# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Whisper JAX pipeline compatible with Distil Whisper checkpoints. Copied from https://github.com/sanchit-gandhi/whisper-jax/blob/main/whisper_jax/pipeline.py""" import math import jax import jax.numpy as jnp import numpy as np import requests import torch from flax import jax_utils from flax.core.frozen_dict import freeze from flax.training.common_utils import shard from transformers import WhisperFeatureExtractor, WhisperTokenizerFast from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE from transformers.pipelines.audio_utils import ffmpeg_read from transformers.utils import logging from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration logger = logging.get_logger(__name__) class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation in transformers, and matches to within 1e-5 abs tolerance. """ waveform = torch.from_numpy(waveform).type(torch.float32) window = torch.hann_window(self.n_fft) stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) mel_spec = mel_filters.T @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec.numpy() class FlaxWhisperPipeline: def __init__( self, checkpoint="openai/whisper-large-v2", dtype=jnp.float32, batch_size=None, max_length=None, **kwargs, ): """ Args checkpoint (`str`, *optional*, defaults to `"openai/whisper-large-v2"): The Whisper checkpoint to use with the pipeline. Must be an available checkpoint on the Hugging Face Hub with Flax weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing a batch size in the `__init__` method will be superseded by any batch size passed to the `__call__` method. max_length (`int`, *optional*): The maximum numbers of tokens to generate. Defaults to `model.config.max_length`. """ self.checkpoint = checkpoint self.dtype = dtype self.feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(self.checkpoint) self.tokenizer = WhisperTokenizerFast.from_pretrained(self.checkpoint) self.model, self.params = FlaxWhisperForConditionalGeneration.from_pretrained( self.checkpoint, _do_init=False, dtype=self.dtype, **kwargs, ) self.max_length = max_length if max_length is not None else self.model.generation_config.max_length self.min_batch_size = jax.local_device_count() self.batch_size = ( batch_size if batch_size is not None else self.min_batch_size ) # we need a minimum of 1 batch per-device def generate( params, input_features, forced_decoder_ids, return_timestamps, num_beams, length_penalty, do_sample, top_k, temperature, ): output_ids = self.model.pipeline_generate( input_features, params=params, forced_decoder_ids=forced_decoder_ids, return_timestamps=return_timestamps, max_length=self.max_length, num_beams=num_beams, length_penalty=length_penalty, do_sample=do_sample, top_k=top_k, temperature=temperature, ) return output_ids self.params = jax_utils.replicate(self.params) self.p_generate = jax.pmap( generate, "input_features", in_axes=(0, 0, None, None, None, None, None, None, None), static_broadcasted_argnums=( 3, 4, 5, 6, 7, 8, ), ) def generate( self, input_features, language=None, task=None, return_timestamps=False, num_beams=1, length_penalty=1.0, do_sample=False, top_k=50, temperature=1.0, ): forced_decoder_ids = self.get_forced_decoder_ids( language=language, task=task, return_timestamps=return_timestamps ) # if we're using pmap we need to manually replicate the input data across devices and gather the output tokens output_ids = self.p_generate( freeze(self.params), shard(input_features), forced_decoder_ids, return_timestamps, num_beams, length_penalty, do_sample, top_k, temperature, ).sequences output_ids = jax.device_get(output_ids.reshape(-1, self.max_length)) return output_ids def get_forced_decoder_ids(self, generation_config=None, task=None, language=None, return_timestamps=False): if generation_config is None: generation_config = self.model.generation_config if hasattr(generation_config, "is_multilingual"): is_multilingual = generation_config.is_multilingual else: is_multilingual = None forced_decoder_ids = [] if is_multilingual: if language is not None: language = language.lower() if language in generation_config.lang_to_id.keys(): language_token = language elif language in TO_LANGUAGE_CODE.values(): language_token = f"<|{language}|>" elif language in TO_LANGUAGE_CODE.keys(): language_token = f"<|{TO_LANGUAGE_CODE[language]}|>" else: if len(language) == 2: # ISO 639-1 language code acceptable_languages = list(TO_LANGUAGE_CODE.values()) elif "<" in language or "|" in language or ">" in language: # generation config language code acceptable_languages = list(generation_config.lang_to_id.keys()) else: # language passed as a string acceptable_languages = list(TO_LANGUAGE_CODE.keys()) raise ValueError( f"Unsupported language: {language}. Language should be one of:" f" {acceptable_languages}." ) forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) if task is not None: forced_decoder_ids.append((2, generation_config.task_to_id[task])) else: forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) if not return_timestamps: if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) else: forced_decoder_ids.append((1, generation_config.no_timestamps_token_id)) return forced_decoder_ids def chunk_iter_with_batch(self, inputs, chunk_len, stride_left, stride_right, batch_size): inputs_len = inputs.shape[0] step = chunk_len - stride_left - stride_right all_chunk_start_idx = np.arange(0, inputs_len, step) num_samples = len(all_chunk_start_idx) num_batches = math.ceil(num_samples / batch_size) batch_idx = np.array_split(np.arange(num_samples), num_batches) for idx in batch_idx: chunk_start_idx = all_chunk_start_idx[idx] chunk_end_idx = chunk_start_idx + chunk_len chunks = [inputs[chunk_start:chunk_end] for chunk_start, chunk_end in zip(chunk_start_idx, chunk_end_idx)] processed = self.feature_extractor( chunks, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" ) _stride_left = np.where(chunk_start_idx == 0, 0, stride_left) is_last = np.where(stride_right > 0, chunk_end_idx > inputs_len, chunk_end_idx >= inputs_len) _stride_right = np.where(is_last, 0, stride_right) chunk_lens = [chunk.shape[0] for chunk in chunks] strides = [ (chunk_l, _stride_l, _stride_r) for chunk_l, _stride_l, _stride_r in zip(chunk_lens, _stride_left, _stride_right) ] yield {"stride": strides, **processed} def preprocess_batch(self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None): if isinstance(inputs, np.ndarray): logger.warning( "Numpy array passed as input - no sampling rate checks will be performed." "It is strongly recommended to pass the input as a dictionary with an 'array' key " "containing the numpy array representing the audio, and a 'sampling_rate' key " "containing the sampling rate associated with the audio array." "Failing to do so can result in silent errors that might be hard to debug." ) if isinstance(inputs, str): if inputs.startswith("http://") or inputs.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png inputs = requests.get(inputs).content else: with open(inputs, "rb") as f: inputs = f.read() if isinstance(inputs, bytes): inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) stride = None if isinstance(inputs, dict): stride = inputs.get("stride", None) # Accepting `"array"` which is the key defined in `datasets` for # better integration if not ("sampling_rate" in inputs and "array" in inputs): raise ValueError( "When passing a dictionary to FlaxWhisperPipline, the dict needs to contain an 'array' key " "containing the numpy array representing the audio, and a 'sampling_rate' key " "containing the sampling rate associated with the audio array." ) in_sampling_rate = inputs.get("sampling_rate") inputs = inputs.get("array", None) if in_sampling_rate != self.feature_extractor.sampling_rate: try: import librosa except ImportError as err: raise ImportError( "To support resampling audio files, please install 'librosa' and 'soundfile'." ) from err inputs = librosa.resample( inputs, orig_sr=in_sampling_rate, target_sr=self.feature_extractor.sampling_rate ) ratio = self.feature_extractor.sampling_rate / in_sampling_rate else: ratio = 1 if not isinstance(inputs, np.ndarray): raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") if len(inputs.shape) != 1: raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") if stride is not None: if stride[0] + stride[1] > inputs.shape[0]: raise ValueError("Stride is too large for input") # Stride needs to get the chunk length here, it's going to get # swallowed by the `feature_extractor` later, and then batching # can add extra data in the inputs, so we need to keep track # of the original length in the stride so we can cut properly. stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) if chunk_length_s: if stride_length_s is None: stride_length_s = chunk_length_s / 6 if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] chunk_len = round(chunk_length_s * self.feature_extractor.sampling_rate) stride_left = round(stride_length_s[0] * self.feature_extractor.sampling_rate) stride_right = round(stride_length_s[1] * self.feature_extractor.sampling_rate) if chunk_len < stride_left + stride_right: raise ValueError("Chunk length must be superior to stride length") for item in self.chunk_iter_with_batch( inputs, chunk_len, stride_left, stride_right, batch_size, ): yield item else: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" ) if stride is not None: processed["stride"] = stride yield processed def postprocess(self, model_outputs, return_timestamps=None, return_language=None): # unpack the outputs from list(dict(list)) to list(dict) model_outputs = [dict(zip(output, t)) for output in model_outputs for t in zip(*output.values())] time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions # Send the chunking back to seconds, it's easier to handle in whisper sampling_rate = self.feature_extractor.sampling_rate for output in model_outputs: if "stride" in output: chunk_len, stride_left, stride_right = output["stride"] # Go back in seconds chunk_len /= sampling_rate stride_left /= sampling_rate stride_right /= sampling_rate output["stride"] = chunk_len, stride_left, stride_right text, optional = self.tokenizer._decode_asr( model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) return {"text": text, **optional} def forward( self, model_inputs, batch_size=None, language=None, task=None, return_timestamps=False, num_beams=1, length_penalty=1.0, do_sample=False, top_k=50, temperature=1.0, ): # We need to keep track of some additional input arguments for post-processing so need to forward these on after running generation input_features = model_inputs.pop("input_features") input_batch_size = input_features.shape[0] if input_batch_size != batch_size: padding = np.zeros([batch_size - input_batch_size, *input_features.shape[1:]], input_features.dtype) input_features = np.concatenate([input_features, padding]) pred_ids = self.generate( input_features, language=language, task=task, return_timestamps=return_timestamps, num_beams=num_beams, length_penalty=length_penalty, do_sample=do_sample, top_k=top_k, temperature=temperature, )[:input_batch_size] # tokenizer's decode method expects an extra dim - we insert it here for convenience out = {"tokens": pred_ids[:, None, :]} stride = model_inputs.pop("stride", None) if stride is not None: out["stride"] = stride return out def __call__( self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None, language=None, task=None, return_timestamps=None, num_beams=1, length_penalty=1.0, do_sample=False, top_k=50, temperature=1.0, ): """ Transcribe an audio input sequence to a text transcription, optionally with timestamps. Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): The inputs is either: - `str` that is the filename of the audio file, the file will be read at the correct sampling rate to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. - `bytes` is the byte content of an audio file and is interpreted by *ffmpeg* in the same way. - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) Raw audio assumed to be at the correct sampling rate (16kHz). Note that no further sampling rate check will be done. - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "array": np.array}`. Optionally an additional argument `"stride": (left: int, right: int)` can be used to ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in decoding (but used at inference to provide more context to the model). In general, this additional stride argument is not required. chunk_length_s (`float`, *optional*, defaults to 30.0): The input length for each chunk. If `chunk_length_s = 0` then chunking is disabled. By default, the chunk length is set 30.0s, equal to Whisper's context window. stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`): The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables the model to *see* more context and infer letters better than without this context but the pipeline discards the stride bits at the end to make the final reconstitution as perfect as possible. For more information on how to effectively use `stride_length_s`, refer to the [ASR chunking blog post](https://huggingface.co/blog/asr-chunking). batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing a batch size in the `__call__` method will supersede any batch size passed to the `__init__`. task (`str`, *optional*): Task to use for generation, either `"transcribe"` or `"translate"`. Defaults to `"transcribe"`. language (`str`, *optional*): Language token to use for generation, can be either in the form of `"<|en|>"`, `"en"` or `"english"`. Defaults to `None`, meaning the language is automatically inferred from the audio input. return_timestamps (*optional*, `bool`): Whether to return timestamps in the prediction. Defaults to False. If set to true, the pipeline will return two keys in the output dictionary: `"text"` containing the text transcription, and `"chunks"` containing the transcription segments chunked by their utterance-level timestamps. length_penalty (*optional*, `float`): Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes longer sequences, while length_penalty < 1.0 encourages shorter sequences. do_sample (*optional*, `bool`): Whether or not to use sampling ; use greedy decoding otherwise. top_k (*optional*, `int`): The number of the highest probability vocabulary tokens to keep for top-k-filtering. temperature (*optional*, `float`): The value used to modulate the next token probabilities if sampling. Return: `Dict`: A dictionary with the following keys: - **text** (`str` ) -- The recognised text. - **chunks** (*optional(, `List[Dict]`) When using `return_timestamps`, the `chunks` will become a list containing all the various text chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text": "there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing `"".join(chunk["text"] for chunk in output["chunks"])`. """ batch_size = batch_size if batch_size is not None else self.batch_size if batch_size % self.min_batch_size != 0: raise ValueError( f"Batch size must be a multiple of the number of JAX devices, but got batch size {batch_size} and num devices {self.min_batch_size}." ) dataloader = self.preprocess_batch( inputs, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, batch_size=batch_size ) model_outputs = [] # iterate over our chunked audio samples for batch in dataloader: model_outputs.append( self.forward( batch, batch_size=batch_size, language=language, task=task, return_timestamps=return_timestamps, num_beams=num_beams, length_penalty=length_penalty, do_sample=do_sample, top_k=top_k, temperature=temperature, ) ) post_processed = self.postprocess(model_outputs, return_timestamps=return_timestamps) return post_processed