Gyaneshere commited on
Commit
4efb0f8
·
verified ·
1 Parent(s): 7e654d2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -30,7 +30,7 @@ Documentation for how to use Sample-Factory can be found at https://www.samplefa
30
 
31
  After installing Sample-Factory, download the model with:
32
  ```
33
- python -m sample_factory.huggingface.load_from_hub -r caioiglesias/rl_course_vizdoom_health_gathering_supreme
34
  ```
35
 
36
 
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r caioiglesias/rl_course_viz
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
 
30
 
31
  After installing Sample-Factory, download the model with:
32
  ```
33
+ python -m sample_factory.huggingface.load_from_hub -r Gyaneshere/doom_health_gathering_supreme
34
  ```
35
 
36
 
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme
42
  ```
43
 
44
 
 
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.