--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7127 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2072 | 0.99 | 56 | 2.1364 | 0.37 | | 1.6502 | 2.0 | 113 | 1.5282 | 0.63 | | 1.2965 | 2.99 | 169 | 1.1371 | 0.69 | | 1.0407 | 4.0 | 226 | 0.9643 | 0.74 | | 0.6558 | 4.99 | 282 | 0.7303 | 0.76 | | 0.3615 | 6.0 | 339 | 0.7688 | 0.78 | | 0.3705 | 6.99 | 395 | 0.5905 | 0.85 | | 0.2165 | 8.0 | 452 | 0.6988 | 0.81 | | 0.1098 | 8.99 | 508 | 0.4604 | 0.9 | | 0.0647 | 10.0 | 565 | 0.6756 | 0.87 | | 0.0179 | 10.99 | 621 | 0.8108 | 0.83 | | 0.0278 | 12.0 | 678 | 0.6674 | 0.87 | | 0.0075 | 12.99 | 734 | 0.8230 | 0.83 | | 0.0061 | 14.0 | 791 | 0.8155 | 0.85 | | 0.0056 | 14.99 | 847 | 0.7233 | 0.87 | | 0.0055 | 15.86 | 896 | 0.7127 | 0.87 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3