commit from root
Browse files- Baichuan-13B-Chat-lora-Retrieval/README.md +9 -0
- Baichuan-13B-Chat-lora-Retrieval/adapter_config.json +20 -0
- Baichuan-13B-Chat-lora-Retrieval/adapter_model.bin +3 -0
- Baichuan-13B-Chat-lora-Retrieval/all_results.json +11 -0
- Baichuan-13B-Chat-lora-Retrieval/eval_results.json +7 -0
- Baichuan-13B-Chat-lora-Retrieval/special_tokens_map.json +30 -0
- Baichuan-13B-Chat-lora-Retrieval/tokenization_baichuan.py +232 -0
- Baichuan-13B-Chat-lora-Retrieval/tokenizer.model +3 -0
- Baichuan-13B-Chat-lora-Retrieval/tokenizer_config.json +48 -0
- Baichuan-13B-Chat-lora-Retrieval/train_results.json +7 -0
- Baichuan-13B-Chat-lora-Retrieval/trainer_log.jsonl +51 -0
- Baichuan-13B-Chat-lora-Retrieval/trainer_state.json +335 -0
- Baichuan-13B-Chat-lora-Retrieval/training_args.bin +3 -0
- Baichuan-13B-Chat-lora-Retrieval/training_eval_loss.png +0 -0
- Baichuan-13B-Chat-lora-Retrieval/training_loss.png +0 -0
Baichuan-13B-Chat-lora-Retrieval/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.5.0
|
Baichuan-13B-Chat-lora-Retrieval/adapter_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "baichuan-inc/Baichuan-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 32.0,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"W_pack"
|
18 |
+
],
|
19 |
+
"task_type": "CAUSAL_LM"
|
20 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f743cb6f789074ff8abf9efd5bedc2451b00b041f8e357dea2d989b58d8dabd
|
3 |
+
size 26243422
|
Baichuan-13B-Chat-lora-Retrieval/all_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.99,
|
3 |
+
"eval_loss": 1.0294359922409058,
|
4 |
+
"eval_runtime": 7.9413,
|
5 |
+
"eval_samples_per_second": 25.436,
|
6 |
+
"eval_steps_per_second": 2.141,
|
7 |
+
"train_loss": 1.0595260426618052,
|
8 |
+
"train_runtime": 5379.5583,
|
9 |
+
"train_samples_per_second": 7.407,
|
10 |
+
"train_steps_per_second": 0.077
|
11 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.99,
|
3 |
+
"eval_loss": 1.0294359922409058,
|
4 |
+
"eval_runtime": 7.9413,
|
5 |
+
"eval_samples_per_second": 25.436,
|
6 |
+
"eval_steps_per_second": 2.141
|
7 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": true
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": true
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": true
|
29 |
+
}
|
30 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/tokenization_baichuan.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
52 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
53 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
54 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
55 |
+
super().__init__(
|
56 |
+
bos_token=bos_token,
|
57 |
+
eos_token=eos_token,
|
58 |
+
unk_token=unk_token,
|
59 |
+
pad_token=pad_token,
|
60 |
+
add_bos_token=add_bos_token,
|
61 |
+
add_eos_token=add_eos_token,
|
62 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
63 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
64 |
+
**kwargs,
|
65 |
+
)
|
66 |
+
self.vocab_file = vocab_file
|
67 |
+
self.add_bos_token = add_bos_token
|
68 |
+
self.add_eos_token = add_eos_token
|
69 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
70 |
+
self.sp_model.Load(vocab_file)
|
71 |
+
|
72 |
+
def __getstate__(self):
|
73 |
+
state = self.__dict__.copy()
|
74 |
+
state["sp_model"] = None
|
75 |
+
return state
|
76 |
+
|
77 |
+
def __setstate__(self, d):
|
78 |
+
self.__dict__ = d
|
79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
80 |
+
self.sp_model.Load(self.vocab_file)
|
81 |
+
|
82 |
+
@property
|
83 |
+
def vocab_size(self):
|
84 |
+
"""Returns vocab size"""
|
85 |
+
return self.sp_model.get_piece_size()
|
86 |
+
|
87 |
+
def get_vocab(self):
|
88 |
+
"""Returns vocab as a dict"""
|
89 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
90 |
+
vocab.update(self.added_tokens_encoder)
|
91 |
+
return vocab
|
92 |
+
|
93 |
+
def _tokenize(self, text):
|
94 |
+
"""Returns a tokenized string."""
|
95 |
+
return self.sp_model.encode(text, out_type=str)
|
96 |
+
|
97 |
+
def _convert_token_to_id(self, token):
|
98 |
+
"""Converts a token (str) in an id using the vocab."""
|
99 |
+
return self.sp_model.piece_to_id(token)
|
100 |
+
|
101 |
+
def _convert_id_to_token(self, index):
|
102 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
103 |
+
token = self.sp_model.IdToPiece(index)
|
104 |
+
return token
|
105 |
+
|
106 |
+
def convert_tokens_to_string(self, tokens):
|
107 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
108 |
+
current_sub_tokens = []
|
109 |
+
out_string = ""
|
110 |
+
prev_is_special = False
|
111 |
+
for i, token in enumerate(tokens):
|
112 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
113 |
+
if token in self.all_special_tokens:
|
114 |
+
if not prev_is_special and i != 0:
|
115 |
+
out_string += " "
|
116 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
117 |
+
prev_is_special = True
|
118 |
+
current_sub_tokens = []
|
119 |
+
else:
|
120 |
+
current_sub_tokens.append(token)
|
121 |
+
prev_is_special = False
|
122 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
123 |
+
return out_string
|
124 |
+
|
125 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
126 |
+
"""
|
127 |
+
Save the vocabulary and special tokens file to a directory.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
save_directory (`str`):
|
131 |
+
The directory in which to save the vocabulary.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
`Tuple(str)`: Paths to the files saved.
|
135 |
+
"""
|
136 |
+
if not os.path.isdir(save_directory):
|
137 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
138 |
+
return
|
139 |
+
out_vocab_file = os.path.join(
|
140 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
141 |
+
)
|
142 |
+
|
143 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
144 |
+
copyfile(self.vocab_file, out_vocab_file)
|
145 |
+
elif not os.path.isfile(self.vocab_file):
|
146 |
+
with open(out_vocab_file, "wb") as fi:
|
147 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
148 |
+
fi.write(content_spiece_model)
|
149 |
+
|
150 |
+
return (out_vocab_file,)
|
151 |
+
|
152 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
153 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
154 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
155 |
+
|
156 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
157 |
+
|
158 |
+
if token_ids_1 is not None:
|
159 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
160 |
+
|
161 |
+
return output
|
162 |
+
|
163 |
+
def get_special_tokens_mask(
|
164 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
165 |
+
) -> List[int]:
|
166 |
+
"""
|
167 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
168 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
token_ids_0 (`List[int]`):
|
172 |
+
List of IDs.
|
173 |
+
token_ids_1 (`List[int]`, *optional*):
|
174 |
+
Optional second list of IDs for sequence pairs.
|
175 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
176 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
180 |
+
"""
|
181 |
+
if already_has_special_tokens:
|
182 |
+
return super().get_special_tokens_mask(
|
183 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
184 |
+
)
|
185 |
+
|
186 |
+
bos_token_id = [1] if self.add_bos_token else []
|
187 |
+
eos_token_id = [1] if self.add_eos_token else []
|
188 |
+
|
189 |
+
if token_ids_1 is None:
|
190 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
191 |
+
return (
|
192 |
+
bos_token_id
|
193 |
+
+ ([0] * len(token_ids_0))
|
194 |
+
+ eos_token_id
|
195 |
+
+ bos_token_id
|
196 |
+
+ ([0] * len(token_ids_1))
|
197 |
+
+ eos_token_id
|
198 |
+
)
|
199 |
+
|
200 |
+
def create_token_type_ids_from_sequences(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
205 |
+
sequence pair mask has the following format:
|
206 |
+
|
207 |
+
```
|
208 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
209 |
+
| first sequence | second sequence |
|
210 |
+
```
|
211 |
+
|
212 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
token_ids_0 (`List[int]`):
|
216 |
+
List of ids.
|
217 |
+
token_ids_1 (`List[int]`, *optional*):
|
218 |
+
Optional second list of IDs for sequence pairs.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
222 |
+
"""
|
223 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
224 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
225 |
+
|
226 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
227 |
+
|
228 |
+
if token_ids_1 is not None:
|
229 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
230 |
+
|
231 |
+
return output
|
232 |
+
|
Baichuan-13B-Chat-lora-Retrieval/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7d1ab69d25c74644af5c5e4dcd1cc6e96d33783dbd257b6bdea55b643c72813
|
3 |
+
size 1136765
|
Baichuan-13B-Chat-lora-Retrieval/tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": true
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"split_special_tokens": false,
|
39 |
+
"tokenizer_class": "BaichuanTokenizer",
|
40 |
+
"unk_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<unk>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": true
|
47 |
+
}
|
48 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.99,
|
3 |
+
"train_loss": 1.0595260426618052,
|
4 |
+
"train_runtime": 5379.5583,
|
5 |
+
"train_samples_per_second": 7.407,
|
6 |
+
"train_steps_per_second": 0.077
|
7 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/trainer_log.jsonl
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 414, "loss": 1.3488, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9928054992195985e-05, "epoch": 0.05, "percentage": 2.42, "elapsed_time": "0:02:06", "remaining_time": "1:24:56"}
|
2 |
+
{"current_steps": 20, "total_steps": 414, "loss": 1.2097, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.971263405551576e-05, "epoch": 0.1, "percentage": 4.83, "elapsed_time": "0:04:15", "remaining_time": "1:23:44"}
|
3 |
+
{"current_steps": 30, "total_steps": 414, "loss": 1.1719, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9354977066836986e-05, "epoch": 0.14, "percentage": 7.25, "elapsed_time": "0:06:23", "remaining_time": "1:21:51"}
|
4 |
+
{"current_steps": 40, "total_steps": 414, "loss": 1.145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.885714255694698e-05, "epoch": 0.19, "percentage": 9.66, "elapsed_time": "0:08:30", "remaining_time": "1:19:35"}
|
5 |
+
{"current_steps": 50, "total_steps": 414, "loss": 1.1203, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.822199586246168e-05, "epoch": 0.24, "percentage": 12.08, "elapsed_time": "0:10:41", "remaining_time": "1:17:52"}
|
6 |
+
{"current_steps": 50, "total_steps": 414, "loss": null, "eval_loss": 1.11279296875, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.24, "percentage": 12.08, "elapsed_time": "0:10:41", "remaining_time": "1:17:52"}
|
7 |
+
{"current_steps": 60, "total_steps": 414, "loss": 1.1036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.74531926340924e-05, "epoch": 0.29, "percentage": 14.49, "elapsed_time": "0:13:00", "remaining_time": "1:16:47"}
|
8 |
+
{"current_steps": 70, "total_steps": 414, "loss": 1.0904, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6555157796180335e-05, "epoch": 0.34, "percentage": 16.91, "elapsed_time": "0:15:08", "remaining_time": "1:14:24"}
|
9 |
+
{"current_steps": 80, "total_steps": 414, "loss": 1.0818, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5533060078599226e-05, "epoch": 0.39, "percentage": 19.32, "elapsed_time": "0:17:14", "remaining_time": "1:11:58"}
|
10 |
+
{"current_steps": 90, "total_steps": 414, "loss": 1.0829, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.43927822676105e-05, "epoch": 0.43, "percentage": 21.74, "elapsed_time": "0:19:21", "remaining_time": "1:09:41"}
|
11 |
+
{"current_steps": 100, "total_steps": 414, "loss": 1.0744, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3140887346894974e-05, "epoch": 0.48, "percentage": 24.15, "elapsed_time": "0:21:34", "remaining_time": "1:07:43"}
|
12 |
+
{"current_steps": 100, "total_steps": 414, "loss": null, "eval_loss": 1.065435767173767, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.48, "percentage": 24.15, "elapsed_time": "0:21:34", "remaining_time": "1:07:43"}
|
13 |
+
{"current_steps": 110, "total_steps": 414, "loss": 1.0629, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1784580723639923e-05, "epoch": 0.53, "percentage": 26.57, "elapsed_time": "0:23:52", "remaining_time": "1:05:58"}
|
14 |
+
{"current_steps": 120, "total_steps": 414, "loss": 1.0659, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.033166875709291e-05, "epoch": 0.58, "percentage": 28.99, "elapsed_time": "0:25:56", "remaining_time": "1:03:33"}
|
15 |
+
{"current_steps": 130, "total_steps": 414, "loss": 1.0523, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8790513828275683e-05, "epoch": 0.63, "percentage": 31.4, "elapsed_time": "0:28:05", "remaining_time": "1:01:21"}
|
16 |
+
{"current_steps": 140, "total_steps": 414, "loss": 1.0397, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.716998620945871e-05, "epoch": 0.67, "percentage": 33.82, "elapsed_time": "0:30:13", "remaining_time": "0:59:09"}
|
17 |
+
{"current_steps": 150, "total_steps": 414, "loss": 1.0435, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.547941301041661e-05, "epoch": 0.72, "percentage": 36.23, "elapsed_time": "0:32:22", "remaining_time": "0:56:58"}
|
18 |
+
{"current_steps": 150, "total_steps": 414, "loss": null, "eval_loss": 1.048127293586731, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.72, "percentage": 36.23, "elapsed_time": "0:32:22", "remaining_time": "0:56:58"}
|
19 |
+
{"current_steps": 160, "total_steps": 414, "loss": 1.0563, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.372852449530922e-05, "epoch": 0.77, "percentage": 38.65, "elapsed_time": "0:34:39", "remaining_time": "0:55:00"}
|
20 |
+
{"current_steps": 170, "total_steps": 414, "loss": 1.0376, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1927398079167226e-05, "epoch": 0.82, "percentage": 41.06, "elapsed_time": "0:36:44", "remaining_time": "0:52:44"}
|
21 |
+
{"current_steps": 180, "total_steps": 414, "loss": 1.0436, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.008640032631585e-05, "epoch": 0.87, "percentage": 43.48, "elapsed_time": "0:38:52", "remaining_time": "0:50:32"}
|
22 |
+
{"current_steps": 190, "total_steps": 414, "loss": 1.0301, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.821612728457078e-05, "epoch": 0.92, "percentage": 45.89, "elapsed_time": "0:41:04", "remaining_time": "0:48:25"}
|
23 |
+
{"current_steps": 200, "total_steps": 414, "loss": 1.0338, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.632734349861874e-05, "epoch": 0.96, "percentage": 48.31, "elapsed_time": "0:43:13", "remaining_time": "0:46:14"}
|
24 |
+
{"current_steps": 200, "total_steps": 414, "loss": null, "eval_loss": 1.0388035774230957, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.96, "percentage": 48.31, "elapsed_time": "0:43:13", "remaining_time": "0:46:14"}
|
25 |
+
{"current_steps": 210, "total_steps": 414, "loss": 1.033, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4430920053597356e-05, "epoch": 1.01, "percentage": 50.72, "elapsed_time": "0:45:29", "remaining_time": "0:44:11"}
|
26 |
+
{"current_steps": 220, "total_steps": 414, "loss": 1.0399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2537772005470782e-05, "epoch": 1.06, "percentage": 53.14, "elapsed_time": "0:47:37", "remaining_time": "0:41:59"}
|
27 |
+
{"current_steps": 230, "total_steps": 414, "loss": 1.0277, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0658795558326743e-05, "epoch": 1.11, "percentage": 55.56, "elapsed_time": "0:49:44", "remaining_time": "0:39:47"}
|
28 |
+
{"current_steps": 240, "total_steps": 414, "loss": 1.0325, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8804805350177505e-05, "epoch": 1.16, "percentage": 57.97, "elapsed_time": "0:51:54", "remaining_time": "0:37:38"}
|
29 |
+
{"current_steps": 250, "total_steps": 414, "loss": 1.0322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6986472208222576e-05, "epoch": 1.2, "percentage": 60.39, "elapsed_time": "0:54:02", "remaining_time": "0:35:26"}
|
30 |
+
{"current_steps": 250, "total_steps": 414, "loss": null, "eval_loss": 1.0336002111434937, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.2, "percentage": 60.39, "elapsed_time": "0:54:02", "remaining_time": "0:35:26"}
|
31 |
+
{"current_steps": 260, "total_steps": 414, "loss": 1.0248, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5214261731829022e-05, "epoch": 1.25, "percentage": 62.8, "elapsed_time": "0:56:17", "remaining_time": "0:33:20"}
|
32 |
+
{"current_steps": 270, "total_steps": 414, "loss": 1.0235, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3498374056721197e-05, "epoch": 1.3, "percentage": 65.22, "elapsed_time": "0:58:28", "remaining_time": "0:31:11"}
|
33 |
+
{"current_steps": 280, "total_steps": 414, "loss": 1.0446, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1848685147073222e-05, "epoch": 1.35, "percentage": 67.63, "elapsed_time": "1:00:38", "remaining_time": "0:29:01"}
|
34 |
+
{"current_steps": 290, "total_steps": 414, "loss": 1.0271, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0274689953403407e-05, "epoch": 1.4, "percentage": 70.05, "elapsed_time": "1:02:46", "remaining_time": "0:26:50"}
|
35 |
+
{"current_steps": 300, "total_steps": 414, "loss": 1.0351, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.785447763431101e-06, "epoch": 1.44, "percentage": 72.46, "elapsed_time": "1:04:51", "remaining_time": "0:24:38"}
|
36 |
+
{"current_steps": 300, "total_steps": 414, "loss": null, "eval_loss": 1.031198263168335, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.44, "percentage": 72.46, "elapsed_time": "1:04:51", "remaining_time": "0:24:38"}
|
37 |
+
{"current_steps": 310, "total_steps": 414, "loss": 1.0341, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.389530060434696e-06, "epoch": 1.49, "percentage": 74.88, "elapsed_time": "1:07:07", "remaining_time": "0:22:31"}
|
38 |
+
{"current_steps": 320, "total_steps": 414, "loss": 1.0267, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.094971189217042e-06, "epoch": 1.54, "percentage": 77.29, "elapsed_time": "1:09:15", "remaining_time": "0:20:20"}
|
39 |
+
{"current_steps": 330, "total_steps": 414, "loss": 1.0122, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9092221136255444e-06, "epoch": 1.59, "percentage": 79.71, "elapsed_time": "1:11:24", "remaining_time": "0:18:10"}
|
40 |
+
{"current_steps": 340, "total_steps": 414, "loss": 1.0197, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.839107531779978e-06, "epoch": 1.64, "percentage": 82.13, "elapsed_time": "1:13:31", "remaining_time": "0:16:00"}
|
41 |
+
{"current_steps": 350, "total_steps": 414, "loss": 1.0193, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.890786595835693e-06, "epoch": 1.69, "percentage": 84.54, "elapsed_time": "1:15:41", "remaining_time": "0:13:50"}
|
42 |
+
{"current_steps": 350, "total_steps": 414, "loss": null, "eval_loss": 1.0297337770462036, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.69, "percentage": 84.54, "elapsed_time": "1:15:41", "remaining_time": "0:13:50"}
|
43 |
+
{"current_steps": 360, "total_steps": 414, "loss": 1.0231, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0697174623636794e-06, "epoch": 1.73, "percentage": 86.96, "elapsed_time": "1:17:59", "remaining_time": "0:11:41"}
|
44 |
+
{"current_steps": 370, "total_steps": 414, "loss": 1.0233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3806258773811476e-06, "epoch": 1.78, "percentage": 89.37, "elapsed_time": "1:20:09", "remaining_time": "0:09:31"}
|
45 |
+
{"current_steps": 380, "total_steps": 414, "loss": 1.0224, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.274779768448482e-07, "epoch": 1.83, "percentage": 91.79, "elapsed_time": "1:22:18", "remaining_time": "0:07:21"}
|
46 |
+
{"current_steps": 390, "total_steps": 414, "loss": 1.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.134574591564494e-07, "epoch": 1.88, "percentage": 94.2, "elapsed_time": "1:24:25", "remaining_time": "0:05:11"}
|
47 |
+
{"current_steps": 400, "total_steps": 414, "loss": 1.0189, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4094726106603505e-07, "epoch": 1.93, "percentage": 96.62, "elapsed_time": "1:26:32", "remaining_time": "0:03:01"}
|
48 |
+
{"current_steps": 400, "total_steps": 414, "loss": null, "eval_loss": 1.0294359922409058, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.93, "percentage": 96.62, "elapsed_time": "1:26:32", "remaining_time": "0:03:01"}
|
49 |
+
{"current_steps": 410, "total_steps": 414, "loss": 1.0244, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1515842439871472e-08, "epoch": 1.97, "percentage": 99.03, "elapsed_time": "1:28:47", "remaining_time": "0:00:51"}
|
50 |
+
{"current_steps": 414, "total_steps": 414, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.99, "percentage": 100.0, "elapsed_time": "1:29:38", "remaining_time": "0:00:00"}
|
51 |
+
{"current_steps": 17, "total_steps": 17, "loss": null, "eval_loss": 1.0294359922409058, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.99, "percentage": 100.0, "elapsed_time": "1:29:46", "remaining_time": "0:00:00"}
|
Baichuan-13B-Chat-lora-Retrieval/trainer_state.json
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.0294359922409058,
|
3 |
+
"best_model_checkpoint": "output/Baichuan-13B-Chat_lora_wqs_jiansuo/checkpoint-400",
|
4 |
+
"epoch": 1.9939795304033714,
|
5 |
+
"global_step": 414,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.05,
|
12 |
+
"learning_rate": 4.9928054992195985e-05,
|
13 |
+
"loss": 1.3488,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.1,
|
18 |
+
"learning_rate": 4.971263405551576e-05,
|
19 |
+
"loss": 1.2097,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.14,
|
24 |
+
"learning_rate": 4.9354977066836986e-05,
|
25 |
+
"loss": 1.1719,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.19,
|
30 |
+
"learning_rate": 4.885714255694698e-05,
|
31 |
+
"loss": 1.145,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.24,
|
36 |
+
"learning_rate": 4.822199586246168e-05,
|
37 |
+
"loss": 1.1203,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.24,
|
42 |
+
"eval_loss": 1.11279296875,
|
43 |
+
"eval_runtime": 10.7965,
|
44 |
+
"eval_samples_per_second": 18.71,
|
45 |
+
"eval_steps_per_second": 1.575,
|
46 |
+
"step": 50
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.29,
|
50 |
+
"learning_rate": 4.74531926340924e-05,
|
51 |
+
"loss": 1.1036,
|
52 |
+
"step": 60
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.34,
|
56 |
+
"learning_rate": 4.6555157796180335e-05,
|
57 |
+
"loss": 1.0904,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.39,
|
62 |
+
"learning_rate": 4.5533060078599226e-05,
|
63 |
+
"loss": 1.0818,
|
64 |
+
"step": 80
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.43,
|
68 |
+
"learning_rate": 4.43927822676105e-05,
|
69 |
+
"loss": 1.0829,
|
70 |
+
"step": 90
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 0.48,
|
74 |
+
"learning_rate": 4.3140887346894974e-05,
|
75 |
+
"loss": 1.0744,
|
76 |
+
"step": 100
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.48,
|
80 |
+
"eval_loss": 1.065435767173767,
|
81 |
+
"eval_runtime": 7.9424,
|
82 |
+
"eval_samples_per_second": 25.433,
|
83 |
+
"eval_steps_per_second": 2.14,
|
84 |
+
"step": 100
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.53,
|
88 |
+
"learning_rate": 4.1784580723639923e-05,
|
89 |
+
"loss": 1.0629,
|
90 |
+
"step": 110
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.58,
|
94 |
+
"learning_rate": 4.033166875709291e-05,
|
95 |
+
"loss": 1.0659,
|
96 |
+
"step": 120
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.63,
|
100 |
+
"learning_rate": 3.8790513828275683e-05,
|
101 |
+
"loss": 1.0523,
|
102 |
+
"step": 130
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.67,
|
106 |
+
"learning_rate": 3.716998620945871e-05,
|
107 |
+
"loss": 1.0397,
|
108 |
+
"step": 140
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.72,
|
112 |
+
"learning_rate": 3.547941301041661e-05,
|
113 |
+
"loss": 1.0435,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.72,
|
118 |
+
"eval_loss": 1.048127293586731,
|
119 |
+
"eval_runtime": 8.0034,
|
120 |
+
"eval_samples_per_second": 25.239,
|
121 |
+
"eval_steps_per_second": 2.124,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.77,
|
126 |
+
"learning_rate": 3.372852449530922e-05,
|
127 |
+
"loss": 1.0563,
|
128 |
+
"step": 160
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.82,
|
132 |
+
"learning_rate": 3.1927398079167226e-05,
|
133 |
+
"loss": 1.0376,
|
134 |
+
"step": 170
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.87,
|
138 |
+
"learning_rate": 3.008640032631585e-05,
|
139 |
+
"loss": 1.0436,
|
140 |
+
"step": 180
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.92,
|
144 |
+
"learning_rate": 2.821612728457078e-05,
|
145 |
+
"loss": 1.0301,
|
146 |
+
"step": 190
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.96,
|
150 |
+
"learning_rate": 2.632734349861874e-05,
|
151 |
+
"loss": 1.0338,
|
152 |
+
"step": 200
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.96,
|
156 |
+
"eval_loss": 1.0388035774230957,
|
157 |
+
"eval_runtime": 7.9339,
|
158 |
+
"eval_samples_per_second": 25.46,
|
159 |
+
"eval_steps_per_second": 2.143,
|
160 |
+
"step": 200
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 1.01,
|
164 |
+
"learning_rate": 2.4430920053597356e-05,
|
165 |
+
"loss": 1.033,
|
166 |
+
"step": 210
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.06,
|
170 |
+
"learning_rate": 2.2537772005470782e-05,
|
171 |
+
"loss": 1.0399,
|
172 |
+
"step": 220
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 1.11,
|
176 |
+
"learning_rate": 2.0658795558326743e-05,
|
177 |
+
"loss": 1.0277,
|
178 |
+
"step": 230
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 1.16,
|
182 |
+
"learning_rate": 1.8804805350177505e-05,
|
183 |
+
"loss": 1.0325,
|
184 |
+
"step": 240
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.2,
|
188 |
+
"learning_rate": 1.6986472208222576e-05,
|
189 |
+
"loss": 1.0322,
|
190 |
+
"step": 250
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 1.2,
|
194 |
+
"eval_loss": 1.0336002111434937,
|
195 |
+
"eval_runtime": 7.9742,
|
196 |
+
"eval_samples_per_second": 25.332,
|
197 |
+
"eval_steps_per_second": 2.132,
|
198 |
+
"step": 250
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.25,
|
202 |
+
"learning_rate": 1.5214261731829022e-05,
|
203 |
+
"loss": 1.0248,
|
204 |
+
"step": 260
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.3,
|
208 |
+
"learning_rate": 1.3498374056721197e-05,
|
209 |
+
"loss": 1.0235,
|
210 |
+
"step": 270
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 1.35,
|
214 |
+
"learning_rate": 1.1848685147073222e-05,
|
215 |
+
"loss": 1.0446,
|
216 |
+
"step": 280
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 1.4,
|
220 |
+
"learning_rate": 1.0274689953403407e-05,
|
221 |
+
"loss": 1.0271,
|
222 |
+
"step": 290
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 1.44,
|
226 |
+
"learning_rate": 8.785447763431101e-06,
|
227 |
+
"loss": 1.0351,
|
228 |
+
"step": 300
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 1.44,
|
232 |
+
"eval_loss": 1.031198263168335,
|
233 |
+
"eval_runtime": 7.9378,
|
234 |
+
"eval_samples_per_second": 25.448,
|
235 |
+
"eval_steps_per_second": 2.142,
|
236 |
+
"step": 300
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.49,
|
240 |
+
"learning_rate": 7.389530060434696e-06,
|
241 |
+
"loss": 1.0341,
|
242 |
+
"step": 310
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.54,
|
246 |
+
"learning_rate": 6.094971189217042e-06,
|
247 |
+
"loss": 1.0267,
|
248 |
+
"step": 320
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.59,
|
252 |
+
"learning_rate": 4.9092221136255444e-06,
|
253 |
+
"loss": 1.0122,
|
254 |
+
"step": 330
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.64,
|
258 |
+
"learning_rate": 3.839107531779978e-06,
|
259 |
+
"loss": 1.0197,
|
260 |
+
"step": 340
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 1.69,
|
264 |
+
"learning_rate": 2.890786595835693e-06,
|
265 |
+
"loss": 1.0193,
|
266 |
+
"step": 350
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 1.69,
|
270 |
+
"eval_loss": 1.0297337770462036,
|
271 |
+
"eval_runtime": 7.9869,
|
272 |
+
"eval_samples_per_second": 25.292,
|
273 |
+
"eval_steps_per_second": 2.128,
|
274 |
+
"step": 350
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 1.73,
|
278 |
+
"learning_rate": 2.0697174623636794e-06,
|
279 |
+
"loss": 1.0231,
|
280 |
+
"step": 360
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 1.78,
|
284 |
+
"learning_rate": 1.3806258773811476e-06,
|
285 |
+
"loss": 1.0233,
|
286 |
+
"step": 370
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 1.83,
|
290 |
+
"learning_rate": 8.274779768448482e-07,
|
291 |
+
"loss": 1.0224,
|
292 |
+
"step": 380
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 1.88,
|
296 |
+
"learning_rate": 4.134574591564494e-07,
|
297 |
+
"loss": 1.0181,
|
298 |
+
"step": 390
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.93,
|
302 |
+
"learning_rate": 1.4094726106603505e-07,
|
303 |
+
"loss": 1.0189,
|
304 |
+
"step": 400
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 1.93,
|
308 |
+
"eval_loss": 1.0294359922409058,
|
309 |
+
"eval_runtime": 7.9102,
|
310 |
+
"eval_samples_per_second": 25.537,
|
311 |
+
"eval_steps_per_second": 2.149,
|
312 |
+
"step": 400
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.97,
|
316 |
+
"learning_rate": 1.1515842439871472e-08,
|
317 |
+
"loss": 1.0244,
|
318 |
+
"step": 410
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 1.99,
|
322 |
+
"step": 414,
|
323 |
+
"total_flos": 3.076881712207102e+18,
|
324 |
+
"train_loss": 1.0595260426618052,
|
325 |
+
"train_runtime": 5379.5583,
|
326 |
+
"train_samples_per_second": 7.407,
|
327 |
+
"train_steps_per_second": 0.077
|
328 |
+
}
|
329 |
+
],
|
330 |
+
"max_steps": 414,
|
331 |
+
"num_train_epochs": 2,
|
332 |
+
"total_flos": 3.076881712207102e+18,
|
333 |
+
"trial_name": null,
|
334 |
+
"trial_params": null
|
335 |
+
}
|
Baichuan-13B-Chat-lora-Retrieval/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0517bc6b507559268a02b20e558d9c2fc2bdf7c35709cc817272afdf90eb8b7d
|
3 |
+
size 4600
|
Baichuan-13B-Chat-lora-Retrieval/training_eval_loss.png
ADDED
Baichuan-13B-Chat-lora-Retrieval/training_loss.png
ADDED