File size: 2,669 Bytes
fe540c4
 
880c5f4
 
 
 
 
 
 
fe540c4
 
880c5f4
 
fe540c4
880c5f4
fe540c4
880c5f4
 
 
 
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
fe540c4
880c5f4
 
 
 
 
 
 
 
 
 
 
 
fe540c4
880c5f4
fe540c4
880c5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe540c4
 
880c5f4
fe540c4
880c5f4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-E50_speed2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-1b-E50_speed2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7405
- Cer: 24.6417

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 26.7947       | 0.2580 | 200  | 30.8746         | 111.8127 |
| 7.993         | 0.5160 | 400  | 5.7855          | 94.2317  |
| 4.7455        | 0.7741 | 600  | 4.5989          | 93.9262  |
| 4.4924        | 1.0321 | 800  | 4.7152          | 93.2331  |
| 4.3711        | 1.2901 | 1000 | 4.7883          | 93.3564  |
| 4.3243        | 1.5481 | 1200 | 4.7205          | 92.4636  |
| 4.2683        | 1.8062 | 1400 | 4.5020          | 90.9305  |
| 4.1967        | 2.0642 | 1600 | 4.8431          | 92.8102  |
| 4.0612        | 2.3222 | 1800 | 4.8480          | 92.2697  |
| 3.6744        | 2.5802 | 2000 | 3.8378          | 77.9664  |
| 2.8934        | 2.8383 | 2200 | 2.9635          | 61.9713  |
| 2.1459        | 3.0963 | 2400 | 2.1180          | 51.9267  |
| 1.5896        | 3.3543 | 2600 | 1.5030          | 38.3870  |
| 1.0885        | 3.6123 | 2800 | 1.1457          | 30.6978  |
| 0.8797        | 3.8703 | 3000 | 0.9902          | 29.2234  |
| 0.7317        | 4.1284 | 3200 | 0.8634          | 25.7636  |
| 0.6046        | 4.3864 | 3400 | 0.7911          | 24.6476  |
| 0.5618        | 4.6444 | 3600 | 0.7773          | 25.6285  |
| 0.5027        | 4.9024 | 3800 | 0.7405          | 24.6417  |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1