--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: LLM_Teach_Bart results: [] --- # LLM_Teach_Bart This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5031 - Rouge1: 0.4867 - Rouge2: 0.2549 - Rougel: 0.376 - Rougelsum: 0.3764 - Gen Len: 46.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.3272 | 1.0 | 625 | 1.3454 | 0.4905 | 0.2577 | 0.3725 | 0.3726 | 51.3691 | | 0.9972 | 2.0 | 1250 | 1.3446 | 0.4861 | 0.26 | 0.3757 | 0.3761 | 46.5909 | | 0.8102 | 3.0 | 1875 | 1.4353 | 0.4889 | 0.2564 | 0.3753 | 0.3755 | 47.3073 | | 0.5636 | 4.0 | 2500 | 1.5031 | 0.4867 | 0.2549 | 0.376 | 0.3764 | 46.2273 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0