File size: 45,923 Bytes
88edc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ce3f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88edc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ce3f6
88edc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:AnglELoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 有些人在路上溜达。
  sentences:
  - Folk går
  - Otururken gitar çalan adam.
  - ארה"ב קבעה שסוריה השתמשה בנשק כימי
- source_sentence: 緬甸以前稱為緬甸。
  sentences:
  - 缅甸以前叫缅甸。
  - This is very contradictory.
  -  남자가 아기를 안고 의자에 앉아 잠들어 있다.
- source_sentence: אדם כותב.
  sentences:
  - האדם כותב.
  - questa non è una risposta.
  - 7 שוטרים נהרגו ו-4 שוטרים נפצעו.
- source_sentence: הם מפחדים.
  sentences:
  - liên quan đến rủi ro đáng kể;
  - A man is playing a guitar.
  - A man is playing a piano.
- source_sentence: 一个女人正在洗澡。
  sentences:
  - A woman is taking a bath.
  - En jente børster håret sitt
  - אדם מחלק תפוח אדמה.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.9551466915019567
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9592676437617756
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9270103565661432
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9382925369644322
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9278315400036575
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9393641949848517
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8760113280718741
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8864509380027734
      name: Spearman Dot
    - type: pearson_max
      value: 0.9551466915019567
      name: Pearson Max
    - type: spearman_max
      value: 0.9592676437617756
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.9479585032380113
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9514910354916427
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.925192141913064
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9351648026362221
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9258239806908134
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9363652577900217
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8442947652156254
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8435104766124126
      name: Spearman Dot
    - type: pearson_max
      value: 0.9479585032380113
      name: Pearson Max
    - type: spearman_max
      value: 0.9514910354916427
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9725274765440489
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9766335692570665
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9382317294386867
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.948654920505423
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9392057529290415
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9500099103637895
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8531236460319379
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8611492409185547
      name: Spearman Dot
    - type: pearson_max
      value: 0.9725274765440489
      name: Pearson Max
    - type: spearman_max
      value: 0.9766335692570665
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8026922386812214
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8124393788492182
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7839394479918361
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7899571854314883
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7835912695413444
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7920219916708612
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7698701769634279
      name: Pearson Dot
    - type: spearman_dot
      value: 0.781996122357711
      name: Spearman Dot
    - type: pearson_max
      value: 0.8026922386812214
      name: Pearson Max
    - type: spearman_max
      value: 0.8124393788492182
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7795928581740468
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7703365842088069
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7903764226370217
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7829879213871844
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7911863454505806
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7841695636601043
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7077312955932407
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6914225616023565
      name: Spearman Dot
    - type: pearson_max
      value: 0.7911863454505806
      name: Pearson Max
    - type: spearman_max
      value: 0.7841695636601043
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9112700251605085
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9109414091487618
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8969826303560867
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8934356058163047
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8986106629139636
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8954517657266873
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.884386067267308
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8922685778872441
      name: Spearman Dot
    - type: pearson_max
      value: 0.9112700251605085
      name: Pearson Max
    - type: spearman_max
      value: 0.9109414091487618
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9361870787330656
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9378741534997558
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9230051982649123
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9244721677465636
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9230904520135751
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9251248730902872
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9069963151228692
      name: Pearson Dot
    - type: spearman_dot
      value: 0.9185797530151516
      name: Spearman Dot
    - type: pearson_max
      value: 0.9361870787330656
      name: Pearson Max
    - type: spearman_max
      value: 0.9378741534997558
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8048757108412675
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7987027653005363
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8017660413612523
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7828168153285264
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8006665075585622
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7824761741785664
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7894710045147775
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7819409907917216
      name: Spearman Dot
    - type: pearson_max
      value: 0.8048757108412675
      name: Pearson Max
    - type: spearman_max
      value: 0.7987027653005363
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8520160385093393
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8553203530552356
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8464006282913296
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8409514527398295
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8467543977447098
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8458591066828018
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8093136598158064
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8153571493902085
      name: Spearman Dot
    - type: pearson_max
      value: 0.8520160385093393
      name: Pearson Max
    - type: spearman_max
      value: 0.8553203530552356
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8751983236341568
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.872701191632785
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8744834146908832
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8661385734785878
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.874802989814616
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8668384026485944
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8603441420083793
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8519571499551175
      name: Spearman Dot
    - type: pearson_max
      value: 0.8751983236341568
      name: Pearson Max
    - type: spearman_max
      value: 0.872701191632785
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9082404991830442
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9067607122592818
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8908378724095692
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.885184918244054
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8907567800603056
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8850799779856109
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8888621290344544
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8965880419316619
      name: Spearman Dot
    - type: pearson_max
      value: 0.9082404991830442
      name: Pearson Max
    - type: spearman_max
      value: 0.9067607122592818
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9249796814520836
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9246785886944904
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9083667986520362
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.90288714821411
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9115880396459031
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9083794061358542
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9000889923763985
      name: Pearson Dot
    - type: spearman_dot
      value: 0.9070443969139744
      name: Spearman Dot
    - type: pearson_max
      value: 0.9249796814520836
      name: Pearson Max
    - type: spearman_max
      value: 0.9246785886944904
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9133091498737149
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9114826394926738
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8977113793113364
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8933433506440468
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8979058595014344
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8937323599537337
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.891219202934611
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8987764114969254
      name: Spearman Dot
    - type: pearson_max
      value: 0.9133091498737149
      name: Pearson Max
    - type: spearman_max
      value: 0.9114826394926738
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8984578585216539
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8451542547285167
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8714879175346363
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8451542547285167
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8809190484217423
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8451542547285167
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8537957222589418
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8451542547285167
      name: Spearman Dot
    - type: pearson_max
      value: 0.8984578585216539
      name: Pearson Max
    - type: spearman_max
      value: 0.8451542547285167
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6494815112978085
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6385354535483773
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6429493098908716
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6473666993823523
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6442945700268683
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6444758519763731
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6128358976757747
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6108258021881942
      name: Spearman Dot
    - type: pearson_max
      value: 0.6494815112978085
      name: Pearson Max
    - type: spearman_max
      value: 0.6473666993823523
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7441341150359049
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7518021273920814
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7339108684091178
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7367402927783612
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7336764576613932
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.734241088471987
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6886320720189693
      name: Pearson Dot
    - type: spearman_dot
      value: 0.698561864698337
      name: Spearman Dot
    - type: pearson_max
      value: 0.7441341150359049
      name: Pearson Max
    - type: spearman_max
      value: 0.7518021273920814
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6278594754203957
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6319430830291571
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.543548091135791
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6002053211770223
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5399866615749636
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5955360076924765
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5657998544710718
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6068611192160528
      name: Spearman Dot
    - type: pearson_max
      value: 0.6278594754203957
      name: Pearson Max
    - type: spearman_max
      value: 0.6319430830291571
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7778538763931996
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7875616631597785
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7425757616272681
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7789392103102715
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7437054735775576
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.780583955651507
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7214423493083364
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7489073787091952
      name: Spearman Dot
    - type: pearson_max
      value: 0.7778538763931996
      name: Pearson Max
    - type: spearman_max
      value: 0.7875616631597785
      name: Spearman Max
    - type: pearson_cosine
      value: 0.526790729806662
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5774252131250034
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.41713442172065224
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5599676717727231
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.42192411421528214
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5665444422359257
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.49809047501575476
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5367148143234142
      name: Spearman Dot
    - type: pearson_max
      value: 0.526790729806662
      name: Pearson Max
    - type: spearman_max
      value: 0.5774252131250034
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6306061651851392
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6383757017928495
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.603366556372183
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6167955278711116
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6081018686388112
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6219639110001453
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5767081284665276
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5831358067917275
      name: Spearman Dot
    - type: pearson_max
      value: 0.6306061651851392
      name: Pearson Max
    - type: spearman_max
      value: 0.6383757017928495
      name: Spearman Max
    - type: pearson_cosine
      value: 0.5568482062575557
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5866853707548388
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.49244450938868833
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5737511662255662
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.49058760093828624
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5762095703672849
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4306984514506903
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5470683854030187
      name: Spearman Dot
    - type: pearson_max
      value: 0.5568482062575557
      name: Pearson Max
    - type: spearman_max
      value: 0.5866853707548388
      name: Spearman Max
    - type: pearson_cosine
      value: 0.5776222742798018
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5749790581441845
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.571787148920759
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5500811027014174
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5695499775959532
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5532223379017994
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.53146407233978
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5190797374963447
      name: Spearman Dot
    - type: pearson_max
      value: 0.5776222742798018
      name: Pearson Max
    - type: spearman_max
      value: 0.5749790581441845
      name: Spearman Max
    - type: pearson_cosine
      value: 0.3571900232473057
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4335552432730643
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.20808854264339055
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.4354537154533896
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.208616390027902
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.440246452767669
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.22336496195751424
      name: Pearson Dot
    - type: spearman_dot
      value: 0.3706905558756734
      name: Spearman Dot
    - type: pearson_max
      value: 0.3571900232473057
      name: Pearson Max
    - type: spearman_max
      value: 0.440246452767669
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6863427356006826
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6620948502618977
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6428578762643233
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6483663123081533
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6424050032110411
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6485902628925195
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6352371374824808
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6159110999161411
      name: Spearman Dot
    - type: pearson_max
      value: 0.6863427356006826
      name: Pearson Max
    - type: spearman_max
      value: 0.6620948502618977
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7570295008280781
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7510805416538202
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7191097960855934
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7140422377894933
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7204228437397647
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7257632200250398
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7144336778935939
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7284199759984302
      name: Spearman Dot
    - type: pearson_max
      value: 0.7570295008280781
      name: Pearson Max
    - type: spearman_max
      value: 0.7510805416538202
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6502825737911098
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6624635951676386
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.647419285100459
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6589805549915764
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6516956762905051
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6667221229271868
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5646710115576599
      name: Pearson Dot
    - type: spearman_dot
      value: 0.570198719868156
      name: Spearman Dot
    - type: pearson_max
      value: 0.6516956762905051
      name: Pearson Max
    - type: spearman_max
      value: 0.6667221229271868
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6774230420538705
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6537294853166558
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6824702119604247
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6324707043840341
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6905615468119815
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.640725065351179
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5834798827905125
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5962447037764929
      name: Spearman Dot
    - type: pearson_max
      value: 0.6905615468119815
      name: Pearson Max
    - type: spearman_max
      value: 0.6537294853166558
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6709478850576526
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6847049462613332
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6612883666796053
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6906896123993531
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.66070522554664
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6880796473119815
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.609762034287328
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6194587632000961
      name: Spearman Dot
    - type: pearson_max
      value: 0.6709478850576526
      name: Pearson Max
    - type: spearman_max
      value: 0.6906896123993531
      name: Spearman Max
    - type: pearson_cosine
      value: 0.5977420246846783
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5798716781400349
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5974348978243684
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5952597125560467
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5949256850264925
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5935900431326085
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5042542872226021
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4968394689744579
      name: Spearman Dot
    - type: pearson_max
      value: 0.5977420246846783
      name: Pearson Max
    - type: spearman_max
      value: 0.5952597125560467
      name: Spearman Max
    - type: pearson_cosine
      value: 0.45623521030042163
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.44220332625465214
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.4154787596532877
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.3836945296053597
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.4111357738180186
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.3821548244303783
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.48625234725541483
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5302744622635869
      name: Spearman Dot
    - type: pearson_max
      value: 0.48625234725541483
      name: Pearson Max
    - type: spearman_max
      value: 0.5302744622635869
      name: Spearman Max
    - type: pearson_cosine
      value: 0.5929570742517215
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6266361518449931
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5608268850302591
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6228972623939251
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5579847474929831
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6202030126844109
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4578333834889949
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5628471668594075
      name: Spearman Dot
    - type: pearson_max
      value: 0.5929570742517215
      name: Pearson Max
    - type: spearman_max
      value: 0.6266361518449931
      name: Spearman Max
---

  /!\ This model achieves SOTA results in the MTEB STS multilingual Leaderboard (in "other"). Here is the comparison

  	            State-of-the-art results (Multi)	STSb-XLM-RoBERTa-base	Paraphrase Multilingual MPNet base v2
Average	                    73.17	                        71.68	                       **73.89**
STS17 (ar-ar)	          **81.87**	                        80.43	                         81.24
STS17 (en-ar)	          **81.22**	                        76.3	                         77.03
STS17 (en-de)	            87.3	                        91.06	                       **91.09**
STS17 (en-tr)	            77.18	                      **80.74**	                         79.87
STS17 (es-en)	          **88.24**	                        83.09	                         85.53
STS17 (es-es)	          **88.25**	                        84.16	                         87.27
STS17 (fr-en)	            88.06	                      **91.33**	                         90.68
STS17 (it-en)	            89.68	                      **92.87**	                         92.47
STS17 (ko-ko)	            83.69	                      **97.67**	                         97.66
STS17 (nl-en)	            88.25	                      **92.13**	                         91.15
STS22 (ar)	                58.67	                        58.67	                       **62.66**
STS22 (de)	              **60.12**	                        52.17	                         57.74
STS22 (de-en)	          **60.92**	                        58.5	                         57.5
STS22 (de-fr)	          **67.79**	                        51.28	                         57.99
STS22 (de-pl)	          **58.69**	                        44.56	                         44.22
STS22 (es)	              **68.57**	                        63.68	                         66.21
STS22 (es-en)	          **78.8**	                        70.65	                         75.18
STS22 (es-it)	          **75.04**	                        60.88	                         66.25
STS22 (fr)	              **83.75**	                        76.46	                         78.76
STS22 (fr-pl)	            84.52	                        84.52	                       **84.52**
STS22 (it)	              **79.28**	                        66.73	                         68.47
STS22 (pl)	                42.08	                        41.18	                       **43.36**
STS22 (pl-en)	          **77.5**	                        64.35	                         75.11
STS22 (ru)	              **61.71**	                        58.59	                         58.67
STS22 (tr)	              **68.72**	                        57.52	                         63.84
STS22 (zh-en)	          **71.88**	                        60.69	                         65.37
STSb	                    89.86	                        95.05	                       **95.15**

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Gameselo/STS-multilingual-mpnet-base-v2")
# Run inference
sentences = [
    '一个女人正在洗澡。',
    'A woman is taking a bath.',
    'En jente børster håret sitt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9551     |
| **spearman_cosine** | **0.9593** |
| pearson_manhattan   | 0.927      |
| spearman_manhattan  | 0.9383     |
| pearson_euclidean   | 0.9278     |
| spearman_euclidean  | 0.9394     |
| pearson_dot         | 0.876      |
| spearman_dot        | 0.8865     |
| pearson_max         | 0.9551     |
| spearman_max        | 0.9593     |

#### Evalutation results vs SOTA results
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.948      |
| **spearman_cosine** | **0.9515** |
| pearson_manhattan   | 0.9252     |
| spearman_manhattan  | 0.9352     |
| pearson_euclidean   | 0.9258     |
| spearman_euclidean  | 0.9364     |
| pearson_dot         | 0.8443     |
| spearman_dot        | 0.8435     |
| pearson_max         | 0.948      |
| spearman_max        | 0.9515     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 226,547 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                         | label                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 20.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 1.92</li><li>max: 398.6</li></ul> |
* Samples:
  | sentence_0                                                         | sentence_1                                                      | label                            |
  |:-------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------|
  | <code>Bir kadın makineye dikiş dikiyor.</code>                     | <code>Bir kadın biraz et ekiyor.</code>                         | <code>0.12</code>                |
  | <code>Snowden 'gegeven vluchtelingendocument door Ecuador'.</code> | <code>Snowden staat op het punt om uit Moskou te vliegen</code> | <code>0.24000000953674316</code> |
  | <code>Czarny pies idzie mostem przez wodę</code>                   | <code>Czarny pies nie idzie mostem przez wodę</code>            | <code>0.74000000954</code>       |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_angle_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:-----------------------:|:------------------------:|
| 0.5650 | 500  | 10.9426       | -                       | -                        |
| 1.0    | 885  | -             | 0.9202                  | -                        |
| 1.1299 | 1000 | 9.7184        | -                       | -                        |
| 1.6949 | 1500 | 9.5348        | -                       | -                        |
| 2.0    | 1770 | -             | 0.9400                  | -                        |
| 2.2599 | 2000 | 9.4412        | -                       | -                        |
| 2.8249 | 2500 | 9.3097        | -                       | -                        |
| 3.0    | 2655 | -             | 0.9489                  | -                        |
| 3.3898 | 3000 | 9.2357        | -                       | -                        |
| 3.9548 | 3500 | 9.1594        | -                       | -                        |
| 4.0    | 3540 | -             | 0.9528                  | -                        |
| 4.5198 | 4000 | 9.0963        | -                       | -                        |
| 5.0    | 4425 | -             | 0.9553                  | -                        |
| 5.0847 | 4500 | 9.0382        | -                       | -                        |
| 5.6497 | 5000 | 8.9837        | -                       | -                        |
| 6.0    | 5310 | -             | 0.9567                  | -                        |
| 6.2147 | 5500 | 8.9403        | -                       | -                        |
| 6.7797 | 6000 | 8.8841        | -                       | -                        |
| 7.0    | 6195 | -             | 0.9581                  | -                        |
| 7.3446 | 6500 | 8.8513        | -                       | -                        |
| 7.9096 | 7000 | 8.81          | -                       | -                        |
| 8.0    | 7080 | -             | 0.9582                  | -                        |
| 8.4746 | 7500 | 8.8069        | -                       | -                        |
| 9.0    | 7965 | -             | 0.9589                  | -                        |
| 9.0395 | 8000 | 8.7616        | -                       | -                        |
| 9.6045 | 8500 | 8.7521        | -                       | -                        |
| 10.0   | 8850 | -             | 0.9593                  | 0.6266                   |


### Framework Versions
- Python: 3.9.7
- Sentence Transformers: 3.0.0
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->