--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model results: [] --- # NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2050 - Precision: 0.6079 - Recall: 0.5407 - F1: 0.5723 - Accuracy: 0.9528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 71 | 0.2223 | 0.3125 | 0.1619 | 0.2133 | 0.9212 | | No log | 2.0 | 142 | 0.1599 | 0.5228 | 0.3539 | 0.4221 | 0.9446 | | No log | 3.0 | 213 | 0.1472 | 0.5298 | 0.4385 | 0.4798 | 0.9470 | | No log | 4.0 | 284 | 0.1441 | 0.5885 | 0.4729 | 0.5244 | 0.9514 | | No log | 5.0 | 355 | 0.1675 | 0.5654 | 0.5146 | 0.5388 | 0.9491 | | No log | 6.0 | 426 | 0.1592 | 0.5860 | 0.5082 | 0.5443 | 0.9521 | | No log | 7.0 | 497 | 0.1634 | 0.5621 | 0.5587 | 0.5604 | 0.9509 | | 0.1349 | 8.0 | 568 | 0.1897 | 0.5803 | 0.5182 | 0.5475 | 0.9515 | | 0.1349 | 9.0 | 639 | 0.1880 | 0.5699 | 0.5539 | 0.5618 | 0.9506 | | 0.1349 | 10.0 | 710 | 0.1939 | 0.5923 | 0.5415 | 0.5657 | 0.9525 | | 0.1349 | 11.0 | 781 | 0.1988 | 0.5863 | 0.5475 | 0.5662 | 0.9518 | | 0.1349 | 12.0 | 852 | 0.2050 | 0.6079 | 0.5407 | 0.5723 | 0.9528 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1