--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model results: [] --- # NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1766 - Precision: 0.5977 - Recall: 0.5730 - F1: 0.5851 - Accuracy: 0.9539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 71 | 0.1981 | 0.2581 | 0.2239 | 0.2398 | 0.9266 | | No log | 2.0 | 142 | 0.1616 | 0.4514 | 0.3692 | 0.4062 | 0.9444 | | No log | 3.0 | 213 | 0.1514 | 0.5233 | 0.4727 | 0.4967 | 0.9482 | | No log | 4.0 | 284 | 0.1863 | 0.4522 | 0.5546 | 0.4982 | 0.9352 | | No log | 5.0 | 355 | 0.1582 | 0.5665 | 0.5245 | 0.5447 | 0.9498 | | No log | 6.0 | 426 | 0.1571 | 0.5915 | 0.5305 | 0.5593 | 0.9529 | | No log | 7.0 | 497 | 0.1652 | 0.5849 | 0.5586 | 0.5714 | 0.9527 | | 0.1311 | 8.0 | 568 | 0.1676 | 0.5858 | 0.5738 | 0.5798 | 0.9528 | | 0.1311 | 9.0 | 639 | 0.1748 | 0.5990 | 0.5562 | 0.5768 | 0.9537 | | 0.1311 | 10.0 | 710 | 0.1766 | 0.5977 | 0.5730 | 0.5851 | 0.9539 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1