--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-may23-luganda-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: lg split: test args: lg metrics: - name: Wer type: wer value: 0.502121009153829 --- # wav2vec2-large-xls-r-may23-luganda-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7210 - Wer: 0.5021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0539 | 7.77 | 400 | 0.6641 | 0.5738 | | 0.0725 | 15.53 | 800 | 0.6735 | 0.5932 | | 0.058 | 23.3 | 1200 | 0.6754 | 0.5751 | | 0.0517 | 31.07 | 1600 | 0.6591 | 0.5901 | | 0.0437 | 38.83 | 2000 | 0.7140 | 0.5658 | | 0.0366 | 46.6 | 2400 | 0.7154 | 0.5602 | | 0.0295 | 54.37 | 2800 | 0.6942 | 0.5140 | | 0.0251 | 62.14 | 3200 | 0.7095 | 0.5204 | | 0.0191 | 69.9 | 3600 | 0.7459 | 0.5267 | | 0.0157 | 77.67 | 4000 | 0.6825 | 0.5155 | | 0.0126 | 85.44 | 4400 | 0.7197 | 0.5135 | | 0.0098 | 93.2 | 4800 | 0.7210 | 0.5021 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3