File size: 1,914 Bytes
3f19a62 89911dc 3f19a62 89911dc 3f19a62 6a50698 89911dc 3f19a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: conversation-summ
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 52.5102
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# conversation-summ
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5467
- Rouge1: 52.5102
- Rouge2: 26.7766
- Rougel: 42.7536
- Rougelsum: 48.004
- Gen Len: 30.9487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.0464 | 1.0 | 3683 | 0.5467 | 52.5102 | 26.7766 | 42.7536 | 48.004 | 30.9487 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|