bguan's picture
bguan's lunar lander model #2 using PPO trained for 500K timesteps
5498d2e
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3b71a5dd0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3b71a5e60>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3b71a5ef0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3b71a5f80>",
"_build": "<function ActorCriticPolicy._build at 0x7fe3b7129050>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe3b71290e0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3b7129170>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3b7129200>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3b7129290>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3b7129320>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3b71293b0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fe3b7174a20>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652055111.0983326,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICsVL1cZzu63RVfvBvIZ7zUptw7vO9GPQAAgD8AAIA/Jpi9PUgHobodC8W68S+vtXL83DhVK+M5AACAPwAAgD8zL+29nf5gPlEJIr0VGTy+NlT9u6p+dz0AAAAAAAAAAA1+uj36XR8/uCp8PTW2or7H13w9LQjUPQAAAAAAAAAA+qYmvq63mTkiOJu6smnMNmogC7y6wrU5AACAPwAAgD/zT7w9txwfP1o0WL3H9aC+CqfeO28/R70AAAAAAAAAAADpJr2PEjq69ZZYujdgTrUA9Q877mCAOQAAgD8AAIA/gAmdPUg7l7rtyDW6vCcwtYEG4TrVSFI5AACAPwAAgD8WeZ8+F/NaP9YYqz7m0c++ssqcPvNdLT4AAAAAAAAAAOa+OT7kRoE//t8dPhLWxr7d0M0+gZ8IPQAAAAAAAAAAZhEfvQkUQD9q7Rq9KnV2vq7oszxDLaO9AAAAAAAAAABm2Bm87LGbuWY1uDtpwDk41GDyuuFAiLoAAIA/AACAP1r/fr5FNmA/9iP0vebozr5VvV6+6NUGPgAAAAAAAAAAzeoBvSk8ULq6uQe6MFoGtlIBFbv13hs5AACAPwAAgD8Aji89n620u+CYFzw1XnA8e5QdvYpYTT0AAIA/AACAP2aF4Lz2vHa6Ct5OOy61YTh+iDy7MoP4uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpZ4FobwlSkCUhpRSlIwBbJRL7owBdJRHQHoYF2aDwph1fZQoaAZoCWgPQwiwWMNF7vFcQJSGlFKUaBVN6ANoFkdAehwYeT3Zf3V9lChoBmgJaA9DCJZ7gVmhNDFAlIaUUpRoFU0BAWgWR0B6MUHjZL7GdX2UKGgGaAloD0MIDOpb5vTbYECUhpRSlGgVTegDaBZHQHo/PdEb5uZ1fZQoaAZoCWgPQwjYKOs3E8JdQJSGlFKUaBVN6ANoFkdAekRmdy1eB3V9lChoBmgJaA9DCO9VKxN+jWBAlIaUUpRoFU3oA2gWR0B6RgpI+W4WdX2UKGgGaAloD0MIcM6I0l4RYUCUhpRSlGgVTegDaBZHQHplQ+t8uz11fZQoaAZoCWgPQwh4KuCe5xJhQJSGlFKUaBVN6ANoFkdAemrlJYkmhXV9lChoBmgJaA9DCIm2Y+ouB2FAlIaUUpRoFU3oA2gWR0B6dHPrv9cbdX2UKGgGaAloD0MIoOHNGrwHPkCUhpRSlGgVTQgBaBZHQHqBhf4REnd1fZQoaAZoCWgPQwizzvi+uNgxQJSGlFKUaBVL4mgWR0B6nNJUYKpldX2UKGgGaAloD0MIWksBaf8lZECUhpRSlGgVTegDaBZHQHqhf5P/JeV1fZQoaAZoCWgPQwje/8cJE8NiQJSGlFKUaBVN6ANoFkdAeqmDBMzuW3V9lChoBmgJaA9DCJ92+Guyr15AlIaUUpRoFU3oA2gWR0B6r5+vyLAIdX2UKGgGaAloD0MIW5caoZ/ZJcCUhpRSlGgVTQUBaBZHQHq1ULMLWqd1fZQoaAZoCWgPQwh1P6cgP4NfQJSGlFKUaBVN6ANoFkdAerwMqBmPHXV9lChoBmgJaA9DCN5YUBgU+GNAlIaUUpRoFU3oA2gWR0B60pTvRZ2ZdX2UKGgGaAloD0MIM8SxLm7lQ0CUhpRSlGgVS9loFkdAetOy6cy31HV9lChoBmgJaA9DCAmocASphFpAlIaUUpRoFU3oA2gWR0B69TOPeYUndX2UKGgGaAloD0MICHJQwkw+Y0CUhpRSlGgVTegDaBZHQHtEWFajesR1fZQoaAZoCWgPQwhTBg5o6SFmQJSGlFKUaBVN6ANoFkdAe0ihRZU1h3V9lChoBmgJaA9DCPXVVYHaKGFAlIaUUpRoFU3oA2gWR0B7TR3Ux20RdX2UKGgGaAloD0MItf6WAPwzEsCUhpRSlGgVTQUBaBZHQHtZi3Td+G51fZQoaAZoCWgPQwiyhLUxdtVbQJSGlFKUaBVN6ANoFkdAe2LavicXnHV9lChoBmgJaA9DCKpE2VvKxF5AlIaUUpRoFU3oA2gWR0B7cPIS13MZdX2UKGgGaAloD0MI8nnFU48bYkCUhpRSlGgVTegDaBZHQHt3uAd4mkZ1fZQoaAZoCWgPQwir0asBSopjQJSGlFKUaBVN6ANoFkdAe5yMxGlQ/HV9lChoBmgJaA9DCIjYYOEk2mJAlIaUUpRoFU3oA2gWR0B7s/lJYkmhdX2UKGgGaAloD0MITUwXYvUnKkCUhpRSlGgVS8JoFkdAe8zjopx3mnV9lChoBmgJaA9DCJSilXuB3mJAlIaUUpRoFU3oA2gWR0B7zyZH/cWTdX2UKGgGaAloD0MILV4sDJEDYkCUhpRSlGgVTegDaBZHQHvboiC8OCp1fZQoaAZoCWgPQwh0CvKzkeJiQJSGlFKUaBVN6ANoFkdAe+FT5ftx/HV9lChoBmgJaA9DCAcLJ2n+E2BAlIaUUpRoFU3oA2gWR0B75qQ2dd3TdX2UKGgGaAloD0MI6StIMxZVLMCUhpRSlGgVS+BoFkdAe+qBoVVPvnV9lChoBmgJaA9DCNUl4xhJ+2FAlIaUUpRoFU3oA2gWR0B77Nhqj8DTdX2UKGgGaAloD0MIB7R0Bdu4OkCUhpRSlGgVS+ZoFkdAe/4i35N47nV9lChoBmgJaA9DCHkCYadYYV9AlIaUUpRoFU3oA2gWR0B7/7FZPl+3dX2UKGgGaAloD0MIUWnEzD45QUCUhpRSlGgVS9poFkdAfAusgMc6vXV9lChoBmgJaA9DCOwYV1wcG0tAlIaUUpRoFUvRaBZHQHwSb3PAwf11fZQoaAZoCWgPQwgNG2X9ZvtaQJSGlFKUaBVN6ANoFkdAfB1f+CK77XV9lChoBmgJaA9DCGfttgvNyFxAlIaUUpRoFU3oA2gWR0B8IfyGzru6dX2UKGgGaAloD0MIgVoMHiYDY0CUhpRSlGgVTegDaBZHQHwluirT6SF1fZQoaAZoCWgPQwgz3eukvlBZQJSGlFKUaBVN6ANoFkdAfHOr92ovSXV9lChoBmgJaA9DCNLI5xVPY2VAlIaUUpRoFU3oA2gWR0B8f60Sh8IBdX2UKGgGaAloD0MIC5xsA/e9YECUhpRSlGgVTegDaBZHQHyIuYtxuKp1fZQoaAZoCWgPQwjzBMJOsbZBQJSGlFKUaBVL8mgWR0B8jqrksBhhdX2UKGgGaAloD0MITDj0Fg+ZY0CUhpRSlGgVTegDaBZHQHyW+SGJvYR1fZQoaAZoCWgPQwgnS633G4hjQJSGlFKUaBVN6ANoFkdAfJ3HcUM5O3V9lChoBmgJaA9DCJlGk4sxCCVAlIaUUpRoFUvTaBZHQHy5X++/QBx1fZQoaAZoCWgPQwjE6/oFu61DQJSGlFKUaBVL82gWR0B8/jN9ph4MdX2UKGgGaAloD0MIDR07qMTFYUCUhpRSlGgVTegDaBZHQH0ANGmUGFB1fZQoaAZoCWgPQwidnKG4425jQJSGlFKUaBVN6ANoFkdAfQ2lwtJ4B3V9lChoBmgJaA9DCG1zY3pCI2NAlIaUUpRoFU3oA2gWR0B9GkxWT5fudX2UKGgGaAloD0MI9bwbCwo2YkCUhpRSlGgVTegDaBZHQH0huBxxT851fZQoaAZoCWgPQwie6pCb4V5QQJSGlFKUaBVLxGgWR0B9MonAqNIcdX2UKGgGaAloD0MIpcACmDIMRUCUhpRSlGgVS9doFkdAfTWItDlYEHV9lChoBmgJaA9DCMcqpWd6l0VAlIaUUpRoFUuhaBZHQH02B2r4nF51fZQoaAZoCWgPQwjDnnb4a55eQJSGlFKUaBVN6ANoFkdAfTik56t1ZHV9lChoBmgJaA9DCAMn28AdR2JAlIaUUpRoFU3oA2gWR0B9OnACW/rTdX2UKGgGaAloD0MIhIHn3kOvYkCUhpRSlGgVTegDaBZHQH1HH05EMLF1fZQoaAZoCWgPQwhNSkG3l3pDQJSGlFKUaBVL/WgWR0B9UrMbFS88dX2UKGgGaAloD0MISzlf7L1HXUCUhpRSlGgVTegDaBZHQH1YGm+Cbtt1fZQoaAZoCWgPQwjus8pMaalgQJSGlFKUaBVN6ANoFkdAfVyw++ueSXV9lChoBmgJaA9DCH/5ZMXwQ2FAlIaUUpRoFU3oA2gWR0B9YEjPfKp2dX2UKGgGaAloD0MIy2jk84peYUCUhpRSlGgVTegDaBZHQH1kAnc+JP91fZQoaAZoCWgPQwg3qWis/QU8QJSGlFKUaBVL2mgWR0B9ZLr/sE7odX2UKGgGaAloD0MIeSCySJO0ZECUhpRSlGgVTegDaBZHQH25jCpFTeh1fZQoaAZoCWgPQwjAJmvUw3hiQJSGlFKUaBVN6ANoFkdAfcZZOSGJvnV9lChoBmgJaA9DCKn7AKQ2ol1AlIaUUpRoFU3oA2gWR0B9zXkZJkGzdX2UKGgGaAloD0MIBK4rZgTwZECUhpRSlGgVTegDaBZHQH3T4YrJ8v51fZQoaAZoCWgPQwgYITzaOMxLQJSGlFKUaBVLw2gWR0B97tUEPlMidX2UKGgGaAloD0MIsacd/hr9YUCUhpRSlGgVTegDaBZHQH5M52ECeVd1fZQoaAZoCWgPQwiDvvT255NiQJSGlFKUaBVN6ANoFkdAfl9JBPbfxnV9lChoBmgJaA9DCMRdvYoMymNAlIaUUpRoFU3oA2gWR0B+Yo5/9YOldX2UKGgGaAloD0MIblLRWHsYYUCUhpRSlGgVTegDaBZHQH5jFVo6CDp1fZQoaAZoCWgPQwjjpgaazzxcQJSGlFKUaBVN6ANoFkdAfmeyDqW1MXV9lChoBmgJaA9DCB3nNuFeaVlAlIaUUpRoFU3oA2gWR0B+dlwVCXyBdX2UKGgGaAloD0MILqnaboIDXUCUhpRSlGgVTegDaBZHQH6Dx8UmD151fZQoaAZoCWgPQwgy/+ibtKBjQJSGlFKUaBVN6ANoFkdAfolSOinHenV9lChoBmgJaA9DCLL1DOGYPV9AlIaUUpRoFU3oA2gWR0B+jcfzSThYdX2UKGgGaAloD0MI8RDGT+NWXkCUhpRSlGgVTegDaBZHQH6Rbo0Q9Rt1fZQoaAZoCWgPQwj9Fp0stXhhQJSGlFKUaBVN6ANoFkdAfpUFtsN2DHV9lChoBmgJaA9DCLPttDUi311AlIaUUpRoFU3oA2gWR0B+lbvAoG6gdX2UKGgGaAloD0MISKRt/AniZECUhpRSlGgVTegDaBZHQH7o3eaa1Cx1fZQoaAZoCWgPQwgnEeFfBPNmQJSGlFKUaBVN6ANoFkdAfv1Ltu1nd3V9lChoBmgJaA9DCC3OGOYEjmVAlIaUUpRoFU3oA2gWR0B/A4tRNyo5dX2UKGgGaAloD0MIfnA+dSxcYUCUhpRSlGgVTegDaBZHQH8ezDn/1g91fZQoaAZoCWgPQwgcs+xJYGMyQJSGlFKUaBVL8mgWR0B/XeWIGhVVdX2UKGgGaAloD0MI3UPC9/6SZkCUhpRSlGgVTegDaBZHQH+AT2OAAhl1fZQoaAZoCWgPQwg+srlqnhFWQJSGlFKUaBVN6ANoFkdAf5NnMMZxaXV9lChoBmgJaA9DCFvtYS8U+WVAlIaUUpRoFU3oA2gWR0B/ls3aSLZSdX2UKGgGaAloD0MI3LjF/FzzY0CUhpRSlGgVTegDaBZHQH+XU/r0J4V1fZQoaAZoCWgPQwjCTNu/sh5eQJSGlFKUaBVN6ANoFkdAf5v2phnanXV9lChoBmgJaA9DCKp/EMmQKWFAlIaUUpRoFU3oA2gWR0B/qs0ALiMpdX2UKGgGaAloD0MIEynN5vG7Z0CUhpRSlGgVTegDaBZHQH+488DB/I91fZQoaAZoCWgPQwhlNsgkI1NiQJSGlFKUaBVN6ANoFkdAf78iUxEfDHV9lChoBmgJaA9DCKZ9c391n2BAlIaUUpRoFU3oA2gWR0B/xD2OAAhjdX2UKGgGaAloD0MID+1jBb8kX0CUhpRSlGgVTegDaBZHQH/IdM495hV1fZQoaAZoCWgPQwiflEkNbVtmQJSGlFKUaBVN6ANoFkdAf8zC6pYLcHV9lChoBmgJaA9DCH8XtmYr71pAlIaUUpRoFU3oA2gWR0B/zaqABkqddWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}