--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E30_freq_pause results: [] --- # wav2vec2-1b-E30_freq_pause This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5438 - Cer: 14.4032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 8.581 | 0.2580 | 200 | 3.5252 | 80.8153 | | 1.8592 | 0.5160 | 400 | 1.7795 | 40.3665 | | 1.2512 | 0.7741 | 600 | 1.3170 | 32.6598 | | 1.0721 | 1.0321 | 800 | 1.0213 | 24.8120 | | 0.8561 | 1.2901 | 1000 | 0.9933 | 24.5242 | | 0.7665 | 1.5481 | 1200 | 1.1026 | 26.9678 | | 0.7108 | 1.8062 | 1400 | 0.8351 | 21.5519 | | 0.6025 | 2.0642 | 1600 | 0.9202 | 23.6490 | | 0.5026 | 2.3222 | 1800 | 0.8857 | 22.1511 | | 0.4525 | 2.5802 | 2000 | 0.7021 | 18.6678 | | 0.4254 | 2.8383 | 2200 | 0.7475 | 19.6722 | | 0.3807 | 3.0963 | 2400 | 0.6803 | 17.8630 | | 0.3106 | 3.3543 | 2600 | 0.6316 | 16.6177 | | 0.2843 | 3.6123 | 2800 | 0.6282 | 16.8174 | | 0.2704 | 3.8703 | 3000 | 0.6106 | 16.2829 | | 0.2238 | 4.1284 | 3200 | 0.5700 | 14.9377 | | 0.1923 | 4.3864 | 3400 | 0.5985 | 15.4429 | | 0.1833 | 4.6444 | 3600 | 0.5486 | 14.6205 | | 0.1779 | 4.9024 | 3800 | 0.5438 | 14.4032 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1