--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E30_fs2 results: [] --- # wav2vec2-1b-E30_fs2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5468 - Cer: 14.2798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 10.8739 | 0.2580 | 200 | 2.7757 | 55.2690 | | 1.817 | 0.5160 | 400 | 1.5611 | 35.3031 | | 1.2242 | 0.7741 | 600 | 1.2254 | 29.7404 | | 1.0296 | 1.0321 | 800 | 1.0612 | 26.5508 | | 0.8143 | 1.2901 | 1000 | 1.0154 | 24.8179 | | 0.7274 | 1.5481 | 1200 | 0.9467 | 24.0895 | | 0.6812 | 1.8062 | 1400 | 0.8809 | 23.0204 | | 0.5998 | 2.0642 | 1600 | 1.0420 | 26.1337 | | 0.495 | 2.3222 | 1800 | 0.8705 | 22.3978 | | 0.4552 | 2.5802 | 2000 | 0.8161 | 20.8412 | | 0.4141 | 2.8383 | 2200 | 0.7798 | 20.8999 | | 0.3507 | 3.0963 | 2400 | 0.7629 | 19.4901 | | 0.2985 | 3.3543 | 2600 | 0.6205 | 16.3651 | | 0.2554 | 3.6123 | 2800 | 0.5922 | 15.8952 | | 0.2546 | 3.8703 | 3000 | 0.5993 | 16.0479 | | 0.2114 | 4.1284 | 3200 | 0.5720 | 14.8849 | | 0.1834 | 4.3864 | 3400 | 0.5807 | 15.2491 | | 0.1723 | 4.6444 | 3600 | 0.5454 | 14.1800 | | 0.1631 | 4.9024 | 3800 | 0.5468 | 14.2798 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1