--- library_name: transformers language: - hr license: apache-2.0 base_model: GoranS/whisper-large-v3-turbo-hr-parla tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-turbo.hr results: [] --- # whisper-large-v3-turbo.hr This model is a fine-tuned version of [GoranS/whisper-large-v3-turbo-hr-parla](https://huggingface.co/GoranS/whisper-large-v3-turbo-hr-parla) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1473 - Wer: 0.1155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.25e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1629 | 0.5450 | 1000 | 0.1638 | 0.1151 | | 0.1133 | 1.0899 | 2000 | 0.1513 | 0.1168 | | 0.0979 | 1.6349 | 3000 | 0.1473 | 0.1155 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3