--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Gille/StrangeMerges_9-7B-dare_ties - Gille/StrangeMerges_8-7B-slerp base_model: - Gille/StrangeMerges_9-7B-dare_ties - Gille/StrangeMerges_8-7B-slerp model-index: - name: MoE-StrangeMerges-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.83 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.04 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.86 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 67.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B name: Open LLM Leaderboard --- # MoE-StrangeMerges-2x7B MoE-StrangeMerges-2x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_9-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_9-7B-dare_ties) * [Gille/StrangeMerges_8-7B-slerp](https://huggingface.co/Gille/StrangeMerges_8-7B-slerp) ## 🧩 Configuration ```yaml base_model: Gille/StrangeMerges_9-7B-dare_ties gate_mode: cheap_embed dtype: float16 experts: - source_model: Gille/StrangeMerges_9-7B-dare_ties positive_prompts: ["science, logic, math"] - source_model: Gille/StrangeMerges_8-7B-slerp positive_prompts: ["reasoning, numbers, abstract"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/MoE-StrangeMerges-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__MoE-StrangeMerges-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |73.34| |AI2 Reasoning Challenge (25-Shot)|70.82| |HellaSwag (10-Shot) |87.83| |MMLU (5-Shot) |65.04| |TruthfulQA (0-shot) |65.86| |Winogrande (5-shot) |82.79| |GSM8k (5-shot) |67.70|