--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: LLM_Teached_Bart_50k results: [] --- # LLM_Teached_Bart_50k This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5590 - Rouge1: 0.4909 - Rouge2: 0.2303 - Rougel: 0.3967 - Rougelsum: 0.3965 - Gen Len: 38.2287 - Precision: 0.9063 - Recall: 0.9187 - F1: 0.9123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| | No log | 1.0 | 390 | 1.6214 | 0.4804 | 0.2218 | 0.3873 | 0.3873 | 38.3549 | 0.9049 | 0.9166 | 0.9106 | | 1.5842 | 2.0 | 781 | 1.5548 | 0.4874 | 0.2283 | 0.3945 | 0.3945 | 37.8604 | 0.9059 | 0.9171 | 0.9113 | | 1.3014 | 3.0 | 1172 | 1.5461 | 0.49 | 0.2294 | 0.3975 | 0.3974 | 37.7564 | 0.9064 | 0.918 | 0.912 | | 1.18 | 3.99 | 1560 | 1.5590 | 0.4909 | 0.2303 | 0.3967 | 0.3965 | 38.2287 | 0.9063 | 0.9187 | 0.9123 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0