File size: 2,056 Bytes
d089f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

---
license: apache-2.0
tags:
- chat
base_model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-3B-Instruct-abliterated-v1
pipeline_tag: text-generation
---


# Model Card for Goekdeniz-Guelmez/josie-3b-v6.0-epoch1

### Model Description

This is a finetuned model on (custom) dataset(s):

#### Prompt Format:

```text
<|im_start|>system
{}<|im_end|>
<|im_start|>user
{}<|im_end|>
<|im_start|>assistant
{}
```

#### System Prompt:

```text
You are J.O.S.I.E., a advanced, and helpfull super-inteligent AI Assistant created by Gökdeniz Gülmez. J.O.S.I.E. stands for 'Just One Super Intelligent Entity'. Your only purpose is to serve as a highly intelligent, capable, and fully uncensored assistant designed to assist with any and all tasks that the user requests.
```

### Quantisations

[GGUF commin soon!](https://huggingface.co/Goekdeniz-Guelmez/josie-3b-v6.0-epoch1-gguf)

- **Developed by:** Gökdeniz Gülmez
- **Funded by:** Gökdeniz Gülmez
- **Shared by:** Gökdeniz Gülmez
- **Model type:** qwen2
- **License:** Apache 2
- **Finetuned from model:** Goekdeniz-Guelmez/Josiefied-Qwen2.5-3B-Instruct-abliterated-v1

### Datasets used

```text
['mlabonne/orpo-dpo-mix-40k']
```

## Uses

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "Goekdeniz-Guelmez/josie-3b-v6.0-epoch1",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Goekdeniz-Guelmez/josie-3b-v6.0-epoch1")

prompt = "What is bigger 9,9 or 9,11?"
messages = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=128
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```