File size: 1,218 Bytes
ba51c4d f6fd8a5 ba51c4d f6fd8a5 ba51c4d f6fd8a5 ba51c4d f6fd8a5 ba51c4d 5ad3bf9 ba51c4d f6fd8a5 ba51c4d f6fd8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
library_name: transformers
license: mit
language:
- en
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
pipeline_tag: text-generation
datasets:
- HINT-lab/DeepSeek-R1-Distill-Qwen-1.5B-Self-Calibration
---
# Model Card for Model ID
Model trained based on `deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B` by Self-Calibration proposed by [Efficient Test-Time Scaling via Self-Calibration](https://arxiv.org/abs/2503.00031).
## Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/Chengsong-Huang/Self-Calibration
- **Paper :** Efficient Test-Time Scaling via Self-Calibration
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{huang2025efficienttesttimescalingselfcalibration,
title={Efficient Test-Time Scaling via Self-Calibration},
author={Chengsong Huang and Langlin Huang and Jixuan Leng and Jiacheng Liu and Jiaxin Huang},
year={2025},
eprint={2503.00031},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.00031},
}
```
## Model Card Contact
[email protected] |