Gayu commited on
Commit
3902960
·
1 Parent(s): 50e48de

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9362054681027341
28
  - name: Recall
29
  type: recall
30
- value: 0.9508582968697409
31
  - name: F1
32
  type: f1
33
- value: 0.9434749937379978
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.986489668570083
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0603
47
- - Precision: 0.9362
48
- - Recall: 0.9509
49
- - F1: 0.9435
50
- - Accuracy: 0.9865
51
 
52
  ## Model description
53
 
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0865 | 1.0 | 1756 | 0.0682 | 0.9233 | 0.9334 | 0.9283 | 0.9821 |
82
- | 0.0353 | 2.0 | 3512 | 0.0593 | 0.9287 | 0.9509 | 0.9396 | 0.9859 |
83
- | 0.0191 | 3.0 | 5268 | 0.0603 | 0.9362 | 0.9509 | 0.9435 | 0.9865 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.30.1
89
  - Pytorch 2.0.1+cu118
90
- - Datasets 2.12.0
91
  - Tokenizers 0.13.3
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9340732151730993
28
  - name: Recall
29
  type: recall
30
+ value: 0.9490070683271625
31
  - name: F1
32
  type: f1
33
+ value: 0.9414809249519994
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9859598516512628
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0620
47
+ - Precision: 0.9341
48
+ - Recall: 0.9490
49
+ - F1: 0.9415
50
+ - Accuracy: 0.9860
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0895 | 1.0 | 1756 | 0.0694 | 0.9148 | 0.9337 | 0.9241 | 0.9823 |
82
+ | 0.0345 | 2.0 | 3512 | 0.0657 | 0.9279 | 0.9488 | 0.9383 | 0.9854 |
83
+ | 0.0185 | 3.0 | 5268 | 0.0620 | 0.9341 | 0.9490 | 0.9415 | 0.9860 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.30.2
89
  - Pytorch 2.0.1+cu118
90
+ - Datasets 2.13.0
91
  - Tokenizers 0.13.3