File size: 1,218 Bytes
ba51c4d
 
f6fd8a5
 
 
 
 
 
 
 
ba51c4d
 
 
 
f6fd8a5
ba51c4d
 
f6fd8a5
ba51c4d
 
 
f6fd8a5
 
ba51c4d
 
 
5ad3bf9
ba51c4d
 
 
 
f6fd8a5
 
 
 
 
 
 
 
 
 
 
ba51c4d
 
 
f6fd8a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
library_name: transformers
license: mit
language:
- en
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
pipeline_tag: text-generation
datasets:
- HINT-lab/DeepSeek-R1-Distill-Qwen-1.5B-Self-Calibration
---

# Model Card for Model ID

Model trained based on `deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B` by Self-Calibration proposed by [Efficient Test-Time Scaling via Self-Calibration](https://arxiv.org/abs/2503.00031). 


## Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/Chengsong-Huang/Self-Calibration
- **Paper :** Efficient Test-Time Scaling via Self-Calibration



## Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@misc{huang2025efficienttesttimescalingselfcalibration,
      title={Efficient Test-Time Scaling via Self-Calibration}, 
      author={Chengsong Huang and Langlin Huang and Jixuan Leng and Jiacheng Liu and Jiaxin Huang},
      year={2025},
      eprint={2503.00031},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.00031}, 
}
```

## Model Card Contact

[email protected]