--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: LLM_Teached_Bart results: [] --- # LLM_Teached_Bart This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7715 - Rouge1: 0.4781 - Rouge2: 0.2085 - Rougel: 0.3718 - Rougelsum: 0.372 - Gen Len: 41.3245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.6623 | 1.0 | 1250 | 1.6705 | 0.4681 | 0.2057 | 0.3632 | 0.3631 | 43.4718 | | 1.2986 | 2.0 | 2500 | 1.6330 | 0.476 | 0.2105 | 0.3732 | 0.3737 | 39.9745 | | 1.0401 | 3.0 | 3750 | 1.7081 | 0.4792 | 0.2134 | 0.3762 | 0.3763 | 40.6155 | | 0.8853 | 4.0 | 5000 | 1.7715 | 0.4781 | 0.2085 | 0.3718 | 0.372 | 41.3245 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0