"ĠÑģлÑĥÑĩ":14002,"åıª":14003,"iences":14004,"ĠOui":14005,"ĠPers":14006,"imiento":14007,"ĠInvest":14008,"Ġslower":14009,"æĻĤåĢĻ":14010,"ĠBeth":14011,"Ġnurse":14012,"ĠSpring":14013,"Sp":14014,"Ġunemploy":14015,"ди":14016,"Ġgenius":14017,"ĠAaron":14018,"Ġê·¸ëŁ¬":14019,"Ġei":14020,"ãģĹãĤĩ":14021,"Ġtanks":14022,"Ġaujourd":14023,"Ġcomplexity":14024,"ĠÑĢеÑĪ":14025,"Ġoldest":14026,"Ġletz":14027,"åħ¥":14028,"Ġphenomenon":14029,"print":14030,"ĠBundes":14031,"itat":14032,"ê»ĺ":14033,"Ġ42":14034,"ĠWi":14035,"Ġincom":14036,"Ġgek":14037,"Ġembrace":14038,"Ġties":14039,"oute":14040,"Ġdose":14041,"ĠFriends":14042,"ÑĭÑĤ":14043,"егоднÑı":14044,"Ġorg":14045,"Ħë¡ľ":14046,"óg":14047,"Ġexceed":14048,"Ġgods":14049,"Ġê±°ìĺĪìļĶ":14050,"Ġsociet":14051,"ĠUnivers":14052,"ität":14053,"Ġworden":14054,"Ġsmoking":14055,"Ġintens":14056,"abul":14057,"emia":14058,"èij":14059,"47":14060,"fly":14061,"Ġ2006":14062,"ĠSeriously":14063,"Ġprzez":14064,"æ¼":14065,"cre":14066,"Ġnan":14067,"Ġmodes":14068,"оваÑĤÑĮ":14069,"ĠHang":14070,"emen":14071,"Ġbeneficial":14072,"Ġvoters":14073,"ĠBroad":14074,"Ġbent":14075,"Wow":14076,"Ġmul":14077,"åĵ¥":14078,"ĠUC":14079,"Ġdamaged":14080,"ĠUkraine":14081,"Ġwipe":14082,"Ġstones":14083,"Ġmanagers":14084,"Ġrab":14085,"ÑģÑĤÑĢо":14086,"lat":14087,"Ġdece":14088,"Ġgraphic":14089,"Ġfoss":14090,"Ġdisagree":14091,"ĠAmen":14092,"Ġsecrets":14093,"hole":14094,"inkle":14095,"Ġfortunate":14096,"Ġì±":14097,"ìľĦ":14098,"èIJ¬":14099,"Ġhabits":14100,"Ġburied":14101,"Ġhin":14102,"Ġvirtually":14103,"olas":14104,"ĠRP":14105,"ĠTab":14106,"low":14107,"Ġsacrific":14108,"Ġestimated":14109,"oln":14110,"Ùĭ":14111,"cur":14112,"ĠFeel":14113,"Ġcastle":14114,"Ġuseless":14115,"Ġdisg":14116,"ĠJacob":14117,"Ġgaan":14118,"Ġupside":14119,"Ġparece":14120,"ãĥ³ãĥ":14121,"Ġshipping":14122,"ĠCR":14123,"Ġdisrupt":14124,"acter":14125,"UND":14126,"fu":14127,"å®Į":14128,"ĠPick":14129,"ĠCharl":14130,"ĠBull":14131,"Ġenterprise":14132,"Ġpunishment":14133,"acking":14134,"Ġfraction":14135,"Ġtablet":14136,"Ġchord":14137,"Ġsimilarly":14138,"åħ¶å¯¦":14139,"ĠToronto":14140,"Ġcourts":14141,"ÄŁl":14142,"eszcze":14143,"Ġpronoun":14144,"ĠSister":14145,"ĠMP":14146,"Ġgreatly":14147,"ĠDank":14148,"icop":14149,"Ġgarbage":14150,"Ġresolve":14151,"ĠSaf":14152,"ĠGun":14153,"Ġcompound":14154,"Ġë°°":14155,"ĠMusik":14156,"âĻ«":14157,"Ġchaos":14158,"ĠWhenever":14159,"Ġeuros":14160,"Ġorchest":14161,"Ġrefriger":14162,"alan":14163,"ื":14164,"ĠAmazing":14165,"Ġpud":14166,"agan":14167,"Ġjeszcze":14168,"isy":14169,"Ġaccuracy":14170,"ĠAma":14171,"isode":14172,"ëĮĢ":14173,"Ġinterpretation":14174,"ĠLiber":14175,"æ·":14176,"cam":14177,"Ġevolved":14178,"ĠKay":14179,"ÑĨÑĭ":14180,"Ġcreator":14181,"itas":14182,"Ġalarm":14183,"Ġcelebration":14184,"zent":14185,"Ġfuncion":14186,"Ġov":14187,"umbling":14188,"Ġ%":14189,"à¸Ī":14190,"Ġrestrictions":14191,"Ġнав":14192,"ĠKinder":14193,"Ġbanana":14194,"ÑĮÑı":14195,"Ġdiameter":14196,"Ġnorthern":14197,"urers":14198,"ĠPas":14199,"æĪijçļĦ":14200,"Ġworkforce":14201,"Ġjung":14202,"Ġguarante":14203,"Ġequilib":14204,"Ġsuite":14205,"Ġeuro":14206,"Ġdeliber":14207,"Ste":14208,"Ġdowntown":14209,"Ġchin":14210,"Ġcodes":14211,"edia":14212,"Ġsheep":14213,"reshold":14214,"wnie":14215,"ób":14216,"Ġunderlying":14217,"lia":14218,"jer":14219,"ÏĢÏĮ":14220,"çĿ":14221,"throp":14222,"Ġzap":14223,"Ġvacuum":14224,"ĠHab":14225,"Ġwrapped":14226,"ì¢":14227,"Ġinventory":14228,"ма":14229,"Ġcoord":14230,"Ġplates":14231,"Ġsymm":14232,"Te":14233,"ĠwÅĤaÅĽnie":14234,"Ġreaches":14235,"Ġlonely":14236,"Script":14237,"lee":14238,"esser":14239,"Ġ걸":14240,"ĠGesch":14241,"ĠMoving":14242,"Ġrép":14243,"ĠVill":14244,"åIJĪ":14245,"ĠRachel":14246,"Ġtemos":14247,"ONE":14248,"Ġstrain":14249,"Ġangel":14250,"ĠfÃ¥":14251,"Tr":14252,"Ġacho":14253,"Ġhighlights":14254,"ĠWer":14255,"ĠCarl":14256,"Ġblur":14257,"Ġregards":14258,"·":14259,"илÑģÑı":14260,"Ġrecre":14261,"ĠYani":14262,"UCK":14263,"ł¸":14264,"Ġelectrons":14265,"ĠSpiel":14266,"Ġved":14267,"Ú¾":14268,"Ġbeam":14269,"Ġidiot":14270,"ëĵ¤":14271,"наÑĩ":14272,"idd":14273,"Ġski":14274,"itative":14275,"Ġhypothes":14276,"ãģ§ãģĻãģŃ":14277,"enter":14278,"ĠìķĦëĭĪë":14279,"Ġihre":14280,"Ġpreview":14281,"angel":14282,"Ġdemon":14283,"Ġdus":14284,"Ġdic":14285,"ĠKom":14286,"LEY":14287,"...!":14288,"Ġsieht":14289,"ĠSonic":14290,"Ġtenho":14291,"anas":14292,"Ġdigit":14293,"ĠMaar":14294,"Ġundergrad":14295,"ouncer":14296,"uffy":14297,"Ġconversion":14298,"Ġdisconnect":14299,"Ġecho":14300,"omer":14301,"Ġcurriculum":14302,"Ġperché":14303,"Ġwand":14304,"..?":14305,"Ġrolled":14306,"Ġentrepreneur":14307,"Ġtheoret":14308,"ĠÑīо":14309,"Ġinsights":14310,"Ġzusammen":14311,"oin":14312,"rett":14313,"produ":14314,"Ġvisitors":14315,"eous":14316,"Ġgrandmother":14317,"Ġhumor":14318,"ĠниÑħ":14319,"zenia":14320,"inson":14321,"Ġreset":14322,"Ġbaseball":14323,"Ġmatching":14324,"ëĭ¤ê°Ģ":14325,"Ġpunto":14326,"ì¡":14327,"Ġrede":14328,"Ġaddressing":14329,"Ġforecast":14330,"ĠBol":14331,"Ġcolored":14332,"Ġdocumentation":14333,"Ġexpectation":14334,"ĠNorthern":14335,"Ġcreo":14336,"Ġà®ļ":14337,"fon":14338,"Ġunsere":14339,"UM":14340,"Ġcopies":14341,"Ġexpanded":14342,"Ġveterans":14343,"ĠAlm":14344,"ĠвообÑīе":14345,"Ġpsychological":14346,"Ġnosso":14347,"Ġpayments":14348,"imeters":14349,"Ġ-->":14350,"ĠJennifer":14351,"Ġvolunteers":14352,"osse":14353,"orious":14354,"ĠбÑĭли":14355,"èĤ":14356,"ĠEss":14357,"ws":14358,"ĠBC":14359,"ĠIC":14360,"Woman":14361,"Ġvont":14362,"Ġethnic":14363,"ENN":14364,"имо":14365,"Ġlob":14366,"Ġoui":14367,"cs":14368,"Ġrehe":14369,"Ġìłģ":14370,"Ġchick":14371,"úsica":14372,"Ġkont":14373,"ĠDistrict":14374,"Ġpile":14375,"Ġав":14376,"ейÑģÑĤв":14377,"Ġ£":14378,"Ġissued":14379,"Ġкомп":14380,"Ġprosper":14381,"Ġprofound":14382,"ĠDear":14383,"Ġãģĵ":14384,"Ġfunded":14385,"Ġbisa":14386,"ŀĺë":14387,"ף":14388,"ĠìĿĺ":14389,"Ġtwelve":14390,"ĠChampions":14391,"éĿŀ常":14392,"Ñģл":14393,"Ġ2005":14394,"pm":14395,"Ġonde":14396,"Ġdiffé":14397,"ĠChall":14398,"Ġdifficulties":14399,"Ġgarage":14400,"Ġdá":14401,"ünk":14402,"Ġ물":14403,"Ġtran":14404,"Ġsubmitted":14405,"zw":14406,"ÙĪا":14407,"Ġark":14408,"ĠìĦ±":14409,"Ġgrocery":14410,"она":14411,"iere":14412,"Ġaest":14413,"Ġexhibition":14414,"Ġrés":14415,"Ġconsistency":14416,"Ġcookie":14417,"ней":14418,"Ġreplacement":14419,"æ²¹":14420,"ĠSem":14421,"ĠìĤ¬ìļ©":14422,"800":14423,"Ġgenes":14424,"Ġtransaction":14425,"ĠEL":14426,"Ġdurante":14427,"ibles":14428,"ĠEat":14429,"tail":14430,"issance":14431,"Ġtoss":14432,"Ġsurvived":14433,"Ġoffices":14434,"Ġsupportive":14435,"Where":14436,"Ġtoutes":14437,"Ġë§ī":14438,"Ġjokes":14439,"ieron":14440,"apers":14441,"Ġmature":14442,"ĠMarsh":14443,"Ġsido":14444,"kind":14445,"Ġrealmente":14446,"ĠChef":14447,"Ġquelque":14448,"Ġjudges":14449,"eft":14450,"ERS":14451,"Ġjet":14452,"Ġpersons":14453,"è»":14454,"izations":14455,"rik":14456,"Ġshops":14457,"ĠWy":14458,"Ġeleg":14459,"què":14460,"quoi":14461,"Ġjuga":14462,"Ġíķľë²Ī":14463,"ĠQuestion":14464,"ĠGlobal":14465,"Ġìķ½ê°Ħ":14466,"ĠStation":14467,"æİ¥":14468,"ĠOhio":14469,"Ġsticky":14470,"Ġstressed":14471,"Ġgün":14472,"ĠíĿ":14473,"ÑģÑĤÑĥп":14474,"é¡Į":14475,"ĠPhD":14476,"immer":14477,"Ġmentor":14478,"Ġinvented":14479,"Ġreun":14480,"Ġinevit":14481,"ĠpolÃŃt":14482,"Ġexecute":14483,"ĠStory":14484,"Ġoutstanding":14485,"Ġguer":14486,"ĠRain":14487,"Ġchoses":14488,"ĠTit":14489,"ĠÑģеÑĢ":14490,"ĠSingapore":14491,"ĠNone":14492,"Ġchronic":14493,"°ëį°":14494,"Ġego":14495,"æł·":14496,"EST":14497,"ãģĤãĤĬ":14498,"ĠWang":14499,"ĠNAT":14500,"Ġaug":14501,"Ġdesktop":14502,"Ġeternal":14503,"ĠìĤ¬ìĭ¤":14504,"ĠConstitution":14505,"ìĤ¬ë":14506,"×Ļ׾":14507,"pres":14508,"ĠТÑĭ":14509,"Ġinterf":14510,"Ġlists":14511,"Ġfights":14512,"ften":14513,"ĠIowa":14514,"Ġmotivated":14515,"ĠHosp":14516,"Ġelsewhere":14517,"Ġpaths":14518,"Ġinstances":14519,"Bl":14520,"range":14521,"á»±":14522,"ĠSit":14523,"mana":14524,"Ġìĭľìŀij":14525,"Ġmình":14526,"ansas":14527,"Ġsna":14528,"Ġphilosoph":14529,"Ġpasse":14530,"Æ°á»Ŀi":14531,"akh":14532,"ental":14533,"Ġihn":14534,"ructor":14535,"ĠваÑĪ":14536,"Ġgenerous":14537,"Ġpivot":14538,"пол":14539,"Ġjamais":14540,"Ġcoment":14541,"ĠLew":14542,"odzi":14543,"ĠXbox":14544,"Ġвод":14545,"Ġconsent":14546,"īìŀ¥":14547,"Ġdispar":14548,"lass":14549,"ĠGovernor":14550,"Beifall":14551,"Ġê°ľ":14552,"Ġbeloved":14553,"׳×ķ":14554,"sell":14555,"Ġhonored":14556,"leh":14557,"Ġwäre":14558,"unting":14559,"Ġfraud":14560,"ĠRAM":14561,"걸":14562,"Ġkills":14563,"Ġeconomics":14564,"04":14565,"пеÑĢ":14566,"Ġcoisas":14567,"ĠигÑĢ":14568,"ÃŃm":14569,"Ġmöchte":14570,"Ġìµľ":14571,"Ġstimul":14572,"Ġfastest":14573,"lv":14574,"Ġgén":14575,"ĠSounds":14576,"Ġ1970":14577,"Ġhomework":14578,"speaking":14579,"Ġencouraging":14580,"Ġquery":14581,"Ġrevers":14582,"profit":14583,"Ġdy":14584,"Ġìŀij":14585,"ëĬĶëį°ìļĶ":14586,"Ġsoap":14587,"ĠGall":14588,"ĠCN":14589,"ĠAns":14590,"Ġfic":14591,"anks":14592,"Ġdessert":14593,"ĠìłĢíĿ¬":14594,"ĠMaking":14595,"Ġcomeç":14596,"ê³Ħ":14597,"Ġassociation":14598,"Dad":14599,"hee":14600,"Ġhogy":14601,"Ġapro":14602,"Ġinvisible":14603,"American":14604,"íİ":14605,"Ġvibe":14606,"Ġemissions":14607,"Ġadvocate":14608,"Ġkicked":14609,"Ġvel":14610,"Ġsummar":14611,"Ġfreaking":14612,"chron":14613,"Ġpinch":14614,"Ġwszystk":14615,"iscal":14616,"Ġproved":14617,"Ġmindful":14618,"Ġtä":14619,"Ġnoises":14620,"Ġisolated":14621,"Ġcrossed":14622,"Ġê°ķ":14623,"ĠvoilÃł":14624,"Ġchore":14625,"ĠRA":14626,"Com":14627,"Ġrelaxed":14628,"atro":14629,"Ġprevention":14630,"Voiceover":14631,"OD":14632,"ĠCovid":14633,"Ġseparation":14634,"Ġ-[":14635,"иÑĩего":14636,"çĻ¼":14637,"ĠSD":14638,"bleep":14639,"Ġindependence":14640,"Ġpartial":14641,"Ġalgorithms":14642,"ĠAnyone":14643,"Ġassociate":14644,"hum":14645,"icular":14646,"Ġbạn":14647,"Ġbattles":14648,"Good":14649,"Applause":14650,"Ġbastante":14651,"Ġadvant":14652,"ĠSweet":14653,"Ġrefused":14654,"ãĤ¸":14655,"ĠÑĤебе":14656,"plet":14657,"Ġencouraged":14658,"åĵ¦":14659,"Ġmiracle":14660,"ĠBun":14661,"ĠVar":14662,"rimination":14663,"elect":14664,"ĠMult":14665,"Ġdelivering":14666,"eing":14667,"Ġcm":14668,"nehmen":14669,"ĠLine":14670,"Ġë§Į":14671,"enced":14672,"ĠSound":14673,"ĠContin":14674,"ijd":14675,"UNG":14676,"kle":14677,"Ġthreshold":14678,"Ġcompact":14679,"adt":14680,"Ġtoes":14681,"ĠPur":14682,"owned":14683,"mented":14684,"Ġdesigning":14685,"Ġvaccinated":14686,"Ġexhaust":14687,"Ġbasics":14688,"Ġconsists":14689,"ĠGuy":14690,"aczy":14691,"ĠmÃŃ":14692,"won":14693,"害":14694,"Ġ85":14695,"æĤ":14696,"Ġmum":14697,"Ġignor":14698,"Ġprinting":14699,"acular":14700,"pow":14701,"Ġexpanding":14702,"Ġgir":14703,"ĠCab":14704,"íĺ¸":14705,"ÑĤÑĮÑģÑı":14706,"ĠìŬ룬ë¶Ħ":14707,"Ġangles":14708,"Ġterminal":14709,"ĠWon":14710,"ĠInteresting":14711,"Ġcrossing":14712,"Ġbonds":14713,"Ġpueden":14714,"Ġorb":14715,"ların":14716,"Ġcreepy":14717,"Ġnutrition":14718,"Ġallies":14719,"Ġwireless":14720,"Ġdesired":14721,"Ġcompute":14722,"ĠArizona":14723,"ĠBeautiful":14724,"Ġproduces":14725,"Ġnuestro":14726,"ted":14727,"Ġeligible":14728,"ĠÑģоз":14729,"icial":14730,"ĠHero":14731,"Ġconsume":14732,"Ġrobots":14733,"Ġpurchased":14734,"cción":14735,"Ġiz":14736,"ược":14737,"ίναι":14738,"ĠØ£ÙĨ":14739,"Ġshadows":14740,"ĠMedia":14741,"Ġprincess":14742,"Ġklar":14743,"Ġwooden":14744,"Ġusar":14745,"Ġgüzel":14746,"Ġslot":14747,"rade":14748,"ĠëĴ":14749,"Ġharmon":14750,"Ġingredient":14751,"orship":14752,"eki":14753,"Ġgrandfather":14754,"Ġexcitement":14755,"Ġpoliticians":14756,"..!":14757,"Ġouts":14758,"Ġseparately":14759,"ĠÑıк":14760,"ĠWelt":14761,"ĠPow":14762,"jan":14763,"Ġorientation":14764,"åıĭ":14765,"LC":14766,"agem":14767,"ÛĮÚº":14768,"åIJĹ":14769,"Ġbranches":14770,"aden":14771,"rente":14772,"ĠIhr":14773,"asm":14774,"Ġestão":14775,"ĠNic":14776,"Ġslave":14777,"Ġcompress":14778,"crowd":14779,"Ġclimbing":14780,"ĠManagement":14781,"ĠBah":14782,"Ġpanic":14783,"Ġkor":14784,"Ġcooling":14785,"Ġbind":14786,"Ġзад":14787,"Ġrack":14788,"Ġentit":14789,"Ġsends":14790,"Ġyourselves":14791,"des":14792,"ĠMuslims":14793,"Ġíļ":14794,"isma":14795,"cycle":14796,"unkt":14797,"ĠCore":14798,"Ġinjuries":14799,"Ġidentical":14800,"каÑı":14801,"ĠDeutschland":14802,"Ġее":14803,"isan":14804,"Ġtruc":14805,"leton":14806,"Ġbackup":14807,"Ġultra":14808,"Ġabund":14809,"illeurs":14810,"ĠbyÅĤo":14811,"åħĥ":14812,"orted":14813,"Ġearthqu":14814,"Ġкл":14815,"Ġobservation":14816,"Ġmaintenant":14817,"elen":14818,"Ġsettled":14819,"Ġpela":14820,"ĠEconom":14821,"ĠÕ":14822,"Ġsteering":14823,"ĠALL":14824,"ĠCher":14825,"Ġpatience":14826,"ĠSnow":14827,"Ġbor":14828,"Ġworthy":14829,"Ġcái":14830,"Ġק":14831,"Ġκα":14832,"dog":14833,"ĠKaren":14834,"illes":14835,"β":14836,"Ġagriculture":14837,"×ķף":14838,"ĠSean":14839,"Ġsensors":14840,"íķ´ë":14841,"agh":14842,"Ġpublicly":14843,"Ġpeux":14844,"ĠAlexander":14845,"Ġpriorit":14846,"Ġlazy":14847,"ardon":14848,"attering":14849,"Ġcostume":14850,"ست":14851,"è¿ĺ":14852,"Ġunw":14853,"ÐĽ":14854,"Ġthickness":14855,"quito":14856,"gunt":14857,"istas":14858,"neys":14859,"ĠëIJĺê²Į":14860,"ĠBrasil":14861,"Ġtoken":14862,"Ġaffili":14863,"lon":14864,"ĠfÃ¥r":14865,"ĠBeach":14866,"Ġwitch":14867,"ĠSeven":14868,"Ġpant":14869,"λλ":14870,"Ġcaptain":14871,"åĿ":14872,"Ġveut":14873,"Ġpouvoir":14874,"acz":14875,"ĠBarb":14876,"Ġutility":14877,"Ġcontemporary":14878,"Ġobtained":14879,"Ġpaintings":14880,"ear":14881,"Ġpean":14882,"ĠOg":14883,"Ġcust":14884,"лем":14885,"Ĥĺë":14886,"ĠIsso":14887,"Ġaconte":14888,"ĠTele":14889,"ĠAssistant":14890,"Ãī":14891,"íĸĪìĬµëĭĪëĭ¤":14892,"Ġcounts":14893,"Ġbuck":14894,"ĠDeep":14895,"Ġtackle":14896,"Ġharsh":14897,"Ġdecides":14898,"éĹľ":14899,".âĢĭ":14900,"éĤĬ":14901,"ĠAngel":14902,"Ġlaying":14903,"Ġcalories":14904,"Ġcontrolling":14905,"Ġadvantages":14906,"ĠÑįÑĤой":14907,"Ġapproaching":14908,"Ġthreats":14909,"akan":14910,"ematic":14911,"mann":14912,"ê³µ":14913,"mumbles":14914,"ació":14915,"Ġmaintaining":14916,"Ġfounder":14917,"lah":14918,"fight":14919,"Ġadmitted":14920,"âĢ¦.":14921,"ķĮ":14922,"abol":14923,"Ġusage":14924,"Ġnonsense":14925,"ĠPalest":14926,"Ġcontre":14927,"ĠDemocratic":14928,"ĠER":14929,"jekt":14930,"Ġarbit":14931,"Ġгол":14932,"ĠMichelle":14933,"icher":14934,"esh":14935,"ĠPho":14936,"ком":14937,"49":14938,"ĠEnergy":14939,"οÏį":14940,"Ġcents":14941,"Ġrefers":14942,"Ġgospel":14943,"ĠSha":14944,"ĠShare":14945,"×Ļ׳":14946,"Ġclinic":14947,"ĠëĦ£":14948,"Ġequality":14949,"ugs":14950,"Ġshed":14951,"Ġplanes":14952,"Ġtoute":14953,"reck":14954,"Ġstrand":14955,"Ġbiology":14956,"Ġleague":14957,"ĠPok":14958,"Ġnúmero":14959,"ĠCoast":14960,"Ġconsistently":14961,"Ġnucle":14962,"OOOO":14963,"Ġobjet":14964,"Ġchor":14965,"Ġginger":14966,"Ġdabei":14967,"Ġcooperation":14968,"à¯į.":14969,"nten":14970,"ç¤":14971,"lÃł":14972,"ìĸij":14973,"rado":14974,"Ġpassive":14975,"Ġgloves":14976,"Ġunderground":14977,"Ġlogical":14978,"Ġket":14979,"Ġfunctionality":14980,"¸ë¦¬":14981,"Ġportal":14982,"eller":14983,"×Ļר":14984,"ĠTed":14985,"ĠGre":14986,"IJľ":14987,"Ġpersonnel":14988,"Ġemerging":14989,"ĠFür":14990,"Ġmeantime":14991,"usalem":14992,"ĠClear":14993,"Ġtrapped":14994,"Ġìļ°":14995,"Ġdispl":14996,"Ġmettre":14997,"Ġmunicip":14998,"Ġwithdraw":14999,"Ġspat":15000,"unes":15001,"Ġaccessibility":15002,"æĪij们":15003,"Ġapare":15004,"Ġprospect":15005,"Ġназ":15006,"Ġcopper":15007,"ĠPRO":15008,"ÏħÏĦ":15009,"Ġattacking":15010,"ĠVin":15011,"ĠStone":15012,"Ġinvestigate":15013,"style":15014,"Ġλ":15015,"ë¡Ŀ":15016,"ë§Ī":15017,"Ġinspect":15018,"Ġliver":15019,"алиÑģÑĮ":15020,"Ġsera":15021,"halten":15022,"eman":15023,"Ġministry":15024,"''":15025,"Ġdots":15026,"ãħĭãħĭãħĭãħĭ":15027,"ÑĥÑģÑĤ":15028,"ĠJak":15029,"AKE":15030,"Ġgaps":15031,"ucker":15032,"ĠинÑĤеÑĢеÑģ":15033,"ĠEmily":15034,"Ġinterval":15035,"Ġtender":15036,"ĠTechnology":15037,"game":15038,"Ġtrib":15039,"ÙĦا":15040,"ĠDevelopment":15041,"Ùħا":15042,"Ġwrist":15043,"Ġfires":15044,"Ġtargeted":15045,"ìłIJ":15046,"Ġsod":15047,"íļĮ":15048,"ĠolduÄŁ":15049,"Ġseasons":15050,"ventions":15051,"Ġнего":15052,"Ġsometime":15053,"лив":15054,"né":15055,"Ġtú":15056,"ĠDeus":15057,"Ġexecution":15058,"áp":15059,"ĠChange":15060,"ĠIndeed":15061,"Ġregulation":15062,"ĠHung":15063,"éis":15064,"Ġwishes":15065,"Ġjazz":15066,"Ġstructural":15067,"Ġblowing":15068,"ĠbyÄĩ":15069,"Ġthermal":15070,"phant":15071,"ÑĢÑĥз":15072,"анÑĤ":15073,"ĠPull":15074,"Ġconfusion":15075,"нÑĭми":15076,"Ġscenarios":15077,"ìłģìľ¼ë¡ľ":15078,"ĠдеÑĤ":15079,"Ġtattoo":15080,"Ġautre":15081,"Ġheating":15082,"Ġtreating":15083,"Ġпоним":15084,"Ġexclus":15085,"ĠLOL":15086,"wear":15087,"agle":15088,"Ġzurück":15089,"Ġrational":15090,"su":15091,"Ġdeter":15092,"ĠNative":15093,"à®ķள":15094,"ached":15095,"Ġãĥ":15096,"ĠEntonces":15097,"Ġhora":15098,"ìĿ´ìĹIJìļĶ":15099,"Ġlite":15100,"ë":15101,"Ġsixth":15102,"Ġболее":15103,"actor":15104,"Ġpsychology":15105,"缸":15106,"Ġdemands":15107,"Ġpeer":15108,"Ġnewly":15109,"ĠWWE":15110,"Donald":15111,"ĠBox":15112,"Ġpine":15113,"Ġloading":15114,"ĠNico":15115,"ĠsÅĤ":15116,"omme":15117,"ART":15118,"Ġrecruit":15119,"Ġbugs":15120,"arents":15121,"ĠпÑĢоб":15122,"ĠInside":15123,"ipper":15124,"dramatic":15125,"Ġplanets":15126,"orde":15127,"Ġyoga":15128,"child":15129,"ĠMarie":15130,"ĠãģĤ":15131,"ĠBL":15132,"Ġfilmed":15133,"Ġrefresh":15134,"Ġtomatoes":15135,"Ġfet":15136,"Qué":15137,"Ġ!!":15138,"ĠëĤ´ë":15139,"rine":15140,"Ġinteractive":15141,"sal":15142,"annah":15143,"pez":15144,"ç¶ĵ":15145,"Ġunderstands":15146,"ĠTokyo":15147,"Ġlibraries":15148,"Ġreader":15149,"ijIJ":15150,"oz":15151,"ĠEnde":15152,"ĠFlo":15153,"Ġmild":15154,"Ġpoetry":15155,"Ġжив":15156,"æĦĽ":15157,"Ġbehave":15158,"Ġdoen":15159,"ĠSusan":15160,"page":15161,"raham":15162,"Ġcommunications":15163,"Ġtuning":15164,"Ġpac":15165,"Ġanxious":15166,"IO":15167,"Mark":15168,"Ġhiç":15169,"books":15170,"Ġpiss":15171,"Ġenabled":15172,"achelor":15173,"ĠFOR":15174,"Ġéc":15175,"ĠTR":15176,"ilst":15177,"hat":15178,"ĠìĿĮ":15179,"Ġtych":15180,"Ġjar":15181,"Ġbuilds":15182,"ĠArgent":15183,"Ġintermedi":15184,"Ġlou":15185,"Ġara":15186,"Ġassignment":15187,"Ġcabinet":15188,"Ġretirement":15189,"ãģ»":15190,"Ġdisabled":15191,"rica":15192,"Ġawards":15193,"Ġboots":15194,"Ġacknowled":15195,"Ġthy":15196,"Ġ구":15197,"Ġsynd":15198,"ний":15199,"ilton":15200,"Ġprobl":15201,"ĠFal":15202,"Ġverdade":15203,"Ġ700":15204,"ĠLearning":15205,"ocus":15206,"Ġpalace":15207,"Not":15208,"tain":15209,"cm":15210,"Ġmagnet":15211,"incoln":15212,"Ġfiguring":15213,"ĠLyn":15214,"ĠBoss":15215,"ĠVO":15216,"Ġdiagnosis":15217,"Ġequipped":15218,"watch":15219,"inos":15220,"aders":15221,"Ġshelf":15222,"Ġorganis":15223,"Ġnod":15224,"Ġkız":15225,"ppers":15226,"Ġrestore":15227,"Ġartic":15228,"ĠVoice":15229,"ıyorum":15230,"격":15231,"Ġspreading":15232,"Ġhips":15233,"Ġward":15234,"ureau":15235,"Ġintersection":15236,"66":15237,"Ġ39":15238,"ç³":15239,"Ġwaited":15240,"ì´":15241,"hhhh":15242,"Ġdys":15243,"ĠEN":15244,"Ġbatch":15245,"Ġcaf":15246,"Ġmarker":15247,"大家好":15248,"orable":15249,"ória":15250,"Ġstepped":15251,"Ġcelebrating":15252,"ана":15253,"Ġworn":15254,"ĠFol":15255,"Ġpla":15256,"Ġattempts":15257,"Ġtweet":15258,"Ġrust":15259,"gence":15260,"íĨµ":15261,"Ġrevel":15262,"Ġrecept":15263,"eness":15264,"Ġ((":15265,"ãĥ¼ãĥ":15266,"!âĢĭ":15267,"ĠìĨIJ":15268,"Ġinfluenced":15269,"иж":15270,"ĠконеÑĩно":15271,"Ġcolleges":15272,"ioni":15273,"Ġsag":15274,"Ann":15275,"olar":15276,"Ġexpressions":15277,"Ġsuits":15278,"Ġownership":15279,"eland":15280,"piece":15281,"æĢİä¹Ī":15282,"Ġdespués":15283,"Ġtel":15284,"Ġinsult":15285,"Ġêµīìŀ¥":15286,"ĠSmall":15287,"ĠFR":15288,"oka":15289,"berries":15290,"ĠAnton":15291,"елÑı":15292,"ÑıÑģ":15293,"Ġvalve":15294,"acts":15295,"Ġwoods":15296,"ண":15297,"Ġcultiv":15298,"Ġfá":15299,"ãģ¨ãģĦãģĨ":15300,"Ġcheers":15301,"Ġassumption":15302,"Ġfitness":15303,"ÃŃcul":15304,"Ġpodr":15305,"Ġweit":15306,"ĠHind":15307,"Ġdign":15308,"Ġзн":15309,"Ġsquad":15310,"Ġdestro":15311,"cere":15312,"shirt":15313,"immt":15314,"engers":15315,"Ġsä":15316,"kÅĤad":15317,"ĠÈĻ":15318,"Ġoccas":15319,"Ġì¤Ħ":15320,"Ġprocessor":15321,"ĠDM":15322,"ĠDaddy":15323,"Ġsooner":15324,"Ġstraightforward":15325,"Ġdepartments":15326,"ĠChrome":15327,"Ġworkplace":15328,"ĠPython":15329,"Ġmeng":15330,"ĠDAN":15331,"ĠIce":15332,"ĠëĪĪ":15333,"ĠGi":15334,"Ġhiring":15335,"Ġlanded":15336,"Ġdemocratic":15337,"iedz":15338,"ãģĺãĤĥ":15339,"Ġsev":15340,"icia":15341,"Ġespecial":15342,"ĠNous":15343,"Ġhät":15344,"Ġbou":15345,"pert":15346,"iesz":15347,"åijĢ":15348,"Ġvil":15349,"ÅĽli":15350,"Ġîn":15351,"Ġlosses":15352,"éķ·":15353,"Ġtoast":15354,"Ġrealm":15355,"ĠAustin":15356,"ĠInformation":15357,"Ġresume":15358,"Ġchase":15359,"Ġsalary":15360,"Ġë¶Ħ":15361,"лиÑĩ":15362,"ĠÑģлед":15363,"ĠFurther":15364,"Ġcaring":15365,"Ġvig":15366,"Ġvalor":15367,"è¿Ļ个":15368,"ĠÑĩа":15369,"Ġanalytics":15370,"Ġglobe":15371,"ĠMAN":15372,"Ġnel":15373,"ìĿ´ìķ¼":15374,"Ł¼":15375,"Ġoy":15376,"íķĺìĦ¸ìļĶ":15377,"jen":15378,"Ġtroubles":15379,"ahaha":15380,"Ġchurches":15381,"uet":15382,"Ġmeasurements":15383,"bil":15384,"ì½":15385,"ifully":15386,"инÑĥ":15387,"ĠWilson":15388,"¦´":15389,"ĠíĮĮ":15390,"Ġì°¨":15391,"Ġpúblic":15392,"ĠJerusalem":15393,"Ġnails":15394,"Ġspine":15395,"Ġhemos":15396,"Ġzn":15397,"quis":15398,"ĠLeben":15399,"Ġreferences":15400,"ITH":15401,"iper":15402,"ĠÑģебÑı":15403,"ìģ":15404,"ĠWa":15405,"state":15406,"§Ŀ":15407,"åħ±":15408,"ĠGener":15409,"Ġactress":15410,"ĠEnjoy":15411,"à¹ĥ":15412,"Ġ×Ĵ":15413,"Ġinfected":15414,"Ġshaking":15415,"Ġnick":15416,"ุ":15417,"Ġfot":15418,"Ġaccomplished":15419,"uke":15420,"Ġsheets":15421,"Ġfence":15422,"Ġnursing":15423,"Ġintroducing":15424,"Ġfeat":15425,"One":15426,"TO":15427,"Ġclubs":15428,"ĠBruce":15429,"onge":15430,"change":15431,"ĠBatman":15432,"åı°":15433,"ĠOfficer":15434,"Ġhydro":15435,"Ġsupplement":15436,"Ġcela":15437,"Ġlongest":15438,"Ġcompeting":15439,"Ġconhe":15440,"giving":15441,"Ġbrains":15442,"Ġloans":15443,"Ġwage":15444,"ĠClinton":15445,"ĠsÄĥ":15446,"aneous":15447,"Ġlord":15448,"ÑĢÑĥж":15449,"Ġquiz":15450,"Ġstiff":15451,"ĠLGB":15452,"sz":15453,"ME":15454,"mare":15455,"there":15456,"Ġnär":15457,"ĠMand":15458,"last":15459,"Ġdag":15460,"Ġhalfway":15461,"ĠBand":15462,"Ġëĭ¤ìĭľ":15463,"ĠAren":15464,"Ġile":15465,"PN":15466,"ento":15467,"Ġalgum":15468,"Ġsoccer":15469,"Ġblocked":15470,"ĠJonathan":15471,"Ġsew":15472,"ĠTestament":15473,"Ġvale":15474,"Ġbehavi":15475,"å§ĭ":15476,"Ġconna":15477,"ICH":15478,"Ġaudiences":15479,"ml":15480,"ammad":15481,"ĠìĤ´ì":15482,"IGH":15483,"Ġraces":15484,"emed":15485,"Ġmá»Ļt":15486,"ï":15487,"Ġovers":15488,"Ġdeclared":15489,"Ġsana":15490,"ĠUna":15491,"ĠÑĢе":15492,"ucks":15493,"Ġpairs":15494,"Ġange":15495,"Ne":15496,"Ġups":15497,"avy":15498,"ør":15499,"reek":15500,"Ġbehaviors":15501,"Ġreflected":15502,"Ġpriorities":15503,"Ġcondu":15504,"Ġretreat":15505,"Ġexpenses":15506,"Ġë´IJ":15507,"Ġtriple":15508,"Ġêµīìŀ¥íŀĪ":15509,"ält":15510,"Ġindigenous":15511,"Ġmining":15512,"Ġacceptable":15513,"Ġruin":15514,"CA":15515,"uine":15516,"Ġpipeline":15517,"ctic":15518,"êt":15519,"ĠвÑģего":15520,"Ġboun":15521,"ĠDigital":15522,"ĠBoom":15523,"ÑĨе":15524,"ĠлÑĥÑĩ":15525,"Ġasc":15526,"ĮĢë¡ľ":15527,"ĠGoodbye":15528,"Ġrender":15529,"enez":15530,"arre":15531,"ĠTHAT":15532,"bour":15533,"ición":15534,"ãĤŃ":15535,"Every":15536,"Ġwires":15537,"ĠParliament":15538,"nung":15539,"ateur":15540,"ĠSave":15541,"ĠPhys":15542,"Ġamor":15543,"ĠEve":15544,"Ġfright":15545,"Ġgamma":15546,"Ġmicros":15547,"mitt":15548,"ĠCode":15549,"ĠBey":15550,"pled":15551,"ĠиÑģполÑĮз":15552,"çĹ":15553,"ìĥī":15554,"她":15555,"Ġmonet":15556,"ĠJahre":15557,"Ġluxury":15558,"Ġdeaf":15559,"Ġbetray":15560,"Ġê²°":15561,"ики":15562,"Ġdefeated":15563,"Ġundert":15564,"Ġweg":15565,"Ġcooler":15566,"ãģķãĤĵ":15567,"iami":15568,"éĤĦæľī":15569,"ĠJessica":15570,"ĠJoy":15571,"Ġsophistic":15572,"ении":15573,"ðĿĺ":15574,"Ġchili":15575,"ĠType":15576,"Ġproteins":15577,"Ġpresenting":15578,"alia":15579,"ìļ¸":15580,"ĠMajor":15581,"Ġmolecule":15582,"umer":15583,"Ġcollapse":15584,"ĠAnyways":15585,"ĠMountain":15586,"anted":15587,"ãĢIJ":15588,"Ġвидео":15589,"æ°´":15590,"Aud":15591,"Ġconqu":15592,"Ġvoll":15593,"Ġknit":15594,"Ġmembr":15595,"ĠMarket":15596,"Ġdari":15597,"Ġcalculated":15598,"ги":15599,"Ġshrimp":15600,"ĠMu":15601,"ĠпÑĢоÑĤ":15602,"Ġìĺģìĥģ":15603,"Ġproductivity":15604,"Ġcognitive":15605,"ĠHeb":15606,"ictions":15607,"ê²½":15608,"Ġcré":15609,"för":15610,"Ġpraying":15611,"ashi":15612,"ĠTik":15613,"ór":15614,"wen":15615,"ÑĮÑİ":15616,"ixo":15617,"Ġ(\"":15618,"ĠÑĤел":15619,"Ġìĸ´ëĸ¤":15620,"ĠпеÑĢед":15621,"ĠDrive":15622,"ãĢij":15623,"ĠEqu":15624,"Ġequilibrium":15625,"Ġdescribes":15626,"нее":15627,"42":15628,"ĠCurrent":15629,"yy":15630,"Ġabsorb":15631,"Ġsoldier":15632,"ders":15633,"Ġtestimony":15634,"Ġdecline":15635,"ľë¡ľ":15636,"gage":15637,"Ġinspire":15638,"lapping":15639,"Ġspinning":15640,"Ġslavery":15641,"Ġfacial":15642,"Ġtraditions":15643,"ários":15644,"ĠHospital":15645,"Ġnest":15646,"ĠëĪĦ":15647,"Ġtoi":15648,"Ġfears":15649,"ìħ¨":15650,"ĠMuh":15651,"Ġgraduation":15652,"Ġimpacted":15653,"Ġaunt":15654,"ĠLets":15655,"Ġaluminum":15656,"Ġdominant":15657,"ĠDavis":15658,"ĠNavy":15659,"Ġcompt":15660,"oples":15661,"Ġestava":15662,"è¥":15663,"Ġscal":15664,"Ġpreserve":15665,"ĠOpp":15666,"Ġpractically":15667,"Ġmagnitude":15668,"Ġfitting":15669,"Ġcoordinate":15670,"Ġfurniture":15671,"ĠFamil":15672,"Ġexplosion":15673,"Ġdocumentary":15674,"ĠScript":15675,"Ġportray":15676,"mat":15677,"Ġscheduled":15678,"Ġdynamics":15679,"phy":15680,"aky":15681,"ĠUI":15682,"Che":15683,"Ġcontinuously":15684,"ĠProv":15685,"å°ij":15686,"Ñĥз":15687,"rah":15688,"Ġgerne":15689,"proof":15690,"Ġsecretary":15691,"ĠPatreon":15692,"scream":15693,"ĠKids":15694,"á»ĵi":15695,"Ġkg":15696,"Ġuncertainty":15697,"Ġкажд":15698,"Ġmitig":15699,"Ġreads":15700,"å·²":15701,"ĠRu":15702,"Ġpriest":15703,"Ġнед":15704,"Ġlimitations":15705,"Ġfloat":15706,"600":15707,"ĠToy":15708,"ĠJimmy":15709,"Ġoffensive":15710,"eni":15711,"ĠXi":15712,"Ġeyebr":15713,"ĠTurk":15714,"Ġaccidentally":15715,"Ġohne":15716,"ĠSaud":15717,"95":15718,"ĠDutch":15719,"анÑģ":15720,"ĠSeattle":15721,"Ġëĵ±":15722,"check":15723,"kÄĻ":15724,"Ġcontributions":15725,"Ġbeside":15726,"Ġquindi":15727,"Ġflew":15728,"æŶ":15729,"ذا":15730,"ĠLO":15731,"Ġwaist":15732,"ĠEV":15733,"Ġholidays":15734,"jon":15735,"Ġmisunder":15736,"Ñıн":15737,"Ġbout":15738,"Ġdimin":15739,"ẽ":15740,"ól":15741,"ĠGrace":15742,"Ġinputs":15743,"Ġdeny":15744,"Ġforming":15745,"ĠBild":15746,"Ġadequ":15747,"Ġfolk":15748,"Ġrejected":15749,"semb":15750,"Ġfrustrated":15751,"open":15752,"ĠBetter":15753,"ilon":15754,"Ġtowel":15755,"Ġdifferential":15756,"Ġsacred":15757,"Ġsail":15758,"éĩĮ":15759,"entimes":15760,"Ġgentleman":15761,"Ġiconic":15762,"Ġcomparing":15763,"Ġsagt":15764,"Ġtexts":15765,"Ġgrandma":15766,"Ġrolls":15767,"Ġcontents":15768,"ä¸į好":15769,"оÑģÑģ":15770,"Ġsuspension":15771,"roit":15772,"¦¼":15773,"Ġassez":15774,"Ġdort":15775,"ĠMath":15776,"ĠVictor":15777,"ĠJavaScript":15778,"ä¸įå°į":15779,"Ġenhan":15780,"ÅĻ":15781,"ĠBush":15782,"Ġpromotion":15783,"Ġkin":15784,"Ġmonsters":15785,"ĠColorado":15786,"Ġβ":15787,"íķ´ìļĶ":15788,"æŃ£":15789,"ifferent":15790,"Ġnaked":15791,"Ġprod":15792,"etics":15793,"ĠWoman":15794,"Ġtreatments":15795,"Ġestoy":15796,"vé":15797,"Ġlifting":15798,"Ġyapt":15799,"ĠRober":15800,"Ġì¹ľ":15801,"Ġsubstitute":15802,"aku":15803,"ridge":15804,"Ġê±°ë":15805,"Ġresponded":15806,"Ġbé":15807,"ĠEngineer":15808,"Ġtransferred":15809,"ë²":15810,"Ġhaber":15811,"oop":15812,"ĠWE":15813,"Ġvest":15814,"Ġforty":15815,"ĠDS":15816,"Ġ2004":15817,"Ġcoaching":15818,"nom":15819,"ĠBab":15820,"Ġnossa":15821,"ĠJake":15822,"Ġgy":15823,"Ġdeleg":15824,"Ġìŀł":15825,"ĠкÑĢаÑģ":15826,"Ġstandpoint":15827,"Ġdisad":15828,"Ġartwork":15829,"Ad":15830,"illo":15831,"ĠÄijược":15832,"ĠProm":15833,"ĠLib":15834,"Ġcriticism":15835,"Ġcontacts":15836,"ÑĢам":15837,"Ġachievement":15838,"ÐĶа":15839,"Ġdissol":15840,"ĠVegas":15841,"Ġstreams":15842,"ĠKent":15843,"ĠعÙĦÙī":15844,"Ġradius":15845,"Ġsucks":15846,"ĠAch":15847,"Ġfi":15848,"oust":15849,"ĠлÑİди":15850,"Ġpalette":15851,"ĠHaz":15852,"ĠAnthony":15853,"Ġtema":15854,"ĠCos":15855,"Ġsafer":15856,"αÏĤ":15857,"Ġcontrad":15858,"Ġmaior":15859,"Ġinflation":15860,"ĠSilver":15861,"Ġattending":15862,"íķľíħĮ":15863,"arto":15864,"Ġapplauding":15865,"Ġcomputing":15866,"ĠHat":15867,"æ»":15868,"know":15869,"makers":15870,"Ġconoc":15871,"Ġeducated":15872,"Ġmodified":15873,"Ġinclusion":15874,"mental":15875,"ŀIJ":15876,"isia":15877,"ĠÏĢοÏħ":15878,"Ġaun":15879,"ĠIreland":15880,"Ġkö":15881,"Ġcompliance":15882,"Ġinspiring":15883,"иÑĤелÑĮно":15884,"Ġdispos":15885,"ì°¨":15886,"Ġwip":15887,"rical":15888,"rawd":15889,"Ġtres":15890,"Ġmobil":15891,"olutions":15892,"BO":15893,"Ġbounce":15894,"Ġassumed":15895,"ĠMedical":15896,"Ġfiscal":15897,"ĠngÆ°á»Ŀi":15898,"itionally":15899,"Ġstolen":15900,"ĠBM":15901,"Ġmechanisms":15902,"εί":15903,"Ġqualified":15904,"ĠìŀIJë":15905,"ughters":15906,"ĠHIV":15907,"ĠLots":15908,"Ġservers":15909,"Ġcarr":15910,"ĠTogether":15911,"Ġattracted":15912,"Ġkr":15913,"æĪijæĺ¯":15914,"thur":15915,"inin":15916,"ĠHalf":15917,"ÈĽ":15918,"ĠPap":15919,"Ġreminded":15920,"ALL":15921,"Ġhelmet":15922,"Ġbottles":15923,"Ġprofessors":15924,"Ġseine":15925,"ÅĤÄħ":15926,"ãĥı":15927,"Ġê±°ìķ¼":15928,"Ġ×¢×ľ":15929,"fun":15930,"ĠBird":15931,"Ġfighter":15932,"ĠëĶ°ë":15933,"ĠTool":15934,"Ġtin":15935,"inois":15936,"ë¶Ħ":15937,"×Ļף":15938,"ĠCAR":15939,"åIJį":15940,"irsty":15941,"Ġoutdoor":15942,"ĠNS":15943,"ãħİ":15944,"ffen":15945,"Ġlud":15946,"Hello":15947,"Ġroller":15948,"iele":15949,"ĠPoland":15950,"Ġapa":15951,"exp":15952,"Ġcertificate":15953,"ĠTown":15954,"аÑİÑĤÑģÑı":15955,"ilde":15956,"Ġdetermin":15957,"PR":15958,"Ġfreeze":15959,"Ġmainstream":15960,"Ġobjectives":15961,"blo":15962,"Ġtakie":15963,"åĵĪåĵĪ":15964,"Ġë°Ķë¡ľ":15965,"elet":15966,"ĠIV":15967,"ĠFast":15968,"Ġdere":15969,"emp":15970,"ĠDra":15971,"ĠìŀĪìĹĪ":15972,"Ġdiscrimination":15973,"Ġείναι":15974,"necess":15975,"æ®":15976,"ıģı":15977,"Ġposting":15978,"wiÅĽcie":15979,"Ġlub":15980,"Ġolive":15981,"Ġrim":15982,"Ġmodeling":15983,"Ġaño":15984,"ĠPakistan":15985,"Ġoverl":15986,"Ġinflam":15987,"NE":15988,"ìĹIJê²Į":15989,"Ġattended":15990,"Ġdealt":15991,"ĠAlt":15992,"ĠLincoln":15993,"Ġawake":15994,"Ġfilters":15995,"ĠWithin":15996,"czywiÅĽcie":15997,"Ġsû":15998,"ĠJohnny":15999,"Ġintegrity":16000,"Ġisolation":16001,"ĠEasy":16002,"ĠпÑĢин":16003,"ĠAlice":16004,"Ġsmiling":16005,"enix":16006,",...":16007,"ζ":16008,"Ġbegun":16009,"Ġjewel":16010,"Ġconventional":16011,"Ġstatist":16012,"Ġhanded":16013,"Ġirre":16014,"Ġprohib":16015,"Ġsatellite":16016,"é¦Ļ":16017,"ĠIndust":16018,"Ġtraged":16019,"Ġtrava":16020,"Ġihm":16021,"Ġcruel":16022,"ĠAgora":16023,"ĠDoc":16024,"Ġzones":16025,"Ġmall":16026,"Ġtray":16027,"×ķ׳":16028,"Ġirrit":16029,"Ġkans":16030,"ĠBeat":16031,"udge":16032,"ielle":16033,"Ġtrusted":16034,"Ġbikes":16035,"ĠÑĥп":16036,"ĠMember":16037,"wick":16038,"Ġcreators":16039,"Ġheritage":16040,"indistinct":16041,"Ġresur":16042,"ennen":16043,"Come":16044,"Ġfiring":16045,"ĠBueno":16046,"ĠТо":16047,"ikan":16048,"ettes":16049,"Ġkes":16050,"Ġtrips":16051,"Ġdivorce":16052,"ĠKl":16053,"Ġconsol":16054,"keep":16055,"기ê°Ģ":16056,"ĠReport":16057,"Ġhosting":16058,"Ġdiamond":16059,"Ġcomplic":16060,"Ġhelicop":16061,"Ġdepuis":16062,"ds":16063,"ĠChan":16064,"Ñıл":16065,"Ġscissors":16066,"ilation":16067,"Ġproportion":16068,"ERE":16069,"ĠÙĪاÙĦ":16070,"inta":16071,"Ġmuchas":16072,"uation":16073,"itis":16074,"æĬĬ":16075,"ÑıÑī":16076,"Ġniin":16077,"Ġemphasize":16078,"uela":16079,"Ġproducers":16080,"Ġrze":16081,"änder":16082,"ETH":16083,"æº":16084,"Ġconstitu":16085,"åĽ½":16086,"Ġperformances":16087,"istle":16088,"gov":16089,"ĠLiter":16090,"Ġincorporate":16091,"Ġeducate":16092,"ĠNin":16093,"쪽":16094,"ÙĩÙħ":16095,"eleration":16096,"×ķ×ij":16097,"ĠyaÅŁ":16098,"orous":16099,"ĠCas":16100,"Ġgrants":16101,"ëĬ¥":16102,"amel":16103,"Ġê·¸ëłĩê²Į":16104,"ĠEste":16105,"ÑħодиÑĤ":16106,"ĠпоÑģле":16107,"Ġgent":16108,"Ġfocuses":16109,"alities":16110,"ĠRh":16111,"ë³´":16112,"æ°ij":16113,"ĠDance":16114,"rr":16115,"Ġamer":16116,"Ġutilize":16117,"ĠlÃŃ":16118,"ĠAmong":16119,"Ġpregnancy":16120,"Ġloops":16121,"алоÑģÑĮ":16122,"ĠMoh":16123,"Ġcatching":16124,"Ġglob":16125,"Ġajud":16126,"Ġ[?":16127,"ĠAnal":16128,"looking":16129,"Ġsurfaces":16130,"Ġprogressive":16131,"Ġviral":16132,"08":16133,"ξ":16134,"KA":16135,"Ġży":16136,"Ġpicks":16137,"annon":16138,"Ġbulk":16139,"ĠRoss":16140,"Ġdescribing":16141,"ĠGel":16142,"Ġlocally":16143,"Ġendless":16144,"Ġmassage":16145,"Ġcleaned":16146,"Ġtraveled":16147,"енÑĭ":16148,"Ġsentiment":16149,"igma":16150,"ĠNas":16151,"Ġchemicals":16152,"Ġrighteous":16153,"ĠMagic":16154,"Ġrelates":16155,"Ġtrucks":16156,"Ġ1960":16157,"åĪ¥":16158,"Ġappet":16159,"Ġsnacks":16160,"ĠSummer":16161,"Ġyüz":16162,"Ġpris":16163,"ĠMexican":16164,"Ġtransparen":16165,"Ġminority":16166,"Ġverte":16167,"Ġlassen":16168,"46":16169,"лек":16170,"ép":16171,"ĠÑĦилÑĮ":16172,"Ġiyi":16173,"Ġspan":16174,"íķĺì§Ģ":16175,"Ġindicated":16176,"quar":16177,"Ġscholarship":16178,"ĠLGBT":16179,"Ġhistorically":16180,"óÅĤ":16181,"Ġminist":16182,"Ġpenet":16183,"ĠRap":16184,"Ġconservation":16185,"缴":16186,"ĠHoney":16187,"ĠBei":16188,"idel":16189,"Ġresponsibilities":16190,"Ġmessy":16191,"ĠExcept":16192,"ORE":16193,"Ġinitiatives":16194,"Ġjunior":16195,"Ġdesigners":16196,"Ġexploration":16197,"Ġsponsor":16198,"Ġmobility":16199,"Ġinteg":16200,"lando":16201,"Ġbark":16202,"Ġindicates":16203,"à¶":16204,"Ġemployer":16205,"å®ī":16206,"Ġcousin":16207,"Ġboiling":16208,"Ġchrom":16209,"Ġçal":16210,"Ġperpet":16211,"Ġcontained":16212,"Ġparks":16213,"Ы":16214,"ĠEngineering":16215,"Please":16216,"ĠStarting":16217,"hero":16218,"Ġlawyers":16219,"西":16220,"Ġzd":16221,"Ġfranchise":16222,"rage":16223,"Ġintuit":16224,"ĠGL":16225,"reach":16226,"ĠElle":16227,"ĠnhÆ°":16228,"ĠNord":16229,"Ġbean":16230,"07":16231,"Ġpleasant":16232,"å½ĵ":16233,"viron":16234,"Ġgradient":16235,"zus":16236,"ĠEM":16237,"Ġessay":16238,"ìĹIJìļĶ":16239,"ến":16240,"nu":16241,"ừ":16242,"ĠÃīs":16243,"Ġdenomin":16244,"ĠGirls":16245,"Ġpersonnes":16246,"ĠاÙĦØ£":16247,"bild":16248,"ĠStat":16249,"Ġcompliment":16250,"ĠKate":16251,"Ġoptimal":16252,"Ġhid":16253,"دÙĬ":16254,"Ġquicker":16255,"wall":16256,"En":16257,"INE":16258,"???":16259,"ì²´":16260,"ĠAction":16261,"åŁ":16262,"Ġpenalty":16263,"ĠKaz":16264,"'?":16265,"Ġcried":16266,"Ġcanvas":16267,"fte":16268,"Ġexclud":16269,"¸ë¡ľ":16270,"Ġemphasis":16271,"Ġenzy":16272,"ĠHou":16273,"Ġoverseas":16274,"ÃŃamos":16275,"師":16276,"öglich":16277,"Ġheadphones":16278,"cn":16279,"ĠAge":16280,"Ġakan":16281,"Ġcharacteristic":16282,"íķĺë©´":16283,"gets":16284,"Ġë¶Ī":16285,"Ġrival":16286,"Ġborders":16287,"emente":16288,"emás":16289,"Ġyol":16290,"Ġcompe":16291,"enders":16292,"ından":16293,"Ġmöglich":16294,"Ġbubbles":16295,"natural":16296,"Ġarmed":16297,"Ġelabor":16298,"ĠìĿ´ë²Ī":16299,"Ġwashed":16300,"οÏħμε":16301,"è«ĭ":16302,"Ġflavors":16303,"Ġexiste":16304,"Ġprest":16305,"ĠThema":16306,"опÑĢоÑģ":16307,"eron":16308,"UE":16309,"eri":16310,"Ġconcer":16311,"Ġaixò":16312,"åħ©":16313,"Ġprotective":16314,"ĠзнаÑİ":16315,"ĠëĤł":16316,"ĠIII":16317,"Ġmeer":16318,"ĠShop":16319,"lli":16320,"ĠOrder":16321,"ĠMY":16322,"ĠGhost":16323,"ãĤĤãģĨ":16324,"adel":16325,"Ġstole":16326,"Ġreleasing":16327,"ĠComment":16328,"Ġtrains":16329,"ëªħ":16330,"Ġwissen":16331,"ensed":16332,"Ġdescend":16333,"Ġfier":16334,"Ġradi":16335,"Ġpersu":16336,"ç¢":16337,"Ġмн":16338,"ĠDest":16339,"Ġworries":16340,"itet":16341,"bas":16342,"Ġstab":16343,"name":16344,"oric":16345,"ĠClose":16346,"Ġalumni":16347,"ĠSelf":16348,"ffe":16349,"itating":16350,"atherine":16351,"ĠRights":16352,"Ġellos":16353,"Ġwarrant":16354,"Ġnerve":16355,"Ġvegetable":16356,"ĠTeil":16357,"Ġê°ĻìĿ´":16358,"RY":16359,"Ġsustainability":16360,"Ġsteht":16361,"Ġbrid":16362,"adaÅŁ":16363,"Ġtv":16364,"Ġduration":16365,"Ġpessoa":16366,"Ġmetrics":16367,"Ġadam":16368,"cas":16369,"аÑĢи":16370,"Ġevident":16371,"Ġdisplayed":16372,"ائ":16373,"Ġreck":16374,"ĠBuddha":16375,"Ġdele":16376,"ĠDiego":16377,"osph":16378,"Ġbla":16379,"ĠMik":16380,"ulator":16381,"Ġ2001":16382,"Ġpromoting":16383,"ych":16384,"ĠEX":16385,"Ġlastly":16386,"Ġoutline":16387,"Ġspirits":16388,"Ġveux":16389,"Ġsubtract":16390,"ĠÅŁimdi":16391,"Ġpins":16392,"Ġburger":16393,"Ġmolto":16394,"ĠhabÃŃa":16395,"Ġë°ĺ":16396,"igu":16397,"erst":16398,"Ġnen":16399,"Ġbacon":16400,"itious":16401,"Ġcarries":16402,"Ġpromises":16403,"nde":16404,"ĠLeft":16405,"ĠLim":16406,"æ£":16407,"Ġ44":16408,"Ġcareers":16409,"Ġ주ë":16410,"Ġspeeds":16411,"qué":16412,"mad":16413,"market":16414,"isme":16415,"Ġ2003":16416,"Ġrecess":16417,"ĠJUD":16418,"Ġracist":16419,"ĠSchl":16420,"Ġparler":16421,"Ġotros":16422,"ishes":16423,"Ġconverted":16424,"aaaa":16425,"ании":16426,"ĠArk":16427,"ĠChance":16428,"Ġelementary":16429,"εν":16430,"inks":16431,"Interviewer":16432,"Ġfreely":16433,"alah":16434,"Ġëĭ¤ë¥¸":16435,"Ġrequested":16436,"Ġtorque":16437,"noÅĽci":16438,"oured":16439,"ĠStaff":16440,"Ġstain":16441,"ĠAlan":16442,"Ġvere":16443,"ĠWinter":16444,"Ġdefect":16445,"iedy":16446,"Ġbeats":16447,"Ġhá":16448,"umn":16449,"oons":16450,"itudes":16451,"Ġseit":16452,"oly":16453,"Ġreserv":16454,"Ġextr":16455,"Ġphysician":16456,"visor":16457,"Ġhandful":16458,"ĠNations":16459,"Ġì¢ĭìĿĢ":16460,"uccess":16461,"Ġupstairs":16462,"ĠSquare":16463,"Ġhein":16464,"ĠSeason":16465,"olis":16466,"Ġprince":16467,"Ġdefensive":16468,"ç½":16469,"ĠмеÑģÑĤ":16470,"Ñĸй":16471,"ĠاÙĨ":16472,"umble":16473,"ê¹ĮìļĶ":16474,"Ġassass":16475,"Ġcircular":16476,"Ġqualities":16477,"Ġhmm":16478,"Ġblown":16479,"ĠLiz":16480,"ĠKur":16481,"ĠSA":16482,"Ġfindings":16483,"Ġcolours":16484,"Ġdelle":16485,"ĠIR":16486,"ĠAth":16487,"ĠDub":16488,"ĠOx":16489,"ĠØ®":16490,"Ġpockets":16491,"Ġgrill":16492,"Ġswitching":16493,"Ġpreferred":16494,"ĠWales":16495,"Ġexemplo":16496,"Ġchopped":16497,"Ġvaccination":16498,"Ġneuro":16499,"Ġspecify":16500,"ivos":16501,"Ġserá":16502,"Ġzie":16503,"Ġà®®":16504,"Ġresulting":16505,"ĠUgh":16506,"Ġmessed":16507,"CD":16508,"Ġpaar":16509,"Ġcomer":16510,"Ġcouch":16511,"ĠFestival":16512,"Ġ49":16513,"vous":16514,"zens":16515,"種":16516,"ĠKennedy":16517,"ĠTs":16518,"Ġë³´ìĹ":16519,"Ġdemonstration":16520,"Ġunto":16521,"Ġfrustrating":16522,"Ġlaboratory":16523,"Ġegy":16524,"Ġbeautifully":16525,"Ġìŀ¬ë":16526,"Ġalgu":16527,"Ġöyle":16528,"ä½łçľĭ":16529,"ĠPH":16530,"Ġfortune":16531,"Ġcleaner":16532,"ĠRobin":16533,"Ġsaus":16534,"ĠGeld":16535,"Ġkat":16536,"obs":16537,"Ġolur":16538,"Ġmatt":16539,"Ġquesta":16540,"Ġsuggestion":16541,"encer":16542,"оÑģÑĤ":16543,"Ġradar":16544,"Ġìŀ¡":16545,"isha":16546,"ந":16547,"ãĤĵãģª":16548,"jes":16549,"Ġveel":16550,"ìĤ°":16551,"Ġauthors":16552,"ãĢİ":16553,"plan":16554,"Ġcollaborative":16555,"Ġinstinct":16556,"Ġfarming":16557,"auge":16558,"Edu":16559,"Ġmembership":16560,"Ġsimultaneously":16561,"Ġbake":16562,"Ġkä":16563,"Ġlectures":16564,"ÑĩеÑģ":16565,"Ġprendre":16566,"Ġcollaps":16567,"ĠSaya":16568,"ĠFut":16569,"Ġyog":16570,"ĠRather":16571,"رÙĬ":16572,"Ġcamps":16573,"олод":16574,"Ġsimulation":16575,"ĠMak":16576,"Laughs":16577,"Ġgrey":16578,"Ġsentences":16579,"yen":16580,"ĠUnless":16581,"Je":16582,"ĠSatan":16583,"ĠÑĤакже":16584,"ĠNA":16585,"Ġbron":16586,"Ġ?]":16587,"Ġsouls":16588,"Ġlightning":16589,"Ġimagined":16590,"Ġczyli":16591,"psilon":16592,"etta":16593,"Ġbelieving":16594,"Ġstrongest":16595,"ĠCON":16596,"Ġquelques":16597,"Ġimmigrants":16598,"Ġwallet":16599,"éĢĻæĺ¯":16600,"ĠJersey":16601,"Ġimplications":16602,"Ġforb":16603,"ãĢı":16604,"Ġunbelievable":16605,"اء":16606,"Ġoperational":16607,"üs":16608,"ĠGM":16609,"Ġê·¸ëŁ°ëį°":16610,"Ġgracias":16611,"Ġentend":16612,"ĠRegard":16613,"rob":16614,"ĠÑĤеÑħ":16615,"èı":16616,"ĠRevolution":16617,"Ġwaar":16618,"ĠBiz":16619,"theless":16620,"Ġsponsored":16621,"quier":16622,"ĠìĿ¼ë":16623,"Ġtek":16624,"ĠëIJł":16625,"igkeit":16626,"ĠLuck":16627,"ĠCertainly":16628,"Ġtoll":16629,"ĠниÑĩего":16630,"ĠMoney":16631,"ĠÑģÑĤоÑĢ":16632,"ĠDouble":16633,"ĠWolf":16634,"Ġchunk":16635,"άν":16636,"ités":16637,"oning":16638,"Mar":16639,"Ġgrandes":16640,"Ġcollections":16641,"ĠEuropa":16642,"ĠаÑĢ":16643,"ĠâĢĭâĢĭâĢĭ":16644,"Ġê·¸ëŁ¬ë©´":16645,"ĠобÑĬ":16646,"Ġãģª":16647,"Ġìĭľê°Ħ":16648,"ĠCustom":16649,"Ġì²ĺ":16650,"ÑĸлÑĮ":16651,"Ġindividually":16652,"íĹ":16653,"Ġdozen":16654,"Ġowe":16655,"ĠVictoria":16656,"åı¯èĥ½":16657,"Ġbeet":16658,"urb":16659,"Ġanalog":16660,"ição":16661,"Ĥľ":16662,"soever":16663,"Ġmodo":16664,"Ġsubscribed":16665,"ìŀ¬":16666,"Ġentities":16667,"çīĩ":16668,"Ġcloset":16669,"Ġresponding":16670,"Ġprinter":16671,"ĠStephan":16672,"ĠbyÅĤ":16673,"ĠDom":16674,"ĠFern":16675,"ĠPier":16676,"ĠwiÄĻc":16677,"Ġhence":16678,"Ġmodules":16679,"ãĥ¬":16680,"ĠëĶ±":16681,"ĠDanny":16682,"ĠÑģебе":16683,"Ġvad":16684,"ĠìĹĦ":16685,"Ġsous":16686,"Ġsphere":16687,"BY":16688,"ĠPed":16689,"igned":16690,"Ġwheat":16691,"Ġunders":16692,"Ġevolve":16693,"Ġdeclar":16694,"Ġlightly":16695,"Ġidentifying":16696,"æĦıæĢĿ":16697,"Ġlegendary":16698,"Ġgenuine":16699,"Ġgrind":16700,"ĠUne":16701,"geben":16702,"Ġbicy":16703,"Ġjumps":16704,"Ġprovince":16705,"ziÄĻ":16706,"Ġ×IJ׳×Ļ":16707,"Ġhoc":16708,"Ġбл":16709,"ĠGrad":16710,"Ġrevenge":16711,"ĠاÙĦت":16712,"ooh":16713,"æĭľ":16714,"аÑĨии":16715,"å¹³":16716,"Ġelectro":16717,"ĠëIJIJ":16718,"ãģ§ãģ¯":16719,"Ġfals":16720,"riel":16721,"oker":16722,"ĠExcellent":16723,"ĠMorgan":16724,"Ġbrick":16725,"Ġsubstantial":16726,"Ġpollution":16727,"ĠTür":16728,"ĠEvet":16729,"Ġlung":16730,"ãģĸ":16731,"×Ļש":16732,"ommes":16733,"Ġrealizing":16734,"Ġhumble":16735,"ĠLock":16736,"Ġbod":16737,"Ġìĸ¸":16738,"Ġpeers":16739,"uzz":16740,"Ġembedded":16741,"Ġclaro":16742,"Ġaggreg":16743,"Ġemployers":16744,"ĠRaj":16745,"Ġãģ¨":16746,"ĠYi":16747,"Ġjeu":16748,"aters":16749,"Ġstrikes":16750,"nos":16751,"autres":16752,"dr":16753,"opher":16754,"ĠApparently":16755,"íĺĦ":16756,"Ġinfant":16757,"اب":16758,"ÑĤÑĭ":16759,"íĽ":16760,"Ú¯":16761,"Ġredes":16762,"acaģım":16763,"ĠDAVID":16764,"ĠChicken":16765,"Ġperspectives":16766,"Ġviewer":16767,"Ġshar":16768,"ĠпÑĢоиз":16769,"ligt":16770,"eros":16771,"itable":16772,"илоÑģÑĮ":16773,"ĠdifÃŃ":16774,"´ëį°":16775,"Ġretired":16776,"Ġthats":16777,"zenie":16778,"beiten":16779,"Ġmycket":16780,"ĠRab":16781,"Ġinflamm":16782,"ì°®":16783,"Ġdum":16784,"Ġdaddy":16785,"æľŁ":16786,"Ġimmers":16787,"Ġplaylist":16788,"à¯Ĩ":16789,"Ġtraum":16790,"Ġrefuse":16791,"step":16792,"à®ļ":16793,"cup":16794,"Ġpops":16795,"rimin":16796,"ayım":16797,"Ġald":16798,"Ġunnecess":16799,"Ġdah":16800,"ĠIrish":16801,"Ġcompr":16802,"laÅŁ":16803,"TP":16804,"Ġtranslated":16805,"Sc":16806,"ceÄŁim":16807,"´IJ":16808,"Ġdrei":16809,"ĠлÑİдей":16810,"Ġquiero":16811,"Ġhele":16812,"zlich":16813,"Ġapples":16814,"Ġdistricts":16815,"Ġcredits":16816,"Ġasp":16817,"Ġëĭ¨":16818,"oral":16819,"å½±":16820,"Ġstepping":16821,"ĠVa":16822,"Ġgains":16823,"65":16824,"Ġnuestra":16825,"eday":16826,"assador":16827,"ĠLind":16828,"Ġcrops":16829,"ciendo":16830,"igue":16831,"Ġbana":16832,"Am":16833,"Ġpent":16834,"Ġaddiction":16835,"Ġpackaging":16836,"äd":16837,"ª¨":16838,"Ġperquè":16839,"Ġcampaigns":16840,"Ġsteep":16841,"Ġneue":16842,"Ġembarrassed":16843,"Ġdistinction":16844,"itzer":16845,"åijĬ":16846,"Ġregistration":16847,"Ġllam":16848,"ĠAlmighty":16849,"liest":16850,"Ġuz":16851,"nak":16852,"çº":16853,"Ġteraz":16854,"iamente":16855,"Ġtransactions":16856,"Ġcôt":16857,"Ġswitched":16858,"Ġcombo":16859,"Ġprayers":16860,"Ġinternship":16861,"Ġaddresses":16862,"Ġcharity":16863,"ĠWOO":16864,"Ġbait":16865,"è¿ĩ":16866,"Ġ�":16867,"Ġfica":16868,"ĠTyler":16869,"aru":16870,"Ġatoms":16871,"ĠLevel":16872,"ĠпоÑĤом":16873,"Ġfame":16874,"ulk":16875,"Ġteaches":16876,"Ġrebuild":16877,"едÑĮ":16878,"ĠIndonesia":16879,"ushi":16880,"ĠShort":16881,"Ġensuring":16882,"fs":16883,"ele":16884,"Ġmarginal":16885,"Ġconclude":16886,"amt":16887,"Ġverify":16888,"ĠMcDonald":16889,"Ġskal":16890,"Ġreconst":16891,"ĠMann":16892,"Ġbasement":16893,"Ġtransformed":16894,"Ġoccasionally":16895,"zone":16896,"ĠDans":16897,"Ġкакой":16898,"Ġdiagnosed":16899,"ĠÏĦα":16900,"Ġcommands":16901,"Ġpresidential":16902,"Ġabb":16903,"Ġbracket":16904,"ĠLem":16905,"Ã¥ng":16906,"Ġfavorites":16907,"Ġrevol":16908,"ĠíĬ¹":16909,"Ġharass":16910,"éħ":16911,"Ġcleans":16912,"ständ":16913,"Ġknocked":16914,"Ġpeoples":16915,"Ġmusicians":16916,"Ġmutual":16917,"ĠCold":16918,"88":16919,"zej":16920,"atie":16921,"ĠHonor":16922,"Ġobsessed":16923,"ĠMUSIC":16924,"ĠBreak":16925,"úng":16926,"Ġmodify":16927,"Ġsöyle":16928,"Ġ×ŀ×Ķ":16929,"ĠOnline":16930,"fo":16931,"ĠMiller":16932,"Ġliking":16933,"Ġinhab":16934,"Ġgratitude":16935,"ĠJournal":16936,"arness":16937,"John":16938,"ĠGit":16939,"åīĽ":16940,"Ġsincere":16941,"ĠSci":16942,"ĠEli":16943,"Ġsymbols":16944,"Ġmanually":16945,"εÏĤ":16946,"ĠвÑĸд":16947,"ĠFat":16948,"Ġlabels":16949,"Ġsophisticated":16950,"umps":16951,"Ġreleases":16952,"Ġ47":16953,"ĠOM":16954,"ê°Ģë":16955,"ĠBien":16956,"ĠRef":16957,"è¨ĺ":16958,"ĠSta":16959,"ĠEgg":16960,"Ġindicator":16961,"pson":16962,"Ġnasıl":16963,"Right":16964,"Ġconvey":16965,"Ġknot":16966,"Ġconnects":16967,"ulas":16968,"Ġpreced":16969,"Ġinequality":16970,"amiento":16971,"Ġreply":16972,"OY":16973,"Ġdismiss":16974,"ĠëIJľ":16975,"çĦ¡":16976,"ĠÑħоÑĢоÑĪо":16977,"Ġméd":16978,"Ġrandomly":16979,"ĠOnt":16980,"uard":16981,"Ġpulls":16982,"ĠÑĤепеÑĢÑĮ":16983,"ĠNeed":16984,"ĠSoft":16985,"Ġstrengths":16986,"Ġgoed":16987,"umen":16988,"æŃ»":16989,"Ġíݸ":16990,"Ġдоб":16991,"Ġclarity":16992,"ĠAi":16993,"Ġballoon":16994,"ĠPand":16995,"ĠìķĦëĭ":16996,"Ġshiny":16997,"Ġsmallest":16998,"onia":16999,"hill":17000,"oting":17001,"Ġeing":17002,"Ġmerely":17003,"Ġseus":17004,"Ġнеп":17005,"ĠíĨµ":17006,"Ġguides":17007,"Ġspecialist":17008,"Ġsteak":17009,"ãĤĪãģĨ":17010,"Ġmigration":17011,"quele":17012,"Ġruined":17013,"Ġpupp":17014,"女":17015,"Ġkend":17016,"angan":17017,"Ġpalm":17018,"Ġunfair":17019,"Ġzm":17020,"ĠDV":17021,"chester":17022,"иÑİ":17023,"Ġooh":17024,"erg":17025,"ATH":17026,"°©":17027,"åĵª":17028,"rison":17029,"Ġinvolving":17030,"Ġpartly":17031,"ançais":17032,"Ġvow":17033,"Ġprominent":17034,"Ġcryst":17035,"iba":17036,"Ġdeserves":17037,"Ġovert":17038,"Ġsensit":17039,"ĠWhe":17040,"Ġtighten":17041,"Ġintimid":17042,"Ġaliment":17043,"will":17044,"Ġstrengthen":17045,"ĠTan":17046,"åıĪ":17047,"ãģĹãģ¾ãģĻ":17048,"oni":17049,"ĠMun":17050,"Ġproph":17051,"Ġrehears":17052,"ĠKle":17053,"Ġveces":17054,"Ġwondered":17055,"oki":17056,"Ġsenses":17057,"´ìĭ":17058,"Æ°á»Ľ":17059,"ĠÈĻi":17060,"Ġmuchos":17061,"Ġwatches":17062,"ortunate":17063,"ĠJuan":17064,"ìŀĸìķĦ":17065,"ÑĢе":17066,"ei":17067,"ionen":17068,"Ġexperimental":17069,"Ġdaughters":17070,"à¸Ľ":17071,"Ġmentally":17072,"becca":17073,"aware":17074,"ìĦĿ":17075,"Ġwhatsoever":17076,"Ġenables":17077,"ĠLow":17078,"oid":17079,"à¸Ĭ":17080,"ód":17081,"غ":17082,"Ġconstructed":17083,"ĠLadies":17084,"Ġaccused":17085,"Ġан":17086,"Dan":17087,"Ġspawn":17088,"Ġcontainers":17089,"Ġartistic":17090,"ıp":17091,"Ġdiscl":17092,"Ġautres":17093,"inas":17094,"ĠNation":17095,"Ġnag":17096,"bean":17097,"whe":17098,"ľëıĦ":17099,"ĠSeoul":17100,"Ġíı¬":17101,"ĠNich":17102,"Ġcomplement":17103,"Ġinterven":17104,"ĠModel":17105,"ĠOrange":17106,"namon":17107,"Ġcalculation":17108,"see":17109,"Ġustedes":17110,"Ġleb":17111,"Ġdoct":17112,"Ñĸн":17113,"Ġfoster":17114,"Ġelastic":17115,"ĠAhh":17116,"Ġace":17117,"ĠPink":17118,"ĠJeg":17119,"Ġdeer":17120,"ãģĹãģĦ":17121,"sis":17122,"Ġjako":17123,"ĠEmma":17124,"ÑģÑĤвенно":17125,"Ġportrait":17126,"Ġmaker":17127,"Ġaument":17128,"ÑĢоб":17129,"Ġairplane":17130,"Ġtransparency":17131,"Ġadjustment":17132,"ĠCDC":17133,"çon":17134,"Ġuploaded":17135,"ĠдейÑģÑĤв":17136,"ĠгоÑĤов":17137,"Ġiter":17138,"Ġcurse":17139,"ôn":17140,"merce":17141,"aran":17142,"Ġleak":17143,"çµIJ":17144,"Ġabsence":17145,"Ñģкий":17146,"Ġreaders":17147,"aler":17148,"Ġbeneath":17149,"ango":17150,"hetic":17151,"Ġfinns":17152,"Ġpoop":17153,"Ġduplic":17154,"Hi":17155,"igs":17156,"ologically":17157,"opp":17158,"Ġdizer":17159,"ĠAllen":17160,"Ġgli":17161,"Ġacceleration":17162,"Ġvitamin":17163,"ãĥŃ":17164,"vä":17165,"ĠAccess":17166,"à®Ļ":17167,"rás":17168,"Ġappreciated":17169,"Ġnah":17170,"Ġposter":17171,"Ġtale":17172,"Ġhighlighted":17173,"æĸĩ":17174,"żeli":17175,"Ġblockchain":17176,"Ġmicrow":17177,"Ġcinema":17178,"ĠChang":17179,"ĠSearch":17180,"usters":17181,"ĠZero":17182,"ĠDivision":17183,"ÑĢаÑģ":17184,"Ġscare":17185,"Ġjelly":17186,"ĠAdministration":17187,"SO":17188,"Ġlined":17189,"Ġê°Ħ":17190,"Ġgeben":17191,"Ġsoda":17192,"Ġwinners":17193,"³¼":17194,"ÙĴ":17195,"ĠAmb":17196,"åķıé¡Į":17197,"åĶ":17198,"Ġpeg":17199,"å·±":17200,"43":17201,"Ġraus":17202,"Ġrewards":17203,"Ġinclus":17204,"Ġhighway":17205,"Ġhah":17206,"Ġmultiplied":17207,"Ġsẽ":17208,"Ġdisciples":17209,"Ġning":17210,"Ġdressing":17211,"Ġattributes":17212,"ĠMosc":17213,"ĠGreece":17214,"Ġsek":17215,"ĠLearn":17216,"Ġjus":17217,"rendre":17218,"Ġpersonne":17219,"plete":17220,"Ġplacing":17221,"Ġluego":17222,"illance":17223,"ĠобÑī":17224,"Ġprovision":17225,"Ġlion":17226,"tra":17227,"boards":17228,"Ġbehaviour":17229,"hey":17230,"Ġsubscription":17231,"Ġprotagon":17232,"ãĥ£":17233,"Ġvara":17234,"ĠÅŁu":17235,"Ġhaha":17236,"Ġteaspoon":17237,"æŁ":17238,"avoir":17239,"Ġcrypto":17240,"ĠÑģÑĤаÑĢ":17241,"ĠStore":17242,"abs":17243,"ĠStudents":17244,"Ġlaund":17245,"into":17246,"Ġapproached":17247,"°ľ":17248,"ÑĥÑİÑī":17249,"ĠLabor":17250,"otes":17251,"iatric":17252,"ĠgroÃŁ":17253,"utive":17254,"Ġид":17255,"ĠGib":17256,"Ġplacement":17257,"ĠdifÃŃcil":17258,"Ġfrog":17259,"ĠвÑģеÑħ":17260,"ĠJr":17261,"azed":17262,"ÑĥÑī":17263,"Ġê¼":17264,"frame":17265,"аеÑĪÑĮ":17266,"Ġlockdown":17267,"åij³":17268,"Ġmedi":17269,"Ġ×Ķ×ŀ×":17270,"ений":17271,"emale":17272,"ì¢ħ":17273,"ateral":17274,"Ġdistant":17275,"Ġbears":17276,"Ġjournalist":17277,"解":17278,"ĠMarshall":17279,"ĠIhnen":17280,"uetooth":17281,"bag":17282,"ĠÄijã":17283,"ĠHighness":17284,"Ġì°į":17285,"ика":17286,"ĠWu":17287,"ĠFran":17288,"Ġpeng":17289,"Ġfon":17290,"Ġhypothesis":17291,"ĠÑĢÑĥ":17292,"Ġly":17293,"×ļ":17294,"ìĽĶ":17295,"ĠRadio":17296,"à¸ŀ":17297,"Dav":17298,"Ġembarrassing":17299,"ĠìŀĪìĸ´":17300,"Ġcasting":17301,"Ġcage":17302,"ĠPsych":17303,"ĠìĿ¼ëĭ¨":17304,"Ġž":17305,"imb":17306,"Ġdirectors":17307,"SH":17308,"ĠÏĦην":17309,"á»ģu":17310,"ĠkonuÅŁ":17311,"Ġoptional":17312,"quarters":17313,"iker":17314,"ĠSant":17315,"Ġverses":17316,"ë¶Ģ":17317,"Ġolar":17318,"ĠÏĩ":17319,"ãĥķ":17320,"Ġγια":17321,"ĠImm":17322,"Ġcontroversial":17323,"Ġersten":17324,"Ġrecip":17325,"ĠChristianity":17326,"Ġê´ľ":17327,"ordon":17328,"×ķש":17329,"Ġslash":17330,"ĠPf":17331,"ÑĥдÑĮ":17332,"×ķ×Ŀ":17333,"ĠPerry":17334,"Ġmamy":17335,"Ġbackgrounds":17336,"Ġà®İன":17337,"Ġpendant":17338,"ĠColumbia":17339,"Ġinverse":17340,"ĠÑĩеÑĢез":17341,"Ġsv":17342,"Ġdigging":17343,"41":17344,"chem":17345,"Ġnavigation":17346,"ĠShin":17347,"ĠFront":17348,"PD":17349,"Ġbearing":17350,"ĠWasser":17351,"Ġwax":17352,"ĠCHRIS":17353,"ching":17354,"Ġpressed":17355,"El":17356,"ĠDal":17357,"onsin":17358,"Ġbinding":17359,"Ñģкой":17360,"poons":17361,"Ġmock":17362,"arest":17363,"кÑĢа":17364,"MM":17365,"Ġcorrupt":17366,"storm":17367,"Ġrefres":17368,"ĠCoach":17369,"llä":17370,"ĠTHIS":17371,"Ġparag":17372,"Ġìĵ°":17373,"pool":17374,"Ġbillions":17375,"Ġê¹Ģ":17376,"group":17377,"Ġwelcoming":17378,"cellence":17379,"ĠDuke":17380,"긴":17381,"Ġprimera":17382,"ìł¸":17383,"Ġpond":17384,"Ġstatue":17385,"Ġ구ë":17386,"Ġhatch":17387,"Ġinstrumental":17388,"Ġresidential":17389,"커":17390,"Ġaccepting":17391,"oshi":17392,"date":17393,"ĠìĶ¨":17394,"Ġplanted":17395,"Ġjoking":17396,"ĠìĦľ":17397,"Ġhated":17398,"ĠÑĢаÑģÑģк":17399,"Ġslept":17400,"Ġpackages":17401,"Ġislands":17402,"esen":17403,"ģı":17404,"Ġdiagon":17405,"ĠOsc":17406,"Ġmesh":17407,"Ġscales":17408,"arity":17409,"ĠDefense":17410,"ãģ¡ãĤĩ":17411,"ĠLewis":17412,"ĠÑģегоднÑı":17413,"Ġflies":17414,"uinely":17415,"ĠConsider":17416,"Ġstark":17417,"hew":17418,"ĠAsÃŃ":17419,"³´ë":17420,"Ġpropose":17421,"Ġíķĺë©´":17422,"odo":17423,"ĠNormally":17424,"Ġheeft":17425,"ĠHarris":17426,"gro":17427,"ĠBlood":17428,"base":17429,"ĠiOS":17430,"Ġtouches":17431,"Ġinspir":17432,"Ġ×ĵ":17433,"Ġbinary":17434,"Ġì¶Ķ":17435,"Ġserial":17436,"Ġion":17437,"Ġunemployment":17438,"Ġodds":17439,"ĠFab":17440,"ĠFBI":17441,"BRUN":17442,"Ġweights":17443,"νο":17444,"atile":17445,"Ġnurses":17446,"Ġinvolvement":17447,"ĠíĶ¼":17448,"Ġgovernance":17449,"ĠâĤ¬":17450,"ÑĢÑĥп":17451,"ierra":17452,"íĺķ":17453,"ĠJerry":17454,"Ġbeard":17455,"Ġsalvation":17456,"ĠAlong":17457,"gentle":17458,"ĠKi":17459,"bol":17460,"ĠPlat":17461,"Ġhasht":17462,"è¿ij":17463,"Ġware":17464,"Ġpartie":17465,"ycz":17466,"Ġintr":17467,"Fih":17468,"nent":17469,"Ġcheat":17470,"ilen":17471,"Ġë¯":17472,"orie":17473,"Ġfácil":17474,"etric":17475,"Ġaffecting":17476,"unciation":17477,"Ġaffairs":17478,"Ġbee":17479,"Ġviewing":17480,"Ġorang":17481,"ĠLan":17482,"ĠСÑĤ":17483,"ä¸ĸ":17484,"ĠMes":17485,"ĥģ":17486,"erie":17487,"Ġespa":17488,"Ġinterpre":17489,"Ġpossess":17490,"Ġpurely":17491,"rito":17492,"found":17493,"asma":17494,"ìłģìĿ¸":17495,"Ġexamine":17496,"ĠÑĥм":17497,"Ġbesch":17498,"ĠTomorrow":17499,"ĠBlock":17500,"Ġvariant":17501,"Ġpreference":17502,"Ġcoaches":17503,"Ġmedications":17504,"ĠíĺĦ":17505,"Ġempire":17506,"ëĦ¤":17507,"ĠIllinois":17508,"Ġcrispy":17509,"Ġthì":17510,"Ġbees":17511,"77":17512,"Ġglow":17513,"èº":17514,"ĠStudies":17515,"åIJĦ":17516,"ĠChallenge":17517,"Ġunlikely":17518,"Ч":17519,"ıyorsun":17520,"DIE":17521,"Ġminimize":17522,"izard":17523,"Ġún":17524,"Ġencontrar":17525,"ĠKill":17526,"å»":17527,"Ġvanilla":17528,"ĠGrant":17529,"ĠGT":17530,"sea":17531,"Ġsought":17532,"вод":17533,"Ġnäm":17534,"ĠAunt":17535,"OWN":17536,"Ġpumpkin":17537,"stellen":17538,"Ġrag":17539,"егда":17540,"Ġstoryt":17541,"Ġforum":17542,"æ©Ł":17543,"Ġestaba":17544,"uche":17545,"Ġcongress":17546,"ĠRey":17547,"Ġdramatically":17548,"ĠSport":17549,"ĠYellow":17550,"Ġê³ĦìĨį":17551,"Ġdisgusting":17552,"ĠRecent":17553,"Ġacquired":17554,"Ġcables":17555,"çĶļ":17556,"din":17557,"Ġvisto":17558,"Ġcommunicating":17559,"ÑģÑĤавлÑı":17560,"еÑģÑĤо":17561,"ãĥ»ãĥ»ãĥ»":17562,"Ġrég":17563,"Ġsocks":17564,"Ġproces":17565,"because":17566,"Ġutter":17567,"Ġcolocar":17568,"Ġnewest":17569,"Ġgramm":17570,"表":17571,"ä¸įçŁ¥éģĵ":17572,"Ġshifting":17573,"Ġcarrier":17574,"ĠÑģкоÑĢ":17575,"ĠSchw":17576,"Ġexecuted":17577,"Ġmaintained":17578,"ĠÏĨ":17579,"ĠMoses":17580,"Ġdisse":17581,"Ġhorr":17582,"ãĢľ":17583,"Ġrally":17584,"Ġallem":17585,"ĠEventually":17586,"Ġdiyor":17587,"lvania":17588,"Ġschnell":17589,"Ġê³¼":17590,"Ġ매":17591,"Ġstruggles":17592,"late":17593,"Ġclarify":17594,"ément":17595,"Ġmultiplic":17596,"ибо":17597,"Ġjourn":17598,"Ġfragr":17599,"Ġsurprisingly":17600,"Ġdesperate":17601,"52":17602,"Ġsul":17603,"ĠRead":17604,"ĠFried":17605,"Ġmond":17606,"woo":17607,"Ġorganizing":17608,"ãģĹãĤĩãģĨ":17609,"ĠSoon":17610,"ĠвопÑĢоÑģ":17611,"ĠNur":17612,"ĠÐĹд":17613,"Ġspider":17614,"еÑģÑı":17615,"Ġtutorials":17616,"Ġnutrients":17617,"orer":17618,"Ġcoefficient":17619,"Ġarrangement":17620,"Ġpricing":17621,"nan":17622,"yu":17623,"BL":17624,"Ġtribe":17625,"ĠHoward":17626,"unks":17627,"Ġnewer":17628,"Ġprovin":17629,"Ġprediction":17630,"hos":17631,"Ġolsun":17632,"ĠAround":17633,"Ġvier":17634,"ĠÑģÑĤоÑĢон":17635,"Ġvalley":17636,"ĠEla":17637,"ifi":17638,"Ġgalaxy":17639,"Ġtranqu":17640,"Ġadvers":17641,"ĠTemple":17642,"iffs":17643,"igence":17644,"èĩªå·±":17645,"Ġkönnte":17646,"ĠÄijó":17647,"Did":17648,"Ġphotographs":17649,"ĠAWS":17650,"ÑĨиÑı":17651,"Ġguards":17652,"Ġappointed":17653,"ĠGil":17654,"Ġмом":17655,"Ġcod":17656,"ĠUnlike":17657,"Ġevenly":17658,"isconsin":17659,"Ġestou":17660,"Ġmnie":17661,"ĠExec":17662,"ĠMV":17663,"ĠEine":17664,"ä¿¡":17665,"ĠRoger":17666,"ĠFac":17667,"ĠList":17668,"Ġfuer":17669,"аеÑĤе":17670,"omed":17671,"Ġattraction":17672,"èī²":17673,"Ġterrain":17674,"ĠDrop":17675,"Ġcorporations":17676,"Ġsciences":17677,"Ġthrone":17678,"ãģĦãģŁ":17679,"Ġaj":17680,"ĠRot":17681,"çī¹":17682,"Ġsupporters":17683,"ĠBere":17684,"Here":17685,"Ġdiferentes":17686,"Ġsignificance":17687,"Ïĥη":17688,"æĪij覺å¾Ĺ":17689,"Ġclamp":17690,"ĠëĮĢë":17691,"Ġfabulous":17692,"rez":17693,"æĮģ":17694,"Ġassumptions":17695,"uther":17696,"wid":17697,"pot":17698,"è¿İ":17699,"Ġyan":17700,"ulin":17701,"ÑĢÑĭв":17702,"ĠSlow":17703,"ĠPennsy":17704,"Ġíķ´ìĦľ":17705,"Ġmeio":17706,"Ġwealthy":17707,"ĠEight":17708,"Ġpulse":17709,"Ġfriction":17710,"idity":17711,"ĠHoll":17712,"iyorum":17713,"Ġsounded":17714,"ĠCarr":17715,"Ġfork":17716,"âĺ":17717,"ĠPA":17718,"Ġconspir":17719,"Ġcoding":17720,"rt":17721,"ĠTyp":17722,"Ġìĸij":17723,"Ġпог":17724,"Ġmiser":17725,"ĠÑģмоÑĤÑĢ":17726,"ĠSweden":17727,"Ġolarak":17728,"ĠZhang":17729,"ĠChi":17730,"ĠTitan":17731,"Ġscreening":17732,"ĠSpider":17733,"ĠÅŀimdi":17734,"Ġobstacles":17735,"lara":17736,"Ġchallenged":17737,"pse":17738,"TON":17739,"ụ":17740,"ĠPi":17741,"Ġlagi":17742,"ieurs":17743,"Ġhurting":17744,"Ġneglect":17745,"Ġgenerating":17746,"Ġyoungest":17747,"Ġaudit":17748,"ĠÑĢез":17749,"Ïģά":17750,"Ġdonate":17751,"ĠPDF":17752,"Ġvisits":17753,"Ġcruise":17754,"PP":17755,"aser":17756,"Ġwsp":17757,"backs":17758,"ivals":17759,"ãģĨãĤĵ":17760,"Ġdeve":17761,"Ġproport":17762,"Ġcath":17763,"ĠEffect":17764,"Ġwinds":17765,"ĠìĻĶ":17766,"Ġcharts":17767,"Ġsama":17768,"Ġautomation":17769,"Ġпока":17770,"Ġolan":17771,"Ġboats":17772,"Ġcafe":17773,"Ġdenied":17774,"ĠMama":17775,"Ġblocking":17776,"ĠThor":17777,"Ġphenomenal":17778,"Ġstakeholders":17779,"Ġunos":17780,"ÑĥеÑĤ":17781,"ĠAbraham":17782,"ãģ§ãĤĤ":17783,"Ġdetection":17784,"Ġjuris":17785,"Ġpowered":17786,"zial":17787,"Ġwelfare":17788,"Ġupgrad":17789,"Ġmożna":17790,"ĠCase":17791,"cular":17792,"ĶìĿ´":17793,"ãĥģ":17794,"ĠGuess":17795,"Ġcycles":17796,"ä¾ĭ":17797,"給":17798,"rock":17799,"umi":17800,"Ġelite":17801,"Ġquè":17802,"åł±":17803,"ÑĤом":17804,"Ġshore":17805,"gunta":17806,"Ġku":17807,"Ġfaithful":17808,"ĠJeremy":17809,"aid":17810,"à·":17811,"ugal":17812,"å°įåķĬ":17813,"ĠVel":17814,"Ġvrai":17815,"stell":17816,"¨¸":17817,"Ġkol":17818,"è½":17819,"Ġquanto":17820,"ĠзаÑĢ":17821,"Ġ2002":17822,"esy":17823,"Ġreserve":17824,"ĠмоменÑĤ":17825,"Ġdeployed":17826,"Ġdefining":17827,"Ġsau":17828,"Ġgaat":17829,"\")":17830,"Ġtransmit":17831,"Ġpublishing":17832,"Ġranking":17833,"Ġoffense":17834,"Ġ46":17835,"pin":17836,"ĠTaking":17837,"Ġentitled":17838,"Ġgenuinely":17839,"Ġvariations":17840,"Ġfinde":17841,"Ġtau":17842,"Ġunfortunate":17843,"ĠRah":17844,"ports":17845,"ĠcÅ":17846,"Ġmonkey":17847,"Ġbrac":17848,"wei":17849,"lung":17850,"Ġartif":17851,"Ġsyrup":17852,"ĠÐĶав":17853,"Ġlifted":17854,"Ġchez":17855,"ĠAdvent":17856,"ĠStock":17857,"Ġdol":17858,"мен":17859,"иÑĪÑĮ":17860,"Ġyn":17861,"gio":17862,"det":17863,"Ġdesse":17864,"Ġgri":17865,"ĠChairman":17866,"çħ":17867,"Ġcuenta":17868,"anim":17869,"Ġcrab":17870,"Ġescal":17871,"Ġpremière":17872,"ĠGef":17873,"Ġdining":17874,"Ġseventh":17875,"Ġchasing":17876,"ĠTower":17877,"Ġbrutal":17878,"Ġfundamentally":17879,"ãģ¨ãģĨ":17880,"лениÑı":17881,"stage":17882,"Ġacquis":17883,"Ġcylinder":17884,"Ġcommander":17885,"mem":17886,"ĠUV":17887,"happy":17888,"Ġepsilon":17889,"Ġinvitation":17890,"Ġfarmer":17891,"chair":17892,"Ġdestiny":17893,"Ġsovere":17894,"ĠHebrew":17895,"Ġservant":17896,"Ġbew":17897,"Ġgast":17898,"uties":17899,"Ġadministrative":17900,"ĠCommand":17901,"éta":17902,"Ġnitrogen":17903,"ê·¼":17904,"Ġabi":17905,"Ġvillain":17906,"Ġblanket":17907,"ĠSend":17908,"Ġbeaten":17909,"²Ħ":17910,"Ġvolunt":17911,"Ġscholar":17912,"ĠEmperor":17913,"Ġ43":17914,"vable":17915,"ĠDus":17916,"ĠGU":17917,"Ġtargeting":17918,"www":17919,"Ġamendment":17920,"ìĨĮë":17921,"Ġting":17922,"Ġnasty":17923,"Ġgauge":17924,"ĠÑĢод":17925,"ĠHans":17926,"Your":17927,"αν":17928,"Ġprojet":17929,"ĠHawaii":17930,"Ġsuspicious":17931,"Ġschw":17932,"Ġremoval":17933,"Ġintrig":17934,"ĠMU":17935,"Ġponto":17936,"ा":17937,"ĠобÑĢаз":17938,"Ġguessing":17939,"pace":17940,"Ġmothers":17941,"Ġmillimeter":17942,"ление":17943,"没æľī":17944,"Ġavailability":17945,"icz":17946,"æѤ":17947,"Ġfract":17948,"Ġbases":17949,"km":17950,"ĠBTS":17951,"ĠField":17952,"Ġdzie":17953,"Ġsegundo":17954,"ĠëĤĺëĬĶ":17955,"Ġlegitimate":17956,"imas":17957,"Ġвн":17958,"Ġcorruption":17959,"Ġsmash":17960,"ĠValent":17961,"Ġaligned":17962,"ĠPennsylvania":17963,"Ġgab":17964,"ĠEun":17965,"enth":17966,"ĠMorning":17967,"Ġcandle":17968,"Ġbackpack":17969,"ĠIslamic":17970,"ações":17971,"Ġencry":17972,"Ġmushrooms":17973,"íĮĮ":17974,"dit":17975,"Ġtransit":17976,"ĠWisconsin":17977,"Ġparticipated":17978,"ĠIls":17979,"Ġunfold":17980,"¶Ģë":17981,"Ġprofits":17982,"Ġwarming":17983,"ĠGang":17984,"Ġnetworking":17985,"Ġmega":17986,"Ġthoroughly":17987,"lements":17988,"ĠHm":17989,"Ġdeciding":17990,"Ġemotionally":17991,"Ġexhausted":17992,"ĠÐŁÐ¾ÑĤ":17993,"cido":17994,"ĠHTML":17995,"Ġcopyright":17996,"Ġmelody":17997,"yim":17998,"Ġanders":17999,"oshop":18000,"Ġë³¼":18001,"Ġathlete":18002,"ĠGE":18003,"Ġfrequent":18004,"Ġdesires":18005,"Ġneeding":18006,"ĠYun":18007,"Ġrifle":18008,"Ġlover":18009,"'T":18010,"Ġdense":18011,"Ġtão":18012,"Ġnotified":18013,"Ġidi":18014,"ìĹŃ":18015,"íĨ":18016,"Ġinteracting":18017,"Ġrapport":18018,"еÑĢи":18019,"ski":18020,"Ġbesser":18021,"Ġmanufacturer":18022,"ĠKyle":18023,"Ġaccountable":18024,"ĠSak":18025,"ĠPil":18026,"ĠDomin":18027,"Ġpresum":18028,"ĠÐĴÑģе":18029,"Ġvinegar":18030,"Ġguaranteed":18031,"çľĭåĪ°":18032,"Ġhandled":18033,"éŁ³":18034,"cat":18035,"Ġcivilization":18036,"Ġaccomp":18037,"ĠVM":18038,"émon":18039,"Ġdeze":18040,"Ġgrades":18041,"Ġsollte":18042,"Ġstaring":18043,"×IJת":18044,"arnt":18045,"Ġhorizon":18046,"Ġtravail":18047,"hour":18048,"第ä¸Ģ":18049,"ĠED":18050,"ĠDak":18051,"Ġny":18052,"Ġconve":18053,"ĠCham":18054,"Ġfirms":18055,"ĠLiu":18056,"ĠÑģÑĤÑĢан":18057,"Ġlibert":18058,"Ġlenses":18059,"Ġintake":18060,"ĠвÑĭб":18061,"Ġmensen":18062,"hel":18063,"Ġpractition":18064,"Ġ350":18065,"ãĤ³":18066,"FO":18067,"Ġbeds":18068,"Ġancestors":18069,"ĠìĹĦì²Ń":18070,"Ġdisturb":18071,"ĠLastly":18072,"ĠSupport":18073,"ีà¹ī":18074,"ĠCorona":18075,"Ġenthusi":18076,"Ġвозм":18077,"ĠìĤ¬ëŀĮë":18078,"Ġ52":18079,"bird":18080,"Ġreduces":18081,"ĠìŀĪìĿĦ":18082,"ĠGene":18083,"êµIJ":18084,"ÄĻp":18085,"ĠÃľber":18086,"Ġconcerning":18087,"user":18088,"Ġconcentrate":18089,"ĠWHAT":18090,"ishop":18091,"onymous":18092,"nold":18093,"Ġsuggesting":18094,"©°":18095,"ĠFish":18096,"........":18097,"Ġvessel":18098,"Ġtrabajo":18099,"ãģµ":18100,"ĠOcean":18101,"å§IJ":18102,"yg":18103,"Ġtowns":18104,"del":18105,"Ġterrifying":18106,"ĠçalÄ±ÅŁ":18107,"Ġsino":18108,"Ġeats":18109,"Ġgez":18110,"Ġgeme":18111,"ĠìĻĦ":18112,"Ġcompart":18113,"Ġimplementing":18114,"ĠPotter":18115,"ĠGermans":18116,"ĠgÅĤ":18117,"Ġtennis":18118,"Ġcarpet":18119,"auer":18120,"ĠSaudi":18121,"yeong":18122,"Ġcurry":18123,"ĠForest":18124,"Ñĭл":18125,"Ġfifteen":18126,"Ġbolts":18127,"Ġ{\\":18128,"¬´":18129,"Ġsettlement":18130,"Ġlange":18131,"Ġbam":18132,"Get":18133,"íķĻ":18134,"Ġswap":18135,"ĠKhan":18136,"Ġcommence":18137,"Ġquarantine":18138,"Ġscored":18139,"çĸ":18140,"Ġ1950":18141,"Ġthicker":18142,"Ġsûr":18143,"åı£":18144,"ĠLarry":18145,"Ġallez":18146,"ìĭľëĬĶ":18147,"Ġgü":18148,"Ġspectacular":18149,"//":18150,"both":18151,"Ġstats":18152,"妳":18153,"ĠNancy":18154,"Ġbunu":18155,"Ġcrust":18156,"Ġactivated":18157,"Ġê·¸ëŀ":18158,"outhe":18159,"Ġports":18160,"Ġneural":18161,"Ġjaw":18162,"Ġobservations":18163,"Ġvoit":18164,"aban":18165,"ải":18166,"¦¬ë¥¼":18167,"omes":18168,"à¯ĭ":18169,"qui":18170,"Ġkindness":18171,"Ðij":18172,"Ġ41":18173,"Ġmoderate":18174,"Ġangels":18175,"ĠTamb":18176,"èt":18177,"Ġchlor":18178,"ĠBilly":18179,"ì²ĺë":18180,"acon":18181,"Ġselecting":18182,"ĠDelta":18183,"Ġnull":18184,"denly":18185,"Ġciud":18186,"Ġtendency":18187,"Ġbreakdown":18188,"Ġmint":18189,"ÑĦоÑĢм":18190,"orph":18191,"Ġdawn":18192,"spr":18193,"ĠWILL":18194,"ächlich":18195,"Ġpuppy":18196,"700":18197,"Ġத":18198,"Ġfails":18199,"ĠConc":18200,"Ġrelatives":18201,"Ġinviting":18202,"Ġautonom":18203,"Ġcomposed":18204,"Ġunity":18205,"Ġdecis":18206,"Ġaccessories":18207,"ĠCass":18208,"Ġbist":18209,"ĠTip":18210,"째":18211,"Ġpunt":18212,"Ġráp":18213,"éĢ²":18214,"ANK":18215,"ãģļ":18216,"exist":18217,"Ġcompatible":18218,"Ġner":18219,"ĠемÑĥ":18220,"Ġaplic":18221,"Ġbapt":18222,"Ġfailing":18223,"ĠTamam":18224,"Ġoscill":18225,"Ġletzten":18226,"Ġrepeatedly":18227,"Ġjungle":18228,"ĠPush":18229,"hai":18230,"Ġη":18231,"Ġdeadly":18232,"Ñıж":18233,"wiÄħ":18234,"ĠCommon":18235,"ĠÎķ":18236,"Ġskate":18237,"TC":18238,"ĠMini":18239,"Ġhobby":18240,"ần":18241,"Ġroutes":18242,"Ġamigos":18243,"Ġconjun":18244,"Ġpartnerships":18245,"Ġnovo":18246,"Ġaver":18247,"Ġpouvez":18248,"bridge":18249,"Ġpreoc":18250,"him":18251,"Ġturb":18252,"Ġsob":18253,"ĠSnap":18254,"Ġì°¸":18255,"minute":18256,"Ġtraject":18257,"ujÄĻ":18258,"Ġeager":18259,"Ġregulatory":18260,"Ġbanking":18261,"bling":18262,"ÑĪÑĮ":18263,"aż":18264,"Ġbizarre":18265,"itated":18266,"dire":18267,"Ġthreatened":18268,"Ġshining":18269,"Ġnesse":18270,"Ġcorps":18271,"ĠÑģÑĥ":18272,"Ġteles":18273,"Ġtemp":18274,"tem":18275,"Ġкан":18276,"Ġfever":18277,"New":18278,"Ġheavier":18279,"ĠSah":18280,"bud":18281,"Ġoutros":18282,"Ġì°¾":18283,"Ġëªħ":18284,"arring":18285,"Ġê´ľì°®":18286,"ĠNap":18287,"Ġsemin":18288,"ĠThan":18289,"ifs":18290,"Ġdesen":18291,"ĠÑĤакое":18292,"Ġloses":18293,"ĠBalt":18294,"kon":18295,"ĠнапÑĢ":18296,"Ġvois":18297,"ĠMoscow":18298,"Ġchairs":18299,"his":18300,"Ġrefugees":18301,"kg":18302,"Ġkole":18303,"į¨":18304,"аÑģибо":18305,"¦½":18306,"ĠUniverse":18307,"ĠDirect":18308,"Ġcheating":18309,"ĠCin":18310,"Ġpatri":18311,"Ġadvise":18312,"ĠNether":18313,"Ġprimeiro":18314,"Ġmentioning":18315,"nut":18316,"56":18317,"arı":18318,"Ġpetite":18319,"bled":18320,"Ġpensar":18321,"icio":18322,"IND":18323,"Ġveteran":18324,"Ġladder":18325,"Ġconsequence":18326,"ожал":18327,"ĠBurn":18328,"Ġrug":18329,"ĠMade":18330,"Ġgit":18331,"\"...":18332,"Ġcompetitors":18333,"Ġprzed":18334,"Ġapparent":18335,"ĠArgentina":18336,"ĠWorking":18337,"Ġcollaborate":18338,"woman":18339,"Ġretain":18340,"Ġleurs":18341,"Ġdashboard":18342,"×Ļ×ĵ":18343,"ĠEarly":18344,"BM":18345,"ĠеÑij":18346,"олог":18347,"Ġsatisfying":18348,"Ġoftentimes":18349,"Ġmapping":18350,"ünkü":18351,"arth":18352,"fold":18353,"Ġlaunching":18354,"Ġaura":18355,"Ġprecision":18356,"works":18357,"God":18358,"Ġstrap":18359,"ĠImper":18360,"Ġrivers":18361,"Ġ|":18362,"Ġcuer":18363,"regon":18364,"Ġarrival":18365,"каÑħ":18366,"ĠMiami":18367,"анÑĭ":18368,"Ġsurvivors":18369,"ĠSenior":18370,"David":18371,"Ġestado":18372,"Ġsectors":18373,"Ġpopping":18374,"Ġchim":18375,"ayı":18376,"Ġkunnen":18377,"Ġgallery":18378,"Ġsunlight":18379,"esehen":18380,"Ġyelling":18381,"ĠMein":18382,"ĠPhoenix":18383,"Ġmano":18384,"Ġhistoria":18385,"Ġoccurring":18386,"欸":18387,"ì¸":18388,"ади":18389,"å¾ħ":18390,"Ġinstitutional":18391,"ĠTut":18392,"ç²":18393,"Ġslaves":18394,"ãģ©ãģĨ":18395,"Ġforgiveness":18396,"Ġtwin":18397,"ĠHyun":18398,"нÑĮ":18399,"ĠKomm":18400,"andra":18401,"shot":18402,"ssä":18403,"ĠÑĨе":18404,"atta":18405,"Ġexpense":18406,"ĠGPU":18407,"ĠPast":18408,"ribly":18409,"ĠëŃIJìķ¼":18410,"Ġгода":18411,"Ġrespir":18412,"æĿ±":18413,"ĠQueens":18414,"hops":18415,"Ġsérie":18416,"Ġpref":18417,"Ġcomed":18418,"Ġplut":18419,"ĠOverall":18420,"ĠãģĿ":18421,"Ġcush":18422,"Ġringing":18423,"Ġincorrect":18424,"ĠÑģÑĤÑĢ":18425,"Ġgeometry":18426,"Ġadvertis":18427,"ĠШ":18428,"Ġreviewed":18429,"ãģĤãģĤ":18430,"Ġdozens":18431,"Ġdetermination":18432,"ĠPhill":18433,"Ġcontributed":18434,"ĠCit":18435,"Ġpassengers":18436,"Ġcôté":18437,"Ġrever":18438,"Ġtechnological":18439,"Ġallen":18440,"Ġraining":18441,"avi":18442,"Ġsalty":18443,"Ġtyping":18444,"ĠÑĤе":18445,"Ġtilt":18446,"Ġì¹ĺ":18447,"ĠоÑĢ":18448,"ĠпÑĢÑıм":18449,"Ġrou":18450,"Ġarena":18451,"arat":18452,"åĪ«":18453,"HHHH":18454,"Ġmanufacturers":18455,"ĠEdward":18456,"Ġtuck":18457,"Ġblows":18458,"ingo":18459,"ĠMarc":18460,"ìķĦìĦľ":18461,"Mich":18462,"ĠClean":18463,"è´":18464,"esto":18465,"ĠPack":18466,"Ġshaft":18467,"BRUNO":18468,"Ġaven":18469,"uur":18470,"ÑģколÑĮко":18471,"ê´Ģ":18472,"Ġautomated":18473,"Ġventure":18474,"Ġsurveillance":18475,"ĠGrow":18476,"ĠEmer":18477,"ĠдоÑĢ":18478,"Ġinvestor":18479,"ĠYok":18480,"Ġlatter":18481,"ĠNI":18482,"Ġfunctioning":18483,"ĠHamilton":18484,"Ġ51":18485,"Ġmurdered":18486,"Ġanchor":18487,"Ġcuc":18488,"ĠSCP":18489,"ĠMadam":18490,"Ġconstraints":18491,"Ġbarn":18492,"anken":18493,"Ġë§İìĿĢ":18494,"ĠMotor":18495,"ĠDoing":18496,"Ġamen":18497,"etts":18498,"Ġinstructor":18499,"egt":18500,"ako":18501,"Ġposture":18502,"ivia":18503,"ĠPolish":18504,"Ġдва":18505,"Ġcolorful":18506,"Ġelbow":18507,"Ġparle":18508,"Ġpasser":18509,"Ġcondem":18510,"ortal":18511,"Ġfertil":18512,"اد":18513,"ĠColomb":18514,"Ġalignment":18515,"Ġastronaut":18516,"ĠMut":18517,"Ġsalmon":18518,"Ġstructured":18519,"ŀר":18520,"Ġclicks":18521,"Ġmiej":18522,"æĶ¿":18523,"ãģĦãĤĦ":18524,"ĠRound":18525,"Ġrainbow":18526,"ĠVA":18527,"ãģĶãģĸ":18528,"ì§Ī":18529,"otz":18530,",":21732,"Ġchords":21733,"ĠSanders":21734,"Ġë¶Ħë":21735,"Ben":21736,"Ġdarüber":21737,"ilians":21738,"Ġordering":21739,"ĠManh":21740,"Ġkilogram":21741,"ĠkarÅŁ":21742,"Ġgrasp":21743,"Ġghosts":21744,"alen":21745,"ĠJedi":21746,"Ġбли":21747,"Ġdownloaded":21748,"Ġconducting":21749,"ĠHak":21750,"Ġresearcher":21751,"ilan":21752,"good":21753,"ĠHannah":21754,"ĠdÃ¼ÅŁÃ¼n":21755,"ĠMessiah":21756,"uity":21757,"iona":21758,"Ġprobable":21759,"ĠYE":21760,"Ġindependently":21761,"Ġbuffer":21762,"burn":21763,"ourd":21764,"ĠMcK":21765,"Ġlingu":21766,"ujemy":21767,"еÑĢÑĤ":21768,"Ġintuitive":21769,"Ġcracks":21770,"appropri":21771,"nty":21772,"Ġgeen":21773,"Ġlend":21774,"Ġcertification":21775,"IDS":21776,"unter":21777,"pees":21778,"Ġtrump":21779,"Ġbankrupt":21780,"Ġfeas":21781,"èĹ":21782,"Ġduż":21783,"æ¸ħ":21784,"Ġviruses":21785,"Ġ58":21786,"god":21787,"Ġжел":21788,"Ġstalk":21789,"Ind":21790,"achi":21791,"ĠCF":21792,"ĠCond":21793,"Ġsanct":21794,"Ġconten":21795,"Ġfreed":21796,"ĠRT":21797,"Ġmentors":21798,"족":21799,"Ġportable":21800,"ĠPaulo":21801,"rane":21802,"HAHA":21803,"ĠSection":21804,"çĨ":21805,"hyun":21806,"ĠÎŃÏĩ":21807,"ĠPub":21808,"ĠIndepend":21809,"Ġcompounds":21810,"ĠÑģÑĭ":21811,"Ġmessaging":21812,"Ġdedication":21813,"Ġnoticing":21814,"Ġdevoted":21815,"ÑİÑĤÑģÑı":21816,"Ġsnakes":21817,"Ġbattlefield":21818,"pers":21819,"Ġdela":21820,"92":21821,"Ġhai":21822,"illä":21823,"érer":21824,"every":21825,"Ġresponsive":21826,"×Ļ×ķ":21827,"opf":21828,"éī":21829,"Ĭ¸":21830,"Because":21831,"Ġtourism":21832,"Ġê·¸ê²Į":21833,"×ķצ":21834,"Ġcans":21835,"stüt":21836,"Ġdonne":21837,"ĠDios":21838,"ĠUber":21839,"actory":21840,"Ġoriented":21841,"ĠHerm":21842,"Ġpatron":21843,"urf":21844,"bei":21845,"Ġprograma":21846,"ĠOhh":21847,"gener":21848,"Ġfist":21849,"ĠWendy":21850,"Ġanda":21851,"Ġguessed":21852,"Ġfreak":21853,"ä¸Ńåľĭ":21854,"ĠKings":21855,"chool":21856,"Ġoffline":21857,"ĠIndiana":21858,"ĠAlliance":21859,"Ġ53":21860,"Ġparticul":21861,"ĠFocus":21862,"Ġinhabit":21863,"Ġê°ĻìĿĢëį°":21864,"ĠMcG":21865,"owski":21866,"ĠìĿ´ê±´":21867,"ĠpaÅĦst":21868,"они":21869,"itta":21870,"Ġconfirmation":21871,"ĠBrooklyn":21872,"Ġnoodle":21873,"fund":21874,"itud":21875,"Ġgrandparents":21876,"Ġbarbecue":21877,"ειÏĤ":21878,"Ġá":21879,"Ġballot":21880,"ĠVeter":21881,"Ġpipes":21882,"igious":21883,"ĠGraph":21884,"ested":21885,"Ġë¸Įë":21886,"ĠKE":21887,"ãģ¡ãĤĩãģ£ãģ¨":21888,"Ġeins":21889,"Ġhatred":21890,"ãģijãģ©":21891,"Ġdang":21892,"eeee":21893,"Ġarchae":21894,"ĠJesse":21895,"Ġdetected":21896,"Ġseni":21897,"burgh":21898,"Ġdisplacement":21899,"Ġdop":21900,"Ġconditioning":21901,"ĠнеÑģколÑĮко":21902,"Ġdisturbing":21903,"PH":21904,"Ġthinner":21905,"Ġwounded":21906,"ĠCuando":21907,"Ġcushion":21908,"Ġwhites":21909,"Ġpreferences":21910,"Ġì¤Ģë¹Ħ":21911,"Ġkaż":21912,"ĠGate":21913,"ĠPath":21914,"dles":21915,"à¸Ħร":21916,"imore":21917,"Ġë³´ìŬ":21918,"Ġdisciplines":21919,"á»ı":21920,"Ġmesma":21921,"ĠìĥĪë":21922,"Ġìĭ¬":21923,"Ġging":21924,"Ġumbrella":21925,"IGHT":21926,"Ġpension":21927,"Ġcombining":21928,"SS":21929,"Ġrectangle":21930,"á»ĩt":21931,"Ġproxim":21932,"ĠCow":21933,"¸Į":21934,"Ġintentional":21935,"æķĻ":21936,"Ġdecid":21937,"ĠÑģкаж":21938,"ĠUma":21939,"iasm":21940,"buz":21941,"Ġdebris":21942,"Ġcass":21943,"ĠProp":21944,"iska":21945,"ëł¥":21946,"esterol":21947,"ussian":21948,"ìĿ´ëŀij":21949,"Ġunlimited":21950,"Ġadmire":21951,"Ġtightly":21952,"Ġgenome":21953,"ĠJunior":21954,"venir":21955,"gus":21956,"ĠcÄĥ":21957,"ĠVlad":21958,"ĠíĤ":21959,"Ġrelativ":21960,"inci":21961,"Ġaunque":21962,"ĠBoys":21963,"ÑĨион":21964,"ĠSwiss":21965,"Ġphysicians":21966,"Ġíıī":21967,"ĠPET":21968,"Ġwounds":21969,"about":21970,"Ãłi":21971,"onz":21972,"urities":21973,"ĠÑĥвид":21974,"å·¦":21975,"Ġmentality":21976,"Ġvariance":21977,"Ġsegunda":21978,"Ġvolcano":21979,"alie":21980,"à¥ĩ":21981,"Ġtiles":21982,"ĠTerry":21983,"ĠاÙĦÙĦÙĩ":21984,"Ġcanon":21985,"Ġscattered":21986,"pton":21987,"Ġdefinitions":21988,"Ġalgebra":21989,"oten":21990,"ablo":21991,"ijuana":21992,"Ġwrapping":21993,"Ġsesame":21994,"ĠнаÑĩина":21995,"ĠAlf":21996,"ĠÐłÐ¾ÑģÑģ":21997,"orno":21998,"Ġankle":21999,"Ġspecialty":22000,"Ġattempting":22001,"iliation":22002,"Ġ1920":22003,"Ġphenomena":22004,"ĠProduct":22005,"ĠBuck":22006,"ĠAww":22007,"seen":22008,"Ġvoid":22009,"ĠFranklin":22010,"Ġadvocacy":22011,"ĠSep":22012,"Ġcoolest":22013,"ĠÑģÑĢазÑĥ":22014,"ĠQuand":22015,"Ġ900":22016,"ĠTrad":22017,"dies":22018,"Ġhash":22019,"æĪijå°±":22020,"ä¹Łæĺ¯":22021,"Ġpots":22022,"Ġsadly":22023,"Ġviable":22024,"ĠTiger":22025,"ĠONE":22026,"Ġneurons":22027,"owanie":22028,"ÄĹ":22029,"ĠShar":22030,"ĠLandes":22031,"Ġconferences":22032,"該":22033,"Ġcredential":22034,"Ġlime":22035,"inee":22036,"xit":22037,"pay":22038,"Ġincons":22039,"Ġ>>:":22040,"èªį":22041,"Ġíŀĺë":22042,"Ġlesser":22043,"Ġspill":22044,"Ġpremise":22045,"Ġ365":22046,"ĠHost":22047,"Ġtomar":22048,"×IJ׾":22049,"ë²Ī":22050,"ĠWhats":22051,"Ġlightweight":22052,"ĠMap":22053,"fia":22054,"ellschaft":22055,"Ġvendors":22056,"uesto":22057,"ĠMister":22058,"ĠÐŁÑĢи":22059,"åı³":22060,"hma":22061,"Ġintentionally":22062,"ĠTang":22063,"éĹ®":22064,"Ġidentification":22065,"Ġetcetera":22066,"ĠNee":22067,"ĠÑĤÑĢи":22068,"ê·¸":22069,"Ġcryptocur":22070,"Ġinhale":22071,"Ġaddict":22072,"åIJĦä½į":22073,"Ġmau":22074,"ĠÑĤакаÑı":22075,"Ġë²Ħ":22076,"Ġcomprar":22077,"iedzieÄĩ":22078,"ĠоÑĤно":22079,"Ġbeginner":22080,"ĠмÑĥж":22081,"Ġobsc":22082,"Ġlimiting":22083,"ascular":22084,"Ġinspection":22085,"aci":22086,"Ġrejo":22087,"Mus":22088,"Ġzaten":22089,"Ġszcz":22090,"ĠMadrid":22091,"Ġvarieties":22092,"ĠestÃł":22093,"ĠShakes":22094,"Ġkits":22095,"Ġadminister":22096,"Ġlava":22097,"ĠgÃ¥":22098,"試":22099,"ת×Ļ":22100,"ĠWayne":22101,"Ġinstagram":22102,"Ġrated":22103,"paper":22104,"Ġbild":22105,"Ġpretending":22106,"Ġobserving":22107,"ĠÑģамом":22108,"Ġtror":22109,"Ġorganisms":22110,"Ġfalta":22111,"Ġhometown":22112,"ç±":22113,"Ġíĭ":22114,"Ġcheg":22115,"Ġì¡":22116,"Ġcomma":22117,"isé":22118,"Ġlikelihood":22119,"avored":22120,"Ġgeldi":22121,"ников":22122,"Ġmedio":22123,"Ġjakie":22124,"ĠJup":22125,"Ġgreenhouse":22126,"Ġspit":22127,"кое":22128,"Ġкаж":22129,"ĠGram":22130,"ĠConference":22131,"Ġdeficit":22132,"sın":22133,"inse":22134,"uÄŁ":22135,"Ġricht":22136,"Ġcoincidence":22137,"åıį":22138,"Ġeurop":22139,"Ġbutterfly":22140,"pread":22141,"Ġìĸ¼":22142,"èĢ¶":22143,"Ġwavel":22144,"ĠInfin":22145,"ĠPlanet":22146,"Ġselfie":22147,"ientras":22148,"Ġarrog":22149,"oser":22150,"idal":22151,"ł×Ĺ׳×ķ":22152,"ütün":22153,"Ġfreshman":22154,"ĠMachine":22155,"ÏĥÏĦ":22156,"ĠDia":22157,"ìĿ´ëĭ¤":22158,"ãģĵãģĨ":22159,"nea":22160,"Ġlisting":22161,"Ġconfigure":22162,"utor":22163,"Up":22164,"tschaft":22165,"rière":22166,"Ġupwards":22167,"ĠÑħоÑĩÑĥ":22168,"Ġsweep":22169,"Br":22170,"Ġexpressing":22171,"Ġunhappy":22172,"Ġmandatory":22173,"gender":22174,"ĠAÃŃ":22175,"Ġindicators":22176,"Ġoils":22177,"note":22178,"Ġsegur":22179,"ожеÑĤ":22180,"ynasty":22181,"Ġdistances":22182,"Ġmerge":22183,"BERT":22184,"Ġsurrender":22185,"Ġbuat":22186,"ĠAwards":22187,"Ġseñor":22188,"odox":22189,"Ġflavour":22190,"Ġabdom":22191,"Ġconfigur":22192,"86":22193,"ĠDIY":22194,"Ġrigid":22195,"°ĺ":22196,"Ġcorporation":22197,"Ġgroom":22198,"jaw":22199,"ĠNear":22200,"ило":22201,"Ġopera":22202,"ĠInnov":22203,"иÑĢа":22204,"ĵ±":22205,"Ġspecified":22206,"Ġcosm":22207,"ĠFreedom":22208,"Ġclown":22209,"ĠNem":22210,"Ġвол":22211,"Ñijн":22212,"Ġcharger":22213,"à¹ģล":22214,"Ġinfluential":22215,"äsident":22216,"é¤":22217,"ĠìĦłë":22218,"Ġvolumes":22219,"æIJ":22220,"Ġoutras":22221,"ĠTwitch":22222,"Ġfounding":22223,"Ġawhile":22224,"Ġcoil":22225,"ê°Ļ":22226,"Ġcả":22227,"ĠThrow":22228,"ĠHence":22229,"ommt":22230,"ĠBenjamin":22231,"глÑıд":22232,"Time":22233,"obic":22234,"Ġmour":22235,"Ġdread":22236,"ĠLÃł":22237,"ĠChile":22238,"Ġpreval":22239,"Ġvain":22240,"Ġartık":22241,"Ġpreserved":22242,"ĠоÑĤд":22243,"Ġwarehouse":22244,"Ġbeste":22245,"ĠSeveral":22246,"ĠSituation":22247,"Ġcardboard":22248,"Tod":22249,"erna":22250,"Ġgarant":22251,"Ġgesture":22252,"Ġhen":22253,"Ġspelling":22254,"osexual":22255,"Ġanne":22256,"Ġmice":22257,"ĠMeine":22258,"card":22259,"Ġrebell":22260,"Ġcerto":22261,"Ġìľłë":22262,"Ġverschied":22263,"ĠBos":22264,"Ġinvention":22265,"Ġtrze":22266,"Ġmanière":22267,"ĠChad":22268,"Ġspre":22269,"Ġorganisations":22270,"Ġpoorly":22271,"Ġanterior":22272,"Ġstair":22273,"кÑĢ":22274,"Ġatomic":22275,"Ġsympath":22276,"Ġcontinually":22277,"Ġkleine":22278,"ète":22279,"иÑī":22280,"οÏĤ":22281,"peut":22282,"Ġreposit":22283,"Ġentra":22284,"Em":22285,"Ġfinancing":22286,"Ġмног":22287,"Ġthesis":22288,"ĠComputer":22289,"eau":22290,"ĠTree":22291,"Ġbride":22292,"onsieur":22293,"shire":22294,"wic":22295,"DE":22296,"ĠìĪĺë":22297,"Ġacom":22298,"ĠPO":22299,"ersch":22300,"ĠпомоÑī":22301,"ĠArmen":22302,"Ġ죽":22303,"Ġzor":22304,"Ġprints":22305,"ĠDass":22306,"港":22307,"Ġdurable":22308,"ĠTransport":22309,"ìŀIJê°Ģ":22310,"Ġлег":22311,"Ġdét":22312,"ôle":22313,"amous":22314,"YN":22315,"Ġcliff":22316,"Ġgrammar":22317,"ĠÐŁÐ¾ÑįÑĤомÑĥ":22318,"ĠlÃłm":22319,"esch":22320,"Ġmiserable":22321,"Ġvolts":22322,"ĠCad":22323,"ukan":22324,"ÑĤив":22325,"rust":22326,"Ġìĺ¬ëĿ¼":22327,"Ġverk":22328,"Ġchickens":22329,"ĠYoo":22330,"Ġoutfits":22331,"code":22332,"Ġhierarchy":22333,"netes":22334,"Ġcounterpart":22335,"Ġtôi":22336,"Ġted":22337,"ĠBart":22338,"ĠëĿ¼":22339,"ĠGenau":22340,"Ġincoming":22341,"ĠABC":22342,"rique":22343,"ĠоÑĤп":22344,"qual":22345,"Ġincentive":22346,"Ġihren":22347,"׳×Ļ":22348,"loe":22349,"Ġ1930":22350,"Ġbarg":22351,"Ġdiction":22352,"Ġönce":22353,"INS":22354,"Ġreh":22355,"isiaj":22356,"mouth":22357,"Ġscoring":22358,"lık":22359,"ĠìķĦ주":22360,"ORIA":22361,"ĠEstados":22362,"Ġcompanion":22363,"Ġassemble":22364,"Ġpunished":22365,"Ġital":22366,"Ġprevents":22367,"istes":22368,"ĠKentucky":22369,"Ġlocate":22370,"Ġfasting":22371,"ãģ¨æĢĿ":22372,"ĥĢ":22373,"ĠSeb":22374,"ĠCrown":22375,"opia":22376,"Ġwhip":22377,"usz":22378,"ками":22379,"Ġdatabases":22380,"åŃĹ":22381,"Ġprosec":22382,"Ġ1997":22383,"ĠìĤ´ì§Ŀ":22384,"ĠSolar":22385,"ĠPues":22386,"ĠZen":22387,"ollo":22388,"ĠGuru":22389,"Ġsqueez":22390,"ĠÐĹа":22391,"ĠÄį":22392,"ceptions":22393,"cca":22394,"izable":22395,"mand":22396,"Ġbreakthrough":22397,"Ġtablespoon":22398,"ĠSEC":22399,"ikh":22400,"ĠSão":22401,"Ġпло":22402,"amen":22403,"Ġprac":22404,"Ġdarling":22405,"Ġtaller":22406,"Ġrendering":22407,"Ġìļ°ë¦¬ê°Ģ":22408,"ĠÏĦηÏĤ":22409,"Ġmã":22410,"Ġesos":22411,"uerdo":22412,"ĠÑģÑĩиÑĤ":22413,"aller":22414,"ìĹĪìĸ´ìļĶ":22415,"Ġmillones":22416,"lerin":22417,"Ġpegar":22418,"onne":22419,"Ġenrollment":22420,"Ġliegt":22421,"Ġboa":22422,"wiÄĻ":22423,"bsp":22424,"Ġcycling":22425,"ĠBernie":22426,"Ġ1989":22427,"ĠдалÑĮ":22428,"ĠDakota":22429,"ĠÑģвÑıз":22430,"ĠCP":22431,"Ġstare":22432,"íĤ¤":22433,"Ġprosperity":22434,"Ġarrangements":22435,"Ġarriving":22436,"mä":22437,"Ġkayak":22438,"ipt":22439,"Ġpardon":22440,"Ġrelat":22441,"Ġverste":22442,"ĠFig":22443,"Ġfoil":22444,"ĠTalking":22445,"peare":22446,"Ġnoi":22447,"ĠпÑĢиÑĪ":22448,"Ġhockey":22449,"Ġado":22450,"ĠOUT":22451,"67":22452,"Ġhormones":22453,"ĠAvenue":22454,"ĠSuperman":22455,"Ġprescription":22456,"ubernetes":22457,"CL":22458,"otive":22459,"NIS":22460,"ienen":22461,"Ġsadness":22462,"ĠVit":22463,"Ty":22464,"Ġstarter":22465,"Ġbede":22466,"Ġfoundations":22467,"Ġsore":22468,"åºĹ":22469,"ÑīеÑģÑĤв":22470,"ìļ°ë":22471,"ĠÑĩÑĥв":22472,"link":22473,"Ġmaneu":22474,"working":22475,"Ãłn":22476,"ĠAttack":22477,"ĠCart":22478,"veis":22479,"ĠResp":22480,"ensing":22481,"Ġì¢ĭìķĦìļĶ":22482,"Ġescuch":22483,"ĠRNA":22484,"Ĥ´":22485,"Ġadop":22486,"Ġbending":22487,"عد":22488,"Ġmanages":22489,"usp":22490,"Ġtart":22491,"Ġrouter":22492,"Bo":22493,"Ġestablishing":22494,"Ġbalancing":22495,"Ġathletic":22496,"ĠSlo":22497,"Ġfills":22498,"Ġнаб":22499,"Ġдал":22500,"Ġposso":22501,"ĠVielen":22502,"Ġcritics":22503,"Ġlawsuit":22504,"ĠIsaac":22505,"ĠÑĦилÑĮм":22506,"Ġtras":22507,"Ġpraw":22508,"ĠCrazy":22509,"Ġneu":22510,"Ġkull":22511,"Ġtumor":22512,"ĠAPP":22513,"gate":22514,"ĠARE":22515,"98":22516,"ĠSteam":22517,"Ġfucked":22518,"lage":22519,"ĠâĻ¬":22520,"ĠMD":22521,"fy":22522,"Ġshells":22523,"ĠSeems":22524,"izers":22525,"Ġranges":22526,"ĠAntonio":22527,"ATION":22528,"ĠBaba":22529,"Ġìĥī":22530,"kun":22531,"Ġprayed":22532,"ÑĢÑı":22533,"ĠпÑĢоÑĤив":22534,"Ġseas":22535,"bury":22536,"Ġ×Ķש":22537,"Ġtrait":22538,"ĠDepending":22539,"Ġdre":22540,"Ġkönnt":22541,"ÑĨÑĥ":22542,"Ġlipstick":22543,"eez":22544,"ĠпÑĢимеÑĢ":22545,"Ġassignments":22546,"Bob":22547,"Ġmetals":22548,"Ġspecially":22549,"å°įä¸įå°į":22550,"ĠìĺĪë":22551,"ĠÅ¡":22552,"Ġvista":22553,"Ġά":22554,"Ġtwins":22555,"Ġnotable":22556,"ĠSau":22557,"Ġdévelop":22558,"Ġçek":22559,"Ġpolynom":22560,"avam":22561,"Ġtambé":22562,"оном":22563,"Ġplasma":22564,"Ġefect":22565,"Ġläng":22566,"Ġcasi":22567,"Ñģа":22568,"ımı":22569,"ãģĻãĤĭ":22570,"ĵ¤ìĿĢ":22571,"Ġlabour":22572,"ossen":22573,"ĠPun":22574,"rif":22575,"Ġdoses":22576,"Ġoperates":22577,"илли":22578,"Ġjaar":22579,"staw":22580,"ĠìĤ¬ëŀij":22581,"Ġatm":22582,"Ġprotects":22583,"Ġimped":22584,"HO":22585,"Ġcima":22586,"Ġtoch":22587,"abis":22588,"Ġsendo":22589,"laus":22590,"Ġcurl":22591,"ĠNum":22592,"Ġsponsors":22593,"Ġdébut":22594,"ĠAlexa":22595,"ĠBür":22596,"ĠAmer":22597,"Ġcope":22598,"Ġизв":22599,"jal":22600,"Ġ1995":22601,"apat":22602,"resse":22603,"ĠPrize":22604,"ĠClaire":22605,"ĠBrandon":22606,"Ġwszystko":22607,"Ġvalued":22608,"à¸Ļะ":22609,"Ġsect":22610,"Ġsecretly":22611,"Ġdiamonds":22612,"ĠEvan":22613,"ĠRPG":22614,"ãģ«ãģª":22615,"ĪëıĦ":22616,"ĠUniversal":22617,"Ġdoubts":22618,"ĠPin":22619,"wiÄħz":22620,"ļ©":22621,"Ġalbo":22622,"Ġbraucht":22623,"AUL":22624,"ĠMobile":22625,"grades":22626,"Ġschem":22627,"why":22628,"ĠNicht":22629,"pi":22630,"gle":22631,"Ġchorus":22632,"Ġgly":22633,"Ġreinforce":22634,"Ġmuff":22635,"ĠShen":22636,"ĠHola":22637,"Ñĥг":22638,"videmment":22639,"vial":22640,"acious":22641,"laimed":22642,"ĠRico":22643,"Ġvegg":22644,"Ġillustration":22645,"ĠButter":22646,"owad":22647,"Ġeux":22648,"Ġenfants":22649,"ĠLeader":22650,"ĠVillage":22651,"etically":22652,"ÙĨÙĬ":22653,"Ġstew":22654,"Ġsurprises":22655,"Ġcue":22656,"ĠGrandma":22657,"ĠCelsius":22658,"ĠRicht":22659,"enc":22660,"Ġpetition":22661,"Ġherb":22662,"Ġwicked":22663,"Ġschle":22664,"ocaly":22665,"Ġtransf":22666,"Ġtokens":22667,"ĠGray":22668,"ĠBBC":22669,"IK":22670,"Ġ1500":22671,"zn":22672,"ĠNev":22673,"Ġkoy":22674,"Ġzar":22675,"Ġbullshit":22676,"ĠColombia":22677,"ulative":22678,"Ġwidespread":22679,"yect":22680,"kit":22681,"Ġempresa":22682,"Ġnour":22683,"Ġburns":22684,"atin":22685,"aired":22686,"Ġrevolutionary":22687,"ĠгодÑĥ":22688,"ĠLogan":22689,"Ġ1996":22690,"ĠGraham":22691,"reb":22692,"ĠNHS":22693,"æľĽ":22694,"Ġcostumes":22695,"Ġnawet":22696,"Ġlovers":22697,"ĠLucy":22698,"ĠIndigenous":22699,"íķĺ기":22700,"Ġimmunity":22701,"¥´ë":22702,"uito":22703,"Ġexcessive":22704,"Ġdonations":22705,"Ġ×Ķר":22706,"Ġ첫":22707,"éīĦ":22708,"Ġdrying":22709,"melon":22710,"Ġsurveys":22711,"Ġ무ìĬ¨":22712,"風":22713,"aaa":22714,"Ġprobe":22715,"ancial":22716,"Ġlouder":22717,"Ġhotels":22718,"Ã¼ÄŁ":22719,"agner":22720,"Ġorigins":22721,"Ġë§Īì§Ģë§ī":22722,"Ġ**":22723,"Ġstrangers":22724,"ĠHaus":22725,"comed":22726,"Ġanthrop":22727,"Ġuso":22728,"ĠìķĦì§ģ":22729,"ĠYuan":22730,"ĠíķĦìļĶ":22731,"pler":22732,"ressive":22733,"Ġspraw":22734,"ĠStew":22735,"Ġ1994":22736,"Ġelders":22737,"Ġmeinen":22738,"Ġjunt":22739,"Ġacoust":22740,"ĠWohn":22741,"Ġbananas":22742,"Ġprojection":22743,"ĠStick":22744,"legt":22745,"speed":22746,"ĠcÅ©ng":22747,"ĠWort":22748,"ĠBaltimore":22749,"ĠÑĨел":22750,"Ġdunno":22751,"å¼·":22752,"?,":22753,"ãĥīãĥ³":22754,"ĠLocal":22755,"osto":22756,"ÐŃ":22757,"ода":22758,"ĠPortuguese":22759,"Ġtheirs":22760,"Ġdém":22761,"åı¦":22762,"Ġdrauf":22763,"ĠBuddhist":22764,"erta":22765,"Ge":22766,"Ġcarrot":22767,"ĠWonderful":22768,"Ġsoak":22769,"Ġchairman":22770,"ggi":22771,"ICA":22772,"fried":22773,"Ġflick":22774,"ĠThroughout":22775,"Ġìļ°ë":22776,"Ġcough":22777,"Ġfluffy":22778,"school":22779,"Ġripped":22780,"--------":22781,"ĠZukunft":22782,"Ġнеб":22783,"Ġsto":22784,"ĠBO":22785,"pent":22786,"ĠLawrence":22787,"ÏīÏĤ":22788,"sticks":22789,"ĠEins":22790,"ĠÑĢÑĭ":22791,"ĠStrong":22792,"Ġcaramel":22793,"Ġspite":22794,"azar":22795,"éĥ½æĺ¯":22796,"Ġcritically":22797,"Ġobra":22798,"owitz":22799,"ĠZone":22800,"ĠÑĢек":22801,"Ġsug":22802,"arded":22803,"Ġgì":22804,"ffentlich":22805,"anche":22806,"ØŁ":22807,"astically":22808,"ìĿ¼ë":22809,"лав":22810,"Ġsimplest":22811,"ĠFriend":22812,"Ġquello":22813,"Ġambition":22814,"Ġabbiamo":22815,"åºķ":22816,"ĠÑĦоÑĢм":22817,"ĠEssa":22818,"Ġeducators":22819,"Ġstatistical":22820,"éĢĻéĤĬ":22821,"Ġchanger":22822,"Ġatau":22823,"étais":22824,"ĠShakespeare":22825,"ëIJĺ":22826,"Ġtriggers":22827,"Ġrealiz":22828,"Ġcelui":22829,"wheel":22830,"Ġloyalty":22831,"Ġscreams":22832,"kehr":22833,"ĠMega":22834,"east":22835,"Ġtops":22836,"ĠTotally":22837,"ountain":22838,"lord":22839,"Ġviolation":22840,"ĠGA":22841,"Ġnicer":22842,"ĠFresh":22843,"ĠMelissa":22844,"function":22845,"Ġrape":22846,"Ġexceptions":22847,"Ġsilicon":22848,"Ġliberty":22849,"Ġhouseholds":22850,"ãģįãģ¾ãģĻ":22851,"ĠCA":22852,"ĠÐŀб":22853,"Ġlib":22854,"ŀĮ":22855,"cific":22856,"Ġtropical":22857,"Ġinvestigating":22858,"HD":22859,"Ġadapter":22860,"ĠPitt":22861,"ancia":22862,"ĠShell":22863,"friendly":22864,"Ġconclusions":22865,"Ġturtle":22866,"Ġdecomp":22867,"Ġanimations":22868,"ĠÑģек":22869,"insi":22870,"Ġretention":22871,"kie":22872,"Ġinjection":22873,"ĠMadison":22874,"ì°°":22875,"Ġvient":22876,"Ġvaried":22877,"Ġviolin":22878,"ĠBil":22879,"Ġluckily":22880,"Ġhtt":22881,"lä":22882,"Ġranch":22883,"çľĭçľĭ":22884,"Ġsólo":22885,"ìķħ":22886,"ĠDerek":22887,"ĠScripture":22888,"оÑĢа":22889,"Ġclassrooms":22890,"avil":22891,"formed":22892,"Ġbeforehand":22893,"ĠGem":22894,"prech":22895,"Ġlin":22896,"Ġgreens":22897,"ÑĨев":22898,"ĠMercedes":22899,"Ġdrought":22900,"gasps":22901,"Ġabortion":22902,"Ġterribly":22903,"Ġsposób":22904,"Ġsecured":22905,"Ġatrás":22906,"Ġwavelength":22907,"Ġgrains":22908,"ective":22909,"Ġspacecraft":22910,"Ġtours":22911,"Ġprofes":22912,"Ġsurgeon":22913,"ĠPie":22914,"Ġideally":22915,"arner":22916,"UP":22917,"opard":22918,"sce":22919,"Ġimmense":22920,"ĠOrt":22921,"roller":22922,"ĠDallas":22923,"ĠNicholas":22924,"Ġsulf":22925,"ĠToyota":22926,"Ġquantities":22927,"ceans":22928,"Ġcui":22929,"ança":22930,"ĠCAN":22931,"itzerland":22932,"åĦ¿":22933,"Ġzou":22934,"ĠCyber":22935,"legen":22936,"ĠInit":22937,"edu":22938,"Ġapert":22939,"Ġadjac":22940,"ouv":22941,"èĢĮä¸Ķ":22942,"rs":22943,"Ġcabbage":22944,"Ġwheelchair":22945,"inyl":22946,"ĠDynam":22947,"ĠìķĦëĭĪëĿ¼":22948,"Ġling":22949,"hl":22950,"ĠмогÑĥ":22951,"Ġcrisp":22952,"Ġmij":22953,"Ġdug":22954,"nin":22955,"Ġbloss":22956,"Ġbelonging":22957,"Ġloudly":22958,"Ġminerals":22959,"Ġconcluded":22960,"Ġsearched":22961,"96":22962,"ĠMeet":22963,"ĠSEO":22964,"ĠСк":22965,"ĠHob":22966,"otta":22967,"Ġpropaganda":22968,"Ġcinnamon":22969,"Ġhunter":22970,"Ġgemeins":22971,"Ġsculpture":22972,"ulsion":22973,"Ġväl":22974,"Ġmagazines":22975,"Ġcontroversy":22976,"ä¸Ģ樣":22977,"Ġsequences":22978,"ãģĦãĤĭ":22979,"ĠíļĮ":22980,"Ġdeleted":22981,"使":22982,"IJëıĦ":22983,"Ġvarying":22984,"ãĥĨ":22985,"Ġmounting":22986,"Ġaffair":22987,"Ġpathways":22988,"æ¦":22989,"Ġdigo":22990,"亮":22991,"Ġдок":22992,"Alex":22993,"Ġtobacco":22994,"ĠCV":22995,"Ġbothered":22996,"Ġambient":22997,"inky":22998,"ĠSL":22999,"Ġhates":23000,"Ġjeżeli":23001,"Ġcongreg":23002,"Ġelas":23003,"Ġdeuts":23004,"ĠStudios":23005,"chÄĻ":23006,"Ġdocumented":23007,"ĠCruz":23008,"ĠLen":23009,"ĠDouglas":23010,"ĠPortugal":23011,"enti":23012,"Ġspouse":23013,"Ġanalys":23014,"avia":23015,"Ġedited":23016,"Ġlại":23017,"built":23018,"Ġville":23019,"adora":23020,"Ġbracelet":23021,"Ġsushi":23022,"Ġpm":23023,"Ġtrails":23024,"Ġlug":23025,"Ġöver":23026,"Ġsorrow":23027,"Ġcolony":23028,"adox":23029,"Ġserie":23030,"anyak":23031,"ĠØ·":23032,"ĠGulf":23033,"æĺ¯ä¸įæĺ¯":23034,"ĠPV":23035,"ĠSamuel":23036,"ĠKit":23037,"ĠRal":23038,"ontin":23039,"expl":23040,"Ġentries":23041,"Ġactivists":23042,"Ps":23043,"Ġsant":23044,"ĠÑĤоÑĩ":23045,"ĠBruno":23046,"keley":23047,"Ġtutto":23048,"éĶ":23049,"Ġvintage":23050,"Ġterrified":23051,"ĠпоÑħ":23052,"usive":23053,"owers":23054,"айÑĤ":23055,"ëıĻ":23056,"Ġtwisted":23057,"ĠThought":23058,"Ġtah":23059,"Ġshrink":23060,"Ġsheer":23061,"lit":23062,"Ġdalam":23063,"Ġdib":23064,"Ġvard":23065,"owane":23066,"Ġdobr":23067,"ĠRena":23068,"ĠÑģвоÑİ":23069,"ĠpaÃŃses":23070,"ĠEra":23071,"ãģ®ãģ§":23072,"ĠBUT":23073,"sighs":23074,"Ġ그거":23075,"ĠgroÃŁen":23076,"Ġ빨리":23077,"Ġnerves":23078,"Ġconstit":23079,"Ġpreocup":23080,"ĠGay":23081,"ĠXu":23082,"keeper":23083,"heure":23084,"..)":23085,"ĠCalm":23086,"ĠUnidos":23087,"ĠìĿ´ê²ĥ":23088,"ĠAqui":23089,"ĠìłľìĿ¼":23090,"dır":23091,"ì¦ĺ":23092,"your":23093,"ĠÑįÑĤим":23094,"2020":23095,"Ġrund":23096,"ĠHO":23097,"ĠCatherine":23098,"ieli":23099,"Ġfusion":23100,"Ġideology":23101,"Ġforam":23102,"shaped":23103,"ĠíĽĦë":23104,"Ġwt":23105,"Ġretr":23106,"Ġpréc":23107,"Ġê°ij":23108,"Ġopenly":23109,"vity":23110,"구ìļĶ":23111,"Ġobstacle":23112,"Ġboo":23113,"Ġseiner":23114,"icorn":23115,"Ġeigenlijk":23116,"Ġheader":23117,"aremos":23118,"Ġsofter":23119,"ĠÐŁÐ¾Ð´":23120,"Ġprejud":23121,"Ġdefines":23122,"ierte":23123,"Ġblending":23124,"Ġbelievers":23125,"ĠWochen":23126,"Ġникак":23127,"ĠÐļогда":23128,"ĠTypically":23129,"Ġíģ¬":23130,"管":23131,"cios":23132,"Ġmissiles":23133,"Ġsponge":23134,"ĠKitchen":23135,"Ġtren":23136,"ningen":23137,"Ġscrap":23138,"Ġserait":23139,"´ìł":23140,"ç¹":23141,"Ġë°ĺë":23142,"Ġrestored":23143,"ĠprzykÅĤad":23144,"ĠKubernetes":23145,"Ġsait":23146,"Ġuw":23147,"Ġenabling":23148,"Ġtravers":23149,"amps":23150,"åıĹ":23151,"ĠOMG":23152,"ensor":23153,"Ġzosta":23154,"Ġpronounced":23155,"Ang":23156,"normal":23157,"Ġeconomies":23158,"tin":23159,"ĠChampion":23160,"izen":23161,"Ġarbeiten":23162,"ĠGospel":23163,"ĠZu":23164,"nga":23165,"Ġliteracy":23166,"ĠMans":23167,"Ġcirculation":23168,"Ġadap":23169,"ĠTotal":23170,"Ġmereka":23171,"Ġolacak":23172,"ÑģÑĤаÑĤи":23173,"Jack":23174,"Ġmund":23175,"Ġthief":23176,"bies":23177,"Ġê²ģ":23178,"aque":23179,"ĠÚ©ÛĮ":23180,"ĠScar":23181,"å²":23182,"Ġabol":23183,"Ġdevote":23184,"Ġ01":23185,"Ġsitten":23186,"ĠVisual":23187,"week":23188,"some":23189,"ingt":23190,"Ġjournalism":23191,"ĠHir":23192,"ĠBachelor":23193,"inery":23194,"ÃľND":23195,"ãĥŁ":23196,"ç»Ļ":23197,"Ġcoloring":23198,"ĠCrist":23199,"Ġcelebrities":23200,"ĠÑĩиÑģ":23201,"ĠCrit":23202,"Ġdifferentiate":23203,"ĠÐľÐ½Ðµ":23204,"elim":23205,"Ġseafood":23206,"Ġalgumas":23207,"otherapy":23208,"æĪ°":23209,"Ġglaub":23210,"Ġarbitrary":23211,"gens":23212,"ĠбÑĥдем":23213,"Ġtav":23214,"Ġcreamy":23215,"ĠCountry":23216,"añ":23217,"меÑĤ":23218,"Ġhinter":23219,"Ġmism":23220,"Ġillustrate":23221,"ÃľNDNIS":23222,"Ġdecreasing":23223,"Ġweniger":23224,"AKI":23225,"ixon":23226,"Ġней":23227,"Ġfatto":23228,"Ġnerd":23229,"çł":23230,"Ġbitte":23231,"Per":23232,"Ġtane":23233,"Ġgöz":23234,"Ġforte":23235,"ĠEy":23236,"ĠнавеÑĢ":23237,"被":23238,"ĠWordPress":23239,"ĠMis":23240,"ů":23241,"zäh":23242,"Ġintéress":23243,"osaurs":23244,"ĠFalls":23245,"Ġnessa":23246,"97":23247,"Ġmuseums":23248,"Ġcorresponds":23249,"Ġsings":23250,"four":23251,"Ġeder":23252,"ĠCommunist":23253,"oa":23254,"nek":23255,"ĠWHO":23256,"Ġcorpo":23257,"Ġmessing":23258,"ÏĦαι":23259,"Ġbrushes":23260,"Ġbisc":23261,"ĠArbeits":23262,"ĠTax":23263,"Ġsele":23264,"Ġflags":23265,"oupe":23266,"Ġanticipated":23267,"ãĥij":23268,"ĠNad":23269,"Ġpoured":23270,"Ġml":23271,"Ġllama":23272,"Ġvisualize":23273,"Ġlisteners":23274,"ÙĦÙĥ":23275,"alten":23276,"Michael":23277,"Ġcosì":23278,"Õ¡Õ":23279,"opus":23280,"Ġíķ´ì£¼":23281,"Ġhike":23282,"ĠAttorney":23283,"ĠHillary":23284,"uded":23285,"Ġíķĺì§Ģë§Į":23286,"Ġdove":23287,"Ġstorms":23288,"акÑģ":23289,"Ġdoctrine":23290,"Ġhex":23291,"iks":23292,"noÅĽÄĩ":23293,"Ġscripts":23294,"Ġδεν":23295,"ĠÑįÑĤиÑħ":23296,"ĠÐĨ":23297,"aber":23298,"ĠVas":23299,"Ġcentimeters":23300,"×ŀ×Ķ":23301,"ниб":23302,"Ġriders":23303,"ĠTrib":23304,"åĮħ":23305,"Ġtakże":23306,"Ġnoun":23307,"Ġicons":23308,"Ġsolely":23309,"minded":23310,"Ġdispon":23311,"ĠSwitzerland":23312,"Ġclusters":23313,"Ġqueda":23314,"ailing":23315,"Ġmanga":23316,"Ġ68":23317,"ĦĪ":23318,"Ġtet":23319,"gins":23320,"haus":23321,"空":23322,"å·¥":23323,"ĠOP":23324,"oted":23325,"Ġnouveau":23326,"ALLY":23327,"ÙĪد":23328,"òn":23329,"Ġmortality":23330,"ĠGitHub":23331,"drop":23332,"Ġdisgu":23333,"Ġrecom":23334,"Ġlocals":23335,"Ġhomemade":23336,"amba":23337,"Ġpronunciation":23338,"Ġalphabet":23339,"анÑĮ":23340,"owany":23341,"iras":23342,"idency":23343,"OME":23344,"ĠÑĢаÑģÑģ":23345,"arak":23346,"viamente":23347,"Ġnonprofit":23348,"ĠYouTuber":23349,"Ġparenth":23350,"ĠBoo":23351,"vat":23352,"ĠStir":23353,"Ġprecip":23354,"Ġants":23355,"Ġally":23356,"ĠMaori":23357,"ĠëĮĢíķľ":23358,"åı¯æĺ¯":23359,"ogene":23360,"ĠLabour":23361,"arette":23362,"Ġrecycling":23363,"ensa":23364,"Ġpursuit":23365,"Ġsak":23366,"ĠÐĹдеÑģÑĮ":23367,"Ġtolerance":23368,"Ġsaat":23369,"Ġclicked":23370,"âĻ¥":23371,"Ġfacebook":23372,"ĠInto":23373,"Ġincentives":23374,"기ëĬĶ":23375,"ĠDennis":23376,"ĠWik":23377,"gesch":23378,"à¹Ģà¸Ľ":23379,"ĠÏĢα":23380,"ĠWhoo":23381,"Ġrounded":23382,"Ġdope":23383,"Ġcapturing":23384,"ĠWarri":23385,"Ġcivilian":23386,"Ġcharming":23387,"Ġesas":23388,"Ġsustained":23389,"Ġleaning":23390,"Ġabundance":23391,"ÃŃlia":23392,"алÑĮнÑĭй":23393,"Ġphải":23394,"acja":23395,"Ġê°ĻìķĦ":23396,"activ":23397,"าย":23398,"Ġ97":23399,"Ġмой":23400,"cro":23401,"ĠJackie":23402,"ittees":23403,"bracht":23404,"ulent":23405,"Ġìłľë":23406,"Ġplugin":23407,"vantage":23408,"party":23409,"Ġsuas":23410,"Ġante":23411,"Ñĥл":23412,"ÐĿÐIJ":23413,"æĤ¨":23414,"ĠÏĥÏħ":23415,"Ġmeth":23416,"Ġenthusiasm":23417,"ÑıÑĤÑģÑı":23418,"íĻĶë":23419,"Ġsynthetic":23420,"Ġseasoning":23421,"ĠLost":23422,"onomy":23423,"ĠSpark":23424,"Ġbure":23425,"Ġassured":23426,"Ġimagin":23427,"Ġcarro":23428,"Sha":23429,"Äħt":23430,"нÑĥÑĤÑĮ":23431,"ática":23432,"TY":23433,"Ġkern":23434,"ĠBrazilian":23435,"ð":23436,"Ġsuspended":23437,"ĠCarib":23438,"Ġbizim":23439,"ĠOliver":23440,"ãģ¶":23441,"Tom":23442,"Ġплан":23443,"Ġnope":23444,"omething":23445,"Ġbeiden":23446,"ÑĨен":23447,"Ġfluct":23448,"ĠμοÏħ":23449,"Ġfathers":23450,"ĠBlake":23451,"Ġupward":23452,"ĠDash":23453,"ĠLil":23454,"ĠìĪĺëıĦ":23455,"Ġrevelation":23456,"Ġelevated":23457,"ĠJiang":23458,"LED":23459,"ĠThompson":23460,"ĠмогÑĥÑĤ":23461,"ÑģÑĤÑĢÑĥ":23462,"ifiers":23463,"Ġcomeback":23464,"Ġbuyers":23465,"ê²°":23466,"ĠSales":23467,"иÑĩе":23468,"ciones":23469,"Ġwhistle":23470,"Ġdull":23471,"LEX":23472,"Ġíķĺê²łìĬµëĭĪëĭ¤":23473,"Ġcriminals":23474,"Ġdescent":23475,"ipple":23476,"ması":23477,"Ġfoolish":23478,"ĠдÑĥмаÑİ":23479,"tar":23480,"Ġmango":23481,"Ġchoreography":23482,"Matt":23483,"Ġterritor":23484,"Ġacaba":23485,"ĠEinstein":23486,"ĠIBM":23487,"ĠMetal":23488,"ĠCrystal":23489,"Ġrah":23490,"Ġfoul":23491,"ĠIslands":23492,"Ġintact":23493,"ĠRail":23494,".:":23495,"Ġacá":23496,"ĠпÑĢоп":23497,"еÑĢе":23498,"ĠWrite":23499,"hehe":23500,"ĠFO":23501,"ĠÏĥÏĦη":23502,"Ġdoin":23503,"held":23504,"Ġappropriately":23505,"Ġdeliberately":23506,"Ġarchive":23507,"Ġgiveaway":23508,"ãģĵãģĵ":23509,"Ġfinale":23510,"лаÑģ":23511,"ено":23512,"Æ¡n":23513,"æ£Ĵ":23514,"ogo":23515,"çī©":23516,"ĠAudience":23517,"ãħł":23518,"Ġsubur":23519,"Ġheadache":23520,"аннÑı":23521,"ĠWitch":23522,"ĠSwedish":23523,"ĠBI":23524,"Ġerase":23525,"Ġkhi":23526,"Ġcommentary":23527,"ĠSultan":23528,"íĥĿ":23529,"ĠLeban":23530,"Ġë³´ìĭ":23531,"ĠPam":23532,"pekt":23533,"month":23534,"Ġgrounded":23535,"ê¾":23536,"ĠÅŁekilde":23537,"250":23538,"ĠSCH":23539,"ioso":23540,"Ġinaug":23541,"heimer":23542,"Ġreflecting":23543,"ĠRuth":23544,"ĠOil":23545,"Ġtrouver":23546,"uep":23547,"..]":23548,"ĠìŀĪë":23549,"Ġolha":23550,"Ġreasonably":23551,"Ġglitch":23552,"UB":23553,"ĠGran":23554,"Ġadalah":23555,"Ġlent":23556,"را":23557,"Ġtraction":23558,"Ġadjusting":23559,"´¤":23560,"нибÑĥдÑĮ":23561,"Ġдоп":23562,"Ġstretched":23563,"Ġort":23564,"Ġcosine":23565,"viol":23566,"Ġìħ":23567,"cir":23568,"Ġbastard":23569,"ä¸ĩ":23570,"ĠÑħод":23571,"Ġquier":23572,"Ġpressures":23573,"ĠAnh":23574,"å¹¾":23575,"Ġelles":23576,"ĠдÑĢÑĥз":23577,"ĠможеÑĤе":23578,"Ġchá»":23579,"ĠMé":23580,"ök":23581,"ầu":23582,"ìłĪ":23583,"zin":23584,"Ġcaution":23585,"iban":23586,"Ġjudging":23587,"ÑĥÑİÑĤ":23588,"Ġbaj":23589,"ĠСейÑĩаÑģ":23590,"ĠPoor":23591,"ĠNazi":23592,"Ġupbeat":23593,"yang":23594,"Ġweekends":23595,"ĠEssentially":23596,"Ġoluyor":23597,"Ġspatial":23598,"acker":23599,"Ġseller":23600,"Ġ×IJ×ķת":23601,"ij׾":23602,"Ġvivid":23603,"ĠBond":23604,"ê¶Į":23605,"iskt":23606,"ãĤµ":23607,"Ġgoat":23608,"driver":23609,"Ġmug":23610,"ictional":23611,"Ġallt":23612,"ĠIniti":23613,"ĠRand":23614,"Ġfinishes":23615,"Ġê°Ī":23616,"Ġvitam":23617,"Ġteenagers":23618,"ĠMorris":23619,"ì¤Ħ":23620,"ĠOri":23621,"iya":23622,"Ġmyös":23623,"Step":23624,"ĠKre":23625,"辦":23626,"Ġdinosaur":23627,"Ġëªĩ":23628,"affe":23629,"ĠëIJ©ëĭĪëĭ¤":23630,"Ġzeg":23631,"åĪĩ":23632,"ĠManhattan":23633,"Ġsujet":23634,"uelle":23635,"stoff":23636,"Ġdür":23637,"Ġsubmar":23638,"eses":23639,"Ġaquele":23640,"Ġnou":23641,"ĠFaith":23642,"tz":23643,"ĠÑĤомÑĥ":23644,"aceut":23645,"liers":23646,"Ġbandwidth":23647,"Æ°á»Ŀ":23648,"Ġrespective":23649,"ĠAve":23650,"Ġspreadshe":23651,"ĠSent":23652,"icamente":23653,"Ġinfra":23654,"Ġlearners":23655,"Ġà®ī":23656,"aiah":23657,"renal":23658,"Ġmustard":23659,"Ġhabt":23660,"çĥ":23661,"ĠQué":23662,"Ġanalyzing":23663,"æ¯ı":23664,"Ġsolic":23665,"Ġ×Ķ×ķ×IJ":23666,"Ġcausa":23667,"Ġwelcomed":23668,"ĠSuccess":23669,"Ġfacile":23670,"ĠÐŁÐ¾ÑĤомÑĥ":23671,"schein":23672,"Ġfetch":23673,"Ġstrat":23674,"ĠÑģÑĤоиÑĤ":23675,"ìĹIJìĦľëĬĶ":23676,"ĠÑģпоÑģоб":23677,"mam":23678,"ĠserÃŃa":23679,"naments":23680,"writer":23681,"Ġconsulting":23682,"íĺĢ":23683,"ĠBerkeley":23684,"eu":23685,"asive":23686,"UU":23687,"ĠAnalyt":23688,"Ġsubmission":23689,"Ġmagnificent":23690,"enza":23691,"Ġecon":23692,"Ġprofiles":23693,"Ġincar":23694,"Ab":23695,"ĠNun":23696,"Ġhic":23697,"screaming":23698,"Ġresilient":23699,"åĪ©":23700,"grund":23701,"Ġconcur":23702,"Ġbereits":23703,"LD":23704,"Ġnurt":23705,"ìī":23706,"Ġfeast":23707,"Ġencuent":23708,"ĠMichel":23709,"Ġsuprem":23710,"\"]":23711,"Ġfeeds":23712,"ĠKollegen":23713,"isser":23714,"ĠFeng":23715,"ĠWen":23716,"mun":23717,"ĠtenÃŃa":23718,"ĠWrest":23719,"Ġìĺ¤ëĬĺìĿĢ":23720,"Ġstead":23721,"Ġrestoration":23722,"Ġdonated":23723,"Ġdels":23724,"Ġcensus":23725,"Ġdesperately":23726,"worthy":23727,"HE":23728,"ĠSpa":23729,"ĠBryan":23730,"Ġhj":23731,"ĠRaw":23732,"ìķĦë":23733,"ĠCamera":23734,"Ġzien":23735,"Ġstyl":23736,"ĠTW":23737,"ĠCheese":23738,"borne":23739,"Ġobl":23740,"ĠAlready":23741,"Ġunstable":23742,"Ġflames":23743,"post":23744,"Ha":23745,"romagn":23746,"ĠìĹĦë§Ī":23747,"dest":23748,"Ġkolej":23749,"Ġtemporarily":23750,"Ġdetermining":23751,"ĠGlass":23752,"ÑĢон":23753,"olan":23754,"Ġdominated":23755,"åĮĸ":23756,"____":23757,"ĠÙĩذا":23758,"ĠDana":23759,"Ġdinheiro":23760,"aqu":23761,"민":23762,"ĠÃłs":23763,"ĠJoey":23764,"ĠGriff":23765,"Ġattain":23766,"Ġtransitions":23767,"ĠLiterally":23768,"енд":23769,"ĠHaven":23770,"Ġgrabbing":23771,"Ġcrystals":23772,"ĠFourth":23773,"Ġcandles":23774,"ĠÑģлÑĥÑĩа":23775,"rico":23776,"Ġ5000":23777,"etto":23778,"Ġundo":23779,"Ġkto":23780,"Ġdivert":23781,"Ġchir":23782,"Ġpersec":23783,"Ġhiking":23784,"Ġannouncements":23785,"çĶ±":23786,"зÑĭ":23787,"Ġauc":23788,"Ġsystemic":23789,"ĠRM":23790,"Ïĥα":23791,"ĠÐĶж":23792,"Ġyar":23793,"ĠWard":23794,"Ġpissed":23795,"Ġcarn":23796,"Ġautonomous":23797,"ãħİãħİ":23798,"sover":23799,"æ²ĴéĮ¯":23800,"å¾Ī好":23801,"Ġreflex":23802,"Ġgardens":23803,"Ġdated":23804,"ì±":23805,"amiÄĻ":23806,"Ġcontinuity":23807,"Ġcitizenship":23808,"Ġschwer":23809,"Ġzak":23810,"table":23811,"ĠÑģÑĩ":23812,"è§ģ":23813,"ĠÏĥε":23814,"Ġgenerates":23815,"구ëĤĺ":23816,"öh":23817,"óm":23818,"alam":23819,"ĠJUDY":23820,"ĠBug":23821,"Ġãģ¦":23822,"Ġdrones":23823,"Ġágua":23824,"acaks":23825,"æļ":23826,"ĠÐļон":23827,"×ĸ×Ķ":23828,"Ġstrive":23829,"ĠAltern":23830,"Ġnearest":23831,"Ġproyect":23832,"tera":23833,"ĠASHLEY":23834,"Ġworm":23835,"Ġreplay":23836,"Ġtara":23837,"ĠIndians":23838,"ãĤ°":23839,"icaid":23840,"ĠìĪľ":23841,"Ġappealing":23842,"ĠWes":23843,"Ġmentions":23844,"Ġделе":23845,"Ġkw":23846,"Ġfragile":23847,"isz":23848,"ków":23849,"hang":23850,"color":23851,"Ġpresidente":23852,"87":23853,"еÑĦ":23854,"çĪ¸":23855,"Ġдобав":23856,"ĠNelson":23857,"áfic":23858,"ĠMICHAEL":23859,"Ġmechanic":23860,"Ġmetres":23861,"ĠoczywiÅĽcie":23862,"ĠCind":23863,"ĠogsÃ¥":23864,"Ġlandsca":23865,"ACE":23866,"Ġheadlines":23867,"Ġcatalyst":23868,"ĠCatch":23869,"inkles":23870,"Ġpills":23871,"ordo":23872,"Ġimmigrant":23873,"Ġexamination":23874,"Ġaccidents":23875,"zÄħd":23876,"Ġquiere":23877,"Ġnella":23878,"Ġ67":23879,"Ġpassa":23880,"Ġsuperfic":23881,"istor":23882,"Ġnov":23883,"ëĭµ":23884,"Ġmandate":23885,"isons":23886,"ĠVirtual":23887,"Ġselber":23888,"Ġcounseling":23889,"ĠNBA":23890,"Ġsept":23891,"Ġbeliever":23892,"Ġmarvel":23893,"ĠIntegr":23894,"ĠмÑĸ":23895,"Ġorph":23896,"Ġbackward":23897,"ĠGeneration":23898,"ĠPict":23899,"ĠÑĤоÑĤ":23900,"Ġtapi":23901,"prochen":23902,"Ġhallway":23903,"hte":23904,"ĠÛģÛĴ":23905,"ĠZum":23906,"èĢģ師":23907,"achment":23908,"iquer":23909,"folg":23910,"ĠEddie":23911,"ĠKil":23912,"Ġwellness":23913,"stock":23914,"è¼ĥ":23915,"Ġkaç":23916,"Ġterrorism":23917,"Ġpointer":23918,"Of":23919,"heric":23920,"ĠUltimately":23921,"Ġmeses":23922,"ĠTrade":23923,"Ġpint":23924,"Ġtuition":23925,"Ġdisagre":23926,"Ġê²ĮìŀĦ":23927,"Ġmanuscript":23928,"Ġroomm":23929,"Ġoutputs":23930,"еÑĨи":23931,"Ġries":23932,"Ġsalud":23933,"otzdem":23934,"Ġmasses":23935,"ĠbyÅĤa":23936,"Ġclearing":23937,"Ġdiscourse":23938,"atson":23939,"Ġfolded":23940,"ĠJar":23941,"ÙĦÙī":23942,"900":23943,"ĠÑĥÑģп":23944,"Ġprophecy":23945,"Ġinterfere":23946,"иÑħод":23947,"à¹Į":23948,"Ġthri":23949,"Ġ×ŀש":23950,"Ġlazım":23951,"Ġ1992":23952,"Ġfuturo":23953,"Ġlocking":23954,"Ġembargo":23955,"ĠNeither":23956,"ivamente":23957,"ĠmÃ¥ste":23958,"Ġmik":23959,"Ġcollector":23960,"екоÑĤоÑĢ":23961,"ĠGand":23962,"Ġsentir":23963,"ĠMight":23964,"å¡Ķ":23965,"Ġganzen":23966,"UC":23967,"Ġrelating":23968,"SD":23969,"Ġmosquito":23970,"GR":23971,"Ġhollow":23972,"âĺħ":23973,"ĠWalker":23974,"Ġaffiliate":23975,"Ġduplicate":23976,"нем":23977,"Ġgrape":23978,"ĠOrganization":23979,"Ġsynt":23980,"Joe":23981,"Ġgeg":23982,"Ġrevealing":23983,"ĠEthan":23984,"outer":23985,"Ġyay":23986,"é«Ķ":23987,"лаÑĢ":23988,"Ġreportedly":23989,"Ġihrer":23990,"Ġrecognise":23991,"Ġbumper":23992,"ĠRandy":23993,"ĠVenus":23994,"tles":23995,"Ġappetite":23996,"Ġglucose":23997,"Ġchodzi":23998,"ĠFurthermore":23999,"tir":24000,"Ġconta":24001,"Ġintuition":24002,"Ġaltitude":24003,"Ġchunks":24004,"ĠJoshua":24005,"ıģım":24006,"rylic":24007,"leans":24008,"ĠíĶ¼ë":24009,"LL":24010,"Que":24011,"Ġgor":24012,"ĠзнаÑĩиÑĤ":24013,"Ġpoems":24014,"Ġexcel":24015,"Ġexplored":24016,"Ġpopul":24017,"Ġincluso":24018,"stä":24019,"ĠGavin":24020,"alling":24021,"ĠÏĦον":24022,"é©":24023,"arbeit":24024,"ĠGas":24025,"Ġglorious":24026,"rieben":24027,"Ġspam":24028,"Ġindoor":24029,"Ġthrust":24030,"ĠAld":24031,"ĠPrior":24032,"Ġonboard":24033,"ãģłãģķãģĦ":24034,"oca":24035,"ASH":24036,"£ł":24037,"ĠChristine":24038,"Ġdrawer":24039,"Ġnoon":24040,"Ġìŀĺë":24041,"Ġpermanently":24042,"æ·±":24043,"ĠнапÑĢимеÑĢ":24044,"Ġpodcasts":24045,"erapeut":24046,"prit":24047,"Ġstainless":24048,"ĠÚ©ÛĴ":24049,"Ġfamilia":24050,"ĠÑĢазÑĢ":24051,"unto":24052,"ĠÑģÑĤол":24053,"Ġhä":24054,"ĠHai":24055,"ĠPB":24056,"izon":24057,"Ġkonnte":24058,"Ġbüyük":24059,"Ġutilizar":24060,"ÚĨ":24061,"Ġaquesta":24062,"Ġmixer":24063,"udent":24064,"лекÑģ":24065,"ÅĤu":24066,"ĠÑģиÑģÑĤем":24067,"ĠноÑĢм":24068,"Ġfatal":24069,"Ġconsiderations":24070,"Ġvalidation":24071,"Ġoli":24072,"ĠkardeÅŁ":24073,"ĠGLORIA":24074,"Ġpall":24075,"еÑģÑĤе":24076,"Ġrectang":24077,"Ġmedieval":24078,"allahi":24079,"asti":24080,"ĠSyrian":24081,"Ġshear":24082,"Ġdebug":24083,"ĠMai":24084,"Ġknocking":24085,"ĠLex":24086,"ardan":24087,"rov":24088,"Ġmemorial":24089,"æ°£":24090,"ooky":24091,"Ġstuffed":24092,"Ġpassé":24093,"Ġwig":24094,"Ĥł":24095,"Ġpróxima":24096,"Ġ1991":24097,"ĠмеждÑĥ":24098,"Ġnuestros":24099,"ĠBeast":24100,"Ġsmo":24101,"atched":24102,"ologia":24103,"Ġмод":24104,"Ġgee":24105,"Ġconceptual":24106,"Ġô":24107,"Ġdecreases":24108,"Ġqueries":24109,"олÑĮÑĪ":24110,"ĠApart":24111,"Ġexempl":24112,"å±±":24113,"Ġfled":24114,"ĠOFF":24115,"ggak":24116,"Ġbead":24117,"hir":24118,"lies":24119,"ĠClearly":24120,"ılar":24121,"Ġchess":24122,"Ġwhichever":24123,"Ġ96":24124,"ằ":24125,"Ġrespects":24126,"ĠмоÑĢ":24127,"Ġorganism":24128,"Ġgrandpa":24129,"ĠVie":24130,"è·Łä½ł":24131,"Ġflooding":24132,"Ġupgraded":24133,"ÑijÑĢ":24134,"Ġcheeks":24135,"Ġconquer":24136,"Ġstubborn":24137,"Ġpuzzles":24138,"Ġauction":24139,"Ġrelying":24140,"ĠPROF":24141,"ĠEsper":24142,"ĠÐľÐ£":24143,"Ġhype":24144,"Ġpossibil":24145,"Ġimprison":24146,"ĠErn":24147,"ìĹĪìĬµëĭĪëĭ¤":24148,"Ġenvie":24149,"Ġresurrection":24150,"ä¸įè¡Į":24151,"Ġsper":24152,"ĠVenezuela":24153,"som":24154,"Ġìŀłê¹":24155,"Ġnouvelle":24156,"Ġcloses":24157,"Ġ1940":24158,"Ġqua":24159,"ĠJared":24160,"ĠPir":24161,"Ġinde":24162,"Ġscrub":24163,"uku":24164,"Ġrequiring":24165,"Ġвами":24166,"Ġconsiderable":24167,"åIJĽ":24168,"ilia":24169,"Ġinne":24170,"Ġmeinem":24171,"Ġhardship":24172,"Ġtraps":24173,"roc":24174,"ĠìĦ¤ë":24175,"Ġresearching":24176,"ĠMargaret":24177,"Ġpenny":24178,"Ġbırak":24179,"Ñijл":24180,"Ġwool":24181,"Ġrhet":24182,"Ġflatten":24183,"çĩ":24184,"à¹Ģร":24185,"Ġpied":24186,"ĠChap":24187,"Ġunderm":24188,"Ġfret":24189,"Ġcrashed":24190,"ĠFrauen":24191,"Ø°Ùĩ":24192,"ivan":24193,"Ġliterary":24194,"latego":24195,"Ġspäter":24196,"Ġsimilarities":24197,"âĨ":24198,"ĠCoron":24199,"ĠCreek":24200,"Ġbosses":24201,"Ġaccompanied":24202,"Ġdebates":24203,"Ġassembled":24204,"ĠÃģ":24205,"ĠVai":24206,"Ġtract":24207,"Ġsimplement":24208,"ĠArin":24209,"Ġvulnerability":24210,"Ġhormone":24211,"IEL":24212,"OOK":24213,"Ġrelay":24214,"ĠAndrea":24215,"ril":24216,"Ġnecessity":24217,"aceutical":24218,"ÑİÑī":24219,"ousing":24220,"nahmen":24221,"Ġfootprint":24222,"map":24223,"ĠTier":24224,"annya":24225,"intend":24226,"åĸ®":24227,"å¢":24228,"Ġdecorate":24229,"Ġzombies":24230,"ĠHyd":24231,"ĠSuz":24232,"Ġcampuses":24233,"ĠEmb":24234,"Ġthrottle":24235,"Ġadmin":24236,"Ġoportun":24237,"Ġmirrors":24238,"Ġidentities":24239,"ĠClin":24240,"Ġë¹Ħë":24241,"á¹£":24242,"ĠOtt":24243,"Ġblues":24244,"Ġimpressions":24245,"-,":24246,"Ġvague":24247,"afe":24248,"Ġinferior":24249,"erald":24250,"Ġmedicines":24251,"Ġpregunta":24252,"osely":24253,"Ġtélé":24254,"ĠMonth":24255,"ĠLeaders":24256,"ĠEgyptian":24257,"Ġration":24258,"kers":24259,"heits":24260,"Ġrecht":24261,"Play":24262,"Ġeg":24263,"Ġpolls":24264,"ĠWOODR":24265,"Ġslots":24266,"jam":24267,"Both":24268,"ĠRat":24269,"ÑĢаж":24270,"ĠBright":24271,"ä¸Ģå®ļ":24272,"á»iji":24273,"urious":24274,"Ġsingers":24275,"Ġlogin":24276,"Ġtêm":24277,"lation":24278,"ĠMum":24279,"Æ°á»Ŀng":24280,"ĠEditor":24281,"åIJij":24282,"Ġinnovations":24283,"have":24284,"ĠSek":24285,"Ġweaker":24286,"ĠGob":24287,"After":24288,"´ì§Ģ":24289,"Ġë¬¸ìłľ":24290,"ãĥ¼ãĥ¼":24291,"Ġdisadvantage":24292,"確":24293,"Ġgaze":24294,"ĠMack":24295,"Ïģί":24296,"ĠKiss":24297,"ĠHolo":24298,"ĠBirth":24299,"izi":24300,"bab":24301,"ä¿Ŀ":24302,"ìĭľê³ł":24303,"деÑĢж":24304,"Ġsquat":24305,"кÑĥÑģ":24306,"uni":24307,"ĠComme":24308,"ĠWOODRUFF":24309,"ĠChampionship":24310,"Ġwelche":24311,"ĠYouth":24312,"zem":24313,"Ġodpow":24314,"Ġpersistent":24315,"rut":24316,"ìĶ©":24317,"íĸ¥":24318,"lair":24319,"iku":24320,"Ġvendor":24321,"Ġchúng":24322,"Ġfinanci":24323,"Ġoverly":24324,"âu":24325,"Ġgluten":24326,"Ġ1800":24327,"Ġdivisions":24328,"Ġciudad":24329,"Ġobed":24330,"Ġwarum":24331,"Ġeher":24332,"Ġelim":24333,"ĠÐĴо":24334,"Ġpeuvent":24335,"ĠWanna":24336,"Ġattendance":24337,"Ġassessments":24338,"ĠBog":24339,"Ġimagery":24340,"Ġcollectively":24341,"Ġinformal":24342,"ĠSchwe":24343,"Ġdeutlich":24344,"ĠChel":24345,"ĠPE":24346,"owed":24347,"Ġbanner":24348,"Ġshelves":24349,"ĠReturn":24350,"æĭ¿":24351,"LAUGHS":24352,"Ġcongratulate":24353,"ĠNorway":24354,"Ġdwell":24355,"ĠCaribbean":24356,"Ġnorms":24357,"ĠAnimal":24358,"ĠValentine":24359,"Ġextending":24360,"ĠVou":24361,"orr":24362,"ĠCheng":24363,"¡":24364,"ĠдоÑĢог":24365,"Ġveg":24366,"ĠhÃ¥":24367,"ĠXin":24368,"Ġì¹´ë":24369,"emet":24370,"Ġhypoth":24371,"Ġinteressante":24372,"rices":24373,"IZ":24374,"ĠUSD":24375,"Ġrunner":24376,"ĠBag":24377,"Ġê½":24378,"Ġcomeçar":24379,"Ġpigs":24380,"Ġweaknesses":24381,"Ph":24382,"ĠViol":24383,"ä¸įçĶ¨":24384,"Ġdragging":24385,"ĠAquÃŃ":24386,"ĠCSS":24387,"Ġmillimeters":24388,"Ġestás":24389,"Ġacute":24390,"Ġdejar":24391,"iÄŁ":24392,"obra":24393,"Love":24394,"Ġsilk":24395,"****":24396,"Ġjoins":24397,"Ġprol":24398,"Ġê°IJìĤ¬íķ©ëĭĪëĭ¤":24399,"æĶ¯":24400,"ØŃد":24401,"aghetti":24402,"änner":24403,"Ġstrang":24404,"Ġdoubled":24405,"Ġdescriptions":24406,"Ġstellen":24407,"Ġparti":24408,"ç«ĭ":24409,"²Ħë":24410,"ĠÃ¶ÄŁ":24411,"ighing":24412,"Ġangular":24413,"Ġnatuur":24414,"ĠShel":24415,"Æ°Æ¡":24416,"Ġrays":24417,"Ġseper":24418,"start":24419,"vised":24420,"Ġrushed":24421,"Ġinternationally":24422,"Ġnivel":24423,"Ġboxing":24424,"fallen":24425,"á»ijc":24426,"Ġseinen":24427,"plicity":24428,"Ġcarboh":24429,"ĠTravis":24430,"uso":24431,"ĠPhase":24432,"Ġactivation":24433,"Ġopio":24434,"·¨":24435,"Ġdecreased":24436,"Car":24437,"Ġbundle":24438,"Ġexpend":24439,"ormal":24440,"Ġadjacent":24441,"Ġmee":24442,"ĠоÑĢг":24443,"Ġtranscript":24444,"ĠLanguage":24445,"GS":24446,"è§ī":24447,"Ġseul":24448,"Ãłnh":24449,"Ġnya":24450,"nings":24451,"Ġìĭľë":24452,"ĠëĶ°ëĿ¼":24453,"ĠAgr":24454,"ÃŃd":24455,"çķĻ":24456,"Ġaby":24457,"ĠNeo":24458,"ıyoruz":24459,"ĠThinking":24460,"aime":24461,"Ġvite":24462,"Ġtravés":24463,"Ġ×ij×¢":24464,"Ġмед":24465,"Our":24466,"hoot":24467,"Ġliner":24468,"ĠPizza":24469,"Ġhyg":24470,"flies":24471,"ĠContinue":24472,"Ġdental":24473,"ĠTib":24474,"Ġregulate":24475,"lieÃŁ":24476,"ALK":24477,"ĠTae":24478,"길":24479,"ĠBrexit":24480,"ĠGut":24481,"Ġoccupation":24482,"Ġzrobi":24483,"âm":24484,"Ġwhisk":24485,"ä¸ĸçķĮ":24486,"Ġkanske":24487,"omon":24488,"robe":24489,"Ġwarfare":24490,"Ġthá»ĥ":24491,"Ġjaki":24492,"Ġstrokes":24493,"Ġpeas":24494,"ĠDamit":24495,"HAN":24496,"Ġinterference":24497,"ĠминÑĥÑĤ":24498,"NER":24499,"outing":24500,"Ġtextures":24501,"Łī":24502,"owi":24503,"ĠíķĻ":24504,"Ġdens":24505,"Ġprotagonist":24506,"änn":24507,"Ġgoddess":24508,"Ġwollte":24509,"ijo":24510,"ĠWoche":24511,"ĠVPN":24512,"story":24513,"Ġkinderg":24514,"Ġfunnel":24515,"Ġdistress":24516,"ноÑģÑĤÑĮÑİ":24517,"Ġnoisy":24518,"ĠпÑĢодолж":24519,"Ġdaran":24520,"Ġenzyme":24521,"лож":24522,"Ġmute":24523,"Ġdwar":24524,"Ġاس":24525,"Ġkompl":24526,"Ġmerit":24527,"Ġfosse":24528,"ĠDrink":24529,"Ġfora":24530,"Ġwohl":24531,"Ġbreeze":24532,"Ġsanit":24533,"Ġdrin":24534,"ĠìĿ´ê±°ëĬĶ":24535,"Ġ62":24536,"Ġì°¨ë":24537,"abytes":24538,"Ġdeeds":24539,"Ġй":24540,"ième":24541,"iggling":24542,"Ġ\"'":24543,"ĠÑĩаÑģÑĤÑĮ":24544,"ĠAnswer":24545,"Ġevangel":24546,"Ġ1080":24547,"ĠVisit":24548,"icient":24549,"Ġreliability":24550,"ÑİÑģÑĮ":24551,"ĠEarlier":24552,"Ġfid":24553,"çŃīä¸Ģä¸ĭ":24554,"Ġsleeves":24555,"iyorsun":24556,"Ġbib":24557,"ĠAccount":24558,"Ñıли":24559,"ciplinary":24560,"zas":24561,"ĠбеÑĢ":24562,"Ġnecklace":24563,"Ġblender":24564,"ĠPhillips":24565,"eti":24566,"ĠJupiter":24567,"Ġprovoc":24568,"ĠYears":24569,"entre":24570,"acio":24571,"Ġkü":24572,"Ġantenna":24573,"Ġnovels":24574,"Ġfart":24575,"ĠSugar":24576,"ĠJudy":24577,"Ġcollapsed":24578,"ç°":24579,"ritis":24580,"ĠìĥģíĻ©":24581,"ÐĹЫ":24582,"ĠVerf":24583,"ranean":24584,"ereum":24585,"ĠTarget":24586,"Ġ88":24587,"ĠÐĺз":24588,"ideo":24589,"Ġregression":24590,"ì¶ľ":24591,"Ġmówi":24592,"Ġstudios":24593,"iens":24594,"iph":24595,"Ġfrying":24596,"Ġfascinated":24597,"ĠWah":24598,"bucks":24599,"maya":24600,"ĠSaturn":24601,"ĠMommy":24602,"Ġratings":24603,"Ġautumn":24604,"Æ°Æ¡ng":24605,"Ġloser":24606,"Ġcentro":24607,"érieur":24608,"ĠFold":24609,"Ġsupervisor":24610,"ĠNobel":24611,"Ġunderest":24612,"obia":24613,"ĠвÑģÑı":24614,"Ġverw":24615,"Ġfuels":24616,"Ġartifacts":24617,"Ġë¶Ļ":24618,"ĠAutom":24619,"çļĦæĺ¯":24620,"ÛĶ":24621,"×ķס":24622,"Ġihnen":24623,"Ġ59":24624,"ounding":24625,"еÑĢÑĭ":24626,"inars":24627,"chant":24628,"Ġaddicted":24629,"Ġexplosive":24630,"Ġdispers":24631,"âĸĪ":24632,"axis":24633,"ARY":24634,"Ġlum":24635,"ĠÑĥÑģл":24636,"ĠØĮ":24637,"Ġrupees":24638,"ĠPearl":24639,"camp":24640,"tv":24641,"oya":24642,"Ġconcludes":24643,"Ġcollision":24644,"Ġbuyer":24645,"Ġplayground":24646,"Ġsprings":24647,"Ġfeminine":24648,"ĠRas":24649,"Ġincarcer":24650,"íĹĺ":24651,"Ġdialect":24652,"Ġclosure":24653,"Ġchatting":24654,"Ġbabe":24655,"Ġspotlight":24656,"Ġnotation":24657,"è·¯":24658,"Star":24659,"ião":24660,"Ġtête":24661,"Ġtide":24662,"Ġjunto":24663,"Ġsenator":24664,"Ð¥":24665,"Ġexcuses":24666,"Ġblink":24667,"Ġadmission":24668,"ĠLily":24669,"Ñĭми":24670,"Ġamigo":24671,"Ġlust":24672,"ëĭ¬":24673,"Ġamino":24674,"äºĭæĥħ":24675,"Ġconsultant":24676,"ĠElectric":24677,"Ġëħ¸ëŀĺ":24678,"ujah":24679,"Ġshooter":24680,"ichten":24681,"ĠUkrainian":24682,"Ġaims":24683,"ĠEntertain":24684,"Ġmiracles":24685,"èŃ°":24686,"Ġzeigen":24687,"Ġlam":24688,"Ġress":24689,"ĠJill":24690,"ylan":24691,"Ġrook":24692,"Ġhaya":24693,"Ġpassport":24694,"adata":24695,"Ġjuicy":24696,"conf":24697,"лей":24698,"ĠSz":24699,"Ġintercept":24700,"ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ":24701,"ĠTeams":24702,"Ġmaken":24703,"irrel":24704,"ĠLIKE":24705,"áºŃy":24706,"êµ°":24707,"Ġshortage":24708,"Ġparadigm":24709,"Ġpapel":24710,"Ġastero":24711,"ãģ¾ãģŁ":24712,"Ġsollen":24713,"ĠMickey":24714,"ĠOrleans":24715,"Ġcholesterol":24716,"Ġgoose":24717,"ÑĨиÑİ":24718,"ãģĤãĤĭ":24719,"ĠFL":24720,"Ġголов":24721,"Ġtribute":24722,"ĠGam":24723,"Ġévidemment":24724,"ÑıÑħ":24725,"å®ŀ":24726,"çĶ°":24727,"Ġinappropri":24728,"uhan":24729,"Ġorganizational":24730,"ailed":24731,"Ġendure":24732,"Ġ76":24733,"Ġshotgun":24734,"Ġlivre":24735,"Ġsuited":24736,"Ġwarmth":24737,"ĠSIM":24738,"Ġenvision":24739,"Ġdegrad":24740,"îne":24741,"Laughing":24742,"ĠWhoever":24743,"ĠBuddhism":24744,"Ġsprinkle":24745,"ceÄŁiz":24746,"Ġruins":24747,"Ġstarch":24748,"ĠHerz":24749,"Ġinjustice":24750,"Ġhumidity":24751,"ожалÑĥй":24752,"ĠObject":24753,"ĠIgn":24754,"ĠExam":24755,"igers":24756,"Ġthou":24757,"ĠSoy":24758,"ivas":24759,"Ġpoles":24760,"math":24761,"Ġвним":24762,"INGING":24763,"edral":24764,"Ġexplor":24765,"Ġroasted":24766,"Ġcrawl":24767,"Ġcoff":24768,"Ġanom":24769,"Ġwij":24770,"Ġimproves":24771,"Ġtreaty":24772,"Ġdiscovering":24773,"Ġstatute":24774,"Ġmercado":24775,"ĠÑģил":24776,"Ġintel":24777,"ĠChancellor":24778,"ĠMedicaid":24779,"ugi":24780,"Ġverbal":24781,"Ġdön":24782,"Ġscripture":24783,"Ġiteration":24784,"eks":24785,"ĠOxford":24786,"Ġwäh":24787,"ĠVad":24788,"ĠAK":24789,"ĠìķĦìĿ´ë":24790,"Ġiets":24791,"Ġneedles":24792,"ÙĥÙħ":24793,"Ġpasado":24794,"Ġalbums":24795,"Ġyea":24796,"etzen":24797,"ĦëıĦ":24798,"Ġdetermines":24799,"Ġthee":24800,"ĠPlaying":24801,"ärt":24802,"Ġצ":24803,"cled":24804,"Ġdownward":24805,"alone":24806,"Ġsolu":24807,"Ġpartition":24808,"Ġwz":24809,"dd":24810,"Ġpessoal":24811,"媽":24812,"Ġfactories":24813,"Ġbleibt":24814,"มา":24815,"alsa":24816,"ĠNFL":24817,"Ġfuera":24818,"Ġreserved":24819,"ĠEarn":24820,"Ġhelt":24821,"Ġshortcut":24822,"Ġconvincing":24823,"space":24824,"Ġenforce":24825,"Ġcores":24826,"Ġefter":24827,"Ġrecession":24828,"xico":24829,"Ġproposition":24830,"arians":24831,"ropol":24832,"Ġ몰ë":24833,"ĠÎľ":24834,"ĠìļĶì¦ĺ":24835,"Ġactivist":24836,"Ġconviction":24837,"Ġzab":24838,"Ġcanceled":24839,"ÑĤоÑĩно":24840,"Ġή":24841,"éĢĻ樣åŃIJ":24842,"nite":24843,"Ġfundra":24844,"buzzer":24845,"ело":24846,"ications":24847,"Ġzona":24848,"Ġteens":24849,"Ġmethodology":24850,"Ġì¤ijìļĶ":24851,"than":24852,"ĠUl":24853,"ĠGrey":24854,"Ġhog":24855,"INK":24856,"ĠSung":24857,"ĠClaud":24858,"ĠCNN":24859,"Ġdelivers":24860,"alin":24861,"ĠAdobe":24862,"othe":24863,"ĠDeswegen":24864,"ำ":24865,"Ġwerde":24866,"Ġgrease":24867,"Ġupgrades":24868,"ĠFinland":24869,"accept":24870,"Ġinterrog":24871,"bee":24872,"Ġãģ«":24873,"Ġprede":24874,"ĠNep":24875,"ĠCambridge":24876,"Ġgraphs":24877,"Ġhaunted":24878,"Ñģем":24879,"æ§":24880,"åħĭ":24881,"Some":24882,"ĠMall":24883,"Ġrehearsal":24884,"ĠUrban":24885,"ĠLag":24886,"Ġnim":24887,"ê°ķ":24888,"Ġpositioned":24889,"Ġavoided":24890,"EMA":24891,"Ġllegar":24892,"Ġrápido":24893,"Ġgouvern":24894,"Ġhing":24895,"Ġdealer":24896,"Ġreforms":24897,"Ġfatty":24898,"кол":24899,"ĠAce":24900,"Ġnep":24901,"Ġì²Ń":24902,"Ġcomputation":24903,"ĠStream":24904,"bourne":24905,"tur":24906,"Por":24907,"Ġsleepy":24908,"Ġbanget":24909,"ãģĤãģ®":24910,"Ġweighs":24911,"Ġbleiben":24912,"ĠGren":24913,"Ġunions":24914,"ĠêµIJ":24915,"Ġaprender":24916,"uitar":24917,"ĠJest":24918,"uming":24919,"ĠPlayer":24920,"ĠExtrem":24921,"Ġinteger":24922,"аÑĩе":24923,"Ġconcerts":24924,"×ķ׼":24925,"ĠtrochÄĻ":24926,"ĠRepe":24927,"éĩįè¦ģ":24928,"à¹Ĥ":24929,"żen":24930,"Ġsounding":24931,"Ġanonymous":24932,"Ġexca":24933,"ĠIranian":24934,"Ġenergetic":24935,"Ġwives":24936,"ĠÑĨвеÑĤ":24937,"Ġais":24938,"ãģĭãģª":24939,"Ġsudah":24940,"Ġunderwear":24941,"Ġcrunchy":24942,"ĠPain":24943,"Ġgerçek":24944,"redict":24945,"Ġmisma":24946,"ÑĸÑĤ":24947,"Ġsurviving":24948,"ÎŃÏĤ":24949,"Ġparticipant":24950,"ĠHessen":24951,"árias":24952,"Ġsubway":24953,"istä":24954,"Ġcoral":24955,"Ġmarijuana":24956,"ĠMemorial":24957,"ÑĪий":24958,"riz":24959,"Ġsatellites":24960,"Ġlease":24961,"ĠCameron":24962,"umph":24963,"Ġclassmates":24964,"ähän":24965,"ÑģÑĤве":24966,"Ġhue":24967,"ĵ¤ìĿĦ":24968,"Ġproportional":24969,"Ġnoss":24970,"Ġlaps":24971,"rÃ¥":24972,"Ġbitcoin":24973,"ÐĹЫÐļÐIJ":24974,"Ġ충":24975,"ĠÙĦÙĦ":24976,"ĠMort":24977,"ĠEsp":24978,"arnos":24979,"ĠÑģказал":24980,"Ġänd":24981,"åħĦ":24982,"×Ļ×Ļ×Ŀ":24983,"ĠGeb":24984,"gehen":24985,"Inaudible":24986,"borough":24987,"ÑĦÑĦ":24988,"Ġfellowship":24989,"ĠPaper":24990,"Ġcurved":24991,"ĠGEOR":24992,"Ġcalculator":24993,"ĠCatal":24994,"ĠvÃło":24995,"Ġbypass":24996,"леÑĤ":24997,"à³":24998,"trans":24999,"rencies":25000,"ì¡Į":25001,"igent":25002,"Ġtasted":25003,"Ġoceans":25004,"uft":25005,"ervice":25006,"ĠÐľÐ£ÐĹЫÐļÐIJ":25007,"ĠClassic":25008,"Ġrespectively":25009,"~)":25010,"ître":25011,"ĠNash":25012,"Ġzit":25013,"ĠìĽĥ":25014,"ĠëĨĴ":25015,"quote":25016,"ĠUns":25017,"Ġtac":25018,"Ġproves":25019,"ĠPortland":25020,"bly":25021,"Ġere":25022,"ì¶Ķ":25023,"Ġépoca":25024,"ĠÑĤÑĭÑģÑıÑĩ":25025,"76":25026,"Ġhade":25027,"ĠFro":25028,"ĠpolÃŃtica":25029,"tag":25030,"ĠíķŃ":25031,"Ġschö":25032,"arett":25033,"Ġprovisions":25034,"Ġmotors":25035,"Ġimaging":25036,"Ġdok":25037,"ulously":25038,"Ġmeille":25039,"çİ°åľ¨":25040,"ëIJ":25041,"ĠISO":25042,"ĠSTEM":25043,"ĠBowl":25044,"Ġtowers":25045,"ĠEe":25046,"ĠPerformance":25047,"Ġloin":25048,"cussion":25049,"Ġcoastal":25050,"iale":25051,"compass":25052,"Ġspells":25053,"Ġdisappointing":25054,"Ġë²Ī째":25055,"EER":25056,"Ġversatile":25057,"asury":25058,"Ġenfin":25059,"Ġdownside":25060,"Ġguiding":25061,"ĠاÙĦÙĤ":25062,"Ġninety":25063,"charged":25064,"ĠFans":25065,"Ġphilosophical":25066,"Ġgarn":25067,"ĠmÃ¥nga":25068,"Ġwillingness":25069,"Ġportions":25070,"aben":25071,"Ġï":25072,"¿":25073,"raul":25074,"Ġsprint":25075,"ifen":25076,"ıyla":25077,"ĠкÑĥп":25078,"ãģıãģłãģķãģĦ":25079,"Ġensuite":25080,"ĠCapitol":25081,"Ġ63":25082,"ĠговоÑĢиÑĤ":25083,"Ġappointments":25084,"æī¾":25085,"omiast":25086,"Ġcareg":25087,"Ġpublisher":25088,"Ġheraus":25089,"Ġεί":25090,"ĠVS":25091,"ãģĿãģĹãģ¦":25092,"ä¸Ńåħ±":25093,"Ġsacrifices":25094,"third":25095,"Ġhumanitarian":25096,"ĠëĤ´ì":25097,"imon":25098,"Ġinequ":25099,"Ġzob":25100,"Ġcomfortably":25101,"ĠDinge":25102,"Ġcancelled":25103,"ĠPSAKI":25104,"ĠRobinson":25105,"Ġfins":25106,")?":25107,"ĠHistor":25108,"ĠÑĩеловека":25109,"Ġtbsp":25110,"text":25111,"kim":25112,"Ġupdating":25113,"Ġgeld":25114,"feld":25115,"ı¼":25116,"Ġmä":25117,"Ġcafé":25118,"ÖĢ":25119,"ĠSri":25120,"ĠRegion":25121,"ĠHahaha":25122,"Ġfinances":25123,"ĠاÙĦØ´":25124,"Ġbunk":25125,"ruk":25126,"haft":25127,"Ġlateral":25128,"Ġextensions":25129,"ĠìķĦìĿ´":25130,"Ġdefinite":25131,"ĠZhao":25132,"ĠLuis":25133,"sty":25134,"Ġcasos":25135,"ĠKlim":25136,"Ġ1993":25137,"Ġrealization":25138,"Ġhistorian":25139,"Ġcracked":25140,"ëĤ´":25141,"Ġsystème":25142,"ĠCIA":25143,"ĠÑĤво":25144,"ospheric":25145,"Ġflee":25146,"Ġrất":25147,"ĠRegardless":25148,"Ġreluct":25149,"Ġtimely":25150,"ĠJulian":25151,"GM":25152,"éĴ":25153,"adura":25154,"é£Ł":25155,"Ġdresses":25156,"çģ£":25157,"ĠëĶĶ":25158,"Ġnominated":25159,"Ġadvocates":25160,"ymph":25161,"Ġrecordings":25162,"Ġdeviation":25163,"Ġprioritize":25164,"Ġspiral":25165,"ĠYOUR":25166,"Ġtranspose":25167,"ampoo":25168,"ĠìĽIJëŀĺ":25169,"ĠVision":25170,"Ġpolite":25171,"Ġhamb":25172,"ĠPatient":25173,"æ¯Ķè¼ĥ":25174,"íģ¬ë":25175,"Ġsia":25176,"Ġê³³":25177,"Ġže":25178,"è§Ģ":25179,"Ġsupermarket":25180,"ë¹":25181,"ĠSierra":25182,"Ġgrilled":25183,"ĠUpon":25184,"Ġabsent":25185,"Ġmec":25186,"ĠApollo":25187,"Ġpunk":25188,"ĠPaÅĦst":25189,"ĠÑģвой":25190,"Ġ거기":25191,"Girl":25192,"Ġskinny":25193,"ĠPremier":25194,"Ġterritories":25195,"Ġliability":25196,"Ġjerk":25197,"ratic":25198,"Ġdancers":25199,"ĠÑĥÑĢов":25200,"Ġê´Ģë":25201,"only":25202,"ĠStu":25203,"Ġskeleton":25204,"ĠëŃIJë":25205,"Ġзакон":25206,"ıkt":25207,"ĠMIKE":25208,"Ġlö":25209,"mie":25210,"Ġreiter":25211,"ãģĵãĤĮãģ¯":25212,"ĠKolleg":25213,"ĠAdams":25214,"licher":25215,"Ġçocuk":25216,"Ñıг":25217,"Ġblush":25218,"Ġsunshine":25219,"Ġez":25220,"ĠDevil":25221,"Ġ길":25222,"ĠãģĬ":25223,"add":25224,"Ġlicensed":25225,"Ġvinyl":25226,"ĠCzech":25227,"imag":25228,"Ġcracking":25229,"Ġìº":25230,"Ġudah":25231,"Ġsommes":25232,"Ġìĸ¼êµ":25233,"waÄĩ":25234,"Ġfres":25235,"åij½":25236,"ĠWalmart":25237,"ĠТепеÑĢÑĮ":25238,"atisf":25239,"CI":25240,"lang":25241,"Ġdiffusion":25242,"çĶ·":25243,"Ġsomos":25244,"ĠMakes":25245,"æĪijæĥ³":25246,"ĠRicky":25247,"Ġmucha":25248,"íķ¨":25249,"Ġhorsepower":25250,"asia":25251,"Ġfibers":25252,"Ġerm":25253,"Ñģкие":25254,"Ġjeste":25255,"Ġfirefight":25256,"Ġcuisine":25257,"Ġbesonders":25258,"dig":25259,"Ġì¢ħ":25260,"ĠÑĥж":25261,"Ġtracing":25262,"Ġcertains":25263,"ĠApply":25264,"ÑĭваÑĤÑĮ":25265,"çĮ":25266,"Ġbru":25267,"ĠYES":25268,"ĠBai":25269,"ĠDit":25270,"ĠBis":25271,"Ġunle":25272,"ÑģÑĤаÑĤоÑĩно":25273,"ĠAwak":25274,"..\"":25275,"Ġ125":25276,"Ġrooted":25277,"Ġcautious":25278,"const":25279,"Ġorchestra":25280,"çľ¼":25281,"ĠвнÑĥÑĤ":25282,"Ġquelqu":25283,"ĠоÑĤвеÑĤ":25284,"ĠMethod":25285,"ì¹ľ":25286,"ĠμαÏĤ":25287,"lü":25288,"ĠìķĦê¹Į":25289,"Ġnaming":25290,"Char":25291,"ĠSicher":25292,"Ġprivileged":25293,"ĠFly":25294,"Ġãģĭ":25295,"áºŃt":25296,"Ġadvances":25297,"ĠZelda":25298,"Ġandra":25299,"Ġgrinding":25300,"ĠEdition":25301,"pf":25302,"Ġwarriors":25303,"Ġhedge":25304,"Ġunseren":25305,"ĠÑģÑİда":25306,"eliness":25307,"Ġpersonalities":25308,"Ġfö":25309,"'M":25310,"ĠÑĤоÑĩно":25311,"Ġshipped":25312,"Ġmeteor":25313,"Ġsurroundings":25314,"ĠFill":25315,"uesta":25316,"ĠPersonal":25317,"ĠAlle":25318,"ORT":25319,"ä¹ħ":25320,"ĠSche":25321,"VI":25322,"Ġcomparable":25323,"damn":25324,"Ġditch":25325,"YAN":25326,"ismus":25327,"Ġpickup":25328,"Ġdak":25329,"ĠEP":25330,"best":25331,"ĠSue":25332,"ällt":25333,"Ġpopcorn":25334,"Ġfolding":25335,"home":25336,"иваеÑĤ":25337,"å·²ç¶ĵ":25338,"Ġannot":25339,"chuck":25340,"Ġfierce":25341,"Ġdamaging":25342,"Ġflop":25343,"Ġpasar":25344,"Ġreef":25345,"ĠÑģвоей":25346,"Ġzoo":25347,"overs":25348,"jets":25349,"Ġprès":25350,"ĠSilicon":25351,"teok":25352,"ĠSeth":25353,"atamente":25354,"Ġtransmitted":25355,"Ġreplicate":25356,"Ġslim":25357,"ĠCream":25358,"æĦŁãģĺ":25359,"Ġsidewalk":25360,"ìĪĺë":25361,"ĠжизнÑĮ":25362,"ĠMonica":25363,"ä¾ĨäºĨ":25364,"Ġcopied":25365,"ĠTerra":25366,"istent":25367,"ç³»":25368,"Ġоно":25369,"Ġwhale":25370,"ĠWITH":25371,"лÑĥÑĪ":25372,"å½±çīĩ":25373,"ĠEen":25374,"ĠÑģвои":25375,"Ġordin":25376,"Ġplural":25377,"Ġspokes":25378,"Ġdispute":25379,"Ġsensible":25380,"Ġpreaching":25381,"Ġktórzy":25382,"pted":25383,"avier":25384,"Ġpistol":25385,"ĠTapi":25386,"ĠÅĤ":25387,"ffff":25388,"Ġacrylic":25389,"Ġignorance":25390,"ĠZiel":25391,"rans":25392,"Ġwelding":25393,"mid":25394,"æĪijä¸į":25395,"Ġзаним":25396,"Ġlanes":25397,"Ġmines":25398,"Ġmoms":25399,"×ķ×Ĺ":25400,"ĠChamber":25401,"tier":25402,"Ġmodest":25403,"ĠìĹ¬ê¸°ìĦľ":25404,"Ġunas":25405,"Ġwrench":25406,"handed":25407,"Ġsaturated":25408,"ĠFang":25409,"ĠCommissioner":25410,"र":25411,"Ġ×ĸ":25412,"ĠLouisiana":25413,"ĠMask":25414,"Ġcubes":25415,"ìĶ¨":25416,"Ġvidéos":25417,"ĠnÃ¥gon":25418,"Ġrider":25419,"Ġì¶ľ":25420,"Ġsón":25421,"ĠLatino":25422,"bank":25423,"íķ´ì£¼":25424,"ĠBrend":25425,"Ġsexuality":25426,"...,":25427,"Ġforgetting":25428,"ĠÛĮ":25429,"ĠAvengers":25430,"ĠBonjour":25431,"cessor":25432,"кÑĢаÑĹ":25433,"cence":25434,"Ġgeograph":25435,"culo":25436,"оÑģÑĤÑĮ":25437,"Ġsweating":25438,"íĥĢ":25439,"Ġsymmetry":25440,"tsÃ¥":25441,"Ġjan":25442,"ĠFerr":25443,"é¦ĸ":25444,"Ġambassador":25445,"ziÄĻk":25446,"Ġmusun":25447,"ĠÑĥÑĤ":25448,"ĠLG":25449,"issent":25450,"commun":25451,"Ġcours":25452,"Ġdevelops":25453,"Ġbronze":25454,"Ġsubstances":25455,"driven":25456,"주ìĦ¸ìļĶ":25457,"Ġaos":25458,"åĦĦ":25459,"ĠPROFESS":25460,"half":25461,"Ġsorted":25462,"ĠBomb":25463,"лаг":25464,"ĠMalaysia":25465,"ĠChristina":25466,"Ġteammate":25467,"èģŀ":25468,"FT":25469,"Ġkı":25470,"hearted":25471,"++":25472,"ogenic":25473,"Ġbells":25474,"ĠOuais":25475,"Ġspecialists":25476,"бÑĭ":25477,"depth":25478,"lasses":25479,"gies":25480,"ĠCoffee":25481,"Ġmarking":25482,"Ġfoll":25483,"uli":25484,"Ġadhesive":25485,"ĠBot":25486,"ĠPunkt":25487,"eye":25488,"ĠBub":25489,"elong":25490,"åĪ¶":25491,"ĠпÑĢик":25492,"Ġdonor":25493,"84":25494,"Ġenfor":25495,"Ġcatches":25496,"Ġbricks":25497,"Ġknitting":25498,"ĠKnowing":25499,"oks":25500,"HY":25501,"ride":25502,"ĠFantasy":25503,"iman":25504,"Ġpse":25505,"Ġìĺ¨":25506,"Ġвд":25507,"Ġrestra":25508,"Ġevaluated":25509,"ÑĢев":25510,"Ġfortunately":25511,"Ġchegar":25512,"رب":25513,"Ġdomains":25514,"ibi":25515,"arry":25516,"Ġshutter":25517,"Ġficou":25518,"Mike":25519,"Ġinclu":25520,"Ġdonors":25521,"Ġapl":25522,"ĠLower":25523,"Ġimported":25524,"Ġacademy":25525,"Ġfinals":25526,"Ġdisappears":25527,"ÙĬا":25528,"Ġadministrator":25529,"js":25530,"Ġcutter":25531,"Ġranging":25532,"örper":25533,"Ġconstraint":25534,"ĠTable":25535,"ĠShan":25536,"vic":25537,"ĠFix":25538,"ĠSwift":25539,"ounces":25540,"ĠWarum":25541,"Ġlettuce":25542,"appelle":25543,"Ġshave":25544,"Ġbás":25545,"Ġ77":25546,"ĠOoo":25547,"ao":25548,"ĠMcM":25549,"ĠDrew":25550,"Ġlump":25551,"Ġlashes":25552,"scheinlich":25553,"Rep":25554,"inis":25555,"ĠCette":25556,"Ġcomposite":25557,"emetery":25558,"Ġsorte":25559,"ĠFinancial":25560,"оне":25561,"rones":25562,"ĠVoy":25563,"Ġtéc":25564,"ł¹":25565,"ĠNinja":25566,"ĠCorin":25567,"еннÑı":25568,"ìĿ´ìĹĪ":25569,"Ġnich":25570,"Ġdetective":25571,"âĢ¦\"":25572,"Ïĥε":25573,"Ŀ¼ëıĦ":25574,"Ġë³Ģ":25575,"Ġë¸Ķë":25576,"Ġprope":25577,"ĠWright":25578,"Ġ×Ķת":25579,"ĠShi":25580,"ĠãģŁ":25581,"Ġinvestigations":25582,"éĤĦæĺ¯":25583,"ĠPowerPoint":25584,"ĠChu":25585,"Ġìĺ¤í":25586,"ĠìĻĦìłĦ":25587,"ĠFragen":25588,"unning":25589,"Ġpourrait":25590,"Ġtextbook":25591,"мÑĭ":25592,"Ġfahren":25593,"ĠÑĤоÑĢ":25594,"Ġlakes":25595,"ünde":25596,"Int":25597,"ĠMetro":25598,"Ġmansion":25599,"Ġаб":25600,"ĠZhou":25601,"Ġcorridor":25602,"Ġescol":25603,"Ġindicating":25604,"iaÅĤa":25605,"Ġmommy":25606,"Ġarchives":25607,"Ġfounders":25608,"engine":25609,"ĠDieu":25610,"Ġsickness":25611,"Ġë³´ëĭĪê¹Į":25612,"Ġarb":25613,"Ġned":25614,"ĠChop":25615,"Ġcovid":25616,"Ġslam":25617,"Ġpublications":25618,"DC":25619,"Ġspends":25620,"æ¾":25621,"Ġrefugee":25622,"Ġdile":25623,"Ġ×IJ×ĸ":25624,"ificar":25625,"ĠSach":25626,"Gu":25627,"Ġreload":25628,"????":25629,"ĠjeÅĽli":25630,"ĠÑģоÑģÑĤо":25631,"Ġsimplicity":25632,"Ġbullying":25633,"Ġмол":25634,"Ġrealidad":25635,"Ġunclear":25636,"appa":25637,"levant":25638,"ĠISIS":25639,"ĠWatson":25640,"Ġdein":25641,"ĠMicro":25642,"íķľë":25643,"üg":25644,"Ġdevam":25645,"Ġtweeted":25646,"å°İ":25647,"Ġunderstandable":25648,"atan":25649,"Ġversa":25650,"Ġpreca":25651,"Ġvá»ģ":25652,"ĠCopy":25653,"ĠOracle":25654,"Ġmindfulness":25655,"Ġdiscret":25656,"ernen":25657,"ĠPle":25658,"Have":25659,"Ġisolate":25660,"Ġdeu":25661,"Ġseventy":25662,"ĠHills":25663,"Ġarcade":25664,"ĠÑģпеÑĨи":25665,"Ġsiguiente":25666,"ĠBÃľNDNIS":25667,"liga":25668,"ĠвÑģÑĤÑĢеÑĩ":25669,"ôm":25670,"Ġtweets":25671,"Ġschauen":25672,"Ġcritique":25673,"ĠðŁİµ":25674,"Ġstatt":25675,"ĠÑģамое":25676,"ância":25677,"Ġsupernatural":25678,"Ġplugged":25679,"Fl":25680,"ynı":25681,"ĠTambién":25682,"Ġencouragement":25683,"ĠServer":25684,"ëĤľ":25685,"upa":25686,"Ġaston":25687,"Ġhears":25688,"ÑĢаÑħ":25689,"Ġsche":25690,"Ġrats":25691,"Ġrecuper":25692,"Ġunten":25693,"ĠFighting":25694,"Ġacademics":25695,"示":25696,"ĠSü":25697,"ÑģкиÑħ":25698,"Ġpaired":25699,"ĢìĿĦ":25700,"Ġárea":25701,"Ġsweetness":25702,"åıĬ":25703,"Ġdefer":25704,"Ġmuitas":25705,"ĠAudio":25706,"Ġlocker":25707,"ÙĬد":25708,"ĠÑģÑĤав":25709,"Ġbuena":25710,"ANS":25711,"Ġdetector":25712,"avo":25713,"bek":25714,"Ġαν":25715,"íݸ":25716,"Ġdragged":25717,"Ġдолжен":25718,"Ãĸ":25719,"رة":25720,"ìĿ´ì§Ģ":25721,"Ġcelle":25722,"cking":25723,"ĠاÙĦج":25724,"ĠCanvas":25725,"Ġespañ":25726,"Ġglimp":25727,"Ġspreads":25728,"ongo":25729,"ĠMason":25730,"ĠIng":25731,"Ġê°ĢëĬ¥":25732,"ÏĦικ":25733,"Ġsecular":25734,"Ġbater":25735,"Ġinquiry":25736,"Ġenergies":25737,"Ġmanufactured":25738,"Ġvegetarian":25739,"Ġpineapple":25740,"ÑıÑĤа":25741,"Ġpractitioners":25742,"2000":25743,"Ġíķ´ìļĶ":25744,"ĠìŬ룬ë¶Ħëĵ¤":25745,"Ġë¶Īë":25746,"ĠJefferson":25747,"ĠJoan":25748,"Ġtram":25749,"容":25750,"chmal":25751,"ĠHait":25752,"á¹ĩ":25753,"Ġunreal":25754,"Ġsymbolic":25755,"Ġstealth":25756,"Ġsplash":25757,"ĠEntertainment":25758,"Ġmetallic":25759,"?\".":25760,"è¶Ĭ":25761,"around":25762,"Ġdespair":25763,"ĠNevada":25764,"ĠFinance":25765,"Ġkrie":25766,"ĠLux":25767,"ĠSmash":25768,"keeping":25769,"Ġзаг":25770,"Ġnarciss":25771,"Ġdzisiaj":25772,"Ġtolerate":25773,"oard":25774,"Ġlinking":25775,"ĠEconomic":25776,"Ġì¼":25777,"Ġmorph":25778,"ĠNak":25779,"ĠBaker":25780,"aton":25781,"rings":25782,"ĠPeng":25783,"ĠAirport":25784,"ãģĭãģ£ãģŁ":25785,"íķĺëĭ¤":25786,"§ģ":25787,"prints":25788,"Ġhadi":25789,"Ġempir":25790,"ĠLives":25791,"anners":25792,"Ġним":25793,"ĠPROFESSOR":25794,"Ġpositively":25795,"antom":25796,"Ġbadge":25797,"kelt":25798,"Ġinterfer":25799,"Ġfulfilling":25800,"Ġvisualization":25801,"éĹľä¿Ĥ":25802,"ĠPrice":25803,"��":25804,"Ġscenery":25805,"Ġprone":25806,"Ġwizard":25807,"Ġbanyak":25808,"verb":25809,"sky":25810,"Ġwished":25811,"Ġrailway":25812,"Ġüzer":25813,"Ġalguien":25814,"ĠAW":25815,"ĠколиÑĩе":25816,"Ġreacting":25817,"ĠBuch":25818,"ึ":25819,"Ġanth":25820,"Ġsih":25821,"Ġhust":25822,"ĠScreen":25823,"ilant":25824,"aho":25825,"Ġfragrance":25826,"Ġelevation":25827,"ĠMediter":25828,"Ġë¿":25829,"Ġéqu":25830,"Ġwraps":25831,"Ġinert":25832,"Ġrecreate":25833,"лаÑĤ":25834,"Ġboleh":25835,"Ġharassment":25836,"unky":25837,"Ġglimpse":25838,"regierung":25839,"Ġfutur":25840,"Ġrepository":25841,"Ġengra":25842,"Ġtrafficking":25843,"assis":25844,"ĠTrek":25845,"Ġë²Į":25846,"Ġë§Īë":25847,"ĠKab":25848,"aniu":25849,"give":25850,"Ġdinosaurs":25851,"Ġfeather":25852,"Ġattitudes":25853,"Ġplum":25854,"ĠRS":25855,"ĠAnfang":25856,"illery":25857,"ĠìĬ¤":25858,"MY":25859,"Ġtrzeba":25860,"Ġskies":25861,"ĠAj":25862,"urable":25863,"CU":25864,"ĠShane":25865,"Ġdeparture":25866,"ĠTON":25867,"ieten":25868,"rats":25869,"æ°Ĺ":25870,"isu":25871,"Ġbord":25872,"Ġinterestingly":25873,"çĻ»":25874,"oughing":25875,"Ġrushing":25876,"Ġvolatility":25877,"Ġpyt":25878,"Ġformats":25879,"ĠзаÑĤ":25880,"Ġê¼Ń":25881,"Ġwhatnot":25882,"Ġcomport":25883,"sw":25884,"orean":25885,"ĠRelax":25886,"Ġclan":25887,"ĠAH":25888,"Ġpew":25889,"Ġdictionary":25890,"Take":25891,"shirts":25892,"ĠHugh":25893,"ĠعÙĦÙĬ":25894,"ĠPic":25895,"Ġenrolled":25896,"Ġjednak":25897,"Ġofferings":25898,"Ġcoraz":25899,"Life":25900,"Ġ!!!":25901,"Ġcler":25902,"ĠVideos":25903,"ĠRodrig":25904,"ĠIdent":25905,"ĠPos":25906,"ĠStage":25907,"ĠRace":25908,"Ġenact":25909,"ãģĦãģ¾ãģĹãģŁ":25910,"ĠGy":25911,"ĠHispan":25912,"Ġdefence":25913,"ĠCampbell":25914,"matic":25915,"Ġrelev":25916,"Ġpeach":25917,"Ħ¸ìļĶ":25918,"Ġparadise":25919,"Ġceremon":25920,"Ġannoyed":25921,"æĮĩ":25922,"lax":25923,"Ġexploit":25924,"Ġclause":25925,"eker":25926,"ĠBloom":25927,"nant":25928,"ateurs":25929,"Ġheights":25930,"Even":25931,"Ñģон":25932,"Ġoutrage":25933,"ĠVietnamese":25934,"ãģ¯ãģ¯":25935,"TR":25936,"Ġeer":25937,"Ġcannon":25938,"ĠComb":25939,"IJë§Į":25940,"è»Ĭ":25941,"Ġê²ĥëıĦ":25942,"Ġaccomplishments":25943,"ĠAnalytics":25944,"Ġshaping":25945,"reiben":25946,"Ġbachelor":25947,"Ġfingert":25948,"acked":25949,"Ġpyramid":25950,"ĠStewart":25951,"ást":25952,"Ġsurvivor":25953,"Ġduct":25954,"Ġdealers":25955,"æ´»":25956,"عÙħ":25957,"лин":25958,"Ġede":25959,"×ķ×¢":25960,"ĠÙĥاÙĨ":25961,"ĠÏĦι":25962,"Ġchooses":25963,"ĠOwn":25964,"гоÑĤов":25965,"hire":25966,"алÑĮнÑĭе":25967,"ĠÐĽÑİ":25968,"ĠоÑģÑĤав":25969,"tech":25970,"Ġdroit":25971,"Ġsubjective":25972,"enes":25973,"Ġdivis":25974,"avez":25975,"Ġmaneuver":25976,"à¹Ħà¸Ķ":25977,"adece":25978,"ĠEns":25979,"acial":25980,"ĠProtection":25981,"ĸ´":25982,"Ġformally":25983,"Ġwyd":25984,"inguém":25985,"Ġziem":25986,"Ġrecruiting":25987,"×Ļ×ļ":25988,"nem":25989,"Ġforbidden":25990,"ĠBapt":25991,"×IJ׳×Ļ":25992,"Ġsubset":25993,"ĠMagaz":25994,"nement":25995,"Ġaquela":25996,"ragon":25997,"Ġcommittees":25998,"Ġétaient":25999,"udi":26000,"ĠDawn":26001,"Ġbore":26002,"Ġcomposer":26003,"ĠwiÄĻcej":26004,"anga":26005,"Ġdislike":26006,"ĠDays":26007,"åŁº":26008,"Ġparal":26009,"Ġmientras":26010,"Ġheavens":26011,"ãģĴ":26012,"heid":26013,"Ġtraders":26014,"once":26015,"Ġmascara":26016,"ĠÏĢÏģο":26017,"Ġwhisper":26018,"ĠMusk":26019,"éĽĨ":26020,"ĠFamilie":26021,"Allah":26022,"ĠOlivia":26023,"ĠPros":26024,"Ġolika":26025,"ilim":26026,"Ġrépond":26027,"ĠPeters":26028,"Ġå¾Ī":26029,"Ġbites":26030,"Ġvic":26031,"ĠNY":26032,"emption":26033,"Ġ450":26034,"Ġvisuals":26035,"Ġlieu":26036,"ücken":26037,"ĠSteel":26038,"ĠGP":26039,"wait":26040,"Ġnoticeable":26041,"ucha":26042,"Ġrehabil":26043,"Ġrejection":26044,"ĠÑģледÑĥÑİÑī":26045,"Ġslider":26046,"Ġregarded":26047,"Ġgravit":26048,"ĠReserve":26049,"count":26050,"Ġbreeding":26051,"Ġlonge":26052,"aleb":26053,"Ġknight":26054,"Ġвой":26055,"Ġprésent":26056,"ĤĺìļĶ":26057,"ĠSpecifically":26058,"Ġposes":26059,"Ġveure":26060,"okay":26061,"emas":26062,"Ġãģ§ãģĻ":26063,"ĠmajÄħ":26064,"Ġwebinars":26065,"Ġcannabis":26066,"Ġdamals":26067,"ĠNorthwest":26068,"Ġpada":26069,"Ġcrowds":26070,"Ġfutures":26071,"Ġän":26072,"Ġcivilians":26073,"ĠSachen":26074,"æį":26075,"Ġtraces":26076,"Ġë¨¹ê³ł":26077,"QU":26078,"é¡ĺãģĦ":26079,"ĠIF":26080,"anın":26081,"ìĤ´":26082,"Ġbiblical":26083,"ĠVed":26084,"Ġstoring":26085,"ÑĢавлÑı":26086,"æĩī該":26087,"Ġnast":26088,"Ġdö":26089,"ÑĢоп":26090,"elia":26091,"Ġsideways":26092,"ĠUnderstand":26093,"ĠQur":26094,"Ġperpend":26095,"ĠMillionen":26096,"Ġwatermelon":26097,"ĠDivine":26098,"ultur":26099,"abord":26100,"Ġsuccesses":26101,"Ġhombre":26102,"Ġcarp":26103,"Ġsuscept":26104,"ungkin":26105,"Ġkij":26106,"ulus":26107,"اج":26108,"Ġnotch":26109,"Ġpolynomial":26110,"å¹²":26111,"å©":26112,"Ġúnico":26113,"Ġtelescope":26114,"Ġpolitique":26115,"kiem":26116,"ĠÎŃνα":26117,"Ġaggregate":26118,"ĠGeoff":26119,"Ġtril":26120,"ĠGRA":26121,"Ġsubscriber":26122,"imet":26123,"ĠдоллаÑĢ":26124,"oping":26125,"Ġtherapeut":26126,"ĠCancer":26127,"Ġparade":26128,"Ġirrig":26129,"âĻªâĻª":26130,"Ġclearer":26131,"Ġbog":26132,"ĠMaur":26133,"าà¸ĩ":26134,"ĠShanghai":26135,"achte":26136,"ĠKol":26137,"elujah":26138,"Ġhav":26139,"ĠCrime":26140,"sek":26141,"Ġë¡ľ":26142,"ienna":26143,"ĠGor":26144,"èĽ":26145,"ĠпоÑĤÑĢ":26146,"ĠкажеÑĤÑģÑı":26147,"ĠLift":26148,"ĠSort":26149,"ĠPsal":26150,"Ġping":26151,"ĵĿ":26152,"phis":26153,"ĠFUCK":26154,"ĠSyn":26155,"Ġbamboo":26156,"¬ìĺģ":26157,"cuts":26158,"Ġmmm":26159,"Ġfunktioniert":26160,"Ġ_":26161,"ÃŃcio":26162,"Stop":26163,"Ġimaginary":26164,"Ġnotamment":26165,"ĠInitiative":26166,"ãĥ¥":26167,"ĠKurt":26168,"Ġloosen":26169,"Ġbuscar":26170,"çģ«":26171,"Ġzelf":26172,"Ġprops":26173,"åĽī":26174,"Ġmoeten":26175,"Ġmilli":26176,"Ġhalls":26177,"ĠMatch":26178,"Ġbrackets":26179,"ĠCou":26180,"æ¦Ĥ":26181,"ĠÐľÐ°ÑĢ":26182,"ISA":26183,"Ġcigarette":26184,"Ġcompetitions":26185,"ĠMIN":26186,"Ġbehö":26187,"voor":26188,"Ġust":26189,"ĠZi":26190,"ĠOcc":26191,"ulates":26192,"Ġballoons":26193,"Ġpronto":26194,"ĠMiy":26195,"ĠFile":26196,"ĠклаÑģÑģ":26197,"нÑĥл":26198,"Ġcereal":26199,"Ġincrement":26200,"Ġrefined":26201,"åı¦å¤ĸ":26202,"prising":26203,"ĠRF":26204,"Ġrespectful":26205,"Ġloot":26206,"asket":26207,"Ġdeixa":26208,"ingle":26209,"Ġfunciona":26210,"ĠRevel":26211,"Ġsober":26212,"Ġperforms":26213,"ĠGentle":26214,"ãĤ¨":26215,"Ġrecipient":26216,"ĠHause":26217,"Ġëĥ":26218,"From":26219,"Ġministers":26220,"Ġparadox":26221,"å°±æĺ¯èªª":26222,"Ġtasting":26223,"Ġ×Ķ×Ĺ":26224,"Ġreuse":26225,"ĠLane":26226,"ĠÑģовеÑĢÑĪ":26227,"Ġremembers":26228,"Ġfeminist":26229,"Ġcommitments":26230,"Ġprojected":26231,"Ġgaz":26232,"iyoruz":26233,"Ġobligations":26234,"Ro":26235,"zar":26236,"Ġchw":26237,"ĠJAM":26238,"ĠbÄĻdÄħ":26239,"aspberry":26240,"ĠмеÑģÑĤо":26241,"ë²ķ":26242,"Ġregulated":26243,"Ġwicht":26244,"ĠTrevor":26245,"Ġsecondly":26246,"ĠIhre":26247,"elsh":26248,"Ġreporters":26249,"ÑĤоÑĢа":26250,"oyo":26251,"GI":26252,"Ġinterconnect":26253,"éIJĺ":26254,"OSH":26255,"æŃ²":26256,"Ġbrass":26257,"Ġignoring":26258,"ä»ĬæĹ¥":26259,"infect":26260,"Ġprojekt":26261,"oret":26262,"ÏĦαν":26263,"ĠÑĤип":26264,"Ġmutta":26265,"Ġunboxing":26266,"Ħ°":26267,"å¡Ĭ":26268,"Ġadvised":26269,"ĠDenver":26270,"Ġseverely":26271,"ĠMhm":26272,"Ġflipped":26273,"Ġpien":26274,"Ġkommun":26275,"ĠFRE":26276,"Ġà®ĩà®°":26277,"ainted":26278,"Ġknives":26279,"Ġhabl":26280,"Ġgeworden":26281,"arettes":26282,"CS":26283,"ĠмаленÑĮ":26284,"Ġgalax":26285,"Ġninete":26286,"ê±°ëĤĺ":26287,"Ġsis":26288,"Ġadvisory":26289,"Ġdrilling":26290,"ĠWouldn":26291,"ünf":26292,"gestellt":26293,"ĠHelen":26294,"Ġ×ŀ×IJ":26295,"apolis":26296,"Ġrzeczy":26297,"Ġterra":26298,"Ġhep":26299,"Ġalgún":26300,"ikk":26301,"Ġastronom":26302,"ĠStarbucks":26303,"kÄħ":26304,"Ġpatrol":26305,"Ġì½Ķ":26306,"Ġgon":26307,"ĠãĢIJ":26308,"Ġsonst":26309,"Ġencounters":26310,"Ġretrou":26311,"Ġsharks":26312,"Ġdor":26313,"ĠRever":26314,"Ġevapor":26315,"Ġreservoir":26316,"Ġalleged":26317,"uler":26318,"Ġverm":26319,"Ġcommerce":26320,"Ġfitted":26321,"gem":26322,"Ġtactical":26323,"Ġlith":26324,"éīĦå¡Ķ":26325,"had":26326,"è®Ĭ":26327,"Ġcarbohyd":26328,"Ġlengths":26329,"ιο":26330,"Ġdemographic":26331,"Rob":26332,"ĠSkin":26333,"ccoli":26334,"Ġsimplified":26335,"Ġreadily":26336,"ĠCum":26337,"adesh":26338,"ĠDÃ¥":26339,"usst":26340,"igne":26341,"eton":26342,"Ġmenor":26343,"qi":26344,"OOM":26345,"à¸Ńà¸Ļ":26346,"Ġpsychiat":26347,"Ġeighty":26348,"Ġмилли":26349,"ĠTob":26350,"edo":26351,"網":26352,"ĠÄijến":26353,"Ġcircuits":26354,"ĠLAUGH":26355,"icism":26356,"emor":26357,"Ġregener":26358,"egree":26359,"Ġbureauc":26360,"ĠAlber":26361,"ä¹ĭå¾Į":26362,"ĠWor":26363,"夫":26364,"Ġresin":26365,"ĠbyÅĤy":26366,"ĠIG":26367,"à¯į,":26368,"Ġ78":26369,"Ġweeds":26370,"ĠMyth":26371,"93":26372,"æ¿":26373,"ĠëĤĺìĻĶ":26374,"év":26375,"á½":26376,"ören":26377,"çar":26378,"ĠPAUL":26379,"Ġdisadvant":26380,"Ġpositioning":26381,"Ġcocktail":26382,"Ġagrees":26383,"nn":26384,"ĠSally":26385,"Ms":26386,"Ġinherent":26387,"Ġmonetary":26388,"Ġnatur":26389,"ĠNh":26390,"ĠImport":26391,"Ġleben":26392,"Ġwi":26393,"ussy":26394,"Ġobes":26395,"Ġwandering":26396,"Ġìĭłë":26397,"Äħda":26398,"etchup":26399,"Ġdisposal":26400,"ĠJA":26401,"ĠCer":26402,"zilla":26403,"Ġvirgin":26404,"ĠSlide":26405,"andel":26406,"Ġrighteousness":26407,"ĠΣ":26408,"Ġideia":26409,"ä½łå¥½":26410,"иÑĢоваÑĤÑĮ":26411,"ר×IJ":26412,"Comment":26413,"Ġprelim":26414,"ĠVale":26415,"Ġì§ĢëĤľ":26416,"ĠVanc":26417,"OMAN":26418,"ĠпÑĸд":26419,"Ġyum":26420,"stre":26421,"cem":26422,"Ġpocz":26423,"Ġfragment":26424,"ĠÑģлÑĥÑĩае":26425,"Ġundergo":26426,"ĠHank":26427,"ceks":26428,"ĠFPS":26429,"Ġocur":26430,"Ġdeterior":26431,"注":26432,"Ġempresas":26433,"Paul":26434,"Ġ)))":26435,"ĠвÑĢемени":26436,"Ġscold":26437,"×Ļ×¢":26438,"Ġsuspected":26439,"Ġaccessing":26440,"Ġsubstit":26441,"Ġhistorians":26442,"ä»»":26443,"Ġдело":26444,"Ġsocied":26445,"rone":26446,"Ġreden":26447,"Ġextends":26448,"epherd":26449,"Ġbalcon":26450,"ä¸įèµ·":26451,"ĠSolo":26452,"Ġpolitician":26453,"олÑĮно":26454,"Ġirgendw":26455,"Ġtraumatic":26456,"Ġrapper":26457,"ĠROBERT":26458,"Really":26459,"æģ¯":26460,"Ġlineup":26461,"ASE":26462,"Ġcontractor":26463,"ĠCorporation":26464,"gor":26465,"ĠTodo":26466,"ÑģÑĤÑĢой":26467,"FBE":26468,"Ġnewsletter":26469,"ĠkoÅĦ":26470,"alties":26471,"ĠпÑĢиÑĩ":26472,"ĠHeavy":26473,"Ġswords":26474,"Ġmanipulation":26475,"Ġfunk":26476,"ĠvÃ¥r":26477,"ĠTaliban":26478,"Ġë°¥":26479,"Ġacne":26480,"ürü":26481,"Ġdeswegen":26482,"ĠDust":26483,"Ġsilic":26484,"Ġhooks":26485,"Ġblij":26486,"Ġpetits":26487,"Ġfilme":26488,"ĠBereich":26489,"ĠSaid":26490,"Ġimposed":26491,"Ġdiary":26492,"ĠгоÑĢ":26493,"ĠGates":26494,"Ġalta":26495,"å¸Į":26496,"Ġchcia":26497,"pleasant":26498,"Ġë°Ŀ":26499,"Ġmożemy":26500,"ĠAustria":26501,"Ġbroker":26502,"Ġsucked":26503,"èĢĥ":26504,"Ġcompartment":26505,"Ġclone":26506,"Ġ×Ķ×¢":26507,"ĠDanke":26508,"Ġnochmal":26509,"езд":26510,"Ġadrenal":26511,"Ġkleinen":26512,"ãģ¾ãģĹãĤĩãģĨ":26513,"Ġsubsequently":26514,"Ġdecentral":26515,"Ġgenetics":26516,"Ġê´ij":26517,"Ġmonitors":26518,"ĠApplic":26519,"ĠReporter":26520,"wert":26521,"Ġwiem":26522,"ĠMovement":26523,"Ġinterviewing":26524,"Ġhairs":26525,"Ġpuò":26526,"ĠChelsea":26527,"Ġcoher":26528,"Ġcot":26529,"Ġzas":26530,"Ġpatches":26531,"Ġlah":26532,"Ñĥнк":26533,"ĠReagan":26534,"ĠMarco":26535,"city":26536,"Ġdefender":26537,"Ġdecoration":26538,"iji":26539,"Ġlitter":26540,"Ш":26541,"Ġjego":26542,"REW":26543,"ĠPik":26544,"ĠHee":26545,"ĠIv":26546,"Ġиде":26547,"ĠTheater":26548,"ĠÑĩаÑģÑĤо":26549,"Ġsweater":26550,"Ġhighlighting":26551,"Ġainsi":26552,"Ġdiplomatic":26553,"ĠNevertheless":26554,"å³":26555,"ASON":26556,"Ġpúblico":26557,"Ġferm":26558,"reated":26559,"cod":26560,"Ġ물ë":26561,"Ġmister":26562,"ĠVancouver":26563,"Ġrecognizes":26564,"ecd":26565,"Ġcomplications":26566,"encial":26567,"ãģĹãģı":26568,"Ġê°Ģì§Ģ":26569,"ĠUltimate":26570,"Ġvaig":26571,"ĠMerry":26572,"×ķ×Ĵ":26573,"ĠMarcus":26574,"總":26575,"owego":26576,"Ġmente":26577,"Sm":26578,"Ġaja":26579,"ĠTao":26580,"Ġjudicial":26581,"Ġentrepreneurship":26582,"Ġнемного":26583,"Ġpis":26584,"Ġerg":26585,"Ġchrist":26586,"ĠCurt":26587,"ĠÑĢаÑģп":26588,"λε":26589,"ensch":26590,"ÃŃre":26591,"Ġfocal":26592,"ĠDiamond":26593,"avÃŃa":26594,"Ġhanno":26595,"ĠSquad":26596,"Ġassociations":26597,"ĠCreative":26598,"Ġmessenger":26599,"Ġbegging":26600,"Ġdecimal":26601,"ĠdÄ±ÅŁ":26602,"Ġmetadata":26603,"sels":26604,"ĠÄ°ÅŁ":26605,"ữa":26606,"Ġdifficile":26607,"dı":26608,"Ġslaughter":26609,"ĠVerg":26610,"Ġ×Ĵ×Ŀ":26611,"ç°¡":26612,"æĮī":26613,"ĠTea":26614,"asses":26615,"Ok":26616,"Ġsynthes":26617,"otiation":26618,"Ġpainter":26619,"Ġelbows":26620,"Ġarchitectural":26621,"ĠÑĢад":26622,"Ġglor":26623,"image":26624,"ampa":26625,"culiar":26626,"ł¨":26627,"Ġteve":26628,"ĠStelle":26629,"ĠBam":26630,"Ġì´Ī":26631,"asis":26632,"ipedia":26633,"ĠGI":26634,"ĠActive":26635,"çĦ¶åIJİ":26636,"azi":26637,"ãĤĮãģ¦":26638,"ĠLucky":26639,"íķ©":26640,"ĠпÑĢиÑħод":26641,"Ġrunway":26642,"Ġauthentication":26643,"Ġposible":26644,"Ġsupplements":26645,"Ġsurgical":26646,"Gen":26647,"Ġfeasible":26648,"DO":26649,"Ġoutlook":26650,"Ġintervals":26651,"Ġanecd":26652,"Ãłng":26653,"Ġstraps":26654,"ĠShu":26655,"udd":26656,"issenschaft":26657,"Ġporte":26658,"Ġcommitting":26659,"Ġalley":26660,"Ġcovenant":26661,"ĠPedro":26662,"lessness":26663,"ĠSolid":26664,"ĠMolly":26665,"ĠнекоÑĤоÑĢ":26666,"Ġcooperate":26667,"åĮĹ":26668,"ollen":26669,"Ġtuna":26670,"Ġkindergarten":26671,"ĠSiz":26672,"Ġdużo":26673,"ĠMBA":26674,"ĠGEORGE":26675,"ĠFisher":26676,"å¿ĺ":26677,"ĠCaesar":26678,"ĠкÑĢаÑģив":26679,"ĠDelhi":26680,"zym":26681,"Ġexplicar":26682,"ê°Ģì§Ģ":26683,"uns":26684,"grow":26685,"ĠпÑĢиÑģ":26686,"Ġ86":26687,"Ġstating":26688,"Ġmassa":26689,"chter":26690,"Ġì»¬ëŁ¬":26691,"Ġdeputy":26692,"SM":26693,"noc":26694,"Ġgeography":26695,"ĠEnterprise":26696,"ĠCant":26697,"öz":26698,"Ġunpack":26699,"ĠíĻĶë":26700,"Ġsearches":26701,"Ġpresidency":26702,"Ġtrivial":26703,"Ġpige":26704,"oubt":26705,"ãĤļ":26706,"ì¼ĢìĿ´":26707,"Ġbudgets":26708,"Ġub":26709,"Ġpne":26710,"ĠYale":26711,"ĠÅŁÃ¶yle":26712,"regular":26713,"Ġimperfect":26714,"ARA":26715,"ĠfamÃŃlia":26716,"urm":26717,"ĠAdventure":26718,"ãĥĬ":26719,"cis":26720,"emark":26721,"Ġnego":26722,"Ġinappropriate":26723,"ĠпÑĢиз":26724,"ĠÑĢол":26725,"Ġdreamed":26726,"Bry":26727,"Ġshuttle":26728,"Ġpillars":26729,"Ġbik":26730,"inum":26731,"ĠÑĥÑģ":26732,"ĠNebr":26733,"Ġperpendicular":26734,"Ġbooked":26735,"bery":26736,"Ġvikt":26737,"bear":26738,"esus":26739,"Ġвозможно":26740,"¨¹":26741,"Ġpresumably":26742,"ĠMemphis":26743,"Ġambulance":26744,"×ķ×ŀר":26745,"Ġthumbnail":26746,"Ġmodification":26747,"éĩı":26748,"Ġinterpreted":26749,"Ġpromo":26750,"Ġκά":26751,"ĠεÏĢ":26752,"Ġacoustic":26753,"ĠDB":26754,"åĵİ":26755,"Ġnonetheless":26756,"oule":26757,"Ġpequ":26758,"Ġknob":26759,"ãĤ£":26760,"ĠëıĮìķĦ":26761,"Ġpurchases":26762,"ĠÃĩünkü":26763,"Ġdividing":26764,"perform":26765,"raction":26766,"healthy":26767,"ĠTitle":26768,"Ġuk":26769,"Ġcerca":26770,"Ġarguably":26771,"Ġfale":26772,"ë³µ":26773,"Ġgamers":26774,"Ġutilizing":26775,"Ġoffended":26776,"Ġtava":26777,"alı":26778,"Ġmedian":26779,"Ġinfectious":26780,"ĠAnnie":26781,"Ġsmartphones":26782,"Ġparole":26783,"åĸĿ":26784,"ĠEpic":26785,"zza":26786,"Ġunified":26787,"Ġê·¸ëķĮ":26788,"Ġcurtain":26789,"ĠÄĥ":26790,"Ġsexually":26791,"Ġunserem":26792,"ĠConvention":26793,"Ġallegedly":26794,"Ya":26795,"ĠHoo":26796,"enment":26797,"æĢª":26798,"íĽĦ":26799,"Ġgigantic":26800,"Ġnoting":26801,"Ġrebo":26802,"ĠJama":26803,"ĠAlz":26804,"Ġborrowed":26805,"침":26806,"Ġperipher":26807,"оÑĤа":26808,"ĠGB":26809,"ĠGear":26810,"Ġeconomically":26811,"Ġtelefon":26812,"Ġqueremos":26813,"ĠдалÑĮÑĪе":26814,"Ġras":26815,"ĠTeach":26816,"icios":26817,"atos":26818,"Ġpledge":26819,"bau":26820,"ĠHimself":26821,"Link":26822,"Ġespero":26823,"Ġchromos":26824,"ĠPER":26825,"Ġerle":26826,"Ġpodium":26827,"ços":26828,"Ġnieu":26829,"Ġfen":26830,"ĠGOD":26831,"ĠChocolate":26832,"werk":26833,"Ġtừ":26834,"Ġsuppress":26835,"λη":26836,"Ġ240":26837,"Ġsitä":26838,"Ġhonesty":26839,"ĠBio":26840,"ĠBard":26841,"ĠобÑīем":26842,"ĠмÑĥз":26843,"Ġmarble":26844,"ĠÑĨенÑĤ":26845,"Ġprocure":26846,"Ġrotor":26847,"bern":26848,"Ġtuh":26849,"Ġheadset":26850,"atem":26851,"Ġwarranty":26852,"à®´":26853,"Ġfiling":26854,"ιά":26855,"Ġcomprendre":26856,"Ġimpulse":26857,"Ġsalv":26858,"written":26859,"Ġinstitute":26860,"Kim":26861,"ĠLGBTQ":26862,"ficiente":26863,"His":26864,"ĠαÏħÏĦÏĮ":26865,"Ġteenage":26866,"orus":26867,"ĠÑĢазб":26868,"See":26869,"ĠConserv":26870,"á»ģn":26871,"fulness":26872,"Ġstrawberries":26873,"ĠAbu":26874,"ион":26875,"Ġolla":26876,"NOISE":26877,"ĠEmploy":26878,"Ġwiped":26879,"urger":26880,"Ġmodifications":26881,"Ġíķĺì§Ģ":26882,"Ġfootsteps":26883,"Ġhonors":26884,"Ġadul":26885,"Ġflipping":26886,"ĠHU":26887,"ZY":26888,"Ġintegrating":26889,"بر":26890,"ulla":26891,"Ġnatuurlijk":26892,"ĠíĹĪ":26893,"ĠEthereum":26894,"ÙĬÙĦ":26895,"wed":26896,"Ġpeaks":26897,"ĠKes":26898,"Ġbloom":26899,"Ġcrashing":26900,"Ġ911":26901,"ĠоÑĤлиÑĩ":26902,"Ġcontrollers":26903,"ĠDod":26904,"ĠвмеÑģÑĤе":26905,"Ġsortir":26906,"å¥ĩ":26907,"ĠStraight":26908,"ĠGracias":26909,"Ġgroove":26910,"Ġtogg":26911,"Ġìĭ¶ìĿĢ":26912,"éro":26913,"Ġoutward":26914,"ĠWA":26915,"ĠRocky":26916,"Ġscam":26917,"Ġhayat":26918,"ignty":26919,"âĦ":26920,"plings":26921,"Ġantibiotics":26922,"Ġä¸Ģ":26923,"Ġnevertheless":26924,"jang":26925,"commerce":26926,"Ġspoiler":26927,"Ġglove":26928,"Ġchatter":26929,"ĠBY":26930,"~?":26931,"Ġíĺ¸":26932,"Ġdemol":26933,"wechsel":26934,"imir":26935,"Ġraid":26936,"еÑĢÑħ":26937,"ìŀIJ기":26938,"enf":26939,"Ġcommented":26940,"Ġoptimized":26941,"Ġconvicted":26942,"Ġbats":26943,"ĠSB":26944,"ĠAur":26945,"ĠTong":26946,"Ġimplicit":26947,"ĠJanet":26948,"Ġreag":26949,"ãģ²":26950,"ĠAdvanced":26951,"Ġimpose":26952,"ש×Ķ":26953,"Ġschemes":26954,"ougher":26955,"abolic":26956,"Ġê±°ì£ł":26957,"Ġslowing":26958,"Ġwtedy":26959,"Ġdestructive":26960,"ĠопÑĢед":26961,"Ġlandmark":26962,"ĠëıĪ":26963,"ĠWalking":26964,"ẹ":26965,"Ġtijd":26966,"ĠKN":26967,"ĠQuant":26968,"ìĺ¤ë":26969,"ĠкÑĢÑĥ":26970,"Ġperder":26971,"Ġnove":26972,"ände":26973,"ĠãģĹ":26974,"bia":26975,"Ġcustody":26976,"Ġbiod":26977,"æĿ±è¥¿":26978,"Ġdirecting":26979,"...âĢĭ":26980,"Ġreloc":26981,"Ġdemande":26982,"ãĤĵãģł":26983,"ĠoÄŁlum":26984,"Ġодна":26985,"ĠMilk":26986,"åı·":26987,"ĠKra":26988,"ĠHonda":26989,"Ġpue":26990,"Ġelekt":26991,"Ġbeginners":26992,"Ġspear":26993,"ÃŃnh":26994,"ĠLuft":26995,"Ġnig":26996,"ĠSchools":26997,"Ġforums":26998,"ĠQin":26999,"ppo":27000,"Ġzag":27001,"ĠЮ":27002,"Ġtoothp":27003,"ĠStyle":27004,"ì´Ī":27005,"Ġpunct":27006,"Ġreps":27007,"ĠAly":27008,"Ġamendments":27009,"Ġöz":27010,"Ġdigits":27011,"urai":27012,"Ġchaotic":27013,"ĠMasters":27014,"eon":27015,"ĠCash":27016,"ĠCuz":27017,"Ġbedeutet":27018,"Ġscanning":27019,"Ġжд":27020,"неÑĤ":27021,"Ġcertainty":27022,"jek":27023,"Ġdijo":27024,"ĠClimate":27025,"Ġrinse":27026,"Ġkrij":27027,"veland":27028,"Ġsoundtrack":27029,"ĠSafe":27030,"ĠNova":27031,"94":27032,"Ġathe":27033,"ĠVerb":27034,"oler":27035,"ìĿ´ì£ł":27036,"Ġvin":27037,"Ġrespiratory":27038,"ĠStudy":27039,"ĠCAM":27040,"Ġavocado":27041,"ĠZhen":27042,"Ġlatency":27043,"Ġfeathers":27044,"Ġcontar":27045,"ĠвеÑī":27046,"Ġfark":27047,"Ġblended":27048,"Ġexploded":27049,"ĠXX":27050,"ĠBenim":27051,"Ġalguém":27052,"istoire":27053,"Ġconfidential":27054,"Ġmast":27055,"Ġì¿":27056,"geh":27057,"Ġdisrespect":27058,"ĠSystems":27059,"Æ°a":27060,"Ed":27061,"Ġwys":27062,"Ġexotic":27063,"Ġglowing":27064,"ùng":27065,"ounge":27066,"èĦ":27067,"аниз":27068,"Ġpalav":27069,"ĠSword":27070,"Ġgim":27071,"ĠCrow":27072,"Ġpotent":27073,"bish":27074,"Ġabused":27075,"ĠJed":27076,"Ġgambling":27077,"ĠSpect":27078,"Ġinvestigators":27079,"æĻļ":27080,"Ġratt":27081,"Ġdob":27082,"ĠDES":27083,"hog":27084,"ĠоÑĤкÑĢÑĭ":27085,"íĮħ":27086,"ĠденÑĮги":27087,"Ġíĺ¹":27088,"Ġ머리":27089,"Ġsaturation":27090,"Ġinherited":27091,"ĠInnovation":27092,"ìĹĪëįĺ":27093,"Ġtangible":27094,"Ġdepri":27095,"hed":27096,"Ġпомог":27097,"Ġsliced":27098,"à¥į":27099,"Ġthế":27100,"Å¥":27101,"68":27102,"Ġcorona":27103,"Ġgifted":27104,"Ġsoir":27105,"Ġhumility":27106,"ĠìĿ´ê±¸":27107,"Ġflaws":27108,"ĠпÑĢакÑĤи":27109,"Ġkald":27110,"waż":27111,"yw":27112,"ãĤĵãģ§ãģĻ":27113,"irteen":27114,"Ġcrochets":27115,"¦¬ê°Ģ":27116,"ĠìłĦìĹIJ":27117,"Ġdese":27118,"æ¥Ń":27119,"Ġмаг":27120,"ĠdziaÅĤ":27121,"Ġlég":27122,"changing":27123,"Ġllev":27124,"ÅĦsk":27125,"çĶ»":27126,"Ġ1984":27127,"orns":27128,"ĠWelsh":27129,"Ġpharmaceutical":27130,"Ġpumping":27131,"ĠShaw":27132,"punk":27133,"Ġvault":27134,"Ġkinetic":27135,"Ġhurricane":27136,"ĠIncluding":27137,"ức":27138,"ĠGrandpa":27139,"anship":27140,"é¦Ļ港":27141,"ĠвÑĭÑħод":27142,"нож":27143,"ľł":27144,"utta":27145,"Ġê²ģëĭĪëĭ¤":27146,"Ġbaz":27147,"ĠпоÑĪ":27148,"Ġpeculiar":27149,"zyÄĩ":27150,"ĠEllie":27151,"Ġlearns":27152,"ĠKrishna":27153,"Ġconsecut":27154,"Ġempath":27155,"ĠDin":27156,"Ġtraded":27157,"ĠBoris":27158,"uggage":27159,"olla":27160,"Ġназв":27161,"Ġeternity":27162,"Ġвп":27163,"èmes":27164,"Ġgrapp":27165,"bé":27166,"ĠпÑĢедÑģÑĤав":27167,"ĠFC":27168,"įëĭĪëĭ¤":27169,"even":27170,"ĠNebraska":27171,"ortune":27172,"Ġkarena":27173,"ĠAgent":27174,"Ġsting":27175,"ĠPI":27176,"Ġmunicipal":27177,"powered":27178,"Ġconsegue":27179,"ĠManchester":27180,"Ġrainy":27181,"Ġbli":27182,"Ġkost":27183,"Ġhalten":27184,"ĠAhhh":27185,"insula":27186,"erting":27187,"ĠاÙĦÙģ":27188,"Ġrelacion":27189,"Ġkomen":27190,"Ġdome":27191,"Ġpriests":27192,"ĠIntrodu":27193,"rophe":27194,"shore":27195,"velt":27196,"clipse":27197,"ĠÑĢÑĥÑģ":27198,"×Ļס":27199,"Ġsabemos":27200,"ĠHolland":27201,"ogi":27202,"anki":27203,"ĠMats":27204,"Ġsmoked":27205,"ullie":27206,"Ġeurope":27207,"ĠдейÑģÑĤвиÑĤелÑĮно":27208,"Ġbardziej":27209,"Ġtransforming":27210,"ĠEz":27211,"opath":27212,"Ġìĸ¸ëĭĪ":27213,"ĠÑģÑĤан":27214,"ằng":27215,"ัà¹ī":27216,"ĠOuch":27217,"Ġclearance":27218,"ustain":27219,"Ġsolidarity":27220,"Ġproving":27221,"ĠÐĺн":27222,"ĠÑģÑĬ":27223,"Ġprolong":27224,"адно":27225,"Ġsos":27226,"ĠDeal":27227,"Ġ170":27228,"mons":27229,"Ġзем":27230,"Ġlogged":27231,"Ġlifelong":27232,"Ġsensory":27233,"Ġbehold":27234,"ĠFAR":27235,"ètement":27236,"ĠFederation":27237,"Ġdodge":27238,"ĠShir":27239,"Ġdragons":27240,"ĠArctic":27241,"Äħż":27242,"Åį":27243,"º":27244,"Ġdenke":27245,"ĠpodrÃŃa":27246,"cole":27247,"ÑĥлÑĮÑĤаÑĤ":27248,"Ġsystematic":27249,"ама":27250,"chos":27251,"Ġclinics":27252,"ĠBS":27253,"Ġtales":27254,"usions":27255,"ĠíĪ¬":27256,"Ġpreservation":27257,"Ġlore":27258,"ĠProtest":27259,"Ỽ":27260,"å¸Ĥ":27261,"Ġacknowledged":27262,"ĠIsaiah":27263,"ĠëķĮëĬĶ":27264,"Ġ×ĺ":27265,"Ġcompetitor":27266,"Ġadvancing":27267,"zip":27268,"Ġtenth":27269,"ĠLaure":27270,"Ġhints":27271,"Ġexercising":27272,"ŀľë":27273,"ĠIntelligence":27274,"uated":27275,"OUT":27276,"oped":27277,"Ġautonomy":27278,"Ġbranding":27279,"ĠMediterranean":27280,"Ñĸк":27281,"Ġscrewdriver":27282,"Ġsupre":27283,"Ġstap":27284,"Ġjurisdiction":27285,"ĠSettings":27286,"Ġforefront":27287,"ĠFemale":27288,"comfort":27289,"Ġmultiplication":27290,"ĠMurray":27291,"Ġbob":27292,"ĠTas":27293,"Ġtahu":27294,"Ġonun":27295,"etter":27296,"Ġprophets":27297,"lag":27298,"Ġrevenues":27299,"Ġprá":27300,"Ġuploading":27301,"Ġmachinery":27302,"ascal":27303,"ĠEstá":27304,"ĠGoth":27305,"ĠBald":27306,"ĠSaw":27307,"Ġstripes":27308,"ìłij":27309,"Ġpowin":27310,"æĹ¥æľ¬":27311,"Ġhostile":27312,"Ġdarum":27313,"Ġprevented":27314,"ожалÑĥйÑģÑĤа":27315,"Ġalgunas":27316,"Ġhopeless":27317,"Ġznaj":27318,"Ġreadings":27319,"Ġcraving":27320,"tat":27321,"ĠPig":27322,"Ġliar":27323,"çĪ±":27324,"Ġmultiplayer":27325,"Ġdale":27326,"ĠCourse":27327,"íģ¼":27328,"ĠKita":27329,"Ġcustoms":27330,"Ġresponds":27331,"endra":27332,"è¦ĸ":27333,"Ġmetro":27334,"Ñģол":27335,"Ġmitigate":27336,"Ġoppression":27337,"ĠæĪijåĢij":27338,"quinho":27339,"Ġammo":27340,"Ġenfer":27341,"Ġpony":27342,"Ġounces":27343,"°Ķ":27344,"ĠìĪĺê°Ģ":27345,"Ġdicho":27346,"ĠDeb":27347,"Ġwonders":27348,"ĠRoose":27349,"Ġprizes":27350,"ĠALEX":27351,"Ġthankfully":27352,"Ġtissues":27353,"ĠÑĢавно":27354,"ĠLuna":27355,"intelligible":27356,"ĠìĻ¸":27357,"ê°ij":27358,"ĠHeat":27359,"ĠÑģид":27360,"ĠQui":27361,"Ġions":27362,"Ġaccommodation":27363,"便":27364,"ĠKart":27365,"ienst":27366,"Ġtarde":27367,"Ġsoaked":27368,"ĠCasey":27369,"Ġì´Ŀ":27370,"ĠÑĢÑĥб":27371,"Ġdifferenti":27372,"Ġleftover":27373,"Ġexchanges":27374,"second":27375,"Ġfirstly":27376,"Ġbuilder":27377,"rien":27378,"Ġdw":27379,"Ġbouncing":27380,"?<":29986,"ologÃŃa":29987,"wealth":29988,"Ġmeditate":29989,"ĵ¤ìĿĺ":29990,"ĠCraft":29991,"è§īå¾Ĺ":29992,"æĻ®":29993,"riv":29994,"ĠAgainst":29995,"Ġceramic":29996,"espère":29997,"Ġcompetent":29998,"ĠHopkins":29999,"Ġkilos":30000,"Ġgravel":30001,"Ġpiston":30002,"Ġfriendships":30003,"Ġescre":30004,"Ġvoz":30005,"ĠGesellschaft":30006,"Ġunterstüt":30007,"Ġmuj":30008,"Ġwarnings":30009,"pos":30010,"ĠProfessional":30011,"wszy":30012,"odle":30013,"bands":30014,"Ġteamwork":30015,"stellung":30016,"Ġdx":30017,"åįĬ":30018,"Ġattorneys":30019,"Ġweitere":30020,"ãħĭãħĭãħĭ":30021,"ĠOriginal":30022,"×Ļ×Ĺ":30023,"Ġbroadcasting":30024,"ĠпеÑĢвÑĭй":30025,"uchi":30026,"Ġheure":30027,"Ġgrabs":30028,"ĠWOR":30029,"ĠPlaid":30030,"Min":30031,"Ġpaz":30032,"ĠPuis":30033,"umu":30034,"itates":30035,"Ġcoats":30036,"Ġbuen":30037,"Ġheir":30038,"Ġpneum":30039,"שר":30040,"enser":30041,"ĠJUDGE":30042,"Ġblonde":30043,"á¹Ľ":30044,"Ġgak":30045,"Ġsık":30046,"Ġquoted":30047,"Ġequipo":30048,"Ġwishing":30049,"ÃŃcia":30050,"Ġverbs":30051,"çµĦ":30052,"ĠCanadians":30053,"Ġgoverning":30054,"ĠEvans":30055,"Euro":30056,"Ġgenres":30057,"Ġunterschied":30058,"ĠBecky":30059,"³¼ê²ĮìļĶ":30060,"Ġeinge":30061,"ĠRaise":30062,"oland":30063,"ĠStrateg":30064,"Ġeres":30065,"ĠVeterans":30066,"Ġbreakout":30067,"Ġsanté":30068,"Ġadel":30069,"Ġinvestigated":30070,"Ġpeur":30071,"Ġagile":30072,"Ġrailroad":30073,"anska":30074,"Ġей":30075,"Ġexpos":30076,"atories":30077,"ĠContent":30078,"Ġtruths":30079,"ĠTrail":30080,"Ġgua":30081,"Ġpores":30082,"Ġwritings":30083,"ĠUhr":30084,"ĠThats":30085,"Ġicing":30086,"OC":30087,"ĠProduction":30088,"Ġcarne":30089,"ISS":30090,"Ġninguém":30091,"non":30092,"Ġvicious":30093,"×ķ×Ķ":30094,"Ġreconnect":30095,"Ġcentres":30096,"ĠKem":30097,"Ġcrease":30098,"ĠìĿ´ë¯¸":30099,"айÑĤеÑģÑĮ":30100,"ĠбоÑĢ":30101,"ĠHayır":30102,"ĠÑģÑĥд":30103,"Ġúnica":30104,"owaÅĤ":30105,"Ġadher":30106,"hua":30107,"ZZ":30108,"Ġpreciso":30109,"Ġcurrents":30110,"Ġseasoned":30111,"ĠIoT":30112,"ĠBishop":30113,"è¨Ī":30114,"sted":30115,"ĠBernard":30116,"ì¤ĺ":30117,"æ²»":30118,"ĠGlenn":30119,"Ġktórym":30120,"ืà¹Ī":30121,"Ġastrolog":30122,"ĠKot":30123,"å¤ľ":30124,"Ġparfois":30125,"Ġforwards":30126,"ĠWiÄĻ":30127,"ĠÎĺ":30128,"Ġnano":30129,"è»į":30130,"sub":30131,"ĠBrill":30132,"Ġgrit":30133,"Ġcited":30134,"gado":30135,"Ġmelts":30136,"Ġforcé":30137,"âĸĪâĸĪ":30138,"Ġbajo":30139,"Ġdiscretion":30140,"°°":30141,"ativity":30142,"Ġsituated":30143,"ãĥ«ãĤ¯":30144,"Ñīее":30145,"åľ°æĸ¹":30146,"ĠпÑĢинÑĨип":30147,"amaz":30148,"Ġaquarium":30149,"Ġdissolve":30150,"ĠGods":30151,"Super":30152,"Ġamid":30153,"zk":30154,"ĠãģĦ":30155,"éłIJ":30156,"ampf":30157,"Ġhela":30158,"'!":30159,"Ġdevelopmental":30160,"ĠDise":30161,"ĠÑĢабоÑĤаеÑĤ":30162,"Ġsnapshot":30163,"好好":30164,"Õ¸":30165,"ĠYue":30166,"ĠHulk":30167,"ĠDoom":30168,"ĠFelix":30169,"Ġréf":30170,"Male":30171,"ç·Ĭ":30172,"phants":30173,"ENS":30174,"ĠMechan":30175,"ĠGolf":30176,"åĨįè¦ĭ":30177,"Ġgenerosity":30178,"ätze":30179,"Ġunlocked":30180,"ĠãĤĴ":30181,"íĥģ":30182,"ocalypse":30183,"Alright":30184,"Ġê°ľë":30185,"Ġ×IJ×ij׾":30186,"ĠKeeping":30187,"Ġcollaborating":30188,"chief":30189,"ĠFernando":30190,"Ġchefs":30191,"ĠíĶ¼ë¶Ģ":30192,"Ġskipped":30193,"Ġpersonn":30194,"Ġaxe":30195,"chez":30196,"Ġextraction":30197,"ĠAV":30198,"ĠGibbs":30199,"Ġíľ":30200,"Ġsı":30201,"IAM":30202,"View":30203,"ĠGRANT":30204,"Ġ몸":30205,"Ġverification":30206,"Ġdepicted":30207,"ĠMoz":30208,"oux":30209,"Ġtul":30210,"Ġscanner":30211,"Ġcomedian":30212,"ĠVolks":30213,"ĠJEFF":30214,"è¨Ĥéĸ±":30215,"§Ħ":30216,"Ġdistraction":30217,"rá":30218,"ĠINTER":30219,"Ġsincer":30220,"Ġ×ŀת":30221,"Ġש׳":30222,"Ġconstructive":30223,"arf":30224,"ĠëĪĦë":30225,"Ġeco":30226,"ramos":30227,"Ġrenewed":30228,"inement":30229,"ĠUb":30230,"ĠPepper":30231,"ì§Ģê°Ģ":30232,"ĠDarwin":30233,"Ġmerchand":30234,"Ġvárias":30235,"èce":30236,"NG":30237,"ĠìľĦíķ´ìĦľ":30238,"ĠакÑĤив":30239,"ĠUnters":30240,"عÙĦ":30241,"Ġintric":30242,"omma":30243,"ieving":30244,"ĠCaroline":30245,"åĵģ":30246,"ĠPRES":30247,"Ġperformer":30248,"Ġautour":30249,"ãģ¾ãģĽãĤĵ":30250,"Ġutterly":30251,"Ġsynthesis":30252,"Ġlesbian":30253,"Ġretrieve":30254,"Ġmaneira":30255,"Ġimpair":30256,"Ġmentoring":30257,"ĠSouls":30258,"ĠGoPro":30259,"ÑĢаÑĤÑĮ":30260,"Ġcose":30261,"ĠSSD":30262,"IRE":30263,"Ġupfront":30264,"ĠAun":30265,"Ġgamer":30266,"Ġlitt":30267,"Ġaggression":30268,"ĠLikewise":30269,"ĠBetty":30270,"ĠDart":30271,"ĠDLC":30272,"ishment":30273,"ìŀ¥ìĿĦ":30274,"Ġ对":30275,"ç»ı":30276,"cream":30277,"ĠBabylon":30278,"Ġnug":30279,"brar":30280,"Ġaynı":30281,"amily":30282,"bike":30283,"ahahaha":30284,"loyd":30285,"Ġmira":30286,"Ġperme":30287,"ĠGaming":30288,"Ġfirmware":30289,"Ma":30290,"Ġassisted":30291,"atics":30292,"Ġìķŀìľ¼ë¡ľ":30293,"ĠMental":30294,"niejs":30295,"ĠIz":30296,"owÄħ":30297,"Ġtougher":30298,"Ġdeed":30299,"èĭ¦":30300,"Ġstylish":30301,"ĠTools":30302,"ĠHamp":30303,"Ġsunscreen":30304,"Ġarticulate":30305,"iye":30306,"иÑĦ":30307,"ĠSpread":30308,"ĠHAVE":30309,"Ġswirl":30310,"Ġsponsoring":30311,"ä»ĭ":30312,"iovascular":30313,"mesi":30314,"Ġrelaxation":30315,"ĠÑģвоиÑħ":30316,"Ġmargins":30317,"ĠsaÄŁ":30318,"ĠPride":30319,"ĠÏĦοÏħÏĤ":30320,"иÑĨи":30321,"enci":30322,"Does":30323,"Ġcorpse":30324,"Ġendurance":30325,"Ġíŀĺ":30326,"ì¹´":30327,"Ġhaircut":30328,"Ġinterrupted":30329,"Ġwindy":30330,"ĠCaleb":30331,"ÏģÏĩ":30332,"ĠPourquoi":30333,"Ġholistic":30334,"uclear":30335,"ĠWhole":30336,"士":30337,"Act":30338,"Ġgallon":30339,"cade":30340,"ĠRegional":30341,"roads":30342,"ĠSchne":30343,"áng":30344,"Ġизмен":30345,"ãĤĪãģŃ":30346,"Ġmenus":30347,"Ġsplitting":30348,"Ġpriced":30349,"ĠÎĵ":30350,"Ġusername":30351,"ĠÐŀÑĩ":30352,"Ġcompressed":30353,"yin":30354,"Ġguardian":30355,"Ġgoof":30356,"Ġchecklist":30357,"Ġinterchange":30358,"Ġexpedition":30359,"Ġextern":30360,"Ġinfrared":30361,"engo":30362,"Ġdenying":30363,"Ġpackets":30364,"onent":30365,"BB":30366,"ĠIncre":30367,"Ġsini":30368,"ÃŁer":30369,"èg":30370,"maal":30371,"generation":30372,"Ġminorities":30373,"Ġllevar":30374,"Ġnomination":30375,"Ġconsid":30376,"Ġ×ľ×¢":30377,"muÅŁ":30378,"ĠEsc":30379,"Ġnumerator":30380,"Ġkaik":30381,"Ġktórych":30382,"iesen":30383,"Ġvê":30384,"ĠUSS":30385,"ĠPrivate":30386,"Ġодно":30387,"Ġalém":30388,"ÃŃtulo":30389,"Ġlimb":30390,"Ġforgiven":30391,"Ġdisclosure":30392,"ÏĦί":30393,"Ġningún":30394,"Ġtherapeutic":30395,"Ġnegotiating":30396,"ĠNike":30397,"enseful":30398,"Ġincap":30399,"Ġflagship":30400,"town":30401,"âĪ":30402,"ĠÏĢολ":30403,"Ġwolves":30404,"Ġviolations":30405,"ĠArnold":30406,"Ġintervene":30407,"Ġheater":30408,"Ġrecursos":30409,"Ġmaid":30410,"ê²¼":30411,"ĠдавайÑĤе":30412,"ĠCelebr":30413,"Ġcape":30414,"ĠSty":30415,"ainen":30416,"site":30417,"bij":30418,"ĠполÑĮз":30419,"Ġframed":30420,"Ġpublishers":30421,"ĠÑĩÑĥÑĤÑĮ":30422,"Ġtemptation":30423,"Ġcerteza":30424,"Ġexempt":30425,"ìĬ¹":30426,"selling":30427,"ĠTask":30428,"hoon":30429,"ĠCoc":30430,"ĠParks":30431,"Ġrepetition":30432,"ĠÑĤÑĥда":30433,"Ġensl":30434,"ĠdeÄŁiÅŁ":30435,"ĠOrlando":30436,"ĠMainten":30437,"æŃ¢":30438,"ocument":30439,"ĠHC":30440,"Ġscooter":30441,"ĠнапиÑģ":30442,"Ġtighter":30443,"Ġtease":30444,"Ġremoves":30445,"Ġkijken":30446,"ĠÑģÑĥÑīеÑģÑĤв":30447,"Ġthé":30448,"ĠвÑĭглÑıд":30449,"Ġrelieve":30450,"Ġmitä":30451,"Ġstationary":30452,"öff":30453,"pable":30454,"Ġarter":30455,"Ġdéf":30456,"rative":30457,"Ġconect":30458,"Ġsaddle":30459,"ĠDiane":30460,"Ġcommemor":30461,"fendim":30462,"SÃŃ":30463,"Ġíģ´ë":30464,"Ġmange":30465,"atte":30466,"Ġarrogant":30467,"Ġrobotic":30468,"ĠgiÃł":30469,"æĺ¯çļĦ":30470,"Ġneighbourhood":30471,"isson":30472,"Ġдвиж":30473,"ĠRI":30474,"ĠNorman":30475,"brand":30476,"amation":30477,"Ġrazor":30478,"Ġmurders":30479,"ĠÑĤÑĥ":30480,"Ġwszystkim":30481,"Ġutilities":30482,"Ġmicroscop":30483,"ê¿":30484,"Ġdaqui":30485,"ollar":30486,"ĠÐĶавайÑĤе":30487,"Ġannée":30488,"Ġkilometres":30489,"Ġhomosexual":30490,"Ġarchitects":30491,"ãģ¡ãģ¯":30492,"Ġniye":30493,"LER":30494,"Ġmicrophones":30495,"ĠStunden":30496,"Ġconsecutive":30497,"ienda":30498,"vänd":30499,"DER":30500,"Ġlifts":30501,"ĠMeat":30502,"Ġsavez":30503,"íĸĪëįĺ":30504,"Men":30505,"Ġdismant":30506,"거를":30507,"Ġinsulation":30508,"Ġscall":30509,"Ġspooky":30510,"Ġparc":30511,"Ġballet":30512,"ĠWhatsApp":30513,"Ġfranc":30514,"Ġdeliberate":30515,"ĠíħĮ":30516,"Ġmars":30517,"ĠZur":30518,"Pr":30519,"disciplinary":30520,"Ġobsession":30521,"ме":30522,"Ġmarching":30523,"ĠEmergency":30524,"iguous":30525,"Ġszy":30526,"ĠLands":30527,"Ġboarding":30528,"ĠпоÑĩÑĤи":30529,"Ġenvy":30530,"Ġcompassionate":30531,"Ġmerci":30532,"Ġdesirable":30533,"dale":30534,"Ġcanım":30535,"ĠAntar":30536,"temps":30537,"Ġconfigured":30538,"ĠCompared":30539,"neh":30540,"icating":30541,"Ġnickel":30542,"ÙĪÙĤ":30543,"ÙĥÙĪÙĨ":30544,"opes":30545,"Ġformulas":30546,"ĠÐķÑģÑĤÑĮ":30547,"Ġpobl":30548,"ĠPJ":30549,"ĠLud":30550,"ä»ĬåĽŀ":30551,"ĠBrid":30552,"ĠHog":30553,"ĠBris":30554,"Jen":30555,"Ġshading":30556,"ĠYas":30557,"Ġdisturbed":30558,"Ġrecommending":30559,"Ġcé":30560,"ĠHOW":30561,"ìĹĪìĸ´":30562,"Ġreversed":30563,"ĠInterestingly":30564,"ioxid":30565,"åħŃ":30566,"Ġìĺ¤ì¼ĢìĿ´":30567,"ếu":30568,"xx":30569,"Ġouais":30570,"ĠYouTubers":30571,"ĠRosa":30572,"ĠHaupt":30573,"jadi":30574,"Ġvlogs":30575,"Ġcultura":30576,"ĠLeadership":30577,"ĠHep":30578,"Ġillum":30579,"´ëıĻ":30580,"Ġcustomized":30581,"Ġmarca":30582,"Ġquatro":30583,"Ġнаг":30584,"ĠSpaceX":30585,"ĠEigen":30586,"asting":30587,"ĠolduÄŁu":30588,"Ġforts":30589,"ãģī":30590,"riment":30591,"iencia":30592,"Ġtenir":30593,"roffen":30594,"Ġ1979":30595,"Ġcie":30596,"ĠëIJĺê³ł":30597,"Ġescri":30598,"ÏĮÏĤ":30599,"íı¬":30600,"uzzy":30601,"Cong":30602,"ìĿ¸ìĿ´":30603,"Great":30604,"sil":30605,"éch":30606,"ãģ¨ãģĭ":30607,"Ġmultic":30608,"ĠDisk":30609,"²ķ":30610,"Ġfazla":30611,"Ġlevant":30612,"Ġabajo":30613,"urry":30614,"stru":30615,"Ġ먹ëĬĶ":30616,"Ġaccessory":30617,"Ġдвиг":30618,"ĠRid":30619,"2019":30620,"Ġdownstream":30621,"æķ¸":30622,"Ġkaz":30623,"utan":30624,"Ġcharcoal":30625,"Ġafect":30626,"wu":30627,"Ġcontexts":30628,"Ġfeared":30629,"ĠìĦ¤":30630,"Ġhistories":30631,"Ġfas":30632,"ensible":30633,"Ġcocoa":30634,"illar":30635,"geons":30636,"Ġspirituality":30637,"ĠPew":30638,"Ġpharmacy":30639,"Ġpassions":30640,"Ġbos":30641,"Ġallá":30642,"Ġthriving":30643,"ĠReact":30644,"Ġoccupy":30645,"Ġwithdrawal":30646,"Ġallowance":30647,"ĠFraktion":30648,"Ġbuddies":30649,"Ġidle":30650,"Ġdissolved":30651,"Ġprevalent":30652,"Ġmilitar":30653,"Ġsensing":30654,"Ġpojaw":30655,"Ġancora":30656,"Ġabundant":30657,"Ġhairst":30658,"ãģĤãĤĮ":30659,"Ġtwee":30660,"Ġnächste":30661,"ĠMöglichkeit":30662,"Ġhoo":30663,"ufficient":30664,"Ġfantast":30665,"Ġedible":30666,"Ġëĸ¨ìĸ´ì":30667,"ìĽĥ":30668,"Ġvein":30669,"ucci":30670,"Ġdevotion":30671,"Ġconcealer":30672,"income":30673,"Ġrecycled":30674,"ĠìĬ¤íĥĢ":30675,"Ġpontos":30676,"Ġdessus":30677,"Ġvérit":30678,"Ġreflections":30679,"ĠAA":30680,"Ġtakeaway":30681,"bare":30682,"ĠContact":30683,"eil":30684,"ĠHear":30685,"Ġmirac":30686,"ĠGerilim":30687,"ĠÑģамÑĭй":30688,"Ġvivo":30689,"Ġkilograms":30690,"ĠCrim":30691,"ût":30692,"78":30693,"Ġsincerely":30694,"raz":30695,"Ġë³µ":30696,"Ġarriv":30697,"Ġconception":30698,"ĠPersian":30699,"Ġsjäl":30700,"Ġstarring":30701,"ĠìķĦ무":30702,"ĠForever":30703,"еÑģÑĤÑĮ":30704,"Ġveil":30705,"Ġsubtit":30706,"odka":30707,"ĠоÑĤноÑĪ":30708,"Ġcooks":30709,"енÑı":30710,"Kay":30711,"Ġniños":30712,"ĠPhone":30713,"Ġstitching":30714,"Ġfingerprint":30715,"é¢ĺ":30716,"λά":30717,"Ġdedicate":30718,"ĠLob":30719,"Ġblacks":30720,"ĠBle":30721,"bout":30722,"ĠÄijang":30723,"Ġeks":30724,"Ġsquash":30725,"ĠKü":30726,"odi":30727,"ĠnÆ°á»Ľc":30728,"Ġvoyage":30729,"Ġplayful":30730,"ĠØ¥ÙĦÙī":30731,"anic":30732,"Ġcondemn":30733,"ĠBöyle":30734,"ĠPolize":30735,"ãĤ¿ãĥ¼":30736,"Ġayuda":30737,"Ġpam":30738,"à¹Ħà¸Ľ":30739,"ĠKathy":30740,"един":30741,"нова":30742,"Ġbrig":30743,"eger":30744,"Ġeagle":30745,"Ġvisions":30746,"ĠíķŃìĥģ":30747,"Ġshitty":30748,"Ġhott":30749,"ĠBritt":30750,"utors":30751,"ENTE":30752,"æĽ²":30753,"Ġphon":30754,"ĠBing":30755,"ĠподдеÑĢж":30756,"spring":30757,"æĸ¯":30758,"etten":30759,"Ġpilgr":30760,"Ġediyor":30761,"енÑĤÑĭ":30762,"aggio":30763,"Ġjul":30764,"Ġcomprend":30765,"teil":30766,"Ġز":30767,"Ġperformers":30768,"Ġinfamous":30769,"ĠMK":30770,"çª":30771,"æ³ģ":30772,"otle":30773,"eff":30774,"ĠHash":30775,"Ġcoward":30776,"ĠBRA":30777,"ĠDD":30778,"Ġcomida":30779,"Ġplata":30780,"Ġflap":30781,"ĠMehr":30782,"ribution":30783,"ĠYemen":30784,"Ġmysteries":30785,"ĠÄ°yi":30786,"Ġstell":30787,"Ġeyeliner":30788,"Ġdeles":30789,"Ġnailed":30790,"Ġillnesses":30791,"Ġstacks":30792,"Ġtrabajar":30793,"flower":30794,"ciu":30795,"Ġcrude":30796,"Ġsubstantially":30797,"Ġhomem":30798,"Ġnephew":30799,"Ġstamps":30800,"Ġcarbs":30801,"ÑĮÑĤе":30802,"mooth":30803,"Ġtunnels":30804,"acie":30805,"æ³¢":30806,"ĠSeñ":30807,"ĠHera":30808,"ĠìķĦëĭĪìĹIJìļĶ":30809,"ĠWyoming":30810,"ĠHDMI":30811,"ĠLis":30812,"ución":30813,"Ġsteer":30814,"оÑİ":30815,"иÑĤа":30816,"NT":30817,"Ġìĸ¼êµ´":30818,"Ġpalms":30819,"Ġneon":30820,"ованиÑı":30821,"Ġfiltering":30822,"Ġjouer":30823,"ĠHö":30824,"ĠнеÑģ":30825,"ê²łìĸ´ìļĶ":30826,"Ġ81":30827,"Ġstoryline":30828,"Ġprzep":30829,"Ġthanking":30830,"ĠBoeing":30831,"Ġsoftly":30832,"jem":30833,"алÑĮнÑĭÑħ":30834,"Ġflashlight":30835,"ĠпÑĥ":30836,"ĠWOMAN":30837,"ắc":30838,"ÃŃch":30839,"Ġluxurious":30840,"Ġwün":30841,"Ġimpactful":30842,"Ġconson":30843,"reu":30844,"irring":30845,"ifter":30846,"Ġconstituents":30847,"èIJ½":30848,"Ġ94":30849,"ĠTou":30850,"gom":30851,"ĠìĥĿê°ģìĿĦ":30852,"Ġstereotypes":30853,"Ġmożli":30854,"åĪĨ享":30855,"Ĥ¨":30856,"Ġpencils":30857,"ĠÑģлож":30858,"Ġihrem":30859,"ĠBesch":30860,"ĠKoh":30861,"ĠEntscheid":30862,"Ġlek":30863,"Ġförs":30864,"Ġtotalmente":30865,"Ġlively":30866,"Ġentropy":30867,"Ġdiscern":30868,"ĠÐĹна":30869,"Ġdov":30870,"Ġmythology":30871,"è¨ĺå¾Ĺ":30872,"apanese":30873,"Ġapproximate":30874,"аÑĤив":30875,"ifiable":30876,"ĠSeo":30877,"åĢĴ":30878,"´ìĭ¬íŀĪ":30879,"Ġìĺ·":30880,"Ġtemporal":30881,"ĠiT":30882,"Ġestat":30883,"ким":30884,"Ġsprink":30885,"Ġgrund":30886,"Ġinfantry":30887,"Ġschaffen":30888,"ç´Ħ":30889,"Ġank":30890,"riages":30891,"ĠYeon":30892,"ĠMoroc":30893,"Ġinvasive":30894,"ģĶ":30895,"Ġparenting":30896,"ĠRis":30897,"ibile":30898,"Ġmods":30899,"å½¢":30900,"ĠпÑĢовеÑĢ":30901,"ĠThing":30902,"ĠWherever":30903,"Ġacknowledging":30904,"Ġpawn":30905,"ummer":30906,"orb":30907,"69":30908,"Ġretrouve":30909,"Ġrelies":30910,"ĠHighway":30911,"Ġawe":30912,"ãģ§ãģĻãģĭ":30913,"itaire":30914,"Ġapplicant":30915,"Ġaisle":30916,"worm":30917,"Ġpayload":30918,"Ġcarre":30919,"ĠBach":30920,"æł¼":30921,"Ġì¹ľêµ¬ë":30922,"ние":30923,"ĠitÃŃs":30924,"onnaise":30925,"sol":30926,"èı¯":30927,"algia":30928,"Ġrocking":30929,"Ġbesten":30930,"rites":30931,"^^":30932,"иной":30933,"Ġbaixo":30934,"Ġ기ìĸµ":30935,"оÑĤÑĢи":30936,"sim":30937,"Ġincarn":30938,"ëĭ¤ìĿĮ":30939,"Ġlick":30940,"sided":30941,"Ġ71":30942,"forder":30943,"Ġresonance":30944,"Ġtegen":30945,"Ġmetaph":30946,"owser":30947,"Ġ×IJ׳×Ĺ׳×ķ":30948,"?ãĢį":30949,"Ġspielen":30950,"Ġvolley":30951,"ĶìĿ´íģ¬ìĹħ":30952,"looked":30953,"Ġsentenced":30954,"Ġmultiplying":30955,"Ġideals":30956,"Ġwahrscheinlich":30957,"Ġdeposits":30958,"bilir":30959,"Ġeffet":30960,"illon":30961,"Īë§Į":30962,"Ġtestimon":30963,"Ġzawsze":30964,"ĠпÑĢоÑĨеÑģÑģ":30965,"ĠLav":30966,"ä¸įéĮ¯":30967,"Ġtravailler":30968,"Ġlaisse":30969,"ĠMountains":30970,"ĠÑĢоб":30971,"Ġexamined":30972,"itus":30973,"Was":30974,"лÑĭ":30975,"Ġattributed":30976,"ĠìĬ¹":30977,"ĠBaron":30978,"Ġgep":30979,"Ġattent":30980,"ĠCollection":30981,"Ġtheat":30982,"ĠCai":30983,"Ġwells":30984,"Ġhumano":30985,"çĹħ":30986,"ĠHast":30987,"ĠÑħоÑĤÑı":30988,"czas":30989,"Ġpermits":30990,"Ġlegg":30991,"Ġepo":30992,"ĠFen":30993,"Ġthi":30994,"ĠFoi":30995,"Ġélect":30996,"Ġ83":30997,"Ġoverth":30998,"Ġè¬Ŀè¬Ŀ":30999,"Ġtenant":31000,"è²·":31001,"Next":31002,"Ġpraised":31003,"security":31004,"ĠImpact":31005,"为ä»Ģä¹Ī":31006,"Ġvouch":31007,"Ġnegó":31008,"Ġunve":31009,"Ġcriticize":31010,"ĠKenya":31011,"Ġtactic":31012,"Ġlogr":31013,"Ġpois":31014,"Ġpapa":31015,"speaks":31016,"ðŁij":31017,"ispers":31018,"Ġsurplus":31019,"Ġcolder":31020,"åįĹ":31021,"åIJ¬":31022,"plets":31023,"ĠVienna":31024,"ĠLead":31025,"Ġaerial":31026,"ĠTah":31027,"енÑĤов":31028,"ĠGreeks":31029,"Cam":31030,"Ġmáxim":31031,"Ġkuin":31032,"chio":31033,"Ġdemonstrates":31034,"anos":31035,"ĠCert":31036,"ĠÑįн":31037,"Ġblogs":31038,"ĠìĦľìļ¸":31039,"Ġbeams":31040,"иков":31041,"Ġprompted":31042,"Ġfrightening":31043,"ĠPorsche":31044,"ãģĪãģ¦":31045,"larını":31046,"Ġchilling":31047,"isphere":31048,"Ġflashing":31049,"ĠKard":31050,"bread":31051,"Ġexh":31052,"Ġtycker":31053,"Ġecological":31054,"ĠMae":31055,"Ġ×ŀ×IJ×ķ×ĵ":31056,"ĠëĤĺëıĦ":31057,"лон":31058,"yss":31059,"Ġpergunt":31060,"Ġprix":31061,"izzard":31062,"Ġcancers":31063,"Ġ91":31064,"susp":31065,"ĠItem":31066,"ÅŁa":31067,"Ġpest":31068,"ĠtakÄħ":31069,"Ġlymph":31070,"ĠPatri":31071,"fill":31072,"Ġreconna":31073,"Ġoptimism":31074,"Ġmimic":31075,"Ġì²ľ":31076,"ĠMadame":31077,"ocy":31078,"lining":31079,"åijĬ訴":31080,"erme":31081,"Ġfolders":31082,"ĠczÅĤ":31083,"uchar":31084,"Ġcurso":31085,"Ġbreach":31086,"ниÑĤÑĮ":31087,"ĠpamiÄĻ":31088,"Ġelig":31089,"Ġautop":31090,"Flow":31091,"Ġprogrammed":31092,"ĠProcess":31093,"Ġfigur":31094,"ĠSF":31095,"ĠEles":31096,"Ġprogrammes":31097,"Ġdizzy":31098,"ìĭľê°Ħ":31099,"Ġлибо":31100,"Ġsniff":31101,"ĠSebastian":31102,"ĠHye":31103,"Ġ4000":31104,"Ġpermite":31105,"æ¢Ŀ":31106,"ĠзаÑī":31107,"Ġguit":31108,"ĠDais":31109,"Ġaccordance":31110,"Ġmodular":31111,"ogeneous":31112,"æĭį":31113,"Ġpouquinho":31114,"Ġartillery":31115,"Ġlubric":31116,"Ġvolcan":31117,"ĠNH":31118,"ðŁ¤":31119,"Ġdean":31120,"Rh":31121,"Ġministre":31122,"åĿIJ":31123,"ĠInv":31124,"ĠBulgar":31125,"ĠDaten":31126,"èİ":31127,"Im":31128,"Ġoriginated":31129,"ĠNixon":31130,"integr":31131,"Ġlacks":31132,"ĠNacht":31133,"ìĸ´ëĤĺ":31134,"camera":31135,"Ġradish":31136,"kiye":31137,"Ġanges":31138,"Ġpréf":31139,"juk":31140,"ĠBee":31141,"ĠBU":31142,"ĠвоÑģп":31143,"ĠBT":31144,"êmes":31145,"ĠStück":31146,"ĠInk":31147,"æĪĸèĢħ":31148,"ĠSergeant":31149,"ĠMultip":31150,"Ġhiçbir":31151,"ĠСам":31152,"ĠDé":31153,"olph":31154,"ìĸ¸":31155,"Ġimpat":31156,"ĠìķĬê³ł":31157,"ĠÑĤакого":31158,"ĠнавеÑĢное":31159,"Ġunpredictable":31160,"Ġmend":31161,"ĠìĹĨìĸ´ìļĶ":31162,"ĠjakieÅĽ":31163,"Ġanni":31164,"Ġdonné":31165,"ĠKirsty":31166,"Ġrectangular":31167,"Ġempezar":31168,"ĠExchange":31169,"ê°Ķ":31170,"Ġéconom":31171,"ãģĵãĤĵ":31172,"elin":31173,"reibt":31174,"Ġ×Ķפ":31175,"Ġcemetery":31176,"Ġespañol":31177,"olin":31178,"лÑİд":31179,"Ġgrâce":31180,"allen":31181,"ĠPhilos":31182,"ĠErst":31183,"ĠìĥĪ":31184,"ĠVid":31185,"Give":31186,"OH":31187,"μο":31188,"ĠPare":31189,"Ġmetabolism":31190,"Ġmaple":31191,"Ġaxle":31192,"ĠDy":31193,"Ġkomme":31194,"Ïİν":31195,"Ġgreatness":31196,"Ġverified":31197,"Ġspé":31198,"ĠFahrenheit":31199,"ĠBren":31200,"ĠConfeder":31201,"Ġhistoire":31202,"Ġeliminating":31203,"ĠAdding":31204,"ĠAbi":31205,"æĿİ":31206,"Ġhospitality":31207,"tim":31208,"Ġbonito":31209,"Ġpartes":31210,"ĠдÑĢÑĥгиÑħ":31211,"ĠShay":31212,"ĠSed":31213,"Ġregrets":31214,"Ñıми":31215,"Ġtenants":31216,"éĢŁ":31217,"ĠPTS":31218,"Ġdevi":31219,"ĠLate":31220,"uez":31221,"Ġsöyl":31222,"ãĤ»":31223,"Ġìŀ¬ë°Į":31224,"Ġtoggle":31225,"Ġmasking":31226,"алÑĮного":31227,"Ġpersön":31228,"Ġamerican":31229,"fik":31230,"ĠRGB":31231,"enson":31232,"ĠKA":31233,"wwww":31234,"ĠÑĢег":31235,"metics":31236,"Ġeducator":31237,"ãĤ·ãĥ«ãĤ¯":31238,"park":31239,"елÑĮзÑı":31240,"arus":31241,"ÑĢеÑĤ":31242,"Ġfeito":31243,"Ġchoir":31244,"Ġlargo":31245,"Ġeens":31246,"Ġwatts":31247,"ĠSingle":31248,"Ġsusceptible":31249,"icer":31250,"ĠвклÑİÑĩ":31251,"Ġpus":31252,"íĻĺ":31253,"Eng":31254,"Ġfantas":31255,"Ġspecification":31256,"Ġconfronted":31257,"ĠColumbus":31258,"ивеÑĤ":31259,"arım":31260,"Ġcaffeine":31261,"munition":31262,"Ġmigrants":31263,"lide":31264,"itations":31265,"ĠGeme":31266,"ẫ":31267,"Ġplanner":31268,"Ġstimulate":31269,"Ġaproxim":31270,"ceu":31271,"ĠNom":31272,"Ġvog":31273,"ĠÑĢаÑģÑĤ":31274,"Ġenseñ":31275,"Ġsellers":31276,"Ġguten":31277,"zd":31278,"Cal":31279,"Ġdescript":31280,"Ġreconciliation":31281,"zinho":31282,"á¹ĩa":31283,"ãģĺãĤĥãģĤ":31284,"acyj":31285,"ĠCOL":31286,"saw":31287,"ĠíĻķìĿ¸":31288,"Ġvarit":31289,"Ġpartnering":31290,"Ġdetention":31291,"Ġbombing":31292,"clapping":31293,"iencies":31294,"ondu":31295,"AME":31296,"Ġê°ĻìĬµëĭĪëĭ¤":31297,"cÃŃa":31298,"ĠпоÑģÑĤо":31299,"ĠASMR":31300,"Ġhomepage":31301,"Ġsiè":31302,"antha":31303,"ĠPoll":31304,"Ġigen":31305,"cych":31306,"Ġê°ijìŀIJ기":31307,"Ġconsiderably":31308,"ä»ĸçļĦ":31309,"ĠArist":31310,"Ġwithstand":31311,"Ġqualitative":31312,"ĠKraft":31313,"ĠÑįлекÑĤ":31314,"ĠBead":31315,"екÑĤив":31316,"Ġcrushing":31317,"ì³IJ":31318,"Ġnavy":31319,"ÙĪÚº":31320,"sho":31321,"Ġoak":31322,"ippers":31323,"Ġsoils":31324,"Ġpigment":31325,"Ġevitar":31326,"ãĥĩ":31327,"Ġfuse":31328,"ĠDale":31329,":\"":31330,"Ġcomplètement":31331,"Ġkel":31332,"à¹Ĩ":31333,"Ġquatre":31334,"ĠUM":31335,"Ġë§IJë":31336,"æł¹":31337,"ÃŃr":31338,"Ġleisure":31339,"ĠHousing":31340,"Ġfolds":31341,"estion":31342,"ARS":31343,"Ġmash":31344,"urpose":31345,"Ġaccumulated":31346,"ĠStuff":31347,"èªŀ":31348,"Ġtapes":31349,"ĠÑģилÑĮно":31350,"ĠLOVE":31351,"Ġ1982":31352,"Ġscars":31353,"Ġcapitalist":31354,"ĠNed":31355,"Ġsoften":31356,"Ġnotably":31357,"Ġforcément":31358,"ĠRaum":31359,"ĠнеобÑħод":31360,"Ġtrademark":31361,"Ġfertig":31362,"Ġ?!":31363,"æĹł":31364,"Ġreinforced":31365,"Ġrecharge":31366,"ĠPutting":31367,"Ġvillains":31368,"Ġhandic":31369,"Ġadvertisement":31370,"تÙĬ":31371,"ĠÑģÑĥм":31372,"ĠRiley":31373,"×ķ×ij×":31374,"京":31375,"Os":31376,"از":31377,"Boy":31378,"Ġsquish":31379,"ocket":31380,"Ġtestify":31381,"æ¼Ķ":31382,"Ġ׾×ŀ×":31383,"ĠмаÑģÑģ":31384,"manuel":31385,"ĠArkansas":31386,"iffe":31387,"Ġanalysts":31388,"ĠDeaf":31389,"Ġjó":31390,"Ġgroceries":31391,"ĠWheel":31392,"ĠÑĢиÑģ":31393,"Ġcòn":31394,"ĠCob":31395,"Ġprisons":31396,"ève":31397,"ĠCabinet":31398,"Ġposed":31399,"Ġguerre":31400,"ĠLloyd":31401,"Ġclerk":31402,"Ġcrises":31403,"ĠSho":31404,"ĠOre":31405,"ĠFootball":31406,"ĠAdvis":31407,"ĠZheng":31408,"èį":31409,"ĠAMY":31410,"Ġunfor":31411,"Ġmonaster":31412,"Ġcompile":31413,"Ġimmortal":31414,"atable":31415,"Ġparano":31416,"Ġtiver":31417,"ĠSteph":31418,"ĠFuÃŁ":31419,"Ġdiscontin":31420,"Ġripe":31421,"Ġhacking":31422,"Ġsiendo":31423,"Ġseguro":31424,"altres":31425,"Ġanderes":31426,"Ġ리ë":31427,"Ġexports":31428,"æŃ¥":31429,"Ġtabii":31430,"Ġ기ëĭ¤ë":31431,"Ġbothering":31432,"Ġpickle":31433,"ĠBRIAN":31434,"Ġaltar":31435,"ĠпÑĢиб":31436,"Ġtransferring":31437,"ĠVors":31438,"ĠÙĩÙĪ":31439,"ĠZa":31440,"ĠFrances":31441,"Ġbrowse":31442,"emit":31443,"Ġchewing":31444,"ĠFreddy":31445,"Ġeditors":31446,"älle":31447,"ĠíĮĢ":31448,"ĠSque":31449,"ĠCultural":31450,"awk":31451,"ĠSache":31452,"ĠCarbon":31453,"ắt":31454,"FL":31455,"ĠNGO":31456,"peÅĤ":31457,"ĠSou":31458,"Ġhvor":31459,"unintelligible":31460,"Ġë²ķ":31461,"Ġ°":31462,"iin":31463,"Ġ×¢×Ŀ":31464,"Ġderrière":31465,"Ġczym":31466,"ĠApost":31467,"Ġregarder":31468,"Ġagrade":31469,"ĠCandy":31470,"Ġmare":31471,"Ġintroduces":31472,"birds":31473,"Ġuniquely":31474,"Ġmuk":31475,"Ġcooker":31476,"Ġcrews":31477,"Ġjeito":31478,"ERT":31479,"¶Ħë":31480,"nisse":31481,"Ġef":31482,"Ġcarte":31483,"ĠYak":31484,"ĠPAT":31485,"ино":31486,"bokki":31487,"Ġmates":31488,"Ġdistint":31489,"Ġì½Ķë¡ľëĤĺ":31490,"Ġyıl":31491,"Ġκάν":31492,"Ġconfigurations":31493,"enga":31494,"recht":31495,"Happy":31496,"ãĤĦãģ£ãģ¦":31497,"invest":31498,"Ġreconstruct":31499,"ĠÑįÑĤомÑĥ":31500,"Ġmosque":31501,"raum":31502,"Ġvoyez":31503,"ĠNBC":31504,"ĠìŀIJìĭł":31505,"Ġsturdy":31506,"Ġкап":31507,"Ġansch":31508,"alid":31509,"Ġmasih":31510,"ĠREP":31511,"Ġì½Ķë":31512,"Ġdeduct":31513,"Ġsalir":31514,"wurf":31515,"ilot":31516,"ĠMutter":31517,"olds":31518,"ĠFEMA":31519,"ĠBib":31520,"Ġneighboring":31521,"Ġbliss":31522,"Ġíĺ¼":31523,"лиÑģÑĮ":31524,"ĠÑĤÑĢеб":31525,"Ġå°±æĺ¯":31526,"Ġgrenade":31527,"Ġegal":31528,"Ġfinely":31529,"Ġpetals":31530,"Ġkeer":31531,"Ġchyba":31532,"Ġskipping":31533,"Ġthirteen":31534,"Ġgravy":31535,"ĠSAT":31536,"61":31537,"Ġног":31538,"Ġmins":31539,"ITE":31540,"Ġsozial":31541,"íķĺë©´ìĦľ":31542,"ruktur":31543,"Ġвозмож":31544,"ĠопÑıÑĤÑĮ":31545,"Ġarth":31546,"ĠCuban":31547,"Ġtreasures":31548,"Ġfertilizer":31549,"Ġawakening":31550,"Ġë°±ìĭł":31551,"Ġrall":31552,"Ġdepict":31553,"ĠPablo":31554,"Ġnineteen":31555,"Ġwatt":31556,"Ġentirety":31557,"KS":31558,"ĠWoods":31559,"Sch":31560,"ĠÚ©ÙĪ":31561,"ĠDry":31562,"ãģŀ":31563,"uve":31564,"Ġreconstruction":31565,"Ġanatomy":31566,"Ī를":31567,"Ġbaba":31568,"Ġlistener":31569,"Ġsharpen":31570,"ĠPeru":31571,"ĠвÑĭз":31572,"Ġrecreation":31573,"Ġinitiate":31574,"Ġcalor":31575,"ĠNaj":31576,"gee":31577,"ĠFeels":31578,"ĠSnapchat":31579,"ĠTet":31580,"ĠNest":31581,"ĠDaf":31582,"ĠFinish":31583,"ĠÑĤаким":31584,"úc":31585,"izens":31586,"Ġspins":31587,"Ġembry":31588,"Ġpassages":31589,"Ġcient":31590,"Ġjustification":31591,"ä»ĸ說":31592,"Ġolmaz":31593,"Ġflooded":31594,"Ġemoji":31595,"Ġembracing":31596,"Ġdiscard":31597,"ĠBasic":31598,"agog":31599,"ĠìľĦíķ´":31600,"Ġasylum":31601,"erin":31602,"Ġfim":31603,"Ġninja":31604,"Ġautomate":31605,"Ġallergic":31606,"ÿÿÿÿ":31607,"amam":31608,"ĠмаÑĢ":31609,"ĠOi":31610,"äus":31611,"Ġinduct":31612,"ĠBEN":31613,"ĠzÅĤ":31614,"Ġkażdy":31615,"ĠAMP":31616,"nÄĽ":31617,"Sure":31618,"Ġquil":31619,"Ġespec":31620,"rok":31621,"BSCRI":31622,"Ġliebe":31623,"pus":31624,"achsen":31625,"Ġcricket":31626,"ëĬIJ":31627,"ĠFrame":31628,"ekkür":31629,"arb":31630,"ĠpÅĻ":31631,"иÑģÑģ":31632,"Ġzeggen":31633,"Ġdoubles":31634,"ĠDre":31635,"test":31636,"insp":31637,"boys":31638,"Ġmão":31639,"ĠVerse":31640,"Ġmuscular":31641,"ĠMALE":31642,"Ġdulu":31643,"Ġoccasional":31644,"Lo":31645,"conomic":31646,"Ġvak":31647,"Ġremedy":31648,"å¤ł":31649,"ĠâĻªâĻªâĻª":31650,"vem":31651,"Ġönem":31652,"ĠkarÅŁÄ±":31653,"ĠSharp":31654,"hur":31655,"Ġë°©ë²ķ":31656,"Ġgrandson":31657,"Ġaktiv":31658,"ĠThrones":31659,"ĠìķĪìĹIJ":31660,"Ġtots":31661,"Ġsubd":31662,"ĠPaula":31663,"Ġgraves":31664,"ĠBrent":31665,"ĠникÑĤо":31666,"Ġsöz":31667,"Ġcrec":31668,"ĠVladimir":31669,"çĸ«":31670,"Ġпой":31671,"Ġ\"-":31672,"Ġpsy":31673,"atri":31674,"idan":31675,"Ġaún":31676,"Ġstandardized":31677,"ì¹ĺë":31678,"ĠкÑĢов":31679,"ĠZhu":31680,"something":31681,"Ġ750":31682,"Ġmujeres":31683,"Ġait":31684,"éĹ´":31685,"agu":31686,"Ġcorrected":31687,"ikka":31688,"eled":31689,"ĠCareer":31690,"owym":31691,"Ġroommate":31692,"Ġdescendants":31693,"ĠNapoleon":31694,"ĠÐĶо":31695,"íĸĪìĸ´ìļĶ":31696,"Ġbunun":31697,"ĠMicha":31698,"ç·ļ":31699,"Ġdescob":31700,"PI":31701,"Ġpalabra":31702,"Ġtracked":31703,"Ġdependence":31704,"ĠBarack":31705,"åģĩ":31706,"Ġfertility":31707,"ĠSouthwest":31708,"Ġincomplete":31709,"Ġcomunic":31710,"Ġcompris":31711,"ĠRestaur":31712,"Ġacron":31713,"κα":31714,"Ġapprentices":31715,"Ġmusst":31716,"ĠAbr":31717,"Ġpentru":31718,"ĠConsort":31719,"ĠAvec":31720,"Ġdumplings":31721,"LR":31722,"Ġwszystkie":31723,"Ġswamp":31724,"нев":31725,"uggle":31726,"Ġwatercolor":31727,"Ġproton":31728,"ĠEspaña":31729,"ocking":31730,"овал":31731,"Ġtakim":31732,"Very":31733,"Ġdementia":31734,"ĠÅŁeyi":31735,"Jac":31736,"ĠMacBook":31737,"ĠLiv":31738,"fficients":31739,"ĠHunt":31740,"Ġoverlay":31741,"æĦŁè¦º":31742,"ĠSkype":31743,"punkt":31744,"Ġconfined":31745,"ĠAdrian":31746,"رÙĥ":31747,"ĠJeep":31748,"Ġenquanto":31749,"Ġanest":31750,"оÑĤвеÑĤ":31751,"ĠменÑĮ":31752,"Ġirrigation":31753,"á»ijn":31754,"Ġeighteen":31755,"ĠPon":31756,"Ġrescued":31757,"Ġ1983":31758,"rü":31759,"jae":31760,"ĠJeong":31761,"Ġamazingly":31762,"ĠFDP":31763,"Ġbackstage":31764,"cue":31765,"ĠÏĥÏĦην":31766,"ĠاÙĦص":31767,"Ġlivestock":31768,"ĠWarner":31769,"Ġmajors":31770,"ãĥģãĥ£":31771,"Ġcooperative":31772,"ĠBrady":31773,"rained":31774,"rieb":31775,"Ġ×ij×ŀ×":31776,"ĠдоволÑĮно":31777,"ĠFE":31778,"Ġleaked":31779,"ĠMercury":31780,"Ġpersuade":31781,"Ġtransformer":31782,"ĠNorweg":31783,"ĠìŬ룬":31784,"ĠzrobiÄĩ":31785,"Ġcardiovascular":31786,"ĠCrash":31787,"Ġgossip":31788,"аÑģÑĤÑĮ":31789,"Ġ쪽":31790,"Ġswept":31791,"ĠHorn":31792,"ĠAté":31793,"Ġbukan":31794,"ĠKaw":31795,"KY":31796,"ĠStories":31797,"Gary":31798,"Ġgardening":31799,"ĠQuickly":31800,"ĠFalcon":31801,"Ġovat":31802,"cı":31803,"ĠComplet":31804,"ĠDate":31805,"ĠпÑĢим":31806,"Ġläuft":31807,"ĠAudrey":31808,"ĠWent":31809,"ĠpelÃŃcul":31810,"Ġcarriage":31811,"Ġunacceptable":31812,"nymi":31813,"ĠÑģлÑĭÑĪ":31814,"Ġterre":31815,"uellement":31816,"EEEE":31817,"Ġpharmac":31818,"hões":31819,"Ġzich":31820,"Ġmigrate":31821,"ĠFry":31822,"ñana":31823,"ĠMuito":31824,"EOVER":31825,"Ġfortress":31826,"ĠCompan":31827,"ĠJSON":31828,"ordnung":31829,"Ġwarto":31830,"Ġungef":31831,"ìħĶìĦľ":31832,"ĠÑĢок":31833,"Ġpaddle":31834,"Jared":31835,"Ġsubmitting":31836,"Ġlatch":31837,"Ġfug":31838,"ĠкоÑģ":31839,"ĠEf":31840,"Ġlaunches":31841,"Ġft":31842,"otechn":31843,"Ġtravelled":31844,"اÙģ":31845,"éģķ":31846,"Ġproch":31847,"Ġdedim":31848,"83":31849,"Ġrebound":31850,"ĠLU":31851,"path":31852,"ĠÑģпÑĢав":31853,"Ġöl":31854,"ĠíĤ¤":31855,"Ġprivat":31856,"Ġtractor":31857,"ĠAttention":31858,"Ser":31859,"Ġcoses":31860,"ária":31861,"pal":31862,"ĠìĿĢ":31863,"Ġsuccessor":31864,"Ġconnectors":31865,"ĠÑĥÑģÑĤанов":31866,"Ġgenocide":31867,"Ġsufficiently":31868,"ĠAixò":31869,"Ġstabilize":31870,"Ġcongest":31871,"Ġcarving":31872,"Ġzost":31873,"ĠбÑĭÑģÑĤÑĢо":31874,"Ġshortest":31875,"Ġlivel":31876,"Ġ89":31877,"éģĬ":31878,"Ġerk":31879,"Ġportraits":31880,"à¥Ģ":31881,"èĺ":31882,"boat":31883,"llah":31884,"ANC":31885,"Ġempirical":31886,"ĠEcho":31887,"ĠNederland":31888,"è¿Ļä¹Ī":31889,"Net":31890,"Ġcuidado":31891,"ĠRoma":31892,"Ġcalf":31893,"Ġgiants":31894,"ĠExplorer":31895,"ĠCollect":31896,"alition":31897,"ĠDestiny":31898,"Ġausge":31899,"ĠEdu":31900,"ĠClo":31901,"Ġearrings":31902,"ĠTrack":31903,"ĠROS":31904,"ĠBelle":31905,"çĻ¾":31906,"Ġpueda":31907,"Ġdaytime":31908,"Ġsupplier":31909,"ĠSV":31910,"ĠExhale":31911,"Ġgalera":31912,"course":31913,"Ġcentimeter":31914,"ĠBast":31915,"mud":31916,"Ġsangat":31917,"ĠPhysical":31918,"Ġprivately":31919,"Ġtrata":31920,"lynn":31921,"illi":31922,"Ġë©ĶìĿ´íģ¬ìĹħ":31923,"Ġcrystall":31924,"Ġpods":31925,"ản":31926,"inator":31927,"ĠRecords":31928,"å®ĺ":31929,"ÄŁimiz":31930,"issement":31931,"hare":31932,"hadow":31933,"ĠDK":31934,"ĠìķĮê³ł":31935,"Ġwyn":31936,"Ġrequesting":31937,"ĠDonna":31938,"ĠìĹ´ìĭ¬íŀĪ":31939,"inea":31940,"Ġexert":31941,"ĠDuncan":31942,"ĠвеÑĩ":31943,"ĠHah":31944,"à¤Ĥ":31945,"ĠLif":31946,"ĠFinding":31947,"ĠNov":31948,"Ġзнак":31949,"ĠоÑĦ":31950,"ĠQuè":31951,"Ġquarterback":31952,"ĠÑĦак":31953,"Ġbipartisan":31954,"ÄŁin":31955,"Ġnécess":31956,"Ġreferendum":31957,"Ġcompiler":31958,"Ġprobabil":31959,"еди":31960,"Ġtrader":31961,"æĺĵ":31962,"ĠRum":31963,"geme":31964,"Ġdio":31965,"ĠbÄĻdziemy":31966,"ĠÏĢά":31967,"꾸":31968,"×ķ×ĺ":31969,"Ġà¤ķ":31970,"Ġблаг":31971,"Ġscalp":31972,"ĠPause":31973,"Ġcaption":31974,"Ġendanger":31975,"Ġenlar":31976,"Ġrotten":31977,"ãĥĥãĥĪ":31978,"Ġwah":31979,"èĤī":31980,"Ġdzi":31981,"ĠInstall":31982,"Ay":31983,"Ġcrear":31984,"енÑĤа":31985,"Ġweighing":31986,"Ġbutterflies":31987,"ĠGast":31988,"äºķ":31989,"horn":31990,"warz":31991,"ICEOVER":31992,"ĠнайÑĤи":31993,"Ġcoefficients":31994,"ç°¡åĸ®":31995,"ĠSpencer":31996,"ĠHigher":31997,"Ġcowork":31998,"å¨ĺ":31999,"ĠкоÑĤоÑĢое":32000,"Ġmonit":32001,"Ġdysfunction":32002,"ĠÑģÑĤанов":32003,"Ġtournaments":32004,"Ġoyster":32005,"BN":32006,"Ġtrud":32007,"slow":32008,"ĠPenny":32009,"ĠOdys":32010,"ær":32011,"Ġfou":32012,"Ġenjoyment":32013,"аÑĤÑĭ":32014,"ĠwyglÄħda":32015,"алÑĮнаÑı":32016,"ĠProtect":32017,"Ġmoy":32018,"Ġclaw":32019,"Ġsuspicion":32020,"Ġsacrificed":32021,"Ġgosto":32022,"Big":32023,"Ġaggressively":32024,"Ġvorne":32025,"ãĥł":32026,"Ġblamed":32027,"ĠSehr":32028,"פר":32029,"cito":32030,"Ġseals":32031,"Ġmujer":32032,"ĠWeird":32033,"Ġforens":32034,"Ġcontributes":32035,"estra":32036,"Ġpog":32037,"LOL":32038,"Ġhacerlo":32039,"оÑĤÑĮ":32040,"fiction":32041,"79":32042,"λο":32043,"大æ¦Ĥ":32044,"声":32045,"ĠÑĤоб":32046,"ĠGS":32047,"ĠClara":32048,"itez":32049,"Ġadvocating":32050,"ĠíĶĦë":32051,"sung":32052,"Ġvertices":32053,"Ġnavigating":32054,"Ġeuropé":32055,"çļĨ":32056,"Ġslowed":32057,"Ġforeground":32058,"ĠIndustrial":32059,"Ġadore":32060,"ìĭŃ":32061,"Ġcréer":32062,"æŀĹ":32063,"chnitt":32064,"Ġunaware":32065,"Ġcurly":32066,"entar":32067,"Ġler":32068,"Ġprohibited":32069,"ĠHeroes":32070,"ĠReed":32071,"uca":32072,"Ġsmok":32073,"Ġkunna":32074,"zeitig":32075,"immen":32076,"ĠLun":32077,"ĠабÑģолÑİÑĤ":32078,"Ġdegli":32079,"Ġvillagers":32080,"Ġpreset":32081,"zept":32082,"uds":32083,"Ġemit":32084,"ä½łè¦ģ":32085,"Ġëī":32086,"ëĬĶì§Ģ":32087,"нако":32088,"Ġosób":32089,"Ġ1969":32090,"ĠÐIJÑĢ":32091,"Ġmanchmal":32092,"ĠBrock":32093,"Ġmantra":32094,"ĠWIL":32095,"bach":32096,"inä":32097,"elas":32098,"keln":32099,"Ġdisciple":32100,"Ġqualc":32101,"Ġdehyd":32102,"ìĿ´ëĿ¼ëĬĶ":32103,"Af":32104,"ìĦ±ìĿ´":32105,"Ryan":32106,"Ġpuppet":32107,"ĠдÑĢÑĥгие":32108,"Ġrud":32109,"Ġpending":32110,"Plus":32111,"ĠìķĬìĿĦ":32112,"Ġbá»ĭ":32113,"ĠSega":32114,"çe":32115,"Ġprogrammer":32116,"bli":32117,"Ġunl":32118,"Ġenslaved":32119,"Ġsociété":32120,"Äģh":32121,"Ġinheritance":32122,"ĠBangl":32123,"ermaid":32124,"Ġpractitioner":32125,"ĠStalin":32126,"ĠUser":32127,"cible":32128,"Ġcardiac":32129,"ĠKoreans":32130,"Ġdumped":32131,"Ġ×Ķ×Ļ×Ķ":32132,"áis":32133,"Ġhydraulic":32134,"oubtedly":32135,"ĠPit":32136,"Ġpicnic":32137,"Ġbehöver":32138,"ĠÑģмог":32139,"Ġbraking":32140,"é»ij":32141,"utar":32142,"ĠìĦ¸ë":32143,"ubl":32144,"Ġüz":32145,"Ġmajesty":32146,"Ġbers":32147,"utable":32148,"Ġhotter":32149,"çħ§":32150,"ÛĮÙĨ":32151,"Ġbiases":32152,"Ġsubjected":32153,"Ġnaughty":32154,"Ġcircus":32155,"ãģĹãģĭ":32156,"ĠImmedi":32157,"ĠStefan":32158,"ĠTriple":32159,"enk":32160,"Ġwit":32161,"Ġrecycle":32162,"emie":32163,"dated":32164,"Ġunload":32165,"Ġpopula":32166,"chin":32167,"Ġyields":32168,"Ġenglish":32169,"ĠBonnie":32170,"Ġspiders":32171,"Ãģ":32172,"Ġerosion":32173,"éĥ¨åĪĨ":32174,"ĠNICK":32175,"иÑıÑħ":32176,"Ġimpart":32177,"Ġкни":32178,"Ġresolutions":32179,"Ġlithium":32180,"Ġconvergence":32181,"ĠTara":32182,"Ġдве":32183,"ths":32184,"ĠCindy":32185,"æĪijè¦ģ":32186,"幫":32187,"ĠDIE":32188,"Ġassurance":32189,"ĠопиÑģ":32190,"Ġbuckets":32191,"Ġcues":32192,"ĠQuiet":32193,"Ġsimilarity":32194,"Ġfoundational":32195,"ĠMinist":32196,"滿":32197,"Ġpian":32198,"Ġcentr":32199,"Ġnumb":32200,"Ġmonks":32201,"ujourd":32202,"enzie":32203,"Ġskateboard":32204,"Ġdlatego":32205,"ĠÑģоÑĤ":32206,"ĠAE":32207,"Ġmasterpiece":32208,"ĠSolomon":32209,"ĠReddit":32210,"Ġriot":32211,"abl":32212,"ĠJazz":32213,"Ġelectromagnetic":32214,"Ġinsecure":32215,"ĠCompet":32216,"geries":32217,"обод":32218,"ł×ķ":32219,"ðŁĴ":32220,"Ġsenators":32221,"ĠBrisbane":32222,"ĠAlb":32223,"uttering":32224,"ĠAllow":32225,"zero":32226,"Ġpai":32227,"ĠÐIJлекÑģ":32228,"ĠDisplay":32229,"ĠBlade":32230,"ĠApps":32231,"Ġpä":32232,"ĠдеÑģÑı":32233,"Ġquella":32234,"ĠGao":32235,"еннÑĭÑħ":32236,"Ġspoilers":32237,"Ġgallons":32238,"ĠÙĦÙĬ":32239,"ĠZion":32240,"æľīä¸Ģ":32241,"onie":32242,"ragt":32243,"ĠChand":32244,"Ġë³ij":32245,"Ġblunt":32246,"Ġusu":32247,"ĠKad":32248,"rakt":32249,"Ġcinematic":32250,"Ġammunition":32251,"rene":32252,"Ġfourteen":32253,"ĠCarn":32254,"crit":32255,"Ġtenure":32256,"vu":32257,"Ġprincipalmente":32258,"Ġalleen":32259,"éĢĻä¸Ģ":32260,"Ġkomplett":32261,"Ġdüny":32262,"James":32263,"Ġreceptor":32264,"Ġoneself":32265,"guru":32266,"Ġmerchant":32267,"liness":32268,"Ġoverlooked":32269,"Ġharmonic":32270,"éķ¿":32271,"ieso":32272,"×ķ×ŀ":32273,"colm":32274,"ĠпÑĢоекÑĤ":32275,"ĠAda":32276,"اس":32277,"Tim":32278,"Ġrecurring":32279,"Ġproceeds":32280,"ĠParticularly":32281,"ĠDownload":32282,"etrical":32283,"Ġmatrices":32284,"Ġproyecto":32285,"ancies":32286,"ĠUhm":32287,"Ġcaves":32288,"Ġìĸ´ëł¤":32289,"ĠLeaf":32290,"ĠобÑĭÑĩ":32291,"ĠìĿ´ìľł":32292,"Europe":32293,"ĠtÄħ":32294,"Ġpuls":32295,"Ġtakiego":32296,"ÐĿе":32297,"GU":32298,"Ġfors":32299,"Ïģγ":32300,"Ġfotos":32301,"Ġ))":32302,"Ġ멤ë":32303,"Ġaquilo":32304,"ĠKurd":32305,"ï¸ı":32306,"ptic":32307,"ĠDort":32308,"Ġmisery":32309,"auso":32310,"åĬŁ":32311,"chuckling":32312,"ĠRidge":32313,"ĠíĸĪìĬµëĭĪëĭ¤":32314,"Ġ***":32315,"客":32316,"ĠHmmm":32317,"Ġgeographic":32318,"Ġanys":32319,"Ġtalvez":32320,"Ġskelet":32321,"Ġsignatures":32322,"Ġliters":32323,"IJë©´":32324,"ĠÑģвоего":32325,"Ġskiing":32326,"ĠÐľÐ¾Ñģ":32327,"Ġadopting":32328,"Ġhaft":32329,"Ġsymmetric":32330,"ĠLiqu":32331,"Ġthyroid":32332,"Ġmisin":32333,"lude":32334,"Ġhull":32335,"ĠXD":32336,"ĠGust":32337,"zeich":32338,"Ġvibrations":32339,"Ġesemp":32340,"ĠвÑģÑİ":32341,"ĠQuem":32342,"Ġübrig":32343,"ĠSke":32344,"ĠLynch":32345,"rooms":32346,"artet":32347,"fest":32348,"Ġfrüher":32349,"Ġlure":32350,"ä¸į好æĦıæĢĿ":32351,"ĠìķĮìķĦ":32352,"ĠWIN":32353,"ĠRYAN":32354,"ĠкоÑĤоÑĢÑĥÑİ":32355,"ĠKash":32356,"Ġ×Ķ×ŀ":32357,"Ġsafeg":32358,"ĠHallelujah":32359,"ĠдвÑĥÑħ":32360,"Ġstaple":32361,"Ġsediment":32362,"ĠActs":32363,"Ġblaming":32364,"Ġmainland":32365,"Ġsporting":32366,"Ġdecorations":32367,"Ġexecuting":32368,"Ġparan":32369,"ĠDollar":32370,"Ġprojections":32371,"Ġcommissioned":32372,"Ġbour":32373,"öm":32374,"Ġsteamed":32375,"ĠëŃĺ":32376,"Ġpetrol":32377,"Ġcelular":32378,"帶":32379,"ĠHungary":32380,"Ġrented":32381,"ĠваÑĢи":32382,"bbie":32383,"Ġsécur":32384,"üll":32385,"Ġswings":32386,"between":32387,"ĠиÑĤ":32388,"estro":32389,"Ġniemand":32390,"ĠìĤ¼":32391,"ĠPardon":32392,"esses":32393,"ĠMID":32394,"Ġcentralized":32395,"ĠAlien":32396,"culos":32397,"Ġcrise":32398,"裡éĿ¢":32399,"Ġclasse":32400,"beitet":32401,"iÄŁi":32402,"Ġwhales":32403,"Ġperimeter":32404,"Ġtying":32405,"Ġstrony":32406,"Ġlikewise":32407,"ĠPunch":32408,"Da":32409,"ĠBaptist":32410,"Ġsorting":32411,"Ġiv":32412,"Ġíķ©":32413,"Ġrehab":32414,"Ġeta":32415,"river":32416,"Ġsai":32417,"ãģĦãģŁãģł":32418,"odus":32419,"ãģĬé¡ĺãģĦãģĹãģ¾ãģĻ":32420,"Ġessayer":32421,"Ġturtles":32422,"ĠHazrat":32423,"Ġfabrics":32424,"Ġcavity":32425,"Ġponieważ":32426,"Ġschlecht":32427,"Ġsalsa":32428,"ÅŁekkür":32429,"Ġseating":32430,"Ġeconomists":32431,"Ġmang":32432,"Ġseguinte":32433,"Ġrang":32434,"Ġratios":32435,"Ġconstell":32436,"Ġlongtemps":32437,"uating":32438,"Ġspoiled":32439,"Ġrecipients":32440,"Ġsniper":32441,"ä¹ĭåīį":32442,"ìĬµëĭĪê¹Į":32443,"Ġwp":32444,"ĠLINKE":32445,"Ġflare":32446,"ĠAdri":32447,"ñas":32448,"Ġbackl":32449,"mÃ¤ÃŁ":32450,"ĠBend":32451,"Ġworkloads":32452,"ĠÑģÑĥп":32453,"Ġ1975":32454,"имÑģÑı":32455,"ане":32456,"Ġмон":32457,"Ġaspirations":32458,"ĠAer":32459,"ĠговоÑĢиÑĤÑĮ":32460,"ĠQian":32461,"å¦Ī":32462,"Ġcompromised":32463,"Ġyolk":32464,"лаÑģÑĤ":32465,"Ġhemen":32466,"rove":32467,"dens":32468,"ĠкомменÑĤ":32469,"Ġ---":32470,"Ġfluores":32471,"ноÑģ":32472,"ĠLiverpool":32473,"ĠÑģобой":32474,"ĠZwe":32475,"Ġlumin":32476,"ĠOG":32477,"á¸":32478,"holm":32479,"profits":32480,"SN":32481,"Ġproportions":32482,"Ġmica":32483,"ĠBoh":32484,"ĠAtlas":32485,"Ġunsure":32486,"Ġtouring":32487,"Ġnied":32488,"ĠtÄĻ":32489,"Ġimperative":32490,"Ġdemek":32491,"ĠSheriff":32492,"rance":32493,"Ġhomeland":32494,"ĠHail":32495,"ĠGanz":32496,"ymm":32497,"Mon":32498,"åĨ·":32499,"vida":32500,"Ġdesarroll":32501,"æĬĢ":32502,"Ġintriguing":32503,"ĠHugo":32504,"ĠãĤĤ":32505,"é¬":32506,"аÑĨ":32507,"ĠWiÄĻc":32508,"atted":32509,"ĠìķĦëĭĪê³ł":32510,"ĠVari":32511,"ád":32512,"Ġsurreal":32513,"Ġdisparities":32514,"Ġmó":32515,"ullen":32516,"ĠìŀĪëĭ¤ê³ł":32517,"ĠпожалÑĥйÑģÑĤа":32518,"Ġmains":32519,"Ġeject":32520,"Ġmethane":32521,"Ġmarginalized":32522,"Ġchilli":32523,"rès":32524,"Ġyem":32525,"ä½łæĺ¯":32526,"ĠChun":32527,"Ġdebts":32528,"Ġdownloading":32529,"ĠAthens":32530,"isierung":32531,"ryn":32532,"Ġtekn":32533,"ĠQuindi":32534,"éľĢ":32535,"Ġtaraf":32536,"Ġhé":32537,"Ġconsciously":32538,"Ġfixes":32539,"uckle":32540,"mayın":32541,"Ġfrei":32542,"Ġspa":32543,"Ġì§Ħíĸī":32544,"ĠاÙĦØ°":32545,"ĠÑĥк":32546,"lett":32547,"ĠolmuÅŁ":32548,"Ġcheesy":32549,"าà¸ģ":32550,"naire":32551,"Ġwiden":32552,"Ġlien":32553,"Ġescaping":32554,"iggs":32555,"ĠBlick":32556,"cÄħ":32557,"ĠìĦľë":32558,"Ġ×Ķס":32559,"ĠвпеÑĢ":32560,"ophone":32561,"iell":32562,"ĠSUBSCRI":32563,"Ġlions":32564,"Ġê·¸ê²ĥ":32565,"Ġinspires":32566,"Ġguarantees":32567,"Ġcomeça":32568,"ĠGrowing":32569,"Ġneglig":32570,"ĠFrankf":32571,"Ġgegeben":32572,"ĠÄijầu":32573,"Ġendlich":32574,"Ġìį¨":32575,"ĠTT":32576,"ĠLith":32577,"ÏĢα":32578,"astern":32579,"ĠAzer":32580,"Ġlunar":32581,"hic":32582,"ĠнаÑĢод":32583,"Ġnenhum":32584,"è·ij":32585,"ĠSalvador":32586,"ĠProgress":32587,"Ġprivileges":32588,"ĠëıĻìķĪ":32589,"Ġantagon":32590,"ĠImpf":32591,"Ġdescub":32592,"ĠLei":32593,"ĠìĥĪë¡ľ":32594,"Ñĩе":32595,"Ġdólares":32596,"ĠMeghan":32597,"ĠWire":32598,"too":32599,"aying":32600,"usc":32601,"Ġtud":32602,"Ġappeals":32603,"educ":32604,"Ġpane":32605,"Ġji":32606,"Ġdecks":32607,"ĠAlter":32608,"Ġå°±":32609,"ìĦ¤":32610,"åĪĨéIJĺ":32611,"Ġproductions":32612,"ĠWILLIAM":32613,"Ġimplied":32614,"Ġfulfillment":32615,"ĠAah":32616,"Ġsaja":32617,"xus":32618,"ĠÎļαι":32619,"Ãłs":32620,"ucch":32621,"око":32622,"ĠDiscord":32623,"ĠSY":32624,"jsk":32625,"ĠWallace":32626,"unction":32627,"Daniel":32628,"Ġköt":32629,"ijah":32630,"Ġmarche":32631,"Ġdisgr":32632,"Ġmungkin":32633,"Ġalma":32634,"³µ":32635,"Ġextensively":32636,"ĠFloren":32637,"ĠAllison":32638,"ãĤ±":32639,"ÙĬÙħ":32640,"Ġjuven":32641,"ĠRenaissance":32642,"Ġfundraising":32643,"ĠChaos":32644,"Ġparaly":32645,"Ġnarrator":32646,"Ġecosystems":32647,"Ash":32648,"Ġmitigation":32649,"ĠAujourd":32650,"ĠIdee":32651,"!,":32652,"Ġ½":32653,"Ġlandlord":32654,"Ġdefects":32655,"Ġacre":32656,"ulsive":32657,"Ġalgae":32658,"pek":32659,"Ġemba":32660,"ĠRoc":32661,"éĽ¢":32662,"ksom":32663,"äche":32664,"Ġleuk":32665,"Ġleveraging":32666,"Ġê·¸ëłĩì§Ģ":32667,"ĠPalm":32668,"Ġäven":32669,"Ġlis":32670,"ĠInsp":32671,"ĠRita":32672,"ĠAbb":32673,"ithm":32674,"Ġsupervision":32675,"Ġrevisit":32676,"ĠpiÄĻ":32677,"Ġeuh":32678,"Ġfades":32679,"Ġmotto":32680,"åį¡":32681,"езж":32682,"ĠShim":32683,"Ġrelevance":32684,"Ġoo":32685,"Ġostat":32686,"nica":32687,"Ġchoix":32688,"ĠFaculty":32689,"Ġì¤ijìĹIJ":32690,"ĠAbove":32691,"ĠнеболÑĮÑĪ":32692,"Ġsequencing":32693,"Ġnutrient":32694,"Ġconquered":32695,"Ġdigestive":32696,"Ġbackdrop":32697,"ĠLori":32698,"ailable":32699,"Game":32700,"Ġneglected":32701,"omorph":32702,"illah":32703,"Ġkne":32704,"Ġsiitä":32705,"Ġworkspace":32706,"ĠVenice":32707,"ĠKne":32708,"Ñīо":32709,"ħĢ":32710,"ĠHass":32711,"Ġvita":32712,"Ŀ¼ë©´":32713,"Ġlays":32714,"ências":32715,"érica":32716,"ĠLl":32717,"æ±Ĥ":32718,"ĠCoca":32719,"ĠWHY":32720,"èĪŀ":32721,"Ġrouting":32722,"Ġpermissions":32723,"Ġdings":32724,"prend":32725,"program":32726,"Ġcrocod":32727,"bral":32728,"AAAAAAAA":32729,"agit":32730,"ĠNä":32731,"Ġgekommen":32732,"atten":32733,"Ġreferenced":32734,"Ġpairing":32735,"ĠPartner":32736,"ĠCoronavirus":32737,"ÑĸÑģ":32738,"è½ī":32739,"Ġ×Ķ×ĵ":32740,"ĠespecÃŃfic":32741,"arsi":32742,"quelle":32743,"Ġspontaneous":32744,"çĨ±":32745,"Ġê²ĥìĿĦ":32746,"ĠÐŁÐ¾Ñģле":32747,"ĠاÙĦد":32748,"ĠShout":32749,"Ġнал":32750,"Ġdisguise":32751,"ĠJord":32752,"Ġwee":32753,"Ġmiejsc":32754,"Ġserum":32755,"Ġplaisir":32756,"Ġcredible":32757,"ĠbÃ¥":32758,"ĠAJ":32759,"mares":32760,"Ġrods":32761,"Ġeran":32762,"ãģ¾ãģĤ":32763,"Ġpää":32764,"ĠUA":32765,"ĠUnknown":32766,"ĠÙĦÙħ":32767,"ĠRabbi":32768,"Ġlaat":32769,"Ġhairstyle":32770,"Ġغ":32771,"éģĭ":32772,"Ġcach":32773,"ĠWriting":32774,"оÑĩки":32775,"abad":32776,"Ġstraighten":32777,"--\"":32778,"wife":32779,"Ġhottest":32780,"Ġpunya":32781,"ĠFashion":32782,"griff":32783,"ĠQR":32784,"otch":32785,"ĠÐľÐ¾Ð¶ÐµÑĤ":32786,"Cloud":32787,"ĠStrike":32788,"ĠHein":32789,"Ġ羣çļĦ":32790,"Ġlei":32791,"ĠFlow":32792,"wegs":32793,"Ġhabr":32794,"åīĽåīĽ":32795,"nahme":32796,"Ìģ":32797,"Ġpleasing":32798,"opping":32799,"Ġ구ëıħ":32800,"Ġdran":32801,"Ġbangs":32802,"Ġ79":32803,"Ġsket":32804,"Ġcaval":32805,"ĠMacron":32806,"Ġweighted":32807,"Ġmuted":32808,"Ġnuestras":32809,"EEP":32810,"Ġmathematic":32811,"ĠMRI":32812,"agus":32813,"Ġtherapies":32814,"θε":32815,"Ġunpl":32816,"Ġcommencer":32817,"full":32818,"Ġtowels":32819,"Ġprue":32820,"Ġlicenses":32821,"׼×ķ׾":32822,"ĠÐŁÐ¾ÑĩемÑĥ":32823,"Ġpointless":32824,"Bye":32825,"Ġeligibility":32826,"Ġscrape":32827,"Ġabusive":32828,"ĠMant":32829,"Ġjeunes":32830,"tal":32831,"ĠPrincip":32832,"ĠOrthodox":32833,"Ġmelod":32834,"ĠмаÑĤеÑĢи":32835,"Ġprosecutor":32836,"Ġopioid":32837,"ĠÑĥвеÑĢ":32838,"ĠBeen":32839,"Ġìłijì¢ħ":32840,"Ġdynasty":32841,"Ġajuda":32842,"Ġentreg":32843,"Ġweighed":32844,"Ġeure":32845,"ĠBem":32846,"Ġabnormal":32847,"82":32848,"ĠJR":32849,"ĠAkt":32850,"ĠBri":32851,"út":32852,"Ġstagn":32853,"!*":32854,"Ġwegen":32855,"Ġleaking":32856,"ĠWords":32857,"ĠMau":32858,"Ġvue":32859,"ĠLiam":32860,"анием":32861,"Ġclinicians":32862,"ĠPump":32863,"Ġförst":32864,"?...":32865,"Ġautomotive":32866,"ĠOwen":32867,"zusagen":32868,"ĠHundred":32869,"Ġdecentralized":32870,"Ġbulbs":32871,"Ġ׾׼":32872,"Ġprovinces":32873,"ĠMilan":32874,"81":32875,"kas":32876,"Ġëĵ£":32877,"Ġforça":32878,"Ġrightly":32879,"島":32880,"rÄħ":32881,"Ġvenues":32882,"Ġwai":32883,"Ġpredicting":32884,"ĠWiFi":32885,"Ġê¶ģê¸Ī":32886,"رÙĪ":32887,"Ġ×Ķ×ĸ":32888,"century":32889,"Ġgradual":32890,"ĠProbleme":32891,"ĠìĹħ":32892,"Ġcoping":32893,"ĠBrus":32894,"Ġpeanuts":32895,"irtschaft":32896,"Ġзал":32897,"ĠTroy":32898,"Ġsperm":32899,"ĠMitar":32900,"ĠTürkiye":32901,"grand":32902,"¦Ń":32903,"Ġ×ŀס":32904,"Ġpans":32905,"ĠKnowledge":32906,"berly":32907,"ĠÐķго":32908,"Ġdanced":32909,"ĠFrost":32910,"ĠBurg":32911,"Ġbiting":32912,"ìłķìĿĦ":32913,"meal":32914,"Ġheroic":32915,"Ġmotherboard":32916,"ĠLicht":32917,"ãģ£ãģ":32918,"llan":32919,"айн":32920,"ĠÑĢÑıд":32921,"Ġà¹Ģà¸":32922,"onen":32923,"irie":32924,"Art":32925,"rang":32926,"νη":32927,"Ġnewborn":32928,"Ġamis":32929,"ĠاÙĪر":32930,"Ġsophom":32931,"ĠCareful":32932,"Ġprospects":32933,"ensen":32934,"Ġthrill":32935,"ĠViá»ĩt":32936,"Adam":32937,"rition":32938,"entric":32939,"uden":32940,"Ġcertificates":32941,"Ġashes":32942,"調":32943,"playing":32944,"Ġsadece":32945,"Ġost":32946,"Ġairplanes":32947,"ÑĢок":32948,"oner":32949,"Ġmagnesium":32950,"Ġgoddamn":32951,"Ġ1972":32952,"ĠSchule":32953,"Ġtemat":32954,"Ġpartout":32955,"à¯Ĥ":32956,"Ġinve":32957,"ĠScientists":32958,"ĠHudson":32959,"winning":32960,"ceksin":32961,"Ġcongressional":32962,"oru":32963,"Ġropes":32964,"вед":32965,"Ġmadre":32966,"Ġferry":32967,"ĠCohen":32968,"ĠPred":32969,"Ġvagy":32970,"ĠбеÑģп":32971,"Ġmultim":32972,"Ġdrainage":32973,"Ġsimulator":32974,"giggles":32975,"ĠStadium":32976,"обÑī":32977,"Ġnotices":32978,"Ġcrawling":32979,"Ġgroupe":32980,"åı¸":32981,"ĠktoÅĽ":32982,"ĠYoga":32983,"Ġmedida":32984,"ĠÑħваÑĤ":32985,"ĠLite":32986,"Ġrav":32987,"orama":32988,"Ġdiscord":32989,"ĠDIRE":32990,"Ġteh":32991,"ĠNurs":32992,"ç²ī":32993,"Ġpitched":32994,"Ġbarking":32995,"ĠCoke":32996,"wiad":32997,"Ġpopulated":32998,"éĻ¤":32999,"pelled":33000,"Ġбог":33001,"Ġpewno":33002,"ĠCube":33003,"Ġrecruited":33004,"éĢĻ種":33005,"ĠCara":33006,"ıģını":33007,"imated":33008,"ĠÑĪкол":33009,"icional":33010,"ĠпÑĢоÑĦ":33011,"Ġcontamination":33012,"Ġúltimos":33013,"Ġfearful":33014,"Ġelephants":33015,"usi":33016,"ĠiTunes":33017,"ĠSwami":33018,"ê¼":33019,"ĠìĦ¤ëªħ":33020,"ĠRichards":33021,"Ġmagnets":33022,"ĠRichtung":33023,"ĠLegion":33024,"èıľ":33025,"Ġkitty":33026,"Ġkissed":33027,"Ġwatering":33028,"Ġcono":33029,"ĠPalestine":33030,"idir":33031,"Ġmaze":33032,"Ġfluids":33033,"ĠProducer":33034,"ĠKrsna":33035,"好åķ¦":33036,"laf":33037,"Ġ×IJ×ķ":33038,"Ġmiesz":33039,"ĠXing":33040,"ointed":33041,"sein":33042,"ĠFuk":33043,"ĠDepression":33044,"ĠDuty":33045,"ĠPanther":33046,"Ġsund":33047,"Ġrefere":33048,"Ġexclusion":33049,"Ġnaval":33050,"ĠWinston":33051,"Ġslogan":33052,"Ġhypothetical":33053,"Ġelevate":33054,"ëł¹":33055,"Ġcabeça":33056,"ĠGesund":33057,"meter":33058,"ĠìķĦëĭĪë©´":33059,"Ġcloudy":33060,"âĢ¦?":33061,"ĠSchritt":33062,"ĠJS":33063,"ìį":33064,"ĠSprings":33065,"ĠBatter":33066,"·°":33067,"Ġtailor":33068,"ĠPTSD":33069,"ĠGent":33070,"ĠbaÄŁ":33071,"Ġspatula":33072,"Ġcray":33073,"ĠLegisl":33074,"Ġsú":33075,"Ġleve":33076,"าม":33077,"Ġerad":33078,"Ġdong":33079,"Ġderm":33080,"ĠBanks":33081,"icho":33082,"åħĪçĶŁ":33083,"ĠFranz":33084,"ravel":33085,"éģĶ":33086,"оло":33087,"Ġflute":33088,"ĠEk":33089,"Ġjoyful":33090,"Ġchased":33091,"ĠLarge":33092,"Over":33093,"Ġentrepreneurial":33094,"Ġconsiders":33095,"Ñĥем":33096,"opa":33097,"Ġdormir":33098,"ĠElementary":33099,"Ġprzypad":33100,"ÑĥÑģка":33101,"ĠоÑĩеÑĢ":33102,"ugene":33103,"Ġtenido":33104,"Ġlugares":33105,"ë¥":33106,"ĠÑĩаÑģÑĤ":33107,"Ġsao":33108,"Ġbraid":33109,"ĠVere":33110,"ĠReich":33111,"ĠPoss":33112,"Ġinan":33113,"wand":33114,"ref":33115,"Ġmontrer":33116,"Ġ1981":33117,"çķª":33118,"asında":33119,"Ġchrome":33120,"ĠTrinity":33121,"Ġexploitation":33122,"ĠSense":33123,"ĠCMS":33124,"ĠNoble":33125,"ĠìĦłíĥĿ":33126,"Ġswelling":33127,"electronic":33128,"]?":33129,"Ġbrushing":33130,"Ġliquidity":33131,"ĠHook":33132,"ĠConnor":33133,"ĠAlum":33134,"Ġgucken":33135,"suite":33136,"Ġwiele":33137,"Ġbarrels":33138,"ĠRegel":33139,"ĠMent":33140,"ĠTrip":33141,"ĠBrush":33142,"ĠErik":33143,"urate":33144,"ÉĻr":33145,"ĠCyr":33146,"ouble":33147,"ĠBecca":33148,"Ġpasswords":33149,"ű":33150,"borg":33151,"Ġvendo":33152,"ĠClaus":33153,"ĠFaz":33154,"indest":33155,"Ġdeceased":33156,"Ġcomparisons":33157,"ĠLCD":33158,"ĠPork":33159,"Ġeventual":33160,"Ġpatreon":33161,"Ġinability":33162,"Ġextinction":33163,"Ġì¢ĭìķĦíķĺëĬĶ":33164,"ĠÑģоÑģ":33165,"aju":33166,"Ġ×ij×IJ×":33167,"Ġsofort":33168,"Ġdestined":33169,"ĠRin":33170,"Ġmouths":33171,"ĠNatürlich":33172,"Ġpreserving":33173,"Ġlimp":33174,"黨":33175,"ocused":33176,"инг":33177,"Ġexposing":33178,"Ġξ":33179,"ëį":33180,"laugh":33181,"Ġhiss":33182,"ãģłãģĭãĤī":33183,"Ġindie":33184,"Ġdetal":33185,"ÑĢавÑģÑĤв":33186,"Ġtrên":33187,"æķ°":33188,"Ġogni":33189,"Ġsimplemente":33190,"Ġ1978":33191,"Ġgoo":33192,"Ġ1967":33193,"Ġgenug":33194,"hö":33195,"Ġhistó":33196,"å®Ł":33197,"Ġlobster":33198,"cendo":33199,"Ġteil":33200,"Ġallevi":33201,"0000":33202,"OLD":33203,"Ġpesos":33204,"Ġbonuses":33205,"Ġami":33206,"Ġrevival":33207,"ĠHorse":33208,"Ġsack":33209,"Talk":33210,"Ġmulher":33211,"ĠпоÑģÑĤоÑıн":33212,"ĠHood":33213,"Huh":33214,"Ġë¶ģ":33215,"Ġhyung":33216,"ĠMeeting":33217,"Ġimporta":33218,"Ġì°¾ìķĦ":33219,"ĠVern":33220,"Ġstripped":33221,"Ġrefuses":33222,"Ġqualifications":33223,"opl":33224,"ĢëıĦ":33225,"ixÃŃ":33226,"Ġdiab":33227,"itime":33228,"flows":33229,"Ġinac":33230,"ĠGong":33231,"Ġmeaningless":33232,"Ġcourageous":33233,"Ġmicrobi":33234,"azy":33235,"hist":33236,"Ġvolunteering":33237,"VIE":33238,"Ġviolated":33239,"Ġsympathy":33240,"ĠEdit":33241,"好åĥı":33242,"electric":33243,"product":33244,"Ġpandemia":33245,"Ġgeometric":33246,"ĠConvers":33247,"gre":33248,"Ġglut":33249,"isted":33250,"ĠاÙĦÙĥ":33251,"ĠChain":33252,"ĠPresent":33253,"ĠYin":33254,"ĠÑģог":33255,"ĠVlog":33256,"Ġìĸ´ë¨¸":33257,"Ġdonn":33258,"Ġhitch":33259,"ucking":33260,"ãģĬãģĦ":33261,"wald":33262,"risk":33263,"Ġhari":33264,"ĠKens":33265,"ĠIdol":33266,"Ġвнимание":33267,"Ġtodd":33268,"Ġsmashed":33269,"Ġinvari":33270,"ĠконÑĤÑĢ":33271,"Ġautistic":33272,"ìŀ¥ëĭĺ":33273,"Res":33274,"дÑĭ":33275,"chau":33276,"Ġselv":33277,"Ġhätten":33278,"ि":33279,"Ġexpects":33280,"Ïģη":33281,"Ġaçık":33282,"ĠHTTP":33283,"leÅŁ":33284,"Ġsweeping":33285,"ĠBeta":33286,"Ġcounterparts":33287,"abile":33288,"ĠSims":33289,"Cs":33290,"Ġrepar":33291,"squ":33292,"Ġprovincial":33293,"Ġshareholders":33294,"Ġrunter":33295,"Ġgedacht":33296,"ĠTeen":33297,"Ġgrands":33298,"çĶ¢":33299,"agles":33300,"Ġrocky":33301,"vens":33302,"Ġrivals":33303,"unal":33304,"Ġreacts":33305,"ë©":33306,"Ġmercury":33307,"ĠLuigi":33308,"Ġог":33309,"ĠJUST":33310,"Ġlod":33311,"Ġcortex":33312,"wig":33313,"Ġlakh":33314,"ì¤ijìĹIJ":33315,"ĠVic":33316,"ĠMund":33317,"Ġmapped":33318,"ĠDell":33319,"ĠDruck":33320,"Ġlifes":33321,"алÑĮное":33322,"ividual":33323,"adım":33324,"Ġatrav":33325,"ĠFlug":33326,"ĠKlein":33327,"ê±°ìķ¼":33328,"หà¸Ļ":33329,"Ġappli":33330,"ா?":33331,"üyorum":33332,"ĠинÑĤеÑĢеÑģно":33333,"Ġdisinfect":33334,">-":33335,"Ġchampagne":33336,"Ġkla":33337,"opers":33338,"Trans":33339,"ĠDesert":33340,"Ġcultivate":33341,"ĠFucking":33342,"idelity":33343,"ĠÑĤан":33344,"Ġincub":33345,"Ġtemu":33346,"Ġlearner":33347,"founder":33348,"ĠSyl":33349,"ãĤĢ":33350,"Ġfato":33351,"zier":33352,"ĠìĹĨìĿ´":33353,"ĠìĪ¨":33354,"Ġpsycho":33355,"ĠÑĤелеÑĦ":33356,"Ġregarde":33357,"Ġrepresentations":33358,"Ġlitigation":33359,"Ġspann":33360,"ults":33361,"bior":33362,"è¦ĭãģ¦":33363,"ä¸įå¤ļ":33364,"ĠSurvey":33365,"ĠLEDs":33366,"Ġträ":33367,"Ġlên":33368,"Ġantioxid":33369,"еÑĢом":33370,"Ġinduction":33371,"Ġfooled":33372,"ätzlich":33373,"ĠговоÑĢÑıÑĤ":33374,"ĠFact":33375,"umbai":33376,"Ġwiggle":33377,"NOUN":33378,"Ġdévelopp":33379,"ĠClaro":33380,"Ġì¸":33381,"ë¬":33382,"ãģªãĤĵãģł":33383,"Ġaccumulate":33384,"Ġmaintains":33385,"ëĦ":33386,"ĠFighter":33387,"íĨł":33388,"Ġmatin":33389,"Ġcoupon":33390,"Ġstunt":33391,"Ġdebuted":33392,"å¾ħãģ£ãģ¦":33393,"Ġprag":33394,"иваем":33395,"73":33396,"Ġexpres":33397,"Ġìĺ¤ë¹ł":33398,"ĠпеÑĢÑģон":33399,"Ġcalculus":33400,"Ġabrupt":33401,"ĠInspector":33402,"ourt":33403,"æĸĻ":33404,"źniej":33405,"intense":33406,"Ba":33407,"Ġlounge":33408,"Ġasthma":33409,"ĠHiç":33410,"ª»":33411,"Ġeditorial":33412,"Ġseize":33413,"Ġkır":33414,"Ġmouve":33415,"Ġtierra":33416,"Ġtestosterone":33417,"Ġrh":33418,"ĠKingston":33419,"ELLE":33420,"ĠRepresentative":33421,"Ġ1974":33422,"Ġiba":33423,"Ts":33424,"Ġsorta":33425,"Ġ(?)":33426,"ĠتÙĪ":33427,"ĠëĤ´ëł¤":33428,"Ġbekommt":33429,"Ġspiritually":33430,"Ġdistorted":33431,"Mad":33432,"Ġreim":33433,"ánh":33434,"ĠOttoman":33435,"ĠRelig":33436,"ĠEls":33437,"Ġretained":33438,"ĠLaughs":33439,"æĢ»":33440,"ĠSAS":33441,"ĠколиÑĩеÑģÑĤво":33442,"×ķתר":33443,"Ġinnovate":33444,"Ġkork":33445,"ĠÑĢаÑģÑģказÑĭв":33446,"ondere":33447,"ivi":33448,"aye":33449,"ounty":33450,"ĠполÑĥÑĩаеÑĤÑģÑı":33451,"Ġbuns":33452,"åħ«":33453,"Ġyüzden":33454,"Ġsurgeries":33455,"Ø£ÙĨ":33456,"Ġbankruptcy":33457,"welt":33458,"Ġsiamo":33459,"Ġdarkest":33460,"ĠHann":33461,"gga":33462,"Ġformas":33463,"ĠDj":33464,"named":33465,"Ġshields":33466,"ueller":33467,"ĠFew":33468,"Ġlace":33469,"Ġfurious":33470,"ĠYU":33471,"Ġsocietal":33472,"Ġjudgement":33473,"ĠDos":33474,"Ġjab":33475,"laws":33476,"Ġreinvent":33477,"ĠKatherine":33478,"ĠChoi":33479,"adows":33480,"Ġrans":33481,"oden":33482,"ĠMidwest":33483,"nın":33484,"Ġdeport":33485,"ĠDip":33486,"ç´ħ":33487,"Ġatención":33488,"ĠCourtney":33489,"ividad":33490,"ĠÚ©Ûģ":33491,"Ġefficacy":33492,"ĠBrooks":33493,"Ġreferral":33494,"ĠконÑĨ":33495,"Ġmalicious":33496,"Ġkir":33497,"ĠGoddess":33498,"Ġfunky":33499,"Ġinterim":33500,"ĠKörper":33501,"Ġìĸ¼ë§":33502,"kur":33503,"Ġкли":33504,"Ġtrucs":33505,"gesetz":33506,"Ġzug":33507,"ĠGlück":33508,"ĠMinute":33509,"Ġprestigious":33510,"Ġniez":33511,"Ġconcentrations":33512,"лаÑģÑĤи":33513,"ĠSis":33514,"ĠVitamin":33515,"kov":33516,"ĠPBS":33517,"Ġнее":33518,"Ġretailers":33519,"Ġconventions":33520,"ĠSamantha":33521,"Ġproudly":33522,"Jordan":33523,"ĠJASON":33524,"atk":33525,"Ġtriste":33526,"Ġstär":33527,"Ġreiterate":33528,"Ġposterior":33529,"Ġ1973":33530,"ĠPine":33531,"ĠJuliet":33532,"Ġpedir":33533,"kil":33534,"Ġoverlapping":33535,"Ġexclude":33536,"Ġeconóm":33537,"Ġaccepts":33538,"ĠSter":33539,"決":33540,"Ġìļ´ëıĻ":33541,"estab":33542,"Ġtug":33543,"arg":33544,"Ġlivro":33545,"اص":33546,"Ġseams":33547,"Ġburaya":33548,"Ġello":33549,"ĠTM":33550,"ĠPaw":33551,"ĠIndex":33552,"Exc":33553,"Ġinspirational":33554,"Ġdunk":33555,"è°ģ":33556,"akter":33557,"Ġconditioner":33558,"ĠSalut":33559,"ÅĤec":33560,"Ġìī½":33561,"ĠÑĥзна":33562,"ĠRomeo":33563,"fruit":33564,"ĠYO":33565,"Ġchá»ī":33566,"бÑĥ":33567,"bons":33568,"Ġreproductive":33569,"Ġorada":33570,"Ġíļ¨":33571,"Ġtentar":33572,"Ġmañana":33573,"ãĤ¬":33574,"Ġsolvent":33575,"Jessica":33576,"ĠLegal":33577,"Ġtua":33578,"Ġsic":33579,"ĠEQ":33580,"aukee":33581,"ìĭľëĭ¤":33582,"ĠÅŀu":33583,"Ġadhere":33584,"ĠTul":33585,"Ġà®Ĩ":33586,"Ġtextbooks":33587,"ĠFifth":33588,"Ġexperi":33589,"Ġchic":33590,"Ġheap":33591,"inely":33592,"atra":33593,"Two":33594,"Ġhelemaal":33595,"Ġfren":33596,"æݨ":33597,"Ġbisher":33598,"اش":33599,"ĠìĦłìĥĿ":33600,"ĠTages":33601,"Ġsá»±":33602,"Ġbullied":33603,"ؤ":33604,"Ġbenefited":33605,"ĠPreviously":33606,"ĠÑįÑĦÑĦ":33607,"Ùį":33608,"Ġsenate":33609,"ĠMorm":33610,"ijke":33611,"ĠFlu":33612,"Ġincorporating":33613,"jack":33614,"ĠпиÑĤ":33615,"Ġimply":33616,"Ġhacks":33617,"ĠRICH":33618,"ĠкваÑĢ":33619,"ĠпÑĢекÑĢаÑģ":33620,"Ġdependency":33621,"Ġìļ©":33622,"Ġì±ħ":33623,"Ġwährend":33624,"Ġsulla":33625,"ĠPittsburgh":33626,"Ġesempio":33627,"¼ë¡ľ":33628,"prot":33629,"ĠRosen":33630,"ĠIndependence":33631,"Ġparsley":33632,"iegen":33633,"Ġhaw":33634,"Ġaquell":33635,"ĠCAP":33636,"ĠÑĢабоÑĤаÑĤÑĮ":33637,"ĠCliff":33638,"ionar":33639,"Ġsecuring":33640,"æĪijåĢijçļĦ":33641,"νε":33642,"Ġutilis":33643,"Ġcoule":33644,"ĠPing":33645,"Ġtrek":33646,"Ġfak":33647,"Ġenorme":33648,"Ġìĭ«":33649,"让":33650,"Ġdoubling":33651,"ĠнÑĢавиÑĤÑģÑı":33652,"Ġhed":33653,"hoven":33654,"ĠStanding":33655,"ĠmÃŃn":33656,"ĠJimin":33657,"Ġmonarch":33658,"Ġcoke":33659,"Ġmr":33660,"Ġclic":33661,"Ãį":33662,"Ġimpeachment":33663,"Ġdurability":33664,"Ġvarios":33665,"Ġcommercials":33666,"Ġgreetings":33667,"ĠRi":33668,"ĠAppreci":33669,"ìŀĪëĬĶ":33670,"Ġrésult":33671,"ért":33672,"Ġsalute":33673,"Ġpoderia":33674,"Ġsunrise":33675,"veck":33676,"Ġreluctant":33677,"Ġcommissioner":33678,"念":33679,"âte":33680,"ĠKenny":33681,"ĠSiri":33682,"ãĥĥãĥĹ":33683,"ĠëĬĺ":33684,"ĠEE":33685,"Ġunch":33686,"кон":33687,"ĠاÙĦØ¥":33688,"Ġbelts":33689,"Ġhass":33690,"ĠмоÑı":33691,"Ġdisplaced":33692,"Ġabra":33693,"ÎŃλ":33694,"Ġscratches":33695,"Ġcomet":33696,"Ġauthorization":33697,"ĠLLC":33698,"Ġproduk":33699,"Ġrehabilitation":33700,"åŀ":33701,"ÑĸÑĩ":33702,"uding":33703,"olit":33704,"Ġ105":33705,"Ġexpands":33706,"Ġaltri":33707,"ĠKomment":33708,"Ġanf":33709,"Pl":33710,"ĠMana":33711,"fed":33712,"Ġbri":33713,"Ġora":33714,"Gs":33715,"ĠGur":33716,"uckland":33717,"Ġjunction":33718,"Ġironic":33719,"ĠFeed":33720,"Ġprakt":33721,"ĠHammer":33722,"ĮëıĦ":33723,"ĠTracy":33724,"çµ±":33725,"ĠAside":33726,"него":33727,"ĠиÑģполÑĮзоваÑĤÑĮ":33728,"Ġzaj":33729,"Ġequitable":33730,"Ġcurb":33731,"ĠãģĵãĤĮ":33732,"Ġderivatives":33733,"Ġpuppies":33734,"ĠKenneth":33735,"ĠCompl":33736,"igram":33737,"ĠGarcia":33738,")\"":33739,"ĠHarbor":33740,"estial":33741,"Ġä¾Ĩ":33742,"Ġers":33743,"æ¹":33744,"Ġunwanted":33745,"Ġbelang":33746,"аго":33747,"emb":33748,"dos":33749,"ĠìĻľë":33750,"ĠBudget":33751,"Ġbattling":33752,"ØŃت":33753,"kok":33754,"наÑĩала":33755,"Ġplag":33756,"Ġcantidad":33757,"Ġgrupos":33758,"Ġplugins":33759,"lerini":33760,"ĠимееÑĤ":33761,"Ġsozusagen":33762,"olics":33763,"Ġpueblo":33764,"Ġreminis":33765,"rän":33766,"ĠMorrison":33767,"Ġlinha":33768,"Ġbreaths":33769,"ĠTaste":33770,"Ġenfrent":33771,"ĠDocker":33772,"Ġден":33773,"Ġethnicity":33774,"Ġwob":33775,"Ġsuffers":33776,"Ġtransitioning":33777,"ĠRange":33778,"ÄĻdzy":33779,"ĠкаÑĤ":33780,"Ġsyner":33781,"Ġdonut":33782,"Ġprobabilities":33783,"ĠOmar":33784,"Which":33785,"uish":33786,"isin":33787,"Ġdemos":33788,"ĠìłĢ기":33789,"Ġëĺijê°Ļ":33790,"Ġедин":33791,"Ġcerve":33792,"Ġjoka":33793,"IAN":33794,"Ġkilometer":33795,"Ġhorizontally":33796,"ĠBhag":33797,"Ġ->":33798,"ĠMonitor":33799,"Ġknowledgeable":33800,"Ġfav":33801,"Ġpinned":33802,"ĠeBay":33803,"icker":33804,"Ġìŀłê¹IJë§Į":33805,"ĠXiaomi":33806,"Ġcapit":33807,"Ġnp":33808,"Ġ1965":33809,"hoe":33810,"Ġnok":33811,"ĠSage":33812,"ĠнелÑĮзÑı":33813,"ĠTow":33814,"gam":33815,"Ġdicen":33816,"ĠSUBSCRIBE":33817,"Ġreboot":33818,"Ġpaj":33819,"Ġë³´ìŬë":33820,"Ġthicken":33821,"ĠReality":33822,"idän":33823,"Na":33824,"Ġê²ĥìĿĢ":33825,"!!)":33826,"Ġroutines":33827,"Ġодного":33828,"Ġexting":33829,"Ġì¦Ŀ":33830,"Ġsulfur":33831,"Ġcarve":33832,"Ġasteroid":33833,"ĠWarrior":33834,"Ġphotographers":33835,"Ġpell":33836,"Ġcrossover":33837,"æĪijçŁ¥éģĵ":33838,"Ġhacemos":33839,"ĠNej":33840,"Ġsettling":33841,"Ġirm":33842,"ĠBooks":33843,"ientôt":33844,"Ġespacio":33845,"ĠScholars":33846,"Ġdoomed":33847,"ĠIRS":33848,"wohl":33849,"Ġsegue":33850,"ĠëĪĦê°Ģ":33851,"Ġpratic":33852,"BT":33853,"ĠConsidering":33854,"ĠBuffalo":33855,"Ġtrainings":33856,"Ġgebru":33857,"ĠGleich":33858,"Ġpirates":33859,"Ġenvelop":33860,"Ġreopen":33861,"imat":33862,"Ġtee":33863,"Ġsued":33864,"feh":33865,"Ġ×Ķק":33866,"Ġdiets":33867,"Ġjuntos":33868,"asto":33869,"Ġmisunderstood":33870,"Ġruim":33871,"Ġclassify":33872,"ĠпÑĢодÑĥк":33873,"Ġinse":33874,"Ġillustrated":33875,"Ġcorrosion":33876,"Ġaccred":33877,"ĠAuntie":33878,"ĠпÑĢивеÑĤ":33879,"ĠLIVE":33880,"Ġrek":33881,"Ġreceipt":33882,"åĪ°åºķ":33883,"ĠBarbie":33884,"ĠSnake":33885,"turn":33886,"Jeff":33887,"ãģĬãģĬ":33888,"ķĦ":33889,"VOICEOVER":33890,"coll":33891,"Ġrunners":33892,"ìłľë":33893,"osos":33894,"moon":33895,"Ġkeynote":33896,"ĠInstit":33897,"SPEAK":33898,"Ġplugs":33899,"Ġcurv":33900,"ĠYuri":33901,"ĠTheres":33902,"ĠPs":33903,"ĠμÏĢο":33904,"Ġconverter":33905,"Ġrefine":33906,"Ġbadass":33907,"Ġοι":33908,"Ġregen":33909,"azzi":33910,"ÙĬÙģ":33911,"Ġseized":33912,"Ġiçer":33913,"ilee":33914,"Ġupstream":33915,"Ġbuds":33916,"Ġpim":33917,"Ġíķĺ루":33918,"Ġalluded":33919,"Ġthemed":33920,"Ġconsisting":33921,"Ġbons":33922,"unuz":33923,"ĠпÑĢовод":33924,"ĠLovely":33925,"à¥ĭ":33926,"Ġparach":33927,"ĠStaats":33928,"éļĬ":33929,"Ġselective":33930,"Ġfase":33931,"ĠGeorget":33932,"Ġcocaine":33933,"Ġreproduction":33934,"ĠLara":33935,"ĠLD":33936,"Ġgh":33937,"Jon":33938,"ĠlÃ¥":33939,"ĠëijIJë":33940,"Ġtyped":33941,"ĠBana":33942,"ëĵľë":33943,"Ġsavory":33944,"ĠZomb":33945,"standen":33946,"Ġpedestrian":33947,"Ġdifférents":33948,"Ġìĭ¸":33949,"èī¯":33950,"Ġcomplained":33951,"ç¦ı":33952,"ĠÐļÑĤо":33953,"Ġ׾פ":33954,"aliÅĽmy":33955,"Ġmortar":33956,"Ġverdict":33957,"Ġsuficiente":33958,"ĠMillion":33959,"mittel":33960,"inals":33961,"ĠاÙĦØ®":33962,"аÑİÑģÑĮ":33963,"ĠmiÄĻdzy":33964,"ĠOle":33965,"Ġinvert":33966,"czyÄĩ":33967,"озможно":33968,"starter":33969,"Ġauditor":33970,"ĠScout":33971,"chien":33972,"ĠSverige":33973,"uffled":33974,"Ġzehn":33975,"ĠAuckland":33976,"Ġargent":33977,"Ġ1976":33978,"ĠHoe":33979,"Ġbothers":33980,"Ġsocialist":33981,"Ġpliers":33982,"Ġemergen":33983,"ĠXP":33984,"еÑĢов":33985,"More":33986,"ĠLevi":33987,"ĠAnders":33988,"ibilidad":33989,"ĠParents":33990,"Ġinduced":33991,"ìĸ´ì¤":33992,"Ġbalances":33993,"ĠвÑĭÑĪ":33994,"Ġsubmarine":33995,"Start":33996,"Ġdries":33997,"Ġvolver":33998,"Ġticking":33999,"cott":34000,"Ġfaj":34001,"prés":34002,"ĠSabb":34003,"ĠзаÑĩ":34004,"ĠпокÑĥп":34005,"Ġbaptized":34006,"ĠBrilliant":34007,"ĠÐijог":34008,"Ġmots":34009,"bits":34010,"Ġlattice":34011,"æĪijè·Łä½ł":34012,"Ġcoriander":34013,"Ġresidency":34014,"ync":34015,"Ġpierwszy":34016,"ĠKnock":34017,"ĠZap":34018,"ĠÐķв":34019,"견":34020,"å°ıå¿ĥ":34021,"Ġuneven":34022,"ĠJas":34023,"odor":34024,"ç¿Ĵ":34025,"74":34026,"ĠSite":34027,"Ġaconteceu":34028,"ympt":34029,"Ġtrilogy":34030,"Ġlantern":34031,"ĠZucker":34032,"vari":34033,"welling":34034,"ĠPotato":34035,"gomery":34036,"Ġreacted":34037,"ĠChron":34038,"Ġjede":34039,"beeld":34040,"Ġtwent":34041,"Ġlact":34042,"æ¨Ĥ":34043,"Ġrése":34044,"Ġrelent":34045,"Ġfurnace":34046,"Ġwidget":34047,"Ġearthquakes":34048,"ĠAdjust":34049,"ilit":34050,"ĠØ£ÙĪ":34051,"Ġhearings":34052,"Ġdefendant":34053,"irsiniz":34054,"Ġbask":34055,"cja":34056,"ľ¨":34057,"Ġrifles":34058,"Ġinstal":34059,"ĠForgive":34060,"pical":34061,"ĠÐŀÑĩенÑĮ":34062,"Ġpetites":34063,"Ġhp":34064,"Ġrenowned":34065,"ĠInn":34066,"Ġ주ìĦ¸ìļĶ":34067,"Ġemphasized":34068,"éĹ®é¢ĺ":34069,"ĠìŀĪì£ł":34070,"Ġê²ĥìľ¼ë¡ľ":34071,"ãĤĨ":34072,"Åĵ":34073,"gili":34074,"Dave":34075,"Ġexhausting":34076,"ÅĤug":34077,"Ġschema":34078,"μά":34079,"cycl":34080,"Ġautant":34081,"Ġparcel":34082,"Ġmateria":34083,"ĠBerry":34084,"ĠÑģами":34085,"Ġextracted":34086,"ĠSaying":34087,"ismatic":34088,"ĠпопÑĢоб":34089,"Ġneuron":34090,"graph":34091,"ľë©´":34092,"Ġenclosure":34093,"ĠJohann":34094,"Ġaftermath":34095,"ÑĤоб":34096,"Ġuży":34097,"Ġsamp":34098,"360":34099,"ĠMei":34100,"Ġtaco":34101,"Ġreceptors":34102,"Ġpunches":34103,"ĠHoje":34104,"ĠÙĩÙĨا":34105,"=\"#":34106,"ĠAngular":34107,"Ġmusique":34108,"Ġrol":34109,"Ġñ":34110,"sterreich":34111,"Ġclam":34112,"ĠTreasury":34113,"chemical":34114,"Ġapar":34115,"Ġappend":34116,"Ġforbid":34117,"ĠHamburg":34118,"аков":34119,"Ġê¸Ī":34120,"ilda":34121,"Ġpreparations":34122,"ĠmogÄħ":34123,"Ġcamino":34124,"Eric":34125,"ĠBlind":34126,"èĪĩ":34127,"å¹´çļĦ":34128,"ĠDiscovery":34129,"ì¸ł":34130,"çĪ¶":34131,"Ġinterpreter":34132,"Ġbred":34133,"ĠPsalm":34134,"Ġdefended":34135,"ìī¬":34136,"ĠErfahr":34137,"ĠPeach":34138,"Ġmoons":34139,"ĠOst":34140,"Ġspécial":34141,"Ġarriver":34142,"ĠWis":34143,"uci":34144,"Ġrobotics":34145,"IVE":34146,"Ġsiege":34147,"arla":34148,"Ġseparates":34149,"ĠTC":34150,"íı°":34151,"quisite":34152,"Ġparentheses":34153,"ике":34154,"ç«Ļ":34155,"Ġtrous":34156,"建":34157,"ĠÑģилÑĮ":34158,"Ġbeers":34159,"ĠплаÑĤ":34160,"ãģĻãģĶãģĦ":34161,"Ġsola":34162,"Ġdès":34163,"mingham":34164,"ikte":34165,"Ġoops":34166,"Ġtwitch":34167,"å°ĩ":34168,"ÏĪ":34169,"ĠShouldn":34170,"uvre":34171,"Ġleer":34172,"criptions":34173,"Ġeyeshadow":34174,"ĠGuo":34175,"ĠPowell":34176,"Ġsupuesto":34177,"Ġana":34178,"rals":34179,"ĠMontreal":34180,"Ġsurfing":34181,"ĠÐŁÐµÑĢв":34182,"×ŀ×ķ":34183,"Ġmilliseconds":34184,"Ġsuburbs":34185,"Ġplaneta":34186,"ÑĥÑĪка":34187,"hrlich":34188,"ĠHY":34189,"ĠسÛĴ":34190,"ĠMM":34191,"ĠEff":34192,"åı¯æĦĽ":34193,"ĠHS":34194,"anson":34195,"Ġì§ģìłij":34196,"Ġsuo":34197,"Ġdeploying":34198,"Ġkunt":34199,"tering":34200,"Ġerect":34201,"ìŀ¥ìĿ´":34202,"ĠìĿĮìĭĿ":34203,"Ġspecimen":34204,"!...":34205,"æĪij說":34206,"Ġligne":34207,"Ġkonst":34208,"adequ":34209,"Ġìĥģíĥľ":34210,"Ġaccessed":34211,"ĠPole":34212,"kill":34213,"Ġë²Ħë":34214,"Ġauthenticity":34215,"Ġappelle":34216,"ulle":34217,"Ġrevision":34218,"Ġgoats":34219,"гли":34220,"Ġpau":34221,"ĠRanger":34222,"ĠImag":34223,"author":34224,"Ġeve":34225,"ĠMessenger":34226,"Ġnay":34227,"Ġwholes":34228,"ätte":34229,"Ġonwards":34230,"ĠDepois":34231,"ĠíijľíĺĦ":34232,"ĠSARS":34233,"Ġwszystkich":34234,"Ġdestru":34235,"umbing":34236,"Ġcompatibility":34237,"Ġmisinformation":34238,"odore":34239,"ĠFavor":34240,"eko":34241,"ıĮ":34242,"waukee":34243,"ĠTeaching":34244,"ĠKO":34245,"Ġbetting":34246,"Ġquests":34247,"Ġvivre":34248,"ĠмÑĥзÑĭ":34249,"Ġsaga":34250,"Ġswell":34251,"Ġgehe":34252,"æĢİ麼樣":34253,"ĠоÑĢганиз":34254,"Ġgide":34255,"ĠGross":34256,"Ġdalej":34257,"Ġclaws":34258,"á»Ļc":34259,"Ġprejudice":34260,"Ġinsign":34261,"ihood":34262,"Ġpled":34263,"Ġdónde":34264,"ĠPolitical":34265,"Ġpremises":34266,"undert":34267,"عت":34268,"onnen":34269,"Ġespaço":34270,"Ġfé":34271,"ĠHarrison":34272,"ĠCensus":34273,"Ġcardio":34274,"Ġdiy":34275,"Ġmilieu":34276,"Ġjournée":34277,"ĠRelease":34278,"NIE":34279,"ĠMuk":34280,"idée":34281,"á»įi":34282,"Ġiçinde":34283,"ŀĻ":34284,"Ġresonate":34285,"Ġmoles":34286,"ĠFlying":34287,"ĠGloria":34288,"ĠPastor":34289,"ĠArena":34290,"好ä¸į好":34291,"NON":34292,"олов":34293,"ĠallÃŃ":34294,"omat":34295,"ìĸ´ëıĦ":34296,"ĠcaracterÃŃst":34297,"Ġdeclining":34298,"ÑĸÑı":34299,"anco":34300,"ĠInform":34301,"Ġbargain":34302,"Ġbushes":34303,"ĠNaturally":34304,"Ġrechts":34305,"ĠTensor":34306,"ĠPatricia":34307,"Ġprincipio":34308,"ĠMumbai":34309,"Ġwomb":34310,"Ġnostra":34311,"Ġdilemma":34312,"Ġirgendwann":34313,"Ġ1964":34314,"ĠenergÃŃa":34315,"ĠнаÑĢ":34316,"Ġsegregation":34317,"ĠAthlet":34318,"Ġ»,":34319,"Ġyeni":34320,"ĠSeit":34321,"Ġvenom":34322,"Ġdakika":34323,"ĠëıĮë":34324,"ĠÃīl":34325,"Ġfus":34326,"ĠMog":34327,"¦½ëĭĪëĭ¤":34328,"Ġremar":34329,"ĠTeddy":34330,"Ġbreasts":34331,"icans":34332,"æĶ¶çľĭ":34333,"kap":34334,"ĠhÆ¡n":34335,"ĠJP":34336,"ãĥ³ãĤ¿":34337,"Ġresurrect":34338,"ĠìĿ¸ë":34339,"herical":34340,"Ġfotograf":34341,"ĠJosé":34342,"Ġlivelihood":34343,"Ġbibli":34344,"teri":34345,"Ġvorstellen":34346,"ĠAAA":34347,"Ġassessing":34348,"YA":34349,"Ġsplend":34350,"Ġexcav":34351,"Ġbaptism":34352,"yll":34353,"wow":34354,"Mac":34355,"Ġplastics":34356,"teokbokki":34357,"Ġintéressant":34358,"Ġcommanded":34359,"Ġfamously":34360,"ĠÐĺли":34361,"ĠManuel":34362,"Ġsouthwest":34363,"Ġdeformation":34364,"ÃŃculo":34365,"ĠнаÑħодиÑĤÑģÑı":34366,"ĠPatter":34367,"degree":34368,"ĠczÄĻsto":34369,"\"-":34370,"Ġìħĭ":34371,"Ġmanger":34372,"ĠTrustee":34373,"Ģ리":34374,"Ġpuntos":34375,"ivable":34376,"Ġvolatile":34377,"ĠëĬIJ":34378,"Ġinstability":34379,"Ġciel":34380,"ciÄħ":34381,"Ġpurity":34382,"ноÑģÑĤ":34383,"Sil":34384,"edar":34385,"åĻ¨":34386,"NOUNCER":34387,"Ġspelled":34388,"GER":34389,"Ġsanctuary":34390,"Ġaccelerating":34391,"Ġscout":34392,"ĠпÑĢев":34393,"fahren":34394,"ãģĵãģ¡ãĤī":34395,"ĠëĤĺìĺ¨":34396,"ĠpoczÄħt":34397,"ĠMeu":34398,"kaar":34399,"³´ê³ł":34400,"akra":34401,"Down":34402,"ĠÃĦr":34403,"ĠElite":34404,"Ġallons":34405,"Ġmayonnaise":34406,"ĠSustain":34407,"prisingly":34408,"Ġsupervis":34409,"Ġê·¸ëłĩì£ł":34410,"Ġunemployed":34411,"Ġfreshly":34412,"Ġ×ŀ×¢":34413,"ĠDh":34414,"Ġtackling":34415,"Ġogr":34416,"Ġì´Īë":34417,"ãĤĪãĤį":34418,"Ġloft":34419,"arah":34420,"ĠAirl":34421,"ĠDir":34422,"ĠÐľÐ¾Ð¶Ð½Ð¾":34423,"Ġbooking":34424,"ĠCRA":34425,"Ġhttps":34426,"Ġchoke":34427,"Ġgown":34428,"Ġnoite":34429,"Ġzac":34430,"istol":34431,"Ġsecre":34432,"Ġresembles":34433,"Ġcuad":34434,"ìĤ¬ê°Ģ":34435,"show":34436,"Ġblanc":34437,"Ġagu":34438,"ĠPrint":34439,"asted":34440,"ĠWeather":34441,"ipl":34442,"Ġobscure":34443,"Ġconte":34444,"oughs":34445,");":34446,"ĠDame":34447,"ä¸Ģ缴":34448,"Ġclarification":34449,"Ġintimacy":34450,"Ġuphold":34451,"ĠMirror":34452,"Ġwagon":34453,"xide":34454,"Ġclog":34455,"apper":34456,"ĠImmediately":34457,"úde":34458,"Ġtouchdown":34459,"Ġrooft":34460,"аÑĪа":34461,"Ġçıkt":34462,"Ġlaisser":34463,"ĠUnreal":34464,"ensitive":34465,"Ġ123":34466,"Ġplaster":34467,"Ġducks":34468,"Ġetme":34469,"Ġbishop":34470,"brevi":34471,"Ġbic":34472,"ä¸ĭåİ»":34473,"Ġruntime":34474,"Ġambitions":34475,"маÑĤ":34476,"ĠWein":34477,"ĠMari":34478,"ĠíĬ¸ë":34479,"Ġresolver":34480,"ĠngÃły":34481,"ĠRise":34482,"ãĤĪãģĨãģ«":34483,"ĠCrus":34484,"Ġmerchandise":34485,"Ġeli":34486,"Ġstatewide":34487,"Ġowl":34488,"éģł":34489,"æĶ¹":34490,"Ġtwisting":34491,"Ġcontaminated":34492,"ĠCommerce":34493,"hythm":34494,"ĠÃĪ":34495,"Ġìĭ¤ë":34496,"Ġmusste":34497,"uir":34498,"Ġsums":34499,"ĠSomewhere":34500,"ãĥİ":34501,"Ġkami":34502,"Ġaired":34503,"ĠANDREW":34504,"Ġêº":34505,"Ġviendo":34506,"Ġantibody":34507,"Ġabsolument":34508,"Ġprotesters":34509,"ĠQuébec":34510,"stadt":34511,"Shaun":34512,"Ġchambers":34513,"ĠWear":34514,"ĠEffects":34515,"Ġhazards":34516,"Ġnei":34517,"Ġcorazón":34518,"Ġá¼":34519,"ĠSG":34520,"Ķ©":34521,"ĠìĹŃìĭľ":34522,"Ġcomfy":34523,"ĠCody":34524,"Ġpensando":34525,"Ġganska":34526,"ĠAcross":34527,"öllig":34528,"abyte":34529,"Ġwedge":34530,"Ġkalian":34531,"Ġsigue":34532,"endes":34533,"ĠGroÃŁ":34534,"Ġutiliser":34535,"Ġflown":34536,"аниÑİ":34537,"Ġlevar":34538,"restrial":34539,"Ġillustrations":34540,"Ġaslında":34541,"BLEEP":34542,"ĠдоÑģÑĤ":34543,"Ġturret":34544,"Ġsuitcase":34545,"ziÄĻki":34546,"Ġsketches":34547,"Ġacred":34548,"ĠRei":34549,"Ġtsun":34550,"ĠSag":34551,"Ġthirds":34552,"ĠKIRBY":34553,"rai":34554,"Ġhumanos":34555,"Ġrecommends":34556,"Ġextraordinarily":34557,"Ġcommencement":34558,"KN":34559,"opez":34560,"Ġ×ijש":34561,"Ġlethal":34562,"ĠEstamos":34563,"Ġinspector":34564,"ĠSeok":34565,"eun":34566,"Ġoffshore":34567,"Ġgettin":34568,"years":34569,"ĠSilence":34570,"ĠNatur":34571,"upun":34572,"Ġtrzy":34573,"Ġnoget":34574,"Ġhamburger":34575,"ĠPraise":34576,"énd":34577,"Ġ1971":34578,"ylie":34579,"krit":34580,"ĠìĥĿê°ģìĿ´":34581,"çļ®":34582,"Ġmomentos":34583,"Ġesté":34584,"Ġdissemin":34585,"Ġgigs":34586,"Ġdesaf":34587,"Ġavis":34588,"ĠZoo":34589,"ĠìķĬìĿĢ":34590,"häng":34591,"åı¥":34592,"hake":34593,"ĠBism":34594,"Ġrethink":34595,"ĠMalcolm":34596,"Ġidentifies":34597,"lower":34598,"ixel":34599,"ĠtvÃ¥":34600,"ked":34601,"ierz":34602,"Ġöffentlich":34603,"Ġproclaim":34604,"soon":34605,"lol":34606,"Ġloi":34607,"Ġbitten":34608,"rollo":34609,"Ġsermon":34610,"Ġesqu":34611,"Ġjackets":34612,"Ġgráfic":34613,"ĠпоказÑĭв":34614,"Ġcabeza":34615,"chodzi":34616,"Ġpelvis":34617,"Ġnostalgia":34618,"Ġbrew":34619,"Ġshortcuts":34620,"ĠAdemás":34621,"Ġsuperficial":34622,"åħ©åĢĭ":34623,"Ġboca":34624,"ĠæĪijæĺ¯":34625,"imentos":34626,"åĽłä¸º":34627,"Ġsprouts":34628,"é£Ľ":34629,"ĠJonas":34630,"ĠFlorence":34631,"static":34632,"daughter":34633,"*)":34634,"ÅĤby":34635,"fashion":34636,"ĠGinger":34637,"Ġ매ë":34638,"Ġhustle":34639,"utos":34640,"ĠÑĤÑıж":34641,"ĠLös":34642,"ש×Ļ×Ŀ":34643,"anych":34644,"tuber":34645,"Ġtidy":34646,"Ġfrontal":34647,"Ġwhiskey":34648,"Ġhumid":34649,"ĠÎŁ":34650,"Ġridge":34651,"Ġmarin":34652,"Ġbientôt":34653,"ĠCarrie":34654,"chw":34655,"Ġtahun":34656,"ĠErgeb":34657,"FR":34658,"Ġìłķë¶Ģ":34659,"ĠSoldier":34660,"Ġenlightenment":34661,"Ġexamining":34662,"ĠNotre":34663,"Ġeram":34664,"ĠSunny":34665,"Ġlayered":34666,"ĠDazu":34667,"rades":34668,"好åIJĥ":34669,"ĠнаÑĪей":34670,"Ġtimber":34671,"Ġmanners":34672,"ĠBirmingham":34673,"Ġminiature":34674,"ometers":34675,"Ġfiller":34676,"ĠRip":34677,"ĠKomb":34678,"owner":34679,"ì¿":34680,"idian":34681,"Ġdemás":34682,"ĠÙĪت":34683,"Ġprecautions":34684,"Ġgoverno":34685,"zelf":34686,"ĠComplete":34687,"å¸ĥ":34688,"ĠPhantom":34689,"ãģ¾ãģļ":34690,"Ġнез":34691,"ĠкаÑĢÑĤ":34692,"ĠAntwort":34693,"ĠPfizer":34694,"ĠFranco":34695,"ĠwÅĤ":34696,"Ġfrig":34697,"esper":34698,"Ġkale":34699,"Ġfilmmaker":34700,"Ġkurt":34701,"Ġinvalid":34702,"å±Ģ":34703,"arella":34704,"Äĥng":34705,"ramento":34706,"Ġnutritional":34707,"Ġdictators":34708,"Ġafin":34709,"Ġfuzzy":34710,"ĠGina":34711,"ót":34712,"ĠExtremadura":34713,"Ġdemonstrations":34714,"ĠMontgomery":34715,"íķ´ìĦ¤":34716,"ĠGandhi":34717,"ãĥĿ":34718,"ç½®":34719,"Ġreunion":34720,"ĠjakiÅĽ":34721,"ĠZug":34722,"OUGH":34723,"lifting":34724,"Ġà²":34725,"á¹Ľá¹£":34726,"eb":34727,"ĠWOW":34728,"ĠShiva":34729,"ometry":34730,"Ġwildly":34731,"Ġtended":34732,"Ġmegap":34733,"ì²ĺ":34734,"Ġnause":34735,"Ġgerek":34736,"ãĥĭ":34737,"ĠMarcel":34738,"Ġneste":34739,"خر":34740,"Ġfeh":34741,"åĨħ":34742,"suspenseful":34743,"ĠWrestle":34744,"ĠPalestinians":34745,"ĠGORD":34746,"iyet":34747,"ĠÑĢади":34748,"Ġversuchen":34749,"Ġtransistor":34750,"ĠÐŁÑĢоÑģÑĤо":34751,"ĠпонÑĢав":34752,"Ġrhyme":34753,"ĠVermont":34754,"platz":34755,"è®°":34756,"ĠÄ°ÅŁte":34757,"ĠHag":34758,"ĠÐĺм":34759,"ĠÑĢаÑģÑģказ":34760,"Ġmetros":34761,"ĠInfinity":34762,"wolf":34763,"ibal":34764,"ftig":34765,"ĠÚĨ":34766,"Ġíĺ¹ìĭľ":34767,"Ġoggi":34768,"Ġdisposit":34769,"ĠпÑĢил":34770,"ĠвÑĭпол":34771,"Ġthôi":34772,"ĠKENN":34773,"Ġhanding":34774,"actus":34775,"Ġtacos":34776,"Ġformerly":34777,"ĠCorinthians":34778,"ãģ«ãģ¯":34779,"ÑĨÑĸÑĹ":34780,"Ġpadre":34781,"Ġcongregation":34782,"æij":34783,"fert":34784,"Ġsubir":34785,"aiser":34786,"qua":34787,"araoh":34788,"ĠCurry":34789,"ĠìķĬëĬĶ":34790,"елÑİ":34791,"Ġfuss":34792,"Ġbooty":34793,"Ġlows":34794,"Ġhommes":34795,"ĠMH":34796,"ĠDisneyland":34797,"went":34798,"Ġresidue":34799,"Ġbeeping":34800,"è¼ķ":34801,"ätta":34802,"Ġmould":34803,"ĠProjekt":34804,"stalk":34805,"Ġartifact":34806,"ĠAntrag":34807,"ĠAMD":34808,"ĠCrypt":34809,"Ġë©Ķ":34810,"ĠFelipe":34811,"ĠCOB":34812,"elu":34813,"Ġselfies":34814,"ĠSanti":34815,"chutz":34816,"ĠУкÑĢаÑĹ":34817,"gesamt":34818,"Ġflock":34819,"jaz":34820,"plain":34821,"Ġwrinkles":34822,"Ġreais":34823,"Ġpaljon":34824,"Ġempowerment":34825,"Ġattendees":34826,"ppa":34827,"Ġneden":34828,"онÑĭ":34829,"Ġtimeframe":34830,"ĠCherry":34831,"Ġidée":34832,"Ġgag":34833,"Ġdonkey":34834,"Ġông":34835,"ĠHare":34836,"éļĽ":34837,"ĠKara":34838,"Ġacompan":34839,"places":34840,"imientos":34841,"ĠHamm":34842,"би":34843,"uben":34844,"iliyor":34845,"Ġthirst":34846,"Ġkry":34847,"ĠGeorgetown":34848,"׳×Ķ":34849,"Ġorch":34850,"Ġheartbeat":34851,"Ġtransformations":34852,"estones":34853,"ĠKH":34854,"Ġcartoons":34855,"Ġanci":34856,"Ġworthless":34857,"Ġtailored":34858,"pu":34859,"Americans":34860,"Ġpiles":34861,"ĠMonkey":34862,"Ġbasin":34863,"ĠTemper":34864,"ĠPaint":34865,"Ġpunching":34866,"Ġbaik":34867,"ĠOakland":34868,"vre":34869,"ÅŁallah":34870,"ydd":34871,"Ġcasually":34872,"odu":34873,"Ġcoded":34874,"ĠNorwegian":34875,"ĠVince":34876,"Ġpremature":34877,"ĠPromise":34878,"екÑģÑĤ":34879,"Ġdevastated":34880,"ĠPremium":34881,"ĠParam":34882,"ĠÃĸyle":34883,"umuz":34884,"PO":34885,"rators":34886,"Ġlamps":34887,"Ġterritorial":34888,"Ġbackbone":34889,"listed":34890,"DY":34891,"ĠاÙĦر":34892,"Ġpursued":34893,"ĠCommons":34894,"Ġ곡":34895,"locks":34896,"edor":34897,"Ġconceived":34898,"gere":34899,"Ġdisappearing":34900,"ĠSull":34901,"ĠìĹ°ë":34902,"Ġhoffe":34903,"Ġdetox":34904,"íĶĮ":34905,"Ġretir":34906,"ĠëģĿëĤ":34907,"Ġpergunta":34908,"ĠBOY":34909,"ç²¾":34910,"Ġpenn":34911,"æĿ¥äºĨ":34912,"hés":34913,"hon":34914,"Ġcatastrophic":34915,"Ġaust":34916,"Ġtorso":34917,"Ġìĸ´ëĬIJ":34918,"ĠìĤ¬ëŀĮëĵ¤ìĿ´":34919,"Ġmarvelous":34920,"ĠHarley":34921,"achine":34922,"Ġtiế":34923,"itto":34924,"ĠIÃŃm":34925,"ylon":34926,"Ġshutdown":34927,".''":34928,"Ġapologies":34929,"ĠCommunication":34930,"ĠговоÑĢÑİ":34931,"ãģĤãĥ¼":34932,"âĦ¢":34933,"ÃŃveis":34934,"acun":34935,"Ġretaining":34936,"Ġcontradiction":34937,"ĠADAM":34938,"COM":34939,"Bryan":34940,"ĠMonsieur":34941,"Ġadapting":34942,"ШÐIJ":34943,"ĠScr":34944,"ändert":34945,"Ġplaus":34946,"ä»Ĭ天çļĦ":34947,"Ġonset":34948,"Ġassistants":34949,"Ġvalves":34950,"Ġscatter":34951,"ĠRust":34952,"awia":34953,"Ġreadiness":34954,"Ġpais":34955,"Ġbible":34956,"Ġambiente":34957,"ĠамеÑĢик":34958,"Ġuncond":34959,"Ġkalk":34960,"åĬ¨":34961,"Ġmoc":34962,"unn":34963,"Ġactu":34964,"Ġhumming":34965,"issimo":34966,"ĠPatrol":34967,"gow":34968,"ãĥ¤":34969,"ĠTHEY":34970,"ĠBoden":34971,"ĠBie":34972,"Ġreel":34973,"ĠÑĥÑģлов":34974,"Ġendeavor":34975,"ĠPeriod":34976,"ustomed":34977,"mals":34978,"alon":34979,"Box":34980,"ĠÏĥαÏĤ":34981,"Ġomdat":34982,"Ġaltre":34983,"ĠHeh":34984,"kad":34985,"Ġprotector":34986,"Ġdominance":34987,"odynamic":34988,"Ġcommunicated":34989,"kö":34990,"Ġpredecessor":34991,"ĠLuk":34992,"ĠFlower":34993,"Ġãģ©":34994,"poque":34995,"ÑĤиÑĢов":34996,"Ġretrospect":34997,"Ġdecisive":34998,"Ġexempel":34999,"{\\":35000,"ĠRück":35001,"rite":35002,"ĠZeus":35003,"Ġcalorie":35004,"Ġattractions":35005,"ĠHinter":35006,"Ġuhm":35007,"ĠíĮIJ":35008,"Ġrulers":35009,"Ġdiscouraged":35010,"Ġacontecer":35011,"Ġaccents":35012,"ĠOptim":35013,"ĠAlg":35014,"kids":35015,"2021":35016,"ĠLindsay":35017,"Ġfilmmakers":35018,"prowad":35019,"Ġterug":35020,"ëĭ´":35021,"ĠSommer":35022,"2018":35023,"Ġborrowing":35024,"ĠTransfer":35025,"ноп":35026,"arias":35027,"Ġheadphone":35028,"ì¼ľ":35029,"Ġtranslating":35030,"Ġaufge":35031,"à®ªà®Ł":35032,"weis":35033,"avant":35034,"paid":35035,"baby":35036,"Ġtoughest":35037,"Ġrepeats":35038,"ĠTeresa":35039,"Lord":35040,"Ġacabar":35041,"ĠRide":35042,"dir":35043,"Ġleng":35044,"Ġdwa":35045,"Ġheadaches":35046,"Ġnữa":35047,"ĠнаÑģÑĤоÑıÑī":35048,"Ġboils":35049,"Ġlonging":35050,"rias":35051,"ório":35052,"ĠParadise":35053,"ĠSeñor":35054,"erdem":35055,"Ġreinst":35056,"Ġsalaries":35057,"Ġinsecurity":35058,"ÅĤoÅĽci":35059,"ĠабÑģолÑİÑĤно":35060,"inken":35061,"ĠEddy":35062,"udos":35063,"Ġdummy":35064,"Ðļак":35065,"six":35066,"Ġinbox":35067,"ẩ":35068,"People":35069,"á»ĵng":35070,"Ġorganizers":35071,"find":35072,"Ġül":35073,"ĠCOM":35074,"ża":35075,"weile":35076,"Commentary":35077,"íĬ¸ë¥¼":35078,"ĠMittel":35079,"kus":35080,"èĽĭ":35081,"न":35082,"iral":35083,"Ġgarment":35084,"ικά":35085,"Ġstool":35086,"payers":35087,"Ġshimmer":35088,"ĠOllie":35089,"ĠJeżeli":35090,"è¿ĺæľī":35091,"Ġ1977":35092,"Ġjeux":35093,"Ġextinct":35094,"ĠTransportation":35095,"ĠMaker":35096,"Ġjohn":35097,"Ġrichest":35098,"Ġtraumat":35099,"Ġliegen":35100,"´ë¥¼":35101,"è¿ĻéĩĮ":35102,"Ġunrest":35103,"ĠStraw":35104,"æĭľæĭľ":35105,"Ġcoma":35106,"ĠKristen":35107,"ĠÐļонеÑĩно":35108,"ĠBryce":35109,"ĠÑıкÑĸ":35110,"Ġpearls":35111,"ĠпонимаÑİ":35112,"Ġadditions":35113,"Ġasympt":35114,"ĠменÑĮÑĪе":35115,"Ġscans":35116,"Child":35117,"ĠHide":35118,"кÑĥÑİ":35119,"etas":35120,"Ġdank":35121,"Ġpleas":35122,"Ġessays":35123,"Ġjets":35124,"åħĴ":35125,"Ġвед":35126,"Ġpositives":35127,"hof":35128,"-)":35129,"zzo":35130,"Ġstarters":35131,"Ġsmiled":35132,"Ġ1944":35133,"quiera":35134,"Ġrok":35135,"Ġpuesto":35136,"Nico":35137,"Ġsimulations":35138,"Ġà¶":35139,"Ġintrigued":35140,"ĠOverwatch":35141,"åĸĤ":35142,"sigh":35143,"bai":35144,"Ġë§IJê³ł":35145,"idé":35146,"Ġcrabs":35147,"áºŃp":35148,"ĠIraqi":35149,"ìĿ´ë¥¼":35150,"ÑĤÑı":35151,"ĠSophia":35152,"ĠDNS":35153,"Ġönemli":35154,"ĠLuo":35155,"Ŀ¤":35156,"ĠCounsel":35157,"ligen":35158,"анÑĮÑĪе":35159,"Ġtrumpet":35160,"Ġdapat":35161,"ĠJM":35162,"ĠEVERY":35163,"Ġå°įä¸įå°į":35164,"夢":35165,"ĠLayer":35166,"Ġcô":35167,"нал":35168,"ĠJoo":35169,"ĠHack":35170,"Ġsunt":35171,"ĠLeonard":35172,"ĠFirebase":35173,"änger":35174,"Ġexploding":35175,"voy":35176,"Ġì¦IJ":35177,"ĠÑģеÑĢÑĮ":35178,"Ġseverity":35179,"Ġbestimm":35180,"çµIJæŀľ":35181,"Ġtiring":35182,"Ġprocurement":35183,"Ġdiplomacy":35184,"Ġdecorative":35185,"ĠÙĬا":35186,"Ġpenetration":35187,"Õ«":35188,"Ġoutright":35189,"ENE":35190,"ĠUni":35191,"odles":35192,"Ġzeros":35193,"Ġdelightful":35194,"jm":35195,"Ġdopo":35196,"没äºĭ":35197,"Ġpositivity":35198,"ĠVISTA":35199,"ĠResource":35200,"íĥĢë":35201,"ÑĪие":35202,"Carl":35203,"Ġpiping":35204,"Ġchopping":35205,"ĠGanze":35206,"üss":35207,"ĠAo":35208,"Ġshattered":35209,"ĠDetective":35210,"Ġundoubtedly":35211,"Ġhalluc":35212,"Ġench":35213,"ÑĭÑĩно":35214,"ÑĥлÑıÑĢ":35215,"isesti":35216,"Ġpedals":35217,"Ġdurum":35218,"¤íĶ":35219,"laimer":35220,"Ġpropre":35221,"Cu":35222,"Ġtranslator":35223,"ĠcaÅĤ":35224,"Ġ그걸":35225,"ĠcaÅĤy":35226,"UA":35227,"Ġrevised":35228,"Ġподоб":35229,"ĠArticle":35230,"ĠHaiti":35231,"ĠÃĵ":35232,"ĠCtrl":35233,"Ġrozm":35234,"lait":35235,"Ġletzte":35236,"ispering":35237,"display":35238,"Ġaluminium":35239,"Ġpalabras":35240,"Ġconocer":35241,"Ġzitten":35242,"Ġdirig":35243,"åıªæľī":35244,"Ġbrainstorm":35245,"Ġwifi":35246,"ĠParticip":35247,"Ġviewpoint":35248,"ĠQuan":35249,"Ġhierarch":35250,"Welcome":35251,"対":35252,"Ġoffen":35253,"ĠRecovery":35254,"gano":35255,"Would":35256,"Ġrepro":35257,"Ġperceptions":35258,"Ġdemasi":35259,"ĠBangladesh":35260,"ĠIncredible":35261,"Ġletzt":35262,"Ġbehaving":35263,"Ġastonishing":35264,"ĠâĨ":35265,"ĠëĤ¨ìŀIJ":35266,"èµ°äºĨ":35267,"ãĥĶ":35268,"ĠGORDON":35269,"CAR":35270,"?!\"":35271,"ĠPrest":35272,"Ġë§ŀìķĦìļĶ":35273,"Ġtand":35274,"Ġlash":35275,"çĬ":35276,"ificant":35277,"Ġintoler":35278,"ĠгеÑĢо":35279,"Ġteu":35280,"aso":35281,"ĠÑģовеÑĤ":35282,"Ġtravelers":35283,"ĠSynd":35284,"ĠвеÑĢÑģ":35285,"Fonda":35286,"adı":35287,"Ġtranscription":35288,"Ġtitanium":35289,"Ġtwists":35290,"Ġgearbox":35291,"ensation":35292,"fat":35293,"Coll":35294,"ĠCommonwealth":35295,"zon":35296,"ĠPolizei":35297,"ĠAPPLAUSE":35298,"fry":35299,"ĠJuda":35300,"esteem":35301,"Ġsock":35302,"ĠJugend":35303,"ĠкÑģÑĤаÑĤи":35304,"ĠDro":35305,"Ġprochaine":35306,"ãĥ¼ãĥ«":35307,"Ġliksom":35308,"ĠEnergie":35309,"ĠMarina":35310,"Ġ230":35311,"Ġê°ĢìĦľ":35312,"umping":35313,"Ġlone":35314,"ç´ļ":35315,"Ġfonts":35316,"Ġbusinessman":35317,"Ġply":35318,"Ġdoe":35319,"grid":35320,"ĠMilwaukee":35321,"ĠEden":35322,"!\".":35323,"ĠÛĮÛģ":35324,"ogens":35325,"Ġteaser":35326,"Ġquién":35327,"Ġincentiv":35328,"govern":35329,"Ġchildcare":35330,"Ġsneakers":35331,"Ġimprisoned":35332,"®":35333,"иÑĤеÑģÑĮ":35334,"anbul":35335,"Ġregain":35336,"Ġtranquil":35337,"Redner":35338,"鼨":35339,"IFA":35340,"Ġideological":35341,"ĠmayorÃŃa":35342,"Ġbureau":35343,"eterm":35344,"ĠDID":35345,"ìĬ·":35346,"Ġwaving":35347,"Ġbeb":35348,"Ġár":35349,"Ġкв":35350,"Ġenvoy":35351,"anut":35352,"икÑĥ":35353,"ĠEnvironment":35354,"ĠAssass":35355,"ãĤĵãģ§":35356,"ĠBread":35357,"ĠТÑĥÑĤ":35358,"Ġstaircase":35359,"ĠDisease":35360,"Ġaucun":35361,"ĠëĭĪ":35362,"Ġconfrontation":35363,"Ġ1941":35364,"Ġirony":35365,"Ġworsh":35366,"ãĤĮãĤĭ":35367,"Ġfick":35368,"ĠNaomi":35369,"Ġbackside":35370,"ieux":35371,"Kap":35372,"Ġvedere":35373,"Ġlengthy":35374,"Ġbreaker":35375,"ĠRolle":35376,"Ġpredator":35377,"Ġnossos":35378,"Ġadvertise":35379,"è³ĩ":35380,"ÑĢоде":35381,"Rednerwechsel":35382,"reten":35383,"Ġcollectors":35384,"ıģımız":35385,"Ġtrig":35386,"Ġaxes":35387,"inters":35388,"Ġpenalties":35389,"ĠOsman":35390,"ĠJenna":35391,"Ġflakes":35392,"Ġtrainers":35393,"Ġstunned":35394,"ĠScroll":35395,"ĠPip":35396,"ĠнаÑģÑĤ":35397,"ĠnhÃł":35398,"ĠSmack":35399,"ẫn":35400,"ratos":35401,"ĠÑĢабоÑĤÑĭ":35402,"Ġucz":35403,"ĠLemon":35404,"ĠSind":35405,"Ġpsychic":35406,"ĠAbg":35407,"Ġmammals":35408,"Ġimmersive":35409,"Ġbots":35410,"Ġverschiedene":35411,"Ġgeral":35412,"Ġfollower":35413,"Ġä»ĸ":35414,"Ġseguridad":35415,"Ġimmersed":35416,"feito":35417,"cross":35418,"Ġöld":35419,"íĥĦ":35420,"Ġãģĵãģ®":35421,"Ġ×Ķ×Ļ×IJ":35422,"ĠJian":35423,"Ġbiliyor":35424,"area":35425,"Ġkaf":35426,"Ġgodt":35427,"çĽ¸ä¿¡":35428,"Ġë°©ìĨ¡":35429,"Ġdetriment":35430,"æ¥ļ":35431,"Ñĸл":35432,"ĠÄijâu":35433,"Ġchloride":35434,"øre":35435,"lei":35436,"Ġmonte":35437,"Ġdifférentes":35438,"à¯ģ.":35439,"Ġcaregivers":35440,"Ġinadequ":35441,"Ġfarewell":35442,"ĠÑĤипа":35443,"ontec":35444,"ĠEph":35445,"HHH":35446,"ĠTodos":35447,"ĠСШÐIJ":35448,"Ġtrov":35449,"Ġlige":35450,"Ġcông":35451,"ĠCiv":35452,"Ġcapaz":35453,"ĠVallahi":35454,"Ġqueste":35455,"Ġreplica":35456,"سب":35457,"zna":35458,"ĠÑģлÑĥж":35459,"ĠPT":35460,"wave":35461,"ieni":35462,"Ġrelied":35463,"develop":35464,"Ġdeme":35465,"ĠAman":35466,"Ġ[...]":35467,"Ġcompliments":35468,"uais":35469,"ĠíĮ¨":35470,"Ġsmelling":35471,"Ġdadurch":35472,"ÙĪت":35473,"Ġoranges":35474,"Ġлай":35475,"Ġstabilization":35476,"åĢį":35477,"ãĤĮãģŁ":35478,"楽":35479,"Ġappliances":35480,"Ġhm":35481,"ĥIJë©´":35482,"odynamics":35483,"ĠciÄĻ":35484,"ĠCott":35485,"MON":35486,"ĠMang":35487,"æĶ¯æĮģ":35488,"Ġallerdings":35489,"ική":35490,"shots":35491,"Ġts":35492,"ĠGör":35493,"ĠCHAR":35494,"Ġ:(":35495,"Ġwrath":35496,"Ġfique":35497,"Ġführen":35498,"Ġtestament":35499,"Ġ^^":35500,"á¹Ľá¹£á¹ĩa":35501,"ALD":35502,"Ġtexto":35503,"ĠDogs":35504,"Ġsib":35505,"Ġpathetic":35506,"ocks":35507,"Ġradically":35508,"ĠMORE":35509,"ĠJAMES":35510,"Ġingl":35511,"ĠTechnical":35512,"Ġporch":35513,"ĠUT":35514,"ĠобÑıзаÑĤелÑĮно":35515,"Ġrenewal":35516,"Ġaesthetics":35517,"ikum":35518,"Ġbeverage":35519,"dern":35520,"Ġpredictive":35521,"Ġchuy":35522,"ĠRegarding":35523,"ĠForward":35524,"ĠÙĪÙĦ":35525,"Ġcontextual":35526,"Ġdwarf":35527,"Ġprehe":35528,"Ġgoverned":35529,"ħĦ":35530,"Ġtrabalhar":35531,"Ġnegócio":35532,"ĠболÑĮÑĪой":35533,"еÑĩаÑĤ":35534,"ĠдÑĥÑħ":35535,"Ġfloods":35536,"Ġbowling":35537,"ĠOB":35538,"ĠHär":35539,"Ġgrading":35540,"주ëĬĶ":35541,"Ġgars":35542,"dling":35543,"Ġrak":35544,"ëĪ":35545,"creat":35546,"ĠÑīе":35547,"Ġneighbours":35548,"food":35549,"Query":35550,"Ġheroin":35551,"iceps":35552,"ĠKinda":35553,"NET":35554,"Ġmari":35555,"Ġimitate":35556,"Ġachter":35557,"Ġsettlements":35558,"rare":35559,"cciones":35560,"Ġëĵľ":35561,"Ġfik":35562,"itung":35563,"ĠмакÑģим":35564,"Ġelf":35565,"Ġdalla":35566,"ĠPolsce":35567,"ĠPul":35568,"ЧÑĤо":35569,"ĠMorgen":35570,"ØŃÙħ":35571,"Ġsupremacy":35572,"Ġkys":35573,"ĠHurricane":35574,"ĠGTA":35575,"ĠFeh":35576,"Ġfinalmente":35577,"mund":35578,"ĠKrie":35579,"époque":35580,"ĠTucker":35581,"ITT":35582,"Ġlur":35583,"Ġdipping":35584,"äv":35585,"Ġeerste":35586,"ĠFlint":35587,"bildung":35588,"ูà¹ī":35589,"Ġtoim":35590,"Ġpracy":35591,"Ġtransforms":35592,"Ġspeeding":35593,"Ġpresenter":35594,"Ġfellows":35595,"filled":35596,"ieza":35597,"Ġadvising":35598,"ĠInterview":35599,"игÑĢ":35600,"wehr":35601,"ĠDante":35602,"pture":35603,"Ī문":35604,"¯¸ë":35605,"IJIJ":35606,"ĠCounter":35607,"Ġcrist":35608,"Ġì§ľ":35609,"Ġjeune":35610,"ĠÑģÑĤÑĢаÑĪ":35611,"ĠmieÄĩ":35612,"Ġtutor":35613,"Ġmasala":35614,"Ġpowdered":35615,"Ġnau":35616,"ĠFrederick":35617,"Ġbilling":35618,"ĠEisen":35619,"ĠдобÑĢ":35620,"Ġmest":35621,"æ½":35622,"Ġsnipp":35623,"Ġmono":35624,"ĠAlo":35625,"ĠMercy":35626,"érience":35627,"Ġcasualties":35628,"ĠANNOUNCER":35629,"ä»İ":35630,"Ġtocar":35631,"Ġbacterial":35632,"Ho":35633,"Ġstreak":35634,"ĠJENN":35635,"Ġplast":35636,"Ñģлед":35637,"Ġreapp":35638,"Ġpaycheck":35639,"Ġminers":35640,"habt":35641,"ĠJap":35642,"нÑĥÑĤ":35643,"Ġredemption":35644,"Ġquir":35645,"hnlich":35646,"Ġaccumulation":35647,"Ġshove":35648,"Ġadrenaline":35649,"Make":35650,"ĠHern":35651,"ossing":35652,"ĠVil":35653,"ubby":35654,"hertz":35655,"breaks":35656,"Ġspur":35657,"ĠDaha":35658,"USTIN":35659,"Ġcontinuer":35660,"ĠSaul":35661,"ãģ®ãģ¯":35662,"ĠíıŃ":35663,"ĠëIJĺë©´":35664,"Ġë§IJìĶĢ":35665,"Ġож":35666,"Ġsuspects":35667,"Ġlaquelle":35668,"ĠMuchas":35669,"Ġvöllig":35670,"ulen":35671,"Ġimpres":35672,"Ġlobb":35673,"enee":35674,"Ġнаж":35675,"Ta":35676,"Ġréalité":35677,"ĠRex":35678,"Ġharvesting":35679,"Ġestr":35680,"æ¶":35681,"ospace":35682,"OSS":35683,"Ġdisturbance":35684,"assic":35685,"ĠIsab":35686,"Ġdécouv":35687,"ĠHampshire":35688,"Ġornament":35689,"Ġluôn":35690,"ĠUW":35691,"ĠjÄħ":35692,"éĤ£ä¹Ī":35693,"Ġrespecto":35694,"Ġcomunidad":35695,"Ġcomigo":35696,"agna":35697,"Ġintrinsic":35698,"ĠAlumni":35699,"Ġsesleri":35700,"Ġestimation":35701,"âĢĶâĢĶ":35702,"Ġproduit":35703,"ãĢĤãĢį":35704,"ĠвÑĢ":35705,"Ġwhirl":35706,"Ġacces":35707,"çu":35708,"Ġvariability":35709,"Ġvodka":35710,"itsu":35711,"Ġinternships":35712,"Ġallocate":35713,"RR":35714,"íĽĪ":35715,"Ġinstructional":35716,"tant":35717,"Ġà®ħத":35718,"Ġinvites":35719,"Ġhak":35720,"Ġscares":35721,"Ġeclipse":35722,"пов":35723,"колÑĮ":35724,"ativas":35725,"Ġstabbed":35726,"ĠDOM":35727,"ä¸įåĪ°":35728,"roots":35729,"ĠPicture":35730,"íĺ¼":35731,"ĠCHA":35732,"iec":35733,"ıı":35734,"hanol":35735,"Ġmisunderstand":35736,"Ray":35737,"Ġroadmap":35738,"ocumented":35739,"izione":35740,"ĠOlive":35741,"rift":35742,"Ġ×Ķ׳":35743,"æ¯į":35744,"lest":35745,";;":35746,"ĠEA":35747,"éľĢè¦ģ":35748,"одÑĥ":35749,"Ġhobbies":35750,"Ġburial":35751,"ãģ«ãģ¡ãģ¯":35752,"Ф":35753,"lege":35754,"ĠHJ":35755,"Ġobjection":35756,"ĠãģŃ":35757,"ctory":35758,"Ġincremental":35759,"Ġgymn":35760,"Ġepidemi":35761,"ÑģÑĭл":35762,"Ãij":35763,"Ġadvancement":35764,"Ġparch":35765,"News":35766,"Ġayr":35767,"лам":35768,"Ġ׾ש":35769,"Ġdiploma":35770,"ãģ¡ãĤĥãĤĵ":35771,"Ġrobbed":35772,"Only":35773,"Ġincur":35774,"Ġchanting":35775,"Ġíķ´ëıĦ":35776,"Ġriches":35777,"ĠCarmen":35778,"Ġnostro":35779,"λÎŃ":35780,"ĠPowder":35781,"à¹Ģห":35782,"ĠìŀĪìľ¼ë©´":35783,"Ġgerçekten":35784,"ĠPikachu":35785,"емон":35786,"OLL":35787,"Ġplanetary":35788,"Ġslows":35789,"Ġclockwise":35790,"alion":35791,"ĠìĮ":35792,"Ġvern":35793,"Ġhomme":35794,"Ġendpoint":35795,"Ġinnocence":35796,"Ġelementos":35797,"Ġsophomore":35798,"Ġnotions":35799,"ĠCouldn":35800,"pur":35801,"Ġzat":35802,"Ġobsess":35803,"Ġmotivo":35804,"ĠKub":35805,"ĠDrug":35806,"Ant":35807,"ĠPlayers":35808,"ĠHumans":35809,"Ġmelee":35810,"ĠWildlife":35811,"ĠVP":35812,"Ġvolcanic":35813,"Ġcomin":35814,"ĠGuang":35815,"ĠÏĦιÏĤ":35816,"ĠоÑģобенно":35817,"ĠSize":35818,"Listen":35819,"ĠAaa":35820,"appro":35821,"Ġbarbar":35822,"ĠParkinson":35823,"нÑıÑĤÑĮ":35824,"åį°":35825,"Ġunderestimate":35826,"Ġsubstitution":35827,"Ġcosmetic":35828,"ä¸ĭ次":35829,"Ġwillen":35830,"Ġbeide":35831,"anni":35832,"Ġconditioned":35833,"ĠDebbie":35834,"Ġisto":35835,"ĠEdwards":35836,"ìĽĮìļĶ":35837,"ĠÑĤов":35838,"Ġabbrevi":35839,"ĠMün":35840,"ĠPrinc":35841,"ĠLiang":35842,"Ġstink":35843,"Ġradioactive":35844,"ãģĨãĤı":35845,"Ġacontec":35846,"Ġuncon":35847,"ĠTurbo":35848,"ãģIJ":35849,"Ġkisses":35850,"æĺ¯ä»Ģ麼":35851,"еÑĤÑĢов":35852,"Ġfrontier":35853,"ĠSpy":35854,"ĠBelarus":35855,"ĠCBS":35856,"á»Ĺ":35857,"amoto":35858,"íķľëį°":35859,"ĠÑģÑĤÑĢо":35860,"ĠEnfin":35861,"Ġbreadth":35862,"éĺ²":35863,"ĠCafe":35864,"ĠDafür":35865,"ĠBour":35866,"aras":35867,"Ġblueprint":35868,"anı":35869,"Ġconstants":35870,"Ġattacker":35871,"ĠFormula":35872,"zaÄĩ":35873,"Ġsowie":35874,"Ġeyebrow":35875,"obook":35876,"Ġsetzen":35877,"第ä¸ī":35878,"onsider":35879,"awning":35880,"Ġsöyleye":35881,"Ġinvaded":35882,"Ġpronouns":35883,"Ġdobry":35884,"Si":35885,"ĠХоÑĤ":35886,"Ġvolleyball":35887,"Ġlament":35888,"isches":35889,"arme":35890,"api":35891,"ĠWiki":35892,"лиÑĪ":35893,"Ġkasih":35894,"Ġpess":35895,"ĠÑĦоÑĤ":35896,"ĠSul":35897,"å¾·":35898,"Ġpseudo":35899,"Ġmemo":35900,"ĠìĹ°ìĬµ":35901,"ĠдоллаÑĢов":35902,"ĠпеÑĢем":35903,"ĠReach":35904,"miral":35905,"alted":35906,"Ġstatut":35907,"reading":35908,"Ġsöyled":35909,"ĠLindsey":35910,"ĠAhmad":35911,"ë¶Ģë":35912,"ĠСегоднÑı":35913,"Ġprzygot":35914,"Ġhyster":35915,"URE":35916,"ĠNeigh":35917,"Reporter":35918,"ĠBunu":35919,"ĠTreaty":35920,"ĠRank":35921,"ĠFame":35922,"inished":35923,"Ġgeared":35924,"Ġcompose":35925,"odia":35926,"ĠLon":35927,"ĠjesteÅĽmy":35928,"ĠDIRECTOR":35929,"Ġelkaar":35930,"ĠViel":35931,"×IJש":35932,"ynthia":35933,"並":35934,"Ġmère":35935,"ĠTomato":35936,"Ġexatamente":35937,"niÄĻ":35938,"ĠFrei":35939,"ĠDif":35940,"Ġopenings":35941,"Ġgraphical":35942,"ĠÑĥдоб":35943,"ĠвÑģп":35944,"ĠWeekly":35945,"ева":35946,"Ġhangs":35947,"Ġunsafe":35948,"Ġemblem":35949,"ĠKolleginnen":35950,"alay":35951,"Ġksi":35952,"Ġhides":35953,"Ġolmay":35954,"Ġentste":35955,"Ġarthritis":35956,"ÃŁerdem":35957,"Ġbinnen":35958,"Ġlistens":35959,"ĠHess":35960,"åĨįä¾Ĩ":35961,"ĠLouise":35962,"lden":35963,"енÑģ":35964,"ĠVersion":35965,"ĠAgriculture":35966,"ìĬ¤ë¥¼":35967,"ман":35968,"ëĦ¤ìļĶ":35969,"Ġwines":35970,"ĠINF":35971,"rul":35972,"ĠJK":35973,"ıyorlar":35974,"shield":35975,"reath":35976,"Ġterus":35977,"ĠLum":35978,"Ġanticipation":35979,"Ġaccustomed":35980,"ĠMina":35981,"Ġwield":35982,"ioè":35983,"mera":35984,"Ġcountdown":35985,"Ġcling":35986,"Ġcommend":35987,"Ġfaktiskt":35988,"Ġdefenses":35989,"Ġcockpit":35990,"Ġкоманд":35991,"Ġdishwas":35992,"ĠThanos":35993,"Ġkidneys":35994,"Ġsehe":35995,"Ġmicrobes":35996,"Ġcuff":35997,"ĠвÑĭÑģок":35998,"ĠSpicy":35999,"çŃīçŃī":36000,"வர":36001,"culus":36002,"orc":36003,"ç¾ħ":36004,"ixes":36005,"ĠCredit":36006,"Ġraj":36007,"Ġbringt":36008,"ĠNiss":36009,"Ġgrim":36010,"ĠSOL":36011,"Ġtenim":36012,"ĠSudan":36013,"ĠSpart":36014,"Ġpromotes":36015,"ĠNossa":36016,"ĠÑģоÑģÑĤоÑıни":36017,"Ġì°©":36018,"Ġuncont":36019,"ĠLiberal":36020,"ĠТолÑĮко":36021,"ĠViele":36022,"Ġktórej":36023,"Ġ****":36024,"Max":36025,"ĠЧÑĤобÑĭ":36026,"350":36027,"Ġíĺ¼ìŀIJ":36028,"Ġë¶Ħëĵ¤ìĿ´":36029,"Ġwarp":36030,"Ġtenga":36031,"Ġsympathetic":36032,"Ġbizi":36033,"ĠZack":36034,"iedo":36035,"Ġëī´ì":36036,"piel":36037,"ĠÑĤол":36038,"Ġscaled":36039,"ĠPETER":36040,"ĠCOMM":36041,"ĠCame":36042,"Ġcatastrophe":36043,"Ġsweaty":36044,"igration":36045,"Ġstuffing":36046,"ĠÏĢολÏį":36047,"ĠDriver":36048,"zyst":36049,"Tech":36050,"Ġassessed":36051,"ĠSurface":36052,"ırım":36053,"sur":36054,"lerweile":36055,"Ġдог":36056,"Ġshutting":36057,"Ġfractions":36058,"ĠÑģол":36059,"everyone":36060,"Ġern":36061,"ĠÐĿов":36062,"Ġdefenders":36063,"Ġversucht":36064,"ãĥ³ãĥĢ":36065,"Ġpolity":36066,"ĠÐŁÐ¾Ð½":36067,"verständ":36068,"Ġbrowsers":36069,"Ġtransformative":36070,"Ġdictate":36071,"ĠLEGO":36072,"Ġninguna":36073,"ê´ij":36074,"Ġpizz":36075,"ĠHarold":36076,"ĠLopez":36077,"Ú¾ÛĮ":36078,"anız":36079,"atchet":36080,"ÙĬت":36081,"Ġlernen":36082,"Ġê·ĢìŬ":36083,"Ġhoused":36084,"Ġcleanse":36085,"ĠWAT":36086,"laration":36087,"Ġbytes":36088,"Ġtucked":36089,"Ġfaults":36090,"до":36091,"FX":36092,"Ġìĸ¼ë§ĪëĤĺ":36093,"Ġdeform":36094,"Ġcontracting":36095,"ĠTIME":36096,"irse":36097,"Ġneben":36098,"Ġcerc":36099,"ĠArmstrong":36100,"Ġtester":36101,"Ġparfait":36102,"Ġjealousy":36103,"Ġtoxins":36104,"Ġdisbel":36105,"ÑĥÑĢÑĭ":36106,"impression":36107,"Ġprostate":36108,"Ġfirewall":36109,"Ġclassics":36110,"еÑĩÑĮ":36111,"Ġsocialism":36112,"Ġgracious":36113,"ĠÑģнова":36114,"ĠднÑı":36115,"Ġburner":36116,"ĠMinor":36117,"Ġìļ°ë¦¬ë":36118,"Ġjedes":36119,"Ġcontinuum":36120,"Ġhots":36121,"Ġoccurrence":36122,"Ġadministered":36123,"ĠзамеÑĤ":36124,"Ġhesitation":36125,"Ġdrills":36126,"erca":36127,"ĠвÑĤоÑĢой":36128,"Ġsteadily":36129,"Ġinsanlar":36130,"Ġihan":36131,"íij":36132,"Ġhelper":36133,"ĠSenin":36134,"åģľ":36135,"ование":36136,"ĠERIC":36137,"bla":36138,"ĠAcademic":36139,"Ġhumanities":36140,"black":36141,"umpy":36142,"ortex":36143,"ĠìłĪë":36144,"ĠØ¥ÙĨ":36145,"Ġdisclose":36146,"ĠElijah":36147,"ĠλÎŃ":36148,"ĠQuer":36149,"بÙĦ":36150,"ãĤ¡":36151,"Tell":36152,"arle":36153,"ÑĸÑĢ":36154,"Ġaugmented":36155,"Ġë¹ĦìĬ·":36156,"Ġandroid":36157,"त":36158,"arma":36159,"Ġszer":36160,"geord":36161,"Ġgeek":36162,"Ġyeux":36163,"Ġpong":36164,"ĠãģĿãģĨ":36165,"Ġtortured":36166,"ĠBath":36167,"zig":36168,"asonable":36169,"Ġnets":36170,"Ġbaru":36171,"ĠFlat":36172,"ĠVater":36173,"ĠTerror":36174,"ĠAvo":36175,"Ġceremonies":36176,"roe":36177,"Ùģس":36178,"Ops":36179,"Ġhyvin":36180,"Ġapresent":36181,"olor":36182,"ĠигÑĢÑĭ":36183,"orton":36184,"Ġê·¸ëŀ¬":36185,"Ġlookin":36186,"ĠTY":36187,"ĠMint":36188,"Add":36189,"Ġmite":36190,"ĠSmoke":36191,"Ġnota":36192,"Ġmoss":36193,"ĠAbend":36194,"Ġ컨":36195,"Ġexaggerated":36196,"fires":36197,"Ġredist":36198,"ffiti":36199,"Ġopenness":36200,"ê°IJìĿ´":36201,"endeu":36202,"енной":36203,"Watch":36204,"Ġavatar":36205,"ĠPey":36206,"urun":36207,"Ġsenza":36208,"Ġì§ĢìĹŃ":36209,"ĠNatomiast":36210,"Ġemergence":36211,"rays":36212,"Ġcrafted":36213,"gary":36214,"ãģłãģij":36215,"üng":36216,"-\"":36217,"Ġhacked":36218,"Ġstray":36219,"encie":36220,"emo":36221,"Ġcomen":36222,"ĠKız":36223,"ĠJasmine":36224,"ĠHindi":36225,"manas":36226,"Ġinfinitely":36227,"emon":36228,"ìĿ¸ëį°ìļĶ":36229,"jak":36230,"Ġroaring":36231,"érique":36232,"sweise":36233,"ĠRolex":36234,"åł±å°İ":36235,"ĠStuart":36236,"bnb":36237,"Ġdiagnose":36238,"Ġcoherent":36239,"ĠMJ":36240,"æºĸåĤĻ":36241,"Ġpike":36242,"lav":36243,"Ġorchestral":36244,"аÑģÑĤи":36245,"Ġterminar":36246,"Ġgatherings":36247,"Ġcompliant":36248,"Ġupgrading":36249,"Ġregulator":36250,"Ġlanç":36251,"éĢ£":36252,"Ġmerchants":36253,"tawa":36254,"Ġmonitored":36255,"Ġrendre":36256,"两":36257,"Ġunterwegs":36258,"anguard":36259,"gard":36260,"ĠBelow":36261,"duino":36262,"ĠЦе":36263,"Ġimpedance":36264,"ìľ¡":36265,"份":36266,"Ġaktuell":36267,"ĠVatic":36268,"åŃ©":36269,"Ġstewards":36270,"Ġbrightest":36271,"Ġkenn":36272,"Ġkau":36273,"ĠMatrix":36274,"ĠBark":36275,"ĠðŁij":36276,"Ġtaper":36277,"Ġcasino":36278,"ר×Ķ":36279,"ysical":36280,"Ġbuilders":36281,"ĠczÅĤowie":36282,"ĠNepal":36283,"Ġ!\"":36284,"Ġterme":36285,"Ġinnych":36286,"Ġmaths":36287,"Ġdrafted":36288,"ĠBalk":36289,"Ġhesitant":36290,"Ġvoltar":36291,"Ġrevive":36292,"ĠÑĦилÑĮма":36293,"Ġassassin":36294,"ĠSolutions":36295,"Ġduel":36296,"Ġbearings":36297,"à¸Ħะ":36298,"Ġrookie":36299,"ikat":36300,"Ġbiscuits":36301,"Ġcords":36302,"ÑĥваÑĤи":36303,"ARIN":36304,"Ġprogressing":36305,"ĠGir":36306,"Ġpenetrate":36307,"ĠStorage":36308,"eight":36309,"ĠÑĤÑĢÑĥ":36310,"ĠdonÃŃt":36311,"Ġsizin":36312,"Ġoutdated":36313,"ĠнаÑĪи":36314,"Ġaffir":36315,"Ġspoons":36316,"Ġoni":36317,"Ġflank":36318,"ĠGol":36319,"hã":36320,"Ġpéri":36321,"Ġhonorable":36322,"ĠBreathe":36323,"scenes":36324,"Ġobviamente":36325,"икÑģ":36326,"Ġש×ŀ×":36327,"Ġsmoothie":36328,"ŀĪë":36329,"Ġdime":36330,"ĠíĸĪìĸ´ìļĶ":36331,"Ġappel":36332,"ĠCatholics":36333,"Ġsingles":36334,"Ġlaten":36335,"Ġçünkü":36336,"ĠVader":36337,"æıĽ":36338,"Ġvardı":36339,"ĠIstanbul":36340,"gré":36341,"ĠElsa":36342,"ël":36343,"Ġinvece":36344,"Ġcrane":36345,"Ġobe":36346,"ĠShark":36347,"Ġsmack":36348,"Ġrestoring":36349,".\\":36350,"Ġë¹łë":36351,"Ġfaded":36352,"umbers":36353,"Singing":36354,"Ġdepressing":36355,"thest":36356,"ĠWahr":36357,"Ġmultitude":36358,"ÑĢавÑģÑĤвÑĥйÑĤе":36359,"rijk":36360,"eka":36361,"Ġcompletes":36362,"ĠWells":36363,"Ġroy":36364,"ĠPray":36365,"ĠKalau":36366,"izin":36367,"iaÅĤem":36368,"Ġlocom":36369,"ĠNashville":36370,"ĠPentagon":36371,"미":36372,"ĠNEW":36373,"ÄħÄĩ":36374,"ÃŃss":36375,"Ġmarrying":36376,"Ġfeud":36377,"íĻķ":36378,"æĢ¥":36379,")!":36380,"ĠOperations":36381,"ÑĥÑĶ":36382,"Ġmoje":36383,"Ġinstructed":36384,"ĠëĪĦ구":36385,"Ġ×Ķ×Ĵ":36386,"ĠпомоÑīÑĮÑİ":36387,"Ġsabia":36388,"ìķĺìĸ´ìļĶ":36389,"plane":36390,"pri":36391,"ĠполноÑģÑĤÑĮÑİ":36392,"ĠKitty":36393,"Ġpróprio":36394,"edere":36395,"Ġinteresante":36396,"Ġде":36397,"Ġcondensed":36398,"Ġavent":36399,"TOR":36400,"Ġgreasy":36401,"ARK":36402,"orta":36403,"AJ":36404,"Ġdisreg":36405,"Ġcorrections":36406,"Ġstero":36407,"Ġinfluenza":36408,"Ġdesses":36409,"Ġballots":36410,"Ġmeget":36411,"Ġmafia":36412,"Ġböl":36413,"nost":36414,"ĠÑģÑĤаÑĤÑĮ":36415,"Ġresponder":36416,"Ġhinten":36417,"grav":36418,"à¸Ńะ":36419,"ynchron":36420,"Ġviens":36421,"Ġsamo":36422,"Ġdt":36423,"pannt":36424,"ĠÅĽwiat":36425,"ĠзапиÑģ":36426,"Ġmerged":36427,"Ġkep":36428,"Ġmisleading":36429,"Ġdigamos":36430,"Ġammon":36431,"è¾Ľ":36432,"chet":36433,"Ġê°Ģìł¸":36434,"Ġuni":36435,"ĠëIJĺëĬĶëį°":36436,"ĠнапÑĢав":36437,"ĠкоÑĤоÑĢого":36438,"Ġanimate":36439,"×ķ×IJ×":36440,"еÑĢв":36441,"Ġminced":36442,"Ġkaum":36443,"ãģĤãģģ":36444,"ÏĢε":36445,"лег":36446,"existing":36447,"Ġplataform":36448,"ĠKRIS":36449,"ìĽł":36450,"ĠFamilien":36451,"ĠLibya":36452,"Ġbiodiversity":36453,"Ġidiots":36454,"irdi":36455,"Ġszyb":36456,"ĠRolling":36457,"ücht":36458,"ĠÑĥдив":36459,"ÑģÑĥд":36460,"Ġrealizar":36461,"Ġcanned":36462,"ĠÑĢан":36463,"Ġmetabolic":36464,"ĠBeef":36465,"Ġkilka":36466,"лÑİÑģ":36467,"Ġregistry":36468,"моÑĤÑĢиÑĤе":36469,"Ġvielä":36470,"Ġodc":36471,"Ġcondemned":36472,"æ©ĭ":36473,"fal":36474,"ĠDil":36475,"woÅĽci":36476,"Aw":36477,"Ġstatistically":36478,"Ġsogen":36479,"ĠBETH":36480,"Ġshaving":36481,"幸":36482,"ocal":36483,"ĠFunny":36484,"Ġpeacefully":36485,"Ġaddictive":36486,"ĠInsert":36487,"lauf":36488,"Ġexperiencia":36489,"é¦ĸåħĪ":36490,"иÑĤелÑı":36491,"ÃŃgen":36492,"ágina":36493,"Ġabdomen":36494,"íķľëĭ¤":36495,"icus":36496,"imana":36497,"ìį¨":36498,"arching":36499,"Ġkonkret":36500,"ìķĺë":36501,"ека":36502,"oufl":36503,"ivel":36504,"Ġnude":36505,"ètres":36506,"Ġmonsieur":36507,"Ġclash":36508,"Ġtherapists":36509,"Ġcubed":36510,"Ġretrouver":36511,"Ġwaveform":36512,"Ġpotem":36513,"ĠFormer":36514,"isión":36515,"åºľ":36516,"Ġ×IJ×Ŀ":36517,"undos":36518,"ĠMeinung":36519,"صÙĦ":36520,"ĠJude":36521,"ĠnÃ¥r":36522,"ĠLeonardo":36523,"ĠCristo":36524,"ĠGOT":36525,"ÑģÑĤÑĢÑĥк":36526,"LAN":36527,"ĠgÃ¥ng":36528,"Ġdéb":36529,"ĠFrankfurt":36530,"Ġcrappy":36531,"Ġlil":36532,"année":36533,"ĠмеÑģÑĤе":36534,"RET":36535,"ĠNer":36536,"ĠCOSTA":36537,"Ġjedem":36538,"Ġcurtains":36539,"Ġiterations":36540,"Ġunav":36541,"Ġplaque":36542,"orum":36543,"Ġζ":36544,"Ġnúmeros":36545,"Ġdesap":36546,"²½":36547,"Ġcompiled":36548,"Ġrefle":36549,"Ġrankings":36550,"Ġrepaired":36551,"ĠÐĿапÑĢ":36552,"Ġdownloads":36553,"Ġarmour":36554,"Ġ×Ļ×ķתר":36555,"Ġlongevity":36556,"ĠTONER":36557,"ĠкомменÑĤаÑĢ":36558,"Ġczego":36559,"Ġnotify":36560,"Ġairports":36561,"Ġenduring":36562,"lette":36563,"Ġapparat":36564,"Ġhabil":36565,"á»ĩc":36566,"nad":36567,"ICO":36568,"ĠBrah":36569,"Ġsegún":36570,"Ġgovernors":36571,"kaha":36572,"ĠSchluss":36573,"Ġodpowied":36574,"irting":36575,"Ġrempl":36576,"ĠAboriginal":36577,"identally":36578,"Ġenhancing":36579,"licting":36580,"ĠHawaiian":36581,"Ġstriving":36582,"ĠNiet":36583,"Ġznaczy":36584,"Ġobedience":36585,"ĠnÃ¥got":36586,"Ġexpired":36587,"Ġ1918":36588,"presented":36589,"Ġprowad":36590,"ĠTerr":36591,"ĠPrinceton":36592,"Ġmorgen":36593,"Ġattracting":36594,"ĠSigma":36595,"igner":36596,"ĠRechts":36597,"ĠPeki":36598,"Ġmethy":36599,"Ġhamm":36600,"Ġdireito":36601,"Ġdelegation":36602,"иваÑİÑĤ":36603,"Ġgin":36604,"Young":36605,"Ġdependencies":36606,"ĠBradley":36607,"buds":36608,"Ġfis":36609,"Ġpytanie":36610,"Ġinterconnected":36611,"Ġembaixo":36612,"ĠSas":36613,"Ġruh":36614,"ĠSicht":36615,"Sur":36616,"Ġsuperb":36617,"ĠSabbath":36618,"ĠDanger":36619,"kol":36620,"Ġhou":36621,"supp":36622,"ĠNacional":36623,"Ġsuccession":36624,"Ġvá":36625,"ĠMaÃŁnahmen":36626,"ĠJessie":36627,"ĠIdaho":36628,"forest":36629,"ħĺ":36630,"Ġ×ŀ×ĵ":36631,"ĠØ£ÙĬ":36632,"Ġsweetheart":36633,"Ġneatly":36634,"ĠEvangel":36635,"곡":36636,"ĠSuite":36637,"ública":36638,"ĠÑĥли":36639,"ĠAnnouncer":36640,"ligh":36641,"Ġsensations":36642,"Ġshelters":36643,"Ġhart":36644,"Ġsqueezing":36645,"ĠRivers":36646,"ĠCooking":36647,"ì±ħ":36648,"personal":36649,"Ġmanos":36650,"ÑijÑĤÑģÑı":36651,"wij":36652,"Ġgogg":36653,"ĠMilli":36654,"ĠFP":36655,"ünst":36656,"ĠLS":36657,"Ġspraying":36658,"Ġfaux":36659,"Ġautograph":36660,"ologic":36661,"Ġtorment":36662,"Ġencrypted":36663,"á»ħ":36664,"Ġestre":36665,"ç¹¼":36666,"à±":36667,"Ġstumbled":36668,"Ġaider":36669,"Ġsaben":36670,"xter":36671,"ĠCities":36672,"ĠTürk":36673,"ëĭ¥":36674,"chine":36675,"Ġtopping":36676,"Ġpoisoned":36677,"ĠRomania":36678,"×ĵ×Ļ":36679,"Ģë¡ľ":36680,"ĠпоÑĢÑıд":36681,"Ġchirping":36682,"ĠìĻĦë":36683,"×ij×¢":36684,"Ġcuanto":36685,"Ġdonating":36686,"ĠRegent":36687,"ĠBeruf":36688,"Ġdistracting":36689,"Ġstamina":36690,"ĠDarren":36691,"Ġì¶ķ":36692,"lists":36693,"dal":36694,"chuss":36695,"Ġeconomist":36696,"ãģĪãĥ¼":36697,"orgt":36698,"Ġistiyorum":36699,"è¿Ľ":36700,"ĠSurprise":36701,"ĠHao":36702,"Ġìµľê³ł":36703,"ĠGW":36704,"ĠInner":36705,"Ġquieren":36706,"Ġminded":36707,"Ġsupercomputer":36708,"Ġdiagrams":36709,"íĬľë":36710,"ê²łìĸ´":36711,"ĠобÑĬÑıÑģ":36712,"Ġestaban":36713,"Ġdestroys":36714,"ĠBreaking":36715,"ĠkarÄ±ÅŁ":36716,"Ġrebuilding":36717,"ľëĮĢ":36718,"ливо":36719,"ĠSauce":36720,"ĠFusion":36721,"×ķ×ŀ×":36722,"ĠQuinn":36723,"Ġgauche":36724,"ĠÙĪØ£":36725,"ĠÈ":36726,"çĵľ":36727,"Ġtechno":36728,"Ġdispatch":36729,"ĠaÅŁk":36730,"Ġeinzel":36731,"ĠGmail":36732,"çŀ":36733,"Ġê°ľìĿ¸":36734,"ĠÑģемÑĮ":36735,"Ġjourneys":36736,"Ġiht":36737,"Ġfibre":36738,"Ġdramas":36739,"ouched":36740,"Ġrename":36741,"ĠопеÑĢ":36742,"Ġpoo":36743,"ĠDru":36744,"ĠиÑĤог":36745,"Ġzast":36746,"Ġcoz":36747,"Ġzucch":36748,"Ġobtaining":36749,"Ġcommute":36750,"Ġsubmer":36751,"ĠVish":36752,"ĠRabb":36753,"ogg":36754,"Ġhut":36755,"íĸĪìĸ´":36756,"æ¯Ķå¦Ĥ":36757,"eremi":36758,"Ġμα":36759,"Ġdiskut":36760,"ĠбÑĥк":36761,"Ġimpaired":36762,"depend":36763,"ĠÙĪا":36764,"ĠÑĢÑĥк":36765,"ĠбаÑĢ":36766,"Ġoxidation":36767,"Ġsituação":36768,"ÉĻn":36769,"ução":36770,"Ġsagte":36771,"ĠSER":36772,"ĠCake":36773,"Ġturmeric":36774,"ĠKak":36775,"bung":36776,"ĠKá¹Ľá¹£á¹ĩa":36777,"Ġpoisoning":36778,"Ġslipping":36779,"ĠSays":36780,"å°±åı¯ä»¥":36781,"òng":36782,"çŁ³":36783,"«":36784,"ĠClaudia":36785,"ĠCharacter":36786,"ниÑĨ":36787,"coat":36788,"Ġprogressed":36789,"ĠFergus":36790,"Ġìĺ¤ëĬ":36791,"Ġoat":36792,"ordable":36793,"ĠLey":36794,"ĠHeraus":36795,"Ġresultados":36796,"ĠKayla":36797,"Ġriff":36798,"Ġchegou":36799,"Ġxi":36800,"Ġspacious":36801,"Ġrecognised":36802,"Ġech":36803,"ĠTie":36804,"Ġlauncher":36805,"Jim":36806,"Ġsuppression":36807,"ĠImpossible":36808,"Ġguitars":36809,"ĠFourier":36810,"иÑĩеÑģкий":36811,"ĠTherap":36812,"ĠKaf":36813,"centered":36814,"ĠÑģооÑĤвеÑĤ":36815,"Ġklim":36816,"Ġcarbohydrates":36817,"ignant":36818,"ĠAstron":36819,"Ġemple":36820,"Ġdrastic":36821,"ĠмиÑĢе":36822,"вин":36823,"uw":36824,"Ġprettier":36825,"Ġdonuts":36826,"ĠAthena":36827,"Ġdissert":36828,"Ġplante":36829,"Ġuranium":36830,"ìĿĮë":36831,"aré":36832,"Ġrzecz":36833,"Ġdisplaying":36834,"æĪ²":36835,"Ġsarc":36836,"rão":36837,"Ġtampoco":36838,"Ġphilosophers":36839,"ĠRecht":36840,"æĵļ":36841,"Ġcomentarios":36842,"yse":36843,"Ġìľ¤":36844,"Ġmise":36845,"ĠGin":36846,"Ġном":36847,"ĠFROM":36848,"liner":36849,"atif":36850,"ĠspoÅĤec":36851,"xa":36852,"ĠÑĤÑĢÑĥд":36853,"Ġwag":36854,"기ìĹIJ":36855,"ĠMG":36856,"Ġoffspring":36857,"ĠUnderstanding":36858,"åıªæĺ¯":36859,"ORA":36860,"Ġwhirring":36861,"Ġsurrend":36862,"Ġpoker":36863,"Ġmonuments":36864,"ĠâĻ©":36865,"Ġorganised":36866,"ĠSozial":36867,"ĠFactory":36868,"Ñħа":36869,"Ġresemble":36870,"зд":36871,"Ġexplosions":36872,"Ġpayroll":36873,"Ġomn":36874,"ĠJorge":36875,"ιÏĥ":36876,"Ġfracture":36877,"Ġpersecution":36878,"Ġdemais":36879,"ECH":36880,",)":36881,"Ġcriar":36882,"ĠJOSH":36883,"Ġdemographics":36884,"Ġ1600":36885,"Ġcurrencies":36886,"ĠTips":36887,"ĠéĢĻåĢĭ":36888,"ĠRefer":36889,"ĠDancing":36890,"Ġinconsistent":36891,"Ġdeh":36892,"Ġimmens":36893,"Ġmeist":36894,"Ġimpatient":36895,"Ġbehaves":36896,"æĿ¾":36897,"ĠëĤ´ìļ©":36898,"Ġbackstory":36899,"Ġagreeing":36900,"ĠÅģ":36901,"ihin":36902,"Ġtemperatura":36903,"ĠBackground":36904,"Ġnutzen":36905,"Ġëħ¹":36906,"ĠMänner":36907,"Ġcollaborations":36908,"ĠKos":36909,"éģİåİ»":36910,"Ġnightmares":36911,"ëĵ±":36912,"ĠQueensland":36913,"Ġassociates":36914,"ĠKok":36915,"Ġfactorial":36916,"ĠHyung":36917,"Ġê·¸ëĭ¤ìĿĮ":36918,"Ġfilho":36919,"Ġelét":36920,"Ġíĸīë³µ":36921,"°±":36922,"Ġgefunden":36923,"Ġsemicondu":36924,"Ġcounselors":36925,"ĠUpper":36926,"ĠAub":36927,"ickers":36928,"Ver":36929,"Ġnorthwest":36930,"ĠMaintenant":36931,"ĠLakes":36932,"аÑıв":36933,"inté":36934,"ì°½":36935,"Ġгаз":36936,"Ġgiorn":36937,"Ġdigitally":36938,"ĠCircuit":36939,"ì¼Ģ":36940,"ãĤĬãģ¾ãģĹãģŁ":36941,"Ġcheerful":36942,"ĠPeterson":36943,"ĠDanish":36944,"ativos":36945,"Ġliken":36946,"Ġharbor":36947,"алиÑģÑĤ":36948,"xe":36949,"Ġcurls":36950,"ĠRhod":36951,"End":36952,"ĠET":36953,"Ġacquaint":36954,"ĠKelvin":36955,"Ġtrif":36956,"ĠAway":36957,"ìŀIJëĬĶ":36958,"vs":36959,"Ġpágina":36960,"Ġinlet":36961,"ĠSantos":36962,"Ġìļ°ìĻĢ":36963,"Ġyapıyorsun":36964,"theme":36965,"Ġsouff":36966,"Ġinjected":36967,"Ġpóźniej":36968,"iverso":36969,"amped":36970,"Ġdaher":36971,"Ġdagger":36972,"ĠлÑİбим":36973,"Ġtummy":36974,"Ġenlightened":36975,"cents":36976,"ĠDah":36977,"Ġcuest":36978,"ä¾Ĩ說":36979,"ILY":36980,"Ġ×ijר":36981,"Ġbanging":36982,"ĠEmil":36983,"ĠCler":36984,"ĠBorder":36985,"ижÑĥ":36986,"Ġpresenters":36987,"ĠSTUD":36988,"coins":36989,"ĠíĻį":36990,"Ġperks":36991,"Ġparap":36992,"Ġcertaines":36993,"ĠLore":36994,"öst":36995,"ĠMARTIN":36996,"Ġbios":36997,"Ġwhereby":36998,"verts":36999,"ĠMiranda":37000,"Ġstip":37001,"澤":37002,"andez":37003,"׼׾":37004,"ujin":37005,"Ġê¾":37006,"Ġallergies":37007,"plate":37008,"Ġyapıl":37009,"Ġundertake":37010,"ĠëĤĺê°Ģ":37011,"Part":37012,"Ġkızım":37013,"hguru":37014,"ãģĤãģ¨":37015,"ĠJohns":37016,"Ġeyelashes":37017,"Ġdrained":37018,"ĠstÃ¥r":37019,"ãģĤãĤĬãģ¾ãģĻ":37020,"ĠJade":37021,"Ġcalend":37022,"film":37023,"Ġmesa":37024,"Ġludzie":37025,"Ġattracts":37026,"Ġjuices":37027,"Ġкил":37028,"Ġnieuwe":37029,"Ġmencion":37030,"Ġignition":37031,"Ġbladder":37032,"andaag":37033,"ĠExtension":37034,"íĤ¨":37035,"feed":37036,"ĠÙĪÙĩ":37037,"Ġspun":37038,"Ġtät":37039,"оÑĢоÑĤ":37040,"tyard":37041,"ronics":37042,"ĠHuge":37043,"Ñĥжд":37044,"string":37045,"Ġunjust":37046,"Ġprawn":37047,"Ġfrosting":37048,"Ġdisappearance":37049,"iosa":37050,"Ġcardi":37051,"ĠPriest":37052,"ĠcientÃŃfic":37053,"åĵªè£¡":37054,"ĠÐĴаÑģ":37055,"Ġë¶Ģíĥģ":37056,"Ġthieves":37057,"Ġphysique":37058,"ĠEugene":37059,"Ġблиз":37060,"Ġmonopoly":37061,"Ġbiography":37062,"ĠhoÅŁ":37063,"Ġtö":37064,"mac":37065,"Ġshocks":37066,"ìĦ¸ë":37067,"hit":37068,"Ġsnug":37069,"Ġincl":37070,"Ġdedic":37071,"Ġultras":37072,"ĠизвеÑģÑĤ":37073,"Ġutilization":37074,"ĠÑģовеÑĢÑĪенно":37075,"Ġservi":37076,"stag":37077,"180":37078,"Ġsewer":37079,"ĠChoice":37080,"Ġdischarged":37081,"ĠJD":37082,"олеÑĤ":37083,"ĠкваÑĢÑĤи":37084,"Ġtelescop":37085,"ĠJeÅĽli":37086,"ĠNana":37087,"cale":37088,"ĠÑĤон":37089,"mmm":37090,"äºĨåIJ§":37091,"Ġgehabt":37092,"ëĤł":37093,"æĬķ":37094,"à¸Ļà¸Ļ":37095,"Ġether":37096,"Ġzen":37097,"Ġresearched":37098,"ĠCzyli":37099,"å®Įåħ¨":37100,"workers":37101,"Ġ경찰":37102,"Ġsheriff":37103,"allo":37104,"Ġtipos":37105,"Ġprosecution":37106,"Ġfrogs":37107,"Ġfalt":37108,"jd":37109,"ĠíĮĶ":37110,"Ġfiltered":37111,"ĠOft":37112,"Ġìį":37113,"Ġdisfr":37114,"ĠMustang":37115,"Ġwoah":37116,"ĠREALLY":37117,"Ġмогли":37118,"Ġentrada":37119,"ĠигÑĢа":37120,"Ġmixes":37121,"ĠавÑĤомоб":37122,"ÐĻ":37123,"Ġshin":37124,"Ġparanormal":37125,"Ġsomeplace":37126,"Ġdishon":37127,"etaan":37128,"Ġfuerte":37129,"Ù¹":37130,"Ġdoom":37131,"ìĪľ":37132,"Ġexistential":37133,"Ġbuld":37134,"ĠSDK":37135,"ĠпÑĢавда":37136,"Ġturnover":37137,"ĠìĹ¬ê¸°ìĹIJ":37138,"Ġह":37139,"Ġmodeled":37140,"Ġbugün":37141,"Ġexperimentation":37142,"Ġmornings":37143,"Ġmedo":37144,"Stevie":37145,"Ġplayable":37146,"Ġairlines":37147,"gments":37148,"Ġ기ë¶Ħ":37149,"ĠTomb":37150,"ĠMVP":37151,"AUDIENCE":37152,"Ġcheckout":37153,"Ġpasst":37154,"Ġbeispiel":37155,"ĠLinks":37156,"heavy":37157,"Ġquestionable":37158,"Ġìĵ°ë":37159,"Ġsill":37160,"Ġmanipulated":37161,"ĠLoren":37162,"Ġìľ¼":37163,"Ġverge":37164,"ák":37165,"IES":37166,"Ġsabot":37167,"ĠCustomer":37168,"ależy":37169,"Ġnominee":37170,"ĠGad":37171,"Ġnouvelles":37172,"ĠSPE":37173,"istling":37174,"Ġoval":37175,"обÑĢаж":37176,"ifty":37177,"éĩİ":37178,"Ġbezel":37179,"yet":37180,"Ġfreight":37181,"ĠHanım":37182,"rÃŃa":37183,"Ġzoning":37184,"Ġindem":37185,"ĠBü":37186,"Ġfeminism":37187,"Ġvoix":37188,"Ġoficial":37189,"Ġdiyorum":37190,"»IJ":37191,"Ġarose":37192,"Ġparar":37193,"ìĿ¸ì§Ģ":37194,"ĠMartine":37195,"ĠLect":37196,"Ġrester":37197,"Ġdrowning":37198,"uya":37199,"cida":37200,"ĠAriel":37201,"Ġ02":37202,"Ġ×Ķ×Ķ":37203,"ç´ł":37204,"ĠWert":37205,"ТÑĭ":37206,"Ġwidow":37207,"Ġparchment":37208,"Ġcottage":37209,"ĠXL":37210,"ĠSlack":37211,"ĠNES":37212,"Ġrobe":37213,"Ġgimm":37214,"Ġcaminho":37215,"ĠHarper":37216,"Ġcitrus":37217,"Ġfirefighters":37218,"Ġdopamine":37219,"elets":37220,"Ġdemocrat":37221,"ìłľë¡ľ":37222,"Ġplayback":37223,"oj":37224,"ĠпÑĢок":37225,"ĠSullivan":37226,"semble":37227,"ĠWorth":37228,"ĠMustafa":37229,"าร":37230,"Ġmets":37231,"éĸĢ":37232,"лоÑģÑĮ":37233,"Ġinertia":37234,"Ġuniforms":37235,"足":37236,"ério":37237,"×ķר×Ķ":37238,"ént":37239,"Ġà®Ĵ":37240,"ĠÑģамÑĭÑħ":37241,"Ġvoulais":37242,"ĠZimmer":37243,"ê²łë":37244,"ĠноÑģ":37245,"encias":37246,"Ġrelación":37247,"Ġ걸ë":37248,"Ġfaction":37249,"Ġgosp":37250,"полож":37251,"nap":37252,"hak":37253,"Ġproceedings":37254,"ĠìĨĶ":37255,"ìķĦëĭĪ":37256,"ĠìŀIJ기":37257,"Ġwerd":37258,"Ġsof":37259,"Ġschlim":37260,"Ġflavored":37261,"Ġquadratic":37262,"ĠBoot":37263,"Ġpublicity":37264,"ĠCaro":37265,"Ġ?\"":37266,"ниÑĨа":37267,"mania":37268,"ĠSUR":37269,"ĠBUR":37270,"lance":37271,"ética":37272,"Ġzobaczy":37273,"Ġtrio":37274,"sama":37275,"ĠtaÅŁ":37276,"Ġasymm":37277,"resser":37278,"Ġتع":37279,"ĠпеÑģ":37280,"Ġbeginnings":37281,"ladım":37282,"ĠбÑĭÑģÑĤÑĢ":37283,"Ġmoo":37284,"ĠGeneva":37285,"Ġåľ¨":37286,"erus":37287,"borah":37288,"Ġrefusing":37289,"bull":37290,"ĠWaiting":37291,"ĠIndividual":37292,"Ġanonym":37293,"imens":37294,"Ġmedidas":37295,"Ġfragrant":37296,"Ġdirectement":37297,"ĠìķĦë§Ī":37298,"uria":37299,"Ġspherical":37300,"Ġabge":37301,"ĠVictorian":37302,"Ġspectacle":37303,"ĠRodriguez":37304,"Ġocup":37305,"ĠNär":37306,"marks":37307,"ngulo":37308,"ĠLuci":37309,"Ġshouted":37310,"Ġregulators":37311,"ÄŁini":37312,"Ġdisent":37313,"ĠÑĢÑĭн":37314,"ëĤ¨":37315,"ĠìĤ´ë":37316,"Ġproblèmes":37317,"ĠFinger":37318,"assemble":37319,"Ġpear":37320,"Ġdroite":37321,"ĠEverywhere":37322,"tam":37323,"оÑĤив":37324,"вой":37325,"ordinate":37326,"ĠLak":37327,"ĠmỼi":37328,"ĠTelevision":37329,"Ġexponentially":37330,"avas":37331,"Ġblev":37332,"ĠMT":37333,"俺":37334,"Connell":37335,"ĠêµŃ민":37336,"ĠÑģвоим":37337,"Ġacha":37338,"ĠDynasty":37339,"Jin":37340,"Ġtore":37341,"Ġflor":37342,"Ġмногие":37343,"æ²Ĵäºĭ":37344,"owan":37345,"bah":37346,"Ġì£Ħ":37347,"ĠCela":37348,"Ġìµľê·¼":37349,"Ġpermettre":37350,"Ġabras":37351,"Ġverstehen":37352,"Ġescort":37353,"ĠThem":37354,"ärke":37355,"porter":37356,"Ġkahkaha":37357,"Ġhect":37358,"Ġdau":37359,"wah":37360,"olve":37361,"ĠAges":37362,"schaft":37363,"ĠStell":37364,"nelle":37365,"ĠEnsuite":37366,"ĠÐĴÑģем":37367,"Ġcréd":37368,"ĠPP":37369,"lords":37370,"grunting":37371,"Ġcontraction":37372,"Got":37373,"Ġacquiring":37374,"Ġsopr":37375,"Ġpoisonous":37376,"RNA":37377,"Ġanar":37378,"ĠHof":37379,"')":37380,"Ġremarkably":37381,"Ġinternacional":37382,"ücke":37383,"inqu":37384,"Ġduy":37385,"Ġbeasts":37386,"ĠLAN":37387,"Ġprecedent":37388,"ĠRPM":37389,"åij¨":37390,"Ġselon":37391,"Ġmorte":37392,"Ġcomeçou":37393,"Ñıла":37394,"Ġinterpreting":37395,"ĠBurke":37396,"ÑĤÑĢа":37397,"ĠìĿ´ëŁ¬":37398,"Ġpessim":37399,"ĠNok":37400,"íĮĿ":37401,"Female":37402,"Ġìĭ¤í":37403,"ĻĢ":37404,"Ġstimulation":37405,"Ġslick":37406,"Ġê°ĢëĬĶ":37407,"Ġказ":37408,"ĠHBO":37409,"Ġpapier":37410,"Ġkönnten":37411,"Ñĥбли":37412,"ĠConstant":37413,"SPEAKING":37414,"ĠktórÄħ":37415,"Ġcosmetics":37416,"ĠTrend":37417,"Ġrobbery":37418,"Ġtitt":37419,"Ġgjort":37420,"Ġdietary":37421,"łĮ":37422,"ĠKirby":37423,"ĠпÑĢимеÑĢно":37424,"Ġqualification":37425,"Ġìķī":37426,"Ġcabinets":37427,"Ġhttp":37428,"ĠErica":37429,"義":37430,"Ġdisadvantages":37431,"Ġchattering":37432,"yz":37433,"feit":37434,"Ġguild":37435,"ĠETF":37436,"ĠDragons":37437,"ĠHERE":37438,"venth":37439,"ÙĦاÙħ":37440,"Ġmarché":37441,"Dam":37442,"Ġphoton":37443,"Ġestable":37444,"Mag":37445,"Ġolhar":37446,"Ġcoupling":37447,"ĠHilfe":37448,"ĠWizard":37449,"Ġмало":37450,"help":37451,"ĠlÃŃnea":37452,"Ġì«":37453,"Ġstandalone":37454,"Ġmorale":37455,"Ġzweite":37456,"ãĤĪãĤįãģĹãģı":37457,"ährt":37458,"Ġdotted":37459,"Ġdripping":37460,"ĠFlag":37461,"éĿĴ":37462,"rocket":37463,"rategy":37464,"irim":37465,"Ġíķĺë©´ìĦľ":37466,"Ġsogenan":37467,"ĠUno":37468,"ĠSchutz":37469,"Ġestilo":37470,"ĠSubs":37471,"ĠDaisy":37472,"ÐĿеÑĤ":37473,"'...":37474,"Ġplatinum":37475,"Ġbirl":37476,"ĠSovi":37477,"Ġviolate":37478,"ÑĥеÑĤÑģÑı":37479,"rill":37480,"Ġtraz":37481,"Ġsnip":37482,"Ġcumpl":37483,"à¸Ńà¸ģ":37484,"Ġcuk":37485,"éħĴ":37486,"ĠParlament":37487,"Ġhypert":37488,"Ġpulp":37489,"Ġtongues":37490,"atto":37491,"Ġbusca":37492,"ihn":37493,"ERO":37494,"ĠÙĬع":37495,"Ġvarias":37496,"ĠMarian":37497,"Ġbounded":37498,"Ġpitching":37499,"Ġdeficiency":37500,"ĠBlessed":37501,"ĠExerc":37502,"uchs":37503,"ĠnhÆ°ng":37504,"æľ¬å½ĵ":37505,"Ġraped":37506,"hales":37507,"Ġmala":37508,"pic":37509,"Ġ401":37510,"ÅĽniej":37511,"arina":37512,"ëĵ¤ìĿĦ":37513,"otti":37514,"Ġдолго":37515,"Ġtracker":37516,"ĠShelby":37517,"Ġvanished":37518,"Ġbakery":37519,"Kapı":37520,"Jesus":37521,"ĠKR":37522,"JO":37523,"ħ¸":37524,"Ġdiscs":37525,"ìĦ¯":37526,"ì§Ģë":37527,"×Ļצ":37528,"emary":37529,"Kendra":37530,"Ġyük":37531,"ückt":37532,"Ġvaz":37533,"Ġkup":37534,"aktu":37535,"ĠÑģпаÑģибо":37536,"Ġaik":37537,"Ġnursery":37538,"Ġendangered":37539,"êmement":37540,"ematics":37541,"Ġresponders":37542,"ĠRepresentatives":37543,"Ġsculptures":37544,"igkeiten":37545,"Ġdepl":37546,"Ġinterpretations":37547,"Ġdeadlines":37548,"Ġ1942":37549,"ÃĹ":37550,"Ġsugars":37551,"emu":37552,"lively":37553,"Ġrecreational":37554,"Ġdistort":37555,"Ġunderscore":37556,"Ġunquote":37557,"Ġsafest":37558,"Ġswollen":37559,"Ġanalyses":37560,"Ġcommencé":37561,"妹":37562,"andin":37563,"ĠХоÑĢоÑĪо":37564,"Ġdiarr":37565,"ãģ¾ãģģ":37566,"ziest":37567,"Ġtoothbrush":37568,"éł»éģĵ":37569,"uations":37570,"Ġcade":37571,"Ġbacklash":37572,"hind":37573,"Ġrisque":37574,"zess":37575,"ĠìĿ´ìķ¼ê¸°":37576,"Ġesperar":37577,"Ġtranslations":37578,"ioned":37579,"groans":37580,"ĠпÑĥÑĤ":37581,"Ġgenetically":37582,"éĢł":37583,"Ġhappiest":37584,"Ġwerk":37585,"atoon":37586,"Ġmusi":37587,"Ġfunção":37588,"ĠìŀħëĭĪëĭ¤":37589,"ĠÑĢай":37590,"Ġbevor":37591,"BLANK":37592,"Ġrepentance":37593,"Put":37594,"Ġpotrzeb":37595,"Ġsala":37596,"Ġcampa":37597,"WER":37598,"ĠdecÃŃa":37599,"Ġsécurité":37600,"ĠAppreciate":37601,"Ñĩи":37602,"ĠRandom":37603,"ë³Ħ":37604,"kah":37605,"Ġmöj":37606,"Ġsäger":37607,"Ġ×Ļ׼×ķ׾":37608,"Ġ190":37609,"xtures":37610,"Eu":37611,"Ġgä":37612,"Ġ×ijת":37613,"ĠCroat":37614,"apo":37615,"PLE":37616,"Ġpersistence":37617,"åĬ©":37618,"Ġblends":37619,"Ġtreffen":37620,"ĠSantiago":37621,"ydia":37622,"aldo":37623,"ĠTensorFlow":37624,"ĠDual":37625,"ãĥľ":37626,"Ġchiff":37627,"ìĹ´":37628,"Ġcontracted":37629,"Ġsegreg":37630,"ĠFairy":37631,"Ġwisely":37632,"Ġvulnerabilities":37633,"Ġhandheld":37634,"Ġgadgets":37635,"ĠboÅŁ":37636,"ĠPopular":37637,"Ġcurvature":37638,"문":37639,"ĠMARY":37640,"ìĿ´ìĬ":37641,"Ġformulation":37642,"Ġcelery":37643,"Ġblurry":37644,"ĠTS":37645,"alez":37646,"Ġws":37647,"Ġprogramm":37648,"ĠStack":37649,"ĠJIM":37650,"овали":37651,"ıll":37652,"Ġpère":37653,"ĠKanye":37654,"ĠDelaware":37655,"Ġãģł":37656,"Ġdaunting":37657,"ĠбеÑģ":37658,"ĠStupid":37659,"big":37660,"fficial":37661,"Ġprecipitation":37662,"Ġplung":37663,"ục":37664,"burse":37665,"Ġdarle":37666,"Ġcripp":37667,"Ġpioneer":37668,"Ġdisput":37669,"Ġsean":37670,"ãģĵãĤĵãģª":37671,"Ġresistor":37672,"Ġallein":37673,"ipples":37674,"arel":37675,"Ġendors":37676,"zust":37677,"ĠÑĢебÑıÑĤа":37678,"eded":37679,"Ġì¹´ë©Ķë":37680,"Ġlleva":37681,"Ġkennt":37682,"Ġбал":37683,"ĠDocument":37684,"ĠKnights":37685,"Ġbuckle":37686,"Ġìī¬":37687,"Ġalk":37688,"ĠEveryday":37689,"atters":37690,"Ġtoilets":37691,"Ġjugar":37692,"ĠìŀĪì§Ģ":37693,"Ġgenauso":37694,"ĠLandesregierung":37695,"ãģ£ãģ±":37696,"ije":37697,"Ġtrailers":37698,"ĠTigers":37699,"Ġgitti":37700,"Ġforgiving":37701,"Ġconcurrent":37702,"ĠVu":37703,"ĠíĬ¹íŀĪ":37704,"ĠBROWN":37705,"ounded":37706,"\";":37707,"Ġtremb":37708,"Ġtiet":37709,"ĠÑĢежим":37710,"Ġnutshell":37711,"елиÑĩ":37712,"Ġlosers":37713,"ricting":37714,"Ġredeem":37715,"defined":37716,"Nice":37717,"Ġbroadband":37718,"KO":37719,"Ġteasing":37720,"Ġpartisan":37721,"ıma":37722,"Ġìŀ¬ë¯¸":37723,"ĠJourney":37724,"Ġslopes":37725,"uning":37726,"grunts":37727,"Ġtäll":37728,"Ġuncovered":37729,"ĠmyÅĽlÄĻ":37730,"ĠEsther":37731,"äºİ":37732,"ĠHealthy":37733,"Ġë°ij":37734,"rée":37735,"Ġpolarization":37736,"Ġflav":37737,"Ġcambiar":37738,"Ġyr":37739,"ĠRanch":37740,"Ġsplits":37741,"Ġtrouvé":37742,"åľĭ家":37743,"Ġrecorder":37744,"Ġdépart":37745,"ÙĪب":37746,"ĠKry":37747,"Ġinteressant":37748,"Ġederim":37749,"ÅĽwiad":37750,"ilateral":37751,"wright":37752,"Ġpourra":37753,"êter":37754,"Ġcamel":37755,"áŀ":37756,"Ġrapidement":37757,"Ġmej":37758,"Ġstiffness":37759,"ADAS":37760,"Ġdiffers":37761,"Ġalot":37762,"ĠSig":37763,"ÑıÑĤелÑĮ":37764,"Ġabstraction":37765,"åľĺ":37766,"Ġkeiner":37767,"grupp":37768,"ĠSherlock":37769,"íĺĶ":37770,"Ġcite":37771,"Ġoverflow":37772,"Ġtại":37773,"úcar":37774,"bula":37775,"Ġconjunto":37776,"ĠCI":37777,"Ġmoderator":37778,"Ġindirectly":37779,"Ġalleine":37780,"âĤ":37781,"ÑĪиб":37782,"Ġбаб":37783,"Ġdanach":37784,"Ġ1939":37785,"Ġpromet":37786,"Ġdestinations":37787,"ĠIllust":37788,"ικÏĮ":37789,"Ġsabes":37790,"Ġheh":37791,"ĠGesetzent":37792,"ĠMiz":37793,"енко":37794,"ĠMys":37795,"Ь":37796,"ĠJudaism":37797,"Ġmustache":37798,"Ġstimmt":37799,"ĠGaza":37800,"Ġvolte":37801,"Ġnuo":37802,"Ġmón":37803,"ĠComput":37804,"ูà¹Ī":37805,"ĠRadi":37806,"Ġexceptionally":37807,"Ġassumes":37808,"éĸĭå¿ĥ":37809,"ãģĪãģ°":37810,"inform":37811,"Ġshrine":37812,"æĵĬ":37813,"Ġimplication":37814,"ĠFitz":37815,"æ²ĴéĹľä¿Ĥ":37816,"!.":37817,"Ġlt":37818,"Ġalloy":37819,"Ġethic":37820,"Ġmonastery":37821,"ìĭľì£ł":37822,"icação":37823,"Ġcoordinating":37824,"ĠMoto":37825,"Ġoverlook":37826,"Ġchois":37827,"Ġantibiotic":37828,"ĠMinne":37829,"ĠBJ":37830,"ĠApa":37831,"orian":37832,"Ġspilled":37833,"Jam":37834,"Ġhusbands":37835,"Ġcreations":37836,"Ġañ":37837,"üssel":37838,"ĠìĿ´ìļ©":37839,"Ġanalyse":37840,"rose":37841,"Ġpunched":37842,"Ġpresque":37843,"Ġastronomy":37844,"Ġschwierig":37845,"ĠEbola":37846,"Ġcis":37847,"Ġacet":37848,"ĠFX":37849,"endre":37850,"ĠìĿĮìķħ":37851,"Ġwebpage":37852,"Ġfreaked":37853,"Ġlatte":37854,"Ġì¿ł":37855,"Ġ머ë":37856,"Never":37857,"Gra":37858,"íĻĶ를":37859,"eyed":37860,"Ġë°ľëĿ¼":37861,"Ġespera":37862,"Ġaparece":37863,"ração":37864,"Ġdisruptive":37865,"ĠJoint":37866,"urous":37867,"reas":37868,"ĠquerÃŃa":37869,"Ġdistributions":37870,"Ġexponent":37871,"ì¹ĺ를":37872,"Ġdl":37873,"zhou":37874,"ĠHearing":37875,"å·®ä¸įå¤ļ":37876,"ĠCraw":37877,"Ġfloats":37878,"ounced":37879,"Lab":37880,"World":37881,"Ġburdens":37882,"Ġauthoritarian":37883,"ĠBolt":37884,"ĠоднÑĥ":37885,"Ġpigeon":37886,"Ġdistractions":37887,"ĠHerausforder":37888,"Ġzest":37889,"esc":37890,"Ġshakes":37891,"atas":37892,"ĠÙħØ´":37893,"holes":37894,"Ġthinkers":37895,"alta":37896,"Ġarche":37897,"ĠSuk":37898,"anha":37899,"Ġtempting":37900,"Ġyoutuber":37901,"Ġvì":37902,"ĠdziaÅĤa":37903,"ĠVatican":37904,"Park":37905,"Ġsupers":37906,"ĠNikki":37907,"ëĬIJë":37908,"orang":37909,"ramient":37910,"鬼":37911,"Ġê°ĸê³ł":37912,"Ġdesserts":37913,"Ġavere":37914,"ĠGregory":37915,"Ġëĵ¤ìĸ´ìĺ":37916,"Ġcosting":37917,"ĠClinic":37918,"Ġrebels":37919,"ĠMob":37920,"Ġbunlar":37921,"ĠYours":37922,"ertime":37923,"Ġretali":37924,"mara":37925,"atus":37926,"alles":37927,"ĠдÑĢ":37928,"ĠдиÑģ":37929,"Ġdiscounts":37930,"ĠGUY":37931,"Ġкакое":37932,"ĠExperiment":37933,"rement":37934,"ĠXiang":37935,"Ġbate":37936,"WE":37937,"Ġspecialize":37938,"Ġdeity":37939,"ĠLoki":37940,"mag":37941,"ĠNit":37942,"West":37943,"Ġmaternal":37944,"Ġquis":37945,"åŁºæľ¬":37946,"broken":37947,"Ġlasers":37948,"Ġhakk":37949,"ĠAngels":37950,"Ġmastery":37951,"antis":37952,"Tiffany":37953,"eee":37954,"çij":37955,"orem":37956,"Ġinacc":37957,"Ġjurisdictions":37958,"ĠKardash":37959,"æľº":37960,"Il":37961,"ĠSinn":37962,"åĭķçĶ»":37963,"Ġathletics":37964,"cÄĻ":37965,"Ġloosely":37966,"Ġdieta":37967,"Ag":37968,"Ġ??":37969,"ĠëĮĢíijľ":37970,"Ġsuperv":37971,"Ġnutrit":37972,"Ġdrifting":37973,"ĠìĦłìĥĿëĭĺ":37974,"ĠпонÑıл":37975,"ĠVictory":37976,"ÙĦØ©":37977,"×ķ׳×Ķ":37978,"ĠпиÑĪ":37979,"Ġshaved":37980,"Ġmesure":37981,"onden":37982,"Ùĥر":37983,"Ġexile":37984,"ĠDesde":37985,"ĠPinterest":37986,"Ġattachments":37987,"Ġhombres":37988,"Ġfines":37989,"ĠìĦ¸ìĥģ":37990,"Ġsleeps":37991,"ĠTaco":37992,"ĠIRA":37993,"rios":37994,"Ġoll":37995,"etes":37996,"Ġunut":37997,"fashioned":37998,"Ġtreball":37999,"ĠNearly":38000,"ĠÑĢеалÑĮно":38001,"Ġchil":38002,"éĢ±":38003,"ÄŁa":38004,"ĠMEL":38005,"roscop":38006,"ĠCG":38007,"Ġvenge":38008,"Ġdishwasher":38009,"algic":38010,"Ġmodifier":38011,"Ġembassy":38012,"timer":38013,"emics":38014,"Ġintricate":38015,"Ġevet":38016,"ĠëĮĢë°ķ":38017,"Ġisot":38018,"ĠнаÑĥÑĩ":38019,"ĠQuiz":38020,"reso":38021,"δÏİ":38022,"Ġyelled":38023,"Ġfeder":38024,"ELLER":38025,"Ġexceeded":38026,"onas":38027,"icano":38028,"ĠживоÑĤ":38029,"ĠMao":38030,"ĠKazuto":38031,"Ġãħĭãħĭãħĭãħĭ":38032,"Ġfrontline":38033,"ĠHungarian":38034,"Ġüberall":38035,"awat":38036,"Ġgrips":38037,"ições":38038,"arnya":38039,"ĠÍ¡":38040,"Ġseid":38041,"Ġanak":38042,"Ġacabou":38043,"íķij":38044,"Ġnotorious":38045,"ĠGodzilla":38046,"Ġovercoming":38047,"ĠPend":38048,"Ġolabilir":38049,"ülme":38050,"Ġerhalten":38051,"ãĤīãģĦ":38052,"ê·¹":38053,"ĠMeter":38054,"Ġstaan":38055,"Ol":38056,"Ġchats":38057,"ĠBuenos":38058,"ÃŃve":38059,"aluable":38060,"Ġstrategically":38061,"Ġcomprised":38062,"ĠпеÑĢÑģонаж":38063,"Ġwann":38064,"ĠCen":38065,"ниÑĤе":38066,"Łģ":38067,"ĠÑĤобой":38068,"iad":38069,"ĠkardeÅŁim":38070,"ĠCongressman":38071,"reaming":38072,"homme":38073,"Ġcommunaut":38074,"Ġalcoholic":38075,"Ġpickled":38076,"Ġacord":38077,"position":38078,"egól":38079,"Ġtroubling":38080,"ĠMarcheg":38081,"Ġzumindest":38082,"Ġseamlessly":38083,"Ġolun":38084,"ĠTVs":38085,"ĠпÑĢакÑĤиÑĩеÑģки":38086,"Ġbackend":38087,"ãģĵãĤĵãģ«ãģ¡ãģ¯":38088,"idable":38089,"Ġgadget":38090,"Ġfaço":38091,"ĠMarchegiani":38092,"Ġë°¤":38093,"Ġaccidental":38094,"ĠLP":38095,"Ġeldest":38096,"ĠAdmiral":38097,"ĠnÄĥm":38098,"lever":38099,"Ġpastel":38100,"Ġfondo":38101,"Connie":38102,"Ġtercer":38103,"Ġpact":38104,"ĠMonte":38105,"Ġmeats":38106,"ĠSMS":38107,"ĠAustralians":38108,"ç¼":38109,"Rhett":38110,"Ġexactement":38111,"Ġë¹¼":38112,"ĠMOD":38113,"ç¡":38114,"ĠRapt":38115,"ĠNoch":38116,"Ġabort":38117,"ĠNaval":38118,"ĠFuji":38119,"INTER":38120,"ĠновÑĭй":38121,"Ġmiejsce":38122,"ĠICU":38123,"ĠGraduate":38124,"ĠGlen":38125,"ardi":38126,"ĠÈĺ":38127,"Ġsolder":38128,"Ġprofessions":38129,"Ġorthog":38130,"omn":38131,"introdu":38132,"ĠDenise":38133,"ìŀIJ를":38134,"Ġcorrespondence":38135,"AMA":38136,"Ġinflict":38137,"Ġfand":38138,"ĠGü":38139,"ĠÑĩеÑĤ":38140,"Ġtraced":38141,"Ġpatents":38142,"Ġambush":38143,"Ġlotta":38144,"ffer":38145,"ĠWagner":38146,"Ġimperson":38147,"Ġextrêmement":38148,"ÙĤت":38149,"conduct":38150,"Att":38151,"ĠMueller":38152,"ĠAlicia":38153,"Ġcyc":38154,"Ġhacker":38155,"Ġtys":38156,"Ġhail":38157,"ĠзаÑıв":38158,"Ġpasso":38159,"Ġì¶Ķê°Ģ":38160,"ĠÎĪ":38161,"Ġpackaged":38162,"ĠCynthia":38163,"heet":38164,"ä¸ŃåĽ½":38165,"ĠNissan":38166,"ĠQuesto":38167,"é¨":38168,"did":38169,"Ġμια":38170,"ĠEllis":38171,"ĠAnalysis":38172,"cemos":38173,"Ġaseg":38174,"ĠMyster":38175,"ĠCao":38176,"Ġtuv":38177,"ĠIndustry":38178,"ì£¼ê³ł":38179,"otal":38180,"Ġpequeño":38181,"bras":38182,"Ġcomprehend":38183,"ĠSimpson":38184,"ÑģÑĤвие":38185,"ocracy":38186,"иÑĩеÑģки":38187,"ĠMush":38188,"ĠLaurie":38189,"Ġtriangular":38190,"ĠPresents":38191,"ĠKunden":38192,"ç´¹":38193,"æѦ":38194,"ĠIss":38195,"ĠDeck":38196,"á»ĥn":38197,"ĠDarkness":38198,"Ġinflammatory":38199,"eremiah":38200,"Ġwarmed":38201,"veyard":38202,"ĠMemory":38203,"etty":38204,"Ġtaxpayers":38205,"à¸ĵ":38206,"Ø¡":38207,"Ġpractise":38208,"ëĭ¬ë":38209,"Ġdrilled":38210,"mÃ¼ÅŁ":38211,"logo":38212,"ĠFach":38213,"¤ë¡ľ":38214,"Ġübrigens":38215,"Ġkonnten":38216,"Ġnormalmente":38217,"Ġargues":38218,"ilingual":38219,"°ë¥¼":38220,"egal":38221,"Ġtravaill":38222,"ovy":38223,"аÑĤо":38224,"Ġruth":38225,"ĠLights":38226,"Ġconsisted":38227,"×ijר×Ļ×Ŀ":38228,"Ġstereotype":38229,"Ġpayer":38230,"ĠRee":38231,"ĠAirbnb":38232,"Ġdrowned":38233,"ĠZoe":38234,"Ġcanopy":38235,"Ġbarr":38236,"ĠноÑĩ":38237,"Ġpagan":38238,"Ġjars":38239,"Ġrê":38240,"erver":38241,"æĪ¿":38242,"ieben":38243,"Ġespect":38244,"ĠFi":38245,"Ġunwilling":38246,"Ġtechnician":38247,"ặt":38248,"member":38249,"ĠCanal":38250,"سÙħ":38251,"Ġlieber":38252,"Ġinference":38253,"Ġhonoring":38254,"åijµ":38255,"ĠCampaign":38256,"Ġlineage":38257,"ĠStress":38258,"Ġvictories":38259,"Ġdeja":38260,"×£":38261,"êtes":38262,"blick":38263,"Ġменее":38264,"oths":38265,"ĠCouple":38266,"Jason":38267,"ĠNicolas":38268,"екÑģ":38269,"lib":38270,"Ġherramient":38271,"Ġ×IJ×ķ×ŀר":38272,"Ġвидим":38273,"millimeter":38274,"Ġsilhouette":38275,"Ġdriveway":38276,"Ġcherish":38277,"ãħłãħł":38278,"Ġransom":38279,"Ġinterdisciplinary":38280,"ĠPortal":38281,"Ġtrag":38282,"thood":38283,"Ġtedious":38284,"Ġglossy":38285,"Ġprépar":38286,"ĠCay":38287,"ĠTook":38288,"ĠBottom":38289,"Ġzig":38290,"å«":38291,"åį±":38292,"represented":38293,"à¹Ģลย":38294,"Ġdesarrollo":38295,"ìĦľë":38296,"Ġviscos":38297,"Ġmilligram":38298,"ĠGund":38299,"Ġferment":38300,"drum":38301,"Ġdrawers":38302,"Laugh":38303,"Ġpelos":38304,"Ġpavement":38305,"Ġmemoir":38306,"avait":38307,"Ġ2050":38308,"¤ë¥¼":38309,"Ġrazón":38310,"Ġflourish":38311,"Ġstern":38312,"ä¸Ī":38313,"ĠChung":38314,"Ġserpent":38315,"ĠGentlemen":38316,"羣çļĦå¾Ī":38317,"kook":38318,"Ġlut":38319,"importe":38320,"parent":38321,"Ġwsz":38322,"Ġscree":38323,"ĠMitarbeiter":38324,"å·´":38325,"mut":38326,"Ġìĸĺ기를":38327,"Ġsemble":38328,"ĠOW":38329,"Ġinvestigator":38330,"ĠCheryl":38331,"ĠGerald":38332,"Ġprere":38333,"Ġcompares":38334,"nyt":38335,"Ġdiferença":38336,"?-":38337,"Ġquá":38338,"ר×Ļ":38339,"Sen":38340,"Ġheps":38341,"Ġgratuit":38342,"Ġconsort":38343,"ĠSTOP":38344,"ĠProtestant":38345,"Ġelectrode":38346,"âĹ":38347,"Ġsecurely":38348,"иÑĩеÑģкой":38349,"Ġtää":38350,"Ġregisters":38351,"ĠHeavenly":38352,"ogly":38353,"issä":38354,"ĠPhysics":38355,"ĠMerkel":38356,"Ġrév":38357,"éĻ¢":38358,"Ġerased":38359,"ĠSacramento":38360,"Ġcoffin":38361,"Ġexacer":38362,"Ġlanz":38363,"Ġpoets":38364,"ulif":38365,"Ġì¹ĺë":38366,"ĠNerd":38367,"ĠNCT":38368,"ĠHour":38369,"nehmer":38370,"ŀĺëıĦ":38371,"ĠPrinci":38372,"Sw":38373,"mies":38374,"armed":38375,"ĠBeatles":38376,"Ġpropagation":38377,"Ġexchanged":38378,"Ġcumulative":38379,"Ġì§ijìĹIJ":38380,"Ġdefeating":38381,"æĬ±":38382,"bels":38383,"Ġwes":38384,"ĠOdyssey":38385,"ä½łæĥ³":38386,"avior":38387,"ĠìľĦìĹIJ":38388,"Ġbrit":38389,"Ġhijo":38390,"DAY":38391,"ĠاÙĦتÙĬ":38392,"ĠСеÑĢг":38393,"Ñĥка":38394,"edsiÄĻ":38395,"Ġimpos":38396,"Ġellas":38397,"Ġfirearms":38398,"ĠNR":38399,"Ġ×ij×IJ":38400,"ĠÐŁÐ¾ÐºÐ°":38401,"awi":38402,"ĠìĦ±ê³µ":38403,"Ġpupils":38404,"ĠTack":38405,"Ġfrase":38406,"ĠShip":38407,"Ġstad":38408,"举":38409,"ĠGreater":38410,"unun":38411,"immung":38412,"grown":38413,"ĠNXT":38414,"ĠAmericas":38415,"fox":38416,"Ġmanten":38417,"éłIJåĤĻ":38418,"ĠÑģок":38419,"Ġrikt":38420,"lectric":38421,"deep":38422,"ĠзнаеÑĪÑĮ":38423,"Ġbenut":38424,"ĠInfrast":38425,"ĠEmir":38426,"ĠоÑĤпÑĢав":38427,"ĠKimchi":38428,"ĠFinnish":38429,"´ìłģ":38430,"inaire":38431,"Ġoike":38432,"æ¸ħæ¥ļ":38433,"Ġhostage":38434,"ĠButton":38435,"ÙĤÙĬ":38436,"eking":38437,"ĠKazakh":38438,"Ġcomforting":38439,"Ġsog":38440,"Ġgreeted":38441,"guitar":38442,"payer":38443,"Ġrelational":38444,"Ġconstruir":38445,"çī¹åĪ¥":38446,"opian":38447,"ĠVolume":38448,"ieth":38449,"ÑģÑĤвом":38450,"urrection":38451,"liÅĽmy":38452,"Ġhemisphere":38453,"ĠBean":38454,"IGN":38455,"Ġkötü":38456,"ĠFallout":38457,"Ġbrace":38458,"ç¹¼çºĮ":38459,"ÏĢά":38460,"ĠHAS":38461,"Ġgé":38462,"Ġcharacterize":38463,"ặc":38464,"ĠMilky":38465,"Ġtumors":38466,"Ġnuit":38467,"ĠGaz":38468,"ĠìŀĪëĭ¤ëĬĶ":38469,"ĠгаÑĢ":38470,"essment":38471,"ĠAbe":38472,"Ġë½ij":38473,"ĠEinsatz":38474,"JIN":38475,"jä":38476,"Cry":38477,"ĠPromised":38478,"ĠÑģеÑĢд":38479,"okus":38480,"Ġscalable":38481,"ĠпоÑģмоÑĤÑĢеÑĤÑĮ":38482,"ücklich":38483,"Ġrealism":38484,"Ġmayo":38485,"Ġjuvenile":38486,"Ġheadlights":38487,"ĠgörÃ¼ÅŁ":38488,"ĠReform":38489,"Ġhalves":38490,"czne":38491,"Ġbreakup":38492,"żej":38493,"Ġrätt":38494,"Day":38495,"ĠìĿ¼ë³¸":38496,"Ġmuerte":38497,"Ġtunes":38498,"ĠSmile":38499,"record":38500,"Ġrecherche":38501,"atisfied":38502,"Ġpozi":38503,"Ġcelebrations":38504,"isexual":38505,"ĠROB":38506,"thirds":38507,"ĠFortune":38508,"ĠÑĤой":38509,"Ġbranded":38510,"loo":38511,"Ġdud":38512,"Ġrandomized":38513,"Ġcombin":38514,"ä¸ĢäºĽ":38515,"ieran":38516,"czenia":38517,"įãĥ«":38518,"Ġcurator":38519,"Ġartery":38520,"ĠÑĥÑĪ":38521,"ĠÑĩиÑĤ":38522,"Ġsubsidies":38523,"Ġblossom":38524,"ĠTwilight":38525,"Ġhyvä":38526,"ĠPompe":38527,"ĠCisco":38528,"ĠÐŁÑĢо":38529,"Ġbiri":38530,"Ġgern":38531,"Ġrebuilt":38532,"Ġwcze":38533,"Ġbenefici":38534,"Ġdrummer":38535,"Ġsolids":38536,"Ġdiyorsun":38537,"ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸãģĦãģ¾ãģĹãģŁ":38538,"lated":38539,"Ġmuddy":38540,"Ġholog":38541,"Ġclaps":38542,"ĠRings":38543,"ĠOkey":38544,"ĠBrave":38545,"Ġvaluation":38546,"Ġmigrant":38547,"Ġintermitt":38548,"Ġeigene":38549,"iliary":38550,"ãĥ¼ãĥĪ":38551,"markt":38552,"kr":38553,"ĠRib":38554,"á»Ļi":38555,"Ġaccusations":38556,"Ġarab":38557,"wash":38558,"ĠBardzo":38559,"Ġugh":38560,"esters":38561,"ophren":38562,"Ġalimentos":38563,"ĠUz":38564,"ÖĤ":38565,"Ġ650":38566,"ĠпÑĢиеÑħ":38567,"FI":38568,"Ġsampai":38569,"Ġparlé":38570,"hesion":38571,"Ġsır":38572,"Ġapparatus":38573,"Ġcorrelated":38574,"ĠPrincipal":38575,"Ġcorr":38576,"ĠOfficial":38577,"иÑĩеÑģкие":38578,"Ġterminals":38579,"Should":38580,"Ġvacun":38581,"Ġstellt":38582,"Ġmooi":38583,"etzung":38584,"ĠкÑĢа":38585,"Ġdai":38586,"Ġпож":38587,"Team":38588,"ĠPPE":38589,"ĠÐŀÑģ":38590,"ĠLeah":38591,"ĠIvy":38592,"yst":38593,"Ġuhhh":38594,"Ġnighttime":38595,"Ġtrendy":38596,"Ġsecurities":38597,"Ġcontinents":38598,"Ġfirsthand":38599,"ĠVeron":38600,"ĠëĤ®":38601,"Ġbrowsing":38602,"ĠCada":38603,"tro":38604,"Ġtramp":38605,"reib":38606,"Ġerstmal":38607,"irler":38608,"Ġpsic":38609,"Ġgetir":38610,"ĠNP":38611,"Ġdzieci":38612,"обÑĢаз":38613,"Ġmagician":38614,"Ġscrutiny":38615,"Ġslab":38616,"ĠOT":38617,"isty":38618,"iries":38619,"orest":38620,"Ġtasked":38621,"Ġmorally":38622,"ìķ¼ì§Ģ":38623,"ustered":38624,"Ġfools":38625,"Ġirrespons":38626,"Ġeinf":38627,"Ġviá»ĩc":38628,"Ġscor":38629,"Ġpillows":38630,"ĠGegen":38631,"Ġtutte":38632,"Ġquarterly":38633,"Ġdidnt":38634,"ĠGym":38635,"ĠEther":38636,"ĠØ«":38637,"лиÑĪком":38638,"Ġsignaling":38639,"ĠNode":38640,"ĠDoncs":38641,"Ġyah":38642,"ĠKanal":38643,"Ġfading":38644,"etin":38645,"Ġinfluencers":38646,"Ġmedals":38647,"Ġengineered":38648,"Ġfermented":38649,"ê²łì§Ģë§Į":38650,"ĠBeethoven":38651,"×ŀש":38652,"inental":38653,"ĠìķĮ볤":38654,"ütfen":38655,"alnya":38656,"Ġovere":38657,"Ġdenkt":38658,"акÑĤеÑĢ":38659,"Ġâĺ":38660,"Ġnecesit":38661,"Ġgenerators":38662,"grass":38663,"ĠподÑĥм":38664,"lieÃŁen":38665,"Bar":38666,"ľëıĻ":38667,"ĠдеÑĤей":38668,"Ġsucking":38669,"Ġstencil":38670,"Ġprimo":38671,"ĠBreath":38672,"strom":38673,"Ġimmensely":38674,"Ġappreh":38675,"ìłķìĿ´":38676,"Pop":38677,"Ġjong":38678,"ĠGiul":38679,"ĠADHD":38680,"Ġhören":38681,"Ġelo":38682,"ivent":38683,"Ġrus":38684,"Ġoutrageous":38685,"Ġmastered":38686,"Ġ커":38687,"ÙĪÙģ":38688,"ipes":38689,"ĠRudy":38690,"Jacob":38691,"Ġbullish":38692,"Ġtapped":38693,"Ġfaud":38694,"izophren":38695,"ĠÑģоÑħ":38696,"ĠDarling":38697,"Ġ1963":38698,"ĠPrevention":38699,"²Ķ":38700,"Ġabdominal":38701,"stones":38702,"Ġavaient":38703,"á»ķi":38704,"make":38705,"Ġsare":38706,"ĠInstant":38707,"кам":38708,"Ġkeeper":38709,"Ġblankets":38710,"ãģ§ãģĹãĤĩãģĨ":38711,"Ġsweats":38712,"ĠMinneapolis":38713,"åħ¨éĥ¨":38714,"Ġgenommen":38715,"Ġfasten":38716,"ĠBrussels":38717,"åij¼":38718,"Ġcafeter":38719,"Ġabsorbing":38720,"Ġhago":38721,"ĠElmo":38722,"Ġgusto":38723,"ĠYap":38724,"Música":38725,"Ġtert":38726,"Ġbanda":38727,"Ġmily":38728,"Ġthereafter":38729,"ĠStockholm":38730,"ĠCarson":38731,"Ġcalibration":38732,"avaÅŁ":38733,"ansa":38734,"ikke":38735,"Ġforesee":38736,"Ġqualche":38737,"Ġdeste":38738,"æ¤":38739,"ünüz":38740,"Ġforge":38741,"Dis":38742,"esten":38743,"Ġδια":38744,"Ġencaps":38745,"ĠGespr":38746,"Ġchercher":38747,"ickets":38748,"ÑĤоÑĢÑĭ":38749,"Cr":38750,"ĠТакже":38751,"Ġrabbits":38752,"ĠDot":38753,"heiten":38754,"Ġcausal":38755,"ĠFoster":38756,"ajÄħc":38757,"Ġbereit":38758,"Ġayudar":38759,"é«Ļ":38760,"ãģ³":38761,"song":38762,"comb":38763,"Ġfringe":38764,"Ġcybersecurity":38765,"Ġ뾨":38766,"Ġkier":38767,"Ġbeschäft":38768,"ĠконÑĨе":38769,"Ġfacilit":38770,"ĠNamen":38771,"Ġbilateral":38772,"tx":38773,"ĠWissenschaft":38774,"Ġnuances":38775,"Ġripping":38776,"Ġfy":38777,"ĠSicherheit":38778,"ĠGhana":38779,"olon":38780,"Ġtopped":38781,"ĠMorocco":38782,"Ġradial":38783,"ĠLEE":38784,"ĠAndreas":38785,"edd":38786,"ĠìĹ´ë":38787,"ĠAirlines":38788,"ãģĵãĤį":38789,"Ġvalores":38790,"ê·ľ":38791,"Hy":38792,"ĠзадаÑĩ":38793,"ĠKendall":38794,"ĠÑħаÑĢ":38795,"ĠVamp":38796,"Ġpython":38797,"Ġmanageable":38798,"ĠGente":38799,"oise":38800,"iciary":38801,"Ġimposs":38802,"ĠBunny":38803,"iesta":38804,"Andrew":38805,"Ġsert":38806,"ĠCec":38807,"zzarella":38808,"Ġautomobile":38809,"ĠTiere":38810,"allows":38811,"åĨĨ":38812,"Ġë°Ģ":38813,"ĠScorp":38814,"ĠJelly":38815,"agara":38816,"ĠStretch":38817,"Ġredef":38818,"Ġexacerb":38819,"ĠSHA":38820,"éf":38821,"orsa":38822,"Ġflawed":38823,"ĠNoel":38824,"?!?":38825,"Ġprocent":38826,"Ġmenstru":38827,"ĠпÑĢоÑĩ":38828,"Ġinfants":38829,"ðŁİµ":38830,"pause":38831,"ĠRacing":38832,"Ġ1948":38833,"Ġsuperintendent":38834,"idores":38835,"idy":38836,"brahim":38837,"Ġunlucky":38838,"Ġperk":38839,"anci":38840,"Ġë§ĮëĤĺ":38841,"ĠÐľÐ¾Ñģкв":38842,"Ġfinans":38843,"Ġdiferencia":38844,"łĪìĿ´":38845,"éħį":38846,"ORY":38847,"ĠTac":38848,"ÛĮا":38849,"Ġdesem":38850,"Ġважно":38851,"ĠJU":38852,"ĠìŀĪìŀĸìķĦìļĶ":38853,"ĠÎĿ":38854,"Ġinformations":38855,"ĠHEL":38856,"hst":38857,"ĠпоговоÑĢ":38858,"Ġvoiture":38859,"Ġreus":38860,"ändig":38861,"ĠпоÑħож":38862,"jing":38863,"Ġdru":38864,"altra":38865,"Ġproduits":38866,"Ġkite":38867,"Ġeyeball":38868,"ĠBelt":38869,"ĠRestaurant":38870,"Ġgamb":38871,"Ġporridge":38872,"itters":38873,"Ġconverts":38874,"Ġyardım":38875,"Ġmáximo":38876,"wirtschaft":38877,"ĠíķĺëĤĺë":38878,"Ġì¤Ģ":38879,"Ġiceberg":38880,"Ġvorbei":38881,"Ġ256":38882,"ocratic":38883,"Ġreckless":38884,"onner":38885,"Ġmús":38886,"Ġlogically":38887,"ĠPrison":38888,"ĠNetz":38889,"Ġvacant":38890,"Ġnimmt":38891,"ĠHARR":38892,"Ġзов":38893,"ĠDee":38894,"ringe":38895,"niest":38896,"ĠRules":38897,"ìĬ¤ëŁ½":38898,"cussions":38899,"Ġfloral":38900,"Ġconstrained":38901,"Ġdifferentiation":38902,"ĠQuebec":38903,"ĠÛģÛĮÚº":38904,"Ġpública":38905,"itel":38906,"Ġaccommodations":38907,"ĠGrü":38908,"íľ":38909,"Ġpickles":38910,"иÑĩеÑģкиÑħ":38911,"Ġcommissions":38912,"ĠBaek":38913,"ĠçocuÄŁ":38914,"ĠMedium":38915,"Ġperiodically":38916,"Ġwonderfully":38917,"Ġstaffing":38918,"ìĽIJë":38919,"rire":38920,"fle":38921,"ĠMcL":38922,"ĠÑĤеп":38923,"ĠпеÑĢек":38924,"нолог":38925,"Ġíģ¬ê²Į":38926,"çĻ¼çı¾":38927,"Ġprosperous":38928,"ĠSpiritual":38929,"ĠChick":38930,"DIA":38931,"ĠÐŁÑĢивеÑĤ":38932,"ĠperÃŃ":38933,"ÑĮÑİÑĤ":38934,"Ġconsultants":38935,"ĠEarl":38936,"ä»Ĭå¹´":38937,"Ġruining":38938,"оÑĢе":38939,"Ġpenser":38940,"Ġtakiej":38941,"Ġstrengthened":38942,"ĠLiquid":38943,"онеÑĨ":38944,"аваÑĤÑĮ":38945,"Ġcamer":38946,"Ġdisagreement":38947,"Ġbathing":38948,"ĠYosh":38949,"aal":38950,"prechen":38951,"RISADAS":38952,"Ġsuperstar":38953,"æģŃ":38954,"лÑıÑĤÑĮ":38955,"Ġnib":38956,"ĠTherm":38957,"ĠDANIEL":38958,"Ġpaw":38959,"Ġliquids":38960,"Ġcapacit":38961,"arken":38962,"Ġvagina":38963,"Ġmashed":38964,"Ġemerges":38965,"yscy":38966,"Ġunrelated":38967,"ĠGuild":38968,"Ġinverted":38969,"itives":38970,"Tra":38971,"Ġbegr":38972,"Ġalte":38973,"ì§ķ":38974,"ãĤģãģ¦":38975,"ĠÑĢазÑĢабоÑĤ":38976,"finder":38977,"Ġдалее":38978,"ĠблагодаÑĢ":38979,"walker":38980,"Ġcrater":38981,"assadors":38982,"rences":38983,"inski":38984,"ĠKIM":38985,"ĠElliot":38986,"2017":38987,"ĠSr":38988,"inka":38989,"anov":38990,"Ġìŀĺ못":38991,"Ġproprietary":38992,"displaystyle":38993,"ĠÑģим":38994,"Ġизб":38995,"ĠPanel":38996,"Ġinstincts":38997,"ĠCommunications":38998,"麻":38999,"midt":39000,"Ġë§Įëĵ¤ìĸ´":39001,"ĠÑģлова":39002,"ĠGilbert":39003,"缮åīį":39004,"Так":39005,"voorbeeld":39006,"еÑİÑģÑĮ":39007,"aryn":39008,"quez":39009,"Ġdart":39010,"ÑĸÑĪ":39011,"ĠHut":39012,"Sal":39013,"Ġsoutheast":39014,"Ġpesticides":39015,"Ġhelicopters":39016,"Ġendured":39017,"iada":39018,"Ġbrewing":39019,"ìŬë":39020,"ĠÑģвобод":39021,"ĠSaints":39022,"ĠFrançais":39023,"ĠEconomics":39024,"Ġdisloc":39025,"ophobia":39026,"Camer":39027,"Ġnegotiated":39028,"ĠÑģÑĤали":39029,"ìĬ¤íģ":39030,"ogie":39031,"Ġtsunami":39032,"Ġpeeled":39033,"Ġmotivations":39034,"è¨Ń":39035,"ostat":39036,"flan":39037,"ĠDAC":39038,"Ġkav":39039,"'RE":39040,"ĠPearson":39041,"bbe":39042,"czenie":39043,"Ġatenção":39044,"íĨµëł¹":39045,"ãģ£ãģ¡":39046,"ĠÑĥдаÑĢ":39047,"Ġintroductory":39048,"ĠIci":39049,"ëĮĢë":39050,"akat":39051,"Ġtrench":39052,"Ġproceeded":39053,"ĠCoin":39054,"Ġderecho":39055,"ĠRede":39056,"æ¯Ľ":39057,"аннÑĭй":39058,"Ġincarcerated":39059,"ĠRichmond":39060,"Rock":39061,"ĠPav":39062,"ĠKarma":39063,"uges":39064,"Ġconteú":39065,"ë¹Ħ":39066,"Ġê·¸ë§Į":39067,"ĠGone":39068,"ĠwspóÅĤ":39069,"ĠRahmen":39070,"unken":39071,"Ġì¤ijìļĶíķľ":39072,"Ġib":39073,"Ġattaching":39074,"Hay":39075,"Ġsuka":39076,"ìį¹":39077,"Ġpivotal":39078,"ĠRespect":39079,"ÃŃda":39080,"IB":39081,"ĠVerantwort":39082,"wiet":39083,"Ġforensic":39084,"ÑĢиÑģÑĤ":39085,"ĠпÑĢинÑĨипе":39086,"Ġmarkings":39087,"Ġkettle":39088,"ĠOpera":39089,"ĠDoctors":39090,"Ġshredded":39091,"Ġrecuer":39092,"Ġvigil":39093,"ĠFail":39094,"Ġentrev":39095,"ĠдÑĥÑĪ":39096,"Ġoutbreaks":39097,"èµ°åIJ§":39098,"ĠÏĢο":39099,"Ġrogue":39100,"angled":39101,"Ġyearly":39102,"ĠCreed":39103,"Ġwam":39104,"Ġlotus":39105,"ê³¼ë":39106,"ãĢģãĢģ":39107,"ĠSpit":39108,"ĠItu":39109,"Ġstrains":39110,"Ġstamped":39111,"Ġplaint":39112,"Ġpotion":39113,"Ġconsolidation":39114,"è©ķ":39115,"оÑĩкÑĥ":39116,"Ġvlogging":39117,"Ġslate":39118,"ĠAuft":39119,"ĠIncor":39120,"ừng":39121,"§IJ":39122,"enh":39123,"ĠheiÃŁ":39124,"Ġdomest":39125,"ĠStrom":39126,"åį³":39127,"akis":39128,"Ġfragen":39129,"Ġfiner":39130,"ĠSug":39131,"Ġuphill":39132,"Ġéén":39133,"âĢ¦)":39134,"ĠÑģоп":39135,"ĠCorey":39136,"Ġsiebie":39137,"Ġmuse":39138,"Ġcloves":39139,"Ġpous":39140,"ĠFinanz":39141,"ĠRoute":39142,"amat":39143,"Ġmutually":39144,"ĠвнÑĥÑĤÑĢи":39145,"ĠSelena":39146,"ëĶ":39147,"ĠGaussian":39148,"ë¶ĢíĦ°":39149,"Ġ×ij׼":39150,"Ġejerc":39151,"å¾®":39152,"kea":39153,"ĠGerry":39154,"ĠSic":39155,"大çļĦ":39156,"Ġ1966":39157,"iese":39158,"Ġfossils":39159,"Ġestad":39160,"ĠKane":39161,"ciÄĩ":39162,"ĠìľłíĬľë":39163,"Ġпам":39164,"ĠCruise":39165,"intérieur":39166,"Ġbekannt":39167,"ĠPode":39168,"Ġdemander":39169,"Rem":39170,"Ġinvade":39171,"Ġdecorating":39172,"ropic":39173,"Ġcowboy":39174,"ĠPhoto":39175,"opolit":39176,"Ġì»¬ëŁ¬ë":39177,"Ġreap":39178,"Ġhandwriting":39179,"à¹Ħร":39180,"Ġëļ":39181,"Ġبعد":39182,"ĠMt":39183,"ÙĢ":39184,"Ġspaceship":39185,"Ġnationalism":39186,"Ġcouncils":39187,"ĠGriffin":39188,"ĠAhmed":39189,"Ġclich":39190,"ĠOL":39191,"wl":39192,"ĠPilot":39193,"å®®":39194,"Ġacronym":39195,"Ġgels":39196,"Ġelectroly":39197,"èĵ":39198,"Ġмной":39199,"Ġepisod":39200,"ĠDieses":39201,"ĠATP":39202,"Ġediyorum":39203,"Ġexpresses":39204,"Ġexhibits":39205,"Comm":39206,"ĠкÑĢÑĥп":39207,"Ġmatar":39208,"Ġ2025":39209,"ĠArtem":39210,"vasive":39211,"rÃł":39212,"ĠbeÅŁ":39213,"é»ĥ":39214,"Ġlizard":39215,"Ġfille":39216,"Ġì§Ī문":39217,"ĠмоÑī":39218,"Ġtür":39219,"Ġculprit":39220,"Ġwoven":39221,"ĠANY":39222,"nim":39223,"Ġtay":39224,"Ġpromin":39225,"Ġacompa":39226,"Ġidé":39227,"Ġboiler":39228,"ĠThemen":39229,"Ġavenue":39230,"ĠMud":39231,"ĠновÑĭе":39232,"Ġwitnessing":39233,"Ġlance":39234,"ĠCHAN":39235,"ĠBever":39236,"تÙħ":39237,"Ġchemotherapy":39238,"King":39239,"ĠbÄĻdÄĻ":39240,"Ġatual":39241,"Ġtive":39242,"Ġtalkin":39243,"Ġquedar":39244,"ieÃŁ":39245,"edel":39246,"Ġìĸ´ìłľ":39247,"Ġjogar":39248,"Ġör":39249,"Ġundertaking":39250,"ĠStrength":39251,"Ġmilhões":39252,"ĠWine":39253,"ĠMolt":39254,"讲":39255,"ãģijãĤĮ":39256,"Ġundermine":39257,"ĠArchives":39258,"vana":39259,"mercial":39260,"MC":39261,"Ġcaste":39262,"пÑĢ":39263,"Ġlegislators":39264,"ulators":39265,"ênio":39266,"Ġëį°ë":39267,"ĠÑħоÑĤиÑĤе":39268,"Ġнек":39269,"Ġsurn":39270,"Ġconsci":39271,"ĠPOW":39272,"Ġculinary":39273,"ĠKAT":39274,"ĠFolks":39275,"Ñĭваем":39276,"Ġвок":39277,"ãģijãĤĭ":39278,"service":39279,"pts":39280,"Ġпобед":39281,"æĺ¯åķĬ":39282,"Ġtents":39283,"Ġnord":39284,"STE":39285,"Ġrepublican":39286,"Ġwyk":39287,"Ġminions":39288,"èĻķ":39289,"Ġmemang":39290,"jest":39291,"Ġcomparative":39292,"Ġtyle":39293,"carbon":39294,"bedingt":39295,"ksen":39296,"Ġnegativity":39297,"Ġsjälv":39298,"Ġdú":39299,"æīĢæľī":39300,"Ġrecalled":39301,"cra":39302,"ĠTada":39303,"ĠÑĢÑĥки":39304,"ĠопÑĢедел":39305,"Ġprocrast":39306,"Ġjogos":39307,"ĠOo":39308,"ĠHearts":39309,"Ġéch":39310,"ĠksiÄħż":39311,"Ġcoarse":39312,"ĠTube":39313,"ĠGreens":39314,"Ġén":39315,"Ġdumbbell":39316,"ĠÑĤи":39317,"Ġquerer":39318,"اØŃ":39319,"Ïĥει":39320,"ĠпÑĢавилÑĮно":39321,"Ġпап":39322,"Ġcompra":39323,"Ġtér":39324,"ĠAntes":39325,"Ġoptimum":39326,"Ġbiscuit":39327,"κι":39328,"aczego":39329,"Ġìĭľê°ĦìĿ´":39330,"ĠMarines":39331,"vero":39332,"Ġvaccinations":39333,"Ġpetty":39334,"riters":39335,"Ġал":39336,"country":39337,"Ġcounters":39338,"Ġattendant":39339,"ĠHui":39340,"ãģ¨ãģĦãģĨãģĵãģ¨ãģ§":39341,"cka":39342,"ÑģÑĤвеннÑĭй":39343,"guy":39344,"Ġtricked":39345,"ĠRED":39346,"Ġthrilling":39347,"ÏĢοι":39348,"Ġpiggy":39349,"Ġanunci":39350,"ORTER":39351,"ĠValue":39352,"Ġrond":39353,"ĠADA":39354,"Ġposer":39355,"hores":39356,"ĠRoland":39357,"ĵ¯":39358,"Ġnoir":39359,"Ġש×IJ×":39360,"ë°ľ":39361,"iemand":39362,"ĠпоÑĤеÑĢ":39363,"ê³³":39364,"Ġê±±":39365,"Ġformatting":39366,"ĠLed":39367,"è§Ģçľ¾":39368,"Ġkillers":39369,"ĠÄijấy":39370,"Ġhaar":39371,"again":39372,"!>[":45687,"minster":45688,"Ġвли":45689,"Ġidentifier":45690,"ĠLambda":45691,"Ġtros":45692,"Ġflawless":45693,"Ġdetrimental":45694,"Ġbunları":45695,"War":45696,"Ġregião":45697,"羣çļĦæĺ¯":45698,"ĠBike":45699,"cessors":45700,"Ġcùng":45701,"ĠRN":45702,"Ġê½ĥ":45703,"Ġküçük":45704,"ĠBeginning":45705,"íĺ¸ë":45706,"Ġgewe":45707,"Ġdenote":45708,"ĠAlberto":45709,"Ġprobiot":45710,"Ġode":45711,"Ġmolar":45712,"Ġbursting":45713,"assumed":45714,"Ġfootprints":45715,"veda":45716,"Ġsteroids":45717,"Ġflaming":45718,"ĠEller":45719,"Ġerkennen":45720,"ätzen":45721,"Ġlifecycle":45722,"ĠDOU":45723,"ĠKarena":45724,"ĠGuerra":45725,"è¿ĺæĺ¯":45726,"Ġsinister":45727,"Ġpodéis":45728,"Ġparab":45729,"Ġoko":45730,"Ġmatéri":45731,"Ġcaric":45732,"sonaro":45733,"Ġpraticamente":45734,"ÑĥÑģа":45735,"Ġcomunque":45736,"Ġvigilant":45737,"Ġregimes":45738,"ĠShooting":45739,"Ġraids":45740,"ĠNora":45741,"ĠWieder":45742,"mens":45743,"ĠÑģод":45744,"Ġê²½ìļ°ìĹIJëĬĶ":45745,"ĠвÑħод":45746,"Ġautobi":45747,"ĠSchn":45748,"ĠRobbie":45749,"ĠFitness":45750,"ĠконÑĦ":45751,"Ġpenguin":45752,"моÑĤÑĢÑı":45753,"Ġминим":45754,"plays":45755,"Ġdelegates":45756,"Mer":45757,"Ġsistem":45758,"ĠMichaels":45759,"male":45760,"اع":45761,"Ġcách":45762,"ĠHä":45763,"Ġ×Ļ×ķ×ĵ×¢":45764,"Ġsuperpower":45765,"Ġstron":45766,"Ġrover":45767,"Ġdépend":45768,"éĻ³":45769,"Ġretiring":45770,"Ġvampires":45771,"Ġmerde":45772,"ĠChanging":45773,"Ġtame":45774,"Ġspokesperson":45775,"Ġcay":45776,"Ġflirting":45777,"ĠGrö":45778,"Ġwär":45779,"Ġwyb":45780,"Ġcoeur":45781,"ạnh":45782,"ĠìĻĢìĦľ":45783,"Ġconnais":45784,"ĠHundreds":45785,"ĠBea":45786,"ĠαÏĢ":45787,"pruch":45788,"Ġsociedade":45789,"ĠWhilst":45790,"ĠKait":45791,"espace":45792,"Ġchia":45793,"ĠErm":45794,"Ġë°Ķê¿":45795,"Ġfences":45796,"ĠMortal":45797,"ê²ģ":45798,"ĠгÑĢаÑĦ":45799,"ĠHomeland":45800,"ĠJUN":45801,"isst":45802,"Ġparlar":45803,"Ġsporty":45804,"éo":45805,"Ġdeepen":45806,"ĠBehavior":45807,"éĢı":45808,"åĵĪåĵĪåĵĪ":45809,"Ġerrand":45810,"Ġrotary":45811,"ĠWellington":45812,"Wind":45813,"Ġmesela":45814,"ảng":45815,"iende":45816,"Ġexcell":45817,"ĠGenius":45818,"ĠEduardo":45819,"æľī人":45820,"ĠÅŁunu":45821,"ĠÄ°stanbul":45822,"Ġproduto":45823,"Ġãħİãħİ":45824,"OFF":45825,"Ġwollt":45826,"çĪĨ":45827,"Ġëī´ìĬ¤":45828,"Ġlass":45829,"Ġhertz":45830,"Ġaromatic":45831,"Ġзвон":45832,"Ġautoc":45833,"ĠLust":45834,"Ġ112":45835,"ĠÎĹ":45836,"Ġreviewers":45837,"Ġreceptive":45838,"å°įäºĨ":45839,"ând":45840,"oglo":45841,"ĠìķĦëĭĻ":45842,"Ġngo":45843,"ÑĸÑĤи":45844,"Ã¥t":45845,"cono":45846,"Ġtekrar":45847,"Ġì£¼ê³ł":45848,"ĠgelmiÅŁ":45849,"Ġbedtime":45850,"ĠArgh":45851,"ADA":45852,"ĠгоÑĢода":45853,"ĠÄĩ":45854,"Ġalliances":45855,"giggling":45856,"Ġyerde":45857,"Ġspies":45858,"Ġgutes":45859,"çi":45860,"Ġalltid":45861,"ĠLah":45862,"ŀIJë":45863,"ĠdokÅĤad":45864,"ÙĪÙĬ":45865,"Ġtoxicity":45866,"Ġcancellation":45867,"Ġ1958":45868,"dro":45869,"ĠìŀijìĿĢ":45870,"ĠMotorola":45871,"Ġmultin":45872,"Ġenthusiasts":45873,"ĠMighty":45874,"ĠCoconut":45875,":ãĢĮ":45876,"ĠPictures":45877,"Ġsangre":45878,"Ġblinking":45879,"olesome":45880,"ĠìĬ¤íĥĢìĿ¼":45881,"FP":45882,"Ġbooming":45883,"ĠдеÑģÑıÑĤ":45884,"Ġratchet":45885,"Ġtimelines":45886,"leness":45887,"Ġcages":45888,"ĠGoodnight":45889,"ometimes":45890,"Ġcunning":45891,"ĠRisk":45892,"uled":45893,"dade":45894,"Ġprata":45895,"ĠgustarÃŃa":45896,"amus":45897,"ĠJinping":45898,"Ġestrut":45899,"Ġdescobrir":45900,"ĠMÄģ":45901,"ĠAllan":45902,"ĠåĪĨ":45903,"Ġ׾ק":45904,"Ġpreserv":45905,"ĠStrawberry":45906,"Äı":45907,"Lu":45908,"Ġkro":45909,"ĠReports":45910,"ìħĶìķ¼":45911,"Ġvalt":45912,"Ġpouvait":45913,"Ġappar":45914,"ĠBone":45915,"Ġpreferably":45916,"ĠRepública":45917,"å°±åĪ°":45918,"Ġherzlich":45919,"Ġchimney":45920,"Ġçev":45921,"Ġvisas":45922,"Ġverr":45923,"Ġcultivation":45924,"ĠArmenia":45925,"ĠвдÑĢÑĥг":45926,"Ġcockro":45927,"retched":45928,"artz":45929,"ĠлÑİдÑıм":45930,"ĠpolÃŃticas":45931,"ĠPanz":45932,"ĠAKA":45933,"ĠëĪĮ룬":45934,"Ġerro":45935,"Ġcamper":45936,"Ġ102":45937,"स":45938,"done":45939,"Ġhoard":45940,"ĠÐŁÐ¾ÑĤом":45941,"jeong":45942,"Ġdesta":45943,"pak":45944,"Ġinim":45945,"Ġgrowers":45946,"ĠMessage":45947,"Ġelector":45948,"engage":45949,"ĠForbes":45950,"ĠCincinnati":45951,"Ġdifférence":45952,"df":45953,"Ġspar":45954,"Ġawaits":45955,"ĠUSSR":45956,"ĠRising":45957,"ĠHoÅŁ":45958,"Ġfooting":45959,"Ġcondiciones":45960,"ÑĤоÑĢов":45961,"Ġclinician":45962,"ĠDiskuss":45963,"å£ĵ":45964,"ר×Ĵ":45965,"×¥":45966,"iteit":45967,"gren":45968,"Ġcharisma":45969,"Ġleuke":45970,"Ġirritating":45971,"Ġcirca":45972,"ĠRhodes":45973,"Ġpior":45974,"Ġhandicap":45975,"royable":45976,"Ġvull":45977,"OG":45978,"ĠinÃŃcio":45979,"ieri":45980,"Ġsplashing":45981,"Ġdemise":45982,"Ġassistir":45983,"ÑĩÑĤо":45984,"Ġcovert":45985,"ĠGud":45986,"à¸ī":45987,"klär":45988,"ĠìŀIJ꾸":45989,"Ġverändert":45990,"ĠREM":45991,"ĠConven":45992,"atge":45993,"Ġpierwsze":45994,"Ġclergy":45995,"lington":45996,"liv":45997,"VPN":45998,"ĠÑģожал":45999,"ĠHate":46000,"ãģ¨ãģĵãĤį":46001,"ÏĨο":46002,"ĠRespons":46003,"озд":46004,"Ġetmek":46005,"Ġchemin":46006,"ÙħØ©":46007,"Ġê°Ģ족":46008,"Tre":46009,"Ġumas":46010,"ĠBurton":46011,"Ġpatriarch":46012,"ĠSmithsonian":46013,"¥ĺ":46014,"Moon":46015,"Air":46016,"Ġmedios":46017,"Ġeraser":46018,"Ġwollten":46019,"Ġpareil":46020,"ĠBillie":46021,"æĬ½":46022,"еÑĢÑĤв":46023,"Ġparlament":46024,"Ġagony":46025,"ĠQUE":46026,"sequently":46027,"Another":46028,"ĠWhew":46029,"ĠAnnual":46030,"Ġseben":46031,"ìĥģìĿĦ":46032,"values":46033,"ŀľë§Į":46034,"Ġsinon":46035,"ereal":46036,"ĠEnlight":46037,"ĠChemistry":46038,"ĠCatalunya":46039,"Ġdoctr":46040,"anton":46041,"Ġstuk":46042,"ĠPlate":46043,"ĠKardashian":46044,"Ġfilos":46045,"ĠWet":46046,"ĠпопÑĭÑĤ":46047,"Ġunknowns":46048,"ĠSchon":46049,"ĠBaldwin":46050,"Ġtelescopes":46051,"ĠGucci":46052,"oxide":46053,"ĠConservative":46054,"ìĦ±ìĿĦ":46055,"Ġhinaus":46056,"Power":46057,"Ġê±´ê°ķ":46058,"Ġprevail":46059,"orman":46060,"machine":46061,"Ġ1946":46062,"Ġunbel":46063,"Ġschaut":46064,"Ġpiel":46065,"eenth":46066,"Ġobjectively":46067,"Ġchakra":46068,"audio":46069,"Ġchicos":46070,"ĠVault":46071,"å°Ī":46072,"Ġmedicinal":46073,"ĠTail":46074,"While":46075,"Ġasphalt":46076,"Ġfroze":46077,"ĠEK":46078,"unching":46079,"nosis":46080,"2015":46081,"ĠGri":46082,"Ġoddly":46083,"ĠMär":46084,"ĠAeg":46085,"colo":46086,"Par":46087,"Ġëĵ¤ìĸ´ë":46088,"Ġvinden":46089,"ĠOVER":46090,"Ġiced":46091,"Ġscorp":46092,"Ġhac":46093,"qualified":46094,"ĠÑĥвидеÑĤÑĮ":46095,"ermo":46096,"HEN":46097,"Ġsoi":46098,"Ġmultiples":46099,"Ġlayouts":46100,"Ġblindness":46101,"ĠBowser":46102,"ĠподÑĤ":46103,"ĠÃİ":46104,"ventional":46105,"Ġmata":46106,"madı":46107,"Ġgeez":46108,"Ġcadence":46109,"Ġważne":46110,"ĠChristie":46111,"venge":46112,"Call":46113,"Ġturnaround":46114,"Ġblob":46115,"ĠЯк":46116,"ĠVoiceover":46117,"Ġperil":46118,"ĠJaime":46119,"ĠHOY":46120,"lane":46121,"Ġsebel":46122,"ĠDuo":46123,"ĠHistorical":46124,"Ġdni":46125,"Ġgema":46126,"yk":46127,"Ġsabem":46128,"ắng":46129,"Ġvars":46130,"ĠRonnie":46131,"ĠRonaldo":46132,"ĠPerquè":46133,"nsinn":46134,"hair":46135,"Ġrelentless":46136,"Ġlyn":46137,"Ġtraveler":46138,"æĢİ麼äºĨ":46139,"nine":46140,"Ġantim":46141,"Ġì¼Ģ":46142,"Ġsnowball":46143,"ĠÑħаÑĢакÑĤеÑĢ":46144,"Ġinterns":46145,"Ġconstituency":46146,"ĠÐĿам":46147,"׾׾":46148,"VEL":46149,"Ġviktigt":46150,"Ġapoyo":46151,"ÙĦب":46152,"Ġjard":46153,"Ġheightened":46154,"ÑĢоÑģÑĤ":46155,"ĠSMITH":46156,"Ġдела":46157,"Ġrepairing":46158,"Ġrigt":46159,"ĠSheikh":46160,"ĠBritney":46161,"Ġeverytime":46162,"Ġadventurous":46163,"ockey":46164,"ernt":46165,"Ġataque":46166,"ĠAlternatively":46167,"effect":46168,"Ġpalavras":46169,"ĠElliott":46170,"Ġréussi":46171,"Ġhypertension":46172,"ĠManual":46173,"Ġprophetic":46174,"Ġhandc":46175,"ÑĮе":46176,"Ġrefrain":46177,"ĠSquid":46178,"ìŀ¡":46179,"Ġкоман":46180,"ällen":46181,"Ġllegó":46182,"Ġbash":46183,"iony":46184,"ĠÑģклад":46185,"Ġкаб":46186,"Ġcareless":46187,"ĠPool":46188,"Ġtrás":46189,"Ġfils":46190,"ĠSchr":46191,"Ġsprawd":46192,"ĠMonaten":46193,"Ġunforgettable":46194,"ĠCotton":46195,"Ġinconvenient":46196,"ĠRX":46197,"oris":46198,"Ġhumbled":46199,"ת×Ĺ":46200,"Ġآپ":46201,"ĠincreÃŃ":46202,"ĠKommentare":46203,"èĪĴ":46204,"ración":46205,"Ġvantage":46206,"ĠSeal":46207,"ĠìĿ´ê±°ë¥¼":46208,"Ġjoue":46209,"ãģĿãģĨãģ§ãģĻãģŃ":46210,"Ġìĺ¤ëŀĺ":46211,"ĠиÑģпÑĭÑĤ":46212,"oben":46213,"Ġgrate":46214,"Ġcontrole":46215,"ĠPercy":46216,"ÅĤada":46217,"Ġsimultaneous":46218,"Ġprototy":46219,"ĠgroÃŁer":46220,"Ġbewusst":46221,"inizi":46222,"Ġpassieren":46223,"ĠHappiness":46224,"åīĩ":46225,"shi":46226,"geht":46227,"Ġstationed":46228,"ĠErgebnis":46229,"Ġdirectamente":46230,"Ġsurvives":46231,"Ġpersones":46232,"BERG":46233,"Ġvomiting":46234,"Ġconhecer":46235,"Ġadjour":46236,"ĠCivic":46237,"pei":46238,"burst":46239,"Ġëĭ¤ëĭĪ":46240,"éı":46241,"Ġsled":46242,"Ġplataforma":46243,"ĠSect":46244,"ĠDefin":46245,"çĻ»éĮ²":46246,"énom":46247,"chnet":46248,"Ġprofitability":46249,"Ġerreicht":46250,"á»ıi":46251,"cation":46252,"Ġì§Ģê¸":46253,"Ġperdre":46254,"Ġfelony":46255,"Ġ1957":46256,"æĪijå¾Ī":46257,"Ġunsuccessful":46258,"Ġnagyon":46259,"Ġelasticity":46260,"Ġfacade":46261,"Ġearthly":46262,"ĠамеÑĢикан":46263,"Ġconn":46264,"cla":46265,"Du":46266,"Ġpolitiques":46267,"Ġhalo":46268,"iantes":46269,"Ġмоей":46270,"ãĥ³ãĥī":46271,"tones":46272,"elier":46273,"è®ļ":46274,"htaking":46275,"Ġwichtige":46276,"Ġanno":46277,"ĠLok":46278,"illions":46279,"Ġviver":46280,"Ġsolchen":46281,"Ġsuf":46282,"ĠSalz":46283,"ĠNvidia":46284,"zuge":46285,"ĠSpike":46286,"Video":46287,"Ġtwor":46288,"ĠAla":46289,"èijī":46290,"Ġhanya":46291,"ĠAdm":46292,"ìĿµ":46293,"ĠPatienten":46294,"ĠOnion":46295,"ĠKobe":46296,"ĠScene":46297,"ĠRash":46298,"æ¨Ļ":46299,"ÑĢаÑģÑĤ":46300,"istani":46301,"General":46302,"leye":46303,"imbap":46304,"Ġconcealed":46305,"ĠFridays":46306,"ĠWool":46307,"ĠновÑĭÑħ":46308,"شر":46309,"Ġê²°ê³¼":46310,"Ġjedoch":46311,"´ìĭľ":46312,"ĵ¤ëıĦ":46313,"Ġìŀ¥ëĤľ":46314,"ukt":46315,"Lou":46316,"Ġ먹ìĸ´":46317,"ĠExpect":46318,"Ġдомой":46319,"Ġirresponsible":46320,"Ġacerca":46321,"ĠZust":46322,"ר×ĺ":46323,"UI":46324,"Ġyoutubers":46325,"ĠPositive":46326,"Ġsocioe":46327,"Ġsnatch":46328,"èĥĮ":46329,"Ġrefreshed":46330,"Ġnominations":46331,"ĠPatt":46332,"Ġobsolete":46333,"ĠdemiÅŁ":46334,"åı¤":46335,"ormuÅŁ":46336,"ĠìĨĶì§ģíŀĪ":46337,"Ġfla":46338,"Ġcraziest":46339,"ĠZie":46340,"ĠTú":46341,"zep":46342,"icem":46343,"Ġë©ĭìŀĪ":46344,"Ġcynical":46345,"ãģĿãĤĵãģª":46346,"Ġtresp":46347,"Ġcraz":46348,"Õ¥Õ":46349,"Ġnelle":46350,"Ġmph":46351,"ĠNered":46352,"ĠKob":46353,"ĠEck":46354,"¨¸ëĭĪ":46355,"Jan":46356,"ĠТогда":46357,"Ġdeci":46358,"ĠVog":46359,"Ġbubbling":46360,"éĢĢ":46361,"úa":46362,"Ġproductos":46363,"iberal":46364,"Ġreplicated":46365,"ĠImprove":46366,"illary":46367,"Cha":46368,"Ġrédu":46369,"ĥIJíķĺë©´":46370,"Ġconnot":46371,"ĠKrit":46372,"ĠдÑĥÑħов":46373,"Ġtreadmill":46374,"ĠPW":46375,"ĠзовÑĥÑĤ":46376,"Ġclams":46377,"Ġdrafting":46378,"Ġ1956":46379,"unta":46380,"Ġexpenditures":46381,"ĠHoover":46382,"WOO":46383,"ÑĪее":46384,"Ġdeduction":46385,"monary":46386,"Ġrecib":46387,"Ġpovo":46388,"ĠëįĶë":46389,"ĠPAL":46390,"ĠBlow":46391,"Ġwyp":46392,"Ġdestac":46393,"deal":46394,"Graeme":46395,"Ġnécessaire":46396,"Ġdamned":46397,"Ġ1938":46398,"Ġìĭ¤ìłľë¡ľ":46399,"Ġtroop":46400,"Ġinsightful":46401,"ĠTJ":46402,"ĠоÑģв":46403,"Ġfidelity":46404,"ĠSkip":46405,"ĠMayo":46406,"ë§Ŀ":46407,"appe":46408,"Ġblas":46409,"ĠWY":46410,"ĠGN":46411,"ctar":46412,"Su":46413,"Ġcuent":46414,"hews":46415,"Ġcorpses":46416,"Abs":46417,"Ġwastewater":46418,"Ġciek":46419,"ĠOnu":46420,"Ġexplosives":46421,"Ġarma":46422,"ĠSTEPHAN":46423,"politik":46424,"ĠOsaka":46425,"taÅĤ":46426,"Ġyapıyor":46427,"Ġizquier":46428,"Ġbeleza":46429,"ĠWyatt":46430,"åIJ¸":46431,"Ġsuk":46432,"Ġspecjal":46433,"Ġdanke":46434,"whistle":46435,"ĠfÃŃsica":46436,"ĠHarriet":46437,"ĠìķĦíĮĮ":46438,"Ġwillkommen":46439,"iping":46440,"ĠÑģмоÑĤÑĢиÑĤе":46441,"ĠможеÑĪÑĮ":46442,"Ġinaccurate":46443,"Ġarrogance":46444,"ĠRemo":46445,"γά":46446,"assed":46447,"Ġdeliveries":46448,"Ġstinky":46449,"ĠпеÑĢеж":46450,"jay":46451,"Ġtransitional":46452,"Ġrere":46453,"ĠNGOs":46454,"ĠATM":46455,"خت":46456,"iology":46457,"Ġвлад":46458,"Ġschme":46459,"ĠShine":46460,"ìķ¡":46461,"pants":46462,"Ġserge":46463,"Ġsenhor":46464,"Ġabduct":46465,"ĠBryant":46466,"VES":46467,"Ġawakened":46468,"ĠLaz":46469,"ropolis":46470,"ĠLao":46471,"è¾Ľèĭ¦":46472,"Ġvilla":46473,"Ġsummers":46474,"Ġenthal":46475,"Ġ1949":46476,"Via":46477,"Ġìĸ´ì¨":46478,"Ġtendon":46479,"Ġviolet":46480,"Ġintellectually":46481,"Ġbounced":46482,"araus":46483,"Ġ1919":46484,"Ġvraag":46485,"Ġspel":46486,"ĠSchwar":46487,"Scott":46488,"ĠIndo":46489,"Ġë§Ŀ":46490,"Ġcanonical":46491,"ĠIKE":46492,"ĠthatÃŃs":46493,"Ġmellan":46494,"æ¯Ĵ":46495,"igmat":46496,"Could":46497,"...?)":46498,"Ġfoarte":46499,"ĠKumar":46500,"rendo":46501,"Ġélé":46502,"à´":46503,"valuation":46504,"cases":46505,"Ġintuitively":46506,"hong":46507,"etted":46508,"Ġsouven":46509,"Ġmorb":46510,"Ġcors":46511,"ĠNV":46512,"ĠHasan":46513,"æĥħåĨµ":46514,"ieved":46515,"Ġì§Ģê¸ĪìĿĢ":46516,"Ġdumpling":46517,"Ġcontrôle":46518,"Ġambiguity":46519,"æ©Łæľĥ":46520,"Ġcog":46521,"ĠScriptures":46522,"Ġcai":46523,"Ġbever":46524,"大家éĥ½":46525,"Ġhuis":46526,"Ġaime":46527,"Ġerklären":46528,"ĠLM":46529,"ĠFey":46530,"éļ¾":46531,"றத":46532,"Ġsupervised":46533,"Ġjewe":46534,"spl":46535,"ĠÑĨенÑĤÑĢ":46536,"Ġcollisions":46537,"ÙĦÙģ":46538,"ĠHogwarts":46539,"ĠDurham":46540,"×ķ×£":46541,"Ġphosphate":46542,"Ġoversee":46543,"Ġinspections":46544,"Ġbrinc":46545,"ĠZak":46546,"Ġpayoff":46547,"Ġchaud":46548,"ĠHunger":46549,"ãos":46550,"vir":46551,"Ġfiance":46552,"Ġboug":46553,"lived":46554,"cry":46555,"åĽŀä¾Ĩ":46556,"Ġjointly":46557,"Ġgirlfriends":46558,"ĠNexus":46559,"¦¬ê²łìĬµëĭĪëĭ¤":46560,"ĠKwang":46561,"åĵĪåĽī":46562,"å§ij":46563,"ÅĤÄĻ":46564,"ĠNeden":46565,"iece":46566,"Ġinserting":46567,"æŁĵ":46568,"ĠMummy":46569,"ĠGlobe":46570,"Ġlee":46571,"Ġgerman":46572,"Ġcreams":46573,"acho":46574,"ĠchÆ°a":46575,"ĠGalile":46576,"Ġfürs":46577,"Ġestiver":46578,"cidos":46579,"Christian":46580,"Ġlorsqu":46581,"Ġcutest":46582,"vale":46583,"ĠкÑĢеп":46584,"Ġwary":46585,"Ġslicing":46586,"Ġesperando":46587,"ĠVander":46588,"ĠDeixa":46589,"Ġ1954":46590,"ĠmówiÄħ":46591,"ÑĸÑĶ":46592,"Ġtooling":46593,"Ġrestor":46594,"Ġposición":46595,"Ġintentar":46596,"ĠApache":46597,"OUL":46598,"ĠÙĪب":46599,"Ġmatière":46600,"ãĥ¼ãĤĵ":46601,"Ġlinen":46602,"Ġestratég":46603,"ĠMutta":46604,"顯":46605,"è¡ĮäºĨ":46606,"Ġparting":46607,"Ġminimizing":46608,"Ġapprendre":46609,"æľĿ":46610,"Ġанглий":46611,"ĠDoo":46612,"ĠFirefox":46613,"cómo":46614,"Ġgeopolit":46615,"Ġmakan":46616,"Ġmogelijk":46617,"ĠÏĢεÏģι":46618,"Ġcứ":46619,"Ġinstaller":46620,"Ġdibuj":46621,"ĠHeath":46622,"loop":46623,"ĠBroken":46624,"HYUN":46625,"shelf":46626,"Ġfizer":46627,"Ġenhances":46628,"ä¾ĭãģĪãģ°":46629,"ĠдоÑģÑĤи":46630,"ĠPUB":46631,"ĠKollegin":46632,"Ġattained":46633,"ľ":46634,"Ġmistress":46635,"ĠOftentimes":46636,"×ŀ×Ļ×Ŀ":46637,"Ġbewe":46638,"ĠSora":46639,"rauen":46640,"baum":46641,"Ġrollers":46642,"Ġmering":46643,"ĠPAC":46644,"ĠнÑĸ":46645,"ĠRépublique":46646,"ĠÑĤÑĢав":46647,"ĠVanguard":46648,"uciones":46649,"Ġ무ëĮĢ":46650,"Ġgour":46651,"¯¤":46652,"ĠÏī":46653,"Ġsauna":46654,"Ġpeine":46655,"ĠValerie":46656,"ĠSikh":46657,"fendimiz":46658,"bero":46659,"ĠÑĩи":46660,"ĠdoÅĽwiad":46661,"ĠEuros":46662,"Ġcommentaires":46663,"Ġtweaks":46664,"ĠFaster":46665,"ĠÑĢаÑģк":46666,"Ġprogressively":46667,"ĠEuch":46668,"boro":46669,"ĠIngred":46670,"Cap":46671,"Ġuncheck":46672,"Ġìĺ¤ë¥¸":46673,"Ġwre":46674,"ĠFT":46675,"örung":46676,"Ġmemorized":46677,"ĠDinner":46678,"ĠPhew":46679,"oubl":46680,"Ġputa":46681,"Ġadmits":46682,"езде":46683,"opod":46684,"Ġpanda":46685,"Ġhinges":46686,"cipe":46687,"Ġtransact":46688,"Ġpodia":46689,"Ġpics":46690,"Ġcriterion":46691,"ĠOrchestra":46692,"ĠBlog":46693,"Ġsolemn":46694,"ĠPixar":46695,"Three":46696,"Ġвниз":46697,"ĠVolunte":46698,"ĠSavage":46699,"ĠPVC":46700,"ĠCaf":46701,"Ġwykon":46702,"Ġgraders":46703,"Ġcrouch":46704,"Ġcliche":46705,"Ġsoybeans":46706,"ĠMUR":46707,"ĠGonzalez":46708,"ĠMimi":46709,"ĠBolsonaro":46710,"Ġdiaphrag":46711,"Ġbilang":46712,"ëIJĺëĬĶ":46713,"éĤ£æĪijåĢij":46714,"Ġregulating":46715,"Mc":46716,"Judge":46717,"Ġнож":46718,"ĠjakÄħ":46719,"itesse":46720,"ĠWij":46721,"Ġlata":46722,"groaning":46723,"POSING":46724,"Ġ×IJ×ķת×ķ":46725,"Ġhaga":46726,"Ġgrounding":46727,"Ġviolently":46728,"Ġtills":46729,"Ġengag":46730,"ĠHollow":46731,"ĠпопÑĥлÑıÑĢ":46732,"Ġwprowad":46733,"Ġreplaces":46734,"Ġfluorescent":46735,"urgical":46736,"iggly":46737,"ĠTraditional":46738,"tte":46739,"ĠÙĦÙĩ":46740,"Ġphosphorus":46741,"Ġapron":46742,"ĠWaters":46743,"ĠKultur":46744,"авай":46745,"Ġolives":46746,"Ġ×Ķ×IJ׾":46747,"Ġteilweise":46748,"Ġsencill":46749,"Ġprends":46750,"Ġnarrower":46751,"Ġjätte":46752,"ĠInformationen":46753,"ìĥģìĿ´":46754,"Ġstarve":46755,"Ġfrick":46756,"ĠBeweg":46757,"ल":46758,"Ġdolphin":46759,"ĠLAUGHTER":46760,"ĠINTERVIE":46761,"åĶī":46762,"ĠyanlÄ±ÅŁ":46763,"Ġtorpedo":46764,"Ġshortages":46765,"ìĿ´ëĵľ":46766,"ıldı":46767,"Ġpaws":46768,"Ġozone":46769,"Ġcultivated":46770,"ĠFot":46771,"Ġnotor":46772,"ноз":46773,"ĠкоÑĪ":46774,"Ġtouchscreen":46775,"ĠAlly":46776,"æľĢè¿ij":46777,"Ġ맼ìŀĪìĸ´ìļĶ":46778,"ĠСеÑĢ":46779,"Ġвполне":46780,"Ġpaprika":46781,"ĠDustin":46782,"Ġefecto":46783,"Ġopini":46784,"Ġmuut":46785,"Ġhá»įc":46786,"Ġinterject":46787,"ÄĻt":46788,"Ġbutts":46789,"urez":46790,"ĠPike":46791,"ĠHok":46792,"ĠGuinea":46793,"ĠCathedral":46794,"Ġ1400":46795,"Cra":46796,"+,":46797,"맼":46798,"³´ëıĦë¡Ŀ":46799,"abyrin":46800,"Ġvideog":46801,"ĠоÑĢÑĥж":46802,"Ġuž":46803,"Ġbuscando":46804,"ĠAssistance":46805,"éĻ½":46806,"Ġmelhores":46807,"ì¡´":46808,"Ġëģ¼":46809,"ĠRJ":46810,"ĠتÙħ":46811,"Ġomin":46812,"Ġmotorcycles":46813,"ĠSapp":46814,"Ġsupplying":46815,"ĠAlgun":46816,"Ġaerospace":46817,"×¢×ľ":46818,"occup":46819,"leist":46820,"Ġê±°ëĬĶ":46821,"Ġcompleta":46822,"bres":46823,"!(":46824,"ĠÐŁÑĢед":46825,"Ġdisadvantaged":46826,"ĠAttend":46827,"ĠJudah":46828,"á»ĭch":46829,"ylene":46830,"actly":46831,"Ġsetups":46832,"Ġammonia":46833,"ĠSchweiz":46834,"ĠShame":46835,"Ġbande":46836,"ĠFuel":46837,"Ġtroublesome":46838,"Ġnumero":46839,"ĠMOM":46840,"ĠпÑĢедлаг":46841,"mentioned":46842,"ĠболÑĮÑĪое":46843,"ĠViktor":46844,"ĠStyles":46845,"Ġcrucified":46846,"ructured":46847,"environ":46848,"Ġmorals":46849,"Ġmeditating":46850,"Ġaxial":46851,"isance":46852,"ĠAbst":46853,"Green":46854,"Ġê±´ì":46855,"Ġquadrant":46856,"Ġpergi":46857,"Ġcameraman":46858,"ĠSequ":46859,"Ġpaused":46860,"ĠLaughing":46861,"ê·Ģ":46862,"?..":46863,"ĠÅ»e":46864,"Ġpermitir":46865,"Ġdetectors":46866,"ĠHUD":46867,"aval":46868,"ĠìĹ¬ê¸°ê¹Įì§Ģ":46869,"Ġhubs":46870,"Ġbestimmt":46871,"ĠбÑĥдеÑĤе":46872,"INTERPOSING":46873,"Ġtengan":46874,"Ġcrave":46875,"ĠBundesregierung":46876,"ĠBloody":46877,"Ġusability":46878,"ĠEas":46879,"ĠÄijá»Ļng":46880,"Ġ1955":46881,"Ġkriegen":46882,"Ġhabitual":46883,"Ġessentials":46884,"riminal":46885,"Ġroommates":46886,"éĤ£å°±":46887,"ĠпеÑĢеÑħод":46888,"Ġnghi":46889,"Ġmening":46890,"ĠSymphony":46891,"ĠHug":46892,"aggi":46893,"Ġwied":46894,"Ġmitad":46895,"ãģ£ãģ¦ãģĦãģĨ":46896,"teenth":46897,"idaÄĩ":46898,"Save":46899,"ĠrobiÄĩ":46900,"Ġbounces":46901,"°ĸìĹIJ":46902,"stars":46903,"Ġpragmatic":46904,"Ġcognition":46905,"Ġwrapper":46906,"Ġwarten":46907,"adh":46908,"Ġpensa":46909,"ĠHertz":46910,"ĠnÄĽ":46911,"ĠReid":46912,"ĠPCs":46913,"ĠMole":46914,"Ġ.....":46915,"Ġprecio":46916,"ĠChampionships":46917,"ê°ĢëĿ½":46918,"Ġvér":46919,"Ġcorridors":46920,"ĠElectronic":46921,"Sl":46922,"Ġале":46923,"Ġoverthrow":46924,"Ġkabul":46925,"ĠRES":46926,"ĠCyberpunk":46927,"огод":46928,"ĠÐĿав":46929,"Ġwan":46930,"Ġmanifestations":46931,"Ġcuales":46932,"ĠWise":46933,"ĠLösung":46934,"Ġexfol":46935,"Ġearns":46936,"ÑĥÑģÑĤиÑĤÑĮ":46937,"Ġsapp":46938,"ĠBraun":46939,"ĠBRANDON":46940,"ì¹Ļ":46941,"Ġsano":46942,"ĠFEL":46943,"ÑĭвайÑĤеÑģÑĮ":46944,"ождениÑı":46945,"Ġsewn":46946,"Fun":46947,"Ġreciprocal":46948,"Ġexpansive":46949,"ĠTraffic":46950,"Ġktórego":46951,"ĠÙĪس":46952,"æĺ¥":46953,"Ġ빨":46954,"prove":46955,"igare":46956,"Ġloh":46957,"اض":46958,"Hope":46959,"Ġdevotees":46960,"ĠGom":46961,"Ġsteals":46962,"ĠUms":46963,"ĠTwice":46964,"ãĤ²":46965,"iyim":46966,"Ġrhythmic":46967,"ĠVorte":46968,"Ġprefix":46969,"omination":46970,"Ġdato":46971,"Ġcustard":46972,"ĠVOICE":46973,"å·ŀ":46974,"Ġmeny":46975,"istors":46976,"Ġíĺij":46977,"ĠìĤ´ìķĦ":46978,"ĠíĥĦ":46979,"Ġkort":46980,"Ġaba":46981,"ĠVera":46982,"epy":46983,"Ġì¹´ë©ĶëĿ¼":46984,"Ġsubmerged":46985,"ĠClock":46986,"Ġthumbnails":46987,"Ġboast":46988,"ĠFare":46989,"!!]":46990,"ĠÅĽm":46991,"Ġkaikki":46992,"ĠTechnologies":46993,"ìĻ¸":46994,"ãĥĴ":46995,"иÑĤай":46996,"å°ıæĻĤ":46997,"ĠаÑĤ":46998,"Ġknobs":46999,"Ġreicht":47000,"ượng":47001,"glio":47002,"Ġ맼ìĿ´":47003,"ê°IJìĿĦ":47004,"Ġjotka":47005,"ĠHandy":47006,"ĠHaben":47007,"nous":47008,"Ġinland":47009,"Ġamazon":47010,"hooting":47011,"SL":47012,"Ġleisten":47013,"~\"":47014,"Ġprovoke":47015,"ĠTwist":47016,"Ġ×ij×Ĺ":47017,"Ġdeparted":47018,"ê°ľë¥¼":47019,"Ġkonse":47020,"ĠCarwyn":47021,"íķĺìĭł":47022,"idental":47023,"ESCO":47024,"Ġtteokbokki":47025,"Ġdizendo":47026,"ç·´":47027,"ındaki":47028,"imasu":47029,"afar":47030,"Ġlandfill":47031,"Ġcorrecting":47032,"Ġclears":47033,"ĠNummer":47034,"HAM":47035,"Ġcartridges":47036,"ĠDiesel":47037,"paced":47038,"Ġobliv":47039,"Ġmoyens":47040,"ĠSinne":47041,"ĠPreis":47042,"iliz":47043,"ĠÑģмож":47044,"Ġbroaden":47045,"ä»ĸæĺ¯":47046,"xes":47047,"Ġcarbohydrate":47048,"íĺ¹":47049,"seok":47050,"Ġechoes":47051,"Ġcess":47052,"ë°Ķ":47053,"ĠбизнеÑģ":47054,"Ġllamado":47055,"Ġessent":47056,"ĠìĿ¼ë°ĺ":47057,"ĠAires":47058,"phen":47059,"Ġzebra":47060,"Ġsymbolism":47061,"Once":47062,"Ġracks":47063,"ĠKafka":47064,"ĠÑģеÑĢÑĮез":47065,"Ġsinn":47066,"picious":47067,"kaa":47068,"Ġmotherfucker":47069,"Ġapprenticeship":47070,"Ġrpm":47071,"Ġtaxation":47072,"Ġfurry":47073,"ĠSacred":47074,"ĠÑĢазм":47075,"pora":47076,"enges":47077,"ĠíĹĪë":47078,"ĠÑģин":47079,"Ġsanitizer":47080,"Ġcringe":47081,"ĠSca":47082,"оÑĩно":47083,"Ġofere":47084,"Ġmelodies":47085,"ĠVelvet":47086,"ĠIhrer":47087,"ĠHybrid":47088,"ĠGiov":47089,"Ġirgendwas":47090,"Ġdepende":47091,"ĠUsers":47092,"Ġhump":47093,"driving":47094,"Ġsf":47095,"Ġruthless":47096,"à¹Ģà¸Ħ":47097,"Ġlemons":47098,"Ġföret":47099,"ĠOj":47100,"Ġмама":47101,"Ġinterpersonal":47102,"Ġgev":47103,"Ġabnorm":47104,"иÑģл":47105,"Ġинд":47106,"Ġkontroll":47107,"Ġregres":47108,"Ġledge":47109,"Ġerzählt":47110,"ĠTact":47111,"Ġarrivé":47112,"Ġsubstantive":47113,"Ġspoonful":47114,"zwischen":47115,"ooooo":47116,"Ġcontenido":47117,"Ġbesl":47118,"á»ĥm":47119,"kten":47120,"Jamie":47121,"Ġsandy":47122,"ä¸įåIJĮ":47123,"âĭ":47124,"Ġpase":47125,"Ġdette":47126,"ĠBelgian":47127,"ê°ľë":47128,"ulares":47129,"rud":47130,"igor":47131,"ĠíĮ¬ë":47132,"Ġremedies":47133,"Ġblasting":47134,"ĠSich":47135,"Ġожид":47136,"Ġmonstr":47137,"Ġmanifold":47138,"Ġglauben":47139,"ĠEST":47140,"Ġstreamline":47141,"Ġlobbying":47142,"ĠGothic":47143,"toire":47144,"..'":47145,"Ġdémocr":47146,"ĠнаблÑİд":47147,"Ġwspól":47148,"ĠczÄĻÅĽÄĩ":47149,"ä¸ĭéĿ¢":47150,"isés":47151,"gangen":47152,"Ġbezpie":47153,"remlin":47154,"ê°Ŀ":47155,"Still":47156,"Ġresides":47157,"Ġgelecek":47158,"Ġtéléphone":47159,"Ġpewn":47160,"Ġleopard":47161,"Ġcomplimentary":47162,"Ġcrib":47163,"ĠAnimals":47164,"Ġgeil":47165,"essel":47166,"Ġgarder":47167,"Ġcatchy":47168,"樹":47169,"ĠEts":47170,"ĠCommercial":47171,"ĠDENNIS":47172,"ĠCoordinator":47173,"ĠAbigail":47174,"ffffff":47175,"ấp":47176,"Ġpequeña":47177,"Ġinjections":47178,"cekt":47179,"Ġphilanthropy":47180,"Ġpuck":47181,"Ġcelebrates":47182,"ĠDunk":47183,"ĠDlatego":47184,"ãģ¾ãģł":47185,"δή":47186,"graduate":47187,"ĠMobil":47188,"till":47189,"acam":47190,"Ġyolks":47191,"Ġtangled":47192,"Ġmaniac":47193,"Ġobliged":47194,"ĠLaink":47195,"Ġverder":47196,"ĠDamon":47197,"Ġmutant":47198,"Ġhopping":47199,"Ġreins":47200,"Ġinverter":47201,"Ġcontempt":47202,"×ł×¡":47203,"learning":47204,"Miss":47205,"ĠÐĵоÑģ":47206,"ĠMeyer":47207,"ê»ĺìĦľ":47208,"é£İ":47209,"×ķ׳×Ļ×Ŀ":47210,"asking":47211,"Ġtrimming":47212,"Ġtreasury":47213,"Ġsente":47214,"Aust":47215,"ĠUnterstützung":47216,"ĠComedy":47217,"ĠAnakin":47218,"é¹":47219,"ÑĢÑĥÑĤ":47220,"ĠHari":47221,"ographers":47222,"Ġoatmeal":47223,"ĠBots":47224,"ä¸įäºĨ":47225,"ĠпалÑĮ":47226,"Ġacknowledgement":47227,"xic":47228,"Ġê´Ģìĭ¬":47229,"gasping":47230,"Ġãģķ":47231,"Ġterrace":47232,"Ġornaments":47233,"ĠMER":47234,"committee":47235,"ĠìĹĨìĬµëĭĪëĭ¤":47236,"Ġrij":47237,"é³":47238,"צ×Ŀ":47239,"leme":47240,"Ġliberties":47241,"Ġfellas":47242,"ĠCopper":47243,"bench":47244,"ĠIdea":47245,"á»įn":47246,"ÑĪа":47247,"Ġversión":47248,"ÏĦοÏį":47249,"ĠÐľÐ¸":47250,"ĠпÑĢилож":47251,"Ġboxer":47252,"ĠTanner":47253,"ĠMoy":47254,"ì¹ĺëĬĶ":47255,"Thr":47256,"Ġtinham":47257,"Ġpolishing":47258,"Ġconsequently":47259,"Ġamenities":47260,"ĠKI":47261,"ĠGREEN":47262,"ĠFrankie":47263,"ниÑĤ":47264,"ittel":47265,"Ñģкое":47266,"ursed":47267,"Ġupbringing":47268,"Ġthứ":47269,"ĠìĭĿìľ¼ë¡ľ":47270,"Ġwhim":47271,"Ġchinese":47272,"confidence":47273,"ĠJeder":47274,"ãģªãģ®ãģ§":47275,"ajcie":47276,"ĠTous":47277,"ĠPowers":47278,"ừa":47279,"othermal":47280,"ĠвÑĭÑĪе":47281,"rale":47282,"اخ":47283,"Ġì§ĢìĽIJ":47284,"Ġépisode":47285,"Ġsulph":47286,"Ġencara":47287,"kraft":47288,"aları":47289,"ĠComes":47290,"Ġdivul":47291,"ĠRudolph":47292,"ĠMuse":47293,"Ġutens":47294,"ĠìŀIJ주":47295,"Ġpana":47296,"ĠVegeta":47297,"ĠPHP":47298,"ĠNSA":47299,"entin":47300,"ĠCarnegie":47301,"اÙĬ":47302,"iÄĻcy":47303,"Harry":47304,"Ġfır":47305,"Сп":47306,"Ġgladly":47307,"Ġaveraging":47308,"íķĺê²łìĬµëĭĪëĭ¤":47309,"лÑıÑİÑĤÑģÑı":47310,"ĠÐľÐµÐ½Ñı":47311,"Ġquotation":47312,"rires":47313,"itchens":47314,"ayed":47315,"Ġunatt":47316,"ĠPerez":47317,"ĠоÑĤмеÑĤ":47318,"Ġtactile":47319,"ĠEuh":47320,"isini":47321,"buh":47322,"Ġhatır":47323,"ĠìŀĪìľ¼":47324,"Ġpolicymakers":47325,"³´ìĦ¸ìļĶ":47326,"acı":47327,"Ġκι":47328,"Ġregistering":47329,"reto":47330,"ĠSprinkle":47331,"ĠGrammy":47332,"axter":47333,"Ġби":47334,"Ġsitter":47335,"Ġpredic":47336,"Ġthinly":47337,"Ġstrum":47338,"Ġaggrav":47339,"Ġaha":47340,"رج":47341,"mellow":47342,"Ġconstante":47343,"ĠLaut":47344,"iston":47345,"Ġtransitioned":47346,"ĠCambodia":47347,"ãģĦãģįãģ¾ãģĻ":47348,"è·Łå¤§å®¶":47349,"arted":47350,"Ġmisf":47351,"ĠPunkte":47352,"Įëĵł":47353,"Ġtrembling":47354,"Ġgespannt":47355,"ĠعÙĦÙĬÙĩ":47356,"ĠникакиÑħ":47357,"Ġë¶Ģëĵľë":47358,"ĠÑĢазвиÑĤ":47359,"Ġitchy":47360,"Ġciento":47361,"Ġplains":47362,"Ġkittens":47363,"Ġbacklog":47364,"ĠPresiding":47365,"pta":47366,"Ġhavoc":47367,"ĠDarrin":47368,"ĠÐĽÑİб":47369,"Ġsegregated":47370,"Ġghetto":47371,"Ġerlebt":47372,"Ġdrugiej":47373,"ĠSixt":47374,"åıĥ":47375,"ระ":47376,"uencia":47377,"Ġíķĺ기":47378,"ĠëĨį":47379,"Ġrobi":47380,"Ġpioneers":47381,"Ġmilliards":47382,"ĠWitcher":47383,"Ġ무ìĹĩ":47384,"orro":47385,"mass":47386,"Ġdivergence":47387,"ĠRivera":47388,"ĠNoodles":47389,"Ġendroit":47390,"ĠKosten":47391,"ĠдÑĢÑĥга":47392,"ĠmÃŃnimo":47393,"ĠKazakhstan":47394,"تÙĩ":47395,"ĠвоздÑĥ":47396,"Ġgeschrieben":47397,"ĠNil":47398,"Ñģки":47399,"ĠFrüh":47400,"Ġbeverages":47401,"æºIJ":47402,"ĠGon":47403,"æĺ¨":47404,"Arin":47405,"ĠIntro":47406,"ocalyptic":47407,"Ġexhaustion":47408,"ĠStatus":47409,"ĠBattery":47410,"ész":47411,"£¼ë":47412,"airy":47413,"Ġë³´ìŬëĵľë":47414,"Ġdisparity":47415,"ÙĮ":47416,"ĠTucson":47417,"Ġbrightly":47418,"problem":47419,"Ġbiomass":47420,"éĻį":47421,"§ī":47422,"Ġhurdle":47423,"Ġwavelengths":47424,"Ġ<<":47425,"Ġteamed":47426,"FFFF":47427,"ĠSlim":47428,"omial":47429,"Ġunveiled":47430,"ĠVerein":47431,"ÙĤØ·":47432,"estry":47433,"Ġclás":47434,"Ġcheddar":47435,"Ġaccusing":47436,"ĠScientific":47437,"ĠбÑĥде":47438,"ĠCyrus":47439,"εÏĦε":47440,"Ĩĵê³ł":47441,"Ġë³Ħ":47442,"Ġcurd":47443,"Ġreferrals":47444,"shift":47445,"åįķ":47446,"ników":47447,"Ġmier":47448,"Ġconfronting":47449,"ê²ĥëıĦ":47450,"awl":47451,"Ġtryin":47452,"Ġê·¸ëŀĺìļĶ":47453,"Ġchiar":47454,"Ġìĺ¤ëĬĺëıĦ":47455,"æĶ¿æ²»":47456,"esque":47457,"Ġmismos":47458,"ĠShak":47459,"Ġsociaux":47460,"ĠpiÅŁ":47461,"ĠkiÅŁi":47462,"Ġcyan":47463,"hay":47464,"bew":47465,"bod":47466,"Ġι":47467,"ĠMainly":47468,"ÑİÑĤÑĮ":47469,"habitude":47470,"ĠÑģпокой":47471,"è·ŁæĪij":47472,"Ġprecon":47473,"ĠMandy":47474,"ðŁ¤£":47475,"illos":47476,"Ġgrupp":47477,"Ġcrumble":47478,"Ġconstructor":47479,"ervices":47480,"Ġlighthouse":47481,"ĠConcept":47482,"анÑĤи":47483,"altro":47484,"hope":47485,"ĠAlleg":47486,"ìĸ´ë¥¼":47487,"pieces":47488,"ounter":47489,"ĠíķĺëĭĪê¹Į":47490,"ĠìĿ¸íĦ°ë":47491,"Ġvéritable":47492,"Ġthreaded":47493,"blind":47494,"ĤĺëĿ¼":47495,"Ġtrays":47496,"ĠEdison":47497,"ĠÃĸz":47498,"ĠStevie":47499,"Ġlender":47500,"Ġbrigade":47501,"Ġdeutsche":47502,"muffled":47503,"bart":47504,"Ġinsanity":47505,"Ġsavvy":47506,"Ġsensational":47507,"Ġderechos":47508,"ĠMX":47509,"ĠпÑĢеп":47510,"Ġthreatens":47511,"ĠrealtÃł":47512,"Ġindicative":47513,"Ġchops":47514,"Ġbenefiting":47515,"ĠVernon":47516,"ĠStrand":47517,"nun":47518,"quently":47519,"101":47520,"Ġeel":47521,"ìĪĻ":47522,"rints":47523,"ĠÙħس":47524,"Ġبد":47525,"ĠпоÑģÑĤÑĢо":47526,"ĠyapmÄ±ÅŁ":47527,"Ġolması":47528,"Ġiedereen":47529,"olé":47530,"kef":47531,"Ġë°ľìĥĿ":47532,"Ġrained":47533,"Ġalmighty":47534,"ĠвÑĭд":47535,"ĠCPR":47536,"Fre":47537,"Ġinhabited":47538,"Ġarbets":47539,"Ġakin":47540,"аÑģÑĤв":47541,"vania":47542,"Ġhäufig":47543,"ĠMatte":47544,"sorry":47545,"Jenny":47546,"ĠгÑĢад":47547,"Ġwhit":47548,"Ġbrokers":47549,"å¯Ł":47550,"Ġhine":47551,"asten":47552,"ĠгÑĢÑĥ":47553,"MB":47554,"ĠPRI":47555,"Sab":47556,"Ġwrestler":47557,"Ġfacilitating":47558,"Ġehkä":47559,"ĠCred":47560,"Ġ127":47561,"Ġnothin":47562,"Ġmandated":47563,"å¯Į":47564,"ÑĥÑĤÑģÑĤв":47565,"Frank":47566,"Ġwors":47567,"ĠdzieÅĦ":47568,"ĠUnderground":47569,"Ġznajdu":47570,"ĠBä":47571,"ĠPrinzip":47572,"аÑĤелей":47573,"Ġveterinar":47574,"Ġsplendid":47575,"Ġrozp":47576,"Ġpsychopath":47577,"igon":47578,"Ġhops":47579,"Ġcần":47580,"ĠXian":47581,"Ġtroisième":47582,"Ġproducto":47583,"ĠdeÄŁer":47584,"ĠContinuing":47585,"ивал":47586,"cık":47587,"Ġmoisturizer":47588,"White":47589,"Ġsiis":47590,"ĠEverest":47591,"ienced":47592,"Ġcảm":47593,"ĠJapon":47594,"´ìłĦ":47595,"ĠtenÃŃan":47596,"Ġencanta":47597,"Mm":47598,"Ġdropdown":47599,"ĠIya":47600,"³´ë©´":47601,"Ġwording":47602,"ĠSqueeze":47603,"ĠMaple":47604,"Ġclarified":47605,"ĠMunicip":47606,"ĠRouge":47607,"ĠNicki":47608,"ĠGoo":47609,"volt":47610,"tek":47611,"fecture":47612,"fred":47613,"arrive":47614,"ãĥ¼ãģĦ":47615,"tez":47616,"Ep":47617,"Ġobras":47618,"ĠVID":47619,"ĠRiv":47620,"ĠModi":47621,"ibe":47622,"Ġacontecendo":47623,"Ġimitation":47624,"Ġcamouflage":47625,"Ġspanning":47626,"ĠSECRET":47627,"ĠOreo":47628,"ìĨĮ리":47629,"Ġhunch":47630,"ĠcaÅĤe":47631,"Ġspontaneously":47632,"ĠPerd":47633,"Ġetap":47634,"ĠHole":47635,"ĠDisability":47636,"Ġafterlife":47637,"æģ©":47638,"Ġtestified":47639,"Ġpresup":47640,"Ġpetroleum":47641,"Ġcontrario":47642,"ĠAssessment":47643,"ÄŁlu":47644,"Ġpests":47645,"Ġdilig":47646,"ĠвÑģÑĤÑĢеÑĤ":47647,"Ġconséqu":47648,"Ġcannons":47649,"Ġcanoe":47650,"ĠMile":47651,"Ġcitoy":47652,"Ġbegged":47653,"ĠMinnie":47654,"ÅĤych":47655,"Ġprincipe":47656,"ÏĢÏĮν":47657,"mniej":47658,"Ġwert":47659,"Ġëĭ¤ëĵ¤":47660,"anse":47661,"Ġuncles":47662,"Ġprovocative":47663,"Ġintersections":47664,"Ġdemocrats":47665,"ĠJulius":47666,"инки":47667,"ygusal":47668,"Ġ׾×ķ":47669,"Ġgjorde":47670,"Ġgasket":47671,"ĠBock":47672,"ĠÄ°n":47673,"breat":47674,"ĠEquity":47675,"ardı":47676,"Ġканале":47677,"Ġдней":47678,"ĠtỼi":47679,"Ġfixture":47680,"Ġabuses":47681,"Ġvaya":47682,"Ġouvert":47683,"Ġmulticultural":47684,"Ġcontexto":47685,"ĠSesame":47686,"Ġdépl":47687,"Ġconsomm":47688,"ĠParte":47689,"Ġpem":47690,"ĠConan":47691,"ĠбÑĸлÑĮ":47692,"Ġpersuaded":47693,"Ġdrains":47694,"Moo":47695,"FORE":47696,"ĠбаÑĤ":47697,"Ġfod":47698,"ĠProducts":47699,"ì§Ħì§ľ":47700,"Ġ\"[":47701,"ĠWick":47702,"ĠNaruto":47703,"нали":47704,"ryw":47705,"Ġlodge":47706,"Ġinh":47707,"Ġvontade":47708,"Ġdij":47709,"ĠJesús":47710,"Looking":47711,"Ġforearm":47712,"ĠIntegration":47713,"ĠHARRIS":47714,"Ġtoolbar":47715,"leader":47716,"Ġseldom":47717,"ĠбÑĢоÑģ":47718,"ĠKook":47719,"онд":47720,"Ġmonopol":47721,"Ġmillet":47722,"Ġlira":47723,"ĠAsians":47724,"Ġ1890":47725,"ciÄŁim":47726,"Ġeden":47727,"ĠIKEA":47728,"ĠNeighbor":47729,"ĠKazuya":47730,"üd":47731,"Ġpsychedel":47732,"Ġenvisioned":47733,"åĿĹ":47734,"Ġï·»":47735,"Ġwunder":47736,"ĠBulgaria":47737,"Brid":47738,"Ġmarrow":47739,"Ġdepiction":47740,"ĠTin":47741,"ĠPharise":47742,"Ġeinzige":47743,"Ġblindly":47744,"ãģĽãģ¦":47745,"Ġdefens":47746,"Dire":47747,"Ġvibrating":47748,"Ġtrolls":47749,"Ġdisrespectful":47750,"Ġwod":47751,"Ġstimuli":47752,"Ġcreeping":47753,"Ġclairement":47754,"Ġscariest":47755,"Ġdécouvrir":47756,"Ġ104":47757,"ĠвеÑĢÑħ":47758,"ĠÅĤat":47759,"Ġróżne":47760,"Ġbarley":47761,"ĠRepl":47762,"ĠTwe":47763,"kke":47764,"ĠãģĿãĤĮ":47765,"ĠRedmi":47766,"ĠMetroid":47767,"ĠήÏĦαν":47768,"Check":47769,"ĠSEN":47770,"Ġido":47771,"ÑĤоÑĢии":47772,"óp":47773,"UNKNOWN":47774,"Ġändern":47775,"ĠJuice":47776,"ĠGesicht":47777,"å°±æľĥ":47778,"ĠнаÑģÑĤолÑĮко":47779,"íĥķ":47780,"ÂŃ":47781,"exhales":47782,"Ġì´ī":47783,"Ġjsem":47784,"ÏĢÏīÏĤ":47785,"Ġitt":47786,"ëªħìĿ´":47787,"Ġremix":47788,"Ġblossoms":47789,"ĠRenee":47790,"isations":47791,"ìĬ¤íĦ°":47792,"Ġë³´ìĿ´ëĬĶ":47793,"uestas":47794,"opedia":47795,"ĠAim":47796,"ìĿ´ì¦Ī":47797,"scene":47798,"Ġleakage":47799,"uckt":47800,"Sad":47801,"Ask":47802,"Ġsuspense":47803,"Ġimpost":47804,"ĠStrategic":47805,"ĠItÃŃs":47806,"âĢĮ":47807,"Ġkeyboards":47808,"Ġamusing":47809,"ogr":47810,"iderman":47811,"ŀĸ":47812,"ĠвижÑĥ":47813,"Ġdips":47814,"Ġapologized":47815,"ĠSTAR":47816,"Ġescuela":47817,"ĠChing":47818,"нениÑı":47819,"Ġë¶Ģë¶ĦìĿ´":47820,"ĠFleet":47821,"Ġsamb":47822,"Ġentsprechend":47823,"Ġelectrodes":47824,"ĠFreiheit":47825,"æĪijä¸įçŁ¥éģĵ":47826,"ĠShrim":47827,"iÃŁe":47828,"Ġselections":47829,"Ġfordi":47830,"Ġdoss":47831,"ÑıÑĩ":47832,"Ġdiscriminate":47833,"ĠAuÃŁerdem":47834,"Ġdesenvolv":47835,"ĠInternal":47836,"ĠBenedict":47837,"å¯Ĩ":47838,"ĠShiv":47839,"Missy":47840,"ĠобнаÑĢÑĥж":47841,"ĠнаÑģÑĤÑĢо":47842,"Ġcontrolar":47843,"ĠLia":47844,"Ġopioids":47845,"antu":47846,"Ġcupboard":47847,"æģIJ":47848,"ге":47849,"achts":47850,"Ġcurated":47851,"Ġxem":47852,"Ġweary":47853,"Ġbrethren":47854,"Ġbudgeting":47855,"Ġpourtant":47856,"éļ»":47857,"aisia":47858,"ĠоÑĤвеÑĩ":47859,"ĠGIS":47860,"μαι":47861,"Ġש×Ķ×ķ×IJ":47862,"Ġsaud":47863,"ĠlỼ":47864,"ÐķТ":47865,"ubine":47866,"ĠнÑĥжен":47867,"Ġkidnapping":47868,"Ġbrat":47869,"ĠTerre":47870,"ĠMonet":47871,"Ġë§ĪìĬ¤íģ":47872,"Ġflashy":47873,"ĠISBN":47874,"Ġfreelance":47875,"iage":47876,"Ġjunge":47877,"충":47878,"ceral":47879,"ĠÑĤоÑĩки":47880,"Ġformulate":47881,"ĠFER":47882,"ĠDartmouth":47883,"ìľ¼ë©´ìĦľ":47884,"å¢ĥ":47885,"owiÄħ":47886,"ĠëĶĶìŀIJ":47887,"Ġregiment":47888,"Ġmetabolismo":47889,"ĠParr":47890,"Ġ충ë¶Ħ":47891,"Ġsanity":47892,"ĠLal":47893,"ĠGö":47894,"ĠGla":47895,"Ġproto":47896,"Ġmicroscopic":47897,"Ġkang":47898,"ĠScalia":47899,"Ġpug":47900,"ĠScore":47901,"ĠSavannah":47902,"Ġgarde":47903,"ĠNOR":47904,"å°įåIJ§":47905,"Ġscheint":47906,"ĠpóÅĤ":47907,"Ġcorri":47908,"Ġbrute":47909,"ĠÅĤad":47910,"ä»ĸ们":47911,"Ġsucceeding":47912,"Ġbicycles":47913,"Non":47914,"Ġseekers":47915,"Ġunconditional":47916,"Ġrhymes":47917,"ĠGarage":47918,"Ġinvoice":47919,"Ġcanvi":47920,"neck":47921,"Ġcustomizable":47922,"iritual":47923,"Queen":47924,"íķĺìĭľëĬĶ":47925,"Ġpowerless":47926,"Ġcsak":47927,"ä¸įä¼ļ":47928,"isoft":47929,"ĠìłķíĻķ":47930,"Ġnhân":47931,"ĠMAND":47932,"ĠHaf":47933,"Ġrevolves":47934,"ä¹Łåı¯ä»¥":47935,"ovan":47936,"aroo":47937,"ĠGrind":47938,"éĽª":47939,"Ġindispensable":47940,"Ġconsulted":47941,"ĠClinical":47942,"Acc":47943,"Ġolhos":47944,"Ġmonter":47945,"ĠHana":47946,"etah":47947,"Ġvaan":47948,"Ġtigers":47949,"Ġcaucus":47950,"ðŁĺĤ":47951,"³´ìŀIJ":47952,"powers":47953,"iums":47954,"ĠíĨłë":47955,"Ġtradicional":47956,"Ġresonated":47957,"Ġìĭłê¸°":47958,"them":47959,"Robert":47960,"Ġelemento":47961,"Ġantid":47962,"ĠобÑģ":47963,"Ġnatives":47964,"Ġloca":47965,"owment":47966,"ĠTight":47967,"ĠæĢĿ":47968,"Ġmelan":47969,"ĠNue":47970,"amis":47971,"Ġsorgen":47972,"asına":47973,"Home":47974,"ĠPUBG":47975,"Ġawfully":47976,"ĠShore":47977,"ĠPerché":47978,"ĠLau":47979,"ĠCinderella":47980,"ĠChest":47981,"Ġsemantic":47982,"Ġdeserted":47983,"ĠMomo":47984,"ĠHernandez":47985,"genes":47986,"ĠAdult":47987,"иÑĩеÑģкого":47988,"oshima":47989,"ĠcaracterÃŃsticas":47990,"ĠKL":47991,"´ìŀ¥":47992,"ocar":47993,"Ġfehlt":47994,"Ġdruk":47995,"ĠPoppy":47996,"ENGLISH":47997,"ĠVergleich":47998,"Brien":47999,"Ġrecomp":48000,"ĠÑģд":48001,"Ġmerger":48002,"Ġmarketers":48003,"Ġhoneymoon":48004,"Ġpenso":48005,"Ġbelli":48006,"еÑĤÑĥ":48007,"Ġbanker":48008,"Camera":48009,"ĠStall":48010,"ĠStamp":48011,"ĠBite":48012,"ежде":48013,"Ġsür":48014,"Ġgüç":48015,"ĠPassover":48016,"ĠBugün":48017,"ĠÑģожалениÑİ":48018,"Ġниз":48019,"Ġmanure":48020,"Ġglacier":48021,"è«ĩ":48022,"RAY":48023,"terror":48024,"Ġsalads":48025,"Ġhurricanes":48026,"ĠDesigner":48027,"atorio":48028,"Ġfactual":48029,"ĠTammy":48030,"ĠзвÑĥÑĩ":48031,"Ġintroductions":48032,"Ġhousekeeping":48033,"Ġhanger":48034,"ëĭĺë":48035,"akte":48036,"ĠCola":48037,"']":48038,"ĠGender":48039,"оÑĢон":48040,"ipse":48041,"icias":48042,"Ġsuccessive":48043,"Ġpolitic":48044,"Ġhöher":48045,"ĠQiao":48046,"ĠGimme":48047,"Ġлож":48048,"Ġseb":48049,"ĠWeiter":48050,"ĠSakura":48051,"ĠBoulder":48052,"ĠAmérica":48053,"peÅĤnie":48054,"ĠtecnologÃŃa":48055,"ishops":48056,"fur":48057,"Ġmoonlight":48058,"Ġdispersed":48059,"Ġrez":48060,"енное":48061,"алÑĮнÑĥÑİ":48062,"ĠTwelve":48063,"ĠHOR":48064,"ìĭ¤íŀĪ":48065,"ilage":48066,"Ġshaded":48067,"Ġresumes":48068,"ĠPeanut":48069,"ĠMILL":48070,"apons":48071,"ĠUFC":48072,"ĠSole":48073,"Ġjoystick":48074,"ĠOlivier":48075,"warming":48076,"Ġsyllabus":48077,"ĠобÑīе":48078,"Ġhiá»ĩn":48079,"Ġfesta":48080,"Ġcradle":48081,"ĠZac":48082,"Ġremembrance":48083,"Ġê°ĻìķĦìĦľ":48084,"ĠpiÄĻk":48085,"Ġcoexist":48086,"ĠVII":48087,"Ġáreas":48088,"Ġuważ":48089,"Ġobservers":48090,"Ġmänniskor":48091,"coon":48092,"ĠDAM":48093,"Ġnaszym":48094,"Ġalligator":48095,"ĠFreeze":48096,"ĠEstate":48097,"ĠÑĤÑĢади":48098,"Ġundercover":48099,"Ġnies":48100,"ĠFehler":48101,"plin":48102,"ĠKabul":48103,"ilate":48104,"Ġê³łìĸij":48105,"Ġmop":48106,"ìĦ¼":48107,"Ġanderer":48108,"ĠKELL":48109,"оки":48110,"ĠжеÑģÑĤ":48111,"Ġgrazing":48112,"ĠdaÃŃ":48113,"Ġcapitalize":48114,"Ġapex":48115,"Ġnurturing":48116,"Ġcortar":48117,"Ġcontrac":48118,"ımızı":48119,"Ġtandem":48120,"éĥ½æľī":48121,"gement":48122,"ĠÑģиÑģÑĤема":48123,"Ġmanque":48124,"iajÄħ":48125,"WOR":48126,"Ġاب":48127,"Ġcarts":48128,"ANO":48129,"Ġë°Ľê³ł":48130,"ĠCena":48131,"ĠBiology":48132,"idar":48133,"Ġaż":48134,"erne":48135,"anu":48136,"Ġthanked":48137,"Ġsubmarines":48138,"Ġmanic":48139,"Ġмоз":48140,"ä¼Ĭ":48141,"instant":48142,"essential":48143,"Ġsamurai":48144,"Ġpasti":48145,"Ġalan":48146,"Ġbroch":48147,"Ġbaker":48148,"ĠGuill":48149,"¨¼":48150,"Ġwithdrawn":48151,"ëĭĿ":48152,"Perfect":48153,"quency":48154,"Ġstreamlined":48155,"Ġ1300":48156,"´ëıĦ":48157,"Ġëĸłë":48158,"Ġãģ¯ãģĦ":48159,"Ġhvad":48160,"ä¸Ģå®ļè¦ģ":48161,"Ġverbally":48162,"ĠKons":48163,"Ġì¡°ìĭ¬":48164,"Ġdiez":48165,"æİ°æİ°":48166,"Ġchuckling":48167,"ĠMih":48168,"Ġrallies":48169,"Ġmanter":48170,"Ġearnest":48171,"super":48172,"Ġgece":48173,"ĠRend":48174,"ĠGerade":48175,"jenigen":48176,"ĠVall":48177,"ĠìŀĪëĤĺ":48178,"ĠÑģказала":48179,"Ġtrabalh":48180,"ĠнаÑĪем":48181,"ĠмеÑħ":48182,"ikit":48183,"Ġnouns":48184,"Ġneurological":48185,"Ġmotivational":48186,"ĠMcMahon":48187,"ĠFinished":48188,"Ġë³´ìĿ´":48189,"ĠFields":48190,"Ġadolescents":48191,"ĠTisch":48192,"ĠNeben":48193,"ĠFlowers":48194,"ĠEnerg":48195,"Ġdiret":48196,"ĠThi":48197,"ĠPicas":48198,"æĥľ":48199,"æĢİä¹Īæł·":48200,"Ġavete":48201,"ĠFors":48202,"ĠChapel":48203,"Não":48204,"Et":48205,"ĠÑģодеÑĢж":48206,"reno":48207,"Ġsven":48208,"ĠdostÄĻp":48209,"nee":48210,"ĠSnapdragon":48211,"ĠIDs":48212,"ìķĺëĬĶëį°":48213,"ר×ļ":48214,"Ġsunflower":48215,"Ġperpetual":48216,"ç³ĸ":48217,"Ġknights":48218,"Ġgird":48219,"ĠTold":48220,"Ġvolcanoes":48221,"Ġadversary":48222,"ĠEconomy":48223,"Ġextrapol":48224,"Ġbluetooth":48225,"Ġzooming":48226,"Ġskys":48227,"Ġgenial":48228,"ÃŃculos":48229,"ambre":48230,"ĠмеÑĢ":48231,"Ġteeny":48232,"Ġstressing":48233,"ìķĮ":48234,"ONY":48235,"Ġtranslucent":48236,"Ġrounding":48237,"Ġgrues":48238,"×Ļ׳×Ķ":48239,"après":48240,"Ġprueba":48241,"Ġpolygon":48242,"Ġblueberry":48243,"ĠProgramm":48244,"Ġtrenches":48245,"Ġsebagai":48246,"Ġpalate":48247,"Ġlaude":48248,"Ġbehaved":48249,"Ġlongitudinal":48250,"ĠModule":48251,"Ġadmir":48252,"λι":48253,"Greg":48254,"Ġwyst":48255,"Ġpropagate":48256,"Ġmolds":48257,"ĠTub":48258,"ĠLoud":48259,"usto":48260,"Ġunstoppable":48261,"Ġreinforcing":48262,"éĿŀ常çļĦ":48263,"ĠпÑĢоблема":48264,"Ġpotencial":48265,"Ġhemp":48266,"ìŀĶ":48267,"य":48268,"Ġoptic":48269,"Ġerfolgreich":48270,"ÑģÑĭ":48271,"олÑĮÑĪе":48272,"urst":48273,"ĠPois":48274,"Ġrespondents":48275,"Ġnehme":48276,"ĠExternal":48277,"olate":48278,"Hyun":48279,"Ġquartz":48280,"Ġmathematician":48281,"Ġbásicamente":48282,"Ġail":48283,"ìłľë¥¼":48284,"attutto":48285,"Ġnooit":48286,"Ġafflict":48287,"ĠOlga":48288,"èŃ·":48289,"ĠнаÑĤ":48290,"Ġdites":48291,"Ġrealidade":48292,"Ġkän":48293,"Ġuniqueness":48294,"Ġpadres":48295,"Ġsubsidi":48296,"Ġpigeons":48297,"βα":48298,"stad":48299,"Ġderen":48300,"ĠСлед":48301,"doo":48302,"ĠопиÑģании":48303,"Ġamber":48304,"Ġgoosebumps":48305,"ĠfrÃ¥gor":48306,"ĠVital":48307,"ĠIsraelites":48308,"wasser":48309,"Isn":48310,"Ġcommits":48311,"ĠSTEVEN":48312,"ĠBevölker":48313,"uitive":48314,"Ġlegen":48315,"Ġbruk":48316,"иÑĢован":48317,"ynen":48318,"helm":48319,"Ġgenerational":48320,"ĠLändern":48321,"οιÏĢÏĮν":48322,"uzu":48323,"Ġcaller":48324,"онÑĮ":48325,"ümü":48326,"Ġbesar":48327,"Ġplats":48328,"Ġmigrated":48329,"Ġjap":48330,"ĠWAR":48331,"Ġdissect":48332,"ĠZusch":48333,"ĠZeiten":48334,"ĠLions":48335,"ĠDF":48336,"âĶ":48337,"кив":48338,"Ġpedestrians":48339,"ĠMarilyn":48340,"dock":48341,"Ġyht":48342,"Ġreincarn":48343,"ĠSono":48344,"ĠGrowth":48345,"ÑĥÑģов":48346,"Ġdungeons":48347,"Ġbagus":48348,"kich":48349,"ĠÑĥкÑĢаÑĹ":48350,"éĨ«":48351,"ĠKeller":48352,"chemistry":48353,"Japanese":48354,"Ġwillst":48355,"Ġdecomposition":48356,"ĠÑģÑĤен":48357,"Ġrevived":48358,"íķĻêµIJ":48359,"ĠÅĵ":48360,"ä½IJ":48361,"ìĭ¸":48362,"ippy":48363,"Ġhourly":48364,"jän":48365,"ĠWorkshop":48366,"Ŀ¼ìĦľ":48367,"Ġcuarto":48368,"Ġpatrim":48369,"ĠBurch":48370,"ĠìŀĪ기":48371,"Ġhepat":48372,"ĠhÃłng":48373,"ĠëĮĢíķ´":48374,"ĠваÑĪи":48375,"Ġrework":48376,"Ġparse":48377,"Ġçıktı":48378,"ĠSax":48379,"ĠMongo":48380,"ĠAaah":48381,"ramble":48382,"DJ":48383,"Ġstabilized":48384,"ĠSpeech":48385,"Books":48386,"Ġhurdles":48387,"ĠWO":48388,"ĠLamborg":48389,"Ġ1933":48390,"Ġvorbere":48391,"Ġclinically":48392,"Ġbreathtaking":48393,"ĠGateway":48394,"пеÑĢвÑĭÑħ":48395,"uters":48396,"Ġë¹µ":48397,"Ġyeter":48398,"Ġpulley":48399,"Ġmuffin":48400,"ĠPrefer":48401,"ĠPence":48402,"Ġinformação":48403,"ìĬ¤íĬ¸ë":48404,"ãĤ¸ãĥ£":48405,"ĠTurtle":48406,"ĠRegina":48407,"ĠLoad":48408,"does":48409,"panze":48410,"¸Ķ":48411,"Ġmina":48412,"ĠLatinos":48413,"ammers":48414,"ĠTort":48415,"ĠBeyonce":48416,"имоÑģÑĤи":48417,"ĠвопÑĢоÑģÑĭ":48418,"Ġbulun":48419,"èĢĮå·²":48420,"inek":48421,"bereich":48422,"Ġpasture":48423,"ĠOA":48424,"ĠMelt":48425,"ĠEtt":48426,"ĠDY":48427,"Ġobwohl":48428,"Ġleagues":48429,"ÑĤеÑģÑĮ":48430,"ĠкÑĥÑģ":48431,"Ġvors":48432,"Ġtopp":48433,"ographical":48434,"asst":48435,"Ġlindo":48436,"Ġë°ĿíĺĶ":48437,"Ġréfl":48438,"Ġclimbs":48439,"Ġvarsa":48440,"Ġmethyl":48441,"ĠKarere":48442,"Æ°á»Ł":48443,"Rad":48444,"Ġpreparedness":48445,"онÑĩ":48446,"ĠOD":48447,"ĠCGI":48448,"Ġम":48449,"Ġspeechless":48450,"Ġlasci":48451,"Ġbolag":48452,"ĠÑħоÑĩеÑĤÑģÑı":48453,"Ġgrieving":48454,"ĠJohannes":48455,"ĠCarroll":48456,"adaki":48457,"Ī¬ë":48458,"ĠsÅĤu":48459,"Ġinnerhalb":48460,"Ġgymnastics":48461,"пÑĢи":48462,"ifiques":48463,"Ġkarate":48464,"Ġdomu":48465,"ãģĿãĤĮãģ§":48466,"OTHER":48467,"Ġdemandé":48468,"Ġbooklet":48469,"ĠKyoto":48470,"Ġwoh":48471,"ĠMarÃŃa":48472,"violent":48473,"JE":48474,"Ġlóg":48475,"Ġbrutally":48476,"cot":48477,"ĠÙħÛĮ":48478,"ĠWarsz":48479,"å®Ī":48480,"wol":48481,"Ġmikä":48482,"ĠPronounce":48483,"ĠBrendan":48484,"Ġroup":48485,"Ġitaliano":48486,"å¦ĤæѤ":48487,"ĠкомпÑĮÑİÑĤ":48488,"Ġurging":48489,"edes":48490,"Ġcarbono":48491,"ĠRichardson":48492,"ĠÐĿаÑĩ":48493,"ĠTrainer":48494,"ĠCrimea":48495,"Ġdiapers":48496,"Ġcovet":48497,"ĠMahar":48498,"ĠHutch":48499,"ĠAusw":48500,"berty":48501,"Ġindifferent":48502,"кÑĢеÑĤ":48503,"uldade":48504,"Ġharms":48505,"¢ÙĨ":48506,"lesia":48507,"Ġgio":48508,"ĠMistress":48509,"ĠKnox":48510,"ĠFREE":48511,"Ġ루ë":48512,"ĠнаÑĪа":48513,"Ġinvincible":48514,"Ġmaiden":48515,"ĠJeez":48516,"Ġbreve":48517,"pole":48518,"Ġcriticisms":48519,"ĠRusia":48520,"म":48521,"phin":48522,"ĠCompare":48523,"ĠBON":48524,"Ġsneaking":48525,"ĠRails":48526,"ĠGeral":48527,"Ġ1953":48528,"Hola":48529,"ĠопÑĭÑĤ":48530,"Ġrainforest":48531,"Ġbelum":48532,"ĠObi":48533,"ĠISS":48534,"ãĤĮãģªãģĦ":48535,"ĠСв":48536,"Ġblond":48537,"Ġwzgl":48538,"ĠpowiedziaÅĤ":48539,"Ġchoking":48540,"ĠSongs":48541,"ĠBiraz":48542,"Ġyells":48543,"Ġstylist":48544,"ÏĮÏĦε":48545,"Ġschreiben":48546,"ĠJaw":48547,"ĠEleven":48548,"ĠRif":48549,"/.":48550,"Ġìĺ¤ëŀľë§Į":48551,"Ġtreaties":48552,"uffed":48553,"ĠâĪĴ":48554,"Ġroofs":48555,"à¹Ģส":48556,"Ġë»":48557,"Ġsparkle":48558,"ĠKiev":48559,"ĠArgu":48560,"erecht":48561,"ĠÐĿадо":48562,"ĠFIL":48563,"Ġmolta":48564,"ĠDevi":48565,"Ġcampe":48566,"Ġbenevol":48567,"ĠTough":48568,"Ġmoim":48569,"Ġevacuate":48570,"Ġerrado":48571,"å©Ĩ":48572,"ÑĢÑĥго":48573,"Ġíİĺ":48574,"ĠÎĵια":48575,"Ġweaken":48576,"Ġilluminated":48577,"Ġsiglo":48578,"ĠVacc":48579,"ией":48580,"alis":48581,"ĠÑĥÑģÑĤÑĢой":48582,"Ġdona":48583,"ÅĤos":48584,"üman":48585,"Ġproducción":48586,"Ġclot":48587,"ĠMango":48588,"Ġuneasy":48589,"Ġshuts":48590,"ĠExamples":48591,"vell":48592,"ebe":48593,"Ġpromptly":48594,"ĠTeles":48595,"ĠпÑĢоÑĪл":48596,"Ġpuerta":48597,"Ġüberzeug":48598,"Ġcoch":48599,"social":48600,"ĠBenson":48601,"ĠMeth":48602,"ĠExped":48603,"Ġsupplemental":48604,"Ġconceive":48605,"Ġ×ĺ×ķ×ij":48606,"Ġcaptivity":48607,"ıĻìķĪ":48608,"ĠÑħÑĥд":48609,"forming":48610,"Ġuploads":48611,"Ġturbulence":48612,"joint":48613,"Ġsatisfactory":48614,"ĠAnime":48615,"Ġwashes":48616,"Ġliberals":48617,"ĠSunshine":48618,"ĠREAL":48619,"ublik":48620,"binary":48621,"Tony":48622,"Ġpolarized":48623,"Ġenriched":48624,"taking":48625,"ĠëģĿëĤĺ":48626,"Ġpleasures":48627,"Ġextermin":48628,"inese":48629,"atl":48630,"vär":48631,"аÑĢÑĭ":48632,"ĠmyÅĽ":48633,"narrator":48634,"Ġодном":48635,"ĠnajwiÄĻ":48636,"Ġmobilize":48637,"Ġmillor":48638,"Ġata":48639,"æ··":48640,"ĠpolÃŃtico":48641,"Ġplead":48642,"Ġpainters":48643,"ĠSow":48644,"оÑĦ":48645,"ĠìĺĽëĤł":48646,"ĠÑĩÑĤоб":48647,"Ġsabor":48648,"ĠUndert":48649,"ĠJERRY":48650,"Å¡ÃŃ":48651,"Ġë°ĸìĹIJ":48652,"Ġprécéd":48653,"Ġannotation":48654,"ĠInaudible":48655,"Ġtextured":48656,"Ġfisherman":48657,"vordan":48658,"icherung":48659,"ĠìłģìĿ´":48660,"Ġgezeigt":48661,"Ġmandates":48662,"Ġbeak":48663,"ĠTWO":48664,"ĠAkbar":48665,"ilian":48666,"Ġtiếp":48667,"Ġsuperiority":48668,"inku":48669,"Ġlys":48670,"ĠFCC":48671,"ĠCPA":48672,"ustering":48673,"nicos":48674,"anja":48675,"Ġchills":48676,"ĠCage":48677,"Ġsealing":48678,"Ġsaç":48679,"Ġdedans":48680,"ĠAlger":48681,"Ġspezie":48682,"Ġcoloss":48683,"ıyı":48684,"clockwise":48685,"Ġexactamente":48686,"Ġiemand":48687,"amı":48688,"Ġmandar":48689,"raj":48690,"faced":48691,"agua":48692,"Ġê¹Ķë":48693,"Ġinsbesondere":48694,"Ġdrizzle":48695,"Ġdiminish":48696,"ĠYoda":48697,"AI":48698,"Ġbilmiyorum":48699,"ĠMMA":48700,"ategory":48701,"ĠпеÑĢеп":48702,"Ġparticipar":48703,"Ġnormalized":48704,"Ġcomplexities":48705,"æ´²":48706,"æݧ":48707,"аÑĢов":48708,"mist":48709,"icha":48710,"Group":48711,"Ġresiliency":48712,"Ġnogle":48713,"ĠCNC":48714,"prü":48715,"Ġphysicists":48716,"нок":48717,"LI":48718,"Ġstuffs":48719,"Ġsistemas":48720,"Ġinterfering":48721,"ĠMarvin":48722,"ército":48723,"ĠìĹĨê³ł":48724,"Ġsonic":48725,"Ġequiv":48726,"Ġabord":48727,"ĠRamen":48728,"Ġ09":48729,"medim":48730,"atiques":48731,"ĠделаÑİÑĤ":48732,"Ġunanimously":48733,"Ġskirts":48734,"ĠíĬ¹ë³Ħ":48735,"ĠPrix":48736,"kami":48737,"Ġfruition":48738,"Ġbirthdays":48739,"иком":48740,"Ġinaugural":48741,"Ġcorrelate":48742,"ĠTory":48743,"ĠëĤĺìģ":48744,"Ġdew":48745,"ĠPrecis":48746,"ihi":48747,"Ġë¬¸ìłľê°Ģ":48748,"Ġciting":48749,"ĠLana":48750,"ĠKag":48751,"Ġplaythrough":48752,"ĠProtocol":48753,"frist":48754,"hovah":48755,"Ġmerciful":48756,"Ġbilingual":48757,"ĠGuitar":48758,"rh":48759,"Ġglamorous":48760,"ĠVikings":48761,"ĠOoooh":48762,"íķĺëĬĶëį°":48763,"ĠUganda":48764,"Ġcollapses":48765,"entry":48766,"Ġantioxidants":48767,"ëĤĺë":48768,"ÑĪаÑı":48769,"Ġtrivia":48770,"Ġgäller":48771,"Ġfungi":48772,"Ġmilks":48773,"Ġdicht":48774,"μη":48775,"poke":48776,"ĠвÑĭпÑĥÑģк":48777,"Ġfeeder":48778,"ĠAlcohol":48779,"hower":48780,"Ġdeserving":48781,"ĠRebel":48782,"iosis":48783,"Ġ103":48784,"Ġhandout":48785,"Ġenm":48786,"Ġlandlords":48787,"Ġgeology":48788,"rils":48789,"Ġcobra":48790,"ĠVold":48791,"ĠPanch":48792,"ĠGREG":48793,"Ġpross":48794,"Ġbracelets":48795,"ĠVega":48796,"Ġrozum":48797,"款":48798,"азд":48799,"ĠLynd":48800,"ĠHonors":48801,"Ġsurrendered":48802,"Ġlibrarians":48803,"125":48804,"ĠÑģиг":48805,"Ġuniformly":48806,"ĠEagles":48807,"ìķĻ":48808,"иÑĤан":48809,"andid":48810,"ĠìłĪëĮĢ":48811,"Ġض":48812,"Ġarrests":48813,"ĠCSV":48814,"ĠAzerbaijan":48815,"ortic":48816,"ĠDX":48817,"ĠAdventures":48818,"Ġabus":48819,"ĠFau":48820,"Ġschlimm":48821,"Ġrattling":48822,"Ġconsumes":48823,"ĠTolkien":48824,"Ġresurrected":48825,"ĠXY":48826,"íĬ¸ê°Ģ":48827,"ĠвÑĭÑģÑĤÑĥп":48828,"ĠAngie":48829,"żenia":48830,"Mic":48831,"ĠSheila":48832,"achtet":48833,"Ġoverst":48834,"Ġlâ":48835,"Ġineffective":48836,"æĿ¡":48837,"æĢİä¹ĪäºĨ":48838,"å¿Ļ":48839,"Ġwichtiger":48840,"Ġvino":48841,"Ġpum":48842,"Ġangled":48843,"ĠPione":48844,"ĠMỹ":48845,"ãģĿãĤĮãģ¯":48846,"woÅĽÄĩ":48847,"draw":48848,"ัà¹Ī":48849,"markets":48850,"Ġcafes":48851,"ĠCem":48852,"âĿ¤":48853,"ĠSuit":48854,"MK":48855,"Ġemphasizes":48856,"Ġtortilla":48857,"Ġmejorar":48858,"ĠSurviv":48859,"casting":48860,"Ġeducación":48861,"ĠGum":48862,"uely":48863,"ĠìĹ¬ê¸°ëĬĶ":48864,"Ġstretchy":48865,"ença":48866,"Ġwithhold":48867,"Ġexiting":48868,"Ġenthalpy":48869,"ĠTransit":48870,"ılmÄ±ÅŁ":48871,"alies":48872,"Ġsalvar":48873,"Ġleaned":48874,"ĠgroÃŁes":48875,"Ġfitt":48876,"аки":48877,"Sarah":48878,"Ġhostel":48879,"Ġfingerna":48880,"ĠnadziejÄĻ":48881,"wives":48882,"Rec":48883,"Ġspool":48884,"аÑĤов":48885,"ĠEnemy":48886,"Ġfury":48887,"Ġdetta":48888,"ĠFay":48889,"éļ¨":48890,"ÑıÑİÑĤ":48891,"Ġaproximadamente":48892,"Ġsilos":48893,"Ġmagist":48894,"Ġcree":48895,"ĠKrank":48896,"ĠDOWN":48897,"Ġstartled":48898,"Ġreborn":48899,"ĠUmwelt":48900,"ĠSuzanne":48901,"ниÑĨÑĭ":48902,"outez":48903,"ĠJAC":48904,"yards":48905,"radas":48906,"rau":48907,"ipts":48908,"hail":48909,"Ġparagraphs":48910,"Ġmeglio":48911,"Ġisolating":48912,"Ġaceite":48913,"ĠHarsh":48914,"Ġcyst":48915,"ĠBlockchain":48916,"ĠÑħоÑĢоÑĪий":48917,"Ġvirtuous":48918,"Ġinvestigación":48919,"Ġdevoir":48920,"Ġmasturb":48921,"ĠSale":48922,"ÙĬرة":48923,"ĠΧ":48924,"ĠStraÃŁen":48925,"Ġdikk":48926,"Ġafore":48927,"ĠJungkook":48928,"Ġchociaż":48929,"ĠDebatte":48930,"Ġweirdly":48931,"Ġviaje":48932,"regist":48933,"Help":48934,"Ġkinderen":48935,"Ġformulated":48936,"Ġenfim":48937,"ĠTowards":48938,"коÑĹ":48939,"ivering":48940,"ĠдеÑĤи":48941,"charger":48942,"Ġpurl":48943,"Ġacademically":48944,"ĠNurse":48945,"Ġdeleting":48946,"ayo":48947,"Ġrefusal":48948,"Ġdepicts":48949,"ĠDracula":48950,"Ġtoasted":48951,"ĠZombie":48952,"ĠSuperior":48953,"ĠBold":48954,"Ġquizzes":48955,"Ġgle":48956,"450":48957,"Ġcomeço":48958,"ynn":48959,"Ġverst":48960,"ĠOlaf":48961,"Ġpomoc":48962,"ĠSask":48963,"ëĺ":48964,"ĠTCP":48965,"ĠProperty":48966,"íķĺì£ł":48967,"à¸ľà¸¡":48968,"boom":48969,"aros":48970,"ĠÑĢоÑģÑģий":48971,"ĠбÑĭваеÑĤ":48972,"åĩºåİ»":48973,"ĠìĿ´ìķ¼ê¸°ë¥¼":48974,"Ġcombien":48975,"vacc":48976,"Ġebenfalls":48977,"para":48978,"Ġзм":48979,"Ġdesperation":48980,"ordre":48981,"Ġש׾×Ļ":48982,"Ġgenerously":48983,"ĠÐŀк":48984,"Ġorbiting":48985,">