--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E50_freq_pause results: [] --- # wav2vec2-1b-E50_freq_pause This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8597 - Cer: 24.3832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 15.9037 | 0.2580 | 200 | 5.1166 | 92.5458 | | 11.4762 | 0.5160 | 400 | 11.0693 | 93.5092 | | 5.6392 | 0.7741 | 600 | 4.8196 | 92.3990 | | 4.5741 | 1.0321 | 800 | 4.5280 | 92.4988 | | 4.5003 | 1.2901 | 1000 | 4.4228 | 91.0421 | | 4.4138 | 1.5481 | 1200 | 4.3815 | 91.8233 | | 4.3121 | 1.8062 | 1400 | 4.2013 | 81.1560 | | 4.2003 | 2.0642 | 1600 | 4.5168 | 89.6617 | | 4.0984 | 2.3222 | 1800 | 4.3367 | 87.5059 | | 4.0011 | 2.5802 | 2000 | 4.0720 | 77.6668 | | 3.8311 | 2.8383 | 2200 | 4.1406 | 80.9269 | | 3.425 | 3.0963 | 2400 | 3.0046 | 62.9347 | | 2.1444 | 3.3543 | 2600 | 1.8194 | 41.1948 | | 1.4272 | 3.6123 | 2800 | 1.4620 | 36.2371 | | 1.1442 | 3.8703 | 3000 | 1.1785 | 30.7272 | | 0.9262 | 4.1284 | 3200 | 1.1745 | 32.0841 | | 0.7623 | 4.3864 | 3400 | 0.9678 | 27.3026 | | 0.7033 | 4.6444 | 3600 | 0.9814 | 27.2968 | | 0.6478 | 4.9024 | 3800 | 0.8597 | 24.3832 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1