GetmanY1 commited on
Commit
20751c6
·
verified ·
1 Parent(s): 4f4a7ac

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - automatic-speech-recognition
5
+ - sami
6
+ model-index:
7
+ - name: wav2vec2-xls-r-300m-sami-parl-direct-ft
8
+ results:
9
+ - task:
10
+ name: Automatic Speech Recognition
11
+ type: automatic-speech-recognition
12
+ dataset:
13
+ name: UIT-SME
14
+ type: uit-sme
15
+ args: sami
16
+ metrics:
17
+ - name: WER
18
+ type: wer
19
+ value: 37.25
20
+ - name: CER
21
+ type: cer
22
+ value: 8.97
23
+ ---
24
+ # Northern Sámi Wav2vec2-Large ASR
25
+
26
+ [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) fine-tuned on 20 hours of [Sámi Parliament speech data](https://sametinget.kommunetv.no/archive) on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
27
+
28
+ ## Model description
29
+
30
+ The Sámi Wav2Vec2 Large has the same architecture and uses the same training objective as the English and multilingual one described in [Paper](https://arxiv.org/abs/2006.11477).
31
+
32
+ You can read more about the pre-trained model from [this paper](TODO). The training scripts are available on [GitHub](https://github.com/aalto-speech/northern-sami-asr)
33
+
34
+ ## Intended uses & limitations
35
+
36
+ You can use this model for Sámi ASR (speech-to-text).
37
+
38
+ ### How to use
39
+
40
+ To transcribe audio files the model can be used as a standalone acoustic model as follows:
41
+
42
+ ```
43
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
44
+ from datasets import load_dataset
45
+ import torch
46
+
47
+ # load model and processor
48
+ processor = Wav2Vec2Processor.from_pretrained("GetmanY1/wav2vec2-xls-r-300m-sami-parl-direct-ft")
49
+ model = Wav2Vec2ForCTC.from_pretrained("GetmanY1/wav2vec2-xls-r-300m-sami-parl-direct-ft")
50
+
51
+ # load dummy dataset and read soundfiles
52
+ ds = load_dataset("mozilla-foundation/common_voice_16_1", "fi", split='test')
53
+
54
+ # tokenize
55
+ input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
56
+
57
+ # retrieve logits
58
+ logits = model(input_values).logits
59
+
60
+ # take argmax and decode
61
+ predicted_ids = torch.argmax(logits, dim=-1)
62
+ transcription = processor.batch_decode(predicted_ids)
63
+ ```
64
+
65
+ ### Limitations and bias
66
+
67
+ This model was fine-tuned with audio samples whose maximum length was 30 seconds so this model most likely works the best for short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking).
68
+
69
+ The model was fine-tuned on the data from the [Sámi Parliament speech data](https://sametinget.kommunetv.no/archive) so this model might have biases towards formal Sámi.
70
+
71
+ ## Citation
72
+
73
+ If you use our models or scripts, please cite our article as:
74
+
75
+ ```bibtex
76
+ @inproceedings{getman24b_interspeech,
77
+ author={Yaroslav Getman and Tamas Grosz and Katri Hiovain-Asikainen and Mikko Kurimo},
78
+ title={{Exploring adaptation techniques of large speech foundation models for low-resource ASR: a case study on Northern Sámi}},
79
+ year=2024,
80
+ booktitle={Proc. INTERSPEECH 2024},
81
+ pages={XX--XX},
82
+ doi={XXXX},
83
+ issn={XXXX-XXXX}
84
+ }
85
+ ```