--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E50_speed2 results: [] --- # wav2vec2-1b-E50_speed2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7405 - Cer: 24.6417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 26.7947 | 0.2580 | 200 | 30.8746 | 111.8127 | | 7.993 | 0.5160 | 400 | 5.7855 | 94.2317 | | 4.7455 | 0.7741 | 600 | 4.5989 | 93.9262 | | 4.4924 | 1.0321 | 800 | 4.7152 | 93.2331 | | 4.3711 | 1.2901 | 1000 | 4.7883 | 93.3564 | | 4.3243 | 1.5481 | 1200 | 4.7205 | 92.4636 | | 4.2683 | 1.8062 | 1400 | 4.5020 | 90.9305 | | 4.1967 | 2.0642 | 1600 | 4.8431 | 92.8102 | | 4.0612 | 2.3222 | 1800 | 4.8480 | 92.2697 | | 3.6744 | 2.5802 | 2000 | 3.8378 | 77.9664 | | 2.8934 | 2.8383 | 2200 | 2.9635 | 61.9713 | | 2.1459 | 3.0963 | 2400 | 2.1180 | 51.9267 | | 1.5896 | 3.3543 | 2600 | 1.5030 | 38.3870 | | 1.0885 | 3.6123 | 2800 | 1.1457 | 30.6978 | | 0.8797 | 3.8703 | 3000 | 0.9902 | 29.2234 | | 0.7317 | 4.1284 | 3200 | 0.8634 | 25.7636 | | 0.6046 | 4.3864 | 3400 | 0.7911 | 24.6476 | | 0.5618 | 4.6444 | 3600 | 0.7773 | 25.6285 | | 0.5027 | 4.9024 | 3800 | 0.7405 | 24.6417 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1