Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -30,7 +30,7 @@ Documentation for how to use Sample-Factory can be found at https://www.samplefa
|
|
30 |
|
31 |
After installing Sample-Factory, download the model with:
|
32 |
```
|
33 |
-
python -m sample_factory.huggingface.load_from_hub -r
|
34 |
```
|
35 |
|
36 |
|
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r caioiglesias/rl_course_viz
|
|
38 |
|
39 |
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
```
|
41 |
-
python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=
|
42 |
```
|
43 |
|
44 |
|
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
|
49 |
|
50 |
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
```
|
52 |
-
python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=
|
53 |
```
|
54 |
|
55 |
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
|
|
30 |
|
31 |
After installing Sample-Factory, download the model with:
|
32 |
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r Gyaneshere/doom_health_gathering_supreme
|
34 |
```
|
35 |
|
36 |
|
|
|
38 |
|
39 |
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
```
|
41 |
+
python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme
|
42 |
```
|
43 |
|
44 |
|
|
|
49 |
|
50 |
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
```
|
52 |
+
python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
```
|
54 |
|
55 |
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|