--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: LugandaASRwav2Vec300M results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: lg split: validation args: lg metrics: - name: Wer type: wer value: 0.22313171042840438 --- # LugandaASRwav2Vec300M This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1741 - Wer: 0.2231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.4394 | 0.14 | 100 | 2.9784 | 1.0 | | 2.8739 | 0.27 | 200 | 2.7056 | 1.0000 | | 1.2203 | 0.41 | 300 | 0.5656 | 0.7264 | | 0.4507 | 0.54 | 400 | 0.3978 | 0.5258 | | 0.3657 | 0.68 | 500 | 0.3314 | 0.4416 | | 0.3131 | 0.81 | 600 | 0.2996 | 0.4049 | | 0.2886 | 0.95 | 700 | 0.2823 | 0.3766 | | 0.2535 | 1.08 | 800 | 0.2517 | 0.3317 | | 0.2279 | 1.22 | 900 | 0.2407 | 0.3190 | | 0.2209 | 1.36 | 1000 | 0.2296 | 0.3077 | | 0.2075 | 1.49 | 1100 | 0.2228 | 0.2931 | | 0.1983 | 1.63 | 1200 | 0.2139 | 0.2809 | | 0.1902 | 1.76 | 1300 | 0.2093 | 0.2688 | | 0.1931 | 1.9 | 1400 | 0.2019 | 0.2666 | | 0.1741 | 2.03 | 1500 | 0.1951 | 0.2521 | | 0.1481 | 2.17 | 1600 | 0.1934 | 0.2435 | | 0.1423 | 2.3 | 1700 | 0.1912 | 0.2409 | | 0.1413 | 2.44 | 1800 | 0.1841 | 0.2368 | | 0.1361 | 2.58 | 1900 | 0.1813 | 0.2310 | | 0.1337 | 2.71 | 2000 | 0.1775 | 0.2279 | | 0.1358 | 2.85 | 2100 | 0.1756 | 0.2247 | | 0.133 | 2.98 | 2200 | 0.1741 | 0.2231 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3