--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-sumarizacao-PTBR results: [] --- # mT5_multilingual_XLSum-sumarizacao-PTBR This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3870 - Rouge1: 42.0195 - Rouge2: 24.9493 - Rougel: 32.3653 - Rougelsum: 37.9982 - Gen Len: 77.0 ## Model description from transformers import AutoTokenizer, AutoModelForSeq2SeqLM WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) model_name = "GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_ids = tokenizer( [WHITESPACE_HANDLER(sumariosDuplos[i])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=200, min_length=75, no_repeat_ngram_size=2, num_beams=5 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) sumariosFinal.append(summary) print(i,"\n",summary,"\n") ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 15 | 1.5687 | 32.2316 | 18.9289 | 23.918 | 27.7216 | 51.5714 | | No log | 2.0 | 30 | 1.4530 | 41.2297 | 26.1883 | 30.8012 | 37.1727 | 69.5714 | | No log | 3.0 | 45 | 1.4043 | 40.8986 | 24.4993 | 31.349 | 36.8782 | 72.2143 | | No log | 4.0 | 60 | 1.3908 | 42.1019 | 25.5555 | 32.9018 | 38.0202 | 74.5 | | No log | 5.0 | 75 | 1.3870 | 42.0195 | 24.9493 | 32.3653 | 37.9982 | 77.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1